-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalibrate.py
executable file
·308 lines (239 loc) · 13 KB
/
calibrate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
#!/usr/bin/env python
import numpy as np
import time
from robot import Robot
from scipy import optimize
import os
import charuco_util
from scipy.spatial.transform import Rotation as R
"""
Start Config
"""
# User options (change me)
# --------------- Setup options ---------------
from utils.calibration_util import get_rigid_transform
tcp_host_ip = os.environ['UR5_IP'] # IP and port to robot arm as TCP client (UR5)
tcp_port = 30002
rtc_host_ip = os.environ['UR5_IP'] # IP and port to robot arm as real-time client (UR5)
rtc_port = 30003
SLEEP_TIME = 1
num_cameras = 4
traj_style = "ellipse"
# full calibration workspace
workspace_limits = np.asarray([[0.4, 0.648], [-.2, 0.3], [-.08, .05]]) # Cols: min max, Rows: x y z (define workspace limits in robot coordinates)
# do small amount of grid points to test the optimization code
# workspace_limits = np.asarray([[0.4, 0.5], [0, 0.1], [-.08, 0]]) # Cols: min max, Rows: x y z (define workspace limits in robot coordinates)
calib_grid_step = 0.05 * 1
# checkerboard_offset_from_tool = [0,-0.13,0.02]
# position of the tool in the checkerboard frame
# checkerboard_offset_from_tool = [0,-0.13,0.02]
# -.015 is the z offset due to slanted calib board
p_TCPFrameCharucocorner = np.array([-.04, 0.06, 0.17 - .015])
# check the workspace
check_workspace = False
num_ellipse_horizontal_samples = 24
# ellipsoid_a = .1
# ellipsoid_b = .2
# from tool0:
# -4cm, 6cm, 17cm
# tool_orien ation = [-np.pi/2,0,0] # [0,-2.22,2.22] # [2.22,2.22,0]
# tool_orientation = [0,0,0] # [0,-2.22,2.22] # [2.22,2.22,0]
# ---------------------------------------------
"""
End Config
"""
# Charuco board corner point measured with a ruler and using the UR5e URDF
p_WorldCharucocorner_Measured_dic = dict()
# Charuco board corner point estimated with OpenCV
p_CameraCharucocorner_Estimated_dic = dict()
# observed_pix_dic = dict()
# Move robot to home pose
print('Connecting to robot...')
robot = Robot(False, None, None, workspace_limits,
tcp_host_ip, tcp_port, rtc_host_ip, rtc_port,
False, None, None, num_cameras=num_cameras)
# robot.open_gripper()
# Slow down robot
robot.joint_acc = 1.4
robot.joint_vel = 1.05
# Move robot to each calibration point in workspace
print('Collecting data...')
# fig = plt.figure()
if traj_style == "ellipse":
robot.go_home()
X_ = robot.get_tcp_pose(print_euler=True)
t_WorldTCPFrame_home, R_WorldTCPFrame_asrotvec_home = X_[0:3], X_[3:6]
R_WorldTCPFrame_asrotvec_ellipsoid_home = (R.from_rotvec(R_WorldTCPFrame_asrotvec_home) * R.from_euler("z", -np.pi)).as_rotvec()
t_WorldTCPFrame_ellipsoid_home = t_WorldTCPFrame_home + R.from_rotvec(R_WorldTCPFrame_asrotvec_home).apply(np.array([0, -.1, 0]))
def get_ellipsoid_xy(t, a, b):
return a*np.cos(t), b*np.sin(t)
calib_grid_pts = []
# rots as
calib_grid_rotvecs = []
# swivel up and down z in outer loop
gridspace_z = np.linspace(workspace_limits[2][0]-.09, workspace_limits[2][1]-.09,
int(1 + (workspace_limits[2][1]-.09 - (workspace_limits[2][0]-.09))//calib_grid_step))
# in loop, trace out discretized ellipsoid with 12 segments
# the ellipsoid points are defined relative to the home position
# also turn around the z-axis 360 degrees
for z in gridspace_z:
for ellipsoid_a in [.1, .125, .150]:
for ellipsoid_b in [.2, .225, .25]:
for t in np.linspace(0, 2*np.pi - .1, num_ellipse_horizontal_samples):
ellipsoid_pt_in_TCP_Frame = np.zeros(3)
ellipsoid_pt_in_TCP_Frame[:2] = get_ellipsoid_xy(t, ellipsoid_a, ellipsoid_b)
ellipsoid_pt_in_TCP_Frame[2] = z
calib_grid_pts.append(ellipsoid_pt_in_TCP_Frame + t_WorldTCPFrame_ellipsoid_home)
if t > np.pi - .1:
calib_grid_rotvecs.append((R.from_rotvec(R_WorldTCPFrame_asrotvec_ellipsoid_home) * R.from_euler("z", -(t - 2 * np.pi))).as_rotvec())
else:
calib_grid_rotvecs.append(
(R.from_rotvec(R_WorldTCPFrame_asrotvec_ellipsoid_home) * R.from_euler("z", -t)).as_rotvec())
