This repository has been archived by the owner on May 18, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwk4.tex
494 lines (332 loc) · 16.7 KB
/
wk4.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
%
% This is a borrowed LaTeX template file for lecture notes for CS267,
% Applications of Parallel Computing, UCBerkeley EECS Department.
% Now being used for CMU's 10725 Fall 2012 Optimization course
% taught by Geoff Gordon and Ryan Tibshirani. When preparing
% LaTeX notes for this class, please use this template.
%
% To familiarize yourself with this template, the body contains
% some examples of its use. Look them over. Then you can
% run LaTeX on this file. After you have LaTeXed this file then
% you can look over the result either by printing it out with
% dvips or using xdvi. "pdflatex template.tex" should also work.
%
\documentclass[twoside]{article}
\setlength{\oddsidemargin}{0.25 in}
\setlength{\evensidemargin}{-0.25 in}
\setlength{\topmargin}{-0.6 in}
\setlength{\textwidth}{6.5 in}
\setlength{\textheight}{8.5 in}
\setlength{\headsep}{0.75 in}
\setlength{\parindent}{0 in}
\setlength{\parskip}{0.1 in}
%
% ADD PACKAGES here:
%
\usepackage{amsmath,amsfonts,graphicx,soul}
%
% The following commands set up the lecnum (lecture number)
% counter and make various numbering schemes work relative
% to the lecture number.
%
\newcounter{lecnum}
\renewcommand{\thepage}{\thelecnum-\arabic{page}}
\renewcommand{\thesection}{\thelecnum.\arabic{section}}
\renewcommand{\theequation}{\thelecnum.\arabic{equation}}
\renewcommand{\thefigure}{\thelecnum.\arabic{figure}}
\renewcommand{\thetable}{\thelecnum.\arabic{table}}
\newcommand*\conj[1]{\bar{#1}}
\newcommand*\mean[1]{\bar{#1}}
\newcommand{\indep}{\rotatebox[origin=c]{90}{$\models$}}
%
% The following macro is used to generate the header.
%
\newcommand{\lecture}[4]{
\pagestyle{myheadings}
\thispagestyle{plain}
\newpage
\setcounter{lecnum}{#1}
\setcounter{page}{1}
\noindent
\begin{center}
\framebox{
\vbox{\vspace{2mm}
\hbox to 6.28in { {\bf STAT7017 Big Data Statistics
\hfill Semester 2 2018} }
\vspace{4mm}
\hbox to 6.28in { {\Large \hfill Lecture #1: #2 \hfill} }
\vspace{2mm}
\hbox to 6.28in { {\it Lecturer: #3 \hfill Scribes: #4} }
\vspace{2mm}}
}
\end{center}
\markboth{Lecture #1: #2}{Lecture #1: #2}
{\bf Note}: {\it LaTeX template courtesy of UC Berkeley EECS dept.}
{\bf Disclaimer}: {\it These notes have not been subjected to the
usual scrutiny reserved for formal publications. They may be distributed
outside this class only with the permission of the Instructor.}
\vspace*{4mm}
}
%
% Convention for citations is authors' initials followed by the year.
% For example, to cite a paper by Leighton and Maggs you would type
% \cite{LM89}, and to cite a paper by Strassen you would type \cite{S69}.
% (To avoid bibliography problems, for now we redefine the \cite command.)
% Also commands that create a suitable format for the reference list.
\renewcommand{\cite}[1]{[#1]}
\def\beginrefs{\begin{list}%
{[\arabic{equation}]}{\usecounter{equation}
\setlength{\leftmargin}{2.0truecm}\setlength{\labelsep}{0.4truecm}%
\setlength{\labelwidth}{1.6truecm}}}
\def\endrefs{\end{list}}
\def\bibentry#1{\item[\hbox{[#1]}]}
%Use this command for a figure; it puts a figure in wherever you want it.
%usage: \fig{NUMBER}{SPACE-IN-INCHES}{CAPTION}
\newcommand{\fig}[3]{
\vspace{#2}
\begin{center}
Figure \thelecnum.#1:~#3
\end{center}
}
% Use these for theorems, lemmas, proofs, etc.
\newtheorem{theorem}{Theorem}[lecnum]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{definition}[theorem]{Definition}
\newenvironment{proof}{{\bf Proof:}}{\hfill\rule{2mm}{2mm}}
% **** IF YOU WANT TO DEFINE ADDITIONAL MACROS FOR YOURSELF, PUT THEM HERE:
\newcommand\E{\mathbb{E}}
\begin{document}
%FILL IN THE RIGHT INFO.
