-
Notifications
You must be signed in to change notification settings - Fork 0
/
MAOSDAN-1.py
396 lines (333 loc) · 16.8 KB
/
MAOSDAN-1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import random
import time
import warnings
import sys
import argparse
import shutil
import os.path as osp
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.optim import SGD
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
import torchvision.transforms as T
import torch.nn.functional as F
import data_list
sys.path.append('../../..')
from dalib.adaptation.osbp import ImageClassifier as Classifier, UnknownClassBinaryCrossEntropy, Aug_Cla
import common.vision.datasets.openset as datasets
from common.vision.datasets.openset import default_open_set as open_set
import common.vision.models as models
from common.vision.transforms import ResizeImage
from common.utils.data import ForeverDataIterator
from common.utils.metric import accuracy, ConfusionMatrix
from common.utils.meter import AverageMeter, ProgressMeter
from common.utils.logger import CompleteLogger
from common.utils.analysis import collect_feature, tsne, a_distance
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def main(args: argparse.Namespace):
logger = CompleteLogger(args.log, args.phase)
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
cudnn.benchmark = True
# Data loading code
normalize = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
if args.center_crop:
train_transform = T.Compose([
ResizeImage(256),
T.CenterCrop(224),
T.RandomHorizontalFlip(),
T.ToTensor(),
normalize
])
else:
train_transform = T.Compose([
ResizeImage(256),
T.RandomResizedCrop(224),
T.RandomHorizontalFlip(),
T.ToTensor(),
normalize
])
val_transform = T.Compose([
ResizeImage(256),
T.CenterCrop(224),
T.ToTensor(),
normalize
])
dataset = datasets.__dict__[args.data]
# source_dataset = open_set(dataset, source=True, args.source)
# target_dataset = open_set(dataset, source=False, args.target)
# train_source_dataset = source_dataset(root=args.root, task=args.source, download=True, transform=train_transform)
# train_source_loader = DataLoader(train_source_dataset, batch_size=args.batch_size,
# shuffle=True, num_workers=args.workers, drop_last=True)
# train_target_dataset = target_dataset(root=args.root, task=args.target, download=True, transform=train_transform)
# train_target_loader = DataLoader(train_target_dataset, batch_size=args.batch_size,
# shuffle=True, num_workers=args.workers, drop_last=True)
# val_dataset = target_dataset(root=args.root, task=args.target, download=True, transform=val_transform)
# val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers)
# if args.data == 'DomainNet':
# test_dataset = target_dataset(root=args.root, task=args.target, split='test', download=True, transform=val_transform)
# test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers)
# else:
# test_loader = val_loader
train_source_dataset = data_list.ImageList(open(args.s_dset_path).readlines(), transform=train_transform)
train_target_dataset = data_list.ImageList(open(args.t_dset_path).readlines(), transform=train_transform)
train_source_loader = DataLoader(train_source_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, drop_last=True)
train_target_loader = DataLoader(train_target_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, drop_last=True)
val_dataset = data_list.ImageList(open(args.t_dset_path).readlines(), transform=val_transform)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers)
test_loader = val_loader
train_source_iter = ForeverDataIterator(train_source_loader)
train_target_iter = ForeverDataIterator(train_target_loader)
# create model
print("=> using pre-trained model '{}'".format(args.arch))
backbone = models.__dict__[args.arch](pretrained=True)
# num_classes = train_source_dataset.num_classes
num_classes = args.class_num
classifier = Classifier(backbone, num_classes, args.bottleneck_dim).to(device)
aug = Aug_Cla(backbone, num_classes).to(device)
unknown_bce = UnknownClassBinaryCrossEntropy(t=0.5)
parameter_list = classifier.get_parameters() + aug.get_parameters()
# define optimizer and lr scheduler
# optimizer = SGD(classifier.get_parameters(), args.lr, momentum=args.momentum, weight_decay=args.wd, nesterov=True)
optimizer = SGD(parameter_list, args.lr, momentum=args.momentum, weight_decay=args.wd, nesterov=True)
lr_scheduler = LambdaLR(optimizer, lambda x: args.lr * (1. + args.lr_gamma * float(x)) ** (-args.lr_decay))
# analysis the model
if args.phase == 'analysis':
# extract features from both domains
feature_extractor = nn.Sequential(classifier.backbone, classifier.bottleneck).to(device)
source_feature = collect_feature(train_source_loader, feature_extractor, device)
target_feature = collect_feature(train_target_loader, feature_extractor, device)
# plot t-SNE
tSNE_filename = osp.join(logger.visualize_directory, 'TSNE.png')
tsne.visualize(source_feature, target_feature, tSNE_filename)
print("Saving t-SNE to", tSNE_filename)
# calculate A-distance, which is a measure for distribution discrepancy
A_distance = a_distance.calculate(source_feature, target_feature, device)
print("A-distance =", A_distance)
return
if args.phase == 'test':
acc1 = validate(test_loader, classifier, args)
print(acc1)
return
# start training
best_h_score = 0.
