This repository has been archived by the owner on May 18, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
wk2.tex
610 lines (431 loc) · 20.8 KB
/
wk2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
%
% This is a borrowed LaTeX template file for lecture notes for CS267,
% Applications of Parallel Computing, UCBerkeley EECS Department.
% Now being used for CMU's 10725 Fall 2012 Optimization course
% taught by Geoff Gordon and Ryan Tibshirani. When preparing
% LaTeX notes for this class, please use this template.
%
% To familiarize yourself with this template, the body contains
% some examples of its use. Look them over. Then you can
% run LaTeX on this file. After you have LaTeXed this file then
% you can look over the result either by printing it out with
% dvips or using xdvi. "pdflatex template.tex" should also work.
%
\documentclass[twoside]{article}
\setlength{\oddsidemargin}{0.25 in}
\setlength{\evensidemargin}{-0.25 in}
\setlength{\topmargin}{-0.6 in}
\setlength{\textwidth}{6.5 in}
\setlength{\textheight}{8.5 in}
\setlength{\headsep}{0.75 in}
\setlength{\parindent}{0 in}
\setlength{\parskip}{0.1 in}
%
% ADD PACKAGES here:
%
\usepackage{amsmath,amsfonts,graphicx,soul}
%
% The following commands set up the lecnum (lecture number)
% counter and make various numbering schemes work relative
% to the lecture number.
%
\newcounter{lecnum}
\renewcommand{\thepage}{\thelecnum-\arabic{page}}
\renewcommand{\thesection}{\thelecnum.\arabic{section}}
\renewcommand{\theequation}{\thelecnum.\arabic{equation}}
\renewcommand{\thefigure}{\thelecnum.\arabic{figure}}
\renewcommand{\thetable}{\thelecnum.\arabic{table}}
\newcommand*\conj[1]{\bar{#1}}
\newcommand*\mean[1]{\bar{#1}}
\newcommand{\indep}{\rotatebox[origin=c]{90}{$\models$}}
%
% The following macro is used to generate the header.
%
\newcommand{\lecture}[4]{
\pagestyle{myheadings}
\thispagestyle{plain}
\newpage
\setcounter{lecnum}{#1}
\setcounter{page}{1}
\noindent
\begin{center}
\framebox{
\vbox{\vspace{2mm}
\hbox to 6.28in { {\bf STAT7017 Big Data Statistics
\hfill Semester 2 2018} }
\vspace{4mm}
\hbox to 6.28in { {\Large \hfill Lecture #1: #2 \hfill} }
\vspace{2mm}
\hbox to 6.28in { {\it Lecturer: #3 \hfill Scribes: #4} }
\vspace{2mm}}
}
\end{center}
\markboth{Lecture #1: #2}{Lecture #1: #2}
{\bf Note}: {\it LaTeX template courtesy of UC Berkeley EECS dept.}
{\bf Disclaimer}: {\it These notes have not been subjected to the
usual scrutiny reserved for formal publications. They may be distributed
outside this class only with the permission of the Instructor.}
\vspace*{4mm}
}
%
% Convention for citations is authors' initials followed by the year.
% For example, to cite a paper by Leighton and Maggs you would type
% \cite{LM89}, and to cite a paper by Strassen you would type \cite{S69}.
% (To avoid bibliography problems, for now we redefine the \cite command.)
% Also commands that create a suitable format for the reference list.
\renewcommand{\cite}[1]{[#1]}
\def\beginrefs{\begin{list}%
{[\arabic{equation}]}{\usecounter{equation}
\setlength{\leftmargin}{2.0truecm}\setlength{\labelsep}{0.4truecm}%
\setlength{\labelwidth}{1.6truecm}}}
\def\endrefs{\end{list}}
\def\bibentry#1{\item[\hbox{[#1]}]}
%Use this command for a figure; it puts a figure in wherever you want it.