num_calib_grid_pts = len(calib_grid_pts)
calib_grid_pts = np.array(calib_grid_pts)
calib_grid_rotvecs = np.array(calib_grid_rotvecs)
elif traj_style == "grid":
# Make robot gripper point upwards
robot.move_joints([-np.pi, -np.pi/2, np.pi/2, 0, np.pi/2, 0])
R_WorldTCPFrame_asrotvec_home = robot.get_tcp_pose(print_euler=True)[3:6]
# max x, midpoint y, midpoint z
# only implemented for gridstyle rn
if check_workspace:
robot.move_to(np.array([workspace_limits[0][1],
(workspace_limits[1][1] + workspace_limits[1][0]) / 2,
(workspace_limits[2][0] + workspace_limits[2][1]) / 2]), R_WorldTCPFrame_asrotvec_home)
time.sleep(3)
# midpoint x, min y, midpoint z
robot.move_to(np.array([(workspace_limits[0][0] + workspace_limits[0][1]) / 2,
workspace_limits[1][0],
(workspace_limits[2][0] + workspace_limits[2][1]) / 2]), R_WorldTCPFrame_asrotvec_home)
time.sleep(3)
# midpoint x, max y, midpoint z
robot.move_to(np.array([(workspace_limits[0][0] + workspace_limits[0][1]) / 2,
workspace_limits[1][1],
(workspace_limits[2][0] + workspace_limits[2][1]) / 2]), R_WorldTCPFrame_asrotvec_home)
time.sleep(3)
# Construct 3D calibration grid across workspace
gridspace_x = np.linspace(workspace_limits[0][0], workspace_limits[0][1], int(1 + (workspace_limits[0][1] - workspace_limits[0][0])//calib_grid_step))
gridspace_y = np.linspace(workspace_limits[1][0], workspace_limits[1][1], int(1 + (workspace_limits[1][1] - workspace_limits[1][0])//calib_grid_step))
gridspace_z = np.linspace(workspace_limits[2][0], workspace_limits[2][1], int(1 + (workspace_limits[2][1] - workspace_limits[2][0])//calib_grid_step))
calib_grid_x, calib_grid_y, calib_grid_z = np.meshgrid(gridspace_x, gridspace_y, gridspace_z)
num_calib_grid_pts = calib_grid_x.shape[0]*calib_grid_x.shape[1]*calib_grid_x.shape[2]
calib_grid_x.shape = (num_calib_grid_pts,1)
calib_grid_y.shape = (num_calib_grid_pts,1)
calib_grid_z.shape = (num_calib_grid_pts,1)
calib_grid_pts = np.concatenate((calib_grid_x, calib_grid_y, calib_grid_z), axis=1)
for calib_pt_idx in range(num_calib_grid_pts):# Make robot gripper point upwards
#
# incrementally save data for debugging
for serial_no in p_CameraCharucocorner_Estimated_dic.keys():
np.savetxt(f"out/{serial_no}_p_CameraCharucocorner_Estimated.txt",
p_CameraCharucocorner_Estimated_dic[serial_no], delimiter=' ')
np.savetxt(f"out/{serial_no}_p_WorldCharucocorner_Measured.txt",
p_WorldCharucocorner_Measured_dic[serial_no], delimiter=' ')
t_WorldTCPFrame = calib_grid_pts[calib_pt_idx, :]
# EFFECTIVELY, this is doing things in the [90 deg, 0, 90 deg] fixed world frame xyz rotation
if traj_style == 'grid':
robot.move_to(t_WorldTCPFrame, R_WorldTCPFrame_asrotvec_home)
else:
# traj_style == ellipse
robot.move_to(t_WorldTCPFrame, calib_grid_rotvecs[calib_pt_idx, :])
time.sleep(SLEEP_TIME)
cam_data = robot.get_cameras_datas()
# time.sleep(SLEEP_TIME/2)
if calib_pt_idx % num_ellipse_horizontal_samples == 0:
# this logic is to avoid the joint limits
robot.go_home()
# Find charuco corner
# color_img, depth_img = robot.camera.get_data()
for serial_no, intrinsics, color_img, depth_img in cam_data:
tf = charuco_util.get_charuco_tf(color_img, 0, intrinsics, np.zeros(4))
# plt.subplot(211)
# plt.imshow(color_img)
# plt.subplot(212)
#
# plt.imshow(depth_img,cmap='nipy_spectral_r')
# plt.show()
if serial_no not in p_CameraCharucocorner_Estimated_dic.keys():
assert serial_no not in p_WorldCharucocorner_Measured_dic.keys()
# assert serial_no not in observed_pix_dic.keys()
p_CameraCharucocorner_Estimated_dic[serial_no] = []
p_WorldCharucocorner_Measured_dic[serial_no] = []
# observed_pix_dic[serial_no] = []
if tf is not None:
print(f"Found tf at {t_WorldTCPFrame} for {serial_no}")
# check if the shapes are right
# confirm this by drawing XY simple point and rotating
# think about placing the translation in the world frame first. How do we get it to now align with the full
# position in the world frame? We rotate it
# TODO: the below code is wrong
# tf trans represents the charuco tag corner point in camera coordinates
p_CameraCharucocorner_Estimated_dic[serial_no].append(tf[:3, 3])
