forked from yoheinakajima/babyagi
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathscraper.py
280 lines (231 loc) · 9.68 KB
/
scraper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import requests
from bs4 import BeautifulSoup
import os
import re
import importlib
from extensions.doc_embedding import text_loader
import requests
from lxml import etree
import requests
from bs4 import BeautifulSoup
from serpapi import GoogleSearch
import os
import re
import importlib
import random
from newspaper import Article
import math
user_agents_list = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.51 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/15.3 Safari/605.1.15',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:96.0) Gecko/20100101 Firefox/96.0',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.51 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Edge/98.0.1108.43'
]
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.81 Safari/537.36"
}
# OS configuration
SERPAPI_API_KEY = os.getenv("SERPAPI_API_KEY", "")
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY", "")
GOOGLE_CSE_ID = os.getenv("GOOGLE_CSE_ID", "")
STORAGE_PATH = os.getenv("SCRAPE_SOURCE_PATH", "") + "/scraper"
def web_search_tool(query: str, num_extracts: int, mode: str):
links = []
search_results = []
# Google API search
if mode == "google":
url = "https://www.googleapis.com/customsearch/v1"
params = {
"key": GOOGLE_API_KEY,
"cx": GOOGLE_CSE_ID,
"q": query,
"num": num_extracts,
"start": 1
}
search_results = requests.get(url, params=params, timeout=5)
if search_results.status_code == 200:
try:
json_data = search_results.json()
if "items" in json_data:
search_results = json_data["items"]
else:
print("Error: No items found in the response.")
search_results = []
if SERPAPI_API_KEY:
mode = "serpapi"
print("Switching to SERPAPI mode...")
else:
mode = "browser"
print("Switching to browser mode...")
except ValueError as e:
print(f"Error while parsing JSON data: {e}")
else:
print("\033[90m\033[3m" + f"Error: {search_results.status_code}\033[0m")
if search_results.status_code == 429:
if SERPAPI_API_KEY:
mode = "serpapi"
print("Switching to SERPAPI mode...")
else:
mode = "browser"
print("Switching to browser mode...")
print("\033[90m\033[3m" + "Completed search. Now scraping results...\n\033[0m")
links = []
for result in search_results:
links.append(result['link'])
print("\033[90m\033[3m" + f"Webpage URL: {result['link']}\033[0m")
# SERPAPI search
if mode == "serpapi":
search_params = {
"engine": "google",
"q": query,
"api_key": SERPAPI_API_KEY,
"num": num_extracts
}
search_results = GoogleSearch(search_params)
search_results = search_results.get_dict()
try:
search_results = search_results["organic_results"]
except:
search_results = {}
mode = "browser"
print("Switching to browser mode...")
search_results = simplify_search_results(search_results)
print("\033[90m\033[3m" + "Completed search. Now scraping results...\033[0m")
links = []
for result in search_results:
links.append(result.get('link'))
print("\033[90m\033[3m" + f"Webpage URL: {result.get('link')}\033[0m")
# Browser search
if mode == "browser":
access_counter = 0
while (access_counter < 3):
url = f"https://duckduckgo.com/html/?q={query}"
index = math.floor(random.random() * len(user_agents_list))
browser_header = { 'User-Agent': user_agents_list[index] }
#'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3',
#'accept-encoding': 'gzip, deflate, br',
#'accept-language': 'en-US,en;q=0.9,en;q=0.8' }
search_results = requests.get(url, headers=browser_header, timeout=5)
if search_results.status_code == 200:
try:
soup = BeautifulSoup(search_results.text, 'html.parser')
links = []
i = int(0)
for result in soup.select("a.result__url"):
url = result["href"]
if url:
links.append(url)
print("\033[90m\033[3m" + f"Webpage URL: {url}\033[0m")
i+=1
if i >= num_extracts:
access_counter = 3
break
print("\033[90m\033[3m" + f"Completed search with {str(browser_header)}. Now scraping results...\n\033[0m")
except Exception as e:
print("\033[90m\033[3m" + f"Error while parsing HTML data: {e}\033[0m")
access_counter = 3
links = []
search_results = []
else:
print(f"Request status code not OK: {search_results.status_code} with {browser_header}")
access_counter+=1
search_results = []
# Error handling
if mode not in ["google", "serpapi", "browser"]:
print(f'Error: Smart search mode "{mode}" is out-of-range.')
if not search_results:
print("No search results found.")
return search_results, links
def can_import(module_name):
try:
importlib.import_module(module_name)
return True
except ImportError:
return False
def simplify_search_results(search_results):
simplified_results = []
for result in search_results:
simplified_result = {
"position": result.get("position"),
"title": result.get("title"),
"link": result.get("link"),
"snippet": result.get("snippet")
}
simplified_results.append(simplified_result)
return simplified_results
def web_scrape_tool(url: str):
content = fetch_url_content(url)
if content is None:
return None
#text = extract_text(content)
text = extract_text_extended(content)
print("\033[90m\033[3m" + f"Scraping of {url} completed with length: {len(text)}...\033[0m")
links = extract_links(content)
return text, links
def fetch_url_content(url: str):
try:
response = requests.get(url, headers=headers, timeout=10)
response.raise_for_status()
return response.content
except requests.exceptions.RequestException as e:
print(f"Error while fetching the URL: {e}")
return ""
def extract_links(content: str):
soup = BeautifulSoup(content, "html.parser")
links = [link.get('href') for link in soup.findAll('a', attrs={'href': re.compile("^https?://")})]
return links
def extract_text(content: str):
soup = BeautifulSoup(content, "html.parser")
text = soup.get_text(strip=True)
return text
def extract_text_extended(content: str):
soup = BeautifulSoup(content, "html.parser")
for script in soup(["script", "style"]):
script.decompose()
text_parts = [tag.get_text(strip=True) for tag in soup.find_all(['p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6', 'li'])]
return " ".join(text_parts)
def extract_text_newspaper3k(url: str):
article = Article(url)
article.download()
article.parse()
return article.text
def get_sitemap_urls(sitemap_url, web_page: str):
response = requests.get(sitemap_url)
xml = response.content
tree = etree.fromstring(xml)
namespaces = {'ns': web_page}
urls = [url.text for url in tree.xpath('//ns:loc', namespaces=namespaces)]
return urls
def text_writer(file_path: str, input: str):
if input:
print(f"Writing web scrape results to {file_path}...")
with open(file_path, 'w') as f:
f.write(input)
# List of URLs
query = {
"Fine-tuning of Llama on customer grade computer",
"Context size maximation for Llama",
"Fine-tuning mechanisms for Llama training",
"Llama training with fine-tuning on customer grade computer",
"7B-Llama fine-tuning with CPU for maximum context size",
"Python code for Llama fine-tuning"
"Setting up a Llama in Python",
"How to use Langchain",
"LLM training and deployment in Python",
"How to use Llama in Python"
}
# Scrape web pages 2 levels deep and store content in text files
all_links = []
for q in query:
search_results, links = web_search_tool(query=q, mode="google", num_extracts=10)
for link in links:
content, lvl2_links = web_scrape_tool(link)
if len(content) >= 1000 and link not in all_links:
all_links.append(link)
page = content + "\nSource: " + link
file_name = link.replace("https://", "").replace("http://", "").replace("/", "_")
file_name = file_name[0:26] + ".txt"
print(f"Copy web scrape results for {file_name} and store in {STORAGE_PATH}...\n")
text_writer(STORAGE_PATH + "/" + file_name, page)
print("Web scrape completed!")