%usage: \fig{NUMBER}{SPACE-IN-INCHES}{CAPTION}
\newcommand{\fig}[3]{
\vspace{#2}
\begin{center}
Figure \thelecnum.#1:~#3
\end{center}
}
% Use these for theorems, lemmas, proofs, etc.
\newtheorem{theorem}{Theorem}[lecnum]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{claim}[theorem]{Claim}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{definition}[theorem]{Definition}
\newenvironment{proof}{{\bf Proof:}}{\hfill\rule{2mm}{2mm}}
% **** IF YOU WANT TO DEFINE ADDITIONAL MACROS FOR YOURSELF, PUT THEM HERE:
\newcommand\E{\mathbb{E}}
\begin{document}
%FILL IN THE RIGHT INFO.
%\lecture{**LECTURE-NUMBER**}{**DATE**}{**LECTURER**}{**SCRIBE**}
\lecture{2}{30 July}{Dr Dale Roberts}{Rui Qiu}
%\footnotetext{These notes are partially based on those of Nigel Mansell.}
% **** YOUR NOTES GO HERE:
% Some general latex examples and examples making use of the
% macros follow.
%**** IN GENERAL, BE BRIEF. LONG SCRIBE NOTES, NO MATTER HOW WELL WRITTEN,
%**** ARE NEVER READ BY ANYBODY.
\textbf{Matrix analysis, Eigenvalues \& eigenvectors, and Multivariate Normal distribution.}\\
We denote a set of $p$ random variables $X_i:\Omega\rightarrow\mathbb{R},\ i=1,\cdots,p$ by the (vector-valued) random variable $\mathbb{X}:\Omega\rightarrow\mathbb{R}^p.$
$$\mathbb{X}_i=
\begin{bmatrix}
X_1\\
\vdots\\
X_p
\end{bmatrix}$$
call it a ``random vector".
The \underline{mean} or \underline{expectation} of $\mathbb{X}$ is given by
$$\mathbb{E[X]}=
\begin{bmatrix}
\mathbb{E}[X_1]\\
\mathbb{E}[X_2]\\
\vdots\\
\mathbb{E}[X_p]\\
\end{bmatrix}=\mu=
\begin{bmatrix}
\mu_1\\
\mu_2\\
\vdots\\
\mu_p\\
\end{bmatrix}$$
We always make the assumption that $\mu<\infty$.
A typical measurement involves taking $n$ random samples $\{\mathbb{X}_1,\mathbb{X}_2,\cdots,\mathbb{X}_n\}$.
We can express this in matrix form:
$$\mathbb{X}=(\mathbb{X}_1,\mathbb{X}_2,\cdots,\mathbb{X}_n)'=\begin{pmatrix}
\mathbb{X}_1\\
\mathbb{X}_2\\
\vdots\\
\mathbb{X}_n
\end{pmatrix}=
\begin{pmatrix}
X_{11} & X_{12} & \cdots & X_{1p}\\
X_{21} & X_{22} & \cdots & X_{2p}\\
\vdots & \vdots & \ddots & \vdots\\
X_{n1} & X_{n2} & \cdots & X_{np}\\
\end{pmatrix}$$
\underline{\textbf{Notation:}} transpose of vector $\mathbf{x}$ and matrix $A$ are denoted $\mathbf{x}'$ and $A'$, respectively.\\
A matrix of random variables is called a \underline{random matrix}.
Expectation of a random matrix $\mathbb{X}=(X_{ij})$ is given by
$$\mathbb{E[X]}=(\mathbb{E}(X_{ij}))$$
\begin{lemma}
Let $\mathbb{X}=(X_{ij})$ and $\mathbb{Y}=(Y_{ij})$ be $n\times p$ random matrices. If $A,B$ and $C$ are constant matrices, then:
\begin{equation} \label{eq1}
\mathbb{E[X+Y]=E[X]+E[Y]}.