%\lecture{**LECTURE-NUMBER**}{**DATE**}{**LECTURER**}{**SCRIBE**}
\lecture{4}{13 August}{Dr Dale Roberts}{Rui Qiu}
%\footnotetext{These notes are partially based on those of Nigel Mansell.}
% **** YOUR NOTES GO HERE:
% Some general latex examples and examples making use of the
% macros follow.
%**** IN GENERAL, BE BRIEF. LONG SCRIBE NOTES, NO MATTER HOW WELL WRITTEN,
%**** ARE NEVER READ BY ANYBODY.
\textbf{\underline{Tools for Integration}}
Working with complex numbers and the sophisticated machinery of \underline{contour integration} will be needed in this course.
This week we are going to look at this beautiful area of Mathematics.
These tools will be very useful for calculations of the form
$$\int f(x)dF_y(x)$$
where $F_y$ is the MP distribution, for example.\\
\underline{\textbf{Complex numbers and elementary functions}}
With $i^2:=-1$, a complex number is an expression of the form $z=x+iy$. We write $Re(z)=x$ and $Im(z)=y$.
We can also write complex numbers in \underline{Polar form} $(r,\theta), x=r\cos\theta, y=r\sin\theta, r\geq 0$.
A complex number $z$ can be written
\begin{equation}
z=x+iy=r(cos\theta+i\sin\theta)
\end{equation}
The \underline{radius} $r=\sqrt{x^2+y^2}=\lvert z\rvert$ (aka. \underline{modolus} of $z$) and the angle $\theta$ is the \underline{argument} of $z$, denoted $\arg z$.
When $z\not=0$, we can find $\theta$ by trigonometry
$$\tan\theta=\frac{y}{x}.$$
$\theta=\arg z$ is \underline{multivalued} as $\tan\theta$ is a periodic function of $\theta$ with period $\pi$.\\
\underline{Example:} $z=-1+i,\lvert z\rvert = r=\sqrt{2}, \theta=\frac{3\pi}{4}+2n\pi,n=0,\pm1,\pm2,\dots$
We can define the (polar) \underline{exponential}.
$$\cos\theta + i\sin\theta =e^{i\theta}\implies \text{by (4.1)} z=r\cdot e^{i\theta}$$
Some beautiful formulas:
\begin{equation}
\begin{split}
e^{2\pi i}&=1, e^{\pi}=-1, \dots\\
e^{i\theta_1}e^{i\theta_2}&=e^{i(\theta_1+\theta_2)}, (e^{i\theta})^m=e^{im\theta}, (e^{i\theta})^{1/n}=e^{i\theta/n}
\end{split}
\end{equation}
The \underline{complex conjugate} of $z$ is $\mean{z}=x-iy=re^{-i\theta}$.
The usual rules apply:
\begin{equation}
\begin{split}
z_1\pm z_2 &= (x_1\pm x_2)+ i(y_1\pm y_2)\\
z_1z_2 &= (x_1+iy_1)(x_2+iy_2)\\
&=(x_1x_2-y_1y_2)+i(x_1y_2+x_2y_1)
\end{split}
\end{equation}
Notice that $z\mean{z}=\mean{z}z=(x+iy)(x-iy)=x^2+y^2=\lvert z\rvert ^2$
so that
\begin{equation}
\begin{split}
\frac{z_1}{z_2}=\frac{x_1+iy_1}{x_2+iy_2}&=\frac{(x_1+iy_1)(x_2-iy_2)}{(x_2+iy_2)(x_2-iy_2)}\\
&=\frac{(x_1x_2+y_1y_2)+i(x_2y_1-x_1y_2)}{x_2^2+y_2^2}\\
&=\frac{x_1x_2+y_1y_2}{x_2^2+y_2^2}+i\frac{(x_2y_1-x_1y_2)}{x_2^2+y_2^2}
\end{split}
\end{equation}
We can define same \underline{elementary functions} of complex argument. The simplest is
$$f(z)=z^n, n=0,1,2,\dots,\ \text{``Power function"}$$
A \underline{polynomial} of order $n$:
\begin{equation}
\begin{split}
P_n(z)&=\sum^n_{j=0}a_jz^j=a_0+a_1z+a_2z^2+\cdots +a_nz^n\\
&\text{where $a_j$ are complex numbers.}
\end{split}
\end{equation}
A \underline{rational function}:
\begin{equation}
\begin{split}
R(z)=\frac{P_n(z)}{Q_m(z)}, P_n(z), Q_m(z)\text{ are polynomials}.
