-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
75 lines (46 loc) · 1.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#!/usr/bin/python3
# train.py
# Richardson Saint Bonheur
import platform; print(platform.platform())
import sys; print("Python", sys.version)
import numpy; print("Numpy", numpy.__version__)
import scipy; print ("Scipy", scipy.__version__)
import os
import numpy as np
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.neural_network import MLPClassifier
import pandas as pd
from joblib import dump
from sklearn import preprocessing
def train():
# Load Directory paths for persisting model
MODEL_DIR = os.environ["MODEL_DIR"]
MODEL_FILE_LDA = os.environ["MODEL_FILE_LDA"]
MODEL_FILE_NN = os.environ["MODEL_FILE_NN"]
MODEL_PATH_LDA = os.path.join(MODEL_DIR, MODEL_FILE_LDA)
MODEL_PATH_NN = os.path.join(MODEL_DIR, MODEL_FILE_NN)
# Load Read and Normalize training data
training = "./train.csv"
data_train = pd.read_csv(training)
y_train = data_train['# Letter'].values
X_train = data_train.drop(data_train.loc[:, 'Line':'# Letter'].columns, axis = 1)
print("Shape of the training data")
print(X_train.shape)
print(y_train.shape)
# Data normalization (0,1)
X_train = preprocessing.normalize(X_train, norm='l2')
# Models training
# Linear Discrimant Analysis (Default parameters)
clf_lda = LinearDiscriminantAnalysis()
clf_lda.fit(X_train, y_train)
# Save model
from joblib import dump
dump(clf_lda, MODEL_PATH_LDA)
# Neural Networks multi-layer perceptron (MLP) algorithm
clf_NN = MLPClassifier(solver='adam', activation='relu', alpha=0.0001, hidden_layer_sizes=(500,), random_state=0, max_iter=1000)
clf_NN.fit(X_train, y_train)
# Secord model
from joblib import dump, load
dump(clf_NN, MODEL_PATH_NN)
if __name__ == '__main__':
train()