From 438e87e8d4ddb09b251fff54b4af07c9e635961f Mon Sep 17 00:00:00 2001 From: manishrana Date: Sun, 2 Jun 2024 14:31:43 +0530 Subject: [PATCH] diabetesprediction --- .../Diabetes.ipynb | 3756 +++++++++++++++++ .../deeplearning.pkl | Bin 0 -> 88576 bytes .../diabetes.csv | 769 ++++ .../lr .pkl | Bin 0 -> 772 bytes .../requirements.txt | 27 + .../scaler .pkl | Bin 0 -> 833 bytes 6 files changed, 4552 insertions(+) create mode 100644 Diabetes prediction (Machine Learning Algorithms)/Diabetes.ipynb create mode 100644 Diabetes prediction (Machine Learning Algorithms)/deeplearning.pkl create mode 100644 Diabetes prediction (Machine Learning Algorithms)/diabetes.csv create mode 100644 Diabetes prediction (Machine Learning Algorithms)/lr .pkl create mode 100644 Diabetes prediction (Machine Learning Algorithms)/requirements.txt create mode 100644 Diabetes prediction (Machine Learning Algorithms)/scaler .pkl diff --git a/Diabetes prediction (Machine Learning Algorithms)/Diabetes.ipynb b/Diabetes prediction (Machine Learning Algorithms)/Diabetes.ipynb new file mode 100644 index 000000000..6376e18a6 --- /dev/null +++ b/Diabetes prediction (Machine Learning Algorithms)/Diabetes.ipynb @@ -0,0 +1,3756 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "_xysq3dyorE3" + }, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.linear_model import LogisticRegression\n", + "from sklearn.metrics import accuracy_score, confusion_matrix, precision_recall_fscore_support\n", + "from sklearn.naive_bayes import GaussianNB\n", + "from sklearn.neighbors import KNeighborsClassifier\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "from sklearn import tree\n", + "from sklearn.ensemble import RandomForestClassifier\n", + "from sklearn.svm import SVC\n", + "import pickle as pkl" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "D8QN__pWoclf", + "outputId": "a7cb9a03-182d-4375-ac02-1067b91997b0" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Mounted at /content/drive\n" + ] + } + ], + "source": [ + "from google.colab import drive\n", + "drive.mount('/content/drive')" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 424 + }, + "id": "HUt1kptjorFB", + "outputId": "5a72c66e-a5d4-48ee-b942-03e178578d1e" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", + "0 6 148 72 35 0 33.6 \n", + "1 1 85 66 29 0 26.6 \n", + "2 8 183 64 0 0 23.3 \n", + "3 1 89 66 23 94 28.1 \n", + "4 0 137 40 35 168 43.1 \n", + ".. ... ... ... ... ... ... \n", + "763 10 101 76 48 180 32.9 \n", + "764 2 122 70 27 0 36.8 \n", + "765 5 121 72 23 112 26.2 \n", + "766 1 126 60 0 0 30.1 \n", + "767 1 93 70 31 0 30.4 \n", + "\n", + " DiabetesPedigreeFunction Age Outcome \n", + "0 0.627 50 1 \n", + "1 0.351 31 0 \n", + "2 0.672 32 1 \n", + "3 0.167 21 0 \n", + "4 2.288 33 1 \n", + ".. ... ... ... \n", + "763 0.171 63 0 \n", + "764 0.340 27 0 \n", + "765 0.245 30 0 \n", + "766 0.349 47 1 \n", + "767 0.315 23 0 \n", + "\n", + "[768 rows x 9 columns]" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcome
061487235033.60.627501
11856629026.60.351310
28183640023.30.672321
318966239428.10.167210
40137403516843.12.288331
..............................
76310101764818032.90.171630
76421227027036.80.340270
7655121722311226.20.245300
7661126600030.10.349471
7671937031030.40.315230
\n", + "

768 rows × 9 columns

\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + " \n", + " \n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "df", + "summary": "{\n \"name\": \"df\",\n \"rows\": 768,\n \"fields\": [\n {\n \"column\": \"Pregnancies\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 0,\n \"max\": 17,\n \"num_unique_values\": 17,\n \"samples\": [\n 6,\n 1,\n 3\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Glucose\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 31,\n \"min\": 0,\n \"max\": 199,\n \"num_unique_values\": 136,\n \"samples\": [\n 151,\n 101,\n 112\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"BloodPressure\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 19,\n \"min\": 0,\n \"max\": 122,\n \"num_unique_values\": 47,\n \"samples\": [\n 86,\n 46,\n 85\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"SkinThickness\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 15,\n \"min\": 0,\n \"max\": 99,\n \"num_unique_values\": 51,\n \"samples\": [\n 7,\n 12,\n 48\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Insulin\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 115,\n \"min\": 0,\n \"max\": 846,\n \"num_unique_values\": 186,\n \"samples\": [\n 52,\n 41,\n 183\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"BMI\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 7.884160320375446,\n \"min\": 0.0,\n \"max\": 67.1,\n \"num_unique_values\": 248,\n \"samples\": [\n 19.9,\n 31.0,\n 38.1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"DiabetesPedigreeFunction\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3313285950127749,\n \"min\": 0.078,\n \"max\": 2.42,\n \"num_unique_values\": 517,\n \"samples\": [\n 1.731,\n 0.426,\n 0.138\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Age\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 11,\n \"min\": 21,\n \"max\": 81,\n \"num_unique_values\": 52,\n \"samples\": [\n 60,\n 47,\n 72\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Outcome\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 5 + } + ], + "source": [ + "df = pd.read_csv('/content/drive/MyDrive/GoogleGirlsScript/usingDeepLearning#57/diabetes.csv')\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "BeY3HFdQoasq" + }, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "BdJ3aJ_OorFF", + "outputId": "75d9a867-6871-4e81-c049-a47dff96293b" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(768, 9)" + ] + }, + "metadata": {}, + "execution_count": 6 + } + ], + "source": [ + "df.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "fihiwcbnorFH", + "outputId": "c24c2c44-9f7d-4feb-bb1f-96ea9826658e" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Pregnancies 0\n", + "Glucose 0\n", + "BloodPressure 0\n", + "SkinThickness 0\n", + "Insulin 0\n", + "BMI 0\n", + "DiabetesPedigreeFunction 0\n", + "Age 0\n", + "Outcome 0\n", + "dtype: int64" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ], + "source": [ + "df.isnull().sum()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "KmaSBszGorFI" + }, + "source": [ + "- There are no null values" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "uUNO-wqHorFN", + "outputId": "796f5291-1648-4ace-e30a-2df5a77e3e5a" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\n", + "RangeIndex: 768 entries, 0 to 767\n", + "Data columns (total 9 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Pregnancies 768 non-null int64 \n", + " 1 Glucose 768 non-null int64 \n", + " 2 BloodPressure 768 non-null int64 \n", + " 3 SkinThickness 768 non-null int64 \n", + " 4 Insulin 768 non-null int64 \n", + " 5 BMI 768 non-null float64\n", + " 6 DiabetesPedigreeFunction 768 non-null float64\n", + " 7 Age 768 non-null int64 \n", + " 8 Outcome 768 non-null int64 \n", + "dtypes: float64(2), int64(7)\n", + "memory usage: 54.1 KB\n" + ] + } + ], + "source": [ + "df.info()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HVXP1TllorFO" + }, + "source": [ + "- Statistical analysis of the data" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 320 + }, + "id": "ciL295UdorFP", + "outputId": "6aacc5bf-ce61-4d2f-9550-9835fdc6ee0e" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin \\\n", + "count 768.000000 768.000000 768.000000 768.000000 768.000000 \n", + "mean 3.845052 120.894531 69.105469 20.536458 79.799479 \n", + "std 3.369578 31.972618 19.355807 15.952218 115.244002 \n", + "min 0.000000 0.000000 0.000000 0.000000 0.000000 \n", + "25% 1.000000 99.000000 62.000000 0.000000 0.000000 \n", + "50% 3.000000 117.000000 72.000000 23.000000 30.500000 \n", + "75% 6.000000 140.250000 80.000000 32.000000 127.250000 \n", + "max 17.000000 199.000000 122.000000 99.000000 846.000000 \n", + "\n", + " BMI DiabetesPedigreeFunction Age Outcome \n", + "count 768.000000 768.000000 768.000000 768.000000 \n", + "mean 31.992578 0.471876 33.240885 0.348958 \n", + "std 7.884160 0.331329 11.760232 0.476951 \n", + "min 0.000000 0.078000 21.000000 0.000000 \n", + "25% 27.300000 0.243750 24.000000 0.000000 \n", + "50% 32.000000 0.372500 29.000000 0.000000 \n", + "75% 36.600000 0.626250 41.000000 1.000000 \n", + "max 67.100000 2.420000 81.000000 1.000000 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAgeOutcome
count768.000000768.000000768.000000768.000000768.000000768.000000768.000000768.000000768.000000
mean3.845052120.89453169.10546920.53645879.79947931.9925780.47187633.2408850.348958
std3.36957831.97261819.35580715.952218115.2440027.8841600.33132911.7602320.476951
min0.0000000.0000000.0000000.0000000.0000000.0000000.07800021.0000000.000000
25%1.00000099.00000062.0000000.0000000.00000027.3000000.24375024.0000000.000000
50%3.000000117.00000072.00000023.00000030.50000032.0000000.37250029.0000000.000000
75%6.000000140.25000080.00000032.000000127.25000036.6000000.62625041.0000001.000000
max17.000000199.000000122.00000099.000000846.00000067.1000002.42000081.0000001.000000
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df\",\n \"rows\": 8,\n \"fields\": [\n {\n \"column\": \"Pregnancies\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 269.85223453356366,\n \"min\": 0.0,\n \"max\": 768.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 3.8450520833333335,\n 3.0,\n 768.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Glucose\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 243.73802348295857,\n \"min\": 0.0,\n \"max\": 768.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 120.89453125,\n 117.0,\n 768.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"BloodPressure\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 252.8525053581062,\n \"min\": 0.0,\n \"max\": 768.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 69.10546875,\n 72.0,\n 768.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"SkinThickness\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 263.7684730531098,\n \"min\": 0.0,\n \"max\": 768.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 768.0,\n 20.536458333333332,\n 32.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Insulin\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 350.26059167945886,\n \"min\": 0.0,\n \"max\": 846.0,\n \"num_unique_values\": 7,\n \"samples\": [\n 768.0,\n 79.79947916666667,\n 127.25\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"BMI\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 262.05117817552093,\n \"min\": 0.0,\n \"max\": 768.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 31.992578124999998,\n 32.0,\n 768.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"DiabetesPedigreeFunction\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 271.3005221658502,\n \"min\": 0.078,\n \"max\": 768.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 0.47187630208333325,\n 0.3725,\n 768.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Age\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 260.1941178528413,\n \"min\": 11.760231540678685,\n \"max\": 768.0,\n \"num_unique_values\": 8,\n \"samples\": [\n 33.240885416666664,\n 29.0,\n 768.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Outcome\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 271.3865920388932,\n \"min\": 0.0,\n \"max\": 768.0,\n \"num_unique_values\": 5,\n \"samples\": [\n 0.3489583333333333,\n 1.0,\n 0.47695137724279896\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 9 + } + ], + "source": [ + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cdwmFGxuorFQ", + "outputId": "b2bc5cbd-8e7a-4844-ba38-cc6c7bf47b82" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Outcome\n", + "0 500\n", + "1 268\n", + "Name: count, dtype: int64" + ] + }, + "metadata": {}, + "execution_count": 10 + } + ], + "source": [ + "target_vals = df['Outcome'].value_counts()\n", + "target_vals" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fCrSeve-orFQ" + }, + "source": [ + "- 0 --> Non-diabetic patients\n", + "- 1 --> Diabetic patients" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 163 + }, + "id": "o703kKZJorFR", + "outputId": "2c4cd095-419f-40d7-97fc-a29d4ef50808" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin \\\n", + "Outcome \n", + "0 3.298000 109.980000 68.184000 19.664000 68.792000 \n", + "1 4.865672 141.257463 70.824627 22.164179 100.335821 \n", + "\n", + " BMI DiabetesPedigreeFunction Age \n", + "Outcome \n", + "0 30.304200 0.429734 31.190000 \n", + "1 35.142537 0.550500 37.067164 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAge
Outcome
03.298000109.98000068.18400019.66400068.79200030.3042000.42973431.190000
14.865672141.25746370.82462722.164179100.33582135.1425370.55050037.067164
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "summary": "{\n \"name\": \"df\",\n \"rows\": 2,\n \"fields\": [\n {\n \"column\": \"Outcome\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Pregnancies\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.108511248584296,\n \"min\": 3.298,\n \"max\": 4.865671641791045,\n \"num_unique_values\": 2,\n \"samples\": [\n 4.865671641791045,\n 3.298\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Glucose\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 22.116505963980842,\n \"min\": 109.98,\n \"max\": 141.25746268656715,\n \"num_unique_values\": 2,\n \"samples\": [\n 141.25746268656715,\n 109.98\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"BloodPressure\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.8672051632998017,\n \"min\": 68.184,\n \"max\": 70.82462686567165,\n \"num_unique_values\": 2,\n \"samples\": [\n 70.82462686567165,\n 68.184\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"SkinThickness\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 1.7678935989570275,\n \"min\": 19.664,\n \"max\": 22.16417910447761,\n \"num_unique_values\": 2,\n \"samples\": [\n 22.16417910447761,\n 19.664\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Insulin\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 22.304849659757796,\n \"min\": 68.792,\n \"max\": 100.33582089552239,\n \"num_unique_values\": 2,\n \"samples\": [\n 100.33582089552239,\n 68.792\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"BMI\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3.4212211239962618,\n \"min\": 30.3042,\n \"max\": 35.14253731343284,\n \"num_unique_values\": 2,\n \"samples\": [\n 35.14253731343284,\n 30.3042\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"DiabetesPedigreeFunction\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.08539445753677459,\n \"min\": 0.429734,\n \"max\": 0.5505,\n \"num_unique_values\": 2,\n \"samples\": [\n 0.5505,\n 0.429734\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Age\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 4.155782645191446,\n \"min\": 31.19,\n \"max\": 37.06716417910448,\n \"num_unique_values\": 2,\n \"samples\": [\n 37.06716417910448,\n 31.19\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 11 + } + ], + "source": [ + "df.groupby('Outcome').mean()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2BxMy1vqorFR" + }, + "source": [ + "- Above table shows that the mean of all the features is higher for diabetic patients than non-diabetic patients. This means that the diabetic patients have higher values of all the features than non-diabetic patients.\n", + "\n", + "- Moreover, people with diabetes have much higher value of glucose and insulin than people without diabetes." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 789 + }, + "id": "1TtNV4pforFS", + "outputId": "6c9ee2b2-b2a5-4152-940a-b1f963accd7d" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 12 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA14AAALzCAYAAAABLdZ2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVgV2f/A8TfdpYQtAoqAoNjY3d2N69rd3d3d3b2ua6zdHSgWqCitgtIh0r8/0ItXwMR19/f9vJ5nHmVOzDl3bsyZE6OSmpqaihBCCCGEEEKIn0b1VxdACCGEEEIIIf6/k4aXEEIIIYQQQvxk0vASQgghhBBCiJ9MGl5CCCGEEEII8ZNJw0sIIYQQQgghfjJpeAkhhBBCCCHETyYNLyGEEEIIIYT4yaThJYQQQgghhBA/mTS8hBBCCCGEEOInk4aXEEIIIYQQQvxk0vASQgghhBBC/M+4ePEijRs3Jk+ePKioqHDw4MEvpjl//jwlS5ZES0sLGxsbNm/e/M3HlYaXEEIIIYQQ4n9GbGwsxYsXZ8WKFV8V38fHh4YNG1K9enXc3d0ZPHgw3bt358SJE990XJXU1NTU7ymwEEIIIYQQQvyXqaio8Oeff9KsWbMs44waNYqjR4/y8OFDxb527doRERHB8ePHv/pY0uMlhBBCCCGE+E+Lj48nKipKaYuPj8+WvK9du0atWrWU9tWtW5dr1659Uz7q2VIaIf4fSwzx/tVF+CXalxr8q4vwS2j8j96POvzm3q8uwi+hpvq/eb4L6pv/6iL8EmEJ0b+6CL/ELXuzX12EX2JxYK5fXYRfYo7vrl9dBIV/8hpq1vKtTJkyRWnfpEmTmDx58g/nHRQUhIWFhdI+CwsLoqKiiIuLQ0dH56vykYaXEEIIIYQQ4j9tzJgxDB06VGmflpbWLypN5qThJYQQQgghhMh+Kcn/2KG0tLR+WkMrV65cBAcHK+0LDg7G0NDwq3u7QOZ4CSGEEEIIIUSWXFxcOHPmjNK+U6dO4eLi8k35SMNLCCGEEEIIkf1SU/657RvExMTg7u6Ou7s7kLZcvLu7O/7+/kDasMUuXboo4vfu3Rtvb29GjhzJ48ePWblyJXv37mXIkCHfdFxpeAkhhBBCCCH+Z9y+fRtnZ2ecnZ0BGDp0KM7OzkycOBGAV69eKRphAIUKFeLo0aOcOnWK4sWLs2DBAtavX0/dunW/6bgyx0sIIYQQQgiR/VK+rSfqn1KtWjU+9yjjzZs3Z5rm7t27P3Rc6fESQgghhBBCiJ9MeryEEEIIIYQQ2S71G+de/X8nPV5CCCGEEEII8ZNJw0sIIYQQQgghfjIZaiiEEEIIIYTIfv/SxTV+FenxEkIIIYQQQoifTHq8hBBCCCGEENlPFtdQIj1eQgghhBBCCPGTSY+XEEIIIYQQIvulJP/qEvyrSI+XEEIIIYQQQvxk0uMlhBBCCCGEyH4yx0uJ9HgJIYQQQgghxE8mPV5CCCGEEEKI7CfP8VIiPV5CCCGEEEII8ZNJj5cQQgghhBAi26XKHC8l0uMlhBBCCCGEED+ZNLzEf4qKigoHDx781cUQQgghhBBfkpLyz23/AdLw+o/p2rUrKioqqKiooKmpiY2NDVOnTiUpKelXF+0f8erVK+rXr/9Ljn3b/QH9Rk6iepOOFKtYnzMXryqFp6amsnzdVqo16UCp6k3pPmgMfgEvlOJERkUzavIcytVugUvdVkyYtYi3b+M+e9z4+ASmL1hBxfptKFOrOYPHTickLFwpzqug1/QZPpHSNZpRpWE75i9fT1JS+kMLPZ8+o1XXfpSp1Zx+IycRGRWtCEtKSqZNtwE88HjyVa+DXVkHRm8Yz9qbm9jvd4gydcopwtTU1eg02pUFJ5ay3XMva29uYsDCwZiY5/hsntp6OnSd2J1VV9az48k+ZhyYg7WTjVKcfvMHsd/vkNI2bstkRbi6pjoDFg1h68PdLD23CseKxZXSN+nVnG5Ten5VHTNTtKw9wzeMY+XNjezyO0jpj+r9qd9n9GaX30Hqd2v8w3m2HNyO+WeWs8lzN+vub2fsjilYlyisCFfXVKfvosFseLiThedWUKyik1L6Rr2a0XVKj2+s7Zfp6emyYOEUnnhd5U2oJ7fdTvJ79w6fTWNnV5gdO1fyyPMSMW996NvvtwxxPoR9ui1cNFURZ9bscfgH3uXx0yu0adtUKX3z5g3Yu3999lQyE5ExzzPdBg7K+jX+vXsHrlw/SsBLdwJeunPqzD5q1a6qFOfIsR0Z8ly0ZJoi3MTEiN171/Ii6D6XrhzCycleKf38hZPpP+D37K3se6XKl2DZ1nmcdj/E/aBrVK9X5bPxpy0Zz/2gaxm2Axd2KOIcu3Ug0zhjZw1XxBk+eSCXPE9w0u0gDVrUUTpG7cY1WLZ1XvZWNBNDR/Xl/PVDPA24yUPvK+w6sA7nUo6fTdP5t7acunQAT7/rePpd568T26leq5JSnH2HNhEY9lBpm7VgoiLc2NiQTTuX88T/JsfP78PBsahS+ulzx9Gzn+sP10+/myu5L59T2sx2bMk0rsn82eS+fA6tyhW/On/D4UPIffkcuq1bKuc1ezrmf+wm15kTmB/cj9H4MajmzKkIV8tlQY7li7E49Tc5li9GLZeFcvo5M9Gu+vn34edU69uU/n9NZ+rDjUy4vZoua4diapVbEa5jpEeTyV0ZfmYB0x9vYcyVZTSZ5Iq2gc5n83WoW4bft45h4t21zPHdRW77ghni5ChgTuc1Q5ngtoYpDzbQcfkg9E2N0uuuqU7bhX2Z8mADw88uxKZiMaX0VXo2osnkrt9dd/FrScPrP6hevXq8evUKLy8vhg0bxuTJk5k3L+MPUEJCwi8o3c+VK1cutLS0fsmx4+LeYWtjxbhhfTMN37hjHzv2H2LiiAHsXLcYHW1teg0dT3x8+nkYNWUuz3z8Wbd4JivmTsbN/SGT5y797HHnLF3D+Ss3WDh9LJuXz+VNSCiDx05XhCcnJ9N3xCQSE5PYvnoBM8YP469jp1i+fpsizqTZSyhXqgT7Ni4jJuYta7fuVoRt2f0HJRztcbS3/arXQVtXC19PH9ZPWJMhTEtHi0LFrNm/dA8jGw5hXq/Z5LHKy+gN4z6bZ585/SleuQRLhyxiWJ2B3LvozsQd08hhodxgu3veje6luyi2xQPS3/e1O9TFytGasc1HcHrXCQYvHaYIM89vQa12ddg1bxvfS0tXG39PHzZmUu+Pla5bDhtnW8KCQrMlz1c+L9k8cS2j6gxiSssxvAl8zdhtkzHIYQhAzQ51KeRozaTmoziz6yT9lw5VpDXLb06NdrXZM2/7V9by682eM55atavQvdsQSjnXYsWKTSxYOIUGDWtlmUZHVwcfnwAmTZhDUNDrTONUrdwUq0JlFFujhp0A+PPAUQDqN6hJm7ZNadqkCxPGzWbFytnkzGkCgKGhARMnD2fo4ImZ5p0dCluVU9r69h5JSkoKh/46nmWaFy+CmDxxHlUrN6NalWZcvHidXXtWU9SusFK8zZt2K+U9cfwcRdiwEX3RN9CjSqUmXLp0g6XLZyrCSpcpQenSJVi5YlP2VxjQ0dXmySMvZo5Z8FXx54xfRHXHhoqttnMTIsIiOXX4rCJOh3rdlOL0aD0QgJOHzwBQtXYlGrSoQ692g1g0bQWTF4zFOEfaxam+gR4DRvdixpj52VzTjLyf+TJ+1ExqVWpBiwZdCAx4yY4/1pLj/XsuM69eBjFryiIaVG9DgxptuXLxJhu2L6NIUWuleDu27MO5aFXFNmNy+us7YFhP9PX1qFe9Ndeu3GLu4imKsJKlnXAu5cT6Vd//ffaxRG8fgpu0UGwhfQdkiKPXphWkpn5TvlpVKqHpYE/ymzcZwhLuuBM+cQpvOnQhfPwk1PPmwWT6ZEW4Qf++pISEEPJbD1JCwzDo10cRpl2jOqSm8O7CxW8qz8esytlxbdtJVjSfyPrOM1FVV6f71jFo6KRdXxhamGBoYczRmTtYWGcEe4evpkjV4rSa0+uz+WrqauF7+wnHZu/KNFxDR4vu28ZCairrOkxnVavJqGmq0XX9cFRUVAAo174meR0LsbLFJG7uOkP7Jf0V6U3ymVG2XQ1OzN/z3XX/x6Wm/HPbf4A0vP6DtLS0yJUrFwULFqRPnz7UqlWLQ4cO0bVrV5o1a8aMGTPIkycPtrZpF9IBAQG0adMGY2NjcuTIQdOmTfH19VXkl5SUxMCBAzE2NiZnzpyMGjUKV1dXmjVrpohTrVo1Bg4cyMiRI8mRIwe5cuVi8uTJSuVauHAhjo6O6OnpkT9/fvr27UtMTIwifPPmzRgbG3PixAns7OzQ19dXNCI/tnHjRhwcHNDS0iJ37tz075/+pfPpUMMv1e38+fOULVsWPT09jI2NqVixIn5+ft/1uld2KcPAnq7Uqprxbl9qairb9h6kp2s7alR2wdamEDMnDOd1SChnLqX1jD339efy9dtMGT0IJ4eilCxejLFD+nDs9AVev8n8Ij06JpYDR04yckAPypUqgUPRwkwbNxT3Bx7ce+gJwNWbd3ju68/sSSMoWsSayi5l6N+9C7sPHCYxMREAb98AWjaph2WBfNSvXRVv34C01+/FKw4cOcmgnl9/5/Tu+Tvsnr+DmyeuZwh7G/2WaZ0mcu3oFV56v8Dr7hPWT1yDtVNhTPOYZpqfppYm5etXYNuszXjefESQ3yv2Lt5FkN8r6nRW7t1MjE8k4k2EYouNilWE5bXJz+1TNwn0CuD4lr8xMjXG8H3jpMf0PmyfvYW4mM/3Ln7OvfN32Dt/J7dP3MgyjolFDrpO6cGKQQtJTkzOMt635Hn1r4s8vHKf1wHBBHoFsH3aRnQN9ShgZwlAXpt8uL2v98ktxzAyNVY0yn6f3puds7f+UL2zUq5cSXbuOMClSzfw93/Bpo27ePDAk9Kli2eZ5o7bfcaPm8X+/UeUbkh8LCQkjNfBIYqtfv0aPH/uy6VLaa+Rra0Nly5e5+6dB+zbd5joqBgKWuYHYPqM0axft53AwJfZXt8PXr8OUdoaNKzNpYvX8X3/mcrM8WNnOXXyPN7PfXn+zJdpUxYQG/OWMmVKKMV7+zZOKe/o6PTvT1tbGw7sP8LzZ75s3rSbIrZpF/Hq6uosWjKNIYMmkPKThtpcPnud5XPWcvbYha+KHxMdS+ibMMVmX9wOQ2MDDu4+qogTHhqhFKdq7Yr4+wRy++pdAKyKFOTW1Tt43HvMsYOniI2JJW+BPAAMmdCfvVv+JOhFcPZX9hMH//ibyxeu4+8XyNPHz5kyfi6GhgbYORTJMs3pExc4e/oSPt7++Dz3Y+6MpbyNfUvJTz4bcXHvePM6VLHFRKd/nxUuYsVfB47h89yPHVv2U7hIISDtfM9aMJExw6Zm3/lOTiYlLFyxpUZGKQWr21ij164NkbPmfnWWqqamGA0eSMTUGaQmZfwujN27n8RHniQHB5P48BEx23eh4WAPamppxyxYgLhjJ0gOfEHcseOoW6b1HKno62HQoxuRC5f8QIVho+ts3PZfJNgrkFee/uwbvgqTfGbkc0x7nYOfBrK9z2I8z9whzP81z6894sT8PdjVLImqWtaXznf/vMyZpQd4duVBpuGWpYtgks+MvcNXE/QkgKAnAewdtoq8TlZYV3AAwNwmLx6n3Qj2CuTq1pPomxqhl8MAgOYzfufYnJ3E/4TvdPHPkIbX/wM6OjqK3q0zZ87w5MkTTp06xZEjR0hMTKRu3boYGBhw6dIlrly5omjwfEgzZ84cduzYwaZNm7hy5QpRUVGZzqPasmULenp63Lhxg7lz5zJ16lROnTqlCFdVVWXp0qU8evSILVu2cPbsWUaOHKmUx9u3b5k/fz7btm3j4sWL+Pv7M3x4+tCSVatW0a9fP3r27MmDBw84dOgQNjbKQ84++FLdkpKSaNasGVWrVuX+/ftcu3aNnj17Ku4qZafAl0GEhIbjUtpZsc9AXw8ne1vuPXwMwL2Hnhga6FPMLv0Hu3xpZ1RVVbjv8TjTfD2eeJGUlET5j/K1Kpif3BbmSvkWtrLENEf6HdiK5UoRE/uWZz5pjUxbm0Jcu3mHpKRkbtx2p4h12o/L1HnLGNq3G3p6utn0SmSka6BHSkqKUiPpY6rqaqipq5H4yYV4wrsE7EorD6dyKF+MDW5bWXJ2JT2m90Hf2EAR5ufhQ9Ey9mhqaVK8qjNhwaFEhUVRuVlVEuMTMm0oZicVFRX6LR7MkTUHCfTK+iL8R6hpqFOjQx1iI2Px9/AB0uptW8YOjff1Dg8OIzosiorNqpAQn/jZRt2PuHHjDg0a1iR3nrQhQFWqlMfGphBnTl/KtmNoaGjQrl0ztm3dp9j34IEnziUdMTY2pIRzMbR1tPB+7ouLS2mKl3Bg1crN2Xb8LzEzz0ndetXYumXvV6dRVVWlZatG6OrpcPPmXaWwNm2b4O13i2s3jzFp8nB0dLQVYQ8feFKlqgtqamrUrFmZR+8//4OH9OTypRvcvZv5hd6/QYsOjbl+8RavAoMyDVfXUKdhy7oc3HVEse/Jo2c4FLfDwMgAOydbtLS18PcJxLmsE3ZORdi5/utf8+yioaFOR9fWREZG4fHw64Zmq6qq0qRFfXR0dXC75a4U1rxVQ+57XeL0lT8ZPWEw2h+db4+HT6lYpSxqampUrVEBT4+nAPQZ2I1rV25x3/1RttVLLV9ezA/uw2zvDownjkPVwjw9UEsL40njiVy4hJRPhrhnSUUF4wljiNm1hyQf3y9HNzBAp04tEh8+guS0RlrS8+doli4FKipolilN0vPnABj27U3sgYOkvM7Yi/YjtA3SfgPfRsR8Ns67mDhSkr+/wauuqUFqaipJCYmKfYnxiaSmpGJZJu1m+StPPyxL26KupUGRqsWJCg4nNiyaEk0rkhSfwKMTt7/7+L9ESvI/t/0HyHLy/2GpqamcOXOGEydOMGDAAN68eYOenh7r169HU1MTgO3bt5OSksL69esVDY5NmzZhbGzM+fPnqVOnDsuWLWPMmDE0b94cgOXLl/P3339nOJ6TkxOTJk0CoHDhwixfvpwzZ85Qu3ZtAAYPHqyIa2lpyfTp0+nduzcrV65U7E9MTGT16tVYW6fdre3fvz9Tp6bP3Zg+fTrDhg1j0KBBin1lypTJtP579uz5bN1Kly5NZGQkjRo1UhzPzs7uG17hr/dhzlXOHMrDT3LmMCEkNC0sJDScHMZGSuHq6moYGRhkmLOlyDc0HA0NdQwN9D/J15iQsDDFsXPmMM4Q/iE9wJTRg5m+YDmbdx3A2cmeHl3acOj4GXS0tSlmV4SeQ8YR8OIV9WtVZeA39H59iYaWBp3GuHLl0MUse13excbxxM2TVgPaEugVSGRIBBWbVqFISVuCfNN7Q90v3OHG8Wu8DgjGomAuOozszLgtkxjXPG2o19m9pyloZ8miMyuIDotiYd+56Bvp03ZoBya1HUe74R2p2LgKwX6vWDliKWHBYdlWT4AmfVqQnJTC8U1Hvhz5GznXKM3A5cPQ1NEi4nU4MztNIjo8bZ7e+b1nKGBnyfwzy4gOi2JJ33noGenTemgHprYdT5vhHXBpXJlgvyDWjFhGeDbVe9jQySxbPhOvZ9dJTEwkJSWF/v3GcuXKzWzJH6Bx4zoYGRuyfft+xb4zpy+yZ/dBLlz6i3dx7+jVczixsXEsXjKNXr1G0KNnJ3r1diU0NIyB/cfi6emVbeX5VIcOLYmJjuXwoRNfjGvvUIRTZ/ajra1FTMxbOrbvy5PHzxTh+/ceJsD/Ba+CgnFwKMqUaSMpXMSKTh3ShjYvWriahYun4f7gHP7+gfTvNwYra0vad2hBrZqtWLRkGjVqVOLu3QcM7D+WqKisLyD/SWYWplSsUZ7RfSdnGadG/aoYGOnz1570HrGr529w9I/j7Dq+kfh38YwfOI24t3GMnzOS8YOm0aZrCzp0a0V4WCRTR8zm+ROfn1aHmnWqsnL9PHR0tXkd9IYOLXoSHhbx2TRF7Qrz14kdaGlrEhv7lh6dB+H1xFsRfvCPowQGvCT41RvsHIowdvIQrG0s6eE6GIAVi9cza8EErtw5RqD/C4YPnEghqwK0bteEJnU7MmvBRKpUd+G++yNGDpqs1Dv6LRI9PImcOYck/wBUc+bE4Lcu5FyxhJDO3UiNi8NwYD8SHz4i/vKVr85Tr2N7SE7m7b4/PhvPoE9PdFs0Q1VHh4SHjwgbOVYRFrV8NUYjhmK+fxeJz7yJnLcQzeJOqBe2IWrVWoynTkKjaBHib94mavEy+IF57ioqKjSe2AWfW48JfhqYaRxdEwNqDmjOzV1nvvs4AP53vUh8G0+D0R04Pnc3qKhQf1R71NTVMDQ3BuDW3vPkKlqAYafnExsWzY5+S9Ax0qPO0NasaTeVOsPaULyxC2H+wewbsYao4K9sEIt/BWl4/QcdOXIEfX19xcVOhw4dmDx5Mv369cPR0VHR6AK4d+8ez549w8DAQCmPd+/e8fz5cyIjIwkODqZs2bKKMDU1NUqVKpVhGIOTk/Kk/dy5c/P6dfo8jdOnTzNr1iweP35MVFQUSUlJvHv3jrdv36Krm3Y3SVdXV9EI+jSP169f8/LlS2rWrPlVr8OX6lanTh26du1K3bp1qV27NrVq1aJNmzbkzp07ixwhPj6e+Ph4pX2q8fG/bF5ZdrGxKsjmFenzoSIio1i5YTubV8xl5sJVlHC0Z/HMCbTrPhAne1uqVSr/w8dUU1dj6IqRqKiosHbcqs/GXTp4EX3nDWTdrc0kJyXj/fA5Vw5dwsox/b1y5XB6T4r/Ez/8PH1ZeXkdDi7FeHDlPslJye/nnaXPl+o7byB/bzpCIQcrytYpz/B6A2nauwXdpvRkfu/ZP1zHDwoVs6beb40Y23DolyN/B49rDxhdfwgGOQyp0b4Og1aOYELTkUSFRpKclMymCWuV4veaN4Djm45QyKEQpeuUY3S9wTTu3RzXKT1Y3HtOFkfJWpu2TVm6bIbi7xbNfqN0mRKUKetM61bd8fd/QaVKZVm4aAqvXgVz/tzXX6R9ThfXNpw8eYGgV8rzwWbOWMLMGelDjcaMHci5c1dITExi5Kj+lCtTj3r1a7B2/QIqV2zy3cdv3aYJi5emz6ds1aIb166m323u1KUVe/ceynLY5Me8nvpQuUJjDA0NaNqsHqvXzqVBvQ6KxtfmTenzLj0ePSU4+A2Hj26nUKEC+Pj4ExUVQ/duQ5TyPHx0OxPGz6ZN26ZYWuanlHNtli6fycjRAxg/dtZ31zs7NWnTgOjImM8OU2zevhFXzl7nTXCI0v5V8zewav4Gxd+9h3Xj+sVbJCUm0XNwV1pW70SV2hWZsXQi7epmXKjlWzVv1ZDZCycp/u7cpjc3r9/h6uWb1K3akhw5TejQpRWrNs6nce0OhIZkfRPj+TMf6lZtiYGhAQ2b1GHRyhm0atxV0fjasSX9ZsJjTy+Cg9+w96+NFLTMj59vANHRMfTvOUopzz0HNzB90gJatG5EAct8VC3bmLmLJzN4ZG+mTfi++W7x1z+6UfLcmzAPD8z370a7RnVSIiLQKulMSLevX5xH3bYIeq1bEtLtywsZxezczdsjf6NmYYFBN1eMx48hfOQYAFJCQggfld4QQ0MDw4VziZgxG33XzqS+fcub9l3IsWAuuk0b8/aPP7+6jJ9qOu03LGzzs7rV5EzDtfR1+G3TSF4/e8GpxZ9vTH5JbFg02/stpvn036nQtS6pKancO3SVwAfepKSkzaFLSUrmr4mb+OujdK3n9eLK5uPkcSiEQ53SLK4/mmq9G9Nksivb+yz+oTKJf5YMNfwPql69Ou7u7nh5eREXF6cYAggo/v0gJiaGUqVK4e7urrQ9ffqUDh0+vwLZpzQ0NJT+VlFRUTTOfH19adSoEU5OTvzxxx+4ubmxYsUKQHmRj8zySH0/YVdH5/OrBX3qa+q2adMmrl27RoUKFdizZw9FihTh+vWsh5zNmjULIyMjpW3OktVfLMuHYX6hn/RchYaFY/p+ErZpThPCIiKVwpOSkomMjlYaJqiUb04TEhOTiPrkbmZoWASmOXIojh36yd3XD3+bZjEBfO7StXRq04xc5mbcunufutUroaujTRWXstzKhiFLHxpdZnnNmdpx4hfnGAX7BzGp7Vg6Fm1NL5dujGk6HDV1NYL9Mx+aBPA6IJjI0EhyFcy8Ie3g4kj+IgU4vuUoDi7FuHPOjfi4eK4euYxD+WKZpvleRcvaY2hqxLJr69n+/A+2P/8Ds/zmdBrflaWX1345gy+Ij4sn2C+IZ3efsnbkcpKTkqneNvNFLOxdipGvSH5ObPkbO5diuJ+7Q3xcPNePXMG+vMN3Hf/vo6epUL6hYrtz5z6TpwxnzOjpHPv7DI8ePmbN6q388cdRBg3OnhUU8+fPS/UaFdmy+fOTyIsUsaJtu2ZMm7qQKpXLc+XyTUJCwjjwx1GcnR3R19f7bPrPOfb3GSpXaKzY7t5J/2y4VChNkSLWbP1C+T5ITEzE29sPd/eHTJk8n4cPHtOnb9cs499+PyzNyirjqmgAHTu1JDIyir+PnqZy5XIcPXKKpKQkDv75N5Ur//iNk+zSrH0jjuw/TlJi5j0SufPlonyVMvyx49Bn87G0KUjDlvVYPmctZSqUxO26O+GhEZw8dAb74kXRzYbh0iePn6Nu1ZaK7cNwvri3cfj6BHDn9n2GD5xIclIy7Tq1+GxeiYlJ+PoE8OCeB7OnLcbj4RN+79Upy/h33dLeW5ZW+TMNb9OhGVGR0Zw8dg6XimU4cfQMSUlJHPnrJC4VMx8V8j1SY2JJCghEPV8etEo5o5Y3DxbHjpDr/GlynT8NgMn0KeRYtijT9JpOjqiaGGP+xx5FGvXcuTDs3wezfcoLTqRGRpEcEEjCbTfCJ01Fu0L5tHlemdDv3JH4m7dJevIULefivDt/EZKTeXfxEprOJb67vk2ndMWuRknWtptGZFDGhrSmnja/bxlNfEwcW3stJCWT+WrfyuvSA+ZWHcy0Ur2ZWrIne4auxChXDsL8M19wyMrFHovC+bi65QTW5e14fM6dxLh47h+5jlX5zF+vfxVZXEOJ9Hj9B+np6WU57+lTJUuWZM+ePZibm2NoaJhpHAsLC27dukWVKmlLsyYnJ3Pnzh1KlCjx1WVyc3MjJSWFBQsWoKqa1p7fu/fbxuAbGBhgaWnJmTNnqF69+hfjf03dAJydnXF2dmbMmDG4uLiwc+dOypfP/MJkzJgxDB2q3GuhGv0i07gfy5cnF6Y5Tbju5k7RImm9NDGxsdz3eEKb5g0BKF7MjqjoGB499sKhaNpqZjfc3ElJScXJvmim+drbFkZdXZ0bt92pXT1tOWIfv0BeBb+meLGiinzXbt1DaHgEOU2MAbh26w76erpYWxbIkOf123fx9gtg+ri0eqakpJD4/sckOx5L8KHRlbtQHia3G0dMRPSXE70XHxdPfFw8eoZ6lKjizLZZmS9rDJAjV04MTAwIf51xmIWGlgbdp/Vi6aCFpKSkoKqqiop62nBUdQ11xXs0u1w6cJ4Hl+8p7RuzbRKXDpznwr4fG5qSGVVVVdQ1NTLs19DS4LdpvVgxaCGpn9RbTUMdVVW17zpeTEwsMTHpc/QMDPTR1NTM0CuekpyMqkr2vLadu7TizZtQjh87+9l4S5fNZMzoGcTGvkVVTRUNjbSftQ//qn1mIvyXfFpv5fK14e6dBzx8mPn8zC9RVVVVGp3wKcf3y8VntvpjTtMcjBo9gLq12yryUn9/U0tDQ+Ozk///SaUrOFPQKj9/7jqcZZxm7RoSFhLOpdNXs4wDMHHeKOZPWkrc2zhU1dRQV087vx/+/ZHz/EFszFtiY95+MZ6KqipaWlmfu8x86Xx/WC7+dVBIhrAcOU0YPKI3LRp0SctLTVVxE1NDQx01te/7XGdGRUcb9bx5iDtxindnz/H28FGlcLNtm4hatpL4K5mfr7gTp0i47aZc/oVziTtxirdHs175k/ffySqZfK+pFyyATu2ahPz2/qaOmhq8P++oqaHynd/nTad0xaFuGda0m0Z4YMY5Y1r6Ovy+dTRJCUls6T6fpPjETHL5fm/fDxe3dnFAL6chHqfdMsRR19Kg2dTf2D14BakpqaioqaL2fmqFqobav+azLr6enLH/5zp27IipqSlNmzbl0qVL+Pj4cP78eQYOHEhgYNpY5gEDBjBr1iz++usvnjx5wqBBgwgPD/+mRShsbGxITExk2bJleHt7s23bNlav/nJP0acmT57MggULWLp0KV5eXty5c4dly5Z9V918fHwYM2YM165dw8/Pj5MnT+Ll5fXZeV5aWloYGhoqbR+GGb59G8fjp895/DRtku+Ll8E8fvqcV0GvUVFRoXObZqzdsptzl67z9LkPY6ctwNw0JzUrVwDA2rIAlcqXZvKcJTzweMKd+4+YuWgV9WtVxdws7fklwW9CaNy+h+KZWgb6erRoVIe5y9Zx0+0ejx57MX7mQooXs6N4sbR6VChbEmvLAoyZOo/HXt5cueHGsrVbadeicYYf+vj4BGYsXMXkkQMVjQ9nR3t2HzjMYy9vTl24grPT53tFtHW1sbQvhKV92gIdFvktsLQvhGkeU9TU1Ri+ajTWTjYsGbQAVTVVjM2MMTYzRl0j/T7PpJ3TqOfaUPF38SrOlKhaEvP8FjhVKsHk3TN48fwF5/adVhyz89iuFHa2xSyfOY4VnRi1fhxBvq9wv3gnQxlbDWzL3XNu+DxKG9bz+LYn5eq5ULCoJfVcG/LYzfOzdcyMlq42Be0LUfB9vc3ym1PQvhA585gSExFN4FN/pS05MZnINxG88k5fYW/czqnUcW3wVXlC2vL8bUd0wsa5CKZ5zShUzJpe8/pjYpGDG0czDudrPrAN7ufc8H2UNt/l6e3HlKlXngJFC1LHtQFPv6PemYmOjuHSxevMmDGGypXLUbBgPjp2akn7Di04fDh9vtPadQuYPGWE4m8NDQ0cnexwdLJDU1ODPHly4ehkl6FXR0VFhU6dW7Nj+x8kJ2d9h7nrb+0ICQnj2N9pjdvr192oUtWFMmVK0H/A73h6PCUy8usb/l/LwECfZs3rs3VL5r1dh45so0evzoq/J00eToWKZShQIC/2DkWYNHk4lSqXY9+etMFEhQoVYMSo/pQoUYwCBfJSv0FN1qydx+XLN3j0KOMiDrPnjGfZsg28epW2qt+N63do164ZRWyt6fpbO25cz3gB9yN0dHWwdSiMrUPaDaO8BfJg61CYXHnTFlYZOLYPM5ZlXMK/efvG3Hd7yLPH3hnCIO08N23XkEN7//7seW7ZsQnhoeFcOHUZAPdb9ylbqRROJR3o3Ksdz554E/0T5rTp6OowavwgSpZ2Im++3DgWt2f+smnkym3Okb/S3+e7/1xP1+7tFX+PnjCYci6lyJc/D0XtCjN6wmBcKpXhz/1pjZiClvkZNLwXjsXtyZc/D7XrVWPxyplcv3JLsYjGx6bMHMXaFVsUQ25v37hLizaNsSliRUfXVty6cTdDmq9l0K83miWKo5bLAo1iDpjMnEZqcgrvTp8hJSycJB9fpQ0gOTiY5FfpoxHMdmxBq0rajcHUqKgMaVKTkkkODSM5IG3RIQ17O3RbNEPdxho1Cws0SzpjMmkCSYEvSHjokaGMRiOHEbVsBanv3gGQ8OAhuo0bol6wALr16pDw4OE317vZtG44N6/ErkHLiY+NQ9/MCH0zI9S10hp+Wvo6dN82Bk0dbfaPXIOWgY4ijopq+rXRsDPzcahbWvG3jpEeue0LYm6TL+21scpNbvuC6Julz+8u3boqBZxtyFHAHOdmlei4chCXNxwjxFt5hWeAmgOa8+ScOy8fpb32frefUqxuGXIVLUCFLnXwvZ3x/fKvIw9QViI9Xv/P6erqcvHiRUaNGkWLFi2Ijo4mb9681KxZU9FLNGrUKIKCgujSpQtqamr07NmTunXrftNdtOLFi7Nw4ULmzJnDmDFjqFKlCrNmzaJLly7fVF5XV1fevXvHokWLGD58OKamprRq1eq76hYXF8fjx4/ZsmULoaGh5M6dm379+tGr1+efw5GVh4+96DYgfcz93GVpQ8ia1q/FjPHD6NaxNXFx75g8dynRMTGUdHJg9YJpSndG50wayYyFK/l94BhUVVWoVa0iYwenP58kKSkZH/9A4t6lzzMbNbAXqqqqDB43ncTERCqULcWE4f0U4WpqaqyYN5lp85bTqddQdHS0aFK/Fv27p1/4fbBy4w6qVCij6JUDGDOkDyMnz6FrvxE0rFOd2tU+/3BMaycbpuxJf4ZQ14ndATi37wx7F+9SPFB5wXHl55NNajuWR9fTfiAtCuTC0CS9l1LXQJeOo7qQM5cpMZHRXD92jV3ztpH8vicuJTmFgkUtqdayBrqGeoQHh3Hvkju7F+wgKUG5ly5/kQJUaFiJ4fXTF2i5/vdVHFwcmbpvFi+9X7Bk4Nc9j+hjVk42TNyTPt+ny8S0h9Ve2HeW1cM//yy2DywK5MLgo3p/Kc+UlBTy2OSlSqtRGJgYEhMRzfN7XkxpPTbDyon5ihSgfMOKjKmfPg/oxt9XsXcpxqR9M3np/YLlAxd+c72z4uo6gClTR7Jh02JMTIwJ8H/BlMnzWb8u/SG5+fPnUeoVy53bnGvX0xfuGTykJ4OH9OTSxevUr5d+4Vq9RiUKFMirtJrhp8zNTRkxsh81a6Q/mNXt9j2WLV3P/gMbCXkTSs+ew7NM/yNatmqEiooK+/dl3pNjWaiA4tliAGZmOVm9dj65cpkRFRXDo4ePadG0K+fez4VLSEikWvUK9O3bFV09XV4EvuLQXyeYN3dFhrxr1qyMlVVBenZPf07d2jVbcS5ZjDPn/uCO231mz8r8ZtX3cihRlI0H0hdJGjk17bP1156jTBg0HTOLnIpG2Af6BnrUaliduRMyH5IGUL5KGfLky620muGncpia0H1wV7o0Sp8z9PCuB1tX72L59gWEhYQzftC0LNP/iJTkZGwKF6J1uyaY5DQhPCyCe3cf0rKhK08fP1fEK1gov9JzvUzNcrB41UzMLcyIjorG89FTOrbqxaXz1wBISEykctXydO/dGR1dHV69COLY4VMsWZDxeX5Va1TA0qoAA3uPUezbtH4XTs4OHD61E3e3Byya+/k5tJ+jZmaG8eTxqBoakhIRScL9B4T26kfKJ8PiP0e9YAFU9b5+SG/qu3doV62Mwe9dUdHWITk0lPgbN4mZuB0SlXuVdJs2JjksnPir6VMEYjZsxnjyeHKuXUn8jVvEHjj41cf+wKVz2qJgvfco3zDYO3wVbvsvkreYJQWc0240jLqovHT97EoDCA9M65k0t86rWBERwL52KdrMT/9N77g87bNyavF+Tr+fH2ZqlZt6I9uhY6RPeOAbzi0/yKUNGRc0syiSD6eG5VncIP3cP/j7Blbl7emzdxJvvF+ya9Dyb667+LVUUlO/8Yl44v+9lJQU7OzsaNOmDdOm/ZwftP+SxJDM79b+f9e+1OBfXYRfQuN/dCDA4Tf3vhzp/yG1bB52+l9RUN/8y5H+HwpLyP4e0P+CW/Zmv7oIv8TiwFy/ugi/xBzfzB/g/CvEPzz15UjZRKtY7X/sWN9LeryEYhhe1apViY+PZ/ny5fj4+Hzz4htCCCGEEEKIzEnDS6CqqsrmzZsZPnw4qampFCtWjNOnT/+0Z14JIYQQQoj/Af+RuVf/FGl4CfLnz8+VK9nz3B0hhBBCCCFERtLwEkIIIYQQQmS71NQff/bZ/yf/m7OKhRBCCCGEEOIfJD1eQgghhBBCiOyXKnO8PiY9XkIIIYQQQgjxk0mPlxBCCCGEECL7yaqGSqTHSwghhBBCCCF+MunxEkIIIYQQQmQ/meOlRHq8hBBCCCGEEOInkx4vIYQQQgghRPZLked4fUx6vIQQQgghhBDiJ5MeLyGEEEIIIUT2kzleSqTHSwghhBBCCCF+Mml4CSGEEEIIIcRPJkMNhRBCCCGEENlPHqCsRHq8hBBCCCGEEOInkx4vIYQQQgghRPaTxTWUSI+XEEIIIYQQQvxk0uMlhBBCCCGEyH4yx0uJ9HgJIYQQQgghxE8mPV5CCCGEEEKI7Cc9Xkqkx0sIIYQQQgghfjLp8RJCCCGEEEJku9TU5F9dhH8VaXgJ8QXtSw3+1UX4JXa5Lf7VRfglupUa/quL8EsUNyn0q4vwS/Qiz68uwi/xUON/82LITyvuVxfhl9gcoP+ri/BLdFKN/NVFEEKJNLyEEEIIIYQQ2U/meCmROV5CCCGEEEII8ZNJj5cQQgghhBAi+6VKj9fHpMdLCCGEEEIIIX4y6fESQgghhBBCZD+Z46VEeryEEEIIIYQQ4ieTHi8hhBBCCCFE9pM5Xkqkx0sIIYQQQgghfjJpeAkhhBBCCCHETyZDDYUQQgghhBDZTxbXUCI9XkIIIYQQQgjxk0mPlxBCCCGEECL7yeIaSqTHSwghhBBCCCF+MunxEkIIIYQQQmQ/meOlRHq8hBBCCCGEEOInkx4vIYQQQgghRPaTHi8l0uMlhBBCCCGEED+Z9HgJIYQQQgghsp+saqhEeryEEEIIIYQQ4ieTHi8hhBBCCCFE9pM5Xkqkx0sIIYQQQgghfjLp8RJCCCGEEEJkP5njpUR6vES2UlFR4eDBg7+6GEIIIYQQQvyrSI+X+GpBQUHMmjWLo0ePEhgYiJGRETY2NnTq1AlXV1d0dXV/dRH/UXZlHWjaqzlWjtbksMjJnB4zuHXyBgBq6mq0H94J5+qlsCiQi7fRsTy4fI/ts7cS/josyzy19XRoN6wj5eqWx9DUCN9H3mycvI7n958p4vSbP4jqrWsqpbt7/g4zXCcDoK6pTp85AyhTuxwRb8JZN341D67cU8Rt0qs5pnnM2Dhp7VfV87b7Azbt3I/H42e8CQ1jyawJ1KxSQRGemprKivXb2H/4ONHRsTg72TNheH8K5s+riBMZFc3MhSs5f+UGqqqq1KpWkTGDeqOrq5PlcePjE5i3fB3HTl8gITGRimVLMX54P0xzmCjivAp6zdT5y7l15z66Oto0qV+Lwb1/Q11dDQDPp8+YMHMRfoEvKVvSiZnjh2NkaABAUlIyHXoOZsLw/jja237xdbAta0/DXk2xdLTGxCIHi3vMxu3kTUV4z/n9qdy6hlKa++fvMs91WpZ5Nu7bgtL1ypPbOi+J7xLwcnvM7tnbCPJ+qRTPpmQRWo/oiHWJwqQkp+Dn4cPcztNIjE9AXVOd3+f0pVTtskS8iWDL+LU8unJfkbZBr6bkzGPGtknrv1jHr9FtqCu/D3NV2uf3zJ8OVbtmGn/ZvoWUrFAiw/6rZ64zostYRZ61mlbHPI8ZiQlJPHnwlLVzNuBx9zEAGpoajJ4/nMp1KhD6JowFY5dw+9IdRV4derfFIq85iyYsy5Y6AhTpUhPbzjXRy28GQOTTQO4t+pOX59Je2/JzupG7kgM6FiYkvX3Hm9teuM3YTdTzV1nmWaB+aYp0rklOJ0u0TAw4XGcs4Y/8s4xfc9sI8tYozrluiwg44QaAprEeFRf3IlcFe6J9grg6dB1hj/wUacrOcCXG/zUea459V72r921KsbplMLfOQ+K7BHzvPOXY7F288U6rl46RHnWGtKZIZUeM85oSExrFo5O3OblwL++i47LMt1jdMpTvWIu8joXQMzFgUYPRvPLwU4pTrn0NSjStSF4HS7QNdJno9Dvvot4qwtU01Wk1uycOtUsR/SaSPyds5NmVh4rwqj0bYZzHlL8mb/7metuVtadxr+YUcrQmh0UO5vWYxe333+cArQa3o0LjSuTMY0pSYhI+D56ze952nrl7ZZnnsstrMc9vnmH/ia1/s3FC2vdvj5l9KFapODksTHgX+44nbo/ZOXsrL5+/AEDPSJ9+Cwfh4FKMV76vWD1iGb6PfBR5dZvWk9f+wRxZ99c31xnApW9jbOuVIYd1bpLeJfDCzYtzs/cQ5q38Ps5b0oYqI1qTp4Q1qcmpBHv4safzHJLiEzPN17lTTUp2qolRvrTPT4hXIJeX/In3+fTvpg67x1HQxU4p3Z3tZzgxbhMA2kZ6NFrYi4Iu9oT5BvH3iHUEf/RerzPNlQj/19xc933v9Q/Merci1yhXQjb+xatp6d+Tus62WAzvjG4JW1KTU3jn6Y1Pl0mkxidkmZe6RQ5yje6KQdVSqOpokeD7isCRS4h7kP4brmWdj1yju6JXthgq6mq88wrAv+8sEl++ASD3uN8xblWTlLfvCJ67hYi/LijSGjaoiEmLGvh1z/p35V9H5ngpkYaX+Cre3t5UrFgRY2NjZs6ciaOjI1paWjx48IC1a9eSN29emjRp8quL+Y/S1tXC19OHs3tPM3LtWKUwLR0tChWzZv/SPfh5+qJnpE+3Sd0ZvWEcoxoPyzLPPnP6U8C2IEuHLCI8OIwqzasxccc0htTqR1hweoPt7nk3Vgxfovg78aMfv9od6mLlaM3Y5iMoWb0Ug5cO4/dSXQAwz29BrXZ1GNV46FfXMy7uHbY2VjRvWIfBY6dnCN+4Yx879h9ixvhh5M2di+XrttJr6Hj+2r4GLS1NAEZNmcubkDDWLZ5JUlIS42cuYvLcpcydPCrL485ZuoaL126xcPpY9PX0mLlwJYPHTmf76gUAJCcn03fEJHLmMGH76gW8CQ1j7PT5qKurM7h3VwAmzV5CuVIlmD91DJNmL2Ht1t2M6N8DgC27/6CEo/1XNboAtHS18Pf05cLeswxem3m5752/w7rhyxV/J2ZxUfJB0XIOnN56DO97z1BTV6P1yI6M2jaJ0bUGEh8XD6Q1ukZsmcDhlQfYOnE9ycnJFLCzJPX98I3qHepQyNGaKc3HULx6SfouHUK/Ur8BYJbfnGrtajOx8YivquPX8n7sw6B2wxV/JyclZxl3bI9JaGik/9QYmRix+dQ6zh1Jv5gI8A5g4filvPR7hZa2Fm17tGTRzrm0rdiZiLBImnZshK1jYXo1GUD56mWZvHwcjYq3BCB3/lw07tiA3+v3ydY6vn0Vxp1Ze4jyCQIVFaxbV6b6xqEcqTuOyKcvCL3vg/eBK8S+CEXLWJ/iw1pQe9coDpQfQmpKaqZ5qutq8frmE3wP36DC/O6fPb5dj3qkpmbMx3FgUzT0dDhSbzy2XWpSft7v/N1gIgCmJa0xdbbm1oSt311vq3J2XN12ksB73qiqq1JvRDu6bx3D/NojSIyLx9DCBEMLY47M3EGwVyAmec1oMeN3DC1M2N53cZb5aupq4Xv7CfePXqfVnJ6ZxtHQ0eLJhXs8uXCPBqPaZwgv174m+RwLsaLFJGyrFafDkv5MLd0bAJN8ZpRtV4OlTcZ9V721dLXx8/Th3N7TDF87JkP4K5+XbJq4lmD/YDS1NWnYvQnjtk1mYNU+RIdFZZrn2CbDUVVLH1hUoEgBxu+cyvWjVxX7vB885/LBC4S8DEHfWJ9Wg9sxbttk+lfqRWpKCi0GtEZbT4fRDYdRu1M9es7ux9jGaZ+9ws5FsClRhE0/cFOlQDk73Lae4tU9b1TV1ag6sg3tto1iXa1RJL7/Dspb0oY2W0ZybeVhTk3cSkpyCuZ2BTJ9f34Q/SqM83P2EOYThIqKCsVaVabVuqFsbDCOEK8Xinh3d57l0sI/FH8nxqU3aioMaIqmng6bGo7HuVNN6s/+nc2N097reZytyVPCmlOTvv+9DqDjVJgcHeoR5+mjtF/X2RbLzVN4s2o/LyevJTU5GR27Qp8dNqdqqIf1/rnEXHuA72+TSQqNQqtQHpIjYxRxNAvkwmrfHML3niJ40U5SYt6iVaQAKe8bcwY1y2DUtCq+XSaiaZmHfHMHEn3xLsnhUaga6JJreGd8Ok34oTqLX0uGGoqv0rdvX9TV1bl9+zZt2rTBzs4OKysrmjZtytGjR2ncuHGGNOfPn0dFRYWIiAjFPnd3d1RUVPD19VXsu3LlCtWqVUNXVxcTExPq1q1LeHg4APHx8QwcOBBzc3O0tbWpVKkSt27dUqQNDw+nY8eOmJmZoaOjQ+HChdm0aZMiPCAggDZt2mBsbEyOHDlo2rSp0rF/xN3zd9g9fwc3T1zPEPY2+i3TOk3k2tErvPR+gdfdJ6yfuAZrp8KY5jHNND9NLU3K16/Atlmb8bz5iCC/V+xdvIsgv1fU6VxfKW5ifCIRbyIUW2xUrCIsr01+bp+6SaBXAMe3/I2RqTGGOQwB6DG9D9tnbyEuJus705+q7FKGgT1dqVW1Yoaw1NRUtu09SE/XdtSo7IKtTSFmThjO65BQzlxKu7h47uvP5eu3mTJ6EE4ORSlZvBhjh/Th2OkLvH4Tmukxo2NiOXDkJCMH9KBcqRI4FC3MtHFDcX/gwb2HngBcvXmH577+zJ40gqJFrKnsUob+3buw+8BhEhPTGjzevgG0bFIPywL5qF+7Kt6+AQAEvHjFgSMnGdTTNdPjZ+b++bvsn78LtxM3soyTFJ9I5JsIxfb2o/OSmXmu07i0/xwvvALw9/Rl7bBlmOYzw9LRWhGn44RunNz8N0dW/ckLrwCCvF9y8+hVkhKSAMhjk487p27xwiuAU1uOYWhqhMH78911ei/2zN7Gu284318jOTmZsDfhii0yPPMLT4DoiGiluGWqlCI+7h1nD6c3vE4dPMvtS3d46f8Kn6e+LJ2yCn1DfaztrQAoWLgAl09ew+epL39sOYiJqQnGOYwAGD5rMKtmrONtzNtMj/+9Ak/d5cXZe0T7BBPtHYT7nH0kxb7DrKQNAF47zvH6xhNiA0MIe+jL3bn70Mtrqughy4z3H1e4v/ggry49zDIOgIlDAex7NeDqsHUZwoxs8uB76BrR3kF4bT+HUeE8AKioq1F+djdujN6UZcPva2xwnY3b/osEewXyytOfvcNXYZLPjHyOhQAIfhrItj6L8TxzhzD/1zy/9ojj8/dgX7OkUiPjU3f+vMzppQfwuvIgyziXNx7j/KpD+N/NvBfJ3CYvHqfdCPYK5OrWk+ibGqGXI60Hu8WM3/l7zk7iv/O97n7+Dnvm7+RWFp/vK39d5MGV+7wOCCbQK4Ct0zaia6hHQTvLLPOMDotS+j4oWbMMQb6v8Liefv7P7DqJ500P3gS+xuehN3vm78A0rxnm+dJ6yvLa5OPq4Uu88nnJmV0nyWuTD0gbVdF9Rh/Wj11F6g/0KOxxncuD/ZcI8XrBa09/jgxbg1E+U3I5pter5oROuG0+yfVVhwnxekGY9yseH71B8vvvoMw8O3OX5+fuEe4bTJhPEBfn7SPh7TvyvP/8fJAUl0Dsm0jFlvDR+TO1yYPn4WuE+QThvuscOW3S3uuq6mrUm9GN42N/7L2uqqtN/sXDCByzTKlxBJB7QndCtxzmzer9xHv5k+D9gsijl0n9TJ3Nerci8VUIL0YuIe6eF4mBwcRcukuCf5AijsXwzkSfdyNo9mbeeXiT4B9E9OmbJIdGAqBlk5/Y6w+Ie/CMyMMXSY55i2Z+CwByjf6N0O3HFD1j/xmpKf/c9h8gDS/xRaGhoZw8eZJ+/fqhp6eXaRwVFZXvytvd3Z2aNWtib2/PtWvXuHz5Mo0bNyY5Oe0O+siRI/njjz/YsmULd+7cwcbGhrp16xIWltb7M2HCBDw8PDh27Bienp6sWrUKU9O0hk1iYiJ169bFwMCAS5cuceXKFfT19alXrx4JCVkPFfhZdA30SElJUWokfUxVXQ01dTUSPxnGkPAuAbvS9kr7HMoXY4PbVpacXUmP6X3QNzZQhPl5+FC0jD2aWpoUr+pMWHAoUWFRVG5WlcT4hEwbit8r8GUQIaHhuJR2Vuwz0NfDyd6Wew/Thonde+iJoYE+xeyKKOKUL+2MqqoK9z0eZ5qvxxMvkpKSKP9RvlYF85Pbwlwp38JWlkpDDyuWK0VM7Fue+aQNR7G1KcS1m3dISkrmxm13ilinXTxOnbeMoX27oaeXvcNji5Yvxgq3Tcw9u4yu03uib6z/Tel1DNLKExuRdhFgmNMIm5JFiAqNZOKBmSy/vZFxe6ZRpHRRRRp/D1+KlLFDQ0sTp6olCA8OIzosigrNqpAYn/DZhuL3ylcoL3+57WXv1e1MWjYWizwZh1NlpVG7+pz+6xzv4t5lGq6uoU7Tjo2Ijozh2aPnADzzeI5T2WJoamtSrmoZQoJCiAiLpE7zmiTEJ3Dx+OVsqVdWVFRVsGxSHnVdLd64ZWwUqOtoYdO2CtF+r3n7MvObCV9LTVuTysv7cXPsZt69icwQHu7hT66KDqioqZKnmiMRnmk3E4r1bUjQNU9C7/tkSPMjtN+/J99GxGQZR8dAl3cxcaQk/9wLn1eefliWtkVdSwPbqsWJCg4nNiwa56YVSYxP4NGJ2z/1+B+oaahTs0MdYiNj8fP4utdbTUOdSs2rcm7vmSzjaOloUa11TYL9gwh5FQKkfZ8Xq+CEqpoqxas44//YF4AmvZvjcf0h3g+e/3B9PvbhfMdFpP1O6eY0JG9JG2JDI+l8YCIDb6+g455x5Ctd5HPZKFFRVcGucXk0dLR4cUf58+PQrAKD7q6i+8lZVB3ZBnVtTUVYsIc/BSukvdetqjjy5nHae71874b4X/ck6MGPvdfzTO1N9NnbxH40FB9ALacRus5FSQqNxGr/XIre2kqh3bPQ/eR3+FOGtcoSd/8ZBVaMwu7WNmyOLMakXZ2PXggVDKqXJsHnBZZbpmB3axvWf87HsHZ5RZR3nj7oONqgaqiHdjFrVLW0iPd9iW5pe3QcrAndfPiH6ix+PRlqKL7o2bNnpKamYmurPCTL1NSUd+/SLp769evHnDlzvjnvuXPnUrp0aVauXKnY5+DgAEBsbCyrVq1i8+bN1K+f1uOzbt06Tp06xYYNGxgxYgT+/v44OztTunRpACwtLRX57Nmzh5SUFNavX69oGG7atAljY2POnz9PnToffSH+ZBpaGnQa48qVQxez7G16FxvHEzdPWg1oS6BXIJEhEVRsWoUiJW0J8k0fb+9+4Q43jl/jdUAwFgVz0WFkZ8ZtmcS45iNJSUnh7N7TFLSzZNGZFUSHRbGw71z0jfRpO7QDk9qOo93wjlRsXIVgv1esHLFUaQjjtwoJS+uZzPlR4+fD3yGhaWEhoeHkMDZSCldXV8PIwECRPkO+oeFoaKhjaKDccMmZw5iQ943ukLBwcuYwzhD+IT3AlNGDmb5gOZt3HcDZyZ4eXdpw6PgZdLS1KWZXhJ5DxhHw4hX1a1Vl4Df0fmXm/oW73Dp+gzfvz0vrkR0ZvmUCU5qP+ao70ioqKnSa1I0ntzwJfJo278esQNqdzuaD27Jrxhb8PXyo1KIao3dOYUydwQT7vuLi3jMUsCvInDNLiA6LZnnf+egZ6dNiaDtmtp1Aq+HtKd+4EsF+QawfsYLwHzjfAB53PZkxZC7+zwPIaZ6DbkNdWfnnEjrX6Mbb2M/3NtiVKIq1nRWzhs/PEFahVnmmrJyAto4WocFhDG4/QtGTdmT3MaztrNhxbhORYZFM6D0VA2MDug//jf6th9BjZDdqNanOC7+XzBw2j5CgkB+q4wfGRfNR/9Bk1LQ0SIp9x/nui4n0Sp9/Z+tai5Lj2qGhp03ks5ecaj+blMSsh11+jTJTOvHmthcBJ+9kGv5wxWHKz/qN5lcXEhPwhqvD1mFQyALr1pU51mQK5Wb/Rp4qjoTe9+HaiPUkfmbe1ZeoqKjQZGIXfG49JvhpYKZxdE0MqDmgOTd2Zd2gyC639p4nd9ECDD89n9iwaLb3W5I252xoa1a3m0rdYW0o3tiFUP9g9o1YQ1Rw5t8v36tkjdIMWj4MTR0tIl6HM6PTJKLDo78qbZk65dAz1OPCvoyvU53O9ek4pgvaejq8eBbIjI6TSU5M61k5uOoA3Wf0ZunF1bwJfM3qkcvJZZmbKi2rM6H5aLrP6I1TlRJ433/OmtEriIv+gZ5fFRVqTepEwK0nhLw/38YF0npwKw9uwZkZu3jt4UexFpVov3MM6+uMJtw3OMvszGzz0eXPyahraZAQ+44DvRYT+tHnx+Ovq0S+CCEmOBxzuwJUG92OnNa5OdArbRj99VWHqTvjN/pcXEhk4BuOjlyHiaUFji0rs7X5FOrO+I1CVRwJuu/DsdHrif+G97pRo8roOFjzrGnGYfea+XMBYD6oPUEzNxLn4YNJixoU2j4dr3r9SPDNfB6nZoFc5OhUn5D1B3m9Yh86xQuTZ1JPUhOSiDhwFvWcRqjp62LWuxVBC7YTNHszBlVLUWD1GHw6jCP2xkNiLt4l4uB5bP5aSOq7BAKHLyI1Lp680/oQMGIxOTvVJ6drI5LCongxdgXxXlnPEf3XkDleSqThJb7bzZs3SUlJoWPHjsTHx39XHu7u7rRu3TrTsOfPn5OYmEjFiulD3DQ0NChbtiyenmnDzfr06UPLli25c+cOderUoVmzZlSokLbww71793j27BkGBgZK+b57947nzzO/SxgfH5+hLsmpyaipqH1X/SBtSMjQFSNRUVFh7bhVn427dPAi+s4byLpbm0lOSsb74XOuHLqE1UdDz64cvqT4v/8TP/w8fVl5eR0OLsV4cOU+yUnJrJ+wBlijiNd33kD+3nSEQg5WlK1TnuH1BtK0dwu6TenJ/N6zv7tu/3Y2VgXZvGKe4u+IyChWbtjO5hVzmblwFSUc7Vk8cwLtug/Eyd6WapXKfya3z7t++Iri/4FP/PH39GPh5VXYuTjg8ZnhVR+4TutBviIFmNYqfY6KqmraDYNzO05yad9ZAPwe+WBf0ZGqbWqwd+4OkpOS2TJBeUhaj3n9ObnpKAUdrChVpxzj6g2lYe9mdJ7yO0t7z+NHXD+XvqDIc09vPO568seNXdRoXI0juz8/yb1R+/o883iOp3vGns47V9zpWqcHxjmMaNyhIdNWT6RHo35EhEaQnJTMwnFLleKPXTiSfRsPUMShMFXqVsS1dg869m3LkKn9Gddz8g/V8YOo5684UmccGgY6FGxYloqLe3Gi5XRF48v7wBVeXnyAjrkxDr0bUnX1AI41m0rKF+b2ZSVf7ZLkqmjPkTpZz1NKjI7jUv+VSvtq7x2D27RdFGpeAYMC5hysMgKXeb/jNKQ5blN3fldZAJpN+w0L2/ysajU503AtfR26bRpJ8LMXnFr8R6ZxslNKUjIHJ25S2td6Xi8ubz5OXodCONQpzaL6o6nWuzFNJ7uyrc/ibD3+o2sPGFl/CIY5DKnRvg6DV45gXNORRIVm7Jn8VI22tXA/f4fw1xkbg5cOXuD+JXdMzE1o1LMZg1eOYGLL0STGJxIX/ZZlAxcqxZ+wayo7Zm6hUrMqmBfIxZDq/eg5ux+tBrVl2/RNGfL/WnWnuWJaJB/bW6Uv3KCimjYw6u6OczzYdxGA4Ed+WFZ0wKlNVS7M3ZtlfqHer9hYfxxaBjrYNihLowW92N52uqLx5b7rnCLumyeBxLyOoMOusRgXMCfC/zXx0XEcGqj8Xm+/awxnZ+7CoVkFTAqYs7b6COrP/p2Kg5pzdvrXvdc1cpuSe1IPfDtPJDUh42dV5f33btjO44TvT2sov/LwRq+iEyataxM8L4t5ZSoqxD14RvD8bQC88/BGu0hBcnasT8SBs/D+tYw6dYPQjWmLobzz9EG3VFFydKhH7I20Iaivl+zi9ZJdimzNB7Yj5so9SErGrH9bvOr1x7BGGfIvGMKzJkO+qs7i30OGGoovsrGxQUVFhSdPnijtt7KywsbGBh2dzFemU33/JfPxBNwPc28+yCrt16pfvz5+fn4MGTKEly9fUrNmTYYPT5t4HBMTQ6lSpXB3d1fanj59SocOHTLNb9asWRgZGSltTyKfZRr3a3xodJnlNWdqx4lfnFsV7B/EpLZj6Vi0Nb1cujGm6XDU1NUI/miM+KdeBwQTGRpJroK5Mw13cHEkf5ECHN9yFAeXYtw550Z8XDxXj1zGoXyx764boBjmF/pJz1VoWDimOdPCTHOaEBahfGGSlJRMZHS00jBBpXxzmpCYmERUtPLwptCwCExz5FAcOzQsIkP4h/SZmbt0LZ3aNCOXuRm37t6nbvVK6OpoU8WlLLfufrlx9C3eBAQTFRqJRRbn5WNdpnanRM3SzGo/kfCg9KFqEe8v0l48C1CK//LZC3LmzXwukZ1LMfIWyc+pLcewc3Hg3vvzfePIVYr+4PnOTExULAHegeSzzPvZeNo62tRqUj3Lxtm7uHe88H3JozuezB4+n+TkZBq3r59p3JIVSlCoiCV/bDqIc4XiXDt7g3fv5405Vyj+w3X6ICUxmWjfYMIe+HJ39l7CPfyx615PEZ4YHUe0TzCvbzzhQs8lGNrkpkC90t99vFyV7DEoaE47z7V08ttCJ78tAFRdN4g6+zJvjFm3qUJC5FsCTt7BwsWOgBNupCYl43fkJrk+WTHuWzSd0hW7GiVZ024akUEZe0m19LT5fcto4mPi2NprISmfWWDlZ7F2sceicD6ubjmBVXk7Hp9zJzEunvtHrmNV/vPDwr5HfFw8wX5BeN19ypqRy0lOSqZG21pfTGea1wzHSk6c3X0q0/C46LcE+b7C86YHC/vMJY91XsrUzfwmULXWNXgbFcvtUzdxcCnG7ZM3SE5K5vrfV7D/gc93naldsKnpzM72M4n+6HzHvI4AIOTZC6X4Ic9eYpQ352fzTElMJtwvmKCHvlyYu5dgT3/K/FYvy/gv76bdEDWxtMg03LF1FeKj3uJ16g4FXOx4etKNlKRkHv99kwLlv/69rlPMBg1TE2wOL6aY10GKeR1Ev7wjObs2ppjXQZJC0uoc/8n3bvyzQDTzZD2HM+lNeCZpAtB4nyY5PIrUxCTePfPPMs6ntKzyYdysOsELt6NX3pHYm49IDosi4ujltCGJej92DSX+edLwEl+UM2dOateuzfLly4mN/fxiAR8zM0v7Inn16qNhcu7uSnGcnJw4cybzISrW1tZoampy5Up6T0JiYiK3bt3C3j79R9XMzAxXV1e2b9/O4sWLWbs2bZnekiVL4uXlhbm5OTY2NkqbkZFRhuMBjBkzhsjISKXN1sgm07hf8qHRlbtQHqZ2nEBMxNcNSYG0H/iI1+HoGepRoooztz5atvxTOXLlxMDEINM7qRpaGnSf1ou1Y1eSkpKCqqqqYql1dQ11ReP4e+XLkwvTnCZcd3NX7IuJjeW+xxOKF0ubh1S8mB1R0TE8epw+tv+GmzspKak42Rf9NEsA7G0Lo66uzo3b6fn6+AXyKvi1Ur5e3r6Ehkco4ly7dQd9PV2sLQtkyPP67bt4+wXQoWXaQjApKSkkvr9YTEpKUswrzC4muXKib2KgaDxlpcvU7pSqW45Z7SfxJuC1UtibgNeEBYWS20q5UZPLKjchgRknWGtoaeA6rQebxq4m9f35VlNPG9igpqH2w+c7Mzq62uQtmIeQ15+f21SjcVU0NDU5ceD0V+WrqqKKhqZmhv2aWhoMnTGQuaMWpr+n36+aqK6hhqrq9/dOf0WhUNXMYqCIigoqKiqoaX3/QJKHyw9zuNZYjtQZp9gAbk/eztWhGR//oJXDAKchzbj5fhVDVTVVVN5/vlXV1VD5zGIXn9N0SleK1S3D2g7TCc/kfaalr0P3bWNITkxic/f5WS4p/jOpa2nQbOpvHBi3gdSUVFTVVFHTeF93DbXPLvSRXVRUVVHX1PhivGqtaxIZGsmds1+eg6aikjbEUyOTfA1yGNJyUFs2TlynOL7a+/Otpv793+d1pnahSN3S7Gw/k8gA5fMdGfCG6KAwclop30DKYZWLyMBvm8+ooqqCWlafH8DcIe17+0Nj72M6OQyoNKgZJydufZ+XKqofvde/pe4xV+/xtG4/vBoOVGxv73kR8dcFvBoOJME/iMSgULQ++d7VKpSHhBevs8gV3t72zCRNXkWa1MQk3t73Qssqn1IczUJ5SXyR+YIZeWb249WM9aS8fQeq6Z9vlfff6/yE7/Rsl5Lyz23/Af+BMyb+DVauXElSUhKlS5dmz549eHp68uTJE7Zv387jx49RU8t4sWNjY0P+/PmZPHkyXl5eHD16lAULFijFGTNmDLdu3aJv377cv3+fx48fs2rVKkJCQtDT06NPnz6MGDGC48eP4+HhQY8ePXj79i2///47ABMnTuSvv/7i2bNnPHr0iCNHjmBnl3bnq2PHjpiamtK0aVMuXbqEj48P58+fZ+DAgQQGZj5fQUtLC0NDQ6Utq2GG2rraWNoXwtI+bcEGi/wWWNoXwjSPKWrqagxfNRprJxuWDFqAqpoqxmbGGJsZKy4SASbtnEY914aKv4tXcaZE1ZKY57fAqVIJJu+ewYvnLzi377TimJ3HdqWwsy1m+cxxrOjEqPXjCPJ9hfvFjHNCWg1sy91zbvg88gbg8W1PytVzoWBRS+q5NuSxm2fmJ/wjb9/G8fjpcx4/Tbsb+eJlMI+fPudV0GtUVFTo3KYZa7fs5tyl6zx97sPYaQswN81JzcppQz6tLQtQqXxpJs9ZwgOPJ9y5/4iZi1ZRv1ZVzM3S7pgGvwmhcfsePPBI61U10NejRaM6zF22jptu93j02IvxMxdSvJgdxYulnd8KZUtibVmAMVPn8djLmys33Fi2divtWjRG85ML9vj4BGYsXMXkkQMVP9DOjvbsPnCYx17enLpwBWcnh8++Dlq62hSwt6SAvSWQtlR7AXtLcuYxRUtXm3Zju2DtXATTfGbYV3RkyPrRBPsG8eDiXUUeo3dOppZrei+O6/SeVGhWlVUDF/EuNg4jM2OMzIzR0Eov/99r/qJO1waUaeCCecFctBzWnjzWebmwJ2MDpunA1tw7dwe/98/5eXr7MaXrlSd/0YLUdm2Al1vmi5l8i34TelOivBO58llQrLQDszZMJTklhdMH04ZCjl8ymt6jMy6V3qhdfS6duEzUJysgauto02v07ziUtMMirwW2joUZs2AEprlMlZac/6Dr4M5cO3sTr0dpPdEPbj+kav3KWNtZ0bJrMx7c/vyKgV/LeXQbzMvZopfPFOOi+XAe3YZcLnb4HLiKfgEzivVvTA5HS/Ty5MSsdGGqrhlI8rsEXpxJn6jf9MJc8n/UA6ZprIeJQwGMi6RdnBlZ58bEoQDaZmk3gt69iSTiSaDSBhD7IpSYgIwXZmWmdMJjzTHigtIa969vPcWqZUWMbPJQuGN1Xt96+s31bjatGyWbV2LXoOW8i41D38wIfTMj1LXSGgIfGl2aOtrsG7kGLQMdRZwPQ7QAhp+Zj0Pd9LrrGOmR274gFu9X5TO3yk1u+4Lom6XfBNM3MyK3fUFMC6bNscllm5/c9gXRMcq4qFPNAc15fM6dl498AfC9/ZRidcuQq2gBKnapg+/tb6u7lq42Be0LUfD997l5fnMK2hdK+3zraNFuRCcKOxfBNK8ZhYpZ03tef3JY5OD60fQbg+N3TqWuawOlfFVUVKjWugYX9p/LsPiIeX4LmvVtSaFi1uTMY0qRUrYMWTmShHfx3D3nlqGMXSf9zpF1fynmaT69/ZjKLaqR1yYftTrU4clXfJ9/qu70rjg0q8hfA1eSEPsOPTMj9D463wA31hylVNc62DYog0lBC6oMa0VO6zzc23NeEaf9zjGUcq2t+LvqyDbkL2uLUT5TzGzzUXVkGwqWt+PRwbTVbo0LmFNxYDNyFbPEKJ8pNrVK0nhhb/yveyoW0fhY7UmduLnuGDHv5+0F3n5KsRYVyWmTB+cO1Ql0+/rznRIbR/xTf6UtJe4dyeFRxL+fX/tm7QFyujbGsH4FNAvmxmJoR7Ss8xG+N73XstD26eTskv77HbLxL3RL2GLWtzWaBXNj1KQqOdrXJWzb0fQ4aw9g1LASJu3qoFkwNzm7NMSwZllCt/+doZwm7eqQHBZJ9Jm0lZzfunmg7+KETglbTH9vyrun/qREf/3NcPHvIHO8xFextrbm7t27zJw5kzFjxhAYGIiWlhb29vYMHz6cvn37ZkijoaHBrl276NOnD05OTpQpU4bp06crzekqUqQIJ0+eZOzYsZQtWxYdHR3KlStH+/Zpz3CZPXs2KSkpdO7cmejoaEqXLs2JEycwMUkbSqapqcmYMWPw9fVFR0eHypUrs3v3bgB0dXW5ePEio0aNokWLFkRHR5M3b15q1qyJoaHhj78mTjZM2TNT8XfXiWkXm+f2nWHv4l2UqVMOgAXHleemTGo7lkfvlxO2KJALQ5P0suga6NJxVBdy5jIlJjKa68eusWveNsVzklKSUyhY1JJqLWuga6hHeHAY9y65s3vBDsXy4h/kL1KACg0rMbz+IMW+639fxcHFkan7ZvHS+wVLBio3hDPz8LEX3QakP7dq7rK0O+9N69dixvhhdOvYmri4d0yeu5TomBhKOjmwesE0xTO8AOZMGsmMhSv5feAYVFVVqFWtImMHpz93KSkpGR//QOLepc+vGzWwF6qqqgweN53ExEQqlC3FhOH9FOFqamqsmDeZafOW06nXUHR0tGhSvxb9u3fOUIeVG3dQpUIZihZJnys3ZkgfRk6eQ9d+I2hYpzq1q2VcLv9jhZysGbcnfe5Dx4ndALi07yybxq0lf9GCVG5ZHV1DXcKDw3l4yZ39C3YpnRfzArkw+Oh81+qcNuxm3F7l56OtHbaMS/vT5j+c2HgEDS0NOk74DX1jffw9fZnTcQqv/ZUntecrUoByDSswvn76c+Ju/X0NO5dijN83nVfeL1k5cNFn6/g1zHObMmXFeAxNDIkIi+T+zQf0atyfiLC04aQWecwzLCZSwDo/xcs5MbhdxueJpaQkU9C6APXX1sUohyFR4VF43ntC3xaD8HnqqxS3kK0lNRpXo2vt9OdAnTtyEWeXEqw8sBj/54FM7p/xWXPfQ9vUkEpLeqNjbkxC9FsiPAM43WEury49RMfCGPOytth1r4emkR7vQiIJvv6YY02n8i40vWFpZJMHTcP0oUD565Sk4qJeir+rrBoAwL0FB7i38MA3lS9PVUcMLC24PHC1Yt/jTafIWdyK+kemEOr+nPsL//zmelfonHbx3HvPRKX9e4avwm3/RfIWs6Sgc2EARl9cohRnVqUBhAemLWxibp1XsUIegH3tUrSdn/6Z77g87Xvp1OL9ivlhLh1rUXtwK0WcvvsmKx37A4si+SjesDyLGqQ/b+vB3zewKm9Pn72TeOP9kl2D0p+n9zWsnWyYtCf9veM6Me3m3vl9Z1k/bhV5bfJStdUoDEwMiY6I5vk9Lya3HkugV3ojweKTzzeAY6XimOUz53wmqxkmxidQtKw99bs1Rt9Ij4iQSB7ffMSEFqMzzBsrXqUEFgVzs3zwYsW+41uOYuVkw/SDc3l+z4v9i/d8U50BSnZOGyrZae94pf1Hhq3hwf60+cS3Np5ATUuTWhM6oW2sx2tPf3Z3nE2Ef3rvj3EBc3RM0udT65ka0mhhb/TNjYmPfsvrxwHs7jwX38tpv33JiUlYVnSgTLe6aOhoEfUqjCfHbnFlWcYHQReq4ohJQQsODU5/r7ttOUVuJytcD07h5b3nXF787e/1zwnddAhVLU1yj++OurEBcZ4++HSeqLQ0vGbBXKh9dL7j7nvh13smuUZ0wXxgOxICgnk5bZ3SA5CjTl7n5fiVmPVpTZ5JPYn3foFf31m8ve2hdHx1U2PM+7XhecuR6fnf8yJk/UEsN04kKTSSwOE//n3+j/jM895+tRUrVjBv3jyCgoIoXrw4y5Yto2zZslnGX7x4MatWrcLf3x9TU1NatWrFrFmz0NbW/upjqqR+7gl4QghaFfzfejD0B7vcFv/qIvwS3UoN/3Kk/4e8kyJ+dRF+iV7k+dVF+CUeavzzc7L+DfxSs/eZdv8VJfi2R1v8f9FI9csLn/x/5Ojz71l2Pm7PlH/sWDptJ3113D179tClSxdWr15NuXLlWLx4Mfv27ePJkyeYm2d8RMrOnTvp1q0bGzdupEKFCjx9+pSuXbvSrl07Fi5cmMkRMidDDYUQQgghhBDZ7186x2vhwoX06NGD3377DXt7e1avXo2uri4bN27MNP7Vq1epWLEiHTp0wNLSkjp16tC+fXtu3sx6Dn5mpOElhBBCCCGE+E+Lj48nKipKacvscUcJCQm4ublRq1b6qqSqqqrUqlWLa9euZZp3hQoVcHNzUzS0vL29+fvvv2nQoEGm8bMiDS8hhBBCCCFE9vsHe7wyeyTQrFmzMhQpJCSE5ORkLCyUH11gYWFBUFDmj+/p0KEDU6dOpVKlSmhoaGBtbU21atUYO3bsN70c0vASQgghhBBC/Kdl9kigMWPGfDnhVzh//jwzZ85k5cqV3LlzhwMHDnD06FGmTZv25cQfkVUNhRBCCCGEENkv9Z97vpaWlhZaWlpfjGdqaoqamhrBwcqrAwcHB5MrV65M00yYMIHOnTvTvXvaCtaOjo7ExsbSs2dPxo0b99XPkpMeLyGEEEIIIcT/BE1NTUqVKsWZM+mPeUhJSeHMmTO4uLhkmubt27cZGlcfnmH7LQvES4+XEEIIIYQQIvt942qD/5ShQ4fi6upK6dKlKVu2LIsXLyY2NpbffvsNgC5dupA3b17FHLHGjRuzcOFCnJ2dKVeuHM+ePWPChAk0btxY0QD7GtLwEkIIIYQQQvzPaNu2LW/evGHixIkEBQVRokQJjh8/rlhww9/fX6mHa/z48aioqDB+/HhevHiBmZkZjRs3ZsaMGd90XGl4CSGEEEIIIbLfNwzD+6f179+f/v37Zxp2/vx5pb/V1dWZNGkSkyZ9/UOaMyNzvIQQQgghhBDiJ5MeLyGEEEIIIUT2+5fO8fpVpMdLCCGEEEIIIX4y6fESQgghhBBCZD/p8VIiPV5CCCGEEEII8ZNJw0sIIYQQQgghfjIZaiiEEEIIIYTIfqky1PBj0uMlhBBCCCGEED+Z9HgJIYQQQgghsl1qyr/3Acq/gvR4CSGEEEIIIcRPJj1eQgghhBBCiOwny8krkR4vIYQQQgghhPjJpMdLCCGEEEIIkf1kVUMl0uMlhBBCCCGEED+Z9HgJIYQQQgghsp+saqhEeryEEEIIIYQQ4ieTHi8hvkDjf/T+RLdSw391EX6JjW7zf3URfomRpcf+6iL8EtuTQ351EX6Juimmv7oIv8S5pLBfXYRfwlZT71cX4Zfol/D2Vxfhl7j4qwvwMVnVUMn/5hWlEEIIIYQQQvyDpMdLCCGEEEIIkf2kx0uJ9HgJIYQQQgghxE8mPV5CCCGEEEKI7Jcqqxp+THq8hBBCCCGEEOInkx4vIYQQQgghRPaTOV5KpMdLCCGEEEIIIX4y6fESQgghhBBCZL8UmeP1MenxEkIIIYQQQoifTBpeQgghhBBCCPGTyVBDIYQQQgghRPZLlcU1PiY9XkIIIYQQQgjxk0mPlxBCCCGEECL7yeIaSqTHSwghhBBCCCF+MunxEkIIIYQQQmS7VHmAshLp8RJCCCGEEEKIn0x6vIQQQgghhBDZT+Z4KZEeLyGEEEIIIYT4yaTHSwghhBBCCJH95DleSqTHSwghhBBCCCF+MunxEkIIIYQQQmQ/meOlRHq8hBBCCCGEEOInk4bXv5Svry8qKiq4u7v/1OOcP38eFRUVIiIifupxhBBCCCHE/5iUlH9u+w+QoYa/SNeuXdmyZYvi7xw5clCmTBnmzp2Lk5PTLyvX+fPnqV69uuJvc3NzKlWqxLx587Cysvpl5fo3KlrWnka9mmPlaI2JRQ4W9JjF7ZM3Mo37+4ze1OpUj61TNnBs4+EfyrPl4Ha4NK5EzjymJCUm4fPgOXvmbee5uxcA6prq9JzTn1K1yxL5JpyN49fw8Mp9RfpGvZphmseMzZPWfVe9bcva07BXUyzfl3Fxj9m4nbypCO85vz+VW9dQSnP//F3muU7LMs/GfVtQul55clvnJfFdAl5uj9k9extB3i+V4tmULELrER2xLlGYlOQU/Dx8mNt5GonxCahrqvP7nL6Uql2WiDcRbBm/lkcf1btBr6bkzGPGtknrv6qet90fsGnnfjweP+NNaBhLZk2gZpUKivDU1FRWrN/G/sPHiY6OxdnJngnD+1Mwf15FnMioaGYuXMn5KzdQVVWlVrWKjBnUG11dnSyPGx+fwLzl6zh2+gIJiYlULFuK8cP7YZrDRBHnVdBrps5fzq0799HV0aZJ/VoM7v0b6upqAHg+fcaEmYvwC3xJ2ZJOzBw/HCNDAwCSkpLp0HMwE4b3x9He9ouvQ82+TXGqWxZz6zwkvkvA985TDs/eyRvvV4o46loaNB3XCefGFVDX1ODxxXvsn7CRmJDILPNd5Ls70/2HZm7n3NojSvvUNNUZcnA6ee0tmddgFC89/AAwyWdGxwV9yedYiMAHPuwYtpLwwDeKdN03jOTmvvPcP36TH6WqqkrnoZ2o2bwGJuYmhAaHcmrfaXYs2fnZdDWaVad1n9bkLZSH2Ki33Dp/i3XT1xMdEZ1WN3U12vVrS+3WtTC1MCXAO5ANszZw+7ybUh6/j+mGtq42J/edYs3UtYowi3wWzNoxg/4NB/I25u0P17Nsv8YUrleGHNa5SXqXwEs3Ly7O2kP4R+db18yIquPaU7BSMTT1tQl7HsSN5X/hdexWlvnmLWtLmd4NsXAshL6FCX91X8Szk25KcTR0tag8ui02dUujbaJPVMAb7mw6wf3tZxVxqk7oiEPryiS9jefi7D08PnhVEVakYVnsW1biYLeFP/w6fMq1f0f6j+3FrnX7WDhpWaZxrIpY0mvE7xR1KkKe/LlZOHEZu9bvU4rTsktTWnZpRu78uQDwfuLDhkVbuHou/Xt+8KR+NGpTn3dx71g+Yw3H/zylCKvZqBoNW9dlqOuYbKlX5b5NsK9bGtP3n++AO16cnL2b0I/Od+OZ3bCuWAwDCxMSYt/hf8eLU7N3EfL8VZb56pkaUmd0e6wrO6JtqIvfzcccnbSFMN9gRZzfdo+jUHl7pXS3dpzh8LiNAOgY6dFiQW8sXewJ8w3iz5FrCXrkp4jbcGpXwv1fc3X939nyWpjmMqX32B6Uq1EWbW0tXvi+YNbQeTy5/zTT+CVcirN0f8b3WrMSrQh7Ew5A8XKOtOvTFlvHwpjmMmVst4lcPnFFKX67Xq1p37ctADtX7mHPmvT3jJ1zUYbOHETvRv1ITv5vNCzE50mP1y9Ur149Xr16xatXrzhz5gzq6uo0atToVxcLgCdPnvDy5Uv27dvHo0ePaNy4McnJyRnipaamkpSU9AtKmLV/qkxautr4e/qwccKaz8YrXbccNs62hAWFZkuer3xesnniWkbVGcSUlmN4E/iasdsmY5DDEICaHepSyNGaSc1HcWbXSfovHapIa5bfnBrtarNn3vavrGVmZdTC39OXLROybrjdO3+H/qW7KbYVAz5/IVS0nAOntx5jSrPRzOk0BTUNdUZtm4SWjpYijk3JIozYMoEHF92Z1GQUE5uM5NSWY6S+XzGpeoc6FHK0ZkrzMZzfdYq+S4co1btau9rsm7fjq+sZF/cOWxsrxg3rm2n4xh372LH/EBNHDGDnusXoaGvTa+h44uMTFHFGTZnLMx9/1i2eyYq5k3Fzf8jkuUs/e9w5S9dw/soNFk4fy+blc3kTEsrgsdMV4cnJyfQdMYnExCS2r17AjPHD+OvYKZav36aIM2n2EsqVKsG+jcuIiXnL2q3pjZwtu/+ghKP9VzW6AKzL2XF520mWNJ/A6s4zUFNXo/fWsWh+dG6aTeiCQ81SbO67mOVtp2BkYUK31UM/kytMLNNLads1YhUpKSncP5axkdRkTEcig8Mz7G86rhORwWHMbzCaqDcRNB3bSRFWopELqSkp2dLoAmjTtzWNOjdk+YSVdK/ekw0zN9K6dyua/dY0yzT2pe0ZsXg4J3afoGfNXkzvM4OiJWwZMnewIk7XEa407NSAFRNW0b1mT45uP8qkdROxdrAGwNDEkCHzBrN2+jrGdBpHzeY1KFezrCL9gBn92DBrU7Y0ugDylbPDfcspdjabzP6Oc1BVV6fV9lGof3S+6y/qjYlVbg7+vpAtdcbgdfwWjVYOwNyhYJb5auhq8cbDnzPjt2QZp9rEjlhWK87fg1axucZI3DYcp+ZUV6xrlwTAqpYzdk1d+KPTHC7O3E2dud3RMdEHQNNAh4ojWn82/+9lX7wozTs14emjZ5+Np62jzQv/lyyfuYaQ4My/71+/esPymWvoUq8HrvV7cPvKHeZvmolVEUsAKteuQL3mtRjQfhhLp69i3PyRGOUwAkDPQI8+o3owZ+yibKubZbmi3Nh2mrXNJ7Gl82zU1NVw3ToajY/O98sHPvw5Yi3Lao1ga5c5qABdto5GRVUly3w7rB2KSX5zdvZYyKqG44h4EULX7WOV8gW4vfMsc8v0VWwnZ+1ShFXp3wxNfW1WNxqHz3VPms7qrgjL52xDvhLWXNt4LFteB30jfVYcXEJSUhIjO42mS/VurJi6mujI6C+m7VDZlWYlWim28JAIRZi2rg7PPZ6zaFzm3/tWdlZ0G9GVKX2nM6XfDLqP+A2rooUAUFNTZdjswSwYvfi/3ehKSf3ntv8AaXj9QlpaWuTKlYtcuXJRokQJRo8eTUBAAG/evMk0/oULFyhbtixaWlrkzp2b0aNHKzUw4uPjGThwIObm5mhra1OpUiVu3VK+A/n3339TpEgRdHR0qF69Or6+vpkey9zcnNy5c1OlShUmTpyIh4cHz549UwxNPHbsGKVKlUJLS4vLly+TkpLCrFmzKFSoEDo6OhQvXpz9+/cr8gsPD6djx46YmZmho6ND4cKF2bRpEwAJCQn079+f3Llzo62tTcGCBZk1axaQ+ZDLiIgIVFRUOH/+PMB3l+lH3Tt/h73zd3L7ROa9XAAmFjnoOqUHKwYtJDkxY8P1e/K8+tdFHl65z+uAYAK9Atg+bSO6hnoUsLMEIK9NPtxO3STQK4CTW45hZGqsaJT9Pr03O2dvJS4m7tsq+5H75++yf/4u3D5TxqT4RCLfRCi2t1Gxn81znus0Lu0/xwuvAPw9fVk7bBmm+cywdLRWxOk4oRsnN//NkVV/8sIrgCDvl9w8epWkhLTPQB6bfNw5dYsXXgGc2nIMQ1MjRb27Tu/FntnbePcN9a7sUoaBPV2pVbVihrDU1FS27T1IT9d21Kjsgq1NIWZOGM7rkFDOXEq7A//c15/L128zZfQgnByKUrJ4McYO6cOx0xd4/Sbzi7LomFgOHDnJyAE9KFeqBA5FCzNt3FDcH3hw76EnAFdv3uG5rz+zJ42gaBFrKruUoX/3Luw+cJjExEQAvH0DaNmkHpYF8lG/dlW8fQMACHjxigNHTjKop+tXvw5rXWdza/8FgrwCeenpz87hq8iRz4x8jmkXB9oGOpRrU52/pm/j2bVHBD70YdeI1RQqbUtBZ5ss841+E6m0FatdmmfXPAgNeK0Ur2i1EthWduLQjIw3Cyxs8nLrj4uE+AZxc/8FLGzypJXJUJcGw9rwx8RNX13PL7EvZc+1k9e5efYmwYHBXPr7Mm4X72BbIusGrH0pO4IDgzm46S+CAoJ5dOsRR7f/jW2JIoo4tVrWZNfyPdw6d4sg/yCObDvKzbO3aNWzJQC5C+YiNiqWC4cv8vTeU9yv3aOATQEAqjWtRlJSMleOX8n0+N/jQJe5PNp/idCnL3jj6c/xYWswzGeKhaOlIk6eUoW5u/kkQfe8ifR/w41lfxEfFYvF+/dEZnzP3+fK/P08O3E7yzh5ShXGY/8lAq97EhUYwoOd53jj6U+u4mmjLXLa5CHguifB9314fOgaCdFxGOY3B6DK2Pbc23aG6JdfvsH1LXR0dZi6fAIzR8z94kW4x73HLJ22ilN/nSUhISHTOJdOXeXq2esE+ATi7x3IqjnreRsbR7FSDgBYFi6I2zV3PO8/4eTBM8TGxJI3f24ABo7vwx9bDxL84nWmeX+Pba5zcd9/kTdeLwj29OfA8DUY5zMlz0fn0m3XOfxuPiYiMIRXj3w5s2AfxnlNMc5nlmmeOQvlIn/Jwhwev5GX970J9X7FkXGbUNfWwLGJi1LcxHfxxLyJVGzxH31Hm9nk4cHh64T6BHF751nM3n++VdXVaDyjG4fHbSQ1my62O/Ztx+uXb5g9dB6e7k94FRDErYtuvPTLulfvg4iQcMLepG+pqellunHuJuvnbuJSFp/Rgjb5ee7pzZ0r7ty5fJfnnt4UsMkPQLs+bbl//QGP7z3JljqKfwdpeP1LxMTEsH37dmxsbMiZM2eG8BcvXtCgQQPKlCnDvXv3WLVqFRs2bGD69PQ74SNHjuSPP/5gy5Yt3LlzBxsbG+rWrUtYWBgAAQEBtGjRgsaNG+Pu7k737t0ZPXr0F8umo5M2LOrjH5LRo0cze/ZsPD09cXJyYtasWWzdupXVq1fz6NEjhgwZQqdOnbhw4QIAEyZMwMPDg2PHjuHp6cmqVaswNTUFYOnSpRw6dIi9e/fy5MkTduzYgaWl5Te/ht9app9NRUWFfosHc2TNQQK9An7KMdQ01KnRoQ6xkbH4e/gA4Ofhg20ZOzS0NCle1Znw4DCiw6Ko2KwKCfGJn23UZZei5Yuxwm0Tc88uo+v0nugb639Teh0DXQBiI2IAMMxphE3JIkSFRjLxwEyW397IuD3TKFK6qCKNv4cvRd7X26lqCUW9KzSrQmJ8wmcbit8q8GUQIaHhuJR2Vuwz0NfDyd6Wew8fA3DvoSeGBvoUs0u/yC5f2hlVVRXuezzONF+PJ14kJSVR/qN8rQrmJ7eFuVK+ha0slYYeVixXipjYtzzzSRuGY2tTiGs375CUlMyN2+4UsU67iJo6bxlD+3ZDT0/3u+v+4dy8fX9u8hWzQl1TnSdXHijivH7+krDAN1iWLJJpHp/SNzXCvrozN/acy7C/7awe7BiygoR3GS9kX3r6UaSiIyoqKhSt7MTLx/5AWg/Z5W0niXiVfRfhHm4elKhYgryF0oaSWtkVolgZB26dy3p4nYebJ2a5zShTvQwAxqbGVG5YiVtn09NoaGqQ+EndEt4l4FAm7UL8hc9LtHS0sHawxsBYH1unIng/9kHfSB/X4V1YMX5FttUxM1rvz/e7iPSbJy/dvLBtXB5tIz1QUcG2cXnUtTQIuOb5Q8d66eaFde2S6Fukvbfzu9hhUigXvhfT3luvPfyxcLJCy0gXc0dL1LU1ifALIm+ZIlgUs+TuphM/dPzMjJw5hCtnrnHzktuXI38jVVVVajetgY6uNg9uPwTA69Ez7JxsMTDSp6hjEbS0tQjwDaR4WUeKOhZmz4Y/sr0cH9N+f77j3n++P6Who4Vz66qE+b8mKovPl5qmBpB2A+6D1NRUkhOSKFhG+UaFU9OKjLqzmn4nZlNrZFs0tDUVYUGe/li52KOqpkrhqk4EP077Ha3UqxG+1z14+cDn+yv6iYp1KvDk/hOmrJnIX/f2s/7Eahp1aPBVaTecXMufd/ayYNdcipV2+Kbjenv6kL9QPszzmGOR15z8VvnweexLnoK5adC2Huvmbvye6vy7pKb8c9t/gMzx+oWOHDmCvn7aBWlsbCy5c+fmyJEjqKpmbA+vXLmS/Pnzs3z58rSLjKJFefnyJaNGjWLixInExcWxatUqNm/eTP369QFYt24dp06dYsOGDYwYMYJVq1ZhbW3NggULALC1teXBgwfMmTMnyzK+evWK+fPnkzdvXmxtbbl6Ne1u/tSpU6lduzaQ1tM2c+ZMTp8+jYtL2t0sKysrLl++zJo1a6hatSr+/v44OztTunRpAKWGlb+/P4ULF6ZSpUqoqKhQsGDWw1U+51vL9LM16dOC5KQUjm868uXI38i5RmkGLh+Gpo4WEa/DmdlpEtHhaXdjz+89QwE7S+afWUZ0WBRL+s5Dz0if1kM7MLXteNoM74BL48oE+wWxZsQywoPDsrVs9y/c5dbxG7wJCMaiYC5aj+zI8C0TmNJ8DKlfMflVRUWFTpO68eSWJ4FP0y6kzQpYANB8cFt2zdiCv4cPlVpUY/TOKYypM5hg31dc3HuGAnYFmXNmCdFh0SzvOx89I31aDG3HzLYTaDW8PeUbVyLYL4j1I1b8UL1DwtKGveX8qPHz4e+Q0LSwkNBwchgbKYWrq6thZGCgSJ8h39BwNDTUMTRQbqjmzGFMyPsbKCFh4eTMYZwh/EN6gCmjBzN9wXI27zqAs5M9Pbq04dDxM+hoa1PMrgg9h4wj4MUr6teqysBv6P1SUVGh2URXvG89JuhpIACGZsYkxSfyLkp5qFt0SCQGZsaZ5JJR2ZZVeBf7jvsnlIcFdpjfh6s7ThPwwBuTTO6uH5qxndYzezDh8jJePvZn39h1WJUtSl57S47M3onr8kHkd7LiyaX7HJi8+at6nbOyZ8VedPV12XB+HSnJKaiqqbJ57hbOHjyXZRqP2x7MHjiXcSvHoKmlibqGOtdOXWfZR42l2xfcaNGjBfdvPOCV3yucK5WgYv0Kit+BmMgY5g9dwMjFw9HU1uL0H2dwu+DG0HlDOLT5ELkK5GLKxsmoa6izbeF2Lv19+bvrmIGKCtUmd+LFrSeEvj/fAEf6LqPRiv70e7CG5MQkkuIS+KvHYiL8gj+T2ZednbiV2rN/p9etZSQnJpGaksqp0Rt4cTPtjr/fxQd4/nmFjoenkfQugeND15D4Np6aM37j+LA1FO9cC+eudYgLj+bU6A2EPn3xQ+Wp3bQGRR2L4Nqg5w/l8ynrolZsPLwSTS1N4mLjGPH7eHy80m6aXL9wi2MHTrHl77XEv0tgyqCZxL19x+hZw5gyeCYtXZvRtlsLIsIimTliHt5PfbOtXCoqKtSf2Bm/W094/dH5BijTqRZ1xrRHS0+bN89fsqXTrCw/TyHPXxIRGELtkW05NHYDiXHxuPxeH6M8OTEwN1bEu//XVSJfhBAVHEGuovmpPbo9pla52d17MQCXVh2i8fRuDL6wiIgXbzg4ch05LC0o0bIy61pMpvGMblhXduTlfW/+GrOe+OjvH8mRu0BumnZuwt51+9m+dCdFS9gyaGp/khKTOL7vZKZpQl+HMn/UIh7fe4KmlgYN2zdg6f6F9G7Un6cPvb7quH7P/Fk7ZwMLd88FYM3s9fg982fh7rmsmr6WstXK8NvQLiQlJbFs4gru3XjwhRzFv500vH6h6tWrs2rVKiBtKN7KlSupX78+N29mnJPg6emJi4sLKirpY6orVqxITEwMgYGBREREkJiYSMWK6cOiNDQ0KFu2LJ6enoo8ypUrp5Tvh0bJp/Lly0dqaipv376lePHi/PHHH2hqpt+J+tCAAnj27Blv375VNHo+SEhIwNk57c59nz59aNmyJXfu3KFOnTo0a9aMChXSFiro2rUrtWvXxtbWlnr16tGoUSPq1Knz5RfwE99apszEx8cTHx+vtC85NRk1FbVvKkuhYtbU+60RYxt+fp7L9/K49oDR9YdgkMOQGu3rMGjlCCY0HUlUaCTJSclsmrBWKX6veQM4vukIhRwKUbpOOUbXG0zj3s1xndKDxb2zbnh/j+uH04dUBD7xx9/Tj4WXV2Hn4oDHlS//aLhO60G+IgWY1mqcYp/q+7kE53ac5NK+tIn2fo98sK/oSNU2Ndg7dwfJSckZ5p31mNefk5uOUtDBilJ1yjGu3lAa9m5G5ym/s7T3vOyo7r+SjVVBNq9Ir19EZBQrN2xn84q5zFy4ihKO9iyeOYF23QfiZG9LtUrlvyrfltO6kds2P0tbTcrW8pZtU407By8r3SGv3LUeWnranF55MMt0kcHhrP99ruJvNU11em0dy85hK6k9oAXvYt8xs8ZQem0ZQ4UOtbi05ft7RKo2rkLN5jWYPWAOvk/9sLa3ps/kXmmLbOw/nWmaAoUL0HdKb3Ys3sntC27ksMhBj3HdGTRrIAtHpM3TWTVpNUPmDmLD+XWQCi/9XnFy7ynqtk3/Drxy/CpXjqcvIuFY3pFCdoVYMWElmy9vZGb/2YS/DmfZ4SU8uPGAiNCsFzX5FjWnu2JaJB+7WyovjFNxWCu0DHXZ134WcWHR2NQtRaOVA9jTahohTwKzyO3LnLvWIbezDX92W0BUYAj5yhWl5jRXYoLD8b/8CIBriw5wbdEBRRqXwc3xv/yQlMRkyg9oypY6Y7Cq6Uz9Rb3Z3nDCd5fFIo85w6YOpH+7oSTEZz5s8Hv5PfenY+3f0TfQo2ajakxeMpZeLQYoGl/rFmxi3YL0YbLdh3bl5qXbJCUl8fugzrSr0ZXKtSsweek4utTrkW3lajitK+a2+djQamqGsPt/XeH55QcYmJtQsUcD2q4YyPpWU5Q+sx+kJCWzq/cims3tydj760hOSsb7ykOennNXuoZx25V+0+L1kwCiX0fw265xmBQwJ9z/NfHRcewfpNyj23XnWE7O2oVTs4qY5DdnaY3hNJ3dnWoDW3BixtfP4f2UqqoKT+4/Zd3sDUBaz2MhW0uadG6cZcMr4HkgAc/T3+8Pb3uQt2AeWvdsyYyBs7/62Ie2HeHQtvQbtPVa1+FtTByP3DzYfnEzvRr2xSy3GZNWjqetSycSEzK+5uK/Q4Ya/kJ6enrY2NhgY2NDmTJlWL9+PbGxsaxb932rzWWnS5cucf/+faKionB3d8/QYNPT01P8PyYmbUjC0aNHcXd3V2weHh6KOVX169fHz8+PIUOG8PLlS2rWrMnw4cMBKFmyJD4+PkybNo24uDjatGlDq1atABR3fT8eM/1hHsunvrVMmZk1axZGRkZKm0fk1925+ljRsvYYmhqx7Np6tj//g+3P/8Asvzmdxndl6eW1X87gC+Lj4gn2C+LZ3aesHbmc5KRkqretlWlce5di5CuSnxNb/sbOpRju5+4QHxfP9SNXsC//bcMivsebgGCiQiOxKJj7i3G7TO1OiZqlmdV+IuEfLUYS8TqtJ+fFM+Uhmy+fvSBn3sznGdi5FCNvkfyc2nIMOxcH7p1zIz4unhtHrlK0fLEfqBGKYX6hn/RchYaFY5ozLcw0pwlhEcoXwElJyURGRysNE1TKN6cJiYlJREUrD/MJDYvANEcOxbFDwyIyhH9In5m5S9fSqU0zcpmbcevufepWr4SujjZVXMpy6+7X3UFtMeU37GuUZEW7qUQGpfcWRr2JQF1LA21D5eGLBqZGRL+J4EusyhTFwjov1/ecVdpfuIIDliWLMO/pduY/28G484sBGHpoJh0W9Mk0r9r9mvHk0n0CH/pgU96e+8dukJKUzP3jN7H+ZPW0b9VjXHd2r9zL+UMX8H3sy5kDZziw/k/a9WubZZp2/dry6JYH+9bsx+exD24X3Fg2bjn12tUlh3na+YwMi2Ry96k0sW1GJ5cu/F6tO3GxcbzyC8o0Tw1NDQZM78+S0UvJY5kHNTU1Hlx/QKB3IIE+LyjqXDTTdN+qxtQuWNd0Zm+7mcR8dL6NCprj/FsdToxYh/+VR7zx9Ofa4j8JfuBDCdfan8nx89S1NKg0sg3np+3A+/RdQh4H4L7lFE8O36B0z4aZpslhnRu75hW5Mn8/+V3sCLz5hLiwaJ4cuYGFYyE09LS/uzxFnYqQ0ywH206s55r/Wa75n6VUBWfa/t6Sa/5nMx2Z8rWSEpMI9H3B4wdPWTFrLV4ez2jXvXWmcQvaFKB+izqsnruBUhWcuXP9HhFhkZw6dA47J1t09bJeIfVbNJziim0NZza1m0FUUMbRAPHRcYT5BuN38zF7+i7B1Do3dnVLZ5JTmlcPfVnVYCwzHLszr2w/trnORddEnzD/rOenBbo/ByCnpUWm4c6tq/Au6i2PT7lRqLwdnidvk5KUzKOjNyhU3u4ba6ws9HUYvk/9lPb5PfPHIo/5N+Xj6f6YvJZ5vxwxC0YmhnQd0pklE5Zh71xU8bm+e9UddQ118lvl++68fxlZXEOJ9Hj9i6ioqKCqqkpcXMbucjs7O/744w9SU1MVd4yuXLmCgYEB+fLlI2fOnGhqanLlyhXFUL3ExERu3brF4MGDFXkcOnRIKd/r169nWpZChQphbGz8VeW2t7dHS0sLf3//zw7hMzMzw9XVFVdXVypXrsyIESOYP38+AIb/x95dh2WxvA0c/9KdImEgiomK3d3d3d1Y2N2o2J3H7joeu7u7UREFRAHpbnj/ePTB5wAmHs95f/fnuvZSdmZnd/apnb1nZo2NadeuHe3ataN169bUr1+f4OBgsmZVXFT7+voqI1Xf8myzbz2mvxs3bhzOzqpRqt5FOn3z9p9cPnCBx1ceqpa9dQqXD1zg4t6z313e16irq6P5sV/957R0tOgxox8rhi4kJTkZdXV11DQV7x8NLU3U1b8vkvcjzKyzYGhmpGw8ZaTr9N6UqlcOl3aTCfjbBAsBbz8Q7BeETR7VHzTrPDY8On8/TVlaOlp0m9GHVUMXp1NvjZ+6aALIkc0aiyxm3Lj7gIL5FROAREZF8ejZC9q2UFwkFitSiPCISJ4+d6dwwXwA3Lz7gOTkFBwd0r84diiQD01NTW7eeUCdGpUBeOPlg6//B4oVKagsd+2W3QSFhJLFzBSA67fvYWigj72dbZoyb9y5z2uvt8ycoHhfJycnk5Co6CL0rbN/tpzWg6L1yrCi/XSCP5uuHcDnyWsS4xPJX7GIcgbBrHlsMM+RFc976U/D/Lly7Wrw9pEH7928VdYfmLqJY/N3K/82sTKn/9bxbHFagteDtLPLWdpno2TTSsxvqBi3qqahjoaW4v2toaWBusbPveY6ejppusomJyV/cWY3HT2dNLPBJn+anexvmyXEJRDkF4SGpgaVG1bm0pFL6ZbZcUgH7ly8w6snr7AvbI+6ZupnWFPz5+sJikZX3vql2dN2FuFvVV/vT2Nw/j6pQcpXzsXXqGtpoqGtmfYcJ2dcbu3ZPbkwYzsJ0XGoqasrz8Wn1/1nzsXty3dpX0O1G+7kRWPxfOXNlhU7SM7EZwapqamjnc73N8D4uSNZPG05MdExiu95LcVl26d/1TV+/ju80bRuFKpXmg3tZxL6t893BgcMamrKsVxf8qn7n7mdFdmK5uHsgoxvfNo4KK5dIj6EpknTNzei+pAWrP8Yjfv8862upYHaT77vH99+Qk77nCrrcubJgf+77+s+m7dwXoIzmNHyWzhNG8iedfsJ8A2kYLECyjoCaGhkzudb/F7S8PqN4uLi8PNT3NUMCQlh+fLlREZG0qRJkzR5Bw4cyOLFixk8eDBOTk68ePGCKVOm4OzsjLq6OgYGBgwYMIBRo0Zhbm6Ora0trq6uREdH06tXLwD69+/PggULGDVqFL179+bu3bts2rTpp+thZGTEyJEjGT58OMnJyVSuXJmwsDCuXr2KsbEx3bp1Y/LkyZQqVYrChQsTFxfHkSNHKFRIcYdq4cKF2NjYUKJECdTV1dm7dy/W1taYmpqirq5O+fLlmTNnDrlz5+bDhw9MnDgxU44pPTo6OujoqE53m1E3Qx19XaztUqM4WXNaksshN5GhEQS9DyQyVHUGrKSEJMICQvH97NlUE3ZM5/bJG5zafOybytTR06G5UxvunrlF6IcQjMyMqdutAWZW5tw8mnbWpBZD2vLg/F08nyoGIb+885yO47txce9Z6nZryMu73z8YXkdfFys7a5VjtHWwIyo0ksjQSFoMa8vt4zcICwjBMpc17cd1xd/Tj8eXUhtIY3dM5c7Jm5zZrJgKuNvMvlRoWoXFfWYTGxWDycexQdHh0SR87OZzbM1ftBzeDm83T7yevqFK6xpks8/OsnS6DDYb0oaH5+/h9Vm9O4zvxqW956jTrSHud9Of3OJz0dExePukvlbv3vvz/KUHJsZG2Fhb0qVtc9Zu3kWuHNnJns2K5eu2YmmRhVpVFF1o7e1sqVy+NFPnLmHyqMEkJCbismgVDWpXwzKrYgId/4BAeg8Zh8ukkRR1KICRoQEtG9fFddk6TIyNMDDQx2XRKooVKUSxIorPS8WyJbG3s2Xc9Hk4D+xFUHAIy9ZuoX3LJirdgUHxTLBZC1cxb+oYZWOzRFEHdh04TPuWTTh98SqjB395/EqrGT0p1awSf/SZT1xUDEZZFePWYsOjSYhLIDYihpt7ztNsYheiwyKJjYih5bQevLn7Eq/7qQ2ksWcXcNR1F49Ppk4soWOoR7GG5dKdsTD0b7PTxUUrugAHevurRNw+aTe7LwdnbCU+RpHvzZ0XlG9fiw+vfSnTsir3Dv3czH83ztykw+D2fHgXgNdLL/IWsadlnxac3J3aDannmB5ksc7CvOHzldsMnzuUxl0aKboaWpozYGp/nt9/TvDHMYYFixcgi7UFHs88sLDOQpfhnVFXU2PPqr1pjsE2ny3VmlRlYP1BALz1eEtKcjL129UjOCCEnPY5efHw643dL6k1szsFm1Xgr96LiI+KRf/j6x0fHk1iXALBHr6EvPGjzuyeXJy5g5jQSPLWLUWuKkX4s8cCZTmtd47j1Yk7PNiseAaVlr4Opp9FMoxzZiWrgy2xoVFEvA8iPjKGt9fdqDahA4mxCYS/CyRnuYI4tKrMxelpu5AV7VCdmOAIXp9RfK+8v/OSisNbYlPCntw1ihH40oe48B+fYj86KgaPF6qTN8RExxIWEq5cP3XJeAL8AlkxW9GLQVNLUzktvJaWFlltLMhfOC/RUTH4eCrGmw0a15dr527i984ffUN96reoTamKxRnccWSaY2jesTEhQaFcPq3oZvrw9hP6juhBkZIOVKxZjtcv3hAZnv4kGN+q8YzuFG1WkZ19FhIfFYvhZ5/vxLgEzHJmpUiTCry69Ijo4AiMrc2pMqAJibHxuJ9/oCxn8Nl5nHHdjdvHWSsLNyxLVHAEYe8CsSpoS4MpXXA7dQePy4oIu5mtJY7NKvLy/ANiQiMVeSZ1xvOmm3ISjc81mNyFq+uOEfHxsRJv77ykWIvKvLr0mNIdauJ95+fe93vX7WflX0vpPLgj5w9foFDxgjTp1Ij5o1On7u87thcWNha4DFV0z2/TuyW+3n68eemJto42jTs2pGSl4ozoOEa5jZ6+rnJCHgAbW2vyFrYnPCSCD+9VbzCWrlKKnLlzKMt//vAFuextKVejLJbZspKUnIy3x6+ZqOtX+pax3f9LpOH1G504cQIbG8VFtpGREQULFmTv3r1Ur149zTTv2bNn59ixY4waNYpixYphbm5Or169VBohc+bMITk5mS5duhAREUHp0qU5efIkZmaK7ke2trbs37+f4cOHs2zZMsqWLYuLiws9e/b86brMmDGDrFmzMnv2bF6/fo2pqSklS5Zk/PjxAGhrazNu3Dg8PT3R09OjSpUq7Nq1S1l3V1dX3N3d0dDQoEyZMhw7dkx5obhhwwZ69epFqVKlKFCgAK6urt80Buxrx/Sz8jjmZfLu1Fklu05WNHAv7j3H6pFfflbTJ1a21hiZGX9zmcnJyWTLm52qrcdgZGZMZGgEHg/dmdZmfJqZE3Pkt6V8o0qMa5D6PKubx67hUKEIU/a68P71O5YP+f4HjeZ2tGfC7tQxH50mK94/l/eeY+OEteQsmIsqrWqgb6xPiH8ITy4/YN+Cncpp3wEs/1bv2l3qAzBhT2rdAdaOWMblfYpxACc3HEFLR4tOk3pgaGqIt5sncztN44O36h3JHPltKdeoIhMbjFCuu33sOoUqFGHi3pn4vn7PyiFffw7Ok+fu9Byc+gPqukxxcdWsQW1mTRxBz05tiImJZarrUiIiIynpWJjVC2ago5Pa+Jk7ZTSzFq6k15BxqKurUbt6JcYPS+0ml5iYxBtvH2JiU8cVjhnSD3V1dYZNmElCQgIVy5Zi0shBynQNDQ1WzJvKjHnL6dzPGT09HZo2qI1T7y5p6rByw3aqViyjjMoBjBs+gNFT59J90Cga1a1Bneppp8v/XOUuis+a027VcV07Rq7i9j7FDKEHZ2whJTmZ7qucFTMcXnrEvkl/qOS3ss+unDHtk5JNKqKmpvbTjaIKHWsRERjGs3P3lOtOLt5HlyWDGX5wJs8vPuTKlvTHaXyrFZNW0m1kVwbPGoSphSlB/kEc236cbYtTGwXmVuZYZk/tmnR672n0DfRo2q0pfSf1ISo8igdXH7J+duq50dLVpvuortjY2hATHcOtc7eZO2weUek8gmHYnKGsmb6W2I+Ny/jYeOY7L8Bp5iC0tLVYPmklQd/wvMAvKd5V0WW53V7VG1wnnNfwdN9lkhOTONBtHlXGtqP5hhFoG+gQ4unPcec1vDmfGuU3tbVEz9xI+beVYx7a7Ukdt1ljiuKZa0/2XuLkCMVn64jTcqqMaUfDpQPQNTUkwieQq657ebhNtZeAvoUx5ZyasbPlNOU6v4evubPuGC02jSQ6MJwTzl9+vmJmsM5upRL5y2plwfbTqbPQdRnQgS4DOnD32n36tx4KgJmFGVOXjsfCMguREVG8cvNgcMeR3LqkOs2+uYUZPYZ2oVfT1OcIPnvgxvY1u1m0ZS4hQaFMHery03Uo20XRPbTnbtXxcAdGruHBvkskxiWQq0wBKvSoj66JAVGBYXjees66VtOICgpPrbt9NuUMmACGlmbUn9gZAwsTIj+E8uDAZS4u+1OZnpSQiH3lIlToWR8tfR3C3wfz7PhtLi4/mOYY81YtShY7Kw4MX6Vcd3PzKbIVzU3fg9N599CDC0sOpNnuezx/+IIJvafQb2wvug3rgt9bX5ZNWcnpP1Pfe1mssqh0PdTU0mLg5P5ktbYgNjYOD7fXOLcfzf1rD5R5ChQroPKQ5cFTFa/n8T0nmT08dXyqtq42w2YNZuqAGcqhFQG+gSyetJyxC0eREJ+Ay7C56c7uKv5b1FI+HzwjhEijQ67mv/sQfgvN/9EhoBvuzv/dh/BbjC6dOTck/mueJoX+7kP4LeqpWfzuQ/gtdiV6fz3T/0MNtHN+PdP/QxcS0h8r+f/dpXeZP6ThR0WOafmP7ctw7s81wP8J/5tXVkIIIYQQQgjxD5KuhkIIIYQQQojM9x+ZbfCfIhEvIYQQQgghhPjFJOIlhBBCCCGEyHwpMqvh5yTiJYQQQgghhBC/mES8hBBCCCGEEJlPxnipkIiXEEIIIYQQQvxiEvESQgghhBBCZLoUiXipkIiXEEIIIYQQQvxiEvESQgghhBBCZD6JeKmQiJcQQgghhBBC/GIS8RJCCCGEEEJkvmR5jtfnJOIlhBBCCCGEEL+YRLyEEEIIIYQQmU/GeKmQiJcQQgghhBBC/GLS8BJCCCGEEEKIX0y6GgohhBBCCCEyn3Q1VCERLyGEEEIIIYT4xSTiJYQQQgghhMh0KSkS8fqcRLyEEEIIIYQQ4heTiJcQQgghhBAi88kYLxUS8RJCCCGEEEKIX0wiXkIIIYQQQojMJxEvFRLxEkIIIYQQQohfTCJeQgghhBBCiEyXIhEvFdLwEuIrDgc8/N2H8FsUM8v9uw/htxhdevzvPoTfwvWOy+8+hN/inuPI330Iv0VYUuLvPoTf4pWe9e8+hN/C5f2F330Iv0UVS4fffQhCqJCGlxBCCCGEECLzScRLhYzxEkIIIYQQQohfTCJeQgghhBBCiMyX/LsP4N9FIl5CCCGEEEII8YtJxEsIIYQQQgiR6WRWQ1US8RJCCCGEEEKIX0wiXkIIIYQQQojMJxEvFRLxEkIIIYQQQohfTBpeQgghhBBCCPGLScNLCCGEEEIIkfmS/8HlO61YsQI7Ozt0dXUpV64ct27d+mL+0NBQBg0ahI2NDTo6OuTPn59jx4591z5ljJcQQgghhBDif8bu3btxdnZm9erVlCtXjsWLF1OvXj1evHiBpaVlmvzx8fHUqVMHS0tL9u3bR/bs2fHy8sLU1PS79isNLyGEEEIIIUSm+7dOJ79w4UL69OlDjx49AFi9ejVHjx5lw4YNjB07Nk3+DRs2EBwczLVr19DS0gLAzs7uu/crXQ2FEEIIIYQQ/2lxcXGEh4erLHFxcWnyxcfHc/fuXWrXrq1cp66uTu3atbl+/Xq6ZR86dIgKFSowaNAgrKysKFKkCC4uLiQlJX3XMUrDSwghhBBCCJH5/sExXrNnz8bExERlmT17dppDCgwMJCkpCSsrK5X1VlZW+Pn5pVuN169fs2/fPpKSkjh27BiTJk1iwYIFzJw587tOh3Q1FEIIIYQQQvynjRs3DmdnZ5V1Ojo6mVJ2cnIylpaWrF27Fg0NDUqVKsW7d++YN28eU6ZM+eZypOElhBBCCCGEyHT/5BgvHR2db2poWVhYoKGhgb+/v8p6f39/rK2t093GxsYGLS0tNDQ0lOsKFSqEn58f8fHxaGtrf9MxSldDIYQQQgghxP8EbW1tSpUqxdmzZ5XrkpOTOXv2LBUqVEh3m0qVKvHq1SuSk1PnrX/58iU2Njbf3OgCaXgJIYQQQgghfoV/6XO8nJ2dWbduHZs3b8bNzY0BAwYQFRWlnOWwa9eujBs3Tpl/wIABBAcHM3ToUF6+fMnRo0dxcXFh0KBB37Vf6WoohBBCCCGE+J/Rrl07AgICmDx5Mn5+fhQvXpwTJ04oJ9zw9vZGXT01PpUzZ05OnjzJ8OHDcXR0JHv27AwdOpQxY8Z8136l4SWEEEIIIYTIdCnfGYn6Jzk5OeHk5JRu2oULF9Ksq1ChAjdu3PipfUpXQyGEEEIIIYT4xSTiJYQQQgghhMh8/+KI1+8gEa9/MTU1NQ4ePJhhup2dHYsXL87UfVavXp1hw4b91HF9burUqRQvXvynj0sIIYQQQoj/Mml4/UYBAQEMGDAAW1tbdHR0sLa2pl69ely9evWbtr99+zZ9+/b9prxTp05FTU3ti8u38vX1pUGDBt+c/3+NgYE+CxZO44X7NQKC3Lhz9xS9enf84jaFCuVj+46VPHW7TGT0GwYO6pEmz6e0vy8LF01X5pk9ZwLePvd5/vIqbds1U9m+RYuG7Nm3PnMq+Zmezt24+u6cyrLj4qYM8y/buzBN/qvvzjFvi4tKmTsubuKM+1GOP/2Lxbvm4VCioDJdS1uLSUvHcer5YXZe3kzpKiVV9tGxfzuGzxicqfWsNbAZw/+axewnG5l+Zw09144gax4blTyaOlq0mt6DmffXMefpJrqvGo6hhckXy13kuSvdpUbfxmnyamhrMvLYHBZ57iKbQy7lerMcWXHaPYU5zzbhtHsKZjmyqmzX+4/RONYv+031vPPgMYNGT6FG004UqdSAs5euqaSnpKSwfN0WqjftSKkazeg9dBxeb9+p5AkLj2DM1LmUq9OSCvVaM2n2IqKjY76437i4eGYuWEGlBm0pU7sFw8bPJDA4RCWPr98HBoycTOmazanaqD3zl68nMTFJme728hWtuw+iTO0WDBo9hbDwCGVaYmISbXsO5vGzF990Hj5n49SCcu8PYDutp3Kd3dz+FLu2kjIeOyn5eCP5N45FN2/2r5almzc7+TeNo9TzrZR+tYPCx1zRzm6hTNfKaor90iGUePAHpV/toMjJ+Zg1LK9MV9PWxH7pEEq/2Ibj5eUYV3FUPdYBzcg1s/d31/GTHN3qUOH8XGq+2kDNVxsoe3Q6FjWLK9P1cllRbKMz1Z+upearDTiuHYp21i+/x3MPaUa5E7Oo6bGR6k/XUHzTCPTtbdLkMymdj9L7J1LrzSZqvtpAmYNTUNfVUta7yPJB1Hy1gUrXFmFetYjKtnYDG1PQpfsP1ztv2UIMWD+G2TdXs8pzD8XqllFJ19HXod20nrhcX8WS59uYfHohVTrV+WKZxeuVZeyh2Sx4tJHFz7Yw/pgrZVtUUcljZGFC1/kDmX1zNUvctuK0eTxZ7VSfI9RqYlfmP9jArGsrKdOsskpayYblGbD++wb3p6d58wYcP7oDf98nJMa/o1ixwmny9O7VibOn9xIc+JzE+HeYmBh/1z5GjxpEYvw7FsyfprJeR0eHpUtm4e/7hNDgl+zZvRZLy9TPhJmZKQf/3ERo8Etu3zpJ8eKqx7Z0ySyGD+v3Xcfydzuvb+W8z+k0y9CZX/8dqdG0Oud9TjNj/VSV9br6ugyZ6cSe2zs48eoIG8+tp0ln1e/1gZP78deT/ey+tZ3aLWqqpFVrVJVZG6fzX5eS/M8t/wXS1fA3atWqFfHx8WzevJk8efLg7+/P2bNnCQoK+qbts2bN+vVMH40cOZL+/fsr/y5Tpgx9+/alT58+333cGT1cTijMmTuRqtUq0LvncLy8fKhVuyqLFk/H1/cDx46eSXcbPX093rx5y58HjjHHdVK6eapVaYa6Ruq9EgeHAhw5uo0/DxwFoEHDWrRt14xmTbuS196OlatdOXvmEkFBIRgbGzF56kiaNOqc+RUGXj9/w9D2I5V/J312Mfx34/tMQUsr9avHxMyETafXcf7IReW6t6/fsnDiUt57+aKjq0O7Pq1YtMOVdpW6EBocRrNOjSlQNB/9mg6mfI2yTF0+gcbFWgFgk9OaJp0a0qvBgEyto325QlzZeoq3Dz1Q11Sn0aj29N8ynrl1RhIfEwdA80ldcahRgk0DFxMbEU2r6T3oudqZpa0zfqr95DKqFwyFqhen3dx+PDp+K03epuM6EeYfQnYHO5X1zSZ0Jsw/mF1j1tBwZDuaje/MpoGLACjeuAIpyck8OpG2vPTExMRSIG8eWjSqy7DxM9Okb9i+l+37DjFr4giy21izfN0W+jlP5K9ta9DRUTzLZMw0VwICg1m32IXExEQmuixiqutSXKdmfIE4d+kaLl2/zcKZ4zE0MMBl4UqGjZ/JttULAEhKSmLgqClkMTdj2+oFBAQFM37mfDQ1NRnWvzsAU+YsoVyp4syfPo4pc5awdssuRjkpvuM279pP8aIOFHUo8E3n4RODYnmx7FyXqKeeKuujHnkQdOASce8C0DQzIseIdhTcOZkH5QZAcvpXADq5rHA46ELArjP4zN9FUkQ0egVsSY5NUOaxXzoEDWMDXnafTWJwBFlaVCHfmhE8aTCa6CdvsOxcFwNHe542GYdJzZLkXTGce46KGzU6OS3J2rEOTxuM+q46fi7ONwj3mTuJfu0Hampka1eV4ptHcr32WGLfBlBqz3ginnpxp/UMAPKOaUuJraO42WASpKT/oFSzCoV4u/EUYQ88UNNQJ9/49pTaPZ5rVUeSFK347JiUzkfJneN4s/QgbuM3kZKYhFHhXMqHr+boUgtjx9zcbDQZi5rFcVw1mAuFFZ8dPdusZO9cixt1x/9wvXX0dXjn5sm1vefovybt+Ws1sRsFKhZh4/BlBPkE4FDFkfYzehPmH8yjM3fTLTMqLJLjKw7g/+o9iQmJFK1Vkq7zBhIRFI7bpYcA9F87iqSERFb3mUdsZDS1ejdm6LZJTK/jTHxMHEVrlaJMs8os7TITy9w2dHEdwLNLD4kKiUDXSI+mI9uzpPOMH673JwYG+ly9dou9+w6zds38dPPo6+tx8tQFTp66gMus7zvXpUsVo0/vzjx89CxN2oL5U2nYoBbtO/QjLCycpUtmsW/PeqpWbw7A+LFDMDI0oEy5+vTv25XVq+ZRvkJDAMqVLUnZsiUYNjz9381v1b+Rk8rva+4CdizY5cqFoxe/sBVY5bBiwKS+PLzxKE3aoCn9KVGpOLOGzMHvrT9lqpVi2KwhBPkHce30dSrULk+t5jUZ1XEcOXJnZ/SCEdy6cIfwkHAMjPTpNaYHI9uP/ql6iX8fiXj9JqGhoVy+fJm5c+dSo0YNcuXKRdmyZRk3bhxNmzZNd5spU6ZgY2PDo0eKD/jfuxqqqamxfv16WrRogb6+Pvny5ePQoUMAGBoaYm1trVw0NDQwMjJSWfdJcnIyo0ePxtzcHGtra6ZOnapyHH/vaujj40OHDh0wNzfHwMCA0qVLc/PmzXTr4OHhQZ48eXByciIlJYVNmzZhamrKyZMnKVSoEIaGhtSvXx9fX1+V7davX0+hQoXQ1dWlYMGCrFy5UpkWHx+Pk5MTNjY26OrqkitXLmbPng0o7s5PnTpVGVXMli0bQ4YM+fKL85PKlSvJju0HuHz5Jt7e79i4YSePH7tRunSxDLe5d/cREyfMZt++I8TFxaebJzAwmA/+gcqlQYOaeHh4cvmy4lwXKJCXy5ducP/eY/buPUxEeCS57HICMHPWWNav24aPz/vMrzCKi+LggBDlEhYSnmHeiNAIlbxlqpYiLiaWc4dTf+BOHzzHncv3eO/ty5uXniydtgpDY0PsHfIAkCufLVdOXefNS0/2bz6ImYUZpuaKu+4jZw9j1ax1REdGZ2od13abw+19F/Fz9+G9mzc7Rq7CPEdWchTNDYCukR7l2tbgr5lbeXX9KT5P3rBz1Gpyly5ArhJ5Mz4fAWEqS5E6pXl1/RlBbz+o5CtYvTgFqjhyaNa2NGVY5c3O7f2XCPT049a+i1jlzaY4JmN9Go5oy/7JG7+5nlUqlGFI327UrlYpTVpKSgpb9xykb7f21KxSgQJ5c+MyaSQfAoM4e1kRGfPw9ObKjTtMGzsUx8IFKVmsCOOHD+D4mYt8CEj/plJEZBQHjpxi9OA+lCtVnMIF8zFjgjMPHj/j4RM3AK7duoeHpzdzpoyiYH57qlQog1Pvruw6cJiEBEXD5bXnW1o1rY+dbQ4a1KnGa8+3ALx958uBI6cY2rfbN58HAHV9XeyXD+PNqFUkhUWqpAVsP03EzWfE+wQQ/fg1b+fuQCd7VnRyZnxDLOfYToSdu8vbmVuJfvKGOC9/Qk/dJjEoTJnHsHQB/DccI+rBK+K8/Xm/ZB+JYdEYONoDoJc3ByGnbhPz8i3+m46jZWGCprki8mA3px9vZ20lKfLL0cUvCTh1j8CzD4h+40f0a19ezd5NUlQspqXyYVqmAHo5s/JkyCoi3d4S6faWJ4NXYlwsD+ZV0kZIPrnXYQ7vd18k6oUPkc+8eTJ0FXo5s2LsmFuZp8D0rnivP4HnskNEvfAh2sMX/0M3SIlPVJyXfNkJOHWXqBc+vN14Em0LE7SyGAFQaG4v3Gfs+Kl6P73wgEMLdvPw5O100+1L5efG/ou433hGsE8AV3ae5Z2bF3bFMv5su994xsOTt/HzeEegtz/nNx7n3XMv8pZWRO8tc9uQp2R+dk5cj9cjD/xf+7Jzwnq0dbUp01Tx+bPOmx33G0/xfvyaO4euEhsRjUVOSwBajuvMpe2nCXn/bTdrv2T79v3MnLWYs+cuZ5hn6bL1uM5bwc2b976rbAMDfbZsWU7/AaMJDQlVSTM2NqJnj/aMHD2N8xeucu/+Y3r1GU7FimUoV1bRk6Fgwbzs3nMId/fXrPtjG4UK5gNAU1OTFSvmMGjQWJWH2v6IsOAwQgJClEuF2uV55/mOh9fTNqg+UVdXZ+KycWxasAVfb7806YVLOXBy72keXn+Ev48/R7Yfw+OZBwWLK27+5Mpny4PrD3n56CXn/jpPVEQ0NraKa7F+E/pwaMthPrwP+Kl6/Sv8S5/j9btIw+s3MTQ0xNDQkIMHDxIXF/fFvCkpKQwePJgtW7Zw+fJlHB0dM8w7bdo02rZty6NHj2jYsCGdOnUiODj4u45t8+bNGBgYcPPmTVxdXZk+fTqnT59ON29kZCTVqlXj3bt3HDp0iIcPHzJ69Oh0vwQfPXpE5cqV6dixI8uXL1d2b4yOjmb+/Pls3bqVS5cu4e3tzciRqdGT7du3M3nyZGbNmoWbmxsuLi5MmjSJzZs3A7B06VIOHTrEnj17ePHiBdu3b8fOzg6A/fv3s2jRItasWYO7uzsHDx6kaNGi33U+vtfNm/do2KgWNtkUz4KoWrU8efPm5uyZjH/QvpeWlhbt2zdn65a9ynWPH7tRomRRTE2NKV6iCLp6Orz28KRChdIUK16YVSs3Zdr+/y5H7uz8dXcPe65tY8qy8Vhls/zmbRu3b8CZv84TGxObbrqmlibNOjUmIiySV089AHj1zAPHskXQ1tWmXLUyBPoFEhocRt0WtYiPi+fSiSuZUq8v0TPSByA6VHFBnqNIHjS1NXlx9bEyzweP9wT7BGBXMv83lWloYYJDjRLc3H0+zfp2s/uwffgK4mPTNszfu3mRv1JR1NTUKFjFkffPvQFFhOzK1lOE+v78hRmAz3s/AoNCqFC6hHKdkaEBjg4FePjkOQAPn7hhbGRIkUKpdS5fugTq6mo8evY83XKfvXAnMTGR8p+VmydXTmysLFXKzZfHDgtzM2WeSuVKERkVzas3XgAUyJub67fukZiYxM07D8hvr7iwnz5vGc4De2JgoP9d9bVz6UPo2buEX8744gtAXU+HrO1qEuvlR3xGF8FqapjWKkXMa18K7JhEyUcbKXxkDmZ/6wIaeecF5k0roWFqCGpqmDerhLquFuHXngAQ/cwTo7KFUNPVxrR6ceL9gkkMDidLi6okx8UTciL9m14/RF0N6+YV0NDXIfTOS9R1NElJSSE5PjVClxSXQEpyCmZlC36hIFWaHz87CR8/O9oWxpiWykd8YBhlj0yn2pPVlP5zMqZlU6OTEU+9MC1bAHVdLbLUKEasXzAJQRFYt6pEclwCH46n32DKLB53X+JYuxQmVor3X/4KhbHMbcOzr7w3PlegYhGs8mTD/ZYi6qOprYj8J8Slns+UlBQS4hOwL6M4nz5uXtgWtUff2ADbIrnR0tUmwNMP+9IFyFk4N+c3HsusKv4yy5a6cPzY2XQbdaVKOqKtrc3Zs6lpL1544OXlQ/nypQB49PgZNWpUQkNDg7p1qvP4seJmzKiRA7l48Tp37337a/AtNLU0qdOyFsd3nfxivq7DOxMSFMKxXSfSTX969xkV61TAwjoLAMUrFiNHnhzcuaSIkHo8e02BYvkxNDEkf9F86Ohq887zPUXKFCZfkXwc2HAwU+sl/h2kq+FvoqmpyaZNm+jTpw+rV6+mZMmSVKtWjfbt26s0rBITE+ncuTP379/nypUrZM/+5TEE3bt3p0OHDgC4uLiwdOlSbt26Rf369b/52BwdHZkyRdE1Kl++fCxfvpyzZ89Sp07a/uw7duwgICCA27dvY25uDkDevGnvAF67do3GjRszYcIERowYoZKWkJDA6tWrsbdX3NF1cnJi+vTUfs1TpkxhwYIFtGzZEoDcuXPz7Nkz1qxZQ7du3fD29iZfvnxUrlwZNTU1cuVKHfvi7e2NtbU1tWvXRktLC1tbW8qW/baxLj9qhPNUli13wf3VDRISEkhOTsZp0HiuXv22rl7fokmTupiYGrNt2z7lurNnLrF710EuXv6L2JhY+vUdSVRUDIuXzKBfv1H06duZfv27ERQUzBCn8bi5uWfKsTy778as4a54e7wli6U5PZ27sfLPJXSp2ZPoqC/fgS5UvCD2hfIwe2Tari0Va5dn2spJ6OrpEOQfzLAOo5SRtCO7jmNfKA/bz28kLDiMSf2nY2RqRO+RPXBqM5w+o3tSu2kN3nm9x2XEPAL9AjOlrp+oqanRfHI3Xt9+jt9LHwCMs5qSGJdAbLhqpC0iMAyjrKbfVG7ZVlWJjYrl0UnV90rH+QO4tv0Mbx+/TjN+C+DQrG20cenDpCvLeP/cm73j15GnbEGyO9hxZM4Oui0fSk7HPLy4/IgDUzeRlJBxV9Av+TTmKstnjZ9PfwcGKdICg0IwN1Ud86OpqYGJkVGaMVvKcoNC0NLSxNjI8G/lmhL48cZRYHAIWcxN06R/2h5g2thhzFywnE07D1DC0YE+Xdty6MRZ9HR1KVIoP32HT+DtO18a1K7GkK9Ev8ybVcKgaB6eNMy4q49lt/rYTuyChoEeMa98eN5+GikJienm1bIwQcNQj2xOLfCZu4O3s7ZiUqME+daPxq31ZCJuKC7G3fvNJ+/qEZR+toXkhESSY+Jw7zWXOE/FHfWAXWfRd8iF44UlJAZH4N5/PhqmhuQY1R631pPIMboDWZpVJtbLj9fOK0jw+74bbwCGhXJS9ugM1HW0SIqK5UGPBUS9fEd8UDhJ0XHkn9QRd5ddqKmpkW9iB9Q1NdC2Mv22wtXUKDizGyE3nxP5XPHZ0culuFFjP7I1L6dtI+KJF9naVqX0volcqzaK6Dd+vNt5AUMHWypdXkB8UASP+ixB09SAvKPbcrvFdPKObYt184pEe/rzdNhq4vzSf6/9qD1TN9Bpdj/m3FxDUkIiyckpbB+3hle33L64na6RHrNvrEFLW5Pk5GR2TvyD51cUN2f8PN4T5BNA89Ed2TF+LXExsdTq1RjzbBaYWJoC4HbpIbcOXmbModkkxMazeeQK4mJi6TCzD1tGrqBq57rU6NaAyJBwto9bi6+7T6bW+2e1bduUEiWKUL5Co3TTrayzEhcXR1iYai+JDx8CsLZWfNfNdV3BiuWzefn8Gl5eb+nTbwR58+amS5c2VK7SlBXL51CndlXu3ntEv/6jCP9sbOePqFyvIobGhpzYeyrDPEXKFKZh+/r0rts/wzxLJ61gxNxh7L2zi8SERJKTk1kwehGPbipe/9sX73D6wFlWH11OXGw8c4bPIzY6luGzhzJ3+Dyadm1Cix7NCA8OZ8GYRXi+9Pqpev0u/5WxV/8UaXj9Rq1ataJRo0ZcvnyZGzducPz4cVxdXVm/fj3du3cHYPjw4ejo6HDjxg0sLCy+XCCoNNoMDAwwNjbmw4cPX9jiy2UA2NjYZFjGgwcPKFGihLLRlR5vb2/q1KnDrFmz0p0xUV9fX9no+vv+oqKi8PDwoFevXirj0RITEzExUVzcde/enTp16lCgQAHq169P48aNqVu3LgBt2rRh8eLF5MmTh/r169OwYUOaNGmCpmb6b/24uLg0EciUlJQMJx9p264ZS5fNUv7dsnkPSpcpTpmyJWjTujfe3u+oXLksCxdNw9fXnwvnv23ilK/p2q0tp05dxM9X9XVxmbUEl1lLlH+PGz+E8+evkpCQyOgxTpQrU5/6DWqydv0CqlRKv0vr97pxPrWR4OH2mmf33dh/cyc1m1TnyK7jX9y2cYcGvHrmgduDtJGQe1cf0L1uH0zNTWjSsREzVk+mT+NBhAaFkpSYxMIJS1Xyj184mr0bDpC/cD6q1qtEtzp96DSwHcOnOzGh79RMqesnrWb0xKZAzi+O3foRZdtW597BKyR+dge8Svf66BjocmblwQy3C/MPYX0vV+XfGtqa9Nsynh0jVlJncEtio2JxqelMv83jqNixNpc3f/lO7n9V3jy52LRinvLv0LBwVv6xjU0rXHFZuIriRR1Y7DKJ9r2H4OhQgOqVy6dbjna2LNhN74Vb+2mkfPZa/F3QgUuEXXqItqUZNgOakW/NSJ42G5/+NuqK75CQk7fwW3cEgOinnhiVLohl13rKhleO0R3RNDbAre0UEoMjMKtflryrR/KsxQRinnuTkpiE5/h1KkXnWeSE3x9H0S+SB7P65Xhc2xmbQc2xm9EL9z7z+F5Rr95zveYYNI31sWpSjiJLB3K7xTSiXr7jUe/FFHLthW3v+qQkp+D35zXCH76G5PTHd/1doTk9MSyQk1tNP/vsqCk63/hsPcv7XYouxy+eeGJepTDZOlbn1axdpCQm8XzcRp6PS+02W3hxf7zXn8C4qB2WDcpwveYY7AY1oeCs7jzstei76/0l1bs1IHfxfKzsNZfgdwHkLVuI9tN7EeYfwvPPotx/FxcZi0vDUegY6FKgYlFaT+pK4Ft/3G88IzkxibX959PZdQALHm0kKTGJ51cf8+T8PZXfnKOL93J0cWrvhkZDW/P86mOSEpNoMLgVM+uNoGitUnRf6MTsJmO/WpcOHVqwasVc5d+Nm3TmSibeGPwkR45sLFownfoNO3y1Z8+XhIdH0KWr6kNuT5/cw5ixM+jYoQV5ctviUKQqa1bPY9KE4Ywa83MTUjRs34Cb528R5J9+9FrPQI/xS8Ywf/Qiwr/Qrb5Fj2YUKlmI8d0n4f/OH8dyjgydNZhA/yDuXbkPwOaFW9m8cKtym67DO3P38j0SExPpMqQjPWv3pULt8oxbPJp+DQf9VL3Ev4N0NfzNdHV1qVOnDpMmTeLatWt0795dGW0CqFOnDu/evePkyW+7UNLS0lL5W01N7bv7Pn9PGXp6el8tL2vWrJQtW5adO3cSHp72Syq9/aV8HKQdGanoirJu3ToePHigXJ48eaJ8enjJkiV58+YNM2bMICYmhrZt29K6dWsAcubMyYsXL1i5ciV6enoMHDiQqlWrKseE/N3s2bMxMTFRWRISQzOs27GjZ6hYvpFyuXfvEVOnjWTc2JkcP3aWp0+es2b1FvbvP8rQYd8/kUl6cubMTo2aldi8afcX8+XPn4d27ZszY/pCqlYpz9UrtwgMDObA/qOUKFEUQ0ODTDmev4sMj+Ltax9y2H05Oqurp0vtpjUybJzFxsTyzvM9T++5MWfkfJKSkmjSIf3ZNEtWLE7u/Hbs33iQEhWLcf3cTWI/jhsrUTHjsXU/ouW0HjjULMmK9tMJ+yyaEB4QiqaOFrrGqt3ZjCxMiAgI/Wq5ecoUxMo+Ozd2n1NZn69iYexK5mfey23Mf7WdCRcWA+B8yIWOC9KfQKTOoOa8uPwInydvyFvegUfHb5KcmMSjE7ewL+/wfRX+zKdufkF/i1wFBYdgkUWRZpHFjODQMJX0xMQkwiIiVLoJqpSbxYyEhETCI1THUQUFh2Lx8aaOhbkZQcGhadI/bZ8e16Vr6dy2OdaWWbl9/xH1alRGX0+XqhXKcvt+xhfLBo72aGU1pejJ+ZT13ktZ770YVyyCda+GlPXeC+qKn86kiGji3vgScfMZ7n3moZs3O+YNyqVbZmJwBMkJicS8VI1IxLj7oJNdcWdfJ5cV1j0b8tp5BeFXHhP9zJN3C/cQ9egVVt3Tf+8bVyyCXv6c+G88jnGFwoSeu0tyTBzBh65hVKFIutt8TUpCEjGe/kQ8esOrWbuIeOaFbR/F/oMuPuJKuaFcKNyPC4X68MRpBTo25sR4+X+13IIuPchapyR3Wk0nzjf1sxP/QfF+inqhem6i3N+jlz39G45mlRwwLJgD7z9OYFbRgYAz90mKjsPv0A3MKv74ezw9WjpaNBvVgX0zN/P47F3ePffm4paT3D1yjdp9m3xx25SUFAK8/PF55sXZ9Ue4f+wG9Qc2V6Z7P3mDS8PRDC/ajbFl+7K8mwsGZkYEeqd/s9PKPhtlm1fh8IJd5C9fmFc33YgMjuDukevYFs2DjoHuV+tz+PApSpWpq1zu3M3crnqflCxZFCurrNy+eYLYaC9io72oVq0ig516Ehvthbq6Ov5+Aejo6KSZIdHSMit+fumPb+rWtS2hYWEcPnyKatUq8NehkyQmJrJ//xGqVqvwU8dsld2SklVKcGxnxjcNs+XKho2tDS4bZ3DG8wRnPE9Qt3VtKtatwBnPE2TLZYO2rja9x/Rk1bTVXD9zg9dubzi46S/OH75Iu/5t0i03p31O6rSszYZ5myheoRiPbj4mLDiMC4cvkt8xP3oGX7/eEv9+EvH6l3FwcFCZuKJp06Y0adKEjh07oqGhQfv27X/fwaXD0dGR9evXExwcnGHUS09PjyNHjtCwYUPq1avHqVOnMDIy+qbyraysyJYtG69fv6ZTp04Z5jM2NqZdu3a0a9eO1q1bU79+feUx6enp0aRJE5o0acKgQYMoWLAgjx8/pmTJkmnKGTduHM7OzirrbKwyHlMXGRlFZGSU8m8jI0O0tbXTNFSTk5JQV8uc+xxdurYmICCIE8fPfTHf0mUujBs7i6ioaNQ11JUzCX76V0Pj19x30dPXJXuubJzYn/64wE9qNqmGlrY2Jw+kP9Pj36mrqaOlrZ1mvbaOFs6zhjDNyYXk5GTU1dVR01LcLdbU0kBdXeP7K5GBltN6ULReGVa0n06wj+pFgc+T1yTGJ5K/YhHlDIJZ89hgniMrnvdefrXscu1q8PaRB+/dvFXWH5i6iWPzUxvZJlbm9N86ni1OS/B68CpNOZb22SjZtBLzGyrufKtpqKOhpTgHGloaKjN3fa8c2ayxyGLGjbsPKJhfEaWOjIri0bMXtG2h6EpUrEghwiMiefrcncIfB8HfvPuA5OQUHB3SHwfkUCAfmpqa3LzzgDo1FNNlv/Hywdf/A8WKFFSWu3bLboJCQsliZgrA9dv3MDTQx97ONk2ZN+7c57XXW2ZOUHyek5OTSfg422ZiYvrdAT8Ju/yIRzWGqazLs8iJ2Fc+vF9xMP1ZC9UANTXUtLXSpgEpCYlEPXyFnn02lfW6ebIR56O4yFbX01Hk/Vv5KUnJqKmnjbqr6Whh59KHV06LITkZNQ11+BgpUdPSUPydCdTU1VD/W70SghXducwrF0bbwpgPJ9Of2e+Tgi49sGxYhjstphPjrfrZifEOINY3GP28qudGP481gecepilLXUeLQrN78njgckhOQU1DXRkhUtfMvHp/oqGliaa2pvKG4CfJycnf9SgWADV1dTTTeY/ERii6ZWe1syZXUXsOL0j/xlpHl77sm7mFuOi4NJ9t4Js+33//3fpVzp27QrESqlOkr1+3kBcvPJg3fwXJycncvfeI+Ph4ataszJ9/Ksar5c9vT65cObhxI+17ysLCnIkThlOtRgsANDQ0lL9pmlqaaGj83Pd9/Xb1CA0M5frZjMdKent406OW6o3UXqO6o2+oz7IpK/nwPgBtHW20tLVI/vt7JikJtQyuBUbMHcbKaauJjY5FXf3HXtt/I+lqqEoaXr9JUFAQbdq0oWfPnjg6OmJkZMSdO3dwdXWlWbO/P3+pBVu3bqVLly5oamoqozn/Bh06dMDFxYXmzZsze/ZsbGxsuH//PtmyZaNChdQ7TwYGBhw9epQGDRrQoEEDTpw4gaGh4RdKTjVt2jSGDBmCiYkJ9evXJy4ujjt37hASEoKzszMLFy7ExsaGEiVKoK6uzt69e7G2tsbU1JRNmzaRlJREuXLl0NfXZ9u2bejp6amMA/ucjo4OOjo6Kuu+54c1IiKSy5duMGvWOGJjYhVdDauUo0PHlowbmzo199p1C3j/3o+pUxTdgLS0tChYSDE2Tltbi2zZrCnqWIioyGhev07t162mpkbnLm3Yvm0/SUkZj9Pp3qM9gYHBHD92FoAbN+4yfsJQypQpTt161XF79pKwsJ/rB//JoEn9uXr6Gn4+/lhYW9B7RDeSkpM5c1DRMJy4ZCyBvoGsnqP6DLHG7Rtw+eSVNF01dPV06Ta0E1dOXSPQPxhTc2Nadm+OhbWFypTzyroO68L1c7dwf6pohDy+84RBE/tzdPcJWnVvzuM7TzKlnq1m9KRUs0r80Wc+cVExGH18dlFseDQJcQnERsRwc895mk3sQnRYJLERMbSc1oM3d1/idT+1gTT27AKOuu7i8Wezp+kY6lGsYbl0ZywM/dtkDXEfp98O9PZXibh90m52Xw7O2Kqc4v7NnReUb1+LD699KdOyKvcOfbm7a3R0DN6fzX757r0/z196YGJshI21JV3aNmft5l3kypGd7NmsWL5uK5YWWahVpSIA9na2VC5fmqlzlzB51GASEhNxWbSKBrWrYZlVMcjcPyCQ3kPG4TJpJEUdCmBkaEDLxnVxXbYOE2MjDAz0cVm0imJFClGsSCEAKpYtib2dLeOmz8N5YC+CgkNYtnYL7Vs2QftvDfK4uHhmLVzFvKljUP8YnSpR1IFdBw7TvmUTTl+8yujBGT8DMTkqlpgXqg3g5OhYEkIiiXnhjY6tFVmaViL04gMSg8PRtslCNqeWJMfEE3o2dcY3x0tLeeuyXTnhhe/Kv8i72pnwG88Iv/YE0xolMKtTmmetFVNhx756R+zr9+R27Y/39M0khkRgVr8cJlWL8aKrC3+XfVgbQs/dI/rJGwAibj/HdlI3Anafw6pHQyJupz+ZyZfkndCeoLMPiHkXhKahLtYtK2FW0YHX7RQzxWZrX40o93fEB0ZgWjofBWZ2w2vNMaI9UmeiLbVvIh+O3ebtBkVPjUJzemLdshIPus0nMTJG+dyvxIho5VT6nisPYz+qDZFPvQh/4km2dtUwyJudh70WpznGPM4tCTz7gIgnngCE3npB/smdeLfrAjl71SP01vc/q01HX0fl+VlZclqSwyEXUaGRhLwP4uWNp7Qc15n42HiCfQLIV96Bci2rsX/mZuU23RYMItQ/mL9cdwJQb2BzvB55EOjlj6a2FoVrlKBciyrsnJj6XViyYXkigsMJeRdItoK2tJ3SnYenbuOWzqQdldrXIjIonMdnP07OcOc5jYe2IXeJfBSuXpz3L98SE/5js7mamZlia5udbDaKSaHyf7yx4uf3AX9/RUPZyior1taW2NvbAVC0SEEiIqPw9n5HyMfZCk+d2M3Bv46zctUmIiOjePpU9bWIjoomKChEuT48PIING3cx33UKIcGhhIdHsGTxTK5fv8PNW2lnT1y4YBqLFq/h/XvFmMdr127TqVMrTp+5SJ9enbh27ccnWVFTU6N+23qc3Hea5CTV1sK4xaMJ8Atk/ZwNJMQl4PnCUyU9MlzRkP20PjEhkQfXH9J/Qh/iYuPw9/lAsfKO1G1dh5XTVqfZd6OODQgNCuX6GUVPnid3ntLNuSuFShaiXI0yeL7wJCr81zeWxa8nDa/fxNDQkHLlyrFo0SI8PDxISEggZ86c9OnTh/Hj0z4fo3Xr1iQnJ9OlSxfU1dWVE038btra2pw6dYoRI0bQsGFDEhMTcXBwYMWKFWnyGhoacvz4cerVq0ejRo04duzbZmPq3bs3+vr6zJs3j1GjRmFgYEDRokWV48WMjIxwdXXF3d0dDQ0NypQpw7Fjx1BXV8fU1JQ5c+bg7OxMUlISRYsW5fDhw2TJkiUzT4OKbt0GM236aP7YuBgzM1Peer9j2tT5rF+3XZknZ85sKlExGxtLrt9IPR/Dhvdl2PC+XL50gwb1OyjX16hZGVvb7CqzGf6dpaUFo0YPolbNVsp1d+88ZNnS9ew7sIHAgCD69h2Z4fbfy9LGgmkrJmJsZkxocBiPbj2mXxMnQoMV3c2sslmmuYNva5+TYuUcGdY+7fNykpOTyGVvS4O19TAxNyY8JBy3hy8Y2HIob156quTNXcCOmk2q071O6kX0+SOXKFGhOCsPLMbbw4epTmmfRfUjKndRjBt02q06rmvHyFXc3qdoEB6csYWU5GS6r3JWzHB46RH7Jv2hkt/KPju6RqrdEUs2qYiamtpXG0VfU6FjLSICw3h2LvWC5eTifXRZMpjhB2fy/OJDrmzJeMA4wJPn7vQcnPq8LddlawFo1qA2syaOoGenNsTExDLVdSkRkZGUdCzM6gUzlM/wApg7ZTSzFq6k15BxqKurUbt6JcYPS+0WmZiYxBtvH2JiU8d9jBnSD3V1dYZNmElCQgIVy5Zi0sjUMQ0aGhqsmDeVGfOW07mfM3p6OjRtUBun3l3S1GHlhu1UrVhGGZUDGDd8AKOnzqX7oFE0qluDOtXTTpf/rZLj4jEqVwjrPo3RMDEgITCMiBvPeNZsnMrU8Hp5c6DxWdfTkBM38Ry7hmxOLbGb0YuY1+9x7+NK5C1FAyklMYnnXWZhO74zBTaPR91Al9g3frweuoywc6oXoXoFbMnSpCKP66ROVhR85DrGFYrg8OdMYj3e82rQ949z0rYwociyQehYmZIYEU3EM2/utptN8CVF10yDvNnIN6EDWqaGxLwN4M3iP/Fao/pdrp/LCm3z1F4NOXsoPjtlDqp+dp4MWcX73YrPjvfa46jraFFgele0zAyIeOrN3baz0nRhNCyYA6um5blRK3Usk//hm5hXdKDMX1OJ9njPo/7Lvrveto72OO+aqvy7zSTF5CvX911gy8iV/DF4Mc1Gd6Tn4iHomxoS/C6AQ/N2cmlbamTfPLuFSlRMR0+HDjN6Y2qThYTYePw83rFx+DLuHrmuzGNiaUariV0xtjAl7EMINw9c4tiy1EmTPjGyMKGBUwvmtUx9XpXXQw/OrD/MwA1jiQgKY/OItL+736pJ47ps+CP1/bJz+yoAps9YwPQZCwHo17cLkyelvt8unP8TgJ69hrNl6x4A8uTJhYVFxmO+0zNi5FSSk5PZs3stOjo6nDp9AafBaa+D6tapRl57O7p1T30kzIqVGylVqhjXrhzh9u0HzJi58Lv2/blSVUpincOK4+nMUmiZ3ZLkbxzH+Mn0gbPoM7YXE5aNw9jUCH8ff/6Yu5FDW4+o5DOzMKXz4I44NR+mXPf8wQv2rt3H7M0zCQ0MZc5wV/6rJOKlSi3l77FzIYQKQ/3cX8/0/1Axs//NepfV+vap8P8/cb2TNqLyv+CeY+bdhPgvCUtK2233f8Gfev+bV4Hr3mfOxE7/NVUsM3e833/FeZ8vd/X/J/nXqPaP7cvq/JcfeP1vIBEvIYQQQgghROZL+b5xkP/f/TdH6gkhhBBCCCHEf4hEvIQQQgghhBCZTsZ4qZKIlxBCCCGEEEL8YhLxEkIIIYQQQmS6lGQZ4/U5iXgJIYQQQgghxC8mES8hhBBCCCFEppMxXqok4iWEEEIIIYQQv5hEvIQQQgghhBCZLkWe46VCIl5CCCGEEEII8YtJxEsIIYQQQgiR6WSMlyqJeAkhhBBCCCHELyYRLyGEEEIIIUSmk+d4qZKIlxBCCCGEEEL8YtLwEkIIIYQQQohfTLoaCiGEEEIIITJdSsrvPoJ/F4l4CSGEEEIIIcQvJhEvIYQQQgghRKaTyTVUScRLCCGEEEIIIX4xiXgJIYQQQgghMp1EvFRJxEsIIYQQQgghfjGJeAkhhBBCCCEyncxqqEoiXkIIIYQQQgjxi0nESwghhBBCCJHpZIyXKol4CSGEEEIIIcQvJhEvIb5CQ/1/8/5EP7L97kP4LbYlBf7uQ/gt7jmO/N2H8FuUfDT/dx/CbzGi9LjffQjiH5RV3+R3H8JvYaGh/7sP4X9eSopEvD73v3lFKYQQQgghhBD/IIl4CSGEEEIIITJdSvLvPoJ/F4l4CSGEEEIIIcQvJhEvIYQQQgghRKZLljFeKiTiJYQQQgghhBC/mES8hBBCCCGEEJlOZjVUJREvIYQQQgghhPjFJOIlhBBCCCGEyHQpyRLx+pxEvIQQQgghhBDiF5OGlxBCCCGEEEL8YtLVUAghhBBCCJHpUlJ+9xH8u0jESwghhBBCCCF+MYl4CSGEEEIIITKdTK6hSiJeQgghhBBCCPGLScRLCCGEEEIIkemS5QHKKiTiJYQQQgghhBC/mES8hBBCCCGEEJkuRSJeKiTiJYQQQgghhBC/mES8hBBCCCGEEJlOnuOlSiJeQgghhBBCCPGLScRLCCGEEEIIkelkVkNVEvESQgghhBBCiF9MGl7iP8vT0xM1NTUePHgAwIULF1BTUyM0NPS3HpcQQgghhFDMavhPLf8F0tVQZKru3bsTGhrKwYMH//F9V6xYEV9fX0xMTP7xfX8uLNIj3fWTJsxh6ZJ16ab16t2Rnr07YWubHYDnbu7MnbOcM6cvKvMcOb6dKlXKq2y34Y8dDB86CQAzMxNWrZlHlarlee3hyaABY3n06Jky7/yFU/F885bly/74qfrl71qLAl1qYZAzKwBhL314uOhP3p9/BED5uT2xqVwYPSszEqNjCbjjzt1Zuwj38M2wTNsGpcnfpRZZHO3QMTPicN3xhDz1zjB/ra2jyF6zGOd7LuLtybsAaJsaUGlxP6wrOhDxxo9rzusIfuql3KbsrG5Een/g2ZrjP1X/T9TV1eni3JlaLWpiZmlGkH8Qp/eeYfuSHV/crmbzGrQZ0IbsubMRFR7N7Qu3WTdzPRGhEQBoaGrQflA76rSpjYWVBW9f+/DH7D+4c+GuShm9xvVEV1+XU3tPs2b6WmWaVQ4rZm+fhVOjIURHRmdKXT+xcWqB7fgu+K47gveUDQDYze2PSRVHtK3MSIqOJfLOC7xnbSX21bsvlqWbNzu2E7tiVN4BNU0NYl764N7Hlfh3gQBoZTXFdlJXjKsWQ8NQj1iP97xbso+QYzcAUNPWJM/8gZjVK0v8h1A8x68l/PKj1GMd0Azt7Fnxmrj+m+p258FjNu7Yx7PnrwgICmbJ7EnUqlpRmZ6SksKK9VvZd/gEERFRlHB0YNJIJ3LlzK7MExYegcvClVy4ehN1dXVqV6/EuKH90dfXy3C/cXHxzFu+juNnLhKfkEClsqWYOHIQFuZmyjy+fh+YPn85t+89Ql9Pl6YNajOsfw80NTUAcHv5ikkui/DyeU/Zko64TByJibERAImJSXTsO4xJI50o6lDgq+fBvmwhavVtQs6iuTGxMmdd33k8PnVHmW5kYULTsR0pWMURPWMDPG65sW/KRgI8/TIsc/CuyeQrXzjN+qfn7rGm59xvLrfFxC6UbV2d+OhYDs/dyZ2/rijTijcsT9mWVVnb2/WrdUxP3rKFqNO3KbZFc2NqZc7qvvN4eOq2Ml1HX4fmYzpRrG4ZDMyMCHr7gfObjnN5++kMyyzfuhrd5g9SWZcQF8+QAp1Tj7teWap0qoNt0TwYmhkxq+EofJ55qWzTamJXKrSuTlx0LAfn7uD2Z/Uu2bA85VpWY1XvuT9U728xd+EUuvZsx+Rxs1m3amuG+QYP70PDJrXJmy8PsbGx3Ln1gJlTFuDxyhMAU1MTRo53olqNimTPYUNwYAjHj53FddZSIsIjlXmWrHahUuVyvH7thbPTRJ48clPuw2XeRLy8fFizfNNP1alQWQea9mtBnqJ5Mbcyx7WPC7dP3VSmtxnWnkpNqpAlmwWJCYm8fuzBznnbePXg5RfLrde1IU37Nsc0qxlebp5smLKWVw/dlelTd82kcIWiKtuc2naCdRNWAWBoYsighUMpUqEovp6+rBy1FM+nb5R5e83oh7+3H0fW/fVT9Re/j0S8xP8b2traWFtbo6b2e+965MtTTmUZ2H80ycnJHPrrRIbbvHvnx9TJ86hWpTnVqzbn0qUb7Ny9moKF8qnk27Rxl0rZkyem/tiOGDUQQyMDqlZuyuXLN1m63EWZVrpMcUqXLs7KFRt/un7RvsHcm72bow0mcrThJHyvPqPGBmdM8isuQIMeveGq81r+qj6aMx1dQU2NOjvHoKae8euiqa/Dh1svuDtr91f3X6hPfVLSmSap6JBmaBnocaT+RPyuu1F+Xi9lmkVJeyxK2OO2LuPX4Hu1HdiGxl0asXzSSnrX6MsfLhto0781zXs0y3Abh9IOjFo8kpO7TtK3Vj9mDphFweIFGO46TJmn+6huNOrckBWTVtG7Vl+ObjvKlHWTsS9sD4CxmTHD5w1j7cx1jOs8gVotalKuVlnl9oNnDeKP2RszvdFlUCwvlp3rEvXUU2V91CMPXg9fzsNqQ3jecQaoqVFw52RQz/jnRSeXFQ4HXYh55YNb68k8rjWcd4v3khyboMxjv3QIuvbZedl9No9rDif42A3yrRmBfpHcAFh2rouBoz1Pm4zjw/bT5F0xPLX8nJZk7VgHnznbv7l+MTGxFMibhwkjBqabvmH7XrbvO8TkUYPZsW4xerq69HOeSFxcvDLPmGmuvHrjzbrFLqxwncrdB0+Y6rr0i/udu3QNF67eZOHM8Wxa7kpAYBDDxs9UpiclJTFw1BQSEhLZtnoBsyaO4K/jp1m+PvUCeMqcJZQrVZy9G5YRGRnN2i27lGmbd+2neFGHb2p0AWjr6/DOzYu9kzekm9577Uiy5LRiXZ/5uDYaQ/C7QAZtm4i2nk6GZf7RbwETyvRVLi51RpCUmMT9j43obym3SK2SlGpWmZVdZvHXnO20n9sPAzNF41LXSI/GI9uxd/KP31TS0dfhnZsnuzIoo9XEbjhUK87G4cuYVns45zYcpd20njjWLvXFcmPCoxlTpo9ymVBJtSGmra+Dx53nHMzgvVq0VinKNKvM0i4z+XPOdjrP7a9S76Yj27Nr8rfdXPgRDRrXomSZYvi+9/9q3gqVSrNx/U4a1elAuxa90dTUZNef69H7eOPByiYr1tZZmT5pHjUqNGPooPHUqFWZhctmKMsYOrIfhoYG1K3WiutXbjF/yTRlWsnSjpQs7ci6lVt+ul46+rp4uXnyx6Q16ab7vnnPH5PXMqLuECa1GkuAzwcmbZ2KsblxhmVWbFyZbhN7snfJbsY0dsbL7Q0Ttk7FOIvqzeAzO07Sp3Q35bJt9iZlWsvBbdAz0GN0I2eeXn9C/zlOyrR8JfKTr3h+jv1x+Ocq/w9LSfnnlv8CaXiJX6Z69eoMGTKE0aNHY25ujrW1NVOnTlWmp6SkMHXqVGxtbdHR0SFbtmwMGTJEma6mppYmcmZqasqmTZvS3d/fuxpu2rQJU1NTTp48SaFChTA0NKR+/fr4+mYceckMHz4EqiwNG9Xh8qUbeHq+zXCbE8fPcfrUBV57eOLxypMZ0xYQFRlNmTLFVfJFR8eolB0REalMK1AgLwf2HcHjlSebNu4ifwHFhbqmpiaLlsxg+NBJJCcn/3T9fE7f5925h0S88SfitR8P5u4lMSqWrCXzAuC+/Twfbr4gyieQ4Cee3Hfdi0F2C2WELD2v91/l0eKD+F5+8sV9mxW2xaFfQ66NSBs5NMmbDc9D14l47Yf7tvOY5MsGgJqmBuXn9OTm2I2kJGfeN7NDKQeun7rBrXO38Pfx5/KxK9y9dI8CxTO+wHUoVQh/H38ObvwLv7f+PL39lKPbjlGgeH5lntqtarFz+W5un7+Nn7cfR7Ye5da527Tu2woAm1zWRIVHcfHwJV4+fMmD6w+xzWsLQPVm1UlMTOLqiauZVk8AdX1d7JcP482oVSSFRaqkBWw/TcTNZ8T7BBD9+DVv5+5AJ3tWdL7weucc24mwc3d5O3Mr0U/eEOflT+ip2yQGhSnzGJYugP+GY0Q9eEWctz/vl+wjMSwaA0fF+1ovbw5CTt0m5uVb/DcdR8vCBM2PF0V2c/rxdtZWkiJjvrmOVSqUYUjfbtSuVilNWkpKClv3HKRvt/bUrFKBAnlz4zJpJB8Cgzh7+RoAHp7eXLlxh2ljh+JYuCAlixVh/PABHD9zkQ8BQenuMyIyigNHTjF6cB/KlSpO4YL5mDHBmQePn/HwieIu/7Vb9/Dw9GbOlFEUzG9PlQplcOrdlV0HDpOQoGiovvZ8S6um9bGzzUGDOtV4/fG75u07Xw4cOcXQvt2++Ty4XXjA0QW7eXTydpq0rLltyF0yP3smrsf7kQcfXvuyZ8J6tHS1KdU07Xn7JDosioiAMOVSsIojCTFxPDh645vLtcqbA/cbz3j7+DX3Dl0jNiKaLDktAWg2rjNXtp8m5H365/lbPL3wgEMLdvMwnXoD2JfKz439F3G/8YxgnwCu7DzLOzcv7Irl/WK5KaQQHhCmXCICw1TSb/15mWNL9+N29XG621vnzY77jad4P37NnUNXiY2IxuJjvVuO68yln6z3l1jbWDJz7gQG9RlNYmLiV/N3bN2PPTsO8vL5K549ecGwgePJkTMbxYo7APDC7RW9uw7j9IkLeHm+5eqlm8yZsYQ69WugoaGI3ubLn4e/9h/ntYcX2zbtJV/+PIDid2zuoqmMGT4tU37HHly4x67527l18ka66Vf+usTjqw/58NYfH/e3bJ7xB/rGBtgWssuwzMa9m3F21yku7D2Lj/tb1o5fRXxMHDXb1lbJFxcTR2hAqHKJ+ex7KnveHFw9fAXfN+85s/Mk2fPmABQ9IfrOGsDa8asypf7i95GGl/ilNm/ejIGBATdv3sTV1ZXp06dz+rSia8b+/ftZtGgRa9aswd3dnYMHD1K0aNGvlPh9oqOjmT9/Plu3buXSpUt4e3szcuTITN3Hl2S1zEK9+tXZsnnPN2+jrq5Oq9aN0TfQ49at+yppbds15bXXba7fOs6UqSPR09NVpj157EbVahXQ0NCgVq0qPH3yHIBhw/ty5fJN7t9P/4f9Z6ipq2HXtDya+joE3HVPk66pp0PedlWJ8PpA9E9eHGjoalNl+SBujd9EbEBYmvSQZ95YVyqMmoY62aoXJdRNcfFZZGAj/K67EfToTZptfsazu88oXqk42XMrIn15CuWmSJnC3D6f/oWbYhs3stpkpUyNMgCYWphSpVFlbp9L3UZLW4uE2HiV7eJj4ylcRtFV692b9+jo6WBf2B4jU0MKOObn9fM3GJoY0m1kV1ZMXJGp9QSwc+lD6Nm7Kl350qOup0PWdjWJ9fIjPqPXW00N01qliHntS4Edkyj5aCOFj8zBrH5ZlWyRd15g3rQSGqaGoKaGebNKqOtqEX5N0TiPfuaJUdlCqOlqY1q9OPF+wSQGh5OlRVWS4+IJOXEzvb3/EJ/3fgQGhVChdAnlOiNDAxwdCvDw4+fs4RM3jI0MKVIotRFdvnQJ1NXVePTsebrlPnvhTmJiIuU/KzdPrpzYWFmqlJsvj51K18NK5UoRGRXNqzeKLmkF8ubm+q17JCYmcfPOA/LbK6KC0+ctw3lgTwwM9DPlPGhqK0YnJMalRiZTUlJIjE8gT5lvi6gBlG9bg7uHrxEfE/fN5b5z88K2aB70jA3IWSQ32rraBHj6kad0AXIUzs3FjZnThTgjHndf4li7FCZWitchf4XCWOa24dlXPhM6+rrMvLKCWddW0n/dKGzy5fiu/fq4eWFb1F5x0V8kN1of621fugA5C+fm/MZjP1ynL1FTU2PZmjmsWraBl89f/VAZRh+7u4aEpP2+/sTY2JDIiEiSkpIAePbkBZWqlkNDQ4PqtSrx7Kmia9+gob24fuUWDx88/aFj+RmaWprU7liPqLBIvJ6l/zuiqaVJnqL2PLryULkuJSWFR1cekr+k6mejSvNq/HF/KwtOLaXj6C5o62or07yeeVKkYlHUNdQpVrUE3s89AWjWvyVPbzzh9eMfey1+p+QUtX9s+S+QMV7il3J0dGTKlCkA5MuXj+XLl3P27Fnq1KmDt7c31tbW1K5dGy0tLWxtbSlbtuxXSvw+CQkJrF69Gnt7xV1yJycnpk+fnqn7+JKOHVsRGRHF4UMnv5rXoXB+Tp/dh66uDpGR0XTqMJAXn/3g7dtzmLfe7/D186dw4YJMmzGafPnz0LmjomvUooWrWbh4Bg8en8fb2wenQePIY29Hh44tqV2rNYuWzKBmzcrcv/+YIU7jCQ+PzOhQvsq0YA4aHJqKho4WiVGxXOi9mDD398r0At1qU3JCe7QMdAl79Z7THeaQnJD0w/sDKDOtMwF33Hl76l666U9WHKb87B60uLaQyLcBXBuxDqPcVti3qcLxptMoN6cH2aoWJejRG66PWk9CxLdHQ9Kze8Ue9A31+ePCOpKTklHXUGeT62bOHTyf4TbP7jxjzhBXJqwch7aONppamlw/fYNlnzWW7ly8S8s+LXl08zG+Xr6UqFycSg0qov6x615kWCTznRcwevFItHV1OLP/LHcv3sV53nAObTqEta010zZMRVNLk60Lt3H52JWMDuebmDerhEHRPDxpODrDPJbd6mM7sQsaBnrEvPLheftppCSkf4dcy8IEDUM9sjm1wGfuDt7O2opJjRLkWz8at9aTibihGJfo3m8+eVePoPSzLSQnJJIcE4d7r7nEfRzzE7DrLPoOuXC8sITE4Ajc+89Hw9SQHKPa49Z6EjlGdyBLs8rEevnx2nkFCX7BP3wOAoNDAMjyWePn09+BQYq0wKAQzE1VuxRpampgYmSk3D5NuUEhaGlpYmxk+LdyTQkMDlbuO4u5aZr0T9sDTBs7jJkLlrNp5wFKODrQp2tbDp04i56uLkUK5afv8Am8fedLg9rVGPId0a+/8/d4T7BPAE1Gd2DX+HXEx8RSo1cjzLJZYGxp9vUCANti9mQraMuOMau/q9znlx5y5+BlRh5yISE2nm0jVxIfE0vbmb3ZPnIllTvXpWq3+kSFRLBr3Fr83H1+uJ7p2TN1A51m92POzTUkJSSSnJzC9nFreHXLLcNt/F+/Z+voVbx77oWekT61+zRl1P6ZTK/rTOg3vh/dLj3k1sHLjDk0m4TYeDaPXEFcTCwdZvZhy8gVVO1clxrdGhAZEs72cWvxzaR6Ow3rTVJiEutXb/uh7dXU1Jg+eyy3rt/lhVv6jQVzc1OGjx7Atk17leuWLV7HnAWTufHgJG+93zFi8CRy58lFmw7NaFKnA3MXTqFazYo8vP+UkUMnK8eG/Qola5Zm+PKRaOvpEPohhBmdpxAREpFuXiMzYzQ0NQgLDFVZHxYYSnb71Mb2lb8uEfAugBD/YGwL2dF5bFey2Wdnfr85ABxctZ8+s/qz/NIaAnw+sGr0cqztbKjWqgYTWoyhz6wBFKtaHI9Hr1gzdgXREZnbpVz8etLwEr+Uo6Ojyt82NjZ8+PABgDZt2rB48WLy5MlD/fr1adiwIU2aNEFTM/Pelvr6+spG19/3n564uDji4uJU1qWkpGQ4bqxN26YsXpo6HqN1y55cv5Y6EL1z19bs2XNIZRxIRtxfvqFKxSYYGxvRrHl9Vq91pWH9jsrG16aNqeM2nj19ib9/AIePbiN3blvevPEmPDyS3j2Hq5R5+Og2Jk2cQ9t2zbCzy0mpEnVYutyF0WMHM3H87K8eU0bCPXw5UncCWkZ65GpUlkqL+3Gy1Uxl4+v1gau8v/QYPUtTCvdvRLXVgznefDrJn93R/h456pTEupIDR+pOyDBPQkQMl51Wqqyrs2ccd2fsJHeLihjZWnKw6igqzOuF4/AW3J3+5UkwvqZak6rUalGTOYPn4vnSC3sHewZM7aeYZGPfmXS3sc1ny8Bp/dm+eAd3Lt7F3MqcPhN6M3T2EBaOWgTAqimrGe46lD8urIMUeO/ly6k9p6nXrq6ynKsnrnH1xDXl30XLFyV3odysmLSSTVc24OI0h5APISw7vITHNx8TGpTxHecv0c6WBbvpvXBrP42UL7x2QQcuEXbpIdqWZtgMaEa+NSN52mx8+tt8HOsXcvIWfuuOABD91BOj0gWx7FpP2fDKMbojmsYGuLWdQmJwBGb1y5J39UietZhAzHNvUhKT8Byv2uU0zyIn/P44in6RPJjVL8fj2s7YDGqO3YxeuPeZ90Pn4L8gb55cbFqRWr/QsHBW/rGNTStccVm4iuJFHVjsMon2vYfg6FCA6pXLf6G0jCUnJvFH/wV0cO3P3EcbSEpM4uXVxzw9f59vHVpboV1N3rl54f0wdRKiby33+OJ9HF+8T/l3/aGteXH1MUmJSdQb3JI59UZSuFYpuiwcxLwm436ojhmp3q0BuYvnY2WvuQS/CyBv2UK0n96LMP8QnmfQTfDNPXfe3EvtCeBx9yVTziyiSsc6HF749fGsnxxdvJeji1MbJ42Gtub5x3o3GNyKmfVGULRWKbovdGJ2k7HfXbeWbRrjumiq8u8u7frTu38X6lZr9d1lfTJ7/iQKOuSjWf3O6aYbGhmwdc9qXj73YP6c1BtPEeGRDOqjepNn76ENzJg8n5Ztm5DLLgeVSzdi/tJpOI8eyLSJPzaZyrd4ev0xoxoMw8jcmNod6uK8cjTjmo0i/Ae/TwHO7Dyl/L/3Cy9CPwQzZedMrGyt8ff2IzoimiVDFqpsM2XnDLa6bKJK82pY2VoxtMZA+s8ZROuh7dgy8+fHbYt/lnQ1FL+UlpaWyt9qamrK/sk5c+bkxYsXrFy5Ej09PQYOHEjVqlWV4xbU1NTSTKLwKe1n9p/exAyfzJ49GxMTE5UlLiH9u9UAx4+dpUrFJsrl/r3UH+AKFUuTP789WzZ92w9sQkICr1978eDBE6ZNnc+Tx88ZMLB7hvnv3H4AQJ48udJN79S5FWFh4Rw7eoYqVcpx9MhpEhMTOfjnsTSzI36v5IQkIjz9CX7syf05ewh55k2h3vVT6xIRQ8Qbfz7cfMHFvkswzmuDbf3SP7w/68oOGOWypL3bWjp7baaz12YAqq0bSt296TfG7NtWJT4smren7mFVoRBvT94lJTEJryO3sK5Q6IeP5ZM+E3qza+UeLhy6iOdzT84eOMuB9X/SflC7DLdpP6gdT28/Y++afbx5/oa7F++ybMJy6revh7mlOQBhwWFM7T2dpgWa07lCV3pV701MVAy+XunPGqelrcXgmU4sGbuUbHbZ0NDQ4PGNx/i89sHnzTsKlij4w3U0cLRHK6spRU/Op6z3Xsp678W4YhGsezWkrPde5QQaSRHRxL3xJeLmM9z7zEM3b3bMG5RLt8zE4AiSExKJeal6Zz7G3Qed7IpxYTq5rLDu2ZDXzisIv/KY6GeevFu4h6hHr7Dq3iDdco0rFkEvf078Nx7HuEJhQs/dJTkmjuBD1zCqUOSHzwGg7OYX9LfIVVBwCBZZFGkWWcwIDlW9IEtMTCIsIkKlm6BKuVnMSEhIJDxC9a59UHAoFubmyn0HBYemSf+0fXpcl66lc9vmWFtm5fb9R9SrURl9PV2qVijL7Z/scvz2yRtcG45hdNHuTCrbj1XdZmNgZkiQd8Y3tD7R1tOhZOOK3NiTNir8veVa2mejdPPKHF2wm7zlHfC46UZkcAT3j1wnZ9E86Bjoprvdj9DS0aLZqA7sm7mZx2fv8u65Nxe3nOTukWvU7tvkm8tJTkzi7dM3ZLWz/uFjsbLPRtnmVTi8YBf5yxfm1cd63z1yHdsfrPfJ4+eoXaWlcildtgQWWc258+QsbwMf8TbwETltszNl5mhuPcp4FsdPZrlOoHa9arRq0j3dSTkMDPXZsW8tkZFR9Ow8+Ivjx9p1akF4WAQnj52jYuUyHD96lsTERA4fPEnFymW+u67fIy4mDj8vP9zvv2TV6OUkJSZRs13tdPNGhISTlJiEiYWpynoTC1NCAzK+hnC/r+hKaW1nk2569Ta1iAqP4s7pWxSuUIRbp26SlJjE9WNXKVz+577X/ikynbwqiXiJ30pPT48mTZrQpEkTBg0aRMGCBXn8+DElS5Yka9asKhNhuLu7Ex39a8Pq48aNw9nZWWVdDpviGeaPjIwiMjIq3bQuXdty/95jnjxJf3zH16irq6OtrZ1helFHxYBlP7+0FyZZLMwZM3Yw9eq0U5al+bERqqWlhbpGJt9zUVdDXTuDrxM1NdTU1NDQ+fGvmyfLD/NqxwWVdU3PzeHO1G34nL6fJr+OuRGOw5tzooVitix1DXXUPk69ra6pgVom1F9HT4eUvw1yTk5K/uLsjTp6OsqxDJ9vA8DfNkuISyDILwgNTQ0qN6zMpSOX0i2z45AO3Ll4h1dPXmFf2B71j/UERVe3n3mtwy4/4lGNYSrr8ixyIvaVD+9XHIT0BnmroXjNtbXSpgEpCYlEPXyFnn02lfW6ebIR56N4L6t/nMnu7+c3JYPzq6ajhZ1LH145LYbkZMXr+zFUoqb18693jmzWWGQx48bdBxTMr4igR0ZF8ejZC9q2aARAsSKFCI+I5OlzdwoXVMxGevPuA5KTU3B0SL/x61AgH5qamty884A6NSoD8MbLB1//DxQrUlBZ7totuwkKCSWLmSkA12/fw9BAH3s72zRl3rhzn9deb5k5QfE9lpycTEKi4j33LRMkfKvYj111s9pZY1vUnmMLvj6OtXij8mjqaHL7z8s/XW57lz4cnLmF+Og41DXUUddSvO81Pv6bmd9xGlqaaGprprlpl5yc/F2z6Kqpq5G9oC1Pzqf9zvpWHV36sm/mFuKi41DTUFfW92fqHRUZTVRk6uM7tm3aw6kTqo3jnfvXsW/3IXZv//OLZc1ynUCDxrVp1bg7b73SPlLC0MiAnfvXER8fT/cOg77YGyRLFjOcRw9QRs3UNTTQ0lL8jih+xzQy3PZXUFNXQyuD77VPU84XreSonJZeTU2NopUcObE543F4doUV4zFDPqTtempsbkyboe2Y1EoRxVRXV1c+QkJDU1PZ/Vz8t0jDS/w2mzZtIikpiXLlyqGvr8+2bdvQ09MjVy5FBKdmzZosX76cChUqkJSUxJgxY9JEsDKbjo4OOjqq0yL/yPT0RkaGNG/RgInjXdJNP3RkK4cPn2LdGsWU0FOmjuT06Yv4vH2PoZEBbdo0pXKVcrRs1h2A3Lltad22KadPXiA4OITCRQoye84Erly5ydOnL9KUP2fuRJYt+wNfX8Xdxps37tG+fXPOnb1M9x7tuXnjbpptvlWJsW15d/4hUe+C0DLUJXfzilhXKMSZjq4Y2mbFrml53l98TFxQBPrZzCkyqAlJsfG8O5s66LjZRVfuzd7D2xOKbpnapgYYZM+C/seB6yb2irt/MR/CiA1IXf4u6l0QkW8D0qwvM60zz9YcJ8ZPcafxw+2X5GlVCd+Lj8nXqQYfbn/5WSzf4saZm3QY3J4P7wLweulF3iL2tOzTgpO7U7uS9BzTgyzWWZg3fL5ym+Fzh9K4SyNFV0NLcwZM7c/z+88J9lf88BYsXoAs1hZ4PPPAwjoLXYZ3Rl1NjT2r9qY5Btt8tlRrUpWB9RVTVL/1eEtKcjL129UjOCCEnPY5efHwx+uaHBVLzAvV56klR8eSEBJJzAtvdGytyNK0EqEXH5AYHI62TRayObUkOSae0LOpY/EcLy3lrct25YQXviv/Iu9qZ8JvPCP82hNMa5TArE5pnrVWPJMu9tU7Yl+/J7drf7ynbyYxJAKz+uUwqVqMF13TfqayD2tD6Ll7RD9RDHyPuP0c20ndCNh9DqseDYm4/fWbH9HRMXj7pI5TfPfen+cvPTAxNsLG2pIubZuzdvMucuXITvZsVixftxVLiyzUqqJ41pe9nS2Vy5dm6twlTB41mITERFwWraJB7WpYZs0CgH9AIL2HjMNl0kiKOhTAyNCAlo3r4rpsHSbGRhgY6OOyaBXFihSiWBFFVLZi2ZLY29kybvo8nAf2Iig4hGVrt9C+ZZM0N2bi4uKZtXAV86aOUV6UlSjqwK4Dh2nfsgmnL15l9OC+XzwP2vo6KhGZLDktye6Qi+jQSELeB1G8YXkig8MJeRdItoK2tJzSjUenbvP8s0kmOi8YRJh/MIddd6qUXaFtDR6dukN0aNpxOd9SrrKc9jWJDArnycf32Os7L2gwtA12JfJRqHpxfF++JSb8+27S6aRT7xwOuYj6WO+XN57Sclxn4mPjCfYJIF95B8q1rMb+mZuV23RbMIhQ/2D++ljvhkNa8ea+OwGefugZG1CnX1PMs2fl6q6zym30TQwwz26ByceIt1UexQ2J8IBQwv/2nVepfS0ig8J5fFbx/e1x5zmNh7Yhd4l8FK5enPc/UO/0hISEpZkQIzExkYAPgcpncgHs+WsDx4+cYeM6Rbft2fMn0aJNI3p0dCIyMoqslhYARIRHEBsbh6GRAbsOrEdPXxenvmMwNDLE8OP4xqDA4DSz9U2fPY7Vyzfh56u4IXP7xj1at2vKxXPX6NytDbdvpD/e91vo6uuqRJksc1ph55CbyNAIIkIiaOnUhjtnbhHyIQRjM2PqdWuIuVUWrh9NnTF28o7p3Dp5Q9mwOrL+LwYtGIrHo1e8euhOo55N0NHX5fxeRddzK1trKjevyv1zd4kIjSBXQTu6Te7JsxtP8H6u+uw2gO5TenN43UHlb8PzO25UbVmDh5cfULtjXZ7f/bGbuv+0/8qkF/8UaXiJ38bU1JQ5c+bg7OxMUlISRYsW5fDhw2TJorhIWbBgAT169KBKlSpky5aNJUuWcPfujzcY/kmtWjdGTU2NfXvTf96GXW5bsnzWTShr1iysXjsfa+ushIdH8vTJc1o2687584ov+fj4BKrXqMjAgd3RN9DnnY8vh/46yTzXtDPY1apVhTx5ctG39wjlurVrtlCiZBHOnt/PvbuPmDN72Q/XTdfCmMpL+qNnaUp8RDShbm8509EV38tP0LMyxbJsAQr1ro+2iQGxgWH433jO8WbTiQ0KV5Zhkjcb2sapD5XNWbcklRb1U/5dddVgAB4uOMDDhQe+6/iyVSuKkZ0VV4akDt5/vvE0WYrlocGRaQQ98ODRwi/ftf0WKyatpNvIrgyeNQhTC1OC/IM4tv042xanPo/H3Mocy+yWyr9P7z2NvoEeTbs1pe+kPkSFR/Hg6kPWz059dpCWrjbdR3XFxtaGmOgYbp27zdxh84gKTxtZHTZnKGumryX24+xw8bHxzHdegNPMQWhpa7F80kqC/H7NVNMAyXHxGJUrhHWfxmiYGJAQGEbEjWc8azZOZWp4vbw50DBOnVkv5MRNPMeuIZtTS+xm9CLm9Xvc+7gSeUtxIZGSmMTzLrOwHd+ZApvHo26gS+wbP14PXUbYOdWLLb0CtmRpUpHHdVLf78FHrmNcoQgOf84k1uM9rwYt+mpdnjx3p+fgMcq/XZcpHkrdrEFtZk0cQc9ObYiJiWWq61IiIiMp6ViY1QtmoKOT2viZO2U0sxaupNeQcairq1G7eiXGDxugTE9MTOKNtw8xsanjSMcM6Ye6ujrDJswkISGBimVLMWlk6rOeNDQ0WDFvKjPmLadzP2f09HRo2qA2Tr27pKnDyg3bqVqxjDIqBzBu+ABGT51L90GjaFS3BnWqZzztO4Ctoz1Ddk1R/t1ykmIyjpv7LrB95CqMLU1pMbELRhamhH8I4daBS5xctl+lDLPsWUhJUb2Itsxjg33ZQqzoPJP0fEu5oHjQcl2nFixqOVm5zvuhB+fXH6HfhjFEBIWzbcT3z+xp62iP866pyr/bfKz39X0X2DJyJX8MXkyz0R3puXgI+qaGBL8L4NC8nVzaltr1zjy7hUpUTN/EkE6z+2Gc1ZTo8Ci8H79mXquJ+H32cHHHOqVVHrLce7linO6Rv43rMrIwoYFTC+a1nKRc5/XQgzPrDzNww1gigsLY/AP1/hl2uXNi/tnvWPfeHQA4cFT1OVtDB45nz46DFC3mQKkyxQC48UB1wqkyjrXx8U698VG9ZiXs8tji1C/1M7lx3Q6KlSjC0TO7uH/vMQvmqo7p/R55HPMybfes1GOfrHju44W9Z1k7YRXZ8+ageuuaGJkZExEagcdDdya3GYePe+pjYaxsrTEyS32u17UjVzDOYkw7546YZjXD89kbZnWdRtjHRwgkJiTiWKmYokGmp0uQbyA3j19n/7K0Ud1iVUtgncuGZcNSv7tObD6KvWNeXA7O49VDd/Yu3pVmO/Hvp5bypQEvQghMDO2/nun/oWUmFX73IfwW29QDf/ch/BYzkjJnyvH/mpKP5v/uQ/gtRpTO3Mkn/isS+N+85DkY+uVnJP5/Vdkk3+8+hN9ir9dfv/sQlG5ka/mP7av8+++7Ufs7SAdRIYQQQgghhPjFpKuhEEIIIYQQItPJGC9VEvESQgghhBBCiF9MIl5CCCGEEEKITPdfeb7WP0UiXkIIIYQQQgjxi0nESwghhBBCCJHpkr+e5X+KRLyEEEIIIYQQ4heTiJcQQgghhBAi06UgY7w+JxEvIYQQQgghhPjFJOIlhBBCCCGEyHTJKb/7CP5dJOIlhBBCCCGEEL+YNLyEEEIIIYQQmS4ZtX9s+V4rVqzAzs4OXV1dypUrx61bt75pu127dqGmpkbz5s2/e5/S8BJCCCGEEEL8z9i9ezfOzs5MmTKFe/fuUaxYMerVq8eHDx++uJ2npycjR46kSpUqP7RfaXgJIYQQQgghMl0Kav/Y8j0WLlxInz596NGjBw4ODqxevRp9fX02bNiQ4TZJSUl06tSJadOmkSdPnh86H9LwEkIIIYQQQvynxcXFER4errLExcWlyRcfH8/du3epXbu2cp26ujq1a9fm+vXrGZY/ffp0LC0t6dWr1w8fozS8hBBCCCGEEP9ps2fPxsTERGWZPXt2mnyBgYEkJSVhZWWlst7Kygo/P790y75y5Qp//PEH69at+6ljlOnkhRBCCCGEEJku+R/c17hx43B2dlZZp6Oj89PlRkRE0KVLF9atW4eFhcVPlSUNLyGEEEIIIcR/mo6Ozjc1tCwsLNDQ0MDf319lvb+/P9bW1mnye3h44OnpSZMmTZTrkpMVTUpNTU1evHiBvb39Nx2jdDUUQgghhBBCZLp/4+Qa2tralCpVirNnzyrXJScnc/bsWSpUqJAmf8GCBXn8+DEPHjxQLk2bNqVGjRo8ePCAnDlzfvO+JeIlhBBCCCGE+J/h7OxMt27dKF26NGXLlmXx4sVERUXRo0cPALp27Ur27NmZPXs2urq6FClSRGV7U1NTgDTrv0YaXkIIIYQQQohM90+O8foe7dq1IyAggMmTJ+Pn50fx4sU5ceKEcsINb29v1NUzv2OgNLyEEEIIIYQQ/1OcnJxwcnJKN+3ChQtf3HbTpk0/tE9peAkhhBBCCCEy3b814vW7yOQaQgghhBBCCPGLScRLiK/IZWj5uw/ht3iilfS7D+G3qJf8c8/o+K8KS0r83YfwW4woPe53H8JvseBO2oeK/i/oWsr565n+H8qul+V3H8JvUTXZ6Hcfwv+875lt8H+BRLyEEEIIIYQQ4heTiJcQQgghhBAi0yVLwEuFRLyEEEIIIYQQ4heTiJcQQgghhBAi0yXLGC8VEvESQgghhBBCiF9MIl5CCCGEEEKITJfyuw/gX0YiXkIIIYQQQgjxi0nESwghhBBCCJHpkn/3AfzLSMRLCCGEEEIIIX4xaXgJIYQQQgghxC8mXQ2FEEIIIYQQmS5ZTaaT/5xEvIQQQgghhBDiF5OIlxBCCCGEECLTyXTyqiTiJYQQQgghhBC/mES8hBBCCCGEEJlOppNXJREvIYQQQgghhPjFJOIlhBBCCCGEyHTJMqmhCol4CSGEEEIIIcQvJhEvIYQQQgghRKZLRkJen5OIlxBCCCGEEEL8YhLxEkIIIYQQQmQ6eY6XKol4CSGEEEIIIcQvJhEvIYQQQgghRKaTWQ1VScRLCCGEEEIIIX4xiXiJf63u3buzefNm5d/m5uaUKVMGV1dXHB0dAVBTU9xKuX79OuXLl1fmjYuLI1u2bAQHB3P+/HmqV6+uzP/nn3/SvHnzX3LMpcoXp/vAThRyLICldVaGdh/D+ROXMsw/Y8lEmrVrlGb9qxevaVmtEwDHbx8ge06bNHl2bdyPy7j5AIycOoRm7RoREx3D4lkrOXbglDJfnSY1adqmAYO7jvrZ6gFQY2AzitQrg6V9NhJi4/G895Ljc3YS8NoXAD0TA+oOb0P+KkUxzW5BZFA4T0/d4dTCPcRGxGRYbpF6ZSjfqTbZi+bGwMyIRQ3H4vvMSyVPuQ41Kd6sEtkL26FrpM9kx17Ehkcr0zW0NWk9py+F65QiIiCMPydt4NXVJ8r0an0bY5rNgr+mbvruepcd1IR89ctgbm9DYmw87++6c2n2bkI+1htAP6sJ1SZ0IFflImgb6hLs4cfN5X/hfvx2huVmL1uAMv0bYVU0N4ZWZvzVexGvTt1VyaOlr0OVse3IW680umaGhL8N4N7Gkzzadi61bpM6UbhNFRKj47g0ZzfPD15TpuVvVBaHVpU52HPhd9c7R7c65OxeG72cWQGIfOHD6wUHCDz3AAC9XFbkn9oJs7IFUdfRJPDcQ55P2ER8QFiGZeYe0gzLhmUxyJeN5Nh4Qm+/5OWMHUR7+KrkMymdj3zj2mFSMi8pSclEPPHibnsXkmMTUNPWpPDCfljWL0XchzDcxv5B8KXU19puYGN0c1jwfPym764zgH3ZQtTq24ScRXNjYmXOur7zeHzqjjLdyMKEpmM7UrCKI3rGBnjccmPflI0EePplWObgXZPJV75wmvVPz91jTc+531xui4ldKNu6OvHRsRyeu5M7f11RphVvWJ6yLauytrfrN9XzzoPHbNyxj2fPXxEQFMyS2ZOoVbWiMj0lJYUV67ey7/AJIiKiKOHowKSRTuTKmV2ZJyw8ApeFK7lw9Sbq6urUrl6JcUP7o6+vl+F+4+Limbd8HcfPXCQ+IYFKZUsxceQgLMzNlHl8/T4wff5ybt97hL6eLk0b1GZY/x5oamoA4PbyFZNcFuHl856yJR1xmTgSE2MjABITk+jYdxiTRjpR1KHAV89DwbIONO7XgjxF7TGzMmdBn9ncOXUz3by9ZvWnduf6bJn2B8c3HP5iuXW6NqBJ3xaYZDXF282TTVPW4fHQXSVPvpIFaDeqE/bF85OclIzXszfM7jKNhLh4NLU16TvXiVJ1yhIWEMKGiWt4cvWRctvG/ZpjkS0rm6as+2odv0Wrrs1p3a05NjmtAXj94g3rF23i2rn0zwWAobEhA8f2oWbDahibGuHr48/CyUu5eu4GAN0Hd6ZGw6rY5c1FXGwcj+48YdnMVXh5vFWWMXyqE43bNiAmOoblLms4ceC0Mq1W4+o0alMf525jM6WOAKUGNcG+QRnMPn6f+91156rLbkI/+z43zmVJ5YkdyVYmPxraWnhdeMTFyZuJCQz/4XKNcljQ/fridLc93n8pr47eQsfUgDoL+5G9ogNhb/w4M3IdgU9TfwurzexGuPcH7q89njkn4xdL/t0H8C8jES/xr1a/fn18fX3x9fXl7NmzaGpq0rhxY5U8OXPmZOPGjSrr/vzzTwwNDf/JQwVAT1+XF0/dcRm34Jvyz524iBpFGymXOiWaEhocxunDqRfUHev3VMnTp80QAE4dPgtAtTqVadiyLv3aD2XRjBVMXTAeU3MTAAyNDBg8th+zPjbQMkOecoW4tvUUy1tMZl0XFzQ0Nem9ZRxaejoAGFuZYWxlyhGX7SyoO4o9I1dToFoxWs/t98VytfV18LzzguNzdmaYR0tPhxcXH3Ju5V/pppfrUIscRXOzouUUbu48S8clTso0sxxZKdu+Jifm7/6BWkOOcoV4sPk0O5pPZV+nuahratJ62xg0P9YboMGi/pjlseFgr4VsrjsO9xO3abxyMJaFc2VcJ30dAp55c3bi5gzzVJ/cCbvqxTg2dBWbao7m7h8nqDW9G/Z1SgKQp3YJCjWrwP7Oc7nksou6rr3RM1O8/7WN9Kg0qs0Xy/+SON8g3Gfu5Ead8dyoO4HgK08pvnkkBgVyoKGvQ6k94yEF7rSewa0mU1DX1qTE1lGglnH/ErMKhXi78RQ3G07iTptZqGlqUGr3eDT0U8+lSel8lNw5jsALj7hRfyI36k3Ae8NJUpIVQ7VzdKmFsWNubjaajM/WsziuGqzcVs82K9k718Ld5cdea1C8H9+5ebF38oZ003uvHUmWnFas6zMf10ZjCH4XyKBtE9H+7P3wd3/0W8CEMn2Vi0udESQlJnH/2I1vLrdIrZKUalaZlV1m8dec7bSf2w8DM0VjQ9dIj8Yj27F38h/fXM+YmFgK5M3DhBED003fsH0v2/cdYvKowexYtxg9XV36OU8kLi5emWfMNFdevfFm3WIXVrhO5e6DJ0x1XfrF/c5duoYLV2+ycOZ4Ni13JSAwiGHjZyrTk5KSGDhqCgkJiWxbvYBZE0fw1/HTLF+/VZlnypwllCtVnL0blhEZGc3aLbuUaZt37ad4UYdvanQB6Ojr4u32hg2T1nwxX+l65chbogDBfkFfLbN840p0mdiT/Ut2Mb6xM15unozdOgXjLCbKPPlKFmDs5sk8uvSASU1HMbHpSE5tPkZKiuJytVbHeuQuas+UFmM4u/MUTkudldtmzWlJzfZ12D1v2zfV8Vt88P3A8lmr6VKvN13r9+HO1Xss2DibPPnt0s2vqaXJit0LyZbThjF9JtGqcidmjXLlg1+AMk/JCsXZu/FPejTqx6B2w9HU1GT5roXo6ukCUKVOReq1qI1TB2eWzVzFxPljMPn4G2ZgZMDAsX2ZO/77bxp9SfbyhXi0+TR7m03lr46K7/Nm21O/zzX1dGi+fQykpPBnexf2tZyGhrYGTTaO+OJ329fKjXwfxB8lB6ksN+bvIz4yBq/zDwEoM7gZWoZ67G4wEZ8bbtR07aUs36qEPVYl7Hmw/kSmng/xz5GGl/hX09HRwdraGmtra4oXL87YsWN5+/YtAQGpX+rdunVj165dxMSkRlM2bNhAt27d/vHjvXLuBsvnruXc8YvflD8yIoqggGDl4lCsEMamRhzcdVSZJyQoVCVPtTqV8H7jw51r9wHIkz8Xt6/d49nD5xw/eJqoyCiy22YDYPgkJ/Zs/hO/d/6ZVsc/us3h7r5L+Lv74OvmzZ6RqzDLkZUcRXMD4P/Sh60DFuN29h7B3h/wuP6UE/N341CrJOoaGX/l3PvzCmeWHsD96uMM81zZcJwLqw7hfd893XTLvNl5duYu/u4+XNtyCkMLEwzMFRelLWf14tjcHcRFZhx1+5IDXV15uu8yQS/fEeDmzYkRazDOYYFVUTtlnmyl8nF/0yn8Hr4mzDuAm8v+Ii48CquP5yY9nhcecXX+Pl6dvJNhnmyl8vFs32V8brgR7hPI4x3nCXDzxrpYHgCy5M3G2xtu+D96w/ND14mPiME4pyUAVcd34OHWs0S8//qFYnoCTt0j8OwDot/4Ef3al1ezd5MUFYtpqXyYlimAXs6sPBmyiki3t0S6veXJ4JUYF8uDeZW0kZ1P7nWYw/vdF4l64UPkM2+eDF2FXs6sGDumnqcC07vivf4EnssOEfXCh2gPX/wP3SAlPhEAw3zZCTh1l6gXPrzdeBJtCxO0sihe60Jze+E+YwdJP/haA7hdeMDRBbt5dDJttDJrbhtyl8zPnonr8X7kwYfXvuyZsB4tXW1KNa2UYZnRYVFEBIQpl4JVHEmIiePB0RvfXK5V3hy433jG28evuXfoGrER0WT5+Fo3G9eZK9tPE/Idr3WVCmUY0rcbtaulPe6UlBS27jlI327tqVmlAgXy5sZl0kg+BAZx9rIiourh6c2VG3eYNnYojoULUrJYEcYPH8DxMxf5EJD+cURERnHgyClGD+5DuVLFKVwwHzMmOPPg8TMePnED4Nqte3h4ejNnyigK5renSoUyOPXuyq4Dh0lISADgtedbWjWtj51tDhrUqcZrT0UE5e07Xw4cOcXQvt/+G/Dwwj32zN/BnZMZR3bMrMzpPq0PK4YuJCkh6atlNurdjHO7TnFx7zneufvwx/hVxMfEUb1tLWWeLpN6cmLTUQ6tOoCP+1t8X7/nxtGrJH58n2fPm4O7p2/h4/6WU5uPY2JhipG5MQC9ZvZnx5wtxPzE+/zvLp++xtVzN3j7xgfv129ZOWcd0VExFC2V/ue5WYdGmJgaM6LHOB7efoyvjx/3rj/A/ZmHMs+QjiM5suc4r1964v7Mg6nDXLDJYU2hYopGce58dty79gC3hy84efCs4jfsYy+PoZMGsH/LQfzffci0OgIc6uLK872XCX75jkA3b047K77PLR3tALApkw+jHFk57byWoOc+BD334fTwNVg65iZnJYcfLjclOYXogDCVxb5+adyP3CQhOg4As7zZcD90ndA3fjzdfh7zvIrfc3VNDWrM7smFcRuVN6D+C1L+weW/QBpe4j8jMjKSbdu2kTdvXrJkyaJcX6pUKezs7Ni/fz8A3t7eXLp0iS5duvyuQ/1hLTs24cal2/j6pN9dSVNLk0at6nFw5xHluhdPX1G4WCGMTIwo5FgAHV0dvN/4UKKsI4Uc87Nj/Z5fesy6RvoARIdGZphHz0if2MgYkpN+bacDXzcv7EoXQFNHiwLVihHuH0JUcAQlmlUiIS6ep19o3HwvnY/1jg2NUq57f9edAk3Ko2tiAGpqFGhSHk0dLd5ed/upfb2/6459nZIYWim6YeWsUAiz3NZ4XlI0Uj8888bKMQ86JvpYFrVDU1ebUC8/spfJj1URO+5vPPlT+1dSV8O6eQU09HUIvfMSdR1NUlJSSI5PUGZJiksgJTkFs7IFv7lYzY/nMuHje0jbwhjTUvmIDwyj7JHpVHuymtJ/Tsa0bGr0IuKpF6ZlC6Cuq0WWGsWI9QsmISgC61aVSI5L4MMXunf+LE1tRS/9xLjUeqekpJAYn0CeMt8WYQEo37YGdw9fIz4m7pvLfefmhW3RPOgZG5CzSG60dbUJ8PQjT+kC5Cicm4sbM6/7kc97PwKDQqhQuoRynZGh+eKL/AAA6TlJREFUAY4OBXj45DkAD5+4YWxkSJFC+VPrVboE6upqPHr2PN1yn71wJzExkfKflZsnV05srCxVys2Xx06l62GlcqWIjIrm1RtFt6sCeXNz/dY9EhOTuHnnAfntFQ336fOW4TywJwYG+pl0JhTd1Act/j/27jouqux94PiHkgZpMBAFFVHsxFbs7i7sdrEbA+zujtW1Xdd11+7ubpEQFZTu5vfH6OAImLju/r7Pe1/zcufec8+cM8Ocuec+55w7jAOr9hHw9MVn02toaZLf2Z5759KHBaalpXHv3G0KllZ8lkZmxhQsXZjIkAim7J3JymsbmbRjOoXLFlEe4/fAh8LliqClnYMS1UsRFhRKVGgklZtXIzEh6ZMdxe+lrq5O3Wa10dXT4c71+5mmqVa3Mneu32f0DHcO3/mDHSc30WNIF9TVsz69NDDUByAyTDFk78mDZxQpURhDYwMcixdCW0ebF74BlCjvTGHnQmxfuzv7K/cRbSPV9lwjhxakpZHyQduW/K5ts/mK7/jH+X7MwtkOi2J2PNiefrE2+IE/eVyKoqahjm11Z4IfKv7eSvdvxMuLD3lzx+frKif+VWSOl/hXO3DggHLIYExMDDY2Nhw4cCBDo+7m5sb69evp3LkzGzdupGHDhlhYWHz16yUkJJCQkKCyLTUtFXW1H3+NwsLKnMq1KjJmgEeWaWo1qI6hsQF/7EiPiF04dZm/9hxi26H1JMQnMGHINOJi45gwaxQThk6jbfeWdHRrTVhoBFNHzsT7cfY12mpqajSd1BWfq48IehKQaRo9E0NqD27B5W3Hs+11s3J15ylsHG0ZcWwuMaFRbBm4SDHnzL0NK9tPpd7wtpRoUokQ/yB2jVxFZFDYt72Qmho1PDrz8upjQj6o94EBS2i8bBAD764iJSmZ5LhE/ui9kHC/74s4npi0mToze9L36hJSkpJJS03j6Jh1vLzyGAC/M3d5+Pt5Ov05jeT4RA65ryIpNoHanj04NHwVJbq4Uqp7XeLCojg6Zh0hT15+1esbFMlL+b+moa6tRUpMPLd6zCPmyUsSQyJJiU2g0MSOPPXajpqaGgUndEBdU4McVjm/LHM1NRyndyPs8iOiHyneS918igiO/YjWPJmyhah7fuRqW42yuydwofpIYn0CebntFAZOtlQ+O4/EkCju9F6EZk59HEa15WqLqTiMaYt1cxdifYO4P2wlCYHf+FlnIsj7FaEBb2kyqgPbx60hMS6emj0bYZLLHCNLk89nANiWsCeXoy2/jV75Vfk+OnOba/vOMmK/F0nxiWwZsZzEuHjaTu/F1hHLqdK5LtW61ScmLIrtY1cT+DTz7+WXCA5VvGdmpqp1MjM1IThEsS84JAzTnMYq+zU1NTA2NFQenyHfkDC0tDQxMlQdDm5mmpPg0FDla5uZ5syw//3xAFPGDGP6vKVs3LaXUsWd6N21LfsPHUdXR4diRQrR55fxvHj5mgau1RnyFdGvzDTt35KU5FQObTjw+cSAkYkhGpoaRASHq2yPCI4gl30eACxtrQBoNawdWz034vfAh6otazL+t6mMqjuEQN/XnNp5HNsidsw9voSo0EgWDZiDvrEBbdw7MrXdBNqO6EilJlUJ8gtk1cglhAWFflc9AewdC7DhwApyaOcgLiaOkW7j8Xnim2na3PlyUbayNYf2HmVo55HktcvD6BnuaGpqsGb+xgzp1dTUGD51CLeu3FH+Fl06dYWDe46w+eAaEuIT8BjqSVxsPGNnDsdjmBetuzWnnVsrwkMj8Bw5m+dZlOWbqalRdXJnXl15TOhjxfcl8MYzkmITqDy2PRdn7QQ1NVzGtkNdUwN9y5zfnO/HnNrXIPTJSwKvp4/iuL78T2p49aDruflEBbzl+Mg1GNtZ4di6KrubTaGGVw9sqznz5o4PJ0avJfETc6f/DWRVQ1XS8RL/ajVr1mTFihUAhIWFsXz5cho0aMCVK1fIly993kznzp0ZM2YMz58/Z+PGjSxe/On5BVmZMWMGU6ZMUdlmqZ8bK4O8316JL9S0bUOiIqI/OUyxRYfGnD9xibdBwSrbV8xdx4q56fM6+g1349KZqyQnJdNnWHda1exMtTqV8Vw8ifb1emRbmZtP64FV4bysaO2R6X5tA13cNowi6NlLji7ck22vm5XU5BT2TVKd79dmTl/ObTxE7qL5KVq3LAsajKFGvyY08+jGr/0XftPr1J7eDfNCedjeaprK9srDW6NtpMeuDjOIC43CoV4ZGi8fzI7W0wjO4of3S5TqXhebUg787jaPyIBg8lRwpPa0bkQHheF/TnEl+uKCvVxcsFd5TKVhLfA/d4/UpBQqDm7GprpjKVC7FA0W9GNLo4lf9foxz15xsdZoNI30sGpSgWKLB3C1xRRinrzkTq+FFJndE9te9UlLTSPw9wtE3n4OXzgUpshMNwwK5+VK08npG99d6Aj49Tiv3l0JfnzPF9OqRcnVsQbPPLeTlpzCo7EbeDQ2/fMuurAf/msPYeRsh2WDclysNRq7gU1w9OzO7Z4LvqrOn5KanMK6fvPoMLsfs+6sJyU5hSfn73L/5M1PTf9QUaldLV4+9MP/dvqQrC/N9+DC3RxcmB4FqD+0NY/P3yUlOYV6g1sys94IitYuQ5f5A5nTZGx2Vftfx6FAPjYum6N8Hh4RyfJ1W9i4bDZe81dQ0tmJhV4Tad9rCMWdClOjSsVP5Ja1/MXsqd+jMeMauX8+8VdQU1d8qMe3KoYjAvje96FY5eLUaFub7bO3kJKcwoaJq1WO6ztnMIc2HCB/0fyUrVuBMfWH0aRfC7pN6c3CfrO+u1x+3v50dHXDwEif2o1r4rF4PH1aDs6086Wmpk5YSDieI+eQmprKoztPsLSxoEv/Dpl2vEbPcMfeMT+9mg1U2b563gZWz0v/Lvd2786Vs9dJTkrBbVhX2tfqTlVXF6YsmUCXer2+u44fquHZDbPCedjdMr09jw+N4mD/xdT06kEJt7qkpabx5I+LvLnjo5x/9y35fkhDR4vCzSpxdfE+le2JUXEcGbxcZVvz7WM577mNQi1cMM5nyZYaI6k1uyflh7Xg3LTfvq7C4qeSoYbiX01fXx8HBwccHBwoV64ca9euJSYmhjVrVFdwMjMzo3HjxvTs2ZP4+HgaNGjwTa83duxYIiIiVB4W+rk/f2A2aN6hMQd2HyI5KTnT/TZ5rKlYrRx7tu7/ZD52Dvlo1Ko+S2etppxLaa5fukVYSDhH9h/HqYQjetk0/KbZlO4UqVWaVe2nERGY8Sqrtr4OPTeNISE6js1955Oa/Pk5EdnNvpITVgXzcGHTYQpULMKjk7dIikvgzoFLFKiY9Tj9T6k1tSv2tUuxs70X0R/U2zifJaV61OXwyDX4n7/P24f+XFz4O0F3fSjZrc4310FTW4sqo9pyatpWnh+7SfCjF9zadJTHf16mbJ+MK2ICmNrbUKRFZc7P3U3eSkUIuPKYuNAoHh+4jJVzfrT0db6qDGlJKcT5BhF1x4dnntuJeuCHbW/Fdyzk9B3OVRjKqaJ9OVWkN/cGLUPbxpS4L4jyOXr1wKJOaa61mkrC6/T3MvGNIqIR81FnNebpK3Rzm2eal0llJwwc8+C/7hAmLk68PXaTlNgEAvdfwsTl2z7rT3lxz4fZDUczyrk7E8v3ZUW3GeibGBDi//m5KDl0tSnd2IVLO09+d76W9rko27wKf83bgUNFJ7wvPyQ6NIqbBy6S17kA2l/5WX/o/TC/kI8iVyGhYZibKfaZm5kQGq66gmVycgoRUVEqwwRV8jUzISkpmcgo1eHJIaHhmJuaKl87JDQ8w/73x2dm9uLVdG7bHGtLC67evEO9mlXQ09WhWqXyXL2Z9dzRz3Es74SRuTFLLq5li/cetnjvwSKvJZ0ndGfxudWZHhMZFkVKcgrG5jlVthubGxP+VvF+hr/7O3/5THXo4stnAZjlznzEhlOlYuQplJfDm/6mSKVi3Dp5g4S4BC4dOI9TJitmfovkpGQCfF/y6M4Tlnmt4sn9Z3To1TrTtMFvQvDzfkFqanpnxOepL+ZWZmhqqV7bH+U5jCqulejXaihvXr/9OCulfA62NGhVlxWz1lLGpSQ3L90mPCSco/tPUKR4YfT0s14t82tVn9YVu9ql+L2dFzEf/Y69OHOPzVWGs7bkANaU6M/RYSvRtzYhwi/rsn9Jvu85NCyPpq42D3efy3T/e0XaViMxMhafIzfIU6kIzw9fJzU5hWcHrpC7YpFPHiv+faTjJf5T1NTUUFdXV1lI4z03NzdOnTpF165d0dDQ+Kb8tbW1MTIyUnn8E8MMy7qUIl+BvPy+LeuliZu3b0RocBhnj13IMg3ApDmjmTt5MXGxcahraKCpqfjxe/+vxicWuPhSzaZ0p1i9cqzuOJ2wgIw/QtoGuvT6dSwpScls7DVXZc7KP0VTW4vmU3uwd/w60lLTUNdQR0NL8XehrqXxyYU+slJralcc6pdlZ3svIl+o1ltLJwdAhknPaSmpyivb30JdSxONHJqkpapeZU1NzTpf1xlunJq2laTYBNTU1VF/t/y2sv7f+Tegpq6Geg4tlW1JoVEkR8ZiWqUoOcyNeHP4ehZHKzh69cCyYTmutZpGnL/qexnn/5b416HovZtU/p5eAWviAlSjvQDq2loUmeHGgxFrITUNNQ111N+d9KlraqCWDX/zWYmPiiM6NAoLO2tsne25e/Tz8whLNqqIprYmV38/+935tvfqzb7pm0mMTUBdQx11rez7rPPkssbczIRL128pt0XHxHDnwWNKFFPM4StRrAiRUdHcf5Q+VOry9VukpqZR3CnzeX5OhQuiqanJ5Wvp+fr4BfA66I1Kvk+f+xISFq5Mc/HqDQz09bC3s82Q56VrN3nu94KOrZoAiu9H0ruLPcnJyaSkfPuFn7N7TzG63jDGNPhF+QgNDOHPVfuY0dUj02NSkpLxuetNscrFldvU1NQoWrk4T28ohgi/ffGG0MAQbAqoXtyzKZCL4EzaVS1tLXpM68u6cStIS01FXV0dDeV3WxN19W/73fscdXU1tHLkyHTf7at3yZs/t/LWLgC2BfLyNjBY5SLiKM9h1GhQjf5thvHqxevMslIaN3skCzyWEhcbh4aGhrID9/5f9W/8ff9Y9WldKVC/LL+3y9iefyg+LJrEyFjyuDihZ26Ez9Eb2ZKvU/sa+By9QXxoVJZpdEwNKTe0OacnbQZQtG2a6b9jP7Jtyy6p/+Djv+Df/4mJ/2kJCQkEBgYSGBjIw4cPGTx4MNHR0TRp0iRD2vr16/P27VumTp36E0qqoKunS+GiBSlctCAAuW1zUbhoQaxzK8byDxnXH88lkzIc16JDE+5cv8ezR88zzVdNTY1m7Ruxf+ffnzyBaNWpKWEhYZw+qriCduvqHcpXKUPx0kXp0rc9zx4/Jyoy60UwvkTzaW6UblGFbUOXEh8Th4GFMQYWxmhqK07E33e6cujqsGvUKrQNdZVpPuwojDg+l6L1yiqf6xrrY+OUDyuHd/MfCthg45QPA4v0+SMGFsbYOOXDPJ/iHjPWhfNi45QPXWP9DOWsPbgFj07e4tV9XwB8rz2hWL1yWDvaUrlrXXyvPfmqetee3p0iLSrz9+DlJMbEo2dhjN4H9Q71fk2YTyB1ZrhhXaIAxvksKdO7AfmqFuPZB52Q1tvGqkTAtPS0sXCyxcJJcTJplNcCCydbDHMpFpBJjI7jxcWHVB/fgTwVi2CU14Kiravi1KoKzw5lPBl37lCDuNAonh9TrHr56toTbF2csCllT5le9Ql+EkDCB/c++xyH8e0xqeiITl4LDIrkVTx3ceL1HsXfWK721TEu44BuPitsWlWh+Jph+K36W+WeXGV2TyCvWz3l8yIz3bBpXYW7/ZeQHB1HDgtjclgYo66T3pnzXf4ntr3qY9W4Arp2VtiPbou+Q25ebs0YJSrg3pLg47eIuucLQPiVx1g2LIeBky15e9Yj/N1cuK+RQ0+b3E75yO2kGNJslteS3E75MHn3uZRsWBGHik6Y5bXEuU5ZBmwZz50jV3l0Nn0xhc7zBtJkVIcMeVdqW5M7R65luiDNl+SrzKd9LaJDIrl3XHEi+PzaYwpVKoZdqYLU6NmI109eEPeZzzo2No5HT7x59EQx5PHlqyAePfHmdeAb1NTU6NK2Oas3befk2Us88fZh3LR5WJqbUbuq4l5f9na2VKlYFo9Zi7j74DE37tzHa8EKGrhWx9JC8V4FvQ2mSYfe3H2g+BwMDfRp2bgus5es4cr129x/9JQJXvMpUawIJYopruC7lC+NvZ0tY6fO4dHT55y/fJ0lqzfTvmUTcnzUCUhISMRz/go8Rg1Rzv8t5ezE9r1/8ujpc46ePk+p4p+OBmnr6ZDPKT/5nBQLdFjktSSfU37McpkTHR5FwBN/lUdKUgoRb8N5/fyVMo/xv02lbreGyud/rf2Dmu3rUK1VTXI55MHNsx/aejqc3pU+3/XAqn3U796I8g0rYZXPmjbDO5LLPjcndxzLUMYWQ9py6+R1fO8r5kY9ufaIcvUrYuuYj7rdGvLk+vct4gMwcFxfSlUsgU0ea+wdCzBwXF/KuJTi0Lt7Q05ZPJ6B49JvDbJn0z6MchoxYtpQbAvkpXLtSvQY0oVdG9OHPY+e4U6DVnWZMHAqsdGxmFmYYmZhirZOxs5c805NCA8J5+xRxQXG21fuUq5yaYqVdqJjn7Z4P/Yh+jt/wwCqe3ancIvKHB68nKQP2nOND9qgIm2rYVXKHqN8lhRuUZn6Kwdza+0hlXt9Nd82luIftOdfki+AsZ0VuSsU5v72U58sZzWPztxafZCYd3NUX199QuFWlTFxyEXRjjV5/ZW/Y+Lnkzle4l/t0KFD2NgolpU1NDTE0dGRXbt2KW+I/CE1NTXMzTMfhvRPKVrSkfV708dmj5o6FIA/dvzFxKHTsbAyU3bC3jMw1Me1UU1mT8x6DkrFauXIlcdGZTXDj5mam9BrWHe6Nu6j3Hbv5gM2r9zG0i3zCA0OY8LQzMeafw2XLoofmX47VDuQO0as4PruM+QuZke+UoqO55gzi1TSzKgymLB3EQtL+9zKFREBnOqUod3c/srnnZYq3rujC3cr54dV6uRKnWHpQ14G7PJQee33rArloUSjiixomD6/5e7flylQ0Yn+Oyfz9vkrtg1d+lX1LtnVFYB2uyaobD/kvor7u8+SmpzC3m5zqDqmHc3XDyeHvjZhvkEcdF+Fz7v7swDktLVE990S9wBWxQvQbud45fOakzsDcG/XGQ4PVwxjOjBoKVVHt6Ph4v7o5DQgKiCY87N3cXuL6oIleuZGVBjUjG0t0+cpBt5+zrU1f9Ni4whigyM55P7p+xR9LIe5McWWDETbKifJUbFEPfDnersZhL5bUVHfIRcFx3dAK6cBcS/e4rPwd/xW/a1arnxW5Pigznl71AWg3L7JKunuDVnBqx2KOV3+qw+irq1F4ald0TLRJ+q+P9fbemYYwmjgmAerphW5VDv95qpBf17G1MWJcn94EOv9ijv9lnxVnQFsi9szZHt6+VpOVCzOcHn3KbaOWIGRZU5aTOiCoXlOIt+EcWXvGQ4vUZ3HaJLbLMN8EMsCNtiXL8KyztPJzJfkC4obLdcd1IIFLdO/h/63vTm59gB9148mKiSSLcOXfbae9x49xW3waOXz2UsUf3PNGrjiOWE4bp3aEBcXj8fsxURFR1O6eFFWzpuGtnb6SfOsyaPwnL+cnkPGoq6uhmuNyowblv5dTk5Owcc/gLj49IWLRg/pi7q6OsPGTycpKQmX8mWYOCJ93o+GhgbL5ngwbc5SOvd1R1dXm6YNXBnUK+NqtcvXb6WaSzkcC9krt439pT+jPGbRfeBIGtWtSZ0aWS/zD1CguAOTdqR/Jl0nKe6ddHrXCVaO+LI5w1a21hiaGCmfXzpwHiMzY1q7dyCnhQl+D3yY2XUKEcHpQzMPrv8TLW0tuk7siX5OA/wf+uLVyYM3/qor2+YpZEvFRpUZ2+AX5bbLf1/AqVIxJu/y4tXzlywd8v33ujI1y8mUxeMxtzQjOiqGpw+8GdxhOJfPKC7yWOe2IvWDqH7QqzcM7jAc9ymD2XZ8A28Dg9m+djeblm5VpmnTvQUAq/eqfg89hnpxYGf6Kpym5ia4De2CW5P0v537tx6yZeUOFv46m7CQMDyGeH13HQGKv2vPW33Unh91X8WjXYpItEkBGyqNbotOTgMiA95ybcl+bq1RXTXUOJ8lOh+0bV+SL4BTu+pEvw7F/3TWQ2BtqztjbGfFkaHpC/Dc2XgUy+IFaLt/CkG3vLmy4PevqfZP8V+JRP1T1NLS0v4rS98L8VMUt670s4vwU9TXsfvZRfgprFJ/zHCdfzvnhMznFv5/d0D3f/MncN61GT+7CD9F1zLZu0DGf8XTxG+7j99/XTfNrG9e///Z4BfZd1Pt77UqT+d/7LX6Bvx76p0ViXgJIYQQQgghsl2aLCevQuZ4CSGEEEIIIcQPJhEvIYQQQgghRLaTOV6qJOIlhBBCCCGEED+YRLyEEEIIIYQQ2U4iXqok4iWEEEIIIYQQP5hEvIQQQgghhBDZ7n/zhh1Zk4iXEEIIIYQQQvxgEvESQgghhBBCZLtUuY+XCol4CSGEEEIIIcQPJhEvIYQQQgghRLaTVQ1VScRLCCGEEEIIIX4wiXgJIYQQQgghsp1EvFRJxEsIIYQQQgghfjDpeAkhhBBCCCHEDyZDDYUQQgghhBDZTm6grEoiXkIIIYQQQgjxg0nESwghhBBCCJHt5AbKqiTiJYQQQgghhBA/mES8hBBCCCGEENlOlpNXJREvIYQQQgghhPjBJOIlhBBCCCGEyHayqqEqiXgJIYQQQgghxA8mES8hhBBCCCFEtkuVmJcK6XgJ8RmhiVE/uwg/hZ923M8uwk9xMjn0Zxfhp3ima/2ziyD+QV3LuP/sIvwUm6/P/9lF+CkqOHf92UX4Ke5oJPzsIgihQjpeQgghhBBCiGwnqxqqkjleQgghhBBCCPGDScRLCCGEEEIIke1khpcqiXgJIYQQQgghxA8mES8hhBBCCCFEtpM5Xqok4iWEEEIIIYQQP5hEvIQQQgghhBDZLlXtZ5fg30UiXkIIIYQQQgjxg0nESwghhBBCCJHtUmVdQxUS8RJCCCGEEEKIH0w6XkIIIYQQQgjxg8lQQyGEEEIIIUS2k4GGqiTiJYQQQgghhBA/mES8hBBCCCGEENlObqCsSiJeQgghhBBCCPGDScRLCCGEEEIIke1kOXlVEvESQgghhBBCiB9MIl5CCCGEEEKIbCfxLlUS8RJCCCGEEEKIH0wiXkIIIYQQQohsJ6saqpKIlxBCCCGEEEL8YBLxEkIIIYQQQmQ7WdVQlUS8hBBCCCGEEOIH+yEdLzU1Nfbt2/fF6T08PChZsuSPKMq/Uvfu3WnevLnyeY0aNRg2bNhPK89/wcfvmRBCCCGE+HdL+wcfX2vZsmXY2dmho6NDhQoVuHLlSpZp16xZQ9WqVTExMcHExARXV9dPps/KVw017N69O5s2bVIcqKmJqakpxYsXp0OHDnTv3h11dUU/7vXr15iYmHx1Yb6Hr68v+fPn5+bNm9naibOzs8PPzw8APT09ChcuzNixY2nTpk22vcbevXvR0tLKtvy+x8aNG+nRo0eG7WvWrKFXr14//PWz+hwXLVpEWtp/I1ztPnoATVvUJ1duaxKTkrh76wGzPRdz8/rdLI/p0qMdXd3akcc2FwBPHj1j4ZyVnDx2Tplm1/4NVKpSTuW4XzfsZOzwqQDkzGnEguVeuFQpj89zP4YPnsj9u4+UaafPHo+/XwCrl236rvoVKe9Ek74tyO9sj6mVKXN6z+DakcvK/a2HtcelSRXMcpmTnJSMz11vts/ZwrNbT7PMc8m51Vjmtcyw/fDmv1k/cTUAvb36U6xKCUytTIiPiefx9Uf8NnMzr7xfAqBvbMDA+UMpWqkYr31fs3LkEnzv+yjzcpvWhzf+QRxY88d31T8r3QZ1YtC4vmxbs4v5k5dkmqZAITv6juyJY/FC5Mprw/xJS9i2dpdKmlZdm9Gqa3Ns8loD8PyxD+sWbOLCyfT3eNjkgTRu24D4uHiWeq7i0O9HlftqN65Bozb1cO82Nlvq5VC+CHX6NMXWOT85rUxZ2WcOt49cVe7X1tOm+ehOlKhbDn0TQ0JevOHkxoOc3Xo0yzxL1itP/YEtsLCzRkNTgze+gRxb8ydXfj+rTGNobkyLMZ0oUrU4ekb6PL3ykB2T1/PWNzD9vZrQlUqta5AQG8++Wb9x9Y/070vphhWp0LI6K3rN+tfUu2Lr6nSbO1BlW1JCIkMKd1Z5b6p2qoOtcwEMTAzxbDiSgAd+Ksf8yHo7lneicd8WFHC2x8TKlHkffb8/1NOzH66d67N5yjoOrv/zk/nW6dqAJn1aYGyRE/+HvmycvAbv26ptQsHShWk3shP2JQuRmpKK3wMfZnSZQlJCIpo5NOkzaxBl6pQn4m0Y6yes4t75O8pjG/dtjnkuCzZOXvNF9bx26y4bftvNg0fPeBsSyqIZE6ldzUW5Py0tjWVrf2X3n4eIioqhVHEnJo4YRL68uZVpIiKj8Jq/nFPnL6Ouro5rjcqMHdoPPT3dLF83ISGROUvXcPDYaRKTkqhcvgwTRgzE3DT9nOl14Bumzl3K1Rt30NPVoWkDV4b164GmpgYAD588Y6LXAvwCXlG+dHG8JozA2MgQgOTkFDr2GcbEEYNwdir8Re/Fh1p3bU6bbs2xyWsDKNqf1Qs2cuHEpUzT12pYDbchXclrlxtNLU38nwewZdV2/tp9WCVd/oL5GDK+P6UrlURTU4PnT3wZ2WsCgS+DAHD3GESTtg2Ji41jiddKDu5N/x65Nq5J4zb1GdZt9FfXJysFyxehXp+m5HMuQE4rU5b1mc2tD77fa3x3ZXrcLq9fObJ6f6b7qneuS41OdTHLYwHAq6cBHFi8i3unbinTGFnkpPXYLjhVLY6Ovg6Bz1/x99K93Dik+I5p5tCk68z+lKxTlsi34WyduJaH59PPHer2aYpZLnO2eaz/3rfgf96OHTtwd3dn5cqVVKhQgYULF1KvXj0eP36MpWXG85FTp07RoUMHXFxc0NHRYdasWdStW5f79++TO3fuTF4hc189x6t+/fps2LCBlJQUgoKCOHToEEOHDmX37t3s378fTU1NrK2tvzbbf7WpU6fSu3dvIiMjmTdvHu3atSN37ty4uLh8/uAvYGpq+t15JCUlZVvnzcjIiMePH6tsMzY2zpa8v9XPfv2v8fyZLxNGe+HvG4COrja9+3dl657VVCnTkNCQsEyPef0qkBlTFuDz3A/U1GjTvhnrtiyhfo3WPHnkrUy3ddMu5s5YqnweFxev/P/Bw/tgYKBP/Zpt6OrWjtkLp9CodjsASpctTqkyxZk0ZsZ3109bTwe/hz6c3HmMEasznty/9nnFhkmrCfIPIodODhr1asr4Xz0YUr0/UaGRmeY5rukI1DXSA/C2hWyZ8NtULv11Qbnt+V1vzu07TfCrYAxyGtB6WHvG/+rBoCp9SUtNpeXgNujo6zKm0XDqdK5Pn5kDGddkBAAFSxXCoWQhNkxe+931z4xTCUdadG7Kk/vPPplOR1eHl/6vOHbgJO4egzNN8+b1W5Z6reKFTwBqatCoTX3mbvCic92ePH/iS9U6LtRv4crgDsPJWyAPE+eN4eLpK0SERqBvqE//0b0Z2P6XbKubtp42Lx/6cmHXCfqtGplhf6sJ3SjsUowNvywhJOAtTlWL035aLyKCQrlz7HqmecZERHNw2V6Cnr0iOSkZ59ql6TpnAFEhkTw8cxuAfqtHkpKUzMrec4iPjqV2r8YM3TKRqXXcSYxLwLl2Gco1q8LiLtOxzG9Dl9n9eXDmNjFhUegY6tJ0RHsWdZ72r6o3QFxkLB61hyqff3w9KYeeNt7XHnHjr4t0ntUvw/E/vt46+D/04dTOYwzP5Pv9Xtl6FXAoVZjQwJDP5lmxcWW6THBj3fgVPLv1hAZuTRnz62SG1xxIZEgEoOh0jdk0iT+W72HjpDWkpKSQr0h+0tIUa6LV7liP/M72TG4xmhI1SzNosTv9ynQHwCKvJbXa12H8u+/7l4iLi6ewQwFaNKrLsHHTM+xfv3UXW3fvx3PCcHLbWLN0zWb6uk/gjy2r0NbOAcDoKbN5GxzKmoVeJCcnM8FrAR6zFzPbI+sOwqzFqzhz8Srzp4/DQF8fr/nLGTZuOltWzgMgJSWFASMnY2ZqwpaV83gbEsq46XPR1NRkWD9FfSfPXESFMiWZO3Usk2cuYvXm7Ywc1BuATdv3UNLZ6Zs6XaBofxZ7rsTfJwA1NTWatG3Agg0z6FDHjedPfDKkjwiLYt2izfg+8yMpMYmqdSozecFYQoPDuHhKEQ3Iky8X6/Yt549tB1g5dx0xUTEUKJyfhPgEAKrVqUz9FnUY0OEXbPPnZfL8sVw8dYXw0AgMDPUZOKYP/dsN+6b6ZEVbT5uAh36c33WSAZl8v4eX663yvFiNknSb1Z8bBzPvgAKEvQ5hz6ytvPF9jZqaGpVa1WDg6tFMazSSV08DAHCbNwg9I32W9ppFdGgkFZpVoe8yd6Y3Hc2L+75U6+BKPucCzGw5nmI1StFr0VCGl1Vc9DbPY0m19rWZ3nRMNr4TP96/dVXD+fPn07t3b2WwYeXKlfz111+sX7+eMWMyvsdbt25Veb527Vr27NnD8ePH6dq16xe/7lcPNdTW1sba2prcuXNTunRpxo0bxx9//MHBgwfZuHEjkHGo4ejRoylUqBB6enoUKFCAiRMnkpSUlCHvVatWkTdvXvT09Gjbti0REREZKlmkSBF0dHRwdHRk+fLlyn358+cHoFSpUqipqVGjRo0vOi4xMZFBgwZhY2ODjo4O+fLlY8YM1ZNTQ0NDrK2tKVSoEMuWLUNXV5c//1Rc3Xvx4gVt27YlZ86cmJqa0qxZM3x9fZXHpqSk4O7uTs6cOTEzM2PUqFEZIjcfDzV8/fo1jRo1QldXl/z58/Pbb79hZ2fHwoULlWnU1NRYsWIFTZs2RV9fH09PTwD++OMPSpcujY6ODgUKFGDKlCkkJycrjwsPD6dXr15YWFhgZGRErVq1uH37tkp51NTUsLa2Vnno6uqyceNGcubMqZJ23759qKmpKZ+/Hzb666+/Ymdnh7GxMe3btycqKkqZJjU1ldmzZ+Pg4IC2tja2trbK8mf1OX481DAhIYEhQ4ZgaWmJjo4OVapU4erV9KtVp06dQk1NjePHj1O2bFn09PRwcXHJ0KH8Efbt+Ztzpy/h7xfAk0feTJkwGyMjQ4oULZTlMccOn+bEsbP4PPfHx9uP2Z6LiY2JpXTZEirp4uLiefsmRPmIjopR7itYqAB/7D2Ij7cfWzftpmAhxXupqanJjHmTGDt8Kqmp398E3jp1gx1zf+Pq4cyvgp//4wx3z9/hzYsgAp6+YPO09egZ6ZOviF2WeUaFRhLxNlz5KF27HIG+r3lw6Z4yzfFtR3h45QFvA97gc+85O+ZuxTy3BZZ5FFemcjvk4cKfZ3nt84rj246Q2yEPABqaGvTy7M/acStIy4b6f0xXT5epSyfiNXI2URFRn0z74PYjFk9bwdE/TpCYmJhpmrNHL3DhxCVe+ATg/zyAFbPWEhsTR7EyRQGwK5iP6xdv8fDOY47sO05MdAy5312dHjKhP3s27yPo5Ztsq9/9U7fYP28Htw9fzXS/fZlCXNpzmqeXHhAa8JZz247z8qEfdiUcsszz6aUH3D58lUDvlwT7B3Fyw0FePvLDoawjAJb5bShQuhDbJqzF7443Qc9fs238WnLo5KBc08oAWDvk5uml+/jffc61/eeJj4rF/F3UtOXYzpzZepSwV5/vFPyT9QZII43ItxHKR1Sw6u/cld/P8vfiPSpXuT/0o+t9+9QNds79jWtZfL8BTKxM6T6lN8uGziclKeWzeTbq1YwT249wetcJXj4NYN24FSTGJVCjbW1lmi4T3Ti08S/2r9hLwNMXvH7+ikt/nSc5UfH7ldshD9ePXiHg6QuObDqIsXlODE2NAOg5vR+/zdxMXHTcF9ezaqVyDOnTDdfqlTPsS0tL49ed++jTrT21qlaisEN+vCaO4E1wCMfPKi4Gefv6c+7SNaaMGUrxoo6ULlGMcb/05+Cx07x5m/n7HxUdw94DRxg1uDcVypSkqGNBpo1359bdB9y+9xCAC1du4O3rz8zJI3EsZE/VSuUY1Ksr2/f+qTxveu77glZN62Nnm4cGdarz3PcFAC9evmbvgSMM7dPti9+Hj505ep7zyvbnBctmriY2Jg7nMk6Zpr9+8SYnD57B56kfAX6v2LZ2F08felOyfHFlmoFj+nD+xEUWTV/B43tPCfB7xZkj5wkLCQcU0bDrF27y8PZjDu87Rkx0DLnetWlDJw5g9+bflZGx7HLv1C32zdvOzcOZDxWLfBuu8ihZpxyPL94n+EXWbeud49e5d+omb3wDCfJ5zb6520iIjadAqfTffvsyhTmx6SC+t58R/OINfy3dS2xkDPmKFQDA2iEPt49d49XTAE5uPoyRuTEG7/7OO3n2Zs+srcR/xd/5/5qEhAQiIyNVHgkJCRnSJSYmcv36dVxdXZXb1NXVcXV15eLFi1/0WrGxsSQlJX118CRb5njVqlWLEiVKsHfv3kz3GxoasnHjRh48eMCiRYtYs2YNCxYsUEnz7Nkzdu7cyZ9//smhQ4e4efMmAwYMUO7funUrkyZNwtPTk4cPH+Ll5cXEiROVQx/fj7M8duwYr1+/Vpblc8ctXryY/fv3s3PnTh4/fszWrVuxs7PLsq6amppoaWmRmJhIUlIS9erVw9DQkLNnz3L+/HkMDAyoX7++8qRq3rx5bNy4kfXr13Pu3DlCQ0P5/fffP/l+du3alVevXnHq1Cn27NnD6tWrefMm45fdw8ODFi1acPfuXdzc3Dh79ixdu3Zl6NChPHjwgFWrVrFx40ZlpwagTZs2vHnzhoMHD3L9+nVKly5N7dq1CQ0N/WSZvoa3tzf79u3jwIEDHDhwgNOnTzNz5kzl/rFjxzJz5kwmTpzIgwcP+O2337CysgKy/hw/NmrUKPbs2cOmTZu4ceMGDg4O1KtXL0M9xo8fz7x587h27Rqampq4ubllWz2/hJaWJp26tSEiIpIH976s06eurk7Tlg3Q1dPl+tVbKvtatG7EnadnOXb+d8ZMHIaOro5y34N7T6hcrTwaGhpUr+XCwwdPAOg/xI2L569y59b9bKvXl9LQ0qR2x7rERMTg9yDj1dKsjqnSojondx7PMo22rjY12tQmyD+Q4NfBAPg98KGYS3HUNdQpUa0U/o98AWjarwUPLt3j+V3vLPP7HqO8fuH88YtcOZt1lONbqaurU6dZLXT1dLh7TdEJfXr/GUWKF8bQ2ABH50Jo62jzwjeAEuWdcXQuyI51e7K9HJ/iff0JxV3LYGylGCpVqFJRLPPb8ODsnc8cma6wSzGsCuTi6ZUHgGK4DUBSQvoFurS0NJISk7Avp+icBTz0w9bZHj0jfWyL5UdLJwdvfQOxL1uYvEXzc3LD39lVxUx9a7219XSYfm4ZnheW02/NSGwK5vmq1/3Z9VZTU2PgwmEcWLWPgKcvPpteQ0uT/M723DuX/r6kpaVx79xtCpZWRGWMzIwpWLowkSERTNk7k5XXNjJpx3QKly2iPMbvgQ+FyxVBSzsHJaqXIiwolKjQSCo3r0ZiQtInO4pfK+BVIMEhYVQqW0q5zdBAn+JOhbl9TzF8+/a9hxgZGlCsSPpJdcWypVBXV+POg0cZ8gR48PgpycnJVPwg3wL58mJjZamSb8ECdipDDytXKEN0TCzPfBRDTgs75OfilRskJ6dw+dotCtkrLrJNnbME9wFu6OvrZcv7oK6uTt1mtdHV0+HO9S/7/ShfpQx29rbcuHQLUPy9VHF1we/5C5Ztm8exu3+y6a/V1KhfVXnMkwfPcCrhiKGxIUWKF37Xpr2kZPniODoXYtva3dlSn29laG6Mc83SnNtx4ouPUVNXp1wTF3LoauN944lyu/f1x5Rr7IKesQFqamqUa+KClrYWjy8p2r6Ah744lHVESzsHRauXIDwoVBkZS0pIzLKj+G+W9g/+N2PGDIyNjVUeHwdTAIKDg0lJSVGee75nZWVFYGBghvSZGT16NLly5VLpvH2JbFtO3tHRkTt3Mv/BmTBhgvL/7ezsGDFiBNu3b2fUqFHK7fHx8WzevFk5TnLJkiU0atSIefPmYW1tzeTJk5k3bx4tW7YEFJGR952Lbt26YWGhGFNrZmamMtTxc8f5+/tTsGBBqlSpgpqaGvny5cuyjomJicybN4+IiAhq1arFjh07SE1NZe3atcqoz4YNG8iZMyenTp2ibt26LFy4kLFjxypff+XKlRw+fDjL13j06BHHjh3j6tWrlC1bFlBE7AoWLJghbceOHVXmY7m5uTFmzBi6dVNc7SpQoADTpk1j1KhRTJ48mXPnznHlyhXevHmDtrY2AHPnzmXfvn3s3r2bPn36ABAREYGBgYEyXwMDgy/+QwRFRGvjxo0YGirGnHfp0oXjx4/j6elJVFQUixYtYunSpcpy2tvbU6VKFYAsP8cPxcTEsGLFCjZu3EiDBg0AxRy0o0ePsm7dOkaOTB824OnpSfXq1QEYM2YMjRo1Ij4+Hh0dnUzzTkhIyHB1JC0tFTW1r7tGUbtudZavnYOung5vAt/SsWUfwkLDP3mMY5GC/HF4K9o6OYiJiaV3l6E8ffxcuX/fnr8IePGKoNdvKVK0EOM8fsHewY7e3YYBsGzhWmbMm8j5GwcJ8H/JiCGTyF/Aljbtm9K0XidmzJtEtZqVuHPrPqOGehAVFf1VdfoapWuVZejS4eTQ1Sb8TRienScTFfbpaNB75epWQN9In9O7Mna86nZpQKexXdHR1+XlswA8O3mQkqS4Ir5vxV56efZj8ZmVvA14w8pRS7G2s6Faq5pMbDGGXp79KF6tJM/veLNqzDLiomK/u551mtXC0bkQ3Rr2+e68PmTvWID1fy4nh3YO4mLiGNlzAj5PFSddl05f5eDeo2z6ezUJ8YlMGepFXGw8Y2YMZ8owL1p1a047t5aEh0bgNXIOz5/4ZmvZPrbTYz2dZvRl5uVVpCQlk5qaxtaxq3h25eEnj9Mx1GXGpVVo5dAkNTWVbRPW8eicIsoT6P2KkIC3NB/Vkd/GrSYhLp7aPRtjmsscY8ucADw8c5sr+84yev8MkuIT2TRiGQlx8XSY3pvNI5ZRrXNdanZrQHRYJFvHrub1u6E+P7PeQc9f8euoFbx85IeuoR6uvZsycs90ptZ1Jzzwyy5+/ex6N+3fkpTkVA5tOPBF6Y1MDNHQ1CAiOFxle0RwBLnsFZ1OS1vFyU+rYe3Y6rkRvwc+VG1Zk/G/TWVU3SEE+r7m1M7j2BaxY+7xJUSFRrJowBz0jQ1o496Rqe0m0HZERyo1qUqQXyCrRi4hLOjbLyYGhyqGhJt90Pl5/zz43XDx4JAwTHOqDoHX1NTA2NBQeXyGfEPC0NLSxMjQQGW7mWlOgt9dNAwODcPMNGeG/e+PB5gyZhjT5y1l47a9lCruRO+ubdl/6Di6OjoUK1KIPr+M58XL1zRwrc6Qb4h+OTgWYOOBlcr2Z7jbOHw+0Y4YGOpz6ObvaOXIQWpKCjPHzufymWsAmJqboG+gR49BnVk+aw2Lpq/ApWZF5q7zpE/rIdy4eIuLp67w954jbDm4hvj4BCYP9SQuNo6xM4fjMcyLNt2a086tNeGh4UwfOSfTIY8/kkur6iTExHPjCzr3uQvbMmavJ1raWiTExrO87xxeP0v/Dq4aNJ++S39h0e0NJCclkxiXyPK+c3jrpzjHOr/zJHkc8zH12AKiQyNZNXABesYGNHVvx9z2HjQf3p5yTSrz1j+QjSNXEP4df+f/H40dOxZ3d3eVbe/Pd7PTzJkz2b59O6dOncryfDIr2dbxSktLUxly9qEdO3awePFivL29iY6OJjk5GSMjI5U0tra2KpPTKlWqRGpqKo8fP8bQ0BBvb2969uxJ797p426Tk5M/OfcnJibms8d1796dOnXqULhwYerXr0/jxo2pW7euSj6jR49mwoQJxMfHY2BgwMyZM2nUqBEjR47k2bNnyg7Ge/Hx8Xh7exMREcHr16+pUKGCcp+mpiZly5bNcqGIx48fo6mpSenSpZXbHBwcMl2s5H3H7L3bt29z/vx5lQhXSkoK8fHxxMbGcvv2baKjozEzM1M5Li4uDm/v9GiAoaEhN27cUD5/v2jKl7Kzs1N5T2xsbJQRu4cPH5KQkEDt2rWzOvyzvL29SUpKonLl9CEiWlpalC9fnocPVU96ihdPH+5gY6MYuvDmzRtsbW0zzXvGjBlMmTJFZZuhjgVGuhknWoIiAjVz/mTl8y5t+3Hl0g0unLtCveqtMDUzoWPX1qxYP5cmdToSEpx1I+n9zId61VthaGRIo6Z1WbDck9ZNuis7X1s3pV/1e/TwKUFBb9n5x3ry2eXFz/cFUVHRDOqjOrdgx751TJ88j5ZtGmNrl4fq5Zswe6EHw0b1Y9rEuVmW5Xvdv3iXUQ1+wcjUiFod6jJs+UjGNxulnM/xKbXauXLr1A3C3mQ8eTm77zR3zt7CxNKExn2aM2z5SCa1GkNSQhJxUbEsGTJfJf3EbVPZ6rWJKs2rYWlrzS81B9Jn5kBaD23Hr9M3fFcdrXJZMnzqEAa1dycxIfNhg9/Kz9ufTnV6YmCoT+3GNfBYNI6+LQcrO19r5m1gzbz08vdy786Vs9dITk6m59AutK/Vnap1XPBYPJ6u9Xtn9TLZoka3BuQvWZDlPWcR+vItDuWL0H5qTyKCwniUxXA5gIToeLwajkRbX4fCLs60ntiV4BdBPL30gNTkFFb3m0vn2f2Zd2cDKckpPDp/l3snb6j8zvy1cBd/LUyfBN9oaGsenb9LSnIKDQa3Ynq94TjXLkP3+YOY0SR750V8S719bjzF50b6ghLe158w+dgCqnasw5/zd3zxa/+seucvZk/9Ho0Z18j984m/gpq64jM9vlUxHBHA974PxSoXp0bb2myfvYWU5BQ2vFto572+cwZzaMMB8hfNT9m6FRhTfxhN+rWg25TeLOz3bYuL/Bc4FMjHxmVzlM/DIyJZvm4LG5fNxmv+Cko6O7HQayLtew2huFNhalSp+FX5+3r708G1BwZGBtRuXIOpi8fTq+XgLDtfMdGxdHDtga6+LuWrlMXdYxABfq+4fvGm8rM9degcW1fvBODJ/WeUKFuM1l2ac+PiLQBWzVvPqnnpC0b0ce+haNOSkuk5rBtta3WjmqsL05ZMoFO9nl9Vn+9VuW0tLu87S3JCxikyHwt8/oqpDUeia6hHmYYVcZs3iDntJis7X83d26NrpM+8jlOIDouiVN1y9F3mzuw2k3j52J+U5BR+m7QOWKfMs/ucAZzYeBDbovkpWbccUxqMoH6/ZrT36MHK/vN+VLX/k7S1tb+oo2Vubo6GhgZBQapDWIOCgj67TsXcuXOZOXMmx44dUznH/FLZ1vF6+PChcn7Ohy5evEinTp2YMmUK9erVw9jYmO3btzNv3pf/sURHK67Mr1mzRqUTA6ChofFdx5UuXRofHx8OHjzIsWPHaNu2La6uruzenX6SO3LkSLp3746BgQFWVlbKH/7o6GjKlCmTYcIdpEdufiR9fX2V59HR0UyZMkUZXfuQjo4O0dHR2NjYcOrUqQz7P5y7pa6ujoNDxnkK6urqGTqMmc3V+3iRDzU1NeXcIl3drFd7+hE+LMv7z+1T85wyu1pSJF/WP1pHDp3k5vX0SG/ga0UHMy42Dl+fF/j6vODGtTucvfoX7Tu3ZNnCrBd3SEpKxtdHMXTn7u0HlChVlJ59OzPGfWqm6d+vkmhXQNHx+ljbjs2JjIjiyMGTrNm0kMN/HSc5OZkDfxxhxNiBGdJnp4S4BIL8AgnyC+TpzScsPLWcWu1c2bf808PgzHNb4FylOPP6Zn7SFBcVS1xULIG+r3ly8wnr72yhXL2KXNh/NkPaGm1qERsZw7WjVxi+ajTXjlwmJTmFS3+fp617x++uo2PxQphZmPLr4fTPVFNTk1IVS9CmRwsq27l+85y65KRkAnwVqzU+uvsEp5KOtO/VhhmjM3aW8znY0qBlXTrX7UnTDg25cek24aERHN1/kkkLxqKnr0tszI+ZE6ClrUWzkR1Y1XcO907eBODlI3/yOtnh2qfJJzteaWlpvPVT/OgFPPDDxiE39Qc05+m7ITf+93zwajgKHUNdNLU0iQ6NYtQ+T/zvPM80Pyv7XJRvXhWvRqNwaVuLZ5cfEh0axfUDF+k6ZwDa+jokxMRneuw/We8PpSan8OK+DxZ2374g1T9Zb8fyThiZG7PkYvrfvIamBp0ndKeBWxOGVMkY+Y0MiyIlOQVj85wq243NjQl/q7i4Ev7uIsvLZ6rt2MtnAZjlzvy31KlSMfIUysvq0cvoNL4bt07eICEugUsHzjOpW8PvqaZymF9IaBgW5unzN0JCwyhc0F6RxsyE0HDVC0nJySlEREWpDBNUydfMhKSkZCKjolWiXiGh4Zi/mydibmrC3QdPVI4LeTdawtws83xnL15N57bNsba04OrNOwzp0xU9XR2qVSrP1Zt3v7rjlZyUzIt37c/DO48pWqIIHXu1wXPUnEzTp6WlKdM/uf+M/AXz4TakM9cv3iQ8NIKkpGSeP/VVOcbnqR8lyztnmp+dgy0NW9WlQx03mnVopGjTQsI5sv8EHgvH/dA27WMFyzliY5+b1YMWfD4xkJKUrIxe+d97jl1xe2q7NWTLuNVY2FpRq3sDJtf5RbnYRsBDPxzKFaFm13psGZ9xRc7ClYqSq2BeNo1eSZtxXbh78iaJcQlcO3CBkTszPzf4t/k3Lq6RI0cOypQpw/Hjx5XrB6SmpnL8+HEGDRqU5XGzZ8/G09OTw4cPZwh+fKls6XidOHGCu3fv8ssvGVfSunDhAvny5WP8+PHKbe+XZ/+Qv78/r169IlcuxXLaly5dQl1dncKFC2NlZUWuXLl4/vw5nTp1yrQMOXIoVhlKSUmf6Pslx4FiFb927drRrl07WrduTf369QkNDVVOmDM3N8+0I1K6dGl27NiBpaVlhgjeezY2Nly+fJlq1aoBimjb+7lVmSlcuDDJycncvHmTMmXKAIr5b2FhmQ9d+Lg8jx8/zrSs7/cHBgaiqan5yXlsWbGwsCAqKoqYmBhlp+/WrVtflUfBggXR1dXl+PHjmS5Pn9nn+DF7e3ty5MjB+fPnlUNDk5KSuHr16nffDy2zqyWfGmYYEx1LTPTnh6ypqasrV8L6Uurq6sr3IzNFnRVzXd4EBmfYZ2pmwrCR/WjZULHSjrqGurITqqWl+ckLFj+Cmro6mjk+v+pmjTa1iQiJ4MaJa5/PU03RmdbKJF9DUyNaDW3HpFZjla+v8W4pZg1Nza+O4mbm6tnrtK+pOoxn0oIx+D7zZ/Oy37JlIZP31NTUyZHF+zdu1ggWTllKXGwc6urqaGopmvX3/6r/wM9aQ0sTzRyaGS7IpKamZjkCIitZ/Y3ERylOsCzsrMnnbM+f8zKPDHX06sPu6ZtJiE1ATUMdDa13n/e7fz9cNfN7ZVe91dTVyO1oq+y8fYt/st5n957i7jnVxZjG/jqZs3tPZTo0GBQnoj53vSlWubhyWXo1NTWKVi7OkU2K+WhvX7whNDAEmwKqSzLbFMjFrZM3MuSppa1Fj2l9WTZ0Pmmpqairq6OmqXjfNbQ0UVf/vr/5PLmsMTcz4dL1WzgWUnS0omNiuPPgMW1bNAKgRLEiREZFc//RU4o6KqYCXL5+i9TUNIo7OWaar1PhgmhqanL52i3q1FQMr/fxC+B10BtKFHNU5rt68w5CwsIxM8kJwMWrNzDQ18PeLuNIjUvXbvLc7wXTxysuGKamppKUrPj9/HBhre+hrp55O5t1enW03v12JScl8+DWQ+zs86qksbXPy+uAzBfMGD97JPM9FG2ahsY/26Z9rEq72vje8SbgYcbz1i+heC8U710OXcW5RWqqaruRlpr5dAZNbS06Tu3F2mGLFGk01NF417xoaGlm63f7f5G7uzvdunWjbNmylC9fnoULFxITE6OcwtO1a1dy586tnCM2a9YsJk2apFzw7v0UHAMDA5XpOZ/z1R2vhIQEAgMDVZaTnzFjBo0bN850OcWCBQvi7+/P9u3bKVeuHH/99Vemi0vo6OjQrVs35s6dS2RkJEOGDKFt27bKkN+UKVMYMmQIxsbG1K9fn4SEBK5du0ZYWBju7u5YWlqiq6vLoUOHyJMnDzo6OhgbG3/2uPnz52NjY0OpUqVQV1dn165dWFtbZ1i9LzOdOnVizpw5NGvWjKlTp5InTx78/PzYu3cvo0aNIk+ePAwdOpSZM2dSsGBBHB0dmT9/PuHh4Vnm6ejoiKurK3369GHFihVoaWkxfPhwdHV1P/uDPmnSJBo3boytrS2tW7dGXV2d27dvc+/ePaZPn46rqyuVKlWiefPmzJ49m0KFCvHq1Sv++usvWrRo8dnee4UKFdDT02PcuHEMGTKEy5cvK1ey/FI6OjqMHj2aUaNGkSNHDipXrszbt2+5f/8+PXv2zPJz/JC+vj79+/dn5MiRmJqaYmtry+zZs4mNjaVnz392CMLHdPV0GeLeh6OHThIU+BZTMxO69eqAtY0lB/5In9u3/fe1HPrrOBvXbgNgzMRhnDx2lpcBrzEw0Kd560ZUqlKOTq37ApDPLi/NWzfkxNGzhIWGU6RoISZ7jubS+avKRTQ+NMVrNKuXbVJG4K5dvknLtk04ffICnbq15urlbz/R09bTwdrORvncMq8l+ZzyEx0eRXRYFC0GteH6sSuEvQnD0MSIet0aYGplyqW/ziuPmfDbVK4evsThTekLAaipqVGjTS1O7z5Jaopqp8UyrxUuTapw+8wtIkMjMLMxo1n/ViTGJ3DzZMZFLbpP7smBNX8o53k8ufaIqi1rcOfsLVw71uXx9U/PP/oSsTFxeD9WnWsQFxtPRFikcrvHonG8DQxm2QzFEClNLU0KFLIDFNFYCxtzChV1IDYmThnhGji2DxdOXCbwZRB6BnrUb+FKGZeSDO6Ycans5h0bExYSztmjipXWbl+9R5/hPShW2gmXWhV4/tiH6Mjvm8unraetEpExy2tJHqd8xIRHE/YqhCeX7tNybGcS4xMJDXhLwYpOVGhZnT3T0+8X123eQMKDQvljtuLvvd6A5vjd8SbYLwjNHFoUrVmKCi2qsm1CeiSldMOKRIVGEvYymFyOtrSd3J3bR67yMJPFKyq3r010SCR3jyv+FryvPaLx0DbkL1WQojVK8urJC+Iiv25O34+od8MhrfC5+ZS3voHoGulTp29TTHNbcH57eqdFz1gf09zmGFsqLvxZFVBcjFSsrqYaYfkx9Vb9flt88P0OeRVMdLjqXM2UpBQi3obz+vkr5bbx777f7ztWf639g/7zhvL8zjOe3X5KA7cmaOvpqHTWDqzaR+tf2uP30Ae/+z5Ua12LXPa5WdBvdoYythjSllsnryvv0/fk2iM6juvG6V3HqdutIU++4PsdGxuHf0B6mV++CuLRE2+MjQyxsbakS9vmrN60nXx5cpM7lxVL1/yKpbkZtasqbiNjb2dLlYpl8Zi1iEkjB5OUnIzXghU0cK2OpYViOH/Q22B6DRmL18QRODsVxtBAn5aN6zJ7yRqMjQzR19fDa8EKShQrQoliioVEXMqXxt7OlrFT5+A+oCchoWEsWb2Z9i2bZLgQl5CQiOf8FczxGK28mFTK2Ynte/+kfcsmHD19nlGDv27+6aBxfblw4hKvA4LQN9Cjfss6lHEpxcAOio7d1MUTeBOouOUFQI/BnXlw+xEBvq/Ioa1F5VqVaNi6HjPGpEfnN6/YxsyVU7hx6TbXzt/ApWYFqtVxoU+rIRlev0WnJoSFhHPmqOL34taVu/QZ7oZz6aJUrlUB72xo00Dxd275wffbPK8leZ3siAmPJvSV4mKmjoEuZRpWZJfn5kzzcN86iZuHr3By8yFF2Ud15N6pm4S+CkZHX5fyzapQqKITC7sqpn8Eer8kyOc1Xbz6sMvrV2LCoihZtxxFqhRnidvMDPk3Htyauydv8OK+L6D4frce24Xzu05Ss2t9nl378as0Z4fUb7q18Y/Xrl073r59y6RJkwgMDKRkyZIcOnRIueCGv7+/ykXaFStWkJiYSOvWrVXymTx5Mh4eHl/8ul/d8Tp06BA2NjZoampiYmJCiRIlWLx4Md26dcv0KnLTpk355ZdfGDRoEAkJCTRq1IiJEydmKKSDgwMtW7akYcOGhIaG0rhxY5Vl33v16oWenh5z5sxh5MiR6Ovr4+zsrIxwaGpqsnjxYqZOncqkSZOoWrUqp06d+uxxhoaGzJ49m6dPn6KhoUG5cuX4+++/v+iKuJ6eHmfOnGH06NG0bNmSqKgocufOTe3atZURsOHDh/P69Wvl++Pm5kaLFi0yLJX/oc2bN9OzZ0+qVauGtbU1M2bM4P79+5+dwFevXj0OHDjA1KlTmTVrFlpaWjg6OiojS2pqavz999+MHz+eHj168PbtW6ytralWrVqGlV0yY2pqypYtWxg5ciRr1qyhdu3aeHh4KBfl+FITJ05EU1OTSZMm8erVK2xsbOjXT3G/mqw+x4/NnDmT1NRUunTpQlRUFGXLluXw4cP/+I27P5aakoJDwfy0ad8UEzMTwkLDuX3zHq0adVO5H1e+/Hkx/WDYiLmFKQtXeGFpZUFUZBQP7z+hU+u+nD2lWNY0MSmJqtUr0qtfF3T1dHn9MpCDfx5l0bxVGcpQvZYLdgVsGdIv/R48G9Zuo3ipovx59DduXb/LgtkrvrmO9sUdmLwj/b433SYpOrundp1g7fgV5HbITfXWozE0MSIqPArv20/xaDNOZQU0K1trDE1Uo8TOVUpgkceSU5msZpiUkIhjeScauDXBwFif8OAIHl25z8SWYzLMGytRrSRW+WxYOmyhctuhTX9RoLgD0/fNxvv2U3Yv/PL5NN/DOrcVaR9c3bSwMmfr0fR5DF36d6BL/w5cv3CTfq0V93YyMTfBY/E4zC3NiI6K4dlDbwZ3HMGVM6pRQFNzE3oM7ULPpumrvz649ZCtq3awYPMswkLC8Rjq9d11sC1uj/t2D+XzNhMVUb6Lu0+xecRy1g1eSLNRHXFbOAS9nAaEvnzL/jnbOLMl/QaoprnNVaJD2rradJjWi5w2ZiTFJxLo/ZINvyzh+oH0ZXyNLU1oNaErRuY5iXgTxuW9Z/h7ScbVzQzNjWkwqAVzWk5UbvO77c2xtX8yYP0YokIi2DR82b+i3nrGBnSa0Rcji5zERsbgf/c5c1pNIPDZS2Wa4nXKqtxkuddSxUiSAx/N6/pR9S5Q3IFJH3y/u777fp/edYKVIxZ/UR4ff78vHTiPkZkxrd07kNPCBL8HPszsOoWID5bSP7j+T7S0teg6sSf6OQ3wf+iLVycP3virLuyUp5AtFRtVZmyD9BE2l/++gFOlYkze5cWr5y9Z+tFcz8zce/QUt8Hpc2JnL1FcHGnWwBXPCcNx69SGuLh4PGYvJio6mtLFi7Jy3jSVkQuzJo/Cc/5yeg4Zi7q6Gq41KjNuWH/l/uTkFHz8A4iLT1+wafSQvqirqzNs/HSSkpJwKV+GiSPSP28NDQ2WzfFg2pyldO7rjq6uNk0buDKoV5cMdVi+fivVXMopo3IAY3/pzyiPWXQfOJJGdWtSp0bG5fI/xdTMhKmLJyjbn6cPvBnYwV25WIZ1biuVaL6uni5jZwzH0saShPgEfJ/5MXHQVI7sT18B8OTBM3iNnkuPwZ0ZOW0Yft7+jOw1gVtXVC+imJqb0HNoV7o3Sb9/3f1bD9mycjuLfp1NWEgYk4Z4kh3yFS/AyO3p87nbTewOwIXdp9gwQvG9KdekMqipcWX/+cyywCKfFQam6fPZjcyMcZs/CGMLE+KiYgl45MfCrp48fLeiZ0pyCot7eNFydCcGrx2Ntr4Ob/wC2TB8GfdOqV4MzVUoL2UbVWJqw/TFwq7/fYlCFYsyauc0gp6/Ys3QRdnyXvwvGzRoUJZDCz8+9/zwVlHfQy0tq1UexL9GQEAAefPm5dixY9+1KIX4NnlMi/3sIvwUlQ0/fT+i/6+eJ/1vrhJVNsf/rxvfi08LT8veBWH+KzZf/3yn7P+jCs5ffoPX/0/KaNt8PtH/Q2t8d30+0T+kv13bf+y1Vvju/Mde61tl2+IaIvucOHGC6OhonJ2def36NaNGjcLOzk45T0wIIYQQQgjx3yIdr3+hpKQkxo0bx/PnzzE0NMTFxYWtW7dmWC1QCCGEEEKIf6t/6xyvn0U6Xv9C9erVo169ej+7GEIIIYQQQohsIh0vIYQQQgghRLb7N97H62eSmwAIIYQQQgghxA8mES8hhBBCCCFEtkuTOV4qJOIlhBBCCCGEED+YRLyEEEIIIYQQ2U7meKmSiJcQQgghhBBC/GAS8RJCCCGEEEJkO5njpUoiXkIIIYQQQgjxg0nESwghhBBCCJHtZI6XKol4CSGEEEIIIcQPJhEvIYQQQgghRLZLTZM5Xh+SiJcQQgghhBBC/GDS8RJCCCGEEEKIH0yGGgohhBBCCCGynQw0VCURLyGEEEIIIYT4wSTiJYQQQgghhMh2qRLzUiERLyGEEEIIIYT4wSTiJYQQQgghhMh2aRLxUiERLyGEEEIIIYT4wSTiJYQQQgghhMh2qT+7AP8yEvESQgghhBBCiB9MIl5CfMZVJ4ufXYSfYuMLg59dhJ+icA79n12En8Lr1amfXYSfwkLP+GcX4afIrWv2s4vwU1Rw7vqzi/BTXL67+WcX4aeYUnbCzy7C/zxZ1VCVRLyEEEIIIYQQ4geTiJcQQgghhBAi28mqhqok4iWEEEIIIYQQP5hEvIQQQgghhBDZTlY1VCURLyGEEEIIIYT4wSTiJYQQQgghhMh2aWkyx+tDEvESQgghhBBCiB9MIl5CCCGEEEKIbCf38VIlES8hhBBCCCGE+MGk4yWEEEIIIYQQP5gMNRRCCCGEEEJkO1lOXpVEvIQQQgghhBDiB5OIlxBCCCGEECLbpcniGiok4iWEEEIIIYQQP5hEvIQQQgghhBDZTpaTVyURLyGEEEIIIYT4wSTiJYQQQgghhMh2aWkS8fqQRLyEEEIIIYQQ4geTiJcQQgghhBAi28l9vFRJxEsIIYQQQgghfjCJeAkhhBBCCCGyndzHS5VEvIQQQgghhBDiB5OIlxBCCCGEECLbyX28VEnESwghhBBCCCF+MIl4iX+tixcvUqVKFerXr89ff/31s4uTgYFbNwzduqtsS/bz522nbhnSmsydiU7FCoSOnUDC2fNflL/RiF/Qb96UiEVLid21Jz2vmdPRKuiAek4TUqOiSLh2nagVq0kNCQFAw9oK4wlj0SpciKTHT4iYPoOUwKD042d5Eff3IeJPn/mGWkOlAU0oXL8cpvY2JMcn8vL6U07O3EHo89cq6XKXdqDayDbkKmlPWkoaQQ/82NFlFskJSZnmW6pzbUp3ro1xHgsAgp8GcG7R7zw/dUeZpuP28eSrVETluBtbjnN4/AYAdIz1aTy/L/kqORHqG8jfI9cQdN9PmbbutG6E+7/hypqDX13vqgOa4lSvLOb2uUiKT+TFjaccmbmdkA/q3cTLDfvKxTC0MiExJh7/G085OnMbwd6vs8xX39yIumM6YF/VGR0jPfyuPOKvyZsI9U3/zHpsH0/+ik4qx13depw/x68HQNdYn5bz+mH3rt6/j1pN4Af1bjS1O2H+b7iw9u+vrvd7zZs3oG/vLpQuXRwzMxPKlKvL7dv3VdL06tmJDu2bU6qUM0ZGhphZFCEiIvKLX2PUyIF4eY5j0eK1DB8xWbldW1ubObMn0a5tM7S1c3Dk6CkGDR7HmzfBAJiY5GTD+oXUqO7C02c+9O7jzq1b6WVbvMgTHx9/Fixc9c31z8ys+ZPp6taOSWNnsGbFr1mmG/xLbxo2ccWhYAHi4+O5duUW0yfPw/uZLwA5cxozYtwgqtd0IXceG0KDwzj493Fmey4mKjJamWbRSi8qV6nA8+d+uA+awL07D5Wv4TVnAn5+AaxaujFb69iqa3Nad2uOTV5rAJ4/9mHtgo1cOHE5y2MMjAwYMKY3tRpWxyinIa8Dgpg/aTHnT1wCoPvgztRsWA07h3wkxCdw59o9lkxfgZ/3C2Uev3gMonHbBsTFxrHUaxWH9h5V7qvduAaN2tTHvduYbK3rh1p3bU6bbs2xyWsDKOq9esFGLryrw8dqNayG25Cu5LXLjaaWJv7PA9iyajt/7T6ski5/wXwMGd+f0pVKoqmpwfMnvozsNYHAl4rvu7vHIJq0bUhcbBxLvFZy8IN6uzauSeM29RnWbfQ31+varbts+G03Dx49421IKItmTKR2NRfl/rS0NJat/ZXdfx4iKiqGUsWdmDhiEPny5lamiYiMwmv+ck6dv4y6ujquNSozdmg/9PR0s3zdhIRE5ixdw8Fjp0lMSqJy+TJMGDEQc1MTZZrXgW+YOncpV2/cQU9Xh6YNXBnWrweamhoAPHzyjIleC/ALeEX50sXxmjACYyNDAJKTU+jYZxgTRwzC2anwZ9+HagOa4lSvHBbv2nP/G085MnMbwR+05828en7Unj/h8MztBHu/yjLfHHra1B3dgSJ1y6BnYkjYizdc3HiYq1uPZ5q+68ZRFKpRkq195vPwyDVA0Z63mtef/JWcCPEN5PdRq3j9QXve+F17fv472vN/ktzHS5VEvMS/1rp16xg8eDBnzpzh1ausG7qfKem5D0FNWyofwQMGZ0ij37Y1fGXDo12tCjmKOpHy9m2GfYk3bhE2aQpvO3YlbMJkNHPnwmS6h3K/4aABpAYHE9yjN6khoRgO7K/cp1OrJqSlfnOnC8C2QhGubz7K5uYebO88C3UtTdr/OhotXW1lmtylHWi7aRQ+Z+6xqelkNjadxPVNRz/ZAEe9DuXUrB1saDyBjU0m4nvhAa3XuGNeMLdKupu/nWBx2YHKx8kZ25X7XAY3I4e+LhsaTcD/4kMazOyp3JerlD25Stpzdd2hb6q3XQVHLv96jNUtJrOpy0w0NDXotnmMSr1f3fXh95GrWeI6ks1dZ6EGdN08BjV1tSzz7bjaHZO8lvzWez4rGo0n/GUw3beMU8kX4NpvJ5hdboDycWTGNuW+aoOak8NAh5WNx+Nz6SHNZvRS7stTyoE8Je25uP7rO5sf0tfX4/yFK4wd55llGj09XQ4fOcXMWUu+Ov+yZUrQu1dnbt95kGHfvLkeNG5Uh/Yd+lKrdity2Vize+da5f5xY4ZgaKBPuQr1OXP6IitXzFHuq1C+NOXLl2LR4jVfXaZPadC4NqXLleD1q6DPpq1UuSwb1m6jUZ0OtGvRC01NTbb/vhbddyeqVjYWWFtbMHXiHGpWasbQgeOoWbsK85dMU+YxdERfDAz0qVu9FRfPXWHuoinKfaXLFqd02eKsWb45W+sI8Ob1G5Z6rqRLvV50rd+ba+dvMG/DDAoUsss0vaaWJst2zCdXXhtG955Iqyqd8Bw5mzeB6W1Z6Uol2bXhd3o06svAdr+gqanJ0u3z0dHVAaBqHRfqtXBlUAd3lkxfwYS5ozE2NQZA31CfAWP6MGvc/Gyvq2q937LYcyWd6vWkc/1eXD1/gwUbZlCgUP5M00eERbFu0Wa6N+lHu1rd2L/jbyYvGEulGuWVafLky8W6fcvxfeZHn1aDaVerG2sWbCQhPgGAanUqU79FHQZ0+IVF01cwce4Ycr6rt4GhPgPH9GHmd9Y7Li6ewg4FGD98QKb712/dxdbd+5k0cjC/rVmIro4Ofd0nkJCQqEwzespsnvn4s2ahF8tme3D91j08Zi/+5OvOWryKU+cvM3/6ODYunc3b4BCGjZuu3J+SksKAkZNJSkpmy8p5eE4Yzh8Hj7J0bfoFjckzF1GhTEl2rV9CdHQsqzent/2btu+hpLPTF3W6AOwqFOHyr0dZ1WISG7vMQENTg+4ftecv7/qwd+QqFrmOYGPXmYAa3T/TnjeY0IWC1Yuz+5flLHIdwYX1h2g8pTuOrqUzpHXp2SDTU4Pqg5qjbaDD8sbj8Ln0gOYzeiv35SnlQN6SDlz4zvZc/DzS8RL/StHR0ezYsYP+/fvTqFEjNm7cqLJ///79FCxYEB0dHWrWrMmmTZtQU1MjPDxcmebcuXNUrVoVXV1d8ubNy5AhQ4iJicnegqakkBoapnykfXR1X9PBHv32bYmYMfuLs1Q3N8d42BDCp3qSlpySYX/Mzt0k3X9ISlAQSffuE71lG1pFnUBDcVVQM58tcQcPkxLwkriDh9C0yweAmoE+hr3diJi/6DsqDDu6zebu7rMEP33Jm4f+HBi+CuM85lg72ynT1J7Ymesbj3BpxZ8EP31J6PPXPPrrMimJyVnm++z4TbxP3ibMN4hQn0DOzNlFYmw8uUo7qKRLjksk5m2E8pEYHafcZ+6Qi4d/XiTUJ5Bb205i5pALAHVNDep7unFo3AbSUr/t6tuv3WZza/cZ3j59SdBDf/aOWEXOPObkck4/Ebu+7SR+Vx4RHhDM6/u+HJ+3i5y5zcn5Lor3MbP81uQtXZA/J6zn1Z3nhDx/zYHxG9DU0cK5aSWVtEnxCUS/jVA+Ej6ot4VDLu7+eYkQn0Cu/XYCiw/q3cTTjT/Hr//mer+3desepnsu5PiJs1mmWbxkLbPnLOPy5Rtflbe+vh6bNy+lX/9RhIeFq+wzMjLErUd7RoyawslT57lx8y49e/+Ci0s5KpRXnMw4OjqwY+d+nj59zpp1WyjiWBAATU1Nli2bycCBY0hNzb67yVjbWDJ91ngG9h5FcnLWf9PvdWzdl52/7ePJo2c8uPeYYQPGkSdvLkqUVEQxHz98Rq+uwzh66BR+vi84f+YyM6ctok79mmi8+14XLFSAP/Yc5Lm3H1s27qJgoQLKOs5a4MHoX6Zkax3fO3v0AudPXOKFTwD+z1+wfOYaYmPicC5TNNP0zTo0wjinEcN7jOX21bu8DgjkxsVbPH3grUwzpOMIDuw8yPMnvjx94I3HMC9s8lhTpITipDl/QTtuXLjFw9uPObzvODHRMeR+F3kaOrE/ezbvI+jlm2yv64fOHD2vUu9lM1e/q7dTpumvX7zJyYNn8HnqR4DfK7at3cXTh96ULF9cmWbgmD6cP3GRRdNX8PjeUwL8XnHmyHnCQsLf1Tsf1y/cfFfvY8REx5BLWe8B7N78uzIy9q2qVirHkD7dcK1eOcO+tLQ0ft25jz7d2lOraiUKO+THa+II3gSHcPzsBQC8ff05d+kaU8YMpXhRR0qXKMa4X/pz8Nhp3rwNyfQ1o6Jj2HvgCKMG96ZCmZIUdSzItPHu3Lr7gNv3FFHbC1du4O3rz8zJI3EsZE/VSuUY1Ksr2/f+SVKSYpTEc98XtGpaHzvbPDSoU53nvooI6YuXr9l74AhD+2QcbZKVzd1mcXP3Gd48fUngQ3/2jFhJzjwW5P6gPb+27QS+H7Tnx+btJGduc0yyaM8BbMsU5Oaes/hcekh4QDDXtp0g8KE/eUrYq6SzdspH5V4N+X1Uxii8hUNu7vx5MdP2vJmnG3+MX/fd7fk/KZW0f+zxXyAdL/GvtHPnThwdHSlcuDCdO3dm/fr1ymiJj48PrVu3pnnz5ty+fZu+ffsyfvx4leO9vb2pX78+rVq14s6dO+zYsYNz584xaNCgbC2nRp7cWO7bhcXOreScNB51K8v0ndra5Jw8gYj5i0gNDfuyDNXUyDlxLNHbdpDs4/v55IaG6NZ1JenefUhRdNKSvb3JUbYMqKmRo1xZkr0VJzxGA/oRs3cfqW8yRtG+h46hHgBx4YpOrZ6ZEblLOxATEkGXvZMYcm0ZnXaMJ0/ZQl+cp5q6GkWaVERLV5uXN56q7Cva3IWhN1fQ68gMqo9qi6ZODuW+oAf+5HMpipqGOgWqOfP2keKHuWK/RvhfekjgXZ/vra5Ser2jM92vpatNqTbVCfV/Q+TrzE9INHJoAagMv0xLSyMlMZl85VSv3BZvVpnRN1Yy8PBMXEe1Q+uDegc+9KdAJSfUNdQpWL04Qe/qXaVvY3wvPeBVNtb7R1iy2IuDfx/PtFNXpnRxcuTIwfHj6fseP/bGzy+AihXLAHDn7gNq1qyMhoYGdevU4O5dxcncyBEDOH36Itdv3MmQ77dSU1NjyaqZrFiyniePnn1THobvhkeFhUVkmcbIyIDoqGhS3n2vH9x7TOVqFdDQ0KBG7co8uP8EgIFDe3Lx3BVu37qfZV7ZRV1dnbrNaqOrp8Od65m/XrW6lblz/T6jZ7hz+M4f7Di5iR5DuqCunvXphoGhPgCRYYoLV08ePKNIicIYGhvgWLwQ2jravPANoER5Zwo7F2L72t3ZX7lP+JJ6f6x8lTLY2dty49ItQPF3U8XVBb/nL1i2bR7H7v7Jpr9WU6N+VeUxTx48w6mEI4bGhhQpXvhdvV9SsnxxHJ0Lse0H1zvgVSDBIWFUKltKuc3QQJ/iToW5fe8RALfvPcTI0IBiRdLb84plS6GursadB48yzffB46ckJydT8YN8C+TLi42VpUq+BQvYqQw9rFyhDNExsTzzUQyzK+yQn4tXbpCcnMLla7coZK/oJE2dswT3AW7o6+t9c93ft+exn2jPS79rzyOyaM8B/K8/xdG1NIZWinrkr+SEeX5rnp29m56XTg7aLhrIn5M2Ev02YxsQ+NCPApWKoq6hjkP14gS+a8+r9m2Mz6WH//r2XHyazPES/0rr1q2jc+fOANSvX5+IiAhOnz5NjRo1WLVqFYULF2bOHMVwosKFC3Pv3j08PdOHQM2YMYNOnToxbNgwAAoWLMjixYupXr06K1asQEdHJ9PXTUhIICEhQXVbairamZw0JD14SITXLJL9X6BuZoZhj66YLVtEcBc30uLiMBoykKR790k492VzugD0O3WAlBSVOV2ZMezfB72WzVHX1SXx3n1CR41T7otcuhLjke5Y7t5G0rPnRMyZT44SxdEs6EDkitXknDoZLcdCJFy5RuTCJfAFV+yzpKaG6+TOvLj6mOAnAQDktFVcDaw6rCXHPbfx5oEfxVpWocNvY1lbdwxhvllfsbUonIeuv3ugqa1FYkw8e/suJORp+jDTB39cIOJlMNFBYVgWsaXGmPaY2duwt68iindpxZ/U8+xB/zPziQh4y1+j1mBiZ4Vzq6psbjGFep49yF/NmcA7Phwcs5aEqLisivKZaqvRYFIX/K4+5s27er9XrrMrdcd2QFtfh7fer9jUeQYpSRkjlwDB3q8IDwimzqh27B+3jqS4BCr1bIBxLjMMLXMq0915V+/IoHCsHfNSZ0wHzAvYsL3fQgDOrthPk+luDDu9gPCXb9k3ag2mdlaUbFWVNS09aOLphn1VZ17dec4fY7+93j9C27ZNKVWqGBUrNcp0v5W1BQkJCRnmir158xZra8Xf2qzZy1i2dAZPHl3Az+8FvfsOx8EhP126tKFK1aYsWzqTOq7VuH7jDn37jSQyMuqbyztoWC9SklNYu3LLNx2vpqbG1BljuHLxOo8fZt5xMzXNyS+j+rNl4y7ltiUL1zBz3iQu3TrMC/+XDB88kfwF8tGmQzOa1OnArPmTqV7Lhds37zNi6CTl3LDsYO9YgA0HVpBDOwdxMXGMdBuPzxPfTNPmzpeLspWtObT3KEM7jySvXR5Gz3BHU1ODNfM3ZkivpqbG8KlDuHXlDt6PFSeUl05d4eCeI2w+uIaE+AQ8hnoSFxvP2JnD8RjmRetuzWnn1orw0Ag8R87meRZl+V4OjgXYeGClst7D3cZlWW9QdCAP3fwdrRw5SE1JYebY+Vw+o5i3Y2pugr6BHj0GdWb5rDUsmr4Cl5oVmbvOkz6th3Dj4i0unrrC33uOsOXgGuLjE5g81JO42Dhlvdt0a047t9aEh4YzfeQcnj/J3hPw4HcXCM0+6Py8fx4cotgXHBKGaU5jlf2amhoYGxoqj8+Qb0gYWlqaGBkafJRvToJDQ5WvbWaaM8P+98cDTBkzjOnzlrJx215KFXeid9e27D90HF0dHYoVKUSfX8bz4uVrGrhWZ8hXRL/U1NRomEV7Xr6zK/XGdlS25xs7e2XZngMc8NhI8xm9GH15GSlJyaSlprFv7Fp8r6R3ShtO6oL/9ac8Ono90zzOrNhP0+luuJ9eQNjLYH4ftRozO2tKtarGqpaTaerphkPV4ry885x9Y9f8q9rzzMh9vFRJx0v86zx+/JgrV67w+++/A4qhNO3atWPdunXUqFGDx48fU65cOZVjypcvr/L89u3b3Llzh61btyq3paWlkZqaio+PD0WKqC7Q8N6MGTOYMmWKyjb3vPkYYZtxXH/CpSvpT7yfE/rgAZa7t6NTqyap4eFoly5FsFvvDMdlRbNwIfTbtCLYrc9n00b/tp3YA3+jYWWFoVs3ck4YS9iosQCkBgcTNjq9I4aWFkbzZxPuORODbl1Ii43lbYeumM6bjV6zJsTu+f2Ly/ixetO6YV4oD1tap89FUXvXSb259SR3dynmkgXd98OuclGKt63O6dk7s8wv5Plr1jcYj7ahLoUblqfxvL5saTdd2fm6te2kMu3bxwFEvwmn47Zx5LS1JNz/DQlRcewfslwlzw7bxnLCaxtFm7tgYmvJ6pojaTCzJ5WHtuDE9N++qd6NpnXHsnAe1rWemmHfnT/O433uLoaWJlTu3ZB2y4awtvWUTBcVSU1OYVu/BTSf3Ydxd9aQkpzC8/P3eHLyFmpq6fMIrn9Q7zePXxD1Jpwe28ZjYmtJ2Lt67x66TCXv7r+N48iMbRRvXhmTvJYsrjWCZjN7UWNISw57buVTOnRowYpls5TPGzfpzLnzVz5xxLfJkycXC+ZNpX7DDhkueHyNyMgounRVjWYfPbyT0WOm0bFDCwrkt8WpWDVWrZzDxPG/MHJ0xs8tMy3bNGb2Ag/l8y7t+tGrXxfqVm/1zWWdMXcijk4FaVa/c6b7DQz1+XXnSp488mbuzPTPNCoymoG9R6mk3bV/PdMmzaVl2ybks8tDlbKNmLt4Cu6jBjBlwpcPb/4cP29/Orq6YWCkT+3GNfFYPJ4+LQdn2glRU1MnLCQcz5FzSE1N5dGdJ1jaWNClf4dMO16jZ7hj75ifXs0GqmxfPW8Dq+dtUD7v7d6dK2evk5yUgtuwrrSv1Z2qri5MWTKBLvV6fZxttvD19qeDaw8MjAyo3bgGUxePp1cW9QaIiY6lg2sPdPV1KV+lLO4egwjwe8X1izeV84JOHTrH1tWKNvDJ/WeUKFuM1l2ac+PiLQBWzVvPqnnrlXn2ce/BlbPXSE5KpuewbrSt1Y1qri5MWzKBTvV6ZijD/2cOBfKxcVn6/M3wiEiWr9vCxmWz8Zq/gpLOTiz0mkj7XkMo7lSYGlUqflG+jaf1wKpwXta0npJh3+0/zuN97h6Gljmp3LsR7ZYNZU1rjywXiarYrR55Sjrwa8+5hL98i135IjSZ2p2ooDC8z9/D0bU0+SsVZXmjsVmWJyEqjl0fteduv43n0IzfKNG8MqZ5LVlYazjNZ/ai5pCWHPpMey7+XWSoofjXWbduHcnJyeTKlQtNTU00NTVZsWIFe/bsISIi66E5H4qOjqZv377cunVL+bh9+zZPnz7F3t4+y+PGjh1LRESEymNwnnxf9Jpp0TEkvwhAM08utMuUQiN3LqwOHsD61DGsTx0DwGT6FEyXLMj0+BzFnVE3yYnlnh3KYzRtrDEa1B+LXdtU0qZFRJLyIoDEa9cJmzwVHZeKinlemTDo0omEK9dIfvwE7VIliD91BlJSiD9zlhylSn5R3TJTd2pXHGqX4rcOXkQFhiq3R78JByD42UuV9MHPXmGc2+yTeaYmpRDmF0TgPV9Oz95J0EN/yvWon2X6VzcVwyhN7Kwy3e/cphoJkbE8PXoD20pFeHLkOqnJKTz6+wq2FTPvfH9OoyndKFyrFBvaexL5Qb3fS4iKI9Q3CL8rj9gxYBHm9jYUqVc2y/xe3/NlRcNxeDr3Yk75gfzabTZ6JgaE+mc9hyXglqLeZlnUu1SbasRHxvLo6HXyVyzCwyPXSE1O4f5fl8n/BfX+888jlClXV/m4dj37hup9qHRpZ6ysLLh6+RDxsX7Ex/pRvboLgwe5ER/rh7q6OkGBb9HW1sbY2EjlWEtLCwIDMx82261rW8IjIvjzzyNUr16JP/YfJjk5mT17DlCteqVMj8nM4YMncK3aUvkoW74U5hamXLt3nBfBd3gRfIe8trmZPH0UV+4c/Wx+nrPH41qvOq2adM90UQ59Az1+272a6OgY3DoP/uT8sXadWhAZEcXhv0/gUqUcB/86TnJyMn/uO4xLlXJZHvctkpOSCfB9yaM7T1jmtYon95/RoVfrTNMGvwnBz/uFynwzn6e+mFuZoamleq13lOcwqrhWol+robx5nfUQ6HwOtjRoVZcVs9ZSxqUkNy/dJjwknKP7T1CkeGH09LNeTe97JCcl88L3JQ/vPGap1yqe3PemY682WaZPS0vjhe9Lntx/xpZV2zl24BRuQxQd7PDQCJKSknn+1FflGJ+nfljntswkN7BzsKVhq7osn7WWMi6luPGu3kd+UL3fD/ML+ShyFRIahrmZYp+5mQmh4aq/w8nJKURERakME1TJ18yEpKRkIqNUo7AhoeGYm5oqXzskNDzD/vfHZ2b24tV0btsca0sLrt68Q72aVdDT1aFapfJcvXk302M+1nhKdxxrlWJ9++lZtuchvoH4XnnE9gELsbC3wSmL9lxTW4s6I9txcPoWHh+/QdCjF1zefIS7By5RuY8iol/ApSim+SwZf2ctU579ypRnisVDOqwYRs/tEzLNt3Sb6sRFxijb8wfv2vN7f13OsNqt+PeTiJf4V0lOTmbz5s3MmzePunXrquxr3rw527Zto3Dhwvz9t+oyqlevXlV5Xrp0aR48eICDg+rCDJ+jra2NtrbqanIxn5ib8CE1XR00c+ci7vBR4k+cJPZP1SXwLX7dQOSS5SScv5Dp8XGHj5J4TXXogen82cQdPkrsX59Yie9d+dTezRf6kGY+W3Tr1Ca4x7vIm4YGaGoq/1/tC+v2sbpTu1KoXlm2tvMk4oXqCVPEi7dEBYZiVsBGtS4FrHl+8utO4NXU1dDIkXUzZVnUFkjv7H1I19SQKkOb82urae/yUkf93bLE6poan5xzkpVGU7pRpF5Z1refTnjAF8yVU1MDNTXlXK5PeT9cxNTOilzOBTg+L+v5HDZOiosBUZnUW8/UkBpDWrD2XTROTUMdDa139dbSQE3j8/WOjo4hOjqbF6LJxIkT5yhRqpbKtrVr5vP4sTdz5i4jNTWV6zfukJiYSK1aVfj9d8X3vlAhe/Lly8OlSxmH6pibmzJh/C9Ur9kCAA0NDbTenfBramkqF6v4EjHRscRE+yufb9m4kyOHTqqk2bZnDbt37GfH1k9Hjj1nj6dBY1daNe7OC7+XGfYbGOqzbc8aEhMT6d5hoMoqch8zMzPBfVR/ZdRM/YM6amlpof4VdfwW6upqaOXIkem+21fvUr+FK2pqasp5ubYF8vI2MJjkpPSO5CjPYdRoUI2+rYbw6kXWt1sAGDd7JAs8lhIXG4eGhoayA/f+3x9d3/cU9f78dzk9vbryfUpOSubBrYfY2edVSWNrn5fXAZkPvx4/eyTzlfVW/+H1zpPLGnMzEy5dv4VjIcUFyuiYGO48eEzbFoqOQ4liRYiMiub+o6cUfbeIzeXrt0hNTaO4k2Om+ToVLoimpiaXr92iTs0qAPj4BfA66A0lijkq8129eQchYeGYmeQE4OLVGxjo62FvZ5shz0vXbvLc7wXTx7sDkJqaStK7xai+ZMEbUHS6nOqVZV376YRlQ3uuoaWJZg7NDKv3pqWmov5uBMOZFfu5tl21DRlyZDZ/T/uVx8cyLkqkZ2pIzSEtWP0uGqeuoY7Gu89fQ0sTdY2sV1j8t0iV5eRVSMdL/KscOHCAsLAwevbsibGx6jjyVq1asW7dOnbu3Mn8+fMZPXo0PXv25NatW8pVD98Pzxo9ejQVK1Zk0KBB9OrVC319fR48eMDRo0dZunRptpTVcGA/Es5fJCUwEHVzcwx7dictJZX4Y8dJDY/IdEGNlKAgUl4HKp9bbN1E5Ko1JJw5R1pkJMmRqvNY0pJTSAkJJeWFYnKtllMRtBwLk3jnLmlR0WjkzoVhLzeSA16SeC/jMtzGo4YTuWQZafHxACTevYdek0akvHiBXv26xB078dX1rje9O05NK7G79wISY+LRt1B8TgmRscrhF5dX/UWVX1oR9NCPN/f9cW5dFTP7XPzeL33J4Q6/jeXJ4Wtc36SIFFQf1Zbnp24T+SqEHPo6ODVzIV/FImzvohgyldPWkqLNXfA+cYu48GgsHG1xndQJ/0sPlYtofKjO5M5cWXOQ6CDF5xBw7QnFWlbG5+xdSnWsScD1J19V78bTuuPczIVtveeTGBOPwbt6x7+rt0leC4o1qcSzM3eIDY3CyNqUqv2bkByfyNOTt5T5DD4+h2Ozd/DwsGLuR9GG5YkJjSLiZTBWjrY0mNyFh0eu4f1uMraJrSXFm7nw5KSi3laOtjSY2Bnfyw+Vi2h8qMGkLpxf8zdR7+r94toTSrSowrMzdynboRb+176u3u+ZmOTE1jY3uWwUUbZC707MAgPfEBSkOGmxsrLA2toSe3s7AJyLORIVHYO//0vC3q1WeOTQDvb9cZDlKzYSHR3D/fuPVV4nNiaWkJAw5fbIyCjWb9jO3NmTCQsNJzIyikULp3Px4jUuX8l4ojJ/3hQWLFzFq1eK79mFC1fp1KkVR4+dpnfPTly4cDXDMV8qLCwiw4IYycnJvH0TrLwnF8DOP9Zz8MAxNqxRDGWdMXciLdo0okfHQURHx2BhaQ5AVGQU8fEJGBjqs33vWnT1dBjUZzQGhgYYvJsPExIcmmG1wqkzxrJy6UYCXyuiolcv3aB1u6acPnGBzt3acPXS160q+SkDx/XlwolLBAYEoWegR/2WdSjjUorBHYYDMGXxeN4EBrPMS7E6255N+2jboyUjpg1lx/o95M2fhx5DurBjXfqFhNEz3KnfwpXhPcYRGx2LmYUi6hEdFU1CvGqHs3mnJoSHhHP2qOKC1e0rd+kzvAfFSjvhUqsi3o99iM7G+WzvDXpX79cBQeh/UO+BHRQn+lMXT+BN4FuWvqt3j8GdeXD7EQG+r8ihrUXlWpVo2LoeM8bMVea5ecU2Zq6cwo1Lt7l2/gYuNStQrY4LfVoNyfD6LTo1ISwknDNHFXOEb125S5/hbjiXLkrlWhW+ud6xsXH4B6TPm335KohHT7wxNjLExtqSLm2bs3rTdvLlyU3uXFYsXfMrluZm1K6quNeXvZ0tVSqWxWPWIiaNHExScjJeC1bQwLU6lhaKEQ1Bb4PpNWQsXhNH4OxUGEMDfVo2rsvsJWswNjJEX18PrwUrKFGsCCWKKSLwLuVLY29ny9ipc3Af0JOQ0DCWrN5M+5ZNyPFRJz8hIRHP+SuY4zFaeQGtlLMT2/f+SfuWTTh6+jyjBn96yH6TaT0o3syFrb3nkRATl0l7bolzk4o8O3OXmNBIjKxNqda/KcnxiTz5oD0fenwuR2Zv5+HhayREx+Fz6QH1x3YkOT6R8IBg7CoWoWTLqhycrpgT+n5V2o9FvArJtPPXaFJXzn3Qnvtde0LJFlV4duYOZTvUwu8b23Px80jHS/yrrFu3DldX1wydLlB0vGbPnk1UVBS7d+9m+PDhLFq0iEqVKjF+/Hj69++vjFYVL16c06dPM378eKpWrUpaWhr29va0a9cu28qqYWFBTo8JqBsZkRoeQeKdu4T0HUhq+JcNhwRFREpdX/+L06fFx6NTvSqGPbujpqNLSkgICZevED1pCySpjjnXa9aElNAwEi6k3/Azet1GcnpMwGz1chIuXyVm774vfu33SndxBaDzTtVhEQeGr+LubsXKc1fXH0ZDOweuEzujk1OfNw/92d5pJuEfDJ/LaWuJromh8rm+uRGN5/fDwDInCVGxvHn0gu1dZuN77h4AKUnJ2FUuSjm3emjpahP5OpTHB69yfskfGcqYv5ozJvms2D9spXLb9U1HsSlegG77pvDqtjfnFn7d3LbyXeoA4LZjosr2vSNWcWv3GZITkshXrjCVetRHx1ifmOAIfK88Yk2rKcSEpHeoLexzoW2YvvqWgaUJ9Sd0Rt/cmOg34dzae5bTS9LLlpKUjH2VYlRyq4+WnjaRr0J5cPAqp5fuy1BGh2rOmNlZsfeXFcptlzcdIZdzfvrsm8rL296cWrT3q+r9XpPGdVm/Ln2Y7LatiteYOm0eU6cp7i3Ut08XJk0crkxz6qSiHm49f2Hzr4p5LQUK5MPc3PSrXnv4CA9SU1PZuWM12trayhsof6xuneo42NvRrXv6ieyy5RsoU6YEF84d4OrVW0yb/mPv/wRglz8vph8Mj+reqwMAe/9Svc/W0AHj2PnbPpxLOFGmXAkALt1SveFuueKuBPinnyjXqFUZuwK2DOqbfhPdDWt+o0SpYvx1bDs3b9xl3izVeY7fw9QsJ1MWj8fc0ozoqBiePvBmcIfhykUjrHNbkfrB0tZBr94wuMNw3KcMZtvxDbwNDGb72t1sWpo+D6VNd0U0cvVe1fu9eQz14sDO9PsTmZqb4Da0C25N0u9FeP/WQ7as3MHCX2cTFhKGxxCvbKurar1NmLp4gkq9B3Zw/6je6R1iXT1dxs4YjqWNJQnxCfg+82PioKkc2Z9+cevkwTN4jZ5Lj8GdGTltGH7e/ozsNYFbV1RHApiam9BzaFe6N+n3Ub23s+hdvScNyfp+ep9y79FT3Aan/+3MXrIagGYNXPGcMBy3Tm2Ii4vHY/ZioqKjKV28KCvnTUNbO73zM2vyKDznL6fnkLGoq6vhWqMy44alf0bJySn4+AcQF58+b3P0kL6oq6szbPx0kpKScClfhokj0uf1aWhosGyOB9PmLKVzX3d0dbVp2sCVQb26ZKjD8vVbqeZSThmVAxj7S39Gecyi+8CRNKpbkzo1Mi6X/6EK79rzXjsmqWzfM2IlN3efITkhkXzlHHHp0UClPV/dyiNDe67zQXu+Y/AS6o5qT5uFA9HNaUD4y2COztnJlS3HPlmezDhUK46pnRW7f0n/Pl/edITczgXou28qL28/5+Q3tuf/JIl3qVJLk1tKi/8HPD09WblyJS9eZIwAfK/XVWpme57/BRtf5P58ov+H4tT+N5tEr1enfnYRfgoLvYwXef4X5Nb99HzL/6/+K/f6yW6X72b/zbX/C6aUzXze1P93032/beGoH6Fq7tr/2GudfXn8H3utbyURL/GftHz5csqVK4eZmRnnz59nzpw52X6PLiGEEEII8e3+Vy92ZEU6XuI/6enTp0yfPp3Q0FBsbW0ZPnw4Y8dmvTyrEEIIIYQQP5N0vMR/0oIFC1iwIPNl2YUQQgghxM8nES9Vch8vIYQQQgghhPjBJOIlhBBCCCGEyHayhp8qiXgJIYQQQgghxA8mES8hhBBCCCFEtpM5Xqok4iWEEEIIIYQQP5hEvIQQQgghhBDZLk0iXiok4iWEEEIIIYQQP5hEvIQQQgghhBDZTlY1VCURLyGEEEIIIYT4wSTiJYQQQgghhMh2sqqhKol4CSGEEEIIIcQPJh0vIYQQQgghhPjBZKihEEIIIYQQItvJ4hqqJOIlhBBCCCGEED+YRLyEEEIIIYQQ2U4W11AlES8hhBBCCCGE+MEk4iWEEEIIIYTIdmkS8VIhES8hhBBCCCGE+MEk4iWEEEIIIYTIdqmyqqEKiXgJIYQQQgghxA8mES8hhBBCCCFEtpM5XqrU0uTOZkJ80mi7Dj+7CD9FZ7Xon12En2JgYuzPLsJPoaH2vzkAwlxD72cX4aeolmr4s4vwU9zRSPjZRfgprND62UX4KSZfm/6zi/BTaJkX+NlFUCpqVeEfe637QZf/sdf6Vv+bv7RCCCGEEEKIHyo1Le0fe3ytZcuWYWdnh46ODhUqVODKlSufTL9r1y4cHR3R0dHB2dmZv//++6tfUzpeQgghhBBCiP8ZO3bswN3dncmTJ3Pjxg1KlChBvXr1ePPmTabpL1y4QIcOHejZsyc3b96kefPmNG/enHv37n3V60rHSwghhBBCCJHt0v7B/77G/Pnz6d27Nz169MDJyYmVK1eip6fH+vXrM02/aNEi6tevz8iRIylSpAjTpk2jdOnSLF269KteVzpeQgghhBBCiP+0hIQEIiMjVR4JCRnndSYmJnL9+nVcXV2V29TV1XF1deXixYuZ5n3x4kWV9AD16tXLMn1WpOMlhBBCCCGEyHb/5ByvGTNmYGxsrPKYMWNGhjIFBweTkpKClZWVynYrKysCAwMzrUdgYOBXpc+KLCcvhBBCCCGE+E8bO3Ys7u7uKtu0tbV/UmkyJx0vIYQQQgghRLb7J+/jpa2t/UUdLXNzczQ0NAgKClLZHhQUhLW1dabHWFtbf1X6rMhQQyGEEEIIIcT/hBw5clCmTBmOHz+u3Jaamsrx48epVKlSpsdUqlRJJT3A0aNHs0yfFYl4CSGEEEIIIbLdt9xf65/g7u5Ot27dKFu2LOXLl2fhwoXExMTQo0cPALp27Uru3LmVc8SGDh1K9erVmTdvHo0aNWL79u1cu3aN1atXf9XrSsdLCCGEEEII8T+jXbt2vH37lkmTJhEYGEjJkiU5dOiQcgENf39/1NXTBwa6uLjw22+/MWHCBMaNG0fBggXZt28fxYoV+6rXVUtL+5d2RYX4lxht1+FnF+Gn6KwW/bOL8FMMTIz92UX4KTTU/jdHnptr6P3sIvwU1VINf3YRfoo7GhmXlv5fYIXWzy7CTzH52vSfXYSfQsu8wM8ugpK9eel/7LW8g2/8Y6/1rSTiJYQQQgghhMh2/+TiGv8F/5uXOIUQQgghhBDiHyQRLyGEEEIIIUS2S0tL/dlF+FeRiJcQQgghhBBC/GAS8RJCCCGEEEJku1SZ46VCIl5CCCGEEEII8YNJxEsIIYQQQgiR7eSuVaok4iWEEEIIIYQQP5hEvIQQQgghhBDZTuZ4qZKIlxBCCCGEEEL8YBLxEkIIIYQQQmQ7meOlSiJeQgghhBBCCPGDScRLCCGEEEIIke1SJeKlQjpeQunFixdMnjyZQ4cOERwcjI2NDc2bN2fSpEmYmZl9UR6+vr7kz5+fmzdvUrJkyR9b4J+sxoBmFKtXDkv7XCTFJ+J34wl/z9xG8PPXAOga61PnlzYUqupMztzmxIREcv/INY7M30l8VFyW+RatV46KnVzJ7ZwffRNDFjYcw+sHfippTG0taTS+M3ZlC6OZQ5Mnp+/wh8dGooMjANDIoUnrmX1wqlOGqLcR7Ju4nmfn7ymPr9anMTlzmbPfY+N3vQcW/VpjPbobwev/4PW0tcrteqUKYzWiC3olC5OWkkr8w+f4dJ1MWkJilnlpWpliPaY7htXLoK6rTaLvawJGLSLu7jNlGm37PFiP6Y5++WKoaWoQ//QF/gNmkPTqLQA243uSs3VtUmPjCZq9ifA/TiuPNWpYGZOWtfDrNe276vwhc2tz+o3rTYVa5dHR0eal70tmuM/h8Z0nmaYvWakEi3fPz7C9ecnWhL4NA6BEBWfa929HYeeCmFubM85tEucOn1dJ375vGzoMaAfAb8t3sGPVLuW+IqUccfcaSr/GA0lJSc2uqiptu/gr1nmtM2zft3E/iyYs+eSxNZvWYNLy8Zw7dJ6JvTyU23X0dOgzrhdV6rlgZGLEa/9A9q7fx59bDijTDJjUl3pt6xIfG8+aGes49vsJ5b7qjapRt7Ur43tM+v4KvlOkvBNN+7aggLMDplamzO7txdUjl5X72wxrT+UmVTHLZU5yUjLP73qzbc4Wnt3K/LN/r17XhjTt05ycFib4PfRl/eTVPLv9VLnfY/t0ilZyVjnmyJZDrBm/AgADYwMGzh9KsUrOvPZ9zfKRi/G976NM23NaX4L8Azmw5o9vqneZgU2wb1AOE3sbkuMTCbz+lPNeOwh/164BGOWzpMqEjuQqVwiNHFr4nbrD6UmbiAuO/OZ8DfOY0/3iwkyPPdhvMc/+uoJ2Tn3qzO9LbhcnInwCOTZiDcH309vG6tO7Een/hpurD351vQuWL0K9Pk3J51yAnFamLOszm1tHrir3r/Hdlelxu7x+5cjq/Znuq965LjU61cUsjwUAr54GcGDxLu6duqVMY2SRk9Zju+BUtTg6+joEPn/F30v3cuOQ4m9NM4cmXWf2p2SdskS+DWfrxLU8PH9XeXzdPk0xy2XONo/1X11ngGoDmuJUrxwW737H/G885cgHv2MAzbx6Yl+5GIZWJiTGxON/4wmHZ24n2PtVlvnm0NOm7ugOFKlbBj0TQ8JevOHixsNc3Xo80/RdN46iUI2SbO0zn4dHrgGK39BW8/qTv5ITIb7/1959h0VxrXEc/y5FihRRAUFBRIyKFXuJGrGiUVFjib0m9hZr7L23qBFrLDGWqDFqDLF3I3Y0iCKCoIIoiAgI0u4f6OoGLMllGbK8n/vw3OzM7PAbwN09c855Tzi/jF5F2Fu/78+n9eBpSARn1h744HVevHqdH37aiZ//HR5HRrF09kQa1K2l3p+WlsaKtZvZuc+b58/jcCvvysSRgyjqUFh9zLOY58xa9D3Hz5xHT0+Php/VZtzQfpiamrzz+yYmvmT+8jX8fvgEL5OSqF2tMhNGDqRgfiv1MWHhEUxbsJwLl30xNTGmpUdDhvXriYGBPgA3b99h4qzF3Lv/kGqVyjNrwkgsLcwBSE5OodNXw5g4chDlXEt+8OcglCdDDQUAd+/epUqVKgQEBLB161bu3LmDl5cXR44coWbNmkRFRSkdMcdxrl6ac5sPsqL1JNZ2nYWegQF9No3D0MQIAAtbKyxs8/HbrC0sajyKHSO9+KReBb6Y+/V7z5vH1Ijgi7f4fc7WTPcbmhjRZ/O3kJbGmk4zWPnFFPTz6NNj7UhUKhUA1b9sQOFyxfi+zWR8th7hy6WD1M+3KmJNtY7u/LFg+/91/SblS5C/U1Ne3AzS2G7qVhKnDVOJPXWVO57fcMdzBJGbfoO0dzcC9CzyUnznPNKSUgjuOYXbjQYSNms9Kc9i1cfkcSyE889zSQy8z90vvyXAYzARy7eR+qoxZ96gKpat6hHcbRLhczZQeM5g9K0s0s9vbkqhkV15OMnr/7rmt5lZmrFiz1KSk5MZ3WUs3er3YsU0L54/e/7B53aq0x3Pil+ov54+iVbvMzY1IdAvkMXjv8v0uc6lnek1qgdTB8xg6sCZ9BnVE+dSxQDQ19fjmznDWDh2iVYaXQD9mg+ijVt79dc3HUcDcPy3E+99nm0RW/pP/Iprf/pm2Ddwcj+qfVaFmUPm0P2z3uxat5uhMwZRq1FNAGo2rEEDT3dGdRrHqplrGTl/BBavfrd5zU3pPaYnS8e/v9H3TxmZGnPvZjDrJq7KdH9Y0EPWTVrNN42HMLHtWB7fj2Di5ilY5Ld45zlrff4p3Sf04uel2xnz+Qju3Qxi/OYpWBSw1Dju8E9/0LdKd/XXj7M3qPe1GdwOk7wmjG4+gr/O3aDfnDf/tku4fUKJip9wYN2+f33dhWuUxnfjIX5uNYVfO81Fz8CAVlvGYPDqdc3AxAjPLWMgLY1fOs5iZ5up6OfRp8UP38Cr159/c97Yh5GsqzRQ4+vPBTt5GfuCe8euAVB1cCsMzUzY7jGB+3/exH1eb/X5bd2KY+tWnKtrvf/VdRuZGnH/5j1+mrQu0/3fVO2r8fXDqBWkpqZy+fc/33nOp2GR7Jq7hRktxjCz5Vj8z95g4Oox2Jcooj6m18JBFHK2Z3mfuUxp8g1XvM/z9YoROJRxAqDulw0pWs6ZOW3Gc3LrYfosHap+bsEiNtTt2IBfFmT+XvExnKqX5vzmQ6xqPYkNXWejb6BPj01j1e9jAA+uB7F71CqWNhzJhm5zABU9No1Fpffu37fHhK6UqFeencO/Z2nDkZxd783nU3tQqmGlDMfW6u1BZp0i9QZ5YmRmzPeff0vQn354zu6r3lfEzQWHii6cXf9xjewXLxIo6eLM+G8GZLp//Zaf2bJzL5NGDeanNUswMTbm6xETSHzrZuGYqfO4ExTCmiWzWDFvCpeu3mDKvMxfp1+b+90qjp85z6IZ37Jh+TweP4lk2Lcz1PtTUlIYMGoySUnJ/Oi1kJkTvuHX3w+xfO1m9TGT5yyleuWK/Lx+GbGx8azetE29b+O2XVQs55qjG11p2fi//wJpeAkABg4cSJ48eTh48CD16tXD0dERDw8PDh8+zIMHDxg/fjwAKpWKPXv2aDw3X758bNiwAYBixdI/ALq5uaFSqfjss8/Ux61fv54yZcpgZGSEnZ0dgwa9+cAQEhJCq1atMDMzw8LCgvbt2/Po0SP1/ilTplCxYkXWr1+Po6MjZmZmDBgwgJSUFObNm0ehQoWwsbFh5syZGtmio6Pp06cP1tbWWFhY4O7uzrVr17LkZ7a++xwu7TzJo4D7hN0M4eeRK7EqYk2Rcuk/g0e37/Nj/yXcPHKZqJAIAs/9xR8LtlO6QSX09N/9T+/KL6c58t1u7rx1V/NtTlU+waqINTtGehF+K5TwW6Hs+GYlhcs7U7xWGQBsXArjd/gSjwLuc3bTQcwKWpI3f/odstYze/P73J9IjH13r9uH6Jka47DkG+6PW6bROAKwm9iHyI37eOy1k8SAEF7efcCz306T9jL5neez7vcFSWFPeDB6KS+uBZB0/xGxp67wMiRcfYztyK48P36J8DkbSPC7y8uQcJ4f9iElMr2Xz8jFgbg/r/Pi+h2e7TtJSmw8eRxsASg0tieRP/6u7hnLCp0HdCTi4WPmjJjPzau3CAsN58LJSzy8F/bB50Y/eUrU4zdfb08+Pn/Mh7XzfuCU95lMn1vUxYHAm3e5fOYql09fIfDmXRxdHADo2L8Dvn9ex//aray5yEw8i3rG08dP1V81G9bgQfADrp3L2KB6TU9PjwnLxrFh4SbC3vqdvlamsit//HyIa+d8eXT/Efu3HCDQL5BSFdM/TBQt4cjVc9e47Xubo78eI+55PHaO6b1uX4/vy95N+4jIwt8twNXjl9m2YAs+f2T+wfr0rye5fuYaEaGPuB8Qysbp6zC1yItjaad3nvPzPq04su0gx38+wv2AUFZ/u5KXLxJxb99Q47jEF4lEP45Wf714699qYZcinNl3mrCghxze+geFXdI/xOsb6PPVzP6s/nYlqan/vtG9t+s8/H8+RdTtBzy5GcKhEauwKFIQm/Lp12VXtQTmRaw5NGI1kf73ifS/z6Hhq7ApXwyH2q7/+rxpqWnEP36m8VW8aRUC9p8nKT4RACsXewL2niM6KJy/thwjv4s9AHoG+tSf3Yvj434gLfXfffi6cfwqexZu48ofPpnuj3kcrfFVsVFVbp37iyehEe88p++RS9w4foWI4HAeBYWxZ8FWEuMTcHb7RH1M8colObrxd4Kv3eFJaAS/Ld9NfEwcRcs6A1DIpQjXDl/kYcB9jm36A4uClpi9atx3ntmXXXO3kPB/vJZv6j6XKztPEhHwgPCbIewa6UW+ItYUfvU+BnBx61GCffyJvv+EsL+CObxwB/kKF8TqVU9eZhwrl+DKrlME/XmT6PtPuLj1KOE3QyhSobjGcYVci1K7TzN+GZ3xBoe1S2F8950jMiiciz8dxfqt33ermb34dfy6j/5916lZlSFfdadhvdoZ9qWlpbF5xx6+6t4R9zo1KelSjFkTRxLxJJIjp84CEBgcwuk/LzJ17FDKlylFpQpl+XZ4f34/fIKIx5GZfs/nsXHs3n+Q0YP7Ur1yRcqUKsH08SO4et2PazduAnDW5zKBwSHMmTyKUp8Up07Nqgzq041tu/eRlJQEwN3gUNq2bIqTYxE8GtXjbnAoAKEPwti9/yBDv+r+UT8DkTNIw0sQFRXFH3/8wYABAzAx0ewyL1SoEJ07d2b79u0fVZnGxyf9Tevw4cOEhYWxe/duAFauXMnAgQP56quvuH79Onv37sXFxQWA1NRUWrVqRVRUFCdOnODQoUPcvXuXDh06aJw7MDCQ33//HW9vb7Zu3cq6deto3rw59+/f58SJE8ydO5cJEyZw/vxbw4HatSMiIoLff/+dS5cuUalSJRo0aKCVHjxjc1MA4qNj33tMQuwLUv+P3giDPIakpaWR/DJJvS0pMYm01DScqqZ/UA27eS99GKKRIZ/Uq0DMo6fERT2nYqvaJCe+5K8/Lv7r7w9gP60fz49eJO6MZiNWv4Alpm6lSI58hvPOeZS6sIli22ZjWuXdH8gALBpW44XvHRxXjKH0hc247F+CVcfGbw5QqTCvX4WXQQ9w2jiV0hc2U/yXBVg0qqE+JOFmECblXNCzyItx2eLoGRmRGPwQ0yqumJQpTuSGf98LkJnajWtxy/cWU1dN4tdrO1n7hxefd2r2Uc9dd3A1v1zewcKt8yhbpcw/+r53bwbhUKwINvY22Ba2wcG5CEH+wdgXtaNZh6asmffvhhz9GwaGBjRq04Dft/3x3uO6De/C08inHNiWeW/EX5f8qNWoJgULpQ9prlirAkWci3Dx5CUAAv3uUrLCJ5hZmvFJuRIYGefhQfBDylYtQ4myJdi9fk+WXtc/ZWBoQMNOTYh7Fss9v6B3HuNcrji+p9/8m0lLS8P39DU+qaR5t7qOZz3WXdnMwoPf0Wl0V/IY51Hvu+cXTNla5dDT16NCXTdC/IMBaNWvDX/9eYO7bw3NzQpGFumvawnRcQDo5zGEtDRS3nr9SX71+mNX9ePvuv/9vH9nXc4J67JO+G1705P6xC+EIrXKoNLXw7FeOZ7cTP8AWql/cx6cu0mEb+Y/+6xmXtCScvUrcXr70Q8f/IpKT4+qLWqRx8SIwMtvhqMGXrpF1c9rYWpphkqlomqLWhgaGXLrTz8A7t8MxqVKKQyN8lCmXgWiH0URGxVD9VafkpT48p0NxX/rQ+9jhiZGVGpXj6iQCJ6FZd7gAAi5FECphpUwt00fUlespisFixXizqk3NxQNjfPQfulA9k3aQOzjZxnOEX7zHs41y6Cnr4dLvfKE+6f/vut8/TlBf97k4fWs+X3ffxjOk8in1Kzipt5mbpaX8q4luXbDH4BrN25iYW5G2dJvGs01qrihp6fC188/0/P63QogOTmZGm+d17moA3a2NhrnLeHspDH0sHb1ysTGxXMnKH1YZUmXYpzzuUxycgrnL17lk+LpjeJp85cxYkAv8uY1zZKfg7akpaVl29d/gczxEgQEBJCWlkbp0qUz3V+6dGmePn3K48cfvqNsbZ1+B6xAgQIUKvRmHsiMGTP45ptvGDr0zTCJqlWrAnDkyBGuX79OUFAQDg7pd+43bdpEmTJluHDhgvq41NRU1q9fj7m5Oa6urtSvX59bt25x4MAB9PT0KFmyJHPnzuXYsWNUr16d06dP4+PjQ0REBEZG6cMmFixYwJ49e9i5cydfffVVhvyJiYkkJiZqbEtOS8FApf/e61apVLSY1I2gC/48un0/02NMrcxpMLg1PlszH+P+sUKuBJAUn0izsZ3wnrcNVCo8xnyJvoE+Fjb5ALiw4ziFSjnyzeEFxEU9Z8vApZhY5qXxiHas6jiNxt+0p0KLmkSFPOLnUauIefT0o7+/5ed1MClTnDutRmTYl+fV3B+boV8SPms9L/yCsGrjTrEfZxDQdCAvgzPvDcrjWIj8XTx4snYPESt+xqRCCewnf0Xay2Sidx/FoIAl+mamWPf7gvCFPxI+ZwPm9Srj6DWOoE7jiTt/g9iTV4jecxyXXxeRlvCS+yMXk/YikcLT+xM6agkFunhQoPvnJEfF8ODbFSQGhPzzH/5b7BztaNW1JTvW7OTH736iVMWSDJ02iOSkZLx/PpjpcyIjIlkwZjH+126Rx8iQ5l8247udi+j3+SBu3wjI9Dl/d+9OCKvnrmPRtnkArJqzlnt3Qli0bR4rZ6ym2mdV6TmiG8nJySybtIJr5zPvOc0KnzaphZmF2TuvF6Bs1TI069iUPo37vfOY7yau4Ju5w/j54jaSk5JJTU1l4ejF+L7KfuHERQ7tPoLXb8tJTHjJnOHzSYhPYPjsocwdPp+W3VrQumcrYqJiWDhmMcG3773ze2WlSu5VGL58JHlMjIiOeMr0LpN5/jTzoabmVhboG+jz7K1hpQDPnkRTuPiboWenfz3J4wePefooCsfSTnQZ2w374oVZ8PUcAPas3EXfmf1YfnIVj+9HsHL0cgo52VGvbX3Gtx5D35n9qVC3IoG+d1g1dgXxz+P//QWqVNSZ3IWHPreIupX+uhZ++Q5J8YnUHteRc3N3gEpFrXEd0DPQJ++r159/c96/c+34GVG3HxB+6c2/i0vf7+OzWT3pdnoRz+8/5sioNVg62VLqizrsbDWVz2b1xLFuOSJ8gzg6Zi0v3zOX9v9Rq209EuMSuPzH+Q8eW7ikI2N3z8TQyJDE+AS+/3o+YXfeXPOqQYv4evlwll77geSkZF6+eMn3X8/n8b30nuEzO45RpFRRph1eTGxUDKsGLsbU0oyWIzqwoOMUPL/pSNUWtXkcEs6GUSuJfvTvbyqqVCqaTerKvQu3iPjb+1i1Lg1pMq4TRnmNeRz4kA1dZpGSlPLOc+2fsgHP2X0Yc34FKUnJpKWmsWfcWoJ93jRSmk3qSsilAPwPXcr0HCdX7qXljF6MOLGYpw+e8Mvo1RRwKoRb27qsajOZljN74VKnPA9877Jn3BoS/+Xv+0lU+vtfgbcaP68fP4lM3/ck8in582kOCTYw0MfS3Fz9/AznjXyKoaEBFuZmfztvPp68uvn7JOopBfLny7D/9fMBpo4dxoyFy9mwdTdu5V3p2609e72PYGJsTNnSn/DV8PGEPgjDo2E9hkjvV44nDS+hpq27BRERETx8+JAGDRpkuv/mzZs4ODioG10Arq6u5MuXj5s3b6obXk5OTpibm6uPsbW1RV9fHz09PY1tERHpQz+uXbtGbGxshsIgL168IDAwMNMss2fPZurUqRrbalmW4dN85TI9/rVW03tiW9IBry+mZLrfyMyEnj+MJuLOAw4t2fXec31IXNRzfhy4hNYzelOrRxPSUtO4tvcs96/fJfXVsIvU5BR+nfQDb0+vbzf/a85s8Ma+TDHKNK7CEo+xfNavBS2ndOfH/ks+6nsb2hXEbnJfgrtOIu2tO96vvR7zH/WTN093pjcww/zukrd2eazaNeLR/E2Zn1il4sX1OzxakD6uPcHvLsafFKVAZw+idx+FV7/jmEPniVyfflUJN4MwrVyK/J2aEnc+vXBIxNKtRCx9M9/BZkhHYs9cg+QUrAd1IKDpICzcq+KwcDh3Wg7/qGt+Fz09Fbd8b7NmTvqckIC/7lCspBMtu7Z4Z0MkNPA+oYFvPtDcuOhH4aL2tPuqLTOHzPno77138372bn5TeKJpu8bEx77gr0t+/HhyA183H4C1nTWTv59Ah5pdSMrkd5UVmnX04PwxHyIfZX7n2ySvCd8uHcOC0YuJefruwgute7aidKXSfNtjIo8ePKJ89fIMnTmYJ48iuXz6CgAbF21m46I38x66De/CpVOXSU5OpuuQTvRq+BU1G9Zg3JLRfN1sYNZe6Dv8de46ozyGYZ7fgoZfNmbE96MZ12oUMZEZ795/rMNb3/zthNy6R3REFJO3zsDWsRCPQsKJfx7P0iGaBVomb53O5lkbqONZD1tHW4bWH0C/OQP5YmgHNs344V9n+WxmdwqULMLONm8K0iREPef3/t9Rf1ZPKvRqTFpqGrd/PUeEbxBp75nH+aHzvk3f2JCSrWpy4bs9GttfPn/BwcHfa2zz3DaOMzO38knrWlgWteHHz0bhPq831Ya15vT0n/7ZBX+k2u3dOb/nFMmJH/53FX73IdOajcLE3JTKzWrQa+Eg5neYrG58eY7oiIlFXhZ2mkrs0+e4Na7K1ytGMK/dJB7cCiElOeXVvLM3c896zB/A0Q2/41imGBUbV2Wqx0ia9mtFxyk98eq/8F9f1+ev3sfWfDE1w75rv54h8PQNzG3yUbtvczqsGMqaL6a882dQo3sTilR0YXPvBUQ/eIxTtdK0mNaD54+eEnjmBqUaVqJYzTJ833zcO/MkPn/Bz0NXaGzr9dN4vGf/RAXP2uR3sGGJ+zd4zulD/SFt8J655V9fe07m4lyUDSvmqx9HP4vh+3U/smHFPGYtWknFcq4smTWRjn2GUN61JJ99WuM9ZxNKk6GGAhcXF1QqFTdv3sx0/82bN7GyssLa2hqVSpWhgfZ6HPK7/H344r9laGio8VilUmW67fX8htjYWOzs7Lh69arG161btxg1alSm32PcuHE8e/ZM46uG5fuHybWa2oPS7pVY3XE6z8Iz3m3Mk9eY3hvHkhj7gk1fLyI1+d13CT9WwKnrzKs3jOmV+zGt0ldsH/E9loXyExWS+XwD55qu2JYowtmNf1C8Rmn8j10l6UUivvv/xLnG+6/vbSZlXTAsaIXLviWUDdhD2YA9mNUoR4EeLSgbsIfkV3fzE++Eajwv8c598ti/ez5A8uOnmTwnFMNXz0l5GkNaUjIJd0LeeczfGTkXIZ9nfR4t+pG8NcoR5/MXKVExRP92On1IYt7/7+8yMiIqQ8/KvTsh2Nrb/KPz3LzqT2Gnwh8+8B0srSzoMbwrSycuw9WtFPfv3ud+0AOunL2KgaEBDs5FPnySf8G2sA2V6rhxYOu7J7fbF7XHztGOWT9M53CwN4eDvWn8RUNqNa7J4WBv7Ivakcc4D33G9GLlVC/OHf6TuzeD2LPhV47tO0GHfu0yPa9DcQcatWnI+vkbqFizAr7nr/Ms6hnH953gk/KfYPJ//m4/VuKLRMLvhRNw5TYrRy8nJTkF9w4NMz32+dMYUpJTsCyYT2O7ZcF8RD9+d49zwJX0YWmFnOwy3f9ZuwbExcRx8ZAPZWqWxefgeVKSUzh34AxlapT9dxcG1JveDacGbvzSYRZxf3tdCz15g02ffsPaigNYU6E/h4Z5kbeQFc/ufXhUxPvO+5pLs2oYmBhxc+fp956rdPu6vIyJJ+jgZYrULM3dPy6RmpzCnf0+FK6R+QiO/1eJqqWwK16YU9s/buRCSlIyj++FE3LjLr/M+4nQm8E06JU+JNna0Rb3Hh5sHPU9/mdvcP/mPfYt3UmwbyD1uzXJ9Hwla5bBvoQDRzd6U7JGGa4fu8LLF4lc3H+WkjX+2bDlt30+tQel3N1Y33EGMZn8XhKfvyAyOJxgH3+2DViCdXE7XJtUyfRcBkaGNBrVgd9n/MitI5d55B/K+U0Hub7/T2p/1RwA51plyF/UhvG+a5l6ZzNT76TfVPly5TB6b5uQ6XkrtavHi5g4/A9doliN0vgdvEhqcgo3fjtPsX/wPvZ3r4f5Rf6t5yoy6ikFC6TvK1jAiqhozRsqyckpPHv+XGOYoMZ5C1iRlJRMzHPNYZuRUdEUzJ9f/b0jo6Iz7H/9/MzM+241Xdp7UsjGmgtXfGlS/1NMTYypW7MaF65ob4TDv5VKWrZ9/RdIj5egQIECNGrUiO+//57hw4drNJTCw8PZsmUL3bp1Q6VSYW1tTVjYm+FiAQEBxMe/GcqSJ0/6XISUlDeNC3Nzc5ycnDhy5Aj169fP8P1Lly5NaGgooaGh6l4vPz8/oqOjcXX99y+mlSpVIjw8HAMDA5ycnD7qOUZGRuphia+9b5hhq6k9KNOkKqs6Tufp/YwfOozMTOi9aSzJL5PZ2GfBR90h/SfiXw1rKl6zDHkLWOB3OOOQDQMjQzyn9WTbsBWkpaah0tdD/1X1MT1D/fcW+vi72LPXuN1EszehyLxhJN69z2OvnbwMCScpPBIjZ82GhFExe54fz3w4CUD8xZuZPKcwLx+kNyTTkpKJ9w3A6G+NiDzFCpP0IPMPe/azBhI2cy2p8Qmgp4fqVWlelcGrlz29/+++0/ULN3Ao7qCxzcG5CI8ePHrHMzLnUsaFqHf0GH2MQVMHsGPNLh6HPaFUhZLoG775e9XX/2e/33+iaYcmRD+J5tyRdw+3CgkMoWeDvhrbeo/qgamZKcsmf0/Ew8fkMcqDYR7DDGu9pKakoFJlnv2bucP4fqoXCfEJ6Onpqa/59f9r65o/RKWnwjCPYab7XpecL1e7vLosvUqlolzt8nhvfHc5bKcy6fM5nkZk/DBskd+CdkM7MLHtWCC9iMnrEtT6BgYaowH+iXrTu+HctAq7280kJvTdjamEp+kfKIvUcsW0oAVBhy5nyXldO35G0KHLJES9u0KocX5zqg71ZFfb9F4zlb4eeq+uXc9QH5WW/gY+7dCAYN9A7t/8d8NZ9fT01H8jeV5VDkz9W4GItNTUTP/2DYwM6TStD2uHLU0/Rl8P/VeFBfUNDf713/3nU3vg2qQK6zrOyPR9LAOVClSq9Pl+mdA3NMAgj0GGm7RpqanovXrvOblyLxe3HdPYP+TgPA5M38ytwxn/jkzzm1N/SGtWv+qN09PXQ9/QQP399F7/IP6FIvaFKFjAij8vXaXUJ+nFP2Lj4vD1u0X71ukNxQplSxPzPJa//AMoU6oEAOcvXSU1NY3yrqUyPa9ryRIYGBhw/uJVGtX/FICge/cJexRBhbKl1OddvWk7kU+jKWCVD4BzFy5jlteU4k6OGc7558Ur3L0Xyozx6UP9U1NTSXp1Mzc5+d0FrETOIT1eAoDly5eTmJhIkyZNOHnyJKGhoXh7e9OoUSMKFy6srhbo7u7O8uXLuXLlChcvXqRfv34avU42NjaYmJjg7e3No0ePePYs/Q7RlClTWLhwId999x0BAQFcvnyZZcvSyz83bNiQcuXK0blzZy5fvoyPjw/dunWjXr16VKmS+R21j9GwYUNq1qyJp6cnBw8eJDg4mLNnzzJ+/HguXvz/iksAeE7vhVvrT9k6dDmJcS8ws7bEzNoSA6P0n4eRmQl9No8jj4kxO0evwsjcRH3M22V4vzmygDJv3Tk0scyLnWtRbF5VK7N2tsPOtShm1m/Gl1dpVw9HNxfyO9rg5vkpnb8fyul1v2usvfJag8GtuXXsKg//Cgbg3sXblG1SlUKlHKnVrTHBF9+/7tDbUuNekHg7ROMr9UUCKU9jSLyd3hv1ePVuCnRvgYVHLfIUtcN2RGeMihfh6Y5D6vMU+3EGBbo1Vz9+sv5XTCuWxHpAO/IUtcOyZT3yf9mEqM2/vTlm9W4sm3+KVcfG5ClqR4FuzbFoUI3IHzN+aLXq2JiUqGc8P5K+Dk/8JT/MapbHpGJJCvZuRcLtEFKfZz6p/2P9vGYXZSqVpsvgThR2sqehpzstOjfnlw1vBnh+NbY33y4do37crk8bPm1ci8JO9hQr6cTgqQOoVLsiuze+eY6JqTEuZYrjUib9A4CdYyFcyhTHJpOetCp1KuNQrIj6e/pfu0XR4o5Ur1+NFp2bk5KaSkhgaIbn/b9UKhVN2zfhj52HMhSKGbdkNH3G9gLSi74E3wrW+IqNiSM+Np7gW8EkJyUTHxvP1XPX6De+LxVqlqeQQyGatGtM4y8acdo7Y49H804eREdGc+5werXBGxf/wq2WG6UrlaZd37YE3womLub/+91C+tpiTq7FcHJNb/jYONji5FqMgvYFMTIx4stRXSjh9gkFC1vjXLY4/ecPJr9tAc799qYa5aSfptG0+5uCK/vX/kqDjo2p17Y+hV2K0HdmP4xMjTn282EAbB0L0XZIe5zLFse6iA1VGlZj0KJh+P15gxD/jB/0e0zuw741e4h6Na/H/+JN6rZJP3fDTo3xv5T5pP/3qTezByVb1+aPwd+TFJeAqbUlptaW6Bu/eZ0v3b4utm7FsShqQ8nWtWnqNZira7011vry3DqO8t0b/aPzAlg62VK4ekn+2nb8vTnrTunC1dW/Exee3ksRduE2JdvWxsrFnjKd6hP2D17XIH35AAdXJxxcnQAo6GCDg6sT+e0Lqo8xNjOhcrManH5Hb9eILZOo362p+nHr0Z0oUa00BYpYU7ikI61Hd+KTGq78uecUAOGBD3gUFEbXWV/hVMEFa0dbGvX5nNKflufKwYxFMz4f/AXXj10m9NVreeBFfyo1qU7hUo7U79aUOxf/eTXTFtN7UqF1bXa8433MysGGugNaYl+2GJb2BXCoVIKOK4aSnPCS28euqs8z9MgCSr96H0uMfUHQn340HdeJYjVKY1XEGrcv6lKxTR38Xq3RFfv4GRG372t8ATx7GJlp46/5pG6cXnOA56/mI9+7eJuKrT/Furg9Vb50594Hft/x8S/wvx2I/+30aQYPHj7C/3YgYeERqFQqurb3ZPXGbRw79Se3A4P4dvpCbAoWoEGd9LW+ijs58mmNKkyZu5Trfre47PsXsxavxKNhPWys06czPHr8hBZf9uW6X/rvwdwsL20+b8y8ZWvwuXSNv/wDmDBrERXKlqZC2fQe2VrVKlHcyZFx0+bjH3CXM+cvsWz1Jjq2aaG+kf1aYuJLZi5ayZTRQ9Q3VdzKubJt9z78A+5y6MQZ3Mr/+15PbZHiGpqkx0sAUKJECS5evMjkyZNp3749UVFRFCpUCE9PTyZPnkz+V93iCxcupGfPntSpUwd7e3uWLl3KpUtvejIMDAz47rvvmDZtGpMmTaJOnTocP36c7t27k5CQwOLFixk5ciQFCxbkiy++ANI/xP36668MHjyYunXroqenR9OmTdUNs39LpVJx4MABxo8fT8+ePXn8+DGFChWibt262Nra/l/nBqjZNf1DRb/tmou27hi5kks7T1K4rBOObul3xsacXKpxzJxPB/P0/hMAbIoXVleSAnBtVJn2C/qrH3denl6Q5NCSnRx+NT+soLMdTUd3xMTSjKf3H3Ns+R5OrcvYALH9pAjlm9dgSbM34+ivHziPcw1X+u+YzOO7D9k6dPm//hlkJvKHvegZ5cFuQh8M8pnz4mYQQV0naZSGz1O0kHqNLYAXvgHc6zeLQqO6YTOkIy9DH/Fw+hqNBZBjDv7JwwnfY92/HfaTvyLx7gPuDZhN/EU/je9vUDAfNgPbE9h29JvzXwvgydo9OK2fRHLkM+6PXPx/X6f/tVuM7zOZr8f2pvuwroSHhrFs8vcc+uXNh7ICtgU0hh4aGBoyYFI/rAsVJCEhkcCbdxnRcTRXzl5VH1OyQkmNRZYHT0lfd+b3HX8we/g89fY8xnkYNnMwU/pPV7/hPA57wpKJyxm7aBRJL5OYNWwuLxPevWj1v1W5TiUKFbHl90yqFNoUtslwB/9Dpg2YSd+xvRm/bBwW+cx5dP8R6+b+oDGPDcCqYD66DO7EIM9h6m3+V2/x8+qdzN44g+gn0cx562f0/3Au78LU7W+Wp+gxKX3NqOM/H2H1+JUUdinCZ1+4Y25lwfPo5wReC2BSu3HcD3jT0LV1LIT5W3/nZ/efxqKABR1GdCKftRXBfkHM7DaVZ68WPk9OSqZ87Qo079UCIxNjIsOecP73c+xatiNDvgp13ShU1I5lw978LXtv/I3i5V2YtWc+d64F8POSbRme9yHlu6UPlWz7s+Zwr0MjVuH/c3qDwcrZjppj2mOcz4yY+4+5uGwvV9doDjm1LGqDcf43c3I/5rwArh3qERsWRciJdw+ZcqxXDksnWw4OfbMun++GQ9iUd6b93qk8uhqIz+Jf/sllU7S8M6O2vZnb1GFiDwDO7jzODyPT5xlVbVEbVCp89ma+1IN1UVvM3rpmiwKW9Fo0CEtrK148j+e+/z2WdJvJzdPpSy+kJKfwXc9ZtBnTmcFrx2CU15iIe+H88M0Kbhy/onFu+08cqNK8JtOavRkmf+nAn3xSowyjd0zn0d2HrBmq+T7zMaq/eh/r87f3sV0jvbiy8yTJiS8pWrUUtXp6YGyZl7gnzwj28Wd12ynERb6Zt2ld3F7jfWz74GU0Ht2RdksGYpLPjOgHTzg0fwc+Px7+xxld6pYnv5MtO4e/md93fuNBCpdz5us903hw7S7Hlu5+7zlu+AfQa/Cbm2Dzlq0GoJVHQ2ZO+IZendvx4kUCU+Z9x/PYWCqVL4PXwukYGb1p/MydPJqZi76n95Bx6OmpaPhZbb4d9ua9Ojk5haCQ+7xIeFOga8yQr9HT02PY+BkkJSVRq1plJo58M2pEX1+fFfOnMH3+crp8PQITEyNaejRkUJ+uGa7h+/VbqFurqrpXDmDc8P6MnjKXHgNH0bxxfRp9lrFcvshZVGn/lSaiEAoZ4/Sl0hEU0UX17rL4umzgy/+jCtx/mP47hvXpuoL6ObsUs7bUTTX/8EE6yFc/8cMH6SBbMh8WqOsmX5zx4YN0kGFBZ6UjqOU3L5Ft3yvq+cdVB1ZS7nynFUIIIYQQQohsJEMNhRBCCCGEEFlOBtZpkh4vIYQQQgghhNAy6fESQgghhBBCZLn/yvpa2UV6vIQQQgghhBBCy6THSwghhBBCCJHlZI6XJunxEkIIIYQQQggtkx4vIYQQQgghRJZLlR4vDdLjJYQQQgghhBBaJj1eQgghhBBCiCyXJlUNNUiPlxBCCCGEEEJomfR4CSGEEEIIIbKczPHSJD1eQgghhBBCCKFl0vASQgghhBBCCC2ToYZCCCGEEEKILCcLKGuSHi8hhBBCCCGE0DLp8RJCCCGEEEJkOSknr0l6vIQQQgghhBBCy6THSwghhBBCCJHlZI6XJunxEkIIIYQQQggtkx4vIYQQQgghRJaTHi9N0uMlhBBCCCGEEFomPV5CCCGEEEKILCf9XZqkx0sIIYQQQgghtEyVJoMvhciREhMTmT17NuPGjcPIyEjpONlGrluuOzeQ65brzg3kunPXdYsPk4aXEDlUTEwMlpaWPHv2DAsLC6XjZBu5brnu3ECuW647N5Drzl3XLT5MhhoKIYQQQgghhJZJw0sIIYQQQgghtEwaXkIIIYQQQgihZdLwEiKHMjIyYvLkybluYq5ct1x3biDXLdedG8h1567rFh8mxTWEEEIIIYQQQsukx0sIIYQQQgghtEwaXkIIIYQQQgihZdLwEkIIIYQQQggtk4aXEEIIIYQQQmiZNLyEEEIIIYQQQsuk4SWEyBGSk5M5fPgwq1at4vnz5wA8fPiQ2NhYhZMJbUtJSeHq1as8ffpU6ShCiCzw8uVLbt26RXJystJRslV0dDRr165l3LhxREVFAXD58mUePHigcDKRU0jDS4gcJDQ0lPv376sf+/j4MGzYMFavXq1gKu27d+8e5cqVo1WrVgwcOJDHjx8DMHfuXEaOHKlwOpHVhg0bxrp164D0Rle9evWoVKkSDg4OHD9+XNlwQmSxly9fcv/+fUJCQjS+dFF8fDy9e/fG1NSUMmXKqK9z8ODBzJkzR+F02uXr68snn3zC3LlzWbBgAdHR0QDs3r2bcePGKRtO5BjS8BIiB+nUqRPHjh0DIDw8nEaNGuHj48P48eOZNm2awum0Z+jQoVSpUoWnT59iYmKi3t66dWuOHDmiYDLtO3XqFF26dKFmzZrqu6KbN2/m9OnTCifTnp07d1KhQgUA9u3bR1BQEP7+/gwfPpzx48crnE57Hj16RNeuXbG3t8fAwAB9fX2NL12zd+/ej/rSVQEBAdSpUwcTExOKFi1KsWLFKFasGE5OThQrVkzpeFoxbtw4rl27xvHjxzE2NlZvb9iwIdu3b1cwmfaNGDGCHj16EBAQoHHtzZo14+TJkwomEzmJgdIBhBBv3Lhxg2rVqgGwY8cOypYty5kzZzh48CD9+vVj0qRJCifUjlOnTnH27Fny5Mmjsd3JyUmnh2js2rWLrl270rlzZ65cuUJiYiIAz549Y9asWRw4cEDhhNrx5MkTChUqBMCBAwdo164dn3zyCb169WLp0qUKp9OeHj16EBISwsSJE7Gzs0OlUikdSas8PT0/eIxKpSIlJUX7YRTQo0cPDAwM2L9/f674fQPs2bOH7du3U6NGDY3rLVOmDIGBgQom074LFy6watWqDNsLFy5MeHi4AolETiQNLyFykKSkJIyMjAA4fPgwLVu2BKBUqVKEhYUpGU2rUlNTM/3wdf/+fczNzRVIlD1mzJiBl5cX3bp1Y9u2berttWvXZsaMGQom0y5bW1v8/Pyws7PD29ublStXAunDlHSx5+e106dPc+rUKSpWrKh0lGyRmpqqdARFXb16lUuXLlGqVCmlo2Sbx48fY2Njk2F7XFyczjc8jYyMiImJybD99u3bWFtbK5BI5EQy1FCIHKRMmTJ4eXlx6tQpDh06RNOmTYH0IhMFChRQOJ32NG7cmCVLlqgfq1QqYmNjmTx5Ms2aNVMumJbdunWLunXrZthuaWmpnh+gi3r27En79u0pW7YsKpWKhg0bAnD+/Hmd/pDq4OBAWlqa0jFENnF1deXJkydKx8hWVapU4bffflM/ft3YWrt2LTVr1lQqVrZo2bIl06ZNIykpCUi/9pCQEMaMGUPbtm0VTidyCunxEiIHmTt3Lq1bt2b+/Pl0795dPQ9m79696iGIumjhwoU0adIEV1dXEhIS6NSpEwEBARQsWJCtW7cqHU9rChUqxJ07d3ByctLYfvr0aZydnZUJlQ2mTJlC2bJlCQ0NpV27dupeXn19fcaOHatwOu1ZsmQJY8eOZdWqVRl+57roY+e1ZHbzQRfMnTuX0aNHM2vWLMqVK4ehoaHGfgsLC4WSac+sWbPw8PDAz8+P5ORkli5dip+fH2fPnuXEiRNKx9OqhQsX8sUXX2BjY8OLFy+oV68e4eHh1KxZk5kzZyodT+QQqjS5/SZEjpKSkkJMTAxWVlbqbcHBwZiammY6hENXJCcns337dq5du0ZsbCyVKlWic+fOGsU2dM3s2bP58ccfWb9+PY0aNeLAgQPcu3eP4cOHM3HiRAYPHqx0xGwTHR1Nvnz5lI6hVVZWVsTHx5OcnIypqWmGD+Kvy0/rCj09PXWPx7s+aujyHC89vfRBRX8fYpeWlqbT1x0YGMicOXM0XsvHjBlDuXLllI6WLU6fPo2vr6/62l/36AsB0vASIsdJTk7m+PHjBAYG0qlTJ8zNzXn48CEWFhaYmZkpHU9kobS0NGbNmsXs2bOJj48H0ucJjBw5kunTpyucTnvmzp2Lk5MTHTp0AKB9+/bs2rULOzs7Dhw4QPny5RVOqB0bN2587/7u3btnU5LsUaBAAczNzenRowddu3alYMGCmR5naWmZzcmyx4d6eOrVq5dNSYQQOYU0vITIQe7du0fTpk0JCQkhMTGR27dv4+zszNChQ0lMTMTLy0vpiFqxceNGChYsSPPmzQEYPXo0q1evxtXVla1bt1K0aFGFE2a9lJQUzpw5Q/ny5TE1NeXOnTvExsbi6uqq8w3sYsWKsWXLFmrVqsWhQ4do374927dvZ8eOHYSEhHDw4EGlI4os8PLlS3755RfWr1/PqVOnaNasGb1796Zp06Y6X2ght8qsuASk9/oZGRllqFyray5cuMCxY8eIiIjIUFxm0aJFCqUSOYk0vITIQTw9PTE3N2fdunUUKFCAa9eu4ezszPHjx+nbty8BAQFKR9SKkiVLsnLlStzd3Tl37hwNGjRgyZIl7N+/HwMDA3bv3q10RK0wNjbm5s2bOrumz7uYmJhw+/ZtHBwcGDp0KAkJCaxatYrbt29TvXp1nj59qnTELBMTE6Oey/OuD6Wv6eKcn9dCQkLYsGEDGzduJDExke7duzN16lQMDHR7qnl0dDTr1q3j5s2bQHoBpV69eulsL9/bw0szU6RIEXr06MHkyZPVQzF1xaxZs5gwYQIlS5bE1tZW4+egUqk4evSogulETiENLyFykAIFCnD27FlKliyJubm5uuEVHByMq6urejiarjE1NcXf3x9HR0fGjBlDWFgYmzZt4q+//uKzzz7j8ePHSkfUiipVqjB37lwaNGigdJRsZW9vz86dO6lVqxYlS5ZkxowZtGvXjlu3blG1atUPNlD+S/T19QkLC8PGxuadH0p1fc7P24KCgujduzcnTpzg8ePH5M+fX+lIWnPx4kWaNGmCiYmJujjShQsXePHiBQcPHqRSpUoKJ8x6mzZtYvz48fTo0UN9zT4+PmzcuJEJEybw+PFjFixYwKhRo/j2228VTpu1bG1tmTt3Lj169FA6isjBdPtWkxD/Mbl1PSszMzMiIyNxdHTk4MGDjBgxAkjvEXrx4oXC6bRnxowZ6vlclStXJm/evBr7dbUHpE2bNnTq1IkSJUoQGRmJh4cHAFeuXMHFxUXhdFnr6NGj6sbFsWPHFE6jjMTERHbt2sX69es5d+4czZs357ffftPpRhfA8OHDadmyJWvWrFH37CUnJ9OnTx+GDRv20VUf/0s2btzIwoULad++vXpbixYtKFeuHKtWreLIkSM4Ojoyc+ZMnWt46enpUbt2baVjiBxOeryEyEE6dOiApaUlq1evxtzcHF9fX6ytrWnVqhWOjo788MMPSkfUis6dO+Pv74+bmxtbt24lJCSEAgUKsHfvXr799ltu3LihdESteHuozds9IbreA5KUlMTSpUsJDQ2lR48euLm5AbB48WLMzc3p06ePwglFVvDx8eGHH35g27ZtODk50bNnT7p06aLzDa7XTExMuHLlSoa16fz8/KhSpYpOjmAwMTHB19eXEiVKaGwPCAigQoUKxMfHExQURJkyZXTu+ufNm8fDhw811qQU4u+kx0uIHCS3rme1YsUKJkyYQGhoKLt27VIvFn3p0iW+/PJLhdNpT27tATE0NGTkyJEZtg8fPlyBNNrl6+v70cfqWjXHGjVq4OjoyJAhQ6hcuTKQXmr771q2bJnd0bKFhYUFISEhGRpeoaGhOjuCwcHBgXXr1jFnzhyN7evWrcPBwQGAyMhIjeVSdMXIkSNp3rw5xYsXx9XVNcNyEbo6V1n8M9LjJUQOk5yczLZt2zTWAdH19axE7rN582ZWrVrF3bt3OXfuHEWLFmXJkiUUK1aMVq1aKR0vy7ye1/Wht1pd7OH8mOIJunjdrw0ZMoRffvmFBQsWUKtWLQDOnDnDqFGjaNu2rU72jOzdu5d27dpRqlQpqlatCqTPdbt58ya7du3i888/Z+XKlQQEBOhclb9Bgwaxdu1a6tevn6G4BqCzI1bEPyMNLyFEjpDbqn8BH5zjUbdu3WxKkr1WrlzJpEmTGDZsGDNnzuTGjRs4Ozurq97pUk/gvXv3PvpYXVw2ITd7+fIlo0aNwsvLi+TkZCC9t7d///7MmTMHIyMjhRNqR3BwMF5eXty+fRtIr1r79ddfExsbS9myZRVOpz3m5uZs27ZNvSyKEJmRhpcQCtu7dy8eHh4YGhqyd+/e9x6rq0NycmP1L8i8R+Dtu6S62hPg6urKrFmz1MsnvK7eeePGDT777DOePHmidESRhSIjI9XDh0NDQ1mzZg0JCQm0aNGCOnXqKJxO++Lj4wkMDASgePHimJqaKpwo+8TExLB161bWr1/PxYsXdfY1DdJvnPzxxx8ZhpYK8TZpeAmhMD09PcLDw9Xlpt9Fl4fk1KlTBxcXl0yrf929e1cnq38BPHv2TONxUlISV65cYeLEicycOVNny8ybmJjg7+9P0aJFNRpeAQEBlC9fXmcrWW7atOm9+7t165ZNSbLH9evXadGiBaGhoZQoUYJt27bRtGlT4uLi0NPTIy4ujp07d+Lp6al0VJHFTp48ybp169i1axf29va0adOGtm3bqocf6qIffvgBb29vfvjhh1zVuBb/jDS8hBCKy43Vv97nxIkTjBgxgkuXLikdRStcXV2ZPXs2rVq10mh4LVu2jB9++IHLly8rHVEr/l5QICkpifj4ePLkyYOpqSlRUVEKJdMODw8PDAwMGDt2LJs3b2b//v00adKENWvWADB48GAuXbrEn3/+qXDSrNOmTRs2bNiAhYUFbdq0ee+xulZsITw8nA0bNrBu3TpiYmJo3749Xl5eXLt2DVdXV6XjaZ2bmxuBgYGkpaXh5OSUobiGrr6uiX9GqhoKIRSXG6t/vY+trS23bt1SOobWjBgxgoEDB5KQkEBaWho+Pj5s3bqV2bNns3btWqXjac3Tp08zbAsICKB///6MGjVKgUTadeHCBY4ePUr58uWpUKECq1evZsCAAeqe/cGDB1OjRg2FU2YtS0tL9XBhCwuLTBfM1kUtWrTg5MmTNG/enCVLltC0aVP09fXx8vJSOlq2kZ5b8TGkx0uIHGTIkCG4uLgwZMgQje3Lly/nzp07OlkFC3Jn9S/IWGo8LS2NsLAw5syZQ3Jycqalt3XFli1bmDJlinrui729PVOnTqV3794KJ8t+Fy9epEuXLvj7+ysdJUu9PYwa0OjdBHj06BH29vY6O4Q6NzEwMGDIkCH0799fYw0vQ0PDXNPjJcTHkB4vIXKQXbt2ZVpgo1atWsyZM0dnGyALFixApVLRrVu3TKt/6aqKFStmWmq8Ro0arF+/XqFU2aNz58507tyZ+Ph4YmNj1R/OcyMDAwMePnyodAyt+HuPT27pAQJwd3dn9+7d5MuXT2N7TEwMnp6eHD16VJlgWnD69GnWrVtH5cqVKV26NF27dqVjx45Kx1LEpUuXNKrzvl4gXgiQHi8hchRjY2Nu3LiBi4uLxvY7d+5QtmxZEhISFEqWPXJb9a+/lxrX09PD2toaY2NjhRIJbfr7TZXXPZzLly/HwcGB33//XaFk2qGnp4eHh4e6bPq+fftwd3cnb968ACQmJuLt7a2zPV5/7/F7LSIigsKFC5OUlKRQMu2Ji4tj+/btrF+/Hh8fH1JSUli0aBG9evXS+WHjERERdOzYkePHj6sb29HR0dSvX59t27ZhbW2tbECRI0jDS4gcpGzZsvTr149BgwZpbF+2bBkrV67Ez89PoWTa9ezZM1JSUsifP7/G9qioKAwMDLCwsFAoWfaLjo7OcIdc1zx69IiRI0dy5MgRIiIiMvT46fIH8bepVCqsra1xd3dn4cKF2NnZKZRMO3r27PlRx+nawrKvhxBXrFiRo0eParyupaSk4O3tzapVqwgODlYoYfa4desW69atY/PmzURHR9OoUaMPLpnyX9ahQwfu3r3Lpk2bKF26NJBeIKp79+64uLiwdetWhROKnEAaXkLkIOvXr2fQoEGMGjUKd3d3AI4cOcLChQtZsmQJffv2VTihdnh4eNCiRQsGDBigsd3Ly4u9e/dy4MABhZJp19y5c3FycqJDhw4AtG/fnp07d2JnZ8eBAweoUKGCwgm1w8PDg5CQEAYNGoSdnV2G4WetWrVSKJkQ/z89PT3133RmH7FMTExYtmwZvXr1yu5oikhJSWHfvn2sX79epxtelpaWHD58OEPJfB8fHxo3bkx0dLQywUSOIg0vIXKYlStXMnPmTPWcDycnJ6ZMmaJza/y8LX/+/Jw5c0Z9l/A1f39/ateuTWRkpELJtKtYsWJs2bKFWrVqcejQIdq3b8/27dvZsWMHISEhHDx4UOmIWmFubs6pU6eoWLGi0lEUlZKSwvXr1ylatGiGUvPiv+vevXukpaXh7OyMj4+PxhCzPHnyYGNjg76+voIJhTa863XtypUr1KtXj5iYGGWCiRxFimsIkcP079+f/v378/jxY0xMTDAzM1M6ktYlJiaqi2q8LSkpSWcX04X0dW8cHBwA2L9/P+3bt6dx48Y4OTlRvXp1hdNpj4ODQ6Y9Abpu2LBhlCtXjt69e5OSkkLdunU5d+4cpqam7N+/n88++0zpiCILFC1aFIDU1FSFk4js5O7uztChQ9m6dSv29vYAPHjwgOHDh9OgQQOF04mcQu/DhwghlGBtbZ0rGl0A1apVY/Xq1Rm2e3l5UblyZQUSZQ8rKytCQ0MB8Pb2pmHDhkD68CRdnecEsGTJEsaOHavzc1z+bufOnerho/v27SM4OBh/f3+GDx/O+PHjFU4nstrs2bMzrU66fv165s6dq0AioU3Lly8nJiYGJycnihcvTvHixSlWrBgxMTEsW7ZM6Xgih5ChhkLkILm16MCZM2do2LAhVatWVd8ZPHLkCBcuXODgwYPUqVNH4YTaMWjQIPbv30+JEiW4cuUKwcHBmJmZsW3bNubNm8fly5eVjqgVVlZWxMfHk5ycjKmpKYaGhhr7o6KiFEqmXcbGxty5c4ciRYrw1VdfYWpqypIlSwgKCqJChQoyFEnHODk58dNPP6nXJnzt/PnzdOzYkaCgIIWSCW1JS0vj8OHD6jX5Spcurb6hJgTIUEMhcpQePXoQEhLCxIkTMy06oKtq167NuXPnmD9/Pjt27MDExITy5cuzbt06jcU4dc3ixYtxcnIiNDSUefPmqXs4w8LCMhQa0SWLFy/ONX/bb7O1tcXPzw87Ozu8vb1ZuXIlkL6Mgsz50T3h4eGZVqq0trYmLCxMgURC21QqFY0aNaJRo0ZKRxE5lDS8hMhBTp8+nWuLDlSsWJEtW7YoHSNbGRoaMnLkyAzbhw8frkCa7NOjR4937tPlOX09e/akffv26psqr++Enz9/nlKlSimcTmQ1BwcHzpw5Q7FixTS2nzlzRj0HSOiOIUOG4OLiwpAhQzS2L1++nDt37rBkyRJlgokcReZ4CZGD5NaiAyEhIe/90lUbN27kt99+Uz8ePXo0+fLlo1atWhkWV9Ylf/9g8lpcXBzNmjXL5jTZZ8qUKaxdu5avvvqKM2fOqBcW1tfXZ+zYsQqnE1mtb9++DBs2jB9++IF79+5x79491q9fz/Dhw3V2aZDcbNeuXdSuXTvD9lq1arFz504FEomcSOZ4CZGDHDx4kIULF7Jq1SqcnJyUjpNt3l73JjO6OretZMmSrFy5End3d86dO0fDhg1ZvHgx+/fvx8DAgN27dysdUSuKFy9Oly5dmDp1qnpbXFwcTZs2BeDUqVNKRRMiy6SlpTF27Fi+++47Xr58CaTP8xszZgyTJk1SOJ3IasbGxty4cQMXFxeN7Xfu3KFs2bIkJCQolEzkJDLUUIgcpEOHDsTHx1O8ePFcVXTgypUrGo+TkpK4cuUKixYtYubMmQql0r7Q0FD1m/SePXto27YtX331FbVr19bp0uKvC6ZYWVkxbNgwnj9/TpMmTTAwMOD3339XOp5WHTlyRF085+/lxjOrgCf+u1QqFXPnzmXixIncvHkTExMTSpQooe7pFLrFxcUFb29vBg0apLH9999/x9nZWaFUIqeRhpcQOUhuHQP+usT226pUqYK9vT3z58+nTZs2CqTSPjMzMyIjI3F0dOTgwYOMGDECSL9zqstznYoXL463tzf169dHT0+PrVu3YmRkxG+//UbevHmVjqc1U6dOZdq0aVSpUiVXFc/J7czMzKhatarSMYSWjRgxgkGDBvH48WPc3d2B9BstCxcuzLXv7SIjGWoohMix7ty5Q4UKFYiLi1M6ilZ07twZf39/3Nzc2Lp1KyEhIRQoUIC9e/fy7bffcuPGDaUjatW5c+do1KgR1atXZ//+/ZiYmCgdSavs7OyYN28eXbt2VTqKyAZxcXHMmTPnnT2cd+/eVSiZ0JaVK1cyc+ZMHj58CKQvKTBlyhS6deumcDKRU0iPlxA5VEJCgnpewGsWFhYKpdGuv69flJaWRlhYGFOmTNHpcvIrVqxgwoQJhIaGsmvXLgoUKADApUuX+PLLLxVOl7Xc3Nwy7eExMjLi4cOHGpPSdXX9spcvX2ZY00norj59+nDixAm6du0qPZy5RP/+/enfvz+PHz/GxMREvUSIEK9Jj5cQOUhcXBxjxoxhx44dREZGZtivq0UmMiuukZaWhoODA9u2baNmzZoKJRNZ5e1CGh8yefJkLSZRzpgxYzAzM2PixIlKRxHZIF++fPz222+ZVroTusfd3Z3du3eTL18+je0xMTF4enpy9OhRZYKJHEV6vITIQUaPHs2xY8dYuXIlXbt2ZcWKFTx48IBVq1YxZ84cpeNpzbFjxzQe6+npYW1tjYuLCwYGuv0yderUKVatWsXdu3f5+eefKVy4MJs3b6ZYsWJ8+umnSsfLMrramPonEhISWL16NYcPH6Z8+fIZiucsWrRIoWRCG6ysrMifP7/SMUQ2OX78eIZRKpD+714qtYrXdPsTjRD/Mfv27WPTpk189tln9OzZkzp16uDi4kLRokXZsmULnTt3VjqiVtSrV0/pCIrYtWsXXbt2pXPnzly+fJnExEQAnj17xqxZszhw4IDCCbXjwoULpKamUr16dY3t58+fR19fnypVqiiUTLt8fX3Vi6Pr+vw9AdOnT2fSpEls3LgRU1NTpeMILfH19VX/t5+fH+Hh4erHKSkpeHt7U7hwYSWiiRxIhhoKkYOYmZnh5+eHo6MjRYoUYffu3VSrVo2goCDKlStHbGys0hGzzN69ez/62JYtW2oxiXLc3NwYPnw43bp1w9zcnGvXruHs7MyVK1fw8PDQeAPXJdWqVWP06NF88cUXGtt3797N3LlzOX/+vELJhMg6bm5uBAYGkpaWhpOTU4YeTl2dy5jbvD1UPrOP1CYmJixbtoxevXpldzSRA0mPlxA5iLOzM0FBQTg6OlKqVCl27NhBtWrV2LdvX4Zx4/91np6eH3WcSqXS2bltt27dom7duhm2W1paEh0dnf2Bsomfnx+VKlXKsN3NzQ0/Pz8FEmnXxyyHoFKp2LVrVzakEdnlY1/jxH9bUFAQaWlpODs74+Pjg7W1tXpfnjx5sLGxQV9fX8GEIieRhpcQOUjPnj25du0a9erVY+zYsbRo0YLly5eTlJSkc/M//l5aOTcqVKgQd+7cwcnJSWP76dOndXrBTSMjIx49epThGsPCwnRyTp+lpaXSEYQCZF5j7lC0aFFA3tPEx5GhhkLkYPfu3ePSpUu4uLhQvnx5peNkuYSEBA4fPsznn38OwLhx49TznAAMDAyYNm0axsbGSkXUqtmzZ/Pjjz+yfv16GjVqxIEDB7h37x7Dhw9n4sSJDB48WOmIWvHll18SFhbGr7/+qm6UREdH4+npiY2NDTt27FA4oRBC/DObNm16735Zy0uANLyEEAry8vLit99+Y9++fQCYm5tTpkwZ9UK6/v7+jBo1ihEjRigZU2vS0tKYNWsWs2fPJj4+HkjvDRo5ciTTp09XOJ32PHjwgLp16xIZGYmbmxsAV69exdbWlkOHDuHg4KBwQiH+f5ktk/E2XR1CnVtZWVlpPE5KSiI+Pp48efJgampKVFSUQslETiINLyFymCNHjnDkyBEiIiIyDF1Yv369Qqm0o06dOowePZoWLVoAaBSYAPjxxx9ZsWIF586dUzKmVqSkpHDmzBnKly+Pqakpd+7cITY2FldX11yx6GZcXBxbtmzh2rVrmJiYUL58eb788ssMBQiE+K/69ddfNR4nJSVx5coVNm7cyNSpU+ndu7dCyUR2CQgIoH///owaNYomTZooHUfkANLwEiIHmTp1KtOmTaNKlSrY2dlluFv6yy+/KJRMO+zs7Dh37px6jpO1tTUXLlxQP759+zZVq1bl2bNnyoXUImNjY27evEmxYsWUjiKEyCY//fQT27dvz9AwE7rp4sWLdOnSBX9/f6WjiBxA92YxC/Ef5uXlxYYNG+jatavSUbJFdHS0xpyux48fa+xPTU3V2K9rypYty927d3NFw2vv3r14eHhgaGj4waUEdHX5ACEAatSowVdffaV0DJFNDAwMePjwodIxRA4hDS8hcpCXL19Sq1YtpWNkmyJFinDjxg1KliyZ6X5fX1+KFCmSzamyz4wZM9TzuSpXrkzevHk19ltYWCiULOt5enoSHh6OjY3Ne8ts6/LyAUK8ePGC7777ThbU1UF/v6GUlpZGWFgYy5cvp3bt2gqlEjmNDDUUIgcZM2YMZmZmTJw4Ueko2WLo0KEcPnyYS5cuZahc+OLFC6pUqULDhg1ZunSpQgm1S09PT/3fbw8rTUtLkwaIEP9xVlZWGf5dP3/+HFNTU3788Ufp2dUxb7+eQ/prurW1Ne7u7ixcuBA7OzuFkomcRBpeQuQgQ4cOZdOmTZQvX57y5ctnKDSga2t5PXr0iIoVK5InTx4GDRrEJ598AqQvLLx8+XKSk5O5cuUKtra2CifVjhMnTrx3f7169bIpiRAiq23cuFHjsZ6eHtbW1lSvXj1DBTyhO14PmX97IWUhXpOGlxA5SP369d+5T6VScfTo0WxMkz2CgoLo378/hw4d4vXLkUqlolGjRnz//fc6u5BwWload+7c4eXLl5QsWVInFw5+n9xUvVPkLuvXr6dz584YGRkpHUVkk+joaMaPH8/27dt5+vQpkN7j2bFjR2bMmEG+fPmUDShyDGl4CSFyhKioKO7cuQOAi4sL+fPnVziR9gQFBdGyZUv8/PyA9Lluu3btokqVKgonyx65rXqnyF309fUJCwvDxsYGAHt7e86ePauu1ip0S1RUFDVr1uTBgwd07tyZ0qVLA+Dn58dPP/2Eg4MDZ8+elV5OAUjDSwghst0XX3zBX3/9xaRJkzA2NmbBggUkJCRw6dIlpaNlCzs7O+bNm5drqneK3EVPT09dSAYyrk8odMuwYcM4cuQIhw8fzjAsPjw8nMaNG9OgQQMWL16sUEKRk0jDS4gcpHXr1hnu/kP60DtjY2NcXFzo1KnTO6sAiv+GQoUKsXPnTj799FMAwsLCKFKkCDExMRkqG+qiAgUK4OPjQ/HixZWOIkSWk4ZX7uLk5MSqVaveuUCyt7c3/fr1Izg4OHuDiRxJ78OHCCGyi6WlJUePHuXy5cuoVCpUKhVXrlzh6NGjJCcns337dipUqMCZM2eUjir+DxEREZQoUUL92M7ODhMTEyIiIhRMlX369OnDTz/9pHQMIbTi9Wv3ux4L3RIWFkaZMmXeub9s2bKEh4dnYyKRk+Wu2dxC5HCFChWiU6dOLF++XF2aNjU1laFDh2Jubs62bdvo168fY8aM4fTp0wqnFf+WSqUiNjYWExMT9TY9PT2eP39OTEyMepsureM1YsQI9X+npqayevVqDh8+nCuqd4rcJS0tjU8++UTd2IqNjcXNzS1DufGoqCgl4oksVrBgQYKDg9+55mRQUJBOz1kW/4wMNRQiB7G2tubMmTPqsuqv3b59m1q1avHkyROuX79OnTp1iI6OViak+L/p6elluAP+eu2ut/9bl9bxel/FzrfpavVOkXv8vYz8u3Tv3l3LSUR26NWrF4GBgRw6dIg8efJo7EtMTKRJkyY4OztLtVYBSI+XEDlKcnIy/v7+GRpe/v7+6g/hxsbGMmzlP+7YsWNKR8h2ufGaRe4kDarc5XWF1hIlSjBw4EBKlSpFWloaN2/e5PvvvycxMZHNmzcrHVPkENLwEiIH6dq1K7179+bbb7+latWqAFy4cIFZs2bRrVs3IH3R3feNJxc5X25dGPnvZbaF0HXR0dHs3LmTwMBARo0aRf78+bl8+TK2trYULlxY6XgiCxQpUoRz584xYMAAxo0bl2E9yuXLl+Pg4KBwSpFTyFBDIXKQlJQU5syZw/Lly3n06BEAtra2DB48mDFjxqCvr09ISAh6enrvHE8ucra353B9iC7N8YKM1d6E0GW+vr40bNgQS0tLgoODuXXrFs7OzkyYMIGQkBA2bdqkdESRxZ4+fUpAQACg++tRin9HGl5C5FCvP6Dr2ofv3C6z+V3voktzvEAaXiJ3adiwIZUqVWLevHkaJeXPnj1Lp06dpLy4ELmQDDUUIodJTk7m+PHjBAYG0qlTJwAePnyIhYUFZmZmCqcT/6+35zoFBwczduxYevToQc2aNQE4d+4cGzduZPbs2UpF1Kq1a9d+8O94yJAh2ZRGCO25cOECq1atyrC9cOHCUl5ciFxKeryEyEHu3btH06ZNCQkJITExkdu3b+Ps7MzQoUNJTEzEy8tL6YgiCzVo0IA+ffrw5Zdfamz/6aefWL16NcePH1cmmJa8HiKrr6//zmNUKhV3797NxlRCaIeNjQ1//PEHbm5uGj1ehw4dolevXoSGhiodUQiRzaThJUQO4unpibm5OevWraNAgQLqN+rjx4/Tt29f9dhxoRtMTU25du2axmLKkL58QMWKFYmPj1comXbIUEORm/Tp04fIyEh27NhB/vz58fX1RV9fH09PT+rWrcuSJUuUjiiEyGZ6Hz5ECJFdTp06xYQJEzKsBeLk5MSDBw8USiW0xcHBgTVr1mTYvnbtWp2sgiXLIIjcZOHChcTGxmJjY8OLFy+oV68eLi4umJubM3PmTKXjCSEUIHO8hMhBUlNTMy2ocP/+fczNzRVIJLRp8eLFtG3blt9//53q1asD4OPjQ0BAALt27VI4XdaTARYiN7G0tOTQoUOcPn0aX19fYmNjqVSpEg0bNlQ6mhBCITLUUIgcpEOHDlhaWrJ69WrMzc3x9fXF2tqaVq1a4ejoyA8//KB0RJHF7t+/z/fff4+/vz8ApUuXpl+/fjrZ4zV16lRGjRqFqamp0lGEyFYJCQkYGRlJr68QuZw0vITIQUJDQ2natClpaWkEBARQpUoVAgICKFiwICdPnpS5MUJnREdH4+PjQ0REBKmpqRr7Xi8WLsR/WWpqKjNnzsTLy4tHjx6piyVNnDgRJycnevfurXREIUQ2k4aXEDlMcnIy27dv59q1a+qhKZ07d8bExETpaEILoqOjWbduHTdv3gSgTJky9OrVC0tLS4WTac++ffvo3LkzsbGxWFhYaPQCqFQqoqKiFEwnRNaYNm0aGzduZNq0afTt25cbN27g7OzM9u3bWbJkCefOnVM6ohAim0nDS4gcIikpiVKlSrF//35Kly6tdByRDS5evEiTJk0wMTGhWrVqQPraPy9evODgwYNUqlRJ4YTa8cknn9CsWTNmzZolww6FznJxcWHVqlU0aNBAo5y8v78/NWvW5OnTp0pHFEJkMymuIUQOYWhoSEJCgtIxRDYaPnw4LVu2ZM2aNRgYpL8cJycn06dPH4YNG8bJkycVTqgdDx48YMiQIdLoEjrtwYMHuLi4ZNiemppKUlKSAomEEEqTcvJC5CADBw5k7ty5JCcnKx1FZIOLFy8yZswYdaMLwMDAgNGjR3Px4kUFk2lXkyZNdPr6hABwdXXl1KlTGbbv3LkTNzc3BRIJIZQmPV5C5CAXLlzgyJEjHDx4kHLlypE3b16N/bt371YomdAGCwsLQkJCKFWqlMb20NBQnV4+oHnz5owaNQo/Pz/KlSuHoaGhxv6WLVsqlEyIrDNp0iS6d+/OgwcPSE1NZffu3dy6dYtNmzaxf/9+peMJIRQgc7yEyEF69uz53v1STl63DBkyhF9++YUFCxZQq1YtAM6cOcOoUaNo27YtS5YsUTaglujpvXuwhUqlynQtOyH+i06dOsW0adM0iiVNmjSJxo0bKx1NCKEA6fESIgdITU1l/vz53L59m5cvX+Lu7s6UKVOkkqGOW7BgASqVim7duqmHlxoaGtK/f3/mzJmjcDrt+Xv5eCF0TXJyMrNmzaJXr14cOnRI6ThCiBxCeryEyAGmT5/OlClTaNiwISYmJvzxxx98+eWXrF+/XuloIhvEx8cTGBgIQPHixaXohBA6wMzMjBs3buDk5KR0FCFEDiENLyFygBIlSjBy5Ei+/vprAA4fPkzz5s158eLFe4dlCd1x//59AIoUKaJwEu347rvv+OqrrzA2Nua7775777FDhgzJplRCaE+rVq1o06YN3bt3VzqKECKHkIaXEDmAkZERd+7cwcHBQb3N2NiYO3fu6OwHcZE+5G7GjBksXLiQ2NhYAMzNzfnmm28YP368TjW6ixUrxsWLFylQoADFihV753EqlYq7d+9mYzIhtMPLy4upU6fSuXNnKleunKFYkhSRESL3kYaXEDmAvr4+4eHhWFtbq7eZm5vj6+v73g+p4r9t3LhxrFu3jqlTp1K7dm0ATp8+zZQpU+jbty8zZ85UOKEQ4t+SIjJCiL+ThpcQOYCenh4eHh4YGRmpt+3btw93d3eNu6RSTl632Nvb4+XlleHO96+//sqAAQN48OCBQsm068aNG5QtWzbTfXv27MHT0zN7AwkhhBDZQKoaCpEDZDYHoEuXLgokEdkpKioqwxpeAKVKlSIqKkqBRNmjSZMmnD59OkNv7q5du+jWrRtxcXEKJRNCCCG0RxpeQuQAsj5X7lShQgWWL1+eodjE8uXLqVChgkKptK9Pnz40bNiQM2fOUKhQIQC2b99Or1692LBhg7LhhMgi7yoio1KpMDY2xsXFhbp166Kvr5/NyYQQSpGhhkIIoZATJ07QvHlzHB0dqVmzJgDnzp0jNDSUAwcOUKdOHYUTas/gwYM5duwYJ0+exNvbmz59+rB582batm2rdDQhskSxYsV4/Pgx8fHxWFlZAfD06VNMTU0xMzMjIiICZ2dnjh07plFYSQihu3SnZJYQQvzH1KtXj9u3b9O6dWuio6OJjo6mTZs23Lp1S6cbXQDLli2jQoUK1KhRg759+7J161ZpdAmdMmvWLKpWrUpAQACRkZFERkZy+/ZtqlevztKlSwkJCaFQoUIMHz5c6ahCiGwiPV5CCCG0bu/evRm2JSUlMXz4cBo3bqxRYETKbAtdULx4cXbt2kXFihU1tl+5coW2bdty9+5dzp49S9u2bQkLC1MmpBAiW0nDSwghspGvr+9HH1u+fHktJsleH7smmZTZFrrC1NSUkydPUqVKFY3tFy5coF69esTHxxMcHEzZsmXV6/gJIXSbFNcQQohsVLFiRVQqFR+656VrDZDU1FSlIwiRrerXr8/XX3/N2rVrcXNzA9J7u/r374+7uzsA169fl7UahchFpOElhBDZKCgoSOkIijl37hyRkZF8/vnn6m2bNm1i8uTJxMXF4enpybJlyzTWsxPiv2rdunV07dqVypUrY2hoCEBycjINGjRg3bp1AJiZmbFw4UIlYwohspEMNRRCCIVERkZSoEABAEJDQ1mzZg0vXrygZcuWOllco2nTptSvX58xY8YA6Xf7K1WqRI8ePShdujTz58/n66+/ZsqUKcoGFSIL+fv7c/v2bQBKlixJyZIlFU4khFCKNLyEECKbXb9+nRYtWhAaGkqJEiXYtm0bTZs2JS4uDj09PeLi4ti5cyeenp5KR81SdnZ27Nu3Tz3nZfz48Zw4cYLTp08D8PPPPzN58mT8/PyUjCmEEEJohQw1FEKIbDZ69GjKlSvHli1b2Lx5M59//jnNmzdnzZo1QPoaV3PmzNG5htfTp0+xtbVVPz5x4gQeHh7qx1WrViU0NFSJaEJkiREjRjB9+nTy5s3LiBEj3nvsokWLsimVECKnkIaXEEJkswsXLnD06FHKly9PhQoVWL16NQMGDFBX/hs8eDA1atRQOGXWs7W1JSgoCAcHB16+fMnly5eZOnWqev/z58/Vc2GE+C+6cuUKSUlJ6v9+F5VKlV2RhBA5iDS8hBAim0VFRVGoUCEgfXJ93rx5sbKyUu+3srLi+fPnSsXTmmbNmjF27Fjmzp3Lnj17MDU11ZjL5uvrS/HixRVMKMT/59ixY5n+txBCgDS8hBBCEX+/450b7oBPnz6dNm3aUK9ePczMzNi4cSN58uRR71+/fj2NGzdWMKEQQgihPVJcQwghspmenh4eHh7qsun79u3D3d2dvHnzApCYmIi3t7dOreP1tmfPnmFmZoa+vr7G9qioKMzMzDQaY0L8l7Rp0+ajj929e7cWkwghciLp8RJCiGzWvXt3jcddunTJcEy3bt2yK062s7S0zHR7/vz5szmJEFnr7b/ttLQ0fvnlFywtLdWVPC9dukR0dPQ/aqAJIXSH9HgJIYQQQmSxMWPGEBUVhZeXl7p3NyUlhQEDBmBhYcH8+fMVTiiEyG7S8BJCCCGEyGLW1tacPn06w4LJt27dolatWkRGRiqUTAihFD2lAwghhBBC6Jrk5GT8/f0zbPf39yc1NVWBREIIpckcLyGEEEKILNazZ0969+5NYGAg1apVA+D8+fPMmTOHnj17KpxOCKEEGWoohBBCCJHFUlNTWbBgAUuXLiUsLAwAOzs7hg4dyjfffJOhqqcQQvdJw0sIIYQQQotiYmIAsLCwUDiJEEJJMsdLCCGEEEILkpOTOXz4MFu3blUvkv7w4UNiY2MVTiaEUIL0eAkhhBBCZLF79+7RtGlTQkJCSExM5Pbt2zg7OzN06FASExPx8vJSOqIQIptJj5cQQgghRBYbOnQoVapU4enTp5iYmKi3t27dmiNHjiiYTAihFKlqKIQQQgiRxU6dOsXZs2fJkyePxnYnJycePHigUCohhJKkx0sIIYQQIoulpqaSkpKSYfv9+/cxNzdXIJEQQmnS8BJCCCGEyGKNGzdmyZIl6scqlYrY2FgmT55Ms2bNlAsmhFCMFNcQQgghhMhi9+/fp0mTJqSlpREQEECVKlUICAigYMGCnDx5EhsbG6UjCiGymTS8hBBCCCG0IDk5me3bt3Pt2jViY2OpVKkSnTt31ii2IYTIPaThJYQQQgiRhf7880/27dvHy5cvcXd3x8PDQ+lIQogcQBpeQgghhBBZZOfOnXTo0AETExMMDQ2JiYlh7ty5jBw5UuloQgiFScNLCCGEECKLVK5cmapVq7JixQr09fWZPXs28+fPJyoqSuloQgiFScNLCCGEECKLmJmZcfXqVVxcXAB4+fIlefPm5cGDB1JQQ4hcTsrJCyGEEEJkkfj4eCwsLNSP8+TJg7GxMbGxsQqmEkLkBAZKBxBCCCGE0CVr167FzMxM/Tg5OZkNGzZQsGBB9bYhQ4YoEU0IoSAZaiiEEEIIkUWcnJxQqVTvPUalUnH37t1sSiSEyCmk4SWEEEIIIYQQWiZzvIQQQgghskF0dLTSEYQQCpKGlxBCCCFEFps7dy7bt29XP27Xrh358+encOHCXLt2TcFkQgilSMNLCCGEECKLeXl54eDgAMChQ4c4fPgw3t7eeHh4MGrUKIXTCSGUIFUNhRBCCCGyWHh4uLrhtX//ftq3b0/jxo1xcnKievXqCqcTQihBeryEEEIIIbKYlZUVoaGhAHh7e9OwYUMA0tLSSElJUTKaEEIh0uMlhBBCCJHF2rRpQ6dOnShRogSRkZF4eHgAcOXKFVxcXBROJ4RQgjS8hBBCCCGy2OLFi3FyciI0NJR58+apF1QOCwtjwIABCqcTQihB1vESQgghhBBCCC2TOV5CCCGEEFqwefNmPv30U+zt7bl37x4AS5Ys4ddff1U4mRBCCdLwEkIIIYTIYitXrmTEiBF4eHgQHR2tLqiRL18+lixZomw4IYQipOElhBBCCJHFli1bxpo1axg/fjz6+vrq7VWqVOH69esKJhNCKEUaXkIIIYQQWSwoKAg3N7cM242MjIiLi1MgkRBCadLwEkIIIYTIYsWKFePq1asZtnt7e1O6dOnsDySEUJyUkxdCCCGEyGIjRoxg4MCBJCQkkJaWho+PD1u3bmX27NmsXbtW6XhCCAVIOXkhhBBCCC3YsmULU6ZMITAwEAB7e3umTp1K7969FU4mhFCCNLyEEEIIIbQoPj6e2NhYbGxslI4ihFCQzPESQgghhMhi7u7uREdHA2BqaqpudMXExODu7q5gMiGEUqTHSwghhBAii+np6REeHp6hlysiIoLChQuTlJSkUDIhhFKkuIYQQgghRBbx9fVV/7efnx/h4eHqxykpKXh7e1O4cGElogkhFCY9XkIIIYQQWURPTw+VSgVAZh+xTExMWLZsGb169cruaEIIhUnDSwghhBAii9y7d4+0tDScnZ3x8fHB2tpavS9PnjzY2Nigr6+vYEIhhFKk4SWEEEIIIYQQWiZVDYUQQgghtGDz5s3Url0be3t77t27B8DixYv59ddfFU4mhFCCNLyEEEIIIbLYypUrGTFiBM2aNSM6OpqUlBQArKysWLJkibLhhBCKkIaXEEIIIUQWW7ZsGWvWrGH8+PEac7qqVKnC9evXFUwmhFCKNLyEEEIIIbJYUFAQbm5uGbYbGRkRFxenQCIhhNKk4SWEEEIIkcWKFSvG1atXM2z39vamdOnS2R9ICKE4WUBZCCGEECKLjRgxgoEDB5KQkEBaWho+Pj5s3bqV2bNns3btWqXjCSEUIOXkhRBCCCG0YMuWLUyZMoXAwEAA7O3tmTp1Kr1791Y4mRBCCdLwEkIIIYTQovj4eGJjY7GxsVE6ihBCQTLUUAghhBBCSyIiIrh16xYAKpUKa2trhRMJIZQixTWEEEIIIbLY8+fP6dq1K/b29tSrV4969ephb29Ply5dePbsmdLxhBAKkIaXEEIIIUQW69OnD+fPn+e3334jOjqa6Oho9u/fz8WLF/n666+VjieEUIDM8RJCCCGEyGJ58+bljz/+4NNPP9XYfurUKZo2bSpreQmRC0mPlxBCCCFEFitQoACWlpYZtltaWmJlZaVAIiGE0qThJYQQQgiRxSZMmMCIESMIDw9XbwsPD2fUqFFMnDhRwWRCCKXIUEMhhBBCiCzg5uaGSqVSPw4ICCAxMRFHR0cAQkJCMDIyokSJEly+fFmpmEIIhUg5eSGEEEKILODp6al0BCFEDiY9XkIIIYQQQgihZTLHSwghhBBCCCG0TIYaCiGEEEJksZSUFBYvXsyOHTsICQnh5cuXGvujoqIUSiaEUIr0eAkhhBBCZLGpU6eyaNEiOnTowLNnzxgxYgRt2rRBT0+PKVOmKB1PCKEAmeMlhBBCCJHFihcvznfffUfz5s0xNzfn6tWr6m1//vknP/30k9IRhRDZTHq8hBBCCCGyWHh4OOXKlQPAzMyMZ8+eAfD555/z22+/KRlNCKEQaXgJIYQQQmSxIkWKEBYWBqT3fh08eBCACxcuYGRkpGQ0IYRCpOElhBBCCJHFWrduzZEjRwAYPHgwEydOpESJEnTr1o1evXopnE4IoQSZ4yWEEEIIoWXnzp3j3LlzlChRghYtWigdRwihAGl4CSGEEEIIIYSWyTpeQgghhBBZYO/evXh4eGBoaMjevXvfe2zLli2zKZUQIqeQHi8hhBBCiCygp6dHeHg4NjY26Om9exq9SqUiJSUlG5MJIXICaXgJIYQQQgghhJbJUEMhhBBCiCyUmprKhg0b2L17N8HBwahUKpydnWnbti1du3ZFpVIpHVEIoQDp8RJCCCGEyCJpaWm0aNGCAwcOUKFCBUqVKkVaWho3b97k+vXrtGzZkj179igdUwihAOnxEkIIIYTIIhs2bODkyZMcOXKE+vXra+w7evQonp6ebNq0iW7duimUUAihFOnxEkIIIYTIIo0bN8bd3Z2xY8dmun/WrFmcOHGCP/74I5uTCSGU9u6SO0IIIYQQ4h/x9fWladOm79zv4eHBtWvXsjGRECKnkIaXEEIIIUQWiYqKwtbW9p37bW1tefr0aTYmEkLkFNLwEkIIIYTIIikpKRgYvHsKvb6+PsnJydmYSAiRU0hxDSGEEEKILJKWlkaPHj0wMjLKdH9iYmI2JxJC5BTS8BJCCCGEyCLdu3f/4DFS0VCI3EmqGgohhBBCCCGElskcLyGEEEIIIYTQMml4CSGEEEIIIYSWScNLCCGEEEIIIbRMGl5CCCGEEEIIoWXS8BJCCCGEEEIILZOGlxBCCCGEEEJomTS8hBBCCCGEEELLpOElhBBCCCGEEFr2P6NHD0gNZAKAAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "plt.figure(figsize=(9, 7))\n", + "sns.heatmap(df.corr(), annot=True, fmt='.2%')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xUE9vRwmorFT" + }, + "source": [ + "- All the columns are moderately correlated" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "eA85S9RDorFT", + "outputId": "6ea9b51e-e2e6-48c4-9c11-7821cc05bc60" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Percentage of patients without diabetes: 65.0\n", + "Percentage of patients with diabetes: 35.0\n" + ] + } + ], + "source": [ + "print(\"Percentage of patients without diabetes: \" , round(target_vals[0]/len(df.Outcome), 2)*100)\n", + "print(\"Percentage of patients with diabetes: \" , round(target_vals[1]/len(df.Outcome), 2)*100)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lIxzQRyporFU" + }, + "source": [ + "- Separating data and labels" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 206 + }, + "id": "AARphY9IorFU", + "outputId": "a391d88c-2cfa-47a6-da7f-fe7a3ca57193" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", + "0 6 148 72 35 0 33.6 \n", + "1 1 85 66 29 0 26.6 \n", + "2 8 183 64 0 0 23.3 \n", + "3 1 89 66 23 94 28.1 \n", + "4 0 137 40 35 168 43.1 \n", + "\n", + " DiabetesPedigreeFunction Age \n", + "0 0.627 50 \n", + "1 0.351 31 \n", + "2 0.672 32 \n", + "3 0.167 21 \n", + "4 2.288 33 " + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PregnanciesGlucoseBloodPressureSkinThicknessInsulinBMIDiabetesPedigreeFunctionAge
061487235033.60.62750
11856629026.60.35131
28183640023.30.67232
318966239428.10.16721
40137403516843.12.28833
\n", + "
\n", + "
\n", + "\n", + "
\n", + " \n", + "\n", + " \n", + "\n", + " \n", + "
\n", + "\n", + "\n", + "
\n", + " \n", + "\n", + "\n", + "\n", + " \n", + "
\n", + "\n", + "
\n", + "
\n" + ], + "application/vnd.google.colaboratory.intrinsic+json": { + "type": "dataframe", + "variable_name": "x", + "summary": "{\n \"name\": \"x\",\n \"rows\": 768,\n \"fields\": [\n {\n \"column\": \"Pregnancies\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3,\n \"min\": 0,\n \"max\": 17,\n \"num_unique_values\": 17,\n \"samples\": [\n 6,\n 1,\n 3\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Glucose\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 31,\n \"min\": 0,\n \"max\": 199,\n \"num_unique_values\": 136,\n \"samples\": [\n 151,\n 101,\n 112\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"BloodPressure\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 19,\n \"min\": 0,\n \"max\": 122,\n \"num_unique_values\": 47,\n \"samples\": [\n 86,\n 46,\n 85\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"SkinThickness\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 15,\n \"min\": 0,\n \"max\": 99,\n \"num_unique_values\": 51,\n \"samples\": [\n 7,\n 12,\n 48\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Insulin\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 115,\n \"min\": 0,\n \"max\": 846,\n \"num_unique_values\": 186,\n \"samples\": [\n 52,\n 41,\n 183\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"BMI\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 7.884160320375446,\n \"min\": 0.0,\n \"max\": 67.1,\n \"num_unique_values\": 248,\n \"samples\": [\n 19.9,\n 31.0,\n 38.1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"DiabetesPedigreeFunction\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.3313285950127749,\n \"min\": 0.078,\n \"max\": 2.42,\n \"num_unique_values\": 517,\n \"samples\": [\n 1.731,\n 0.426,\n 0.138\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Age\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 11,\n \"min\": 21,\n \"max\": 81,\n \"num_unique_values\": 52,\n \"samples\": [\n 60,\n 47,\n 72\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" + } + }, + "metadata": {}, + "execution_count": 14 + } + ], + "source": [ + "x = df.drop(columns='Outcome', axis = 1)\n", + "x.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "2dNL6pyIorFW", + "outputId": "e989c4e2-5065-44e3-9890-6c6927950f07" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "0 1\n", + "1 0\n", + "2 1\n", + "3 0\n", + "4 1\n", + "Name: Outcome, dtype: int64" + ] + }, + "metadata": {}, + "execution_count": 15 + } + ], + "source": [ + "y = df['Outcome']\n", + "y.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GUAd8V1eorFX" + }, + "source": [ + "- Data Standardization" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "id": "Dn-QB_I9orFX" + }, + "outputs": [], + "source": [ + "scalar = StandardScaler()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 75 + }, + "id": "AdQqYF3worFY", + "outputId": "3a327e76-b1f1-4199-f9d6-a28f7de6d682" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "StandardScaler()" + ], + "text/html": [ + "
StandardScaler()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ] + }, + "metadata": {}, + "execution_count": 17 + } + ], + "source": [ + "scalar.fit(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "WFTGIN4forFY", + "outputId": "4d1afdfc-4c27-4c6d-ef17-b5117d637f40" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([[ 0.63994726, 0.84832379, 0.14964075, ..., 0.20401277,\n", + " 0.46849198, 1.4259954 ],\n", + " [-0.84488505, -1.12339636, -0.16054575, ..., -0.68442195,\n", + " -0.36506078, -0.19067191],\n", + " [ 1.23388019, 1.94372388, -0.26394125, ..., -1.10325546,\n", + " 0.60439732, -0.10558415],\n", + " ...,\n", + " [ 0.3429808 , 0.00330087, 0.14964075, ..., -0.73518964,\n", + " -0.68519336, -0.27575966],\n", + " [-0.84488505, 0.1597866 , -0.47073225, ..., -0.24020459,\n", + " -0.37110101, 1.17073215],\n", + " [-0.84488505, -0.8730192 , 0.04624525, ..., -0.20212881,\n", + " -0.47378505, -0.87137393]])" + ] + }, + "metadata": {}, + "execution_count": 18 + } + ], + "source": [ + "standardized_data = scalar.transform(x)\n", + "standardized_data" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "id": "7vB_DPlCorFZ" + }, + "outputs": [], + "source": [ + "pkl.dump(scalar, open('scaler.pkl', 'wb'))\n", + "# scalar" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "id": "CB3ncD4uorFZ" + }, + "outputs": [], + "source": [ + "X = standardized_data\n", + "Y = df['Outcome']" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "w3cbbrCtorFa" + }, + "source": [ + "- train test split\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "id": "1F3fIAqiorFa" + }, + "outputs": [], + "source": [ + "train_x, test_x, train_y, test_y = train_test_split(X, Y, test_size = 0.2, stratify=y, random_state = 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "iBV6DvZUorFb", + "outputId": "d852117d-756f-4828-ef2a-571dcf2541ca" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(614, 8)" + ] + }, + "metadata": {}, + "execution_count": 22 + } + ], + "source": [ + "train_x.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ZhCqN3HxorFb", + "outputId": "0ca3b923-be5d-462c-a2d5-d43eb69a1ce9" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(154, 8)" + ] + }, + "metadata": {}, + "execution_count": 23 + } + ], + "source": [ + "test_x.shape\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Dn_y08auorFb", + "outputId": "182d4799-fc86-43a9-9b4d-8045fd12cfd8" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(614,)" + ] + }, + "metadata": {}, + "execution_count": 24 + } + ], + "source": [ + "train_y.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "smtK6hNcorFc", + "outputId": "cdb709fc-5c76-428e-9977-e0743ddace5f" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(154,)" + ] + }, + "metadata": {}, + "execution_count": 25 + } + ], + "source": [ + "\n", + "test_y.shape\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dc-wOJ15orFc" + }, + "source": [ + "- Model Training" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OvmfkyZPorFd" + }, + "source": [ + "- LOGISTIC REGRESSION\n" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 75 + }, + "id": "ryLcXQROorFd", + "outputId": "688808f9-0a4a-4633-b055-bbc4a31b98cb" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "LogisticRegression()" + ], + "text/html": [ + "
LogisticRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ] + }, + "metadata": {}, + "execution_count": 26 + } + ], + "source": [ + "lr = LogisticRegression()\n", + "lr = lr.fit(train_x, train_y)\n", + "lr" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "id": "R1Rsh35EorFe" + }, + "outputs": [], + "source": [ + "logistic_train_pred = lr.predict(train_x)\n", + "logistic_test_pred = lr.predict(test_x)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "gbZRKj2corFe", + "outputId": "655c338b-493f-405f-d46d-06bf7e18e0c5" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Logistic Regression Training Accuracy: 79.0\n", + "Logistic Regression Testing Accuracy: 76.0\n" + ] + } + ], + "source": [ + "print(\"Logistic Regression Training Accuracy: \", round(accuracy_score(train_y, logistic_train_pred), 2)*100)\n", + "print(\"Logistic Regression Testing Accuracy: \", round(accuracy_score(test_y, logistic_test_pred), 2)*100)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "id": "nIhDu4FNorFe" + }, + "outputs": [], + "source": [ + "pkl.dump(lr, open('lr.pkl', 'wb'))\n", + "# lr" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jVEVi1bRorFf" + }, + "source": [ + "- KNN" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 75 + }, + "id": "Nu9NIqDSorFf", + "outputId": "c19119fc-00c9-47a0-aa3c-1a6de3e00975" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "KNeighborsClassifier(n_neighbors=50)" + ], + "text/html": [ + "
KNeighborsClassifier(n_neighbors=50)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ] + }, + "metadata": {}, + "execution_count": 30 + } + ], + "source": [ + "knn = KNeighborsClassifier(n_neighbors=50)\n", + "knn.fit(train_x, train_y)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "id": "-IPaLZFWorFg" + }, + "outputs": [], + "source": [ + "knn_train_pred = knn.predict(train_x)\n", + "knn_test_pred = knn.predict(test_x)" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "y15OM1KvorFs", + "outputId": "19a7b526-29da-4f32-dfa4-fd39b4e471c2" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "KNN Training Accuracy: 77.0\n", + "KNN Testing Accuracy: 73.0\n" + ] + } + ], + "source": [ + "print(\"KNN Training Accuracy: \", round(accuracy_score(train_y, knn_train_pred), 2)*100)\n", + "print(\"KNN Testing Accuracy: \", round(accuracy_score(test_y, knn_test_pred), 2)*100)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "d_a9xpevorFt" + }, + "source": [ + "- Decision Trees" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 75 + }, + "id": "8jucMN6BorFt", + "outputId": "3fdbe7b9-c563-444e-9bb3-9be693a2c4a9" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "DecisionTreeClassifier(random_state=91)" + ], + "text/html": [ + "
DecisionTreeClassifier(random_state=91)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ] + }, + "metadata": {}, + "execution_count": 33 + } + ], + "source": [ + "max_accuracy = 0\n", + "for i in range(2000):\n", + " clf = DecisionTreeClassifier(random_state = i)\n", + " clf.fit(train_x, train_y)\n", + " pred = clf.predict(test_x)\n", + " current_accuracy = round(accuracy_score(pred, test_y)*100,2)\n", + " if(current_accuracy > max_accuracy):\n", + " max_accuracy = current_accuracy\n", + " best_random_state = i\n", + "\n", + "# print(\"Best Random State: \", best_random_state)\n", + "# print(\"Best Accuracy: \", max_accuracy)\n", + "\n", + "clf = DecisionTreeClassifier(random_state = best_random_state)\n", + "clf.fit(train_x, train_y)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "KhTgPuOOorFu", + "outputId": "6adc42e0-b5d5-4e34-ed92-26d5c485dfda" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[Text(0.453125, 0.96875, 'x[1] <= 0.207\\ngini = 0.454\\nsamples = 614\\nvalue = [400, 214]'),\n", + " Text(0.20545212765957446, 0.90625, 'x[7] <= -0.403\\ngini = 0.296\\nsamples = 388\\nvalue = [318, 70]'),\n", + " Text(0.10638297872340426, 0.84375, 'x[5] <= 1.702\\ngini = 0.151\\nsamples = 219\\nvalue = [201, 18]'),\n", + " Text(0.0851063829787234, 0.78125, 'x[0] <= 1.085\\ngini = 0.13\\nsamples = 215\\nvalue = [200, 15]'),\n", + " Text(0.07446808510638298, 0.71875, 'x[5] <= -0.132\\ngini = 0.122\\nsamples = 214\\nvalue = [200, 14]'),\n", + " Text(0.02127659574468085, 0.65625, 'x[6] <= 0.592\\ngini = 0.016\\nsamples = 122\\nvalue = [121, 1]'),\n", + " Text(0.010638297872340425, 0.59375, 'gini = 0.0\\nsamples = 106\\nvalue = [106, 0]'),\n", + " Text(0.031914893617021274, 0.59375, 'x[6] <= 0.648\\ngini = 0.117\\nsamples = 16\\nvalue = [15, 1]'),\n", + " Text(0.02127659574468085, 0.53125, 'gini = 0.0\\nsamples = 1\\nvalue = [0, 1]'),\n", + " Text(0.0425531914893617, 0.53125, 'gini = 0.0\\nsamples = 15\\nvalue = [15, 0]'),\n", + " Text(0.1276595744680851, 0.65625, 'x[6] <= 0.573\\ngini = 0.243\\nsamples = 92\\nvalue = [79, 13]'),\n", + " Text(0.07446808510638298, 0.59375, 'x[5] <= -0.113\\ngini = 0.169\\nsamples = 75\\nvalue = [68, 7]'),\n", + " Text(0.06382978723404255, 0.53125, 'gini = 0.0\\nsamples = 1\\nvalue = [0, 1]'),\n", + " Text(0.0851063829787234, 0.53125, 'x[2] <= -2.435\\ngini = 0.149\\nsamples = 74\\nvalue = [68, 6]'),\n", + " Text(0.07446808510638298, 0.46875, 'gini = 0.0\\nsamples = 1\\nvalue = [0, 1]'),\n", + " Text(0.09574468085106383, 0.46875, 'x[4] <= -0.615\\ngini = 0.128\\nsamples = 73\\nvalue = [68, 5]'),\n", + " Text(0.07446808510638298, 0.40625, 'x[3] <= 1.158\\ngini = 0.346\\nsamples = 18\\nvalue = [14, 4]'),\n", + " Text(0.06382978723404255, 0.34375, 'x[1] <= -0.451\\ngini = 0.291\\nsamples = 17\\nvalue = [14, 3]'),\n", + " Text(0.05319148936170213, 0.28125, 'gini = 0.0\\nsamples = 10\\nvalue = [10, 0]'),\n", + " Text(0.07446808510638298, 0.28125, 'x[5] <= 0.318\\ngini = 0.49\\nsamples = 7\\nvalue = [4, 3]'),\n", + " Text(0.06382978723404255, 0.21875, 'x[2] <= -0.161\\ngini = 0.375\\nsamples = 4\\nvalue = [1, 3]'),\n", + " Text(0.05319148936170213, 0.15625, 'gini = 0.0\\nsamples = 1\\nvalue = [1, 0]'),\n", + " Text(0.07446808510638298, 0.15625, 'gini = 0.0\\nsamples = 3\\nvalue = [0, 3]'),\n", + " Text(0.0851063829787234, 0.21875, 'gini = 0.0\\nsamples = 3\\nvalue = [3, 0]'),\n", + " Text(0.0851063829787234, 0.34375, 'gini = 0.0\\nsamples = 1\\nvalue = [0, 1]'),\n", + " Text(0.11702127659574468, 0.40625, 'x[0] <= 0.194\\ngini = 0.036\\nsamples = 55\\nvalue = [54, 1]'),\n", + " Text(0.10638297872340426, 0.34375, 'gini = 0.0\\nsamples = 52\\nvalue = [52, 0]'),\n", + " Text(0.1276595744680851, 0.34375, 'x[2] <= -0.109\\ngini = 0.444\\nsamples = 3\\nvalue = [2, 1]'),\n", + " Text(0.11702127659574468, 0.28125, 'gini = 0.0\\nsamples = 1\\nvalue = [0, 1]'),\n", + " Text(0.13829787234042554, 0.28125, 'gini = 0.0\\nsamples = 2\\nvalue = [2, 0]'),\n", + " Text(0.18085106382978725, 0.59375, 'x[1] <= -0.075\\ngini = 0.457\\nsamples = 17\\nvalue = [11, 6]'),\n", + " Text(0.1702127659574468, 0.53125, 'x[4] <= -0.142\\ngini = 0.497\\nsamples = 13\\nvalue = [7, 6]'),\n", + " Text(0.14893617021276595, 0.46875, 'x[7] <= -0.956\\ngini = 0.245\\nsamples = 7\\nvalue = [6, 1]'),\n", + " Text(0.13829787234042554, 0.40625, 'gini = 0.0\\nsamples = 1\\nvalue = [0, 1]'),\n", + " Text(0.1595744680851064, 0.40625, 'gini = 0.0\\nsamples = 6\\nvalue = [6, 0]'),\n", + " Text(0.19148936170212766, 0.46875, 'x[5] <= 0.033\\ngini = 0.278\\nsamples = 6\\nvalue = [1, 5]'),\n", + " Text(0.18085106382978725, 0.40625, 'gini = 0.0\\nsamples = 1\\nvalue = [1, 0]'),\n", + " Text(0.20212765957446807, 0.40625, 'gini = 0.0\\nsamples = 5\\nvalue = [0, 5]'),\n", + " Text(0.19148936170212766, 0.53125, 'gini = 0.0\\nsamples = 4\\nvalue = [4, 0]'),\n", + " Text(0.09574468085106383, 0.71875, 'gini = 0.0\\nsamples = 1\\nvalue = [0, 1]'),\n", + " Text(0.1276595744680851, 0.78125, 'x[6] <= 0.653\\ngini = 0.375\\nsamples = 4\\nvalue = [1, 3]'),\n", + " Text(0.11702127659574468, 0.71875, 'gini = 0.0\\nsamples = 3\\nvalue = [0, 3]'),\n", + " Text(0.13829787234042554, 0.71875, 'gini = 0.0\\nsamples = 1\\nvalue = [1, 0]'),\n", + " Text(0.3045212765957447, 0.84375, 'x[1] <= -0.638\\ngini = 0.426\\nsamples = 169\\nvalue = [117, 52]'),\n", + " Text(0.24468085106382978, 0.78125, 'x[6] <= 2.142\\ngini = 0.194\\nsamples = 55\\nvalue = [49, 6]'),\n", + " Text(0.23404255319148937, 0.71875, 'x[0] <= 2.867\\ngini = 0.168\\nsamples = 54\\nvalue = [49, 5]'),\n", + " Text(0.22340425531914893, 0.65625, 'x[1] <= -2.892\\ngini = 0.14\\nsamples = 53\\nvalue = [49, 4]'),\n", + " Text(0.2127659574468085, 0.59375, 'gini = 0.0\\nsamples = 1\\nvalue = [0, 1]'),\n", + " Text(0.23404255319148937, 0.59375, 'x[3] <= 0.625\\ngini = 0.109\\nsamples = 52\\nvalue = [49, 3]'),\n", + " Text(0.22340425531914893, 0.53125, 'gini = 0.0\\nsamples = 36\\nvalue = [36, 0]'),\n", + " Text(0.24468085106382978, 0.53125, 'x[3] <= 0.75\\ngini = 0.305\\nsamples = 16\\nvalue = [13, 3]'),\n", + " Text(0.23404255319148937, 0.46875, 'x[4] <= 0.249\\ngini = 0.375\\nsamples = 4\\nvalue = [1, 3]'),\n", + " Text(0.22340425531914893, 0.40625, 'gini = 0.0\\nsamples = 3\\nvalue = [0, 3]'),\n", + " Text(0.24468085106382978, 0.40625, 'gini = 0.0\\nsamples = 1\\nvalue = [1, 0]'),\n", + " Text(0.2553191489361702, 0.46875, 'gini = 0.0\\nsamples = 12\\nvalue = [12, 0]'),\n", + " Text(0.24468085106382978, 0.65625, 'gini = 0.0\\nsamples = 1\\nvalue = [0, 1]'),\n", + " Text(0.2553191489361702, 0.71875, 'gini = 0.0\\nsamples = 1\\nvalue = [0, 1]'),\n", + " Text(0.36436170212765956, 0.78125, 'x[5] <= -0.716\\ngini = 0.481\\nsamples = 114\\nvalue = [68, 46]'),\n", + " Text(0.3191489361702128, 0.71875, 'x[5] <= -2.817\\ngini = 0.091\\nsamples = 21\\nvalue = [20, 1]'),\n", + " Text(0.30851063829787234, 0.65625, 'gini = 0.0\\nsamples = 1\\nvalue = [0, 1]'),\n", + " Text(0.32978723404255317, 0.65625, 'gini = 0.0\\nsamples = 20\\nvalue = [20, 0]'),\n", + " Text(0.4095744680851064, 0.71875, 'x[6] <= 0.269\\ngini = 0.499\\nsamples = 93\\nvalue = [48, 45]'),\n", + " Text(0.35106382978723405, 0.65625, 'x[2] <= -0.109\\ngini = 0.475\\nsamples = 67\\nvalue = [41, 26]'),\n", + " Text(0.30851063829787234, 0.59375, 'x[2] <= -0.574\\ngini = 0.457\\nsamples = 17\\nvalue = [6, 11]'),\n", + " Text(0.2872340425531915, 0.53125, 'x[1] <= -0.106\\ngini = 0.278\\nsamples = 6\\nvalue = [5, 1]'),\n", + " Text(0.2765957446808511, 0.46875, 'gini = 0.0\\nsamples = 5\\nvalue = [5, 0]'),\n", + " Text(0.2978723404255319, 0.46875, 'gini = 0.0\\nsamples = 1\\nvalue = [0, 1]'),\n", + " Text(0.32978723404255317, 0.53125, 'x[6] <= -0.14\\ngini = 0.165\\nsamples = 11\\nvalue = [1, 10]'),\n", + " Text(0.3191489361702128, 0.46875, 'gini = 0.0\\nsamples = 10\\nvalue = [0, 10]'),\n", + " Text(0.3404255319148936, 0.46875, 'gini = 0.0\\nsamples = 1\\nvalue = [1, 0]'),\n", + " Text(0.39361702127659576, 0.59375, 'x[5] <= 1.41\\ngini = 0.42\\nsamples = 50\\nvalue = [35, 15]'),\n", + " Text(0.3829787234042553, 0.53125, 'x[5] <= 0.331\\ngini = 0.38\\nsamples = 47\\nvalue = [35, 12]'),\n", + " Text(0.3617021276595745, 0.46875, 'x[2] <= 1.029\\ngini = 0.471\\nsamples = 29\\nvalue = [18, 11]'),\n", + " Text(0.35106382978723405, 0.40625, 'x[7] <= 1.937\\ngini = 0.497\\nsamples = 24\\nvalue = [13, 11]'),\n", + " Text(0.3404255319148936, 0.34375, 'x[2] <= 0.305\\ngini = 0.495\\nsamples = 20\\nvalue = [9, 11]'),\n", + " Text(0.3191489361702128, 0.28125, 'x[5] <= -0.551\\ngini = 0.473\\nsamples = 13\\nvalue = [8, 5]'),\n", + " Text(0.30851063829787234, 0.21875, 'gini = 0.0\\nsamples = 2\\nvalue = [0, 2]'),\n", + " Text(0.32978723404255317, 0.21875, 'x[3] <= 0.468\\ngini = 0.397\\nsamples = 11\\nvalue = [8, 3]'),\n", + " Text(0.3191489361702128, 0.15625, 'x[1] <= -0.451\\ngini = 0.49\\nsamples = 7\\nvalue = [4, 3]'),\n", + " Text(0.30851063829787234, 0.09375, 'gini = 0.0\\nsamples = 3\\nvalue = [3, 0]'),\n", + " Text(0.32978723404255317, 0.09375, 'x[6] <= -0.652\\ngini = 0.375\\nsamples = 4\\nvalue = [1, 3]'),\n", + " Text(0.3191489361702128, 0.03125, 'gini = 0.0\\nsamples = 3\\nvalue = [0, 3]'),\n", + " Text(0.3404255319148936, 0.03125, 'gini = 0.0\\nsamples = 1\\nvalue = [1, 0]'),\n", + " Text(0.3404255319148936, 0.15625, 'gini = 0.0\\nsamples = 4\\nvalue = [4, 0]'),\n", + " Text(0.3617021276595745, 0.28125, 'x[6] <= -0.154\\ngini = 0.245\\nsamples = 7\\nvalue = [1, 6]'),\n", + " Text(0.35106382978723405, 0.21875, 'gini = 0.0\\nsamples = 6\\nvalue = [0, 6]'),\n", + " Text(0.3723404255319149, 0.21875, 'gini = 0.0\\nsamples = 1\\nvalue = [1, 0]'),\n", + " Text(0.3617021276595745, 0.34375, 'gini = 0.0\\nsamples = 4\\nvalue = [4, 0]'),\n", + " Text(0.3723404255319149, 0.40625, 'gini = 0.0\\nsamples = 5\\nvalue = [5, 0]'),\n", + " Text(0.40425531914893614, 0.46875, 'x[0] <= -0.845\\ngini = 0.105\\nsamples = 18\\nvalue = [17, 1]'),\n", + " Text(0.39361702127659576, 0.40625, 'x[5] <= 0.477\\ngini = 0.5\\nsamples = 2\\nvalue = [1, 1]'),\n", + " Text(0.3829787234042553, 0.34375, 'gini = 0.0\\nsamples = 1\\nvalue = [1, 0]'),\n", + " Text(0.40425531914893614, 0.34375, 'gini = 0.0\\nsamples = 1\\nvalue = [0, 1]'),\n", + " Text(0.4148936170212766, 0.40625, 'gini = 0.0\\nsamples = 16\\nvalue = [16, 0]'),\n", + " Text(0.40425531914893614, 0.53125, 'gini = 0.0\\nsamples = 3\\nvalue = [0, 3]'),\n", + " Text(0.46808510638297873, 0.65625, 'x[0] <= 0.788\\ngini = 0.393\\nsamples = 26\\nvalue = [7, 19]'),\n", + " Text(0.4574468085106383, 0.59375, 'x[3] <= 0.217\\ngini = 0.498\\nsamples = 15\\nvalue = [7, 8]'),\n", + " Text(0.43617021276595747, 0.53125, 'x[1] <= -0.466\\ngini = 0.278\\nsamples = 6\\nvalue = [5, 1]'),\n", + " Text(0.425531914893617, 0.46875, 'gini = 0.0\\nsamples = 1\\nvalue = [0, 1]'),\n", + " Text(0.44680851063829785, 0.46875, 'gini = 0.0\\nsamples = 5\\nvalue = [5, 0]'),\n", + " Text(0.4787234042553192, 0.53125, 'x[6] <= 2.788\\ngini = 0.346\\nsamples = 9\\nvalue = [2, 7]'),\n", + " Text(0.46808510638297873, 0.46875, 'x[4] <= 1.261\\ngini = 0.219\\nsamples = 8\\nvalue = [1, 7]'),\n", + " Text(0.4574468085106383, 0.40625, 'gini = 0.0\\nsamples = 7\\nvalue = [0, 7]'),\n", + " Text(0.4787234042553192, 0.40625, 'gini = 0.0\\nsamples = 1\\nvalue = [1, 0]'),\n", + " Text(0.48936170212765956, 0.46875, 'gini = 0.0\\nsamples = 1\\nvalue = [1, 0]'),\n", + " Text(0.4787234042553192, 0.59375, 'gini = 0.0\\nsamples = 11\\nvalue = [0, 11]'),\n", + " Text(0.7007978723404256, 0.90625, 'x[5] <= -0.259\\ngini = 0.462\\nsamples = 226\\nvalue = [82, 144]'),\n", + " Text(0.5585106382978723, 0.84375, 'x[7] <= 2.362\\ngini = 0.452\\nsamples = 55\\nvalue = [36, 19]'),\n", + " Text(0.5478723404255319, 0.78125, 'x[1] <= 0.958\\ngini = 0.482\\nsamples = 47\\nvalue = [28, 19]'),\n", + " Text(0.5212765957446809, 0.71875, 'x[2] <= -0.678\\ngini = 0.4\\nsamples = 29\\nvalue = [21, 8]'),\n", + " Text(0.5106382978723404, 0.65625, 'gini = 0.0\\nsamples = 2\\nvalue = [0, 2]'),\n", + " Text(0.5319148936170213, 0.65625, 'x[5] <= -0.488\\ngini = 0.346\\nsamples = 27\\nvalue = [21, 6]'),\n", + " Text(0.5106382978723404, 0.59375, 'x[7] <= 2.149\\ngini = 0.117\\nsamples = 16\\nvalue = [15, 1]'),\n", + " Text(0.5, 0.53125, 'gini = 0.0\\nsamples = 14\\nvalue = [14, 0]'),\n", + " Text(0.5212765957446809, 0.53125, 'x[6] <= -0.128\\ngini = 0.5\\nsamples = 2\\nvalue = [1, 1]'),\n", + " Text(0.5106382978723404, 0.46875, 'gini = 0.0\\nsamples = 1\\nvalue = [0, 1]'),\n", + " Text(0.5319148936170213, 0.46875, 'gini = 0.0\\nsamples = 1\\nvalue = [1, 0]'),\n", + " Text(0.5531914893617021, 0.59375, 'x[0] <= -0.102\\ngini = 0.496\\nsamples = 11\\nvalue = [6, 5]'),\n", + " Text(0.5425531914893617, 0.53125, 'gini = 0.0\\nsamples = 3\\nvalue = [0, 3]'),\n", + " Text(0.5638297872340425, 0.53125, 'x[7] <= 0.533\\ngini = 0.375\\nsamples = 8\\nvalue = [6, 2]'),\n", + " Text(0.5531914893617021, 0.46875, 'gini = 0.0\\nsamples = 5\\nvalue = [5, 0]'),\n", + " Text(0.574468085106383, 0.46875, 'x[5] <= -0.291\\ngini = 0.444\\nsamples = 3\\nvalue = [1, 2]'),\n", + " Text(0.5638297872340425, 0.40625, 'gini = 0.0\\nsamples = 2\\nvalue = [0, 2]'),\n", + " Text(0.5851063829787234, 0.40625, 'gini = 0.0\\nsamples = 1\\nvalue = [1, 0]'),\n", + " Text(0.574468085106383, 0.71875, 'x[7] <= -0.659\\ngini = 0.475\\nsamples = 18\\nvalue = [7, 11]'),\n", + " Text(0.5638297872340425, 0.65625, 'gini = 0.0\\nsamples = 3\\nvalue = [3, 0]'),\n", + " Text(0.5851063829787234, 0.65625, 'x[5] <= -0.621\\ngini = 0.391\\nsamples = 15\\nvalue = [4, 11]'),\n", + " Text(0.574468085106383, 0.59375, 'gini = 0.0\\nsamples = 9\\nvalue = [0, 9]'),\n", + " Text(0.5957446808510638, 0.59375, 'x[7] <= 0.277\\ngini = 0.444\\nsamples = 6\\nvalue = [4, 2]'),\n", + " Text(0.5851063829787234, 0.53125, 'gini = 0.0\\nsamples = 2\\nvalue = [0, 2]'),\n", + " Text(0.6063829787234043, 0.53125, 'gini = 0.0\\nsamples = 4\\nvalue = [4, 0]'),\n", + " Text(0.5691489361702128, 0.78125, 'gini = 0.0\\nsamples = 8\\nvalue = [8, 0]'),\n", + " Text(0.8430851063829787, 0.84375, 'x[1] <= 1.396\\ngini = 0.393\\nsamples = 171\\nvalue = [46, 125]'),\n", + " Text(0.723404255319149, 0.78125, 'x[7] <= -0.233\\ngini = 0.454\\nsamples = 115\\nvalue = [40, 75]'),\n", + " Text(0.6595744680851063, 0.71875, 'x[2] <= -0.419\\ngini = 0.5\\nsamples = 47\\nvalue = [24, 23]'),\n", + " Text(0.648936170212766, 0.65625, 'gini = 0.0\\nsamples = 10\\nvalue = [0, 10]'),\n", + " Text(0.6702127659574468, 0.65625, 'x[4] <= 1.5\\ngini = 0.456\\nsamples = 37\\nvalue = [24, 13]'),\n", + " Text(0.6595744680851063, 0.59375, 'x[5] <= 1.232\\ngini = 0.5\\nsamples = 26\\nvalue = [13, 13]'),\n", + " Text(0.6382978723404256, 0.53125, 'x[1] <= 1.052\\ngini = 0.465\\nsamples = 19\\nvalue = [12, 7]'),\n", + " Text(0.6276595744680851, 0.46875, 'x[5] <= 0.001\\ngini = 0.375\\nsamples = 16\\nvalue = [12, 4]'),\n", + " Text(0.6063829787234043, 0.40625, 'x[7] <= -0.488\\ngini = 0.444\\nsamples = 3\\nvalue = [1, 2]'),\n", + " Text(0.5957446808510638, 0.34375, 'gini = 0.0\\nsamples = 2\\nvalue = [0, 2]'),\n", + " Text(0.6170212765957447, 0.34375, 'gini = 0.0\\nsamples = 1\\nvalue = [1, 0]'),\n", + " Text(0.648936170212766, 0.40625, 'x[1] <= 0.332\\ngini = 0.26\\nsamples = 13\\nvalue = [11, 2]'),\n", + " Text(0.6382978723404256, 0.34375, 'x[7] <= -0.871\\ngini = 0.444\\nsamples = 6\\nvalue = [4, 2]'),\n", + " Text(0.6276595744680851, 0.28125, 'gini = 0.0\\nsamples = 1\\nvalue = [0, 1]'),\n", + " Text(0.648936170212766, 0.28125, 'x[5] <= 0.096\\ngini = 0.32\\nsamples = 5\\nvalue = [4, 1]'),\n", + " Text(0.6382978723404256, 0.21875, 'gini = 0.0\\nsamples = 1\\nvalue = [0, 1]'),\n", + " Text(0.6595744680851063, 0.21875, 'gini = 0.0\\nsamples = 4\\nvalue = [4, 0]'),\n", + " Text(0.6595744680851063, 0.34375, 'gini = 0.0\\nsamples = 7\\nvalue = [7, 0]'),\n", + " Text(0.648936170212766, 0.46875, 'gini = 0.0\\nsamples = 3\\nvalue = [0, 3]'),\n", + " Text(0.6808510638297872, 0.53125, 'x[3] <= 1.848\\ngini = 0.245\\nsamples = 7\\nvalue = [1, 6]'),\n", + " Text(0.6702127659574468, 0.46875, 'gini = 0.0\\nsamples = 6\\nvalue = [0, 6]'),\n", + " Text(0.6914893617021277, 0.46875, 'gini = 0.0\\nsamples = 1\\nvalue = [1, 0]'),\n", + " Text(0.6808510638297872, 0.59375, 'gini = 0.0\\nsamples = 11\\nvalue = [11, 0]'),\n", + " Text(0.7872340425531915, 0.71875, 'x[6] <= -0.128\\ngini = 0.36\\nsamples = 68\\nvalue = [16, 52]'),\n", + " Text(0.7340425531914894, 0.65625, 'x[1] <= 0.301\\ngini = 0.48\\nsamples = 30\\nvalue = [12, 18]'),\n", + " Text(0.723404255319149, 0.59375, 'gini = 0.0\\nsamples = 3\\nvalue = [3, 0]'),\n", + " Text(0.7446808510638298, 0.59375, 'x[5] <= 0.274\\ngini = 0.444\\nsamples = 27\\nvalue = [9, 18]'),\n", + " Text(0.723404255319149, 0.53125, 'x[2] <= 1.029\\ngini = 0.463\\nsamples = 11\\nvalue = [7, 4]'),\n", + " Text(0.7127659574468085, 0.46875, 'x[3] <= -0.818\\ngini = 0.346\\nsamples = 9\\nvalue = [7, 2]'),\n", + " Text(0.7021276595744681, 0.40625, 'x[5] <= 0.134\\ngini = 0.444\\nsamples = 3\\nvalue = [1, 2]'),\n", + " Text(0.6914893617021277, 0.34375, 'gini = 0.0\\nsamples = 2\\nvalue = [0, 2]'),\n", + " Text(0.7127659574468085, 0.34375, 'gini = 0.0\\nsamples = 1\\nvalue = [1, 0]'),\n", + " Text(0.723404255319149, 0.40625, 'gini = 0.0\\nsamples = 6\\nvalue = [6, 0]'),\n", + " Text(0.7340425531914894, 0.46875, 'gini = 0.0\\nsamples = 2\\nvalue = [0, 2]'),\n", + " Text(0.7659574468085106, 0.53125, 'x[6] <= -0.673\\ngini = 0.219\\nsamples = 16\\nvalue = [2, 14]'),\n", + " Text(0.7553191489361702, 0.46875, 'x[6] <= -0.697\\ngini = 0.375\\nsamples = 8\\nvalue = [2, 6]'),\n", + " Text(0.7446808510638298, 0.40625, 'x[7] <= 1.128\\ngini = 0.245\\nsamples = 7\\nvalue = [1, 6]'),\n", + " Text(0.7340425531914894, 0.34375, 'gini = 0.0\\nsamples = 5\\nvalue = [0, 5]'),\n", + " Text(0.7553191489361702, 0.34375, 'x[6] <= -0.91\\ngini = 0.5\\nsamples = 2\\nvalue = [1, 1]'),\n", + " Text(0.7446808510638298, 0.28125, 'gini = 0.0\\nsamples = 1\\nvalue = [0, 1]'),\n", + " Text(0.7659574468085106, 0.28125, 'gini = 0.0\\nsamples = 1\\nvalue = [1, 0]'),\n", + " Text(0.7659574468085106, 0.40625, 'gini = 0.0\\nsamples = 1\\nvalue = [1, 0]'),\n", + " Text(0.776595744680851, 0.46875, 'gini = 0.0\\nsamples = 8\\nvalue = [0, 8]'),\n", + " Text(0.8404255319148937, 0.65625, 'x[4] <= 2.203\\ngini = 0.188\\nsamples = 38\\nvalue = [4, 34]'),\n", + " Text(0.8191489361702128, 0.59375, 'x[1] <= 1.365\\ngini = 0.108\\nsamples = 35\\nvalue = [2, 33]'),\n", + " Text(0.8085106382978723, 0.53125, 'x[0] <= 2.57\\ngini = 0.057\\nsamples = 34\\nvalue = [1, 33]'),\n", + " Text(0.7978723404255319, 0.46875, 'gini = 0.0\\nsamples = 32\\nvalue = [0, 32]'),\n", + " Text(0.8191489361702128, 0.46875, 'x[7] <= 0.83\\ngini = 0.5\\nsamples = 2\\nvalue = [1, 1]'),\n", + " Text(0.8085106382978723, 0.40625, 'gini = 0.0\\nsamples = 1\\nvalue = [1, 0]'),\n", + " Text(0.8297872340425532, 0.40625, 'gini = 0.0\\nsamples = 1\\nvalue = [0, 1]'),\n", + " Text(0.8297872340425532, 0.53125, 'gini = 0.0\\nsamples = 1\\nvalue = [1, 0]'),\n", + " Text(0.8617021276595744, 0.59375, 'x[2] <= -0.264\\ngini = 0.444\\nsamples = 3\\nvalue = [2, 1]'),\n", + " Text(0.851063829787234, 0.53125, 'gini = 0.0\\nsamples = 1\\nvalue = [0, 1]'),\n", + " Text(0.8723404255319149, 0.53125, 'gini = 0.0\\nsamples = 2\\nvalue = [2, 0]'),\n", + " Text(0.9627659574468085, 0.78125, 'x[0] <= 1.679\\ngini = 0.191\\nsamples = 56\\nvalue = [6, 50]'),\n", + " Text(0.9521276595744681, 0.71875, 'x[4] <= 5.051\\ngini = 0.165\\nsamples = 55\\nvalue = [5, 50]'),\n", + " Text(0.925531914893617, 0.65625, 'x[7] <= 2.064\\ngini = 0.14\\nsamples = 53\\nvalue = [4, 49]'),\n", + " Text(0.9042553191489362, 0.59375, 'x[6] <= -0.499\\ngini = 0.081\\nsamples = 47\\nvalue = [2, 45]'),\n", + " Text(0.8936170212765957, 0.53125, 'x[6] <= -0.617\\ngini = 0.278\\nsamples = 12\\nvalue = [2, 10]'),\n", + " Text(0.8829787234042553, 0.46875, 'gini = 0.0\\nsamples = 9\\nvalue = [0, 9]'),\n", + " Text(0.9042553191489362, 0.46875, 'x[0] <= -0.548\\ngini = 0.444\\nsamples = 3\\nvalue = [2, 1]'),\n", + " Text(0.8936170212765957, 0.40625, 'gini = 0.0\\nsamples = 1\\nvalue = [0, 1]'),\n", + " Text(0.9148936170212766, 0.40625, 'gini = 0.0\\nsamples = 2\\nvalue = [2, 0]'),\n", + " Text(0.9148936170212766, 0.53125, 'gini = 0.0\\nsamples = 35\\nvalue = [0, 35]'),\n", + " Text(0.9468085106382979, 0.59375, 'x[1] <= 1.85\\ngini = 0.444\\nsamples = 6\\nvalue = [2, 4]'),\n", + " Text(0.9361702127659575, 0.53125, 'x[4] <= 1.76\\ngini = 0.444\\nsamples = 3\\nvalue = [2, 1]'),\n", + " Text(0.925531914893617, 0.46875, 'gini = 0.0\\nsamples = 2\\nvalue = [2, 0]'),\n", + " Text(0.9468085106382979, 0.46875, 'gini = 0.0\\nsamples = 1\\nvalue = [0, 1]'),\n", + " Text(0.9574468085106383, 0.53125, 'gini = 0.0\\nsamples = 3\\nvalue = [0, 3]'),\n", + " Text(0.9787234042553191, 0.65625, 'x[7] <= 1.001\\ngini = 0.5\\nsamples = 2\\nvalue = [1, 1]'),\n", + " Text(0.9680851063829787, 0.59375, 'gini = 0.0\\nsamples = 1\\nvalue = [1, 0]'),\n", + " Text(0.9893617021276596, 0.59375, 'gini = 0.0\\nsamples = 1\\nvalue = [0, 1]'),\n", + " Text(0.973404255319149, 0.71875, 'gini = 0.0\\nsamples = 1\\nvalue = [1, 0]')]" + ] + }, + "metadata": {}, + "execution_count": 34 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAGFCAYAAACCBut2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADCoklEQVR4nOydeVxU9ff/X7OwDTuCIuKCC7gCiopCaqllaZprZpJZmdmnNM09sz62abmXmWmauVYfXMt9iVRGRQHBhV1ZRLYBhn0GZub8/vA382WcgdnuzADe5+PBo7z3zjnn/X6f9/ue+145RERgYWFhYWFhearhWtsAFhYWFhYWFuvDBgQsLCwsLCwsbEDAwsLCwsLCwgYELCwsLCwsLGADAhYWFhYWFhawAQELCwsLCwsL2ICAhYWFhYWFBWxAwMLCwsLCwgI2IGBhYWFhYWEBGxCwsLCwsLCwgA0IWFhYWFhYWMAGBCwsLCwsLCxgAwIWFhYWFhYWsAEBCwsLCwsLC9iAgIWFhYWFhQVsQMDCwsLCwsICgG9tA1hYWP6P7OxsiEQig3/n6emJDh06mMEiFhaWpwU2IGBhaSJkZ2ejR48eqK6uNvi3AoEASUlJbFDAwsJiNGxAwMLSRBCJRKiursa+ffsgFovh5OQEgUAAAGjVqhVsbGxw69YtuLi4oKysDK6urujTpw+SkpIQEREBkUjEBgQsLCxGwwYELCxNjB49eiA4OBhbt25FdnY2pk6dCnt7e8jlcri4uEAkEsHT0xOtWrVCv379rG0uCwtLC4ENCFhYrAwRIScnB//++6/qGpfLxYcffmiQnHv37qFnz56wt7dn2kQWFpanAA4RkbWNYGF5Wqirq0NSUhJu3bql9ldaWqp6JjY2FpmZmfDy8kJJSQkkEgny8/MRGBiI4OBg8Pl8REVFwcPDAzweD7a2tggJCQEA8Hg8VQ9D/b9WrVpZK8ksLCzNBLaHgIXFTJSXlyMhIUHtxX/nzh3U1tYCALp06YK+ffti4cKFCA4OBo/Hw0svvYTDhw9DKpXCz88PNTU1CAkJgY+PDzIyMnD//n3k5eVh2LBhuH37NmxtbZGcnAwA+O233yCRSFS6Dh8+rJqg6Ovri+DgYPTt21cVJPj5+YHD4Vgtf1hYWJoWbA8BC4uJEBFyc3PVXvzx8fG4f/8+AMDW1hZ9+vRR+2IPDAyEi4uLmhxTVhk4ODggOTlZbVKhXC5Henq6Rm9Efn4+AMDFxQVBQUFqgULPnj1hZ2dnQm6wsLA0V9iAgIXFAGQyGVJSUlQvfeVLtri4GADg7u6u9hUeHByM7t27w8bGRi/5ltiHID8/X9VzoUxDamoqiAh8Ph89e/ZUsz8oKAgeHh4G28TCwtK8YAMCFpYGqKys1Ojyv337NqRSKQDAz89P9dJUBgG+vr7Nshu+qqoKt2/fVktrYmIiampqAAAdO3bUmJfQsWPHZplWFhYW7bABActTDxEhLy9Po2s9PT0dRAQbGxv06tVL7cUfGBgINzc3a5tuVmQyGdLS0jSGQoqKigAAbm5uGkFCjx49YGtra