\end{split}
\end{equation}
In general, the function $f(z)$ is complex-valued and can be written
$$f(z)=u(x,y)+iv(x,y)=Ref+ Imf.$$
\underline{Example:} $z^2=(x+iy)^2=x^2-y^2+i2xy$ where $u(x,y)=x^2-y^2, v(x,y)=2xy$.\\
We can define the \underline{exponential function}
$$e^z=e^{x+iy}=e^xe^{iy}$$
and it is easy to show $e^z=e^x(\cos x+i\sin y).$
$e^{z_1+z_2}=e^{z_1}e^{z_2}, \left(e^z\right)^n=e^{nz},n=1,2,\dots$
$\lvert e^z\rvert =\lvert e^z\rvert \lvert \cos y +i\sin y\rvert =e^x\sqrt{\cos^2 y +\sin^2 y}= e^x$
$\overline{(e^z)}=e^{\mean{z}}=e^x(\cos y- i\sin y)$\\
\underline{\textbf{Trig functions:}}
\begin{equation}
\begin{split}
\begin{split}\sin z&=\frac{e^{iz}-e^{-iz}}{2i}\\
\cos z &=\frac{e^{iz}+e^{-iz}}{2i}
\end{split}
\end{split}
\end{equation}
$$\tan z=\frac{\sin z}{\cos z}, \cot z=\frac{\cos z}{\sin z}, \sec z=\frac{1}{\cos z}, \csc z=\frac{1}{\sin z}.$$
\underline{\textbf{Hyperbolic functions:}}
$$\sinh z =\frac{e^z-e^{-z}}{2}, \cosh z =\frac{e^z+e^{-z}}{2}, \tanh z=\frac{\sinh z}{\cosh z},$$
Note that
\begin{equation}
\begin{split}
\sinh iz = i\sin z,&\ \sin iz =i\sinh z\\
\cosh iz = \cos z,&\ \cos iz =cosh z\\
\end{split}
\end{equation}
Most of the definitions could have been introduced through the concept of \underline{power series}.
The power series of $f(z)$ around the point $z=z_0$ is
$$f(z)=\lim_{n\to \infty}\sum^n_{j=0}a_j(z-z_0)^j=\sum^\infty_{j=0}a_j(z-z_0)^j$$
where $a_j, z_0$ are constants.\\
Remember convergence only occurs within some radius, i.e., within some circle $\lvert z-z_0\rvert =R$
$$R=\lim_{n\to\infty}\left\lvert\frac{a_n}{a_{n+1}}\right\rvert$$
We have the power series representations:
$$e^z=\sum^\infty_{j=0}\frac{z^j}{j!},$$
$$\sin z=\sum^\infty_{j=1}\frac{(-1)^jz^{2j+1}}{(2j+1)!},$$
$$\cos z=\sum^\infty_{j=1}\frac{(-1)^jz^{2j}}{(2j)!},$$
$$\sinh z=\sum^\infty_{j=0}\frac{z^{2j+1}}{(2j+1)!},$$
$$\cosh z=\sum^\infty_{j=0}\frac{z^{2j}}{(2j)!}.$$
Let $f(z)$ be defined in some region $R$ containing the neighbourhood of a point $z_0$. The \underline{derivative} of $f(z)$ at $z=z_0$, denoted by $f'(z_0)$ or $\frac{d}{dz}f(z_0)$ is defined by
$$f'(z_0)=\lim_{\Delta z\to 0}\left(\frac{f(z_0+\Delta z)-f(z_0)}{\Delta z}\right).$$
provided the limit exists. Alternatively, writing $\Delta z = z- z_0$.
$$f'(z_0)=\lim_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}.$$
\underline{Caution}: A continuous function is not necessarily differentiable as complex functions have a two-dimensional character.
For example, $f(z)=\mean{z}$.
$$\lim_{\Delta z\to 0}\frac{\overline{(z_0+\Delta z)}-\overline{z_0}}{\Delta z}=\lim_{\Delta z\to 0}\frac{\overline{\Delta z}}{\Delta z}=0$$
and a unique value for $c$ cannot be found!
\underline{NOT DIFFERENTIABLE!}\\
Differentiable complex functions are called \underline{analytic}.
If $f$ and $g$ have derivatives:
\begin{equation}
\begin{split}
&(f+g)'=f'+g',\ (fg)'=f'g+g'f\\
&\left(\frac{f}{g}\right)'=(f'g-fg')/g^2 (g\not=0)
\end{split}
\end{equation}
If $f'(g(z))$ and $g'(z)$ exist, then
$$[f(g(z))]'=f'(g(z))g'(z)$$
Since $\frac{(z+\Delta z)^n-z^n}{\Delta z}=nz^{n-1}+a_1z^{n-2}\Delta z + a_2z^{n-3}(\Delta z)^2+\cdots +(\Delta z)^n\to nz^{n-1}$ as $\Delta z\to 0$, where $a_j$ are binomial coefficients of $(a+b)^n$.
We have $\frac{d}{dz}(z^n)=nz^{n-1}.$
If follows(formally) that
$$\frac{d}{dz}\left(\sum^\infty_{n=0}a_nz^n\right)=\sum^\infty_{n=0}na_nz^{n-1}\ \text{inside radius of convergence}$$
Writing $f(z)=u(x,y)+iv(x,y),$
\begin{equation}
\begin{split}
f'(z)&=\lim_{\Delta x\to 0}\left(\frac{u(x+\Delta x, y)-u(x,y)}{\Delta x}+i\frac{v(x+\Delta x, y)-v(x,y)}{\Delta x}\right)\\
&=u_x(x,y)+iv_x(x,y)\\
u_x:&=\frac{\partial u}{\partial x}, v_x:=\frac{\partial v}{\partial x.}\\
f'(z)&=\lim_{\Delta y\to 0}\left(\frac{u(x,y+\Delta y)-u(x,y)}{i\Delta y}+i\frac{v(x,y+\Delta y)-v(x,y)}{i\Delta y}\right)\\
&=-iu_y(x,y)+v_y(x,y)
\end{split}
\end{equation}
Hence, equating these two expressions we have the \underline{Cauchy-Riemann equations}:
$$u_x=v_y, v_x=-u_y$$
that are necessarily satisfied if $f(z)$ is differentiable.
\begin{theorem}
The function $f(z)=u(x,y)+iv(x,y)$ is differentiable at a point $z=x+iy$ of a region in the complex plane if and only if $u_x, u_y, v_x, v_y$ are continuous and satisfy the Cauchy Riemann equations.
\end{theorem}
We shall now look at how to evaluate integrals of complex-valued functions along curves in the complex plane.
First, consider the case of the complex-valued function $f$ of the real variable $t$, on the interval $a\leq t\leq b$.
$$f(t)=u(t)+iv(t)$$
We say that $f$ is \underline{integrable} if $u\& v$ are integrable, then
$$\int^b_af(t)dt=\int^b_au(t)dt+i\int^b_av(t)dt.$$
Usual rules apply:
$$\frac{d}{dt}\int^t_a f(t)dt=f(t)\ text{``fundamental theorem of calculus"}$$
and if $f'(t)$ is continuous, $\int^b_af'(t)dt=f(b)-f(a)$.
\underline{\textbf{Integration along a curve}}
A curve in $\mathbb{C}$ can be described by the \underline{parametrization}
$$z(t)=x(t)+iy(t), a\leq t\leq b.$$
A curve $c$ is called \underline{simple} if it does not intersect itself. It is called \underline{differentiable} curve if $z'(t)=x'(t)+iy'(t)$ is non-null.
A \underline{piecewise differentiable curve (or path)} is obtained by joining a finite number of differentiable curves.
Let $C$ be a path, we call it \underline{closed} if $z(a)=z(b)$.
A closed path is also called a \underline{contour}.
\underline{Example:} The unit circle in $\mathbb{C}$ is a contour and is parametrized by $z(t)=e^{it}, 0\leq t\leq 2\pi$.
The \underline{contour integral} of a piecewise continuous function on a \underline{smooth contour} (i.e. differentiable) is defined to be
$$\int_C f(z)dz:=\int^b_af(z(t))z'(t)dt.$$
Note that $dz\approx z'(t)dt$.\\
Usual properties apply:
$$\int_C[\alpha f(z)+\beta yg(z)]dz = \alpha\int_C f(z)dz + \beta \int_C g(z)dz.$$
If we traverse the contour in the opposite direction (i.e. form $t=b$ to $t=a$) then this is denoted $-C$ and
$$\int_{-C} f(z)dz = -\int_C f(z)dz.$$
And if $C=C_1\cup C_2\cup C_3\cup \cdots \cup C_n$ ,then
$$\int_C f=\sum^n_{j=1} \int_{C_j} f.$$
From the fundamental theorem of calculus we get:
\begin{theorem}
Suppose $F(z)$ is an analytic function such that $f(z)=F'(z)$ is continuous in a domain $\mathcal{D}$. Then for the contour $C$ lying in $\mathcal{D}$ with endpoints $z_1$ and $z_2$
$$\int_C f(z)dz=F(z_2)-F(z_1).$$
\end{theorem}
\begin{proof}
\begin{equation}
\begin{split}
\int_C f(z)dz&=\int_C F'(z)dz=\int^b_a F'(z(t))z'(t)dt\\
&=\int^b_a \frac{d}{dt}[F(z(t))]dt= F(z(b))-F(z(a))=F(z_2)-F(z_1).\\
&\text{Note:} z(a)=z_1, z(b)=z_2.