\end{equation}
\begin{equation} \label{eq2}
\mathbb{E}[A\mathbb{X}B+C]=A\mathbb{E[X]}B+C.
\end{equation}
\end{lemma}
\begin{proof}
Choosing an arbitrary $(i,j)$'th element, LHS of (2.1) is
$$\mathbb{E}[X_{ij}+Y_{ij}]=\mathbb{E}[X_{ij}]+\mathbb{E}[Y_{ij}]$$
which is just the RHS of (2.1). Since $(i,j)$ was arbitrary, it holds for all $i,j$.
In the same way, $(i,j)$'th element of LHS of (2.2) is
$$\mathbb{E}\left[\sum^n_{k=1}\sum^p_{l=1}a_{ik}x_{kl}b_{lj}+c_{ij}\right]=\sum^n_{k=1}\sum^p_{l=1}a_{ik}\mathbb{E}[\mathbb{X}_{kl}]b_{lj}+c_{ij}$$
which is the RHS of (2.2).
\end{proof}
\underline{\textbf{Note:}} $A=(a_{ij})\in \mathbb{R}^{l\times m}$ \& $B=(b_{jk})\in\mathbb{R}^{m\times n}$; then
$$(AB)_{ik}=\sum^m_{j=1}a_{ij}b_{jk},\ i=1,\dots,l;\ k=1,\dots,n.$$\\
If a $p\times 1$ random vector $\mathbb{X}=(X_1,X_2,\dots, X_p)'$ has mean $\mu=(\mu_1,\dots, \mu_p)'$, the \underline{covariance matrix of $\mathbb{X}$} is defined by
$$\Sigma=Var(\mathbb{X})=\mathbb{E}\left[(\mathbb{X}-\mu)(\mathbb{X}-\mu)'\right].$$
If a $q\times 1$ random vector $\mathbb{Y}=(Y_1,Y_2,\dots,Y_q)'$ has mean $\eta=(\eta_1,\eta_2,\dots,\eta_q)'$, the \underline{covariance matrix of $\mathbb{X}$ and $\mathbb{Y}$} is defined by
$$Cov(\mathbb{X},\mathbb{Y})=\mathbb{E}\left[(\mathbb{X}-\mu)(\mathbb{Y}-\eta)'\right].$$
In particular, $Cov(\mathbb{X},\mathbb{X})=Var(\mathbb{X}).$
Elementwise we have $\Sigma=(\sigma_{ij})$ with
$$\sigma_{ij}=\mathbb{E}\left[(X_i-\mu_i)(X_j-\mu_j)\right]=Cov(X_i,X_j).$$
The covariance between $X_i$ and $X_j$.
$$\sigma_{ii}=\mathbb{E}[(X_i-\mu_i)^2]=Var(X_i).$$
We write $\sigma_i^2=\sigma_{ii}.$
\begin{theorem}
Let $\Sigma$ be the covariance matrix of a $p\times 1$ random vector $\mathbb{X}$.
\begin{enumerate}
\item $\Sigma$ is \underline{positive semidefinite} (non-negative definite), that is, for any $p\times 1$ fixed vector $x=(x_1,\dots,x_p)'$, $$x'\Sigma x=\sum^p_{i=1}\sum^p_{j=1}\sigma_{ij}x_ix_j\geq 0.$$
\item Let $B$ be a $q\times p$ constant matrix and $b$ be a $q\times 1$ constant vector. Then the covariance matrix $\mathbb{Y}=B\mathbb{X}+b$ is $$Var(\mathbb{Y})=B\Sigma B'.$$
\end{enumerate}
\end{theorem}
\begin{proof}
\begin{enumerate}
\item For any $x\in\mathbb{R}^p$, we have
\begin{equation}
\begin{split}
Var(x'\mathbb{X})&=\mathbb{E}[(x'\mathbb{X}-x'\mu)(x'\mathbb{X}-x'\mu)']\\
&=\mathbb{E}[(x'(\mathbb{X}-\mu))(x'(\mathbb{X}-\mu))']\\
&=\mathbb{E}[x'(\mathbb{X}-\mu)(\mathbb{X}-\mu)'x]\\
&=x'\mathbb{E}[(\mathbb{X}-\mu)(\mathbb{X}-\mu)']x\\
&=x'\Sigma x.