X_WorldTCPFrame = np.zeros((4, 4))
X_WorldTCPFrame[3, 3] = 1
X_WorldTCPFrame[:3, :3] = R.from_rotvec(calib_grid_rotvecs[calib_pt_idx, :]).as_matrix()
X_WorldTCPFrame[:3, 3] = t_WorldTCPFrame
p_WorldCharucocorner_Measured_sample = (X_WorldTCPFrame @ np.concatenate([p_TCPFrameCharucocorner, [1]]))[:3]
# p_WorldCharucocorner_Measured_sample = t_WorldTCPFrame + p_TCPFrameCharucocorner
p_WorldCharucocorner_Measured_dic[serial_no].append(p_WorldCharucocorner_Measured_sample)
# observed_pix_dic[serial_no].append(color_img)
# Move robot back to home pose
robot.go_home()
for k in p_CameraCharucocorner_Estimated_dic.keys():
p_CameraCharucocorner_Estimated_dic[k] = np.asarray(p_CameraCharucocorner_Estimated_dic[k])
p_WorldCharucocorner_Measured_dic[k] = np.asarray(p_WorldCharucocorner_Measured_dic[k])
# observed_pix_dic[k] = np.asarray(observed_pix_dic[k])
def get_rigid_transform_error(z_scale):
global p_WorldCharucocorner_Measured, p_CameraCharucocorner_Estimated, X_CameraWorld, cam_intrinsics
"""
measured_pts: num_samples, 3
observed_pts: points in camera frame
cam_intrinsics: 3, 3
world2camera: 4, 4
The reason why we have z scale is because the typical least squares Procrustes problem solution does not account
for scale.
"""
# Apply z **scale** and compute new 3D observed points using camera intrinsics
# observed_pix contains uv values for the corner points
# observed_z = observed_pts[:,2:] * z_scale
#
# observed_x = np.multiply(observed_pix[:,[0]]-cam_intrinsics[0][2],observed_z/cam_intrinsics[0][0])
#
# observed_y = np.multiply(observed_pix[:,[1]]-cam_intrinsics[1][2],observed_z/cam_intrinsics[1][1])
# new_observed_pts = np.concatenate((observed_x, observed_y, observed_z), axis=1)
# Estimate rigid transform between measured points and new observed points
# R, t = get_rigid_transform(np.asarray(measured_pts), np.asarray(new_observed_pts))
# for some reason, if we only have one point, it doesn't seem to work..
assert p_CameraCharucocorner_Estimated.shape[0] > 1
R_CameraWorld_Estimated, t_CameraWorld_Estimated = get_rigid_transform(np.asarray(p_WorldCharucocorner_Measured),
np.asarray(p_CameraCharucocorner_Estimated))
t_CameraWorld_Estimated.shape = (3,1)
# transformation from world to camera
# OR pose of camera in world frame
X_CameraWorld = np.concatenate((np.concatenate((R_CameraWorld_Estimated, t_CameraWorld_Estimated), axis=1), np.array([[0, 0, 0, 1]])), axis=0)
# Compute rigid transform error by transforming the tool points into the camera frame
p_CameraCharucocorner_ReconstructedFromMeasured = np.dot(R_CameraWorld_Estimated, np.transpose(p_WorldCharucocorner_Measured)) + \
np.tile(t_CameraWorld_Estimated, (1, p_WorldCharucocorner_Measured.shape[0]))
error = np.transpose(p_CameraCharucocorner_ReconstructedFromMeasured) - np.asarray(p_CameraCharucocorner_Estimated)
error = np.sum(np.multiply(error,error))
rmse = np.sqrt(error / p_WorldCharucocorner_Measured.shape[0])
return rmse
# optimize for each camera
for serial_no in p_CameraCharucocorner_Estimated_dic.keys():
X_CameraWorld = np.eye(4)
p_CameraCharucocorner_Estimated = p_CameraCharucocorner_Estimated_dic[serial_no]
p_WorldCharucocorner_Measured = p_WorldCharucocorner_Measured_dic[serial_no]
# observed_pix = observed_pix_dic[serial_no]
cam_intrinsics = robot.serialno2intrinsics[serial_no]
# Optimize z scale w.r.t. rigid transform error
print('Calibrating...')
z_scale_init = 1
optim_result = optimize.minimize(get_rigid_transform_error, np.asarray(z_scale_init), method='Nelder-Mead')
camera_depth_offset = optim_result.x
# Save camera optimized offset and camera pose
print('Saving...')
np.savetxt(f"out/{serial_no}_camera_depth_scale.txt", camera_depth_offset, delimiter=' ')
get_rigid_transform_error(camera_depth_offset)
X_WorldCamera = np.linalg.inv(X_CameraWorld)
np.savetxt(f"out/{serial_no}_camera_pose.txt", X_WorldCamera, delimiter=' ')
print('Done.')