diff --git a/Wine quality prediction/README.md b/Wine quality prediction/README.md
new file mode 100644
index 000000000..7b30e5ad4
--- /dev/null
+++ b/Wine quality prediction/README.md
@@ -0,0 +1,50 @@
+### Wine Quality Prediction Using Machine Learning
+
+#### Project Overview:
+Welcome to the Wine Quality Prediction project, a fascinating initiative under the GirlScript Summer of Code program. This project focuses on employing machine learning techniques to predict the quality of wines based on their physicochemical properties. This project is designed to accommodate participants at various levels of expertise, guiding them through the intricacies of data handling, machine learning model building, and evaluation.
+
+#### Project Objectives:
+1. **Understanding Wine Quality Metrics**:
+ - Explore the various attributes that contribute to the quality of wine, such as acidity, sugar content, pH levels, and alcohol content.
+ - Learn about the standards and criteria used by experts to rate wine quality.
+
+2. **Data Preprocessing**:
+ - Clean and preprocess the dataset to handle missing values, outliers, and ensure the data is in a suitable format for analysis.
+ - Normalize and scale data to improve model performance.
+
+3. **Feature Engineering**:
+ - Create new features from the existing data to capture more complex relationships.
+ - Use techniques like one-hot encoding for categorical variables and polynomial features for nonlinear relationships.
+
+4. **Model Selection and Training**:
+ - Experiment with various machine learning algorithms including:
+ - **Linear Regression**: For a straightforward approach to prediction.
+ - **Decision Trees**: To understand decision-making paths.
+ - **Random Forests**: For handling overfitting and improving accuracy.
+ - **Support Vector Machines (SVM)**: For higher-dimensional space analysis.
+ - **Neural Networks**: For complex pattern recognition and prediction.
+
+5. **Model Evaluation**:
+ - Evaluate model performance using metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R² Score.
+ - Use cross-validation techniques to ensure robustness and reliability of the models.
+
+6. **Hyperparameter Tuning**:
+ - Optimize model parameters using Grid Search and Random Search methods to find the best combination of hyperparameters.
+ - Implement techniques like cross-validation and bootstrapping for better generalization.
+
+7. **Visualization**:
+ - Utilize data visualization libraries like Matplotlib and Seaborn to create insightful graphs and plots.
+ - Visualize feature importance, correlation matrices, and model performance metrics.
+
+#### Tech Stack:
+- **Programming Language**: Python
+- **Libraries**: Pandas, NumPy, Scikit-learn, Matplotlib, Seaborn, TensorFlow/Keras (optional for neural networks)
+- **Tools**: Jupyter Notebook, Google Colab
+
+#### Learning Outcomes:
+By the end of this project, we will have:
+- A deep understanding of the principles and applications of machine learning.
+- Practical experience in handling and preprocessing real-world datasets.
+- The ability to build, evaluate, and tune machine learning models.
+- Enhanced skills in data visualization and interpretation of results.
+- The ability to communicate technical findings effectively.
