-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy patheval_gmm.m
54 lines (46 loc) · 1.7 KB
/
eval_gmm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
function [ll, post, mlg, mmserecon] = eval_gmm(gmm, data, norm)
% [loglik, posteriors, mlseq, recon] = eval_gmm(gmm, data)
%
% Evaluate the log probability of each column of data given GMM gmm.
%
% Outputs:
% loglik - log likelihood of each colimn of data
% posteriors - posterior probability of each GMM component for each
% column of data
% mlseq - index of the most likely GMM component for each
% column of data
% recon - MMSE reconstruction of data given the GMM
%
% 2005-11-20 [email protected]
% Copyright (C) 2005-2007 Ron J. Weiss
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
if nargin < 3, norm = 1; end
[ndim, ndat] = size(data);
post = lmvnpdf(data, gmm.means, gmm.covars) + repmat(gmm.priors(:), [1, ndat]);
ll = logsum(post, 1);
if nargout > 1 && norm
post = exp(post - repmat(logsum(post,1), gmm.nmix, 1));
end
if nargout > 2
[mlg tmp] = ind2sub(size(post), find(post == repmat(max(post),gmm.nmix,1)));
end
if nargout > 3
if norm
mmserecon = gmm.means*post;
else
postnorm = exp(post - repmat(logsum(post,1), gmm.nmix, 1));
mmserecon = gmm.means*postnorm;
end
end