-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyse_neurons.py
55 lines (48 loc) · 1.47 KB
/
analyse_neurons.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from lmfit import minimize, Parameters, report_fit
import SOSDataset
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib
DATA_H = SOSDataset.DATA_H
DATA_W = SOSDataset.DATA_W
C = 4
N = np.load("misc/N.npy")
cum_area = np.load("misc/cum_area.npy")
activations = np.load("misc/activations.npy")
noi = np.load("misc/noi.npy")
noi = list(noi)
noi += [noi[-1]]
noi = [82, 2, 180, 77, 137, 136, 115, 91, 88, 18, 35]
# noi = [2]
print(N.shape)
print(cum_area.shape)
print(activations.shape)
# fig = plt.figure()
# for i, n in enumerate(noi):
# # ax = fig.add_subplot(2, int((len(noi))/2), i+1, projection='3d')
# fig = plt.figure()
# ax = fig.add_subplot(1, 1, 1, projection='3d')
# ax.scatter(N, cum_area, activations[:, n], c=np.random.random(size=(1,3)))
# ax.set_title('Neuron %s' % (n))
# ax.set_xlabel('N')
# ax.set_ylabel('A')
# ax.set_zlabel('R')
# plt.show()
nan_eps = 1e-6 # log(0) does not exist
N_norm = (N + nan_eps) / (C+nan_eps)
cum_area_norm = (cum_area+nan_eps) / ((DATA_H*DATA_W) + nan_eps)
bias = -2.00932487
b1 = 0.39342263
b2 = -0.09529530
model = b1 * np.log(N_norm) + b2 * np.log(cum_area_norm) + bias
noi = 77
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1, projection='3d')
ax.scatter(N_norm, cum_area_norm, activations[:, noi], c=np.random.random(size=(1,3)))
# ax.plot(N_norm, model)
ax.set_title('$z_{%s}$' % (noi))
ax.set_xlabel('N')
ax.set_ylabel('A')
ax.set_zlabel('R')
plt.show()