\end{split}
\end{equation} and we also know that $Var(x'\mathbb{X})\geq 0,$ so the result follows.
\item As $\mathbb{Y}-\mathbb{E[Y]}=(B\mathbb{X}+b)-(B\mu+b)=B(\mathbb{X}-\mu).$\\
We have
\begin{equation}
\begin{split}
Var(\mathbb{Y})&=\mathbb{E}[B(\mathbb{Y}-\mu)(B(\mathbb{Y}-\mu))']\\
&=\mathbb{E}[B(\mathbb{X}-\mu)(\mathbb{X}-\mu)'B']\\
&=B\mathbb{E}[(\mathbb{X}-\mu)(\mathbb{X}-\mu)']B'\\
&=B\Sigma B'
\end{split}
\end{equation}
\end{enumerate}
\end{proof}
In general, \underline{the covariance matrix is positive semidefinite.}\\
We call a matrix $A$ \underline{positive definite} if for all $x\not=0$,
$$x'Ax > 0.$$
\underline{Recall:} a complex number is a number of the form $a+bi$ where $i$ satisfies $i^2=-1$. We write $Re(a+bi)=a,\ Im(a+bi)=b$.
The \underline{complex conjugate} of a complex number $z=a+bi$ is given by $\mean{z}=a-bi$. $z\in\mathbb{C}$: ``space of complex numbers."
If $A$ is a $m\times n$ matrix with complex entires, then the $n\times m$ matrix $A^*$ is obtained by taking the transpose followed by the complex conjugate of each entry.
$$(A^*)_{ij}=\overline{A_{ij}}\text{ or } A^*=\left(\overline{A}\right)'=\overline{A'}.$$\\
\underline{Example:}
$$A=\begin{bmatrix}
1 & -3-i\\
1+2i & 6i
\end{bmatrix},\ A^*=\begin{bmatrix}
1 & 1-2i\\
-3+i & -6i
\end{bmatrix}$$
The matrix $A^*$ is called the \underline{\textbf{conjugate transpose}} of $A$.\\
\textbf{Properties:}
\begin{enumerate}
\item $(A+B)^*=A^*+B^*$, if $A, B$ have the same dimensions.
\item $(rA)^*=\mean{r}A^*$, for $r\in\mathbb{C}$ and matrix $A$.
\item $(AB)^*=B^*A^*,\ A\in\mathbb{R}^{m\times n},\ B\in\mathbb{R}^{n\times p}$.
\item $(A^*)^*=A,\ A\in\mathbb{R}^{n\times n}$.
\item If $A\in\mathbb{R}^{n\times n}$, then $\det(A^*)=\overline{\det A}\ \&\ tr(A^*)=\overline{(trA)}$
\end{enumerate}
\underline{Classes of matrices}
A \underline{Hermitian matrix} $A$ is a square matrix that satisfies $A=A^*$. That means if if $A=(a_{ij})$ then $a_{ij}=\overline{a_{ji}}$.
The nice thing about Hermitian matrices is that they behave a bit like real numbers. Arbitrary square matrices behave like complex numbers (i.e., they can have some quirky behaviour).
Sometimes I will write $A\in \mathbb{M}_p$ to denote that $A$ is a square matrix of size $p\times p$ and if $A$ is Hermitian, I will write $A\in \mathbb{H}_p$.
\underline{Notice:} $\mathbb{H}_p\subseteq\mathbb{M}_p.$
We can define the (Frobenius) \underline{norm} of a matrix $A\in\mathbb{M}_p$ as
$$\lVert A\rVert_F=\sqrt{\sum^p_{j=1}\sum^p_{k=1}\lvert a_{jk}\rvert^2},\ A\in\mathbb{M}_p$$
\textbf{\underline{Eigenvalues and Eigenvectors}}
If $A\in\mathbb{M}_p$ and if $Ae=\lambda e$ and $e\not=0$ where $e\in\mathbb{R}^p$, then $\lambda$ and $e$ are called an \underline{eigenvalue} and an \underline{eigenvector} of $A$.
\underline{Example:}
$$A=\begin{bmatrix}
2 & 1\\
1 & 2
\end{bmatrix},\ e=\begin{bmatrix}
1\\
1
\end{bmatrix},\ f=\begin{bmatrix}
1\\
0
\end{bmatrix}$$
$Ae=3e$, so $e$ is eigenvector, $\lambda=3$. $f$ is \underline{not} an eigenvector.
If $A\in\mathbb{M}_p$ and $\lambda=(\lambda_1,\dots, \lambda_p)$, ``eigenvalues"; $E=(e_1,e_2,\dots,e_p)\in\mathbb{M}_p$, ``eigenvectors".
Then $AE=\lambda E\iff \lvert A-\lambda I\rvert = 0$ where $|A|=\det(A)$ and $E$ satisfies $(A-\lambda I)E=0$.
The expression $p(\lambda)=\lvert A-\lambda I\rvert$ is called the \underline{characteristic polynomial} for $A$. The equation $p(\lambda)=0$ is the \underline{characteristic equation} for $A$.
If $B\in\mathbb{M}_p$ then the \underline{trace} is the sum of the diagonal entries, i.e.
$$tr{B}:=\sum^p_{k=1}b_{kk},\ B\in\mathbb{M}_p.$$
\textbf{\underline{Proposition:}} If $A\in\mathbb{M}_p$ then $P(\lambda)=\lvert A-\lambda I\rvert$ is a polynomial in $\lambda$ of degree $p$ and
$$P(\lambda)=\lambda^p-a_1\lambda^{p-1}+\cdots +(-1)^p a_p$$
where
\begin{equation}
\begin{split}
a_1&=tr(A)\\
a_p&=\det(A)\\
a_i&=\text{``sum of i-rowed diagonal mirrors of } A"
\end{split}
\end{equation}
E.g. $p=2, P_2(\lambda)=\lambda^2-tr(A)+\det(A).$
Further: $P(\lambda)=(\lambda_1-\lambda)(\lambda_2-\lambda)\cdots(\lambda_p-\lambda)$ and $|A|=\prod^{p}_{i=1}\lambda_i.$
\underline{Example:}
$$B=\begin{pmatrix}
5 & 2\\
2 & 5
\end{pmatrix}
$$
\begin{equation}
\begin{split}
\lvert B-\lambda I\rvert &= \begin{vmatrix}
5-\lambda & 2 \\
2 & 5-\lambda
\end{vmatrix}\\
&=25-4-10\lambda +\lambda^2\\
&=\lambda^2 -10\lambda +21
\end{split}
\end{equation}
A \underline{symmetric matrix} is a square matrix that is equal to its transpose, i.e,
$$A=A'.$$
We denote $A\in\mathbb{S}_p$ and $\mathbb{S}_p \subseteq \mathbb{H}_p.$
\underline{\textbf{Proposition:}} Let $A\in \mathbb{S}_p$, then
\begin{enumerate}
\item The \underline{characteristic roots} $\lambda_1,\dots, \lambda_p$ are all real. ($\lambda_1,\dots,\lambda_p$ satisfy $P(\lambda_i)=0$.
\item If $\lambda_i$ and $\lambda_j$ are two distinct characteristic roots of $A$, the corresponding \underline{characteristic vectors} $e_i$ and $e_j$ are orthogonal.
\end{enumerate}
\underline{\textbf{Proposition:}} Let $\lambda_1\geq \lambda_2\geq\cdots\lambda_p$ be the characteristic roots of a matrix $A\in\mathbb{S}_p$. Then \begin{enumerate}
\item $A>0$ (``positive definite") $\iff \lambda_i>0,\ i=1\dots, p.$
\item $A\geq 0$ (``positive semidefinite") $\iff\lambda_i\geq 0,\ i=1,\dots,p.$
\end{enumerate}
Given a covariance matrix $\Sigma$ (positive semidefinite), it follows that the characteristic roots (eigenvalues) are non-negative and these are denoted by
$$\lambda_1\geq\lambda_2\geq\cdots\lambda_p\geq 0.$$
Let $\gamma_i$ be the characteristic vector (eigenvector) corresponding to $\lambda_i$ for $i=1,\dots, p$. WLOG, we assume they are \underline{orthonormal}, i.e.,
$$\gamma_i'\gamma_j=\begin{cases}
1\ \text{if}\ i=j,\\
0\ \text{if}\ i\not=j.
\end{cases}$$
The characteristic roots and vectors satisfy
$$\sum\gamma_i=\lambda_i\gamma_i,\ i=1,\dots,p.$$
The relationship $\sum\lambda_i=\lambda_i\gamma_i$ can be expressed as
\begin{equation}\Sigma\Lambda=\Gamma\Lambda.
\end{equation}
where $\Lambda=diag(\lambda_1,\lambda_2,\dots,\lambda_p)$ and $\Gamma=(\gamma_1,\gamma_2,\dots,\gamma_p)$.
We assume that the matrix $\Gamma$ is normalized as $\Gamma'\Gamma=I_p,$ then the equation (2.7) implies that
\begin{equation}
\begin{split}
\Sigma &=\Gamma\Lambda\Gamma'\\
&=\Gamma\Lambda^{1/2}\Lambda^{1/2}\Gamma'\\
&=\Gamma\Lambda^{1/2}\Gamma'\Gamma\Lambda^{1/2}\Gamma'
\end{split}
\end{equation}
where $\Lambda^{1/2}=diag(\sqrt{\lambda_1},\dots,\sqrt{\lambda_p}).$
Define $\Sigma^{1/2}=\Gamma\Lambda^{1/2}\Gamma'$ and $C=\Gamma\Lambda^{1/2}$, then
$$\Sigma=(\Sigma^{1/2})^2=CC'.$$
\underline{Note:} Here you should be drawing an analogy to variance vs. standard deviation in univariate case as $\sigma^2=\sigma\sigma.$
The covariance matrix $\Sigma$ contains the variance of the $p$ variables and the covariances between them. It is desirable to have a measure of ``scatter".
Two possibilities are:
\underline{Generalized variance} given in terms of the determinant.
\begin{equation}
|\Sigma|=|\Gamma\Lambda\Gamma'|=|\Lambda|=\lambda_1\cdot\lambda_2\cdots\lambda_p.
\end{equation}
\underline{Total variance} given in terms of trace.
\begin{equation}
\begin{split}
tr\Sigma&=\sigma_{11}+\sigma_{22}+\cdots+\sigma_{pp}\\
&=tr(\Gamma\Lambda\Gamma')\\
&=tr(\Lambda\Gamma'\Gamma)\\
&=tr\Lambda=\lambda_1+\lambda_2+\cdots +\lambda_p.
\end{split}
\end{equation}
\underline{Note:} Later we will actually consider the term in (2.9) as
$$GV(?)=\frac{1}{p}\log|\Sigma|=\frac{1}{p}\sum^p_{k=1}\log(\lambda_k).$$
\underline{\textbf{Characteristic functions}}
Let $\mathbb{X}$ be a $p$-dimensional random vector, then
$$P(\mathbb{X}\in E)=\int_{E}f(\mathbf{x})d\mathbf{x}$$
where $d\mathbf{x}=dx_1dx_2\cdots dx_p.\ E\subset \mathbb{R}^p.$
The function $f(\mathbf{x})=f(x_1,x_2,\dots,x_p)$ is called the density of $\mathbb{X}$.
The \underline{characteristic function} of $\mathbb{X}$ is
$$C(\theta)=\mathbb{E}\left[e^{i\Theta'\mathbb{X}}\right]$$
where $i:=\sqrt{-1}, \Theta:=(\theta_1,\theta_2,\dots,\theta_p)', \theta_i\in\mathbb{R}, i=1,\dots, p.$
\begin{theorem}
There exists a one-to-one correspondence between the distribution of $\mathbb{X}$ and its characteristic function.
$$f(\mathbf{x})=\frac{1}{(2\pi)^p}\int^\infty_{-\infty}\cdots \int^\infty_{-\infty} e^{-i\Theta'\mathbf{x}}C(\Theta)d\theta_1\cdots d\theta_p.$$
\end{theorem}
You can use the characteristic function to obtain various moments of $\mathbb{X}$.
$$\frac{\partial^m}{\partial^{m_1}_{\theta_1}\partial^{m_2}_{\theta_2}\cdots\partial^{m_p}_{\theta_p}}C(\Theta)=\mathbb{E}\left[(iX_1)^{m_1}(iX_2)^{m_2}\cdots(iX_p)^{m_p}e^{i\Theta'\mathbb{X}}\right]$$
where $m=m_1+m_2+\cdots+m_p$.
Taking $\Theta=\mathbf{0},$ we can get the moment $\mathbb{E}[X_1^{m_1}X_2^{m_2}\cdots X_p^{m_p}]$.
\underline{\textbf{Multivariate Normal Distribution}}
The simplest case is the \underline{bivariate normal distribution}.
$$\mathbb{X}=(X_1,X_2)$$
$$P(\mathbb{X}\in E)=P(a<X_1\leq b, c<X_2\leq d)=\int^b_a\int^d_c f(x_1,x_2)dx_1dx_2.$$
density given by $$f(x_1,x_2)=\frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-p^2}}\exp\left(\frac{-1}{2(1-p^2)}\Theta\right)$$
and
$$\Theta(x_1,x_2)=\left(\frac{x_1-\mu_1}{\sigma_1}\right)^2-2p\frac{(x_1-\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2}+\left(\frac{x_2-\mu_2}{\sigma_2}\right)^2.$$
$\mathbb{X}\sim $ Bivariate Normal.
$$\mathbb{E}[X_i]=\mu_i,\ Var[X_i]=\sigma_i^2,\ i=1, 2.$$
covariance and correlation between $X_1$ and $X_2$ are
$$Cov(X_1,X_2)=\rho\sigma_1\sigma_2,\ Cor(X_1,X_2)=\rho.$$
Covariance matrix
$$\Sigma=\begin{pmatrix}
\sigma^2_1 & \rho\sigma_1\sigma_2\\
\rho\sigma_1\sigma_2 & \sigma_2^2
\end{pmatrix}$$
$X_1\sim N(\mu_1, \sigma_1^2)$ and $X_2\sim N(\mu_2, \sigma_2^2)$.
Let's construct the \underline{higher-dimensional case}. $(p>2)$.