\end{split}
\end{equation}
\end{proof}
Q: What happens if $C$ is a \underline{closed contour}?
$$\oint_C f(z)dz = \int_C F'(z)dz=0$$
``$\oint$" denotes integration along a closed contour $C$.
Notice that this holds for \underline{any} closed contour $C$. So this integral is independent of the path.\\
\begin{theorem}
Let $f(z)$ be analytic interior to and on a simple closed contour $C$. Then at any interior point $z$
$$f(Z)=\frac{1}{2\pi i}\oint_C\frac{f(\xi)}{\xi -z}d\xi.$$
\end{theorem}
This is the \underline{Cauchy integral formula}.
``The function $f$ is completely determined by the points $z\in C$"
Further, we can also say something about all the derivatives of $f$.\\
\begin{theorem}
If $f(z)$ is analytic interior to and on a simple closed contour $C$, then all the derivatives $f^{(k)}(z), k=1,2,\dots$ exist in the domain $\mathcal{D}$ interior to $C$ and
$$f^{(k)}(z)=\frac{k!}{2\pi i}\oint_C\frac{f(\xi)}{(\xi-z)^{k+1}}d\xi.$$
\end{theorem}
If $f(z)$ is an analytic function, we can establish its \underline{Taylor series} on its domain $\mathcal{D}=\{z:\lvert z\rvert\leq R\}$:
$$f(z)=\sum^\infty_{j=0}b_jz^j,\ b_j=\frac{f^{(j)}(0)}{j!}.$$
\underline{Example:} $e^z=\sum^\infty_{j=0}\frac{z^j}{j!},\ \lvert z\rvert < \infty$\\
In many situations we encounter functions that are not analytic everywhere in $\mathbb{C}$. Typically, they are not analytic at a point, or in some region.
This means that Taylor series \underline{cannot} be applied.
Luckily, another series representation can sometimes be found in terms of positive and negative powers of $(z-z_0)$.
\begin{theorem}
(Laurent Series) A function $f(z)$ analytic in an annulus $R_1\leq \lvert z-z_0\rvert \leq R_2$ may be represented by the expansion
$$f(z)=\sum^\infty_{n=-\infty}c_n(z-z_0)^n$$
in the region $R_1<R_a\leq \lvert z- z_0\rvert \leq R_b < R_2$ where
$$c_n:=\frac{1}{2\pi i}\oint_C\frac{f(z)}{(z-z_0)^{n+1}}dz$$
and $C$ is any simple closed contour in region of analyticity enclosing $\lvert z-z_0\rvert < R_1$.
So $f(z)=\sum^\infty_{n=-\infty}c_n(z-z_0)^n$ and $c_{-1}$ is called the \underline{residue} of $f$. The negative powers are called the \underline{principal part} of $f$.
$$c_{-1}:=\frac{1}{2\pi i}\oint_C f(z)dz$$
\end{theorem}
We call a point $z_0$ an \underline{isolated singularity} of a function $f$ if the function is analytic in the punctured disk
$$D=\{z:0<\lvert z-z_0\rvert\leq R.\}$$
Three types of singular points exist:
\begin{itemize}
\item A \underline{removable singularity point} is when the Laurent series at the point has no terms with negative power $n<0$.
\item A \underline{pole of order $m$} is an isolated singularity point such that$$f(z)=\sum^\infty_{n=-m}a_n(z-z_0)^n,\ a_{-m}\not=0.$$
\item An \underline{essential singularity point} is an isolated singularity point where the Laurent series has infinitely many terms with negative power $n<0$.
\end{itemize}
\begin{theorem}
Let $f(z)$ be analytic inside and on a simple closed contour $C$, except for a finite number of isolated singular points $z_1,z_2,\dots, z_N$ located inside $C$. Then
$$\oint f(z)dz=2\pi i\sum^N_{j=1}a_j$$
where $a_j$ is the \underline{residue} of $f(z)$ at $z=z_j$, denoted by $a_j:=Res(f(z), z_j).$
\end{theorem}
% **** THIS ENDS THE EXAMPLES. DON'T DELETE THE FOLLOWING LINE:
\end{document}