diff --git a/Wine quality prediction/Wine_Quality_Prediction_using_Machine_Learning_with_Python.ipynb b/Wine quality prediction/Wine_Quality_Prediction_using_Machine_Learning_with_Python.ipynb
new file mode 100644
index 000000000..654a53d3e
--- /dev/null
+++ b/Wine quality prediction/Wine_Quality_Prediction_using_Machine_Learning_with_Python.ipynb
@@ -0,0 +1,1462 @@
+{
+ "nbformat": 4,
+ "nbformat_minor": 0,
+ "metadata": {
+ "colab": {
+ "provenance": []
+ },
+ "kernelspec": {
+ "name": "python3",
+ "display_name": "Python 3"
+ },
+ "language_info": {
+ "name": "python"
+ }
+ },
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Importing the Dependencies"
+ ],
+ "metadata": {
+ "id": "lpmW9eyP8-jj"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "-mZu2H9i83b3"
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "import sklearn.datasets\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "from sklearn.ensemble import RandomForestClassifier\n",
+ "from sklearn.metrics import accuracy_score"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Data Collection"
+ ],
+ "metadata": {
+ "id": "DhabZzAx15Tl"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# loading the dataset to a Pandas Dataframe\n",
+ "wine_dataset = pd.read_csv('/content/winequality-red.csv')"
+ ],
+ "metadata": {
+ "id": "qqBaTL4V1hG1"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# numebr of rows & columns in the dataset\n",
+ "wine_dataset.shape"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "Pmb9EgMK2ORg",
+ "outputId": "d990a15e-1e3e-4572-a484-3917c21a2c84"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "(1599, 12)"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 3
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# first 5 rows of the dataset\n",
+ "wine_dataset.head()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 224
+ },
+ "id": "nga_GTeG2UqS",
+ "outputId": "924f434c-a989-4683-bcf8-c9e3e2477a30"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " fixed acidity volatile acidity citric acid residual sugar chlorides \\\n",
+ "0 7.4 0.70 0.00 1.9 0.076 \n",
+ "1 7.8 0.88 0.00 2.6 0.098 \n",
+ "2 7.8 0.76 0.04 2.3 0.092 \n",
+ "3 11.2 0.28 0.56 1.9 0.075 \n",
+ "4 7.4 0.70 0.00 1.9 0.076 \n",
+ "\n",
+ " free sulfur dioxide total sulfur dioxide density pH sulphates \\\n",
+ "0 11.0 34.0 0.9978 3.51 0.56 \n",
+ "1 25.0 67.0 0.9968 3.20 0.68 \n",
+ "2 15.0 54.0 0.9970 3.26 0.65 \n",
+ "3 17.0 60.0 0.9980 3.16 0.58 \n",
+ "4 11.0 34.0 0.9978 3.51 0.56 \n",
+ "\n",
+ " alcohol quality \n",
+ "0 9.4 5 \n",
+ "1 9.8 5 \n",
+ "2 9.8 5 \n",
+ "3 9.8 6 \n",
+ "4 9.4 5 "
+ ],
+ "text/html": [
+ "\n",
+ "
\n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " fixed acidity | \n",
+ " volatile acidity | \n",
+ " citric acid | \n",
+ " residual sugar | \n",
+ " chlorides | \n",
+ " free sulfur dioxide | \n",
+ " total sulfur dioxide | \n",
+ " density | \n",
+ " pH | \n",
+ " sulphates | \n",
+ " alcohol | \n",
+ " quality | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 7.4 | \n",
+ " 0.70 | \n",
+ " 0.00 | \n",
+ " 1.9 | \n",
+ " 0.076 | \n",
+ " 11.0 | \n",
+ " 34.0 | \n",
+ " 0.9978 | \n",
+ " 3.51 | \n",
+ " 0.56 | \n",
+ " 9.4 | \n",
+ " 5 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 7.8 | \n",
