Skip to content
This repository has been archived by the owner on Mar 28, 2020. It is now read-only.

Latest commit

 

History

History
129 lines (76 loc) · 4.44 KB

README.md

File metadata and controls

129 lines (76 loc) · 4.44 KB

FACE ATTENDENCE WITH AWS REKOGNITION

forthebadge made-with-python GPLv3 license star this repo fork this repo

BUILD IN DJANGO WITH MYSQL DATABASES

Video Click to play

video

USE

INSTALLATION

1. Install awscli in your system and configure:

MAC LINUX OR UNIX

 rizwan@ubuntu$ sudo apt-get install awscli
 /* FIND YOUR ACCESS KEY AND SECRET KEY FROM AWS IN SECUIRTY CREDENTIALS */
 rizwan@ubuntu$ aws configure
 
 enter details of access key and secret key
 
                          or
                          
 rizwan@ubuntu$ export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE 
 rizwan@ubuntu$ export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY 
 rizwan@ubuntu$ export AWS_DEFAULT_REGION=us-west-2

WINDOWS

    C:\> setx AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
    C:\> setx AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
    C:\> setx AWS_DEFAULT_REGION=us-west-2

2. Import knit.sql DB

Mysql CommandLine

  mysql>create database db_name;
  mysql> use db_name;
  mysql> source knit.sql;

Terminal

  mysql -u username -p password db_name < knit.sql

Windows Command Prompt

 mysql -p -u [user] [database] < knit.sql

PowerShell

  C:\> cmd.exe /c "mysql -u root -p db_name < knit.sql" 

3. Add Databases in Django Project

Go to face-attendence/web/web/settings.py

 Replace NAME,USER,PASSWORD with your credentials
 
 
  DATABASES = {
  'default': {
'ENGINE': 'django.db.backends.mysql',
'NAME': 'db_name',
'HOST': '127.0.0.1',
'PORT': '3306',
'USER': 'username',
'PASSWORD': 'password',
 }}

4. Add your S3 name and path

Go to face-attendence/web/face/views.py in upload function

 Replace s3,object key name, with your credentials

5. Activate virtual environment

Go into web directory

 source env/bin/activate

5. Run server

python3 manage.py runserver

Take class images and Upload it on our website-

class faceclass

We are taking this photo as example

example

we stored images of student in s3 you can do it locally on your server

s3_images

Both images analyzing and detect faces and crop them

output

Cropping face

cropping-student

cropping-class

Now Matches face

matching

WebApp

Home,Student Register,Teacher Login,Student Login

web

Manual Attendance with single click

manual

Face Attendance Single Image required

face

Student Dashboard Attendance Report

student