for epoch in range(args.epochs):
# train for one epoch
train(train_source_iter, train_target_iter, classifier, aug, unknown_bce, optimizer,
lr_scheduler, epoch, args)
# evaluate on validation set
h_score = validate(val_loader, classifier, args)
# remember best acc@1 and save checkpoint
torch.save(classifier.state_dict(), logger.get_checkpoint_path('latest'))
if h_score > best_h_score:
shutil.copy(logger.get_checkpoint_path('latest'), logger.get_checkpoint_path('best'))
best_h_score = max(h_score, best_h_score)
print("best_h_score = {:3.1f}".format(best_h_score))
# evaluate on test set
classifier.load_state_dict(torch.load(logger.get_checkpoint_path('best')))
h_score = validate(test_loader, classifier, args)
print("test_h_score = {:3.1f}".format(h_score))
logger.close()
def train(train_source_iter: ForeverDataIterator, train_target_iter: ForeverDataIterator,model: Classifier, aug: Aug_Cla, unknown_bce: UnknownClassBinaryCrossEntropy, optimizer: SGD,
lr_scheduler: LambdaLR, epoch: int, args: argparse.Namespace):
batch_time = AverageMeter('Time', ':4.2f')
data_time = AverageMeter('Data', ':3.1f')
losses = AverageMeter('Loss', ':3.2f')
cls_accs = AverageMeter('Cls Acc', ':3.1f')
tgt_accs = AverageMeter('Tgt Acc', ':3.1f')
trans_losses = AverageMeter('Trans Loss', ':3.2f')
progress = ProgressMeter(
args.iters_per_epoch,
[batch_time, data_time, losses, trans_losses, cls_accs, tgt_accs],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model.train()
num_classes = args.class_num
end = time.time()
for i in range(args.iters_per_epoch):
x_s, labels_s = next(train_source_iter)
x_t, labels_t = next(train_target_iter)
x_s = x_s.to(device)
x_t = x_t.to(device)
labels_s = labels_s.to(device)
labels_t = labels_t.to(device)
# measure data loading time
data_time.update(time.time() - end)
# compute output
y_s, f_s = model(x_s, grad_reverse=False)
Caug_feat = f_s.detach()
out_S = F.softmax(y_s.detach(), dim=1)
probs1 = torch.sum(out_S[:, :num_classes - 1], 1).view(-1, 1)
y_onehot = torch.zeros((args.batch_size, num_classes-1)).to(device)
y_onehot.scatter_(1, labels_s.long().unsqueeze(1), 1)
y_onehot.requires_grad_(False)
y_t, f_t = model(x_t, grad_reverse=False)
Caug_feat_t = f_t.detach()
out_t = F.softmax(y_t, dim=1)
prob1 = torch.sum(out_t[:, :num_classes - 1], 1).view(-1, 1)
predictprob_source, domainprob_source = aug.forward(Caug_feat,probs1.detach())
predictprob_target, domainprob_target = aug.forward(Caug_feat_t,prob1.detach())
c_aug = nn.BCELoss(reduction ='none')(predictprob_source, y_onehot)
c_aug = torch.sum(c_aug) / labels_s.numel()
# print(domainprob_source.shape)
# print(domainprob_source)
adv_loss = nn.BCELoss()(domainprob_source, torch.ones_like(domainprob_source))
adv_loss += nn.BCELoss()(domainprob_target, torch.zeros_like(domainprob_target))
loss_aug = 1.0 * adv_loss + 1.0 * c_aug
cls_loss = F.cross_entropy(y_s, labels_s)
# trans_loss = unknown_bce(y_t)
y_t_t, f_t_t = model(x_t, grad_reverse=True)
out_t_t = F.softmax(y_t_t, dim=1)
prob1_t = torch.sum(out_t_t[:, :num_classes - 1], 1).view(-1, 1)
prob2_t = out_t_t[:, num_classes - 1].contiguous().view(-1, 1)
predictprob_target_t, domainprob_target_t = aug.forward(f_t_t.detach(), prob1_t.detach())
# prob_t = torch.cat((prob1_t, prob2_t), 1)
weight = (domainprob_target.detach())
# print(prob_t.shape)
# print(weight.shape)
prob_t = prob2_t
trans_loss = nn.BCELoss()(prob_t, weight)
loss = cls_loss + trans_loss + loss_aug
cls_acc = accuracy(y_s, labels_s)[0]
tgt_acc = accuracy(y_t, labels_t)[0]
losses.update(loss.item(), x_s.size(0))
trans_losses.update(trans_loss.item(), x_s.size(0))
cls_accs.update(cls_acc.item(), x_s.size(0))
tgt_accs.update(tgt_acc.item(), x_t.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_scheduler.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
def validate(val_loader: DataLoader, model: Classifier, args: argparse.Namespace) -> float:
batch_time = AverageMeter('Time', ':6.3f')
# classes = val_loader.dataset.classes
len_classes = args.class_num
# confmat = ConfusionMatrix(len(classes))
confmat = ConfusionMatrix(len_classes)
progress = ProgressMeter(
len(val_loader),
[batch_time],
prefix='Test: ')
# switch to evaluate mode
model.eval()
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(val_loader):
images = images.to(device)
target = target.to(device)
# compute output
output, _ = model(images)
# measure accuracy and record loss
confmat.update(target, output.argmax(1))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
acc_global, accs, iu = confmat.compute()
all_acc = torch.mean(accs).item() * 100
known = torch.mean(accs[:-1]).item() * 100
unknown = accs[-1].item() * 100
h_score = 2 * known * unknown / (known + unknown)
if args.per_class_eval:
print(confmat.format(classes))
print(' * All {all:.3f} Known {known:.3f} Unknown {unknown:.3f} H-score {h_score:.3f}'
.format(all=all_acc, known=known, unknown=unknown, h_score=h_score))
return h_score
if __name__ == '__main__':
architecture_names = sorted(
name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name])
)
dataset_names = sorted(
name for name in datasets.__dict__
if not name.startswith("__") and callable(datasets.__dict__[name])
)
parser = argparse.ArgumentParser(description='PyTorch Domain Adaptation')
# dataset parameters
parser.add_argument('--root', metavar='DIR', default='/data/zjp/dataset/Office31',
help='root path of dataset')
parser.add_argument('-d', '--data', metavar='DATA', default='Office31',
help='dataset: ' + ' | '.join(dataset_names) +
' (default: Office31)')
parser.add_argument('--s', '--source', default=0, type=int, help='source domain(s)')
parser.add_argument('--t', '--target', default=1, type=int, help='target domain(s)')
parser.add_argument('--center-crop', default=False, action='store_true',
help='whether use center crop during training')
parser.add_argument('--dset', type=str, default='rs', choices=["office", "office_home", "imagenet_caltech", "rs"])
# model parameters
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet50',
choices=architecture_names,
help='backbone architecture: ' +
' | '.join(architecture_names) +
' (default: resnet18)')
parser.add_argument('--bottleneck-dim', default=256, type=int,
help='Dimension of bottleneck')
# training parameters
parser.add_argument('-b', '--batch-size', default=32, type=int,
metavar='N',
help='mini-batch size (default: 32)')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--lr-gamma', default=0.0003, type=float, help='parameter for lr scheduler')
parser.add_argument('--lr-decay', default=0.75, type=float, help='parameter for lr scheduler')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=0.0005, type=float,
metavar='W', help='weight decay (default: 5e-4)')
parser.add_argument('-j', '--workers', default=2, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=20, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-i', '--iters-per-epoch', default=500, type=int,
help='Number of iterations per epoch')
parser.add_argument('-p', '--print-freq', default=100, type=int,
metavar='N', help='print frequency (default: 100)')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--per-class-eval', action='store_true',
help='whether output per-class accuracy during evaluation')
parser.add_argument("--log", type=str, default='osbp',
help="Where to save logs, checkpoints and debugging images.")
parser.add_argument("--phase", type=str, default='train', choices=['train', 'test', 'analysis'],
help="When phase is 'test', only test the model."
"When phase is 'analysis', only analysis the model.")
args = parser.parse_args()
if args.dset == 'rs':
names = ['A', 'N', 'U']
if args.s == 0:
if args.t == 1:
args.class_num = 24
if args.t == 2:
args.class_num = 14
if args.s == 1:
if args.t == 0:
args.class_num = 24
if args.t == 2:
args.class_num = 22
if args.s == 2:
if args.t == 0:
args.class_num = 14
if args.t == 1:
args.class_num = 22
data_folder = './data/'
args.s_dset_path = data_folder + args.dset + '/' + '{}2{}_{}.txt'.format(names[args.s], names[args.t], names[args.s])
args.t_dset_path = data_folder + args.dset + '/' + '{}2{}_{}.txt'.format(names[args.s], names[args.t], names[args.t])
print(args)
main(args)