+ " 0.88 | \n",
+ " 0.00 | \n",
+ " 2.6 | \n",
+ " 0.098 | \n",
+ " 25.0 | \n",
+ " 67.0 | \n",
+ " 0.9968 | \n",
+ " 3.20 | \n",
+ " 0.68 | \n",
+ " 9.8 | \n",
+ " 5 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 7.8 | \n",
+ " 0.76 | \n",
+ " 0.04 | \n",
+ " 2.3 | \n",
+ " 0.092 | \n",
+ " 15.0 | \n",
+ " 54.0 | \n",
+ " 0.9970 | \n",
+ " 3.26 | \n",
+ " 0.65 | \n",
+ " 9.8 | \n",
+ " 5 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 11.2 | \n",
+ " 0.28 | \n",
+ " 0.56 | \n",
+ " 1.9 | \n",
+ " 0.075 | \n",
+ " 17.0 | \n",
+ " 60.0 | \n",
+ " 0.9980 | \n",
+ " 3.16 | \n",
+ " 0.58 | \n",
+ " 9.8 | \n",
+ " 6 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 7.4 | \n",
+ " 0.70 | \n",
+ " 0.00 | \n",
+ " 1.9 | \n",
+ " 0.076 | \n",
+ " 11.0 | \n",
+ " 34.0 | \n",
+ " 0.9978 | \n",
+ " 3.51 | \n",
+ " 0.56 | \n",
+ " 9.4 | \n",
+ " 5 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 4
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# checking for missing values\n",
+ "wine_dataset.isnull().sum()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "Ccun2mY62b9g",
+ "outputId": "a3466528-018c-4d29-951c-ee7fc87bf182"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "fixed acidity 0\n",
+ "volatile acidity 0\n",
+ "citric acid 0\n",
+ "residual sugar 0\n",
+ "chlorides 0\n",
+ "free sulfur dioxide 0\n",
+ "total sulfur dioxide 0\n",
+ "density 0\n",
+ "pH 0\n",
+ "sulphates 0\n",
+ "alcohol 0\n",
+ "quality 0\n",
+ "dtype: int64"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 5
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "Data Analysis and Visualization"
+ ],
+ "metadata": {
+ "id": "J0zpC03y3BTr"
+ }
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# statistical measures of the dataset\n",
+ "wine_dataset.describe()"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 355
+ },
+ "id": "XqLlmONy2ygi",
+ "outputId": "fa2782a8-4fab-4f2c-b8b1-46e9711431a0"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ " fixed acidity volatile acidity citric acid residual sugar \\\n",
+ "count 1599.000000 1599.000000 1599.000000 1599.000000 \n",
+ "mean 8.319637 0.527821 0.270976 2.538806 \n",
+ "std 1.741096 0.179060 0.194801 1.409928 \n",
+ "min 4.600000 0.120000 0.000000 0.900000 \n",
+ "25% 7.100000 0.390000 0.090000 1.900000 \n",
+ "50% 7.900000 0.520000 0.260000 2.200000 \n",
+ "75% 9.200000 0.640000 0.420000 2.600000 \n",
+ "max 15.900000 1.580000 1.000000 15.500000 \n",
+ "\n",
+ " chlorides free sulfur dioxide total sulfur dioxide density \\\n",
+ "count 1599.000000 1599.000000 1599.000000 1599.000000 \n",
+ "mean 0.087467 15.874922 46.467792 0.996747 \n",
+ "std 0.047065 10.460157 32.895324 0.001887 \n",
+ "min 0.012000 1.000000 6.000000 0.990070 \n",
+ "25% 0.070000 7.000000 22.000000 0.995600 \n",
+ "50% 0.079000 14.000000 38.000000 0.996750 \n",
+ "75% 0.090000 21.000000 62.000000 0.997835 \n",
+ "max 0.611000 72.000000 289.000000 1.003690 \n",
+ "\n",
+ " pH sulphates alcohol quality \n",
+ "count 1599.000000 1599.000000 1599.000000 1599.000000 \n",
+ "mean 3.311113 0.658149 10.422983 5.636023 \n",
+ "std 0.154386 0.169507 1.065668 0.807569 \n",
+ "min 2.740000 0.330000 8.400000 3.000000 \n",
+ "25% 3.210000 0.550000 9.500000 5.000000 \n",