\underline{Recall}: $Z\sim N(0,1), p(z)=\frac{1}{\sqrt{2\pi}}e^{-z^2/2}, -\infty<z<\infty.$
If $X\sim N(\mu,\sigma^2)$ then $X=\mu+\sigma Z$ and
$$f(x)=\frac{1}{\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}.$$
Take $\mathbb{Z}=(Z_1,Z_2,\dots,Z_p)', Z_i\sim(N,0,1)$ iid then $\mathbb{Z}$ has density
$$\prod^p_{i=1}\frac{1}{\sqrt{2\pi}}e^{-z_i^2/2}=\left(\frac{1}{\sqrt{2\pi}}\right)^p e^{-\mathbf{z}'\mathbf{z}/2},\ \mathbf{z}=(z_1,z_2,\dots,z_p)'.$$
Now consider $\mathbb{E}[\mathbb{X}]=\mu, Cov[\mathbb{X}]=\Sigma.$
\begin{lemma}
Let $\mathbf{f}=\mathbf{f}(\mathbf{x})=(f_1(\mathbf{x}),f_2(\mathbf{x}),\dots,f_p(\mathbf{x}))'$ be a transformation such that partial derivatives $\partial f_i/\partial x_j$ exist. Then the determinant of the matrix
$$\begin{pmatrix}
\frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_p}\\
\vdots & \ddots & \vdots\\
\frac{\partial f_p}{\partial x_1} & \cdots & \frac{\partial f_p}{\partial x_p}
\end{pmatrix}$$
is called the \underline{Jacobian determinant} and denoted $J$.
\end{lemma}
and some useful cases are:
\begin{enumerate}
\item $\mathbf{y}=A\mathbf{x}\implies J=|A|, y\in\mathbb{R}^p, x\in\mathbb{R}^p.$
\item $Y=AX\implies J=|A|^q, \mathbf{X}\in\mathbb{R}^{p\times q}, \mathbf{Y}\in\mathbb{R}^{p\times q}.$
\item $\mathbf{Y}=\mathbf{X}B\implies J=|B|^p, A\in\mathbb{M}_p, B\in\mathbb{M}_q.$
\item $\mathbf{Y}=A\mathbf{X}B\implies J=|A|^q|B|^p.$
\end{enumerate}
\noindent\rule{\textwidth}{1pt}
Now, returning to multivariate normals, the Jacobian for the transformation from $\mathbb{X}$ to $\mathbb{Z}$ is
$$\Sigma^{-1/2}\mathbb{X}-\Sigma^{-1/2}\mu.$$
and $J=|\Sigma^{-1/2}|=|\Sigma|^{-1/2}.$
\begin{theorem}
If $\mathbb{X}$ is random vector with density $\phi(\mathbf{x})$ then the density of $\mathbb{Y}=g(\mathbb{X})$ is given by
$$f(y)=\phi(g^{-1}(y))|J|.$$
\end{theorem}
Therefore, the density of $\mathbb{X}$ is
\begin{equation}
f(\mathbf{x})=(2\pi)^{-p/2}|\Sigma|^{-1/2}\exp\left(-\frac12(\mathbf{x}-\mu)'\Sigma^{-1}(\mathbf{x}-\mu)\right)
\end{equation}
We say that $\mathbb{X}$ has $p$-variate Normal distribution if it has density (2.11).
\begin{theorem}
The following are equivalent:
\begin{enumerate}
\item $\mathbb{X}\sim N_p(\mu,\Sigma)$, $\Sigma\in\mathbb{M}_p$ positive definite.
\item $\mathbb{Z}\sim\Sigma^{-1/2}(\mathbb{X}-\mu)\sim N_p(\mathbf{0},\mathbf{I}_p).$
\end{enumerate}
\end{theorem}
\begin{theorem}
$\mathbb{X}\sim N_p(\mu,\Sigma)$
\begin{enumerate}
\item $\mathbb{E}[\mathbb{X}]=\mu,\ Var(\mathbb{X})=\Sigma.$
\item $C_\mathbb{X}(\Theta)=\exp\left(i\mu'\Theta-\frac12\Theta'\Sigma\Theta\right).$
\item $B\in\mathbb{R}^{q\times p}\ ,Rank(B)=q,\ b\in\mathbb{R}^q,$
$$\mathbb{Y}=B\mathbb{X}+b\sim N_q(B\mu+b, B\Sigma B').$$
\end{enumerate}
\end{theorem}
% **** THIS ENDS THE EXAMPLES. DON'T DELETE THE FOLLOWING LINE:
\end{document}