-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathtest.py
76 lines (61 loc) · 2.23 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import sys
import gym
import pylab
import random
import numpy as np
from collections import deque
import tensorflow as tf
from tensorflow.keras.layers import Dense
from tensorflow.keras.initializers import RandomUniform
# 상태가 입력, 큐함수가 출력인 인공신경망 생성
class DQN(tf.keras.Model):
def __init__(self, action_size):
super(DQN, self).__init__()
self.fc1 = Dense(24, activation='relu')
self.fc2 = Dense(24, activation='relu')
self.fc_out = Dense(action_size,
kernel_initializer=RandomUniform(-1e-3, 1e-3))
def call(self, x):
x = self.fc1(x)
x = self.fc2(x)
q = self.fc_out(x)
return q
# 카트폴 예제에서의 DQN 에이전트
class DQNAgent:
def __init__(self, state_size, action_size):
# 상태와 행동의 크기 정의
self.state_size = state_size
self.action_size = action_size
# 모델과 타깃 모델 생성
self.model = DQN(action_size)
self.model.load_weights("./save_model/trained/model")
# 입실론 탐욕 정책으로 행동 선택
def get_action(self, state):
q_value = self.model(state)
return np.argmax(q_value[0])
if __name__ == "__main__":
# CartPole-v1 환경, 최대 타임스텝 수가 500
env = gym.make('CartPole-v1')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
# DQN 에이전트 생성
agent = DQNAgent(state_size, action_size)
num_episode = 10
for e in range(num_episode):
done = False
score = 0
# env 초기화
state = env.reset()
state = np.reshape(state, [1, state_size])
while not done:
env.render()
# 현재 상태로 행동을 선택
action = agent.get_action(state)
# 선택한 행동으로 환경에서 한 타임스텝 진행
next_state, reward, done, info = env.step(action)
next_state = np.reshape(next_state, [1, state_size])
score += reward
state = next_state
if done:
# 에피소드마다 학습 결과 출력
print("episode: {:3d} | score: {:.3f} ".format(e, score))