+ "50% 3.310000 0.620000 10.200000 6.000000 \n",
+ "75% 3.400000 0.730000 11.100000 6.000000 \n",
+ "max 4.010000 2.000000 14.900000 8.000000 "
+ ],
+ "text/html": [
+ "\n",
+ " \n",
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " fixed acidity | \n",
+ " volatile acidity | \n",
+ " citric acid | \n",
+ " residual sugar | \n",
+ " chlorides | \n",
+ " free sulfur dioxide | \n",
+ " total sulfur dioxide | \n",
+ " density | \n",
+ " pH | \n",
+ " sulphates | \n",
+ " alcohol | \n",
+ " quality | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " count | \n",
+ " 1599.000000 | \n",
+ " 1599.000000 | \n",
+ " 1599.000000 | \n",
+ " 1599.000000 | \n",
+ " 1599.000000 | \n",
+ " 1599.000000 | \n",
+ " 1599.000000 | \n",
+ " 1599.000000 | \n",
+ " 1599.000000 | \n",
+ " 1599.000000 | \n",
+ " 1599.000000 | \n",
+ " 1599.000000 | \n",
+ "
\n",
+ " \n",
+ " mean | \n",
+ " 8.319637 | \n",
+ " 0.527821 | \n",
+ " 0.270976 | \n",
+ " 2.538806 | \n",
+ " 0.087467 | \n",
+ " 15.874922 | \n",
+ " 46.467792 | \n",
+ " 0.996747 | \n",
+ " 3.311113 | \n",
+ " 0.658149 | \n",
+ " 10.422983 | \n",
+ " 5.636023 | \n",
+ "
\n",
+ " \n",
+ " std | \n",
+ " 1.741096 | \n",
+ " 0.179060 | \n",
+ " 0.194801 | \n",
+ " 1.409928 | \n",
+ " 0.047065 | \n",
+ " 10.460157 | \n",
+ " 32.895324 | \n",
+ " 0.001887 | \n",
+ " 0.154386 | \n",
+ " 0.169507 | \n",
+ " 1.065668 | \n",
+ " 0.807569 | \n",
+ "
\n",
+ " \n",
+ " min | \n",
+ " 4.600000 | \n",
+ " 0.120000 | \n",
+ " 0.000000 | \n",
+ " 0.900000 | \n",
+ " 0.012000 | \n",
+ " 1.000000 | \n",
+ " 6.000000 | \n",
+ " 0.990070 | \n",
+ " 2.740000 | \n",
+ " 0.330000 | \n",
+ " 8.400000 | \n",
+ " 3.000000 | \n",
+ "
\n",
+ " \n",
+ " 25% | \n",
+ " 7.100000 | \n",
+ " 0.390000 | \n",
+ " 0.090000 | \n",
+ " 1.900000 | \n",
+ " 0.070000 | \n",
+ " 7.000000 | \n",
+ " 22.000000 | \n",
+ " 0.995600 | \n",
+ " 3.210000 | \n",
+ " 0.550000 | \n",
+ " 9.500000 | \n",
+ " 5.000000 | \n",
+ "
\n",
+ " \n",
+ " 50% | \n",
+ " 7.900000 | \n",
+ " 0.520000 | \n",
+ " 0.260000 | \n",
+ " 2.200000 | \n",
+ " 0.079000 | \n",
+ " 14.000000 | \n",
+ " 38.000000 | \n",
+ " 0.996750 | \n",
+ " 3.310000 | \n",
+ " 0.620000 | \n",
+ " 10.200000 | \n",
+ " 6.000000 | \n",
+ "
\n",
+ " \n",
+ " 75% | \n",
+ " 9.200000 | \n",
+ " 0.640000 | \n",
+ " 0.420000 | \n",
+ " 2.600000 | \n",
+ " 0.090000 | \n",
+ " 21.000000 | \n",
+ " 62.000000 | \n",
+ " 0.997835 | \n",
+ " 3.400000 | \n",
+ " 0.730000 | \n",
+ " 11.100000 | \n",
+ " 6.000000 | \n",
+ "
\n",
+ " \n",
+ " max | \n",
+ " 15.900000 | \n",
+ " 1.580000 | \n",
+ " 1.000000 | \n",
+ " 15.500000 | \n",
+ " 0.611000 | \n",
+ " 72.000000 | \n",
+ " 289.000000 | \n",
+ " 1.003690 | \n",
+ " 4.010000 | \n",
+ " 2.000000 | \n",
+ " 14.900000 | \n",
+ " 8.000000 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 6
+ }
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "# number of values for each quality\n",
+ "sns.catplot(x='quality', data = wine_dataset, kind = 'count')"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 523
+ },
+ "id": "2HsvE2xu3K-h",
+ "outputId": "000b3cc8-997c-40ce-892a-852ab498e581"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "execution_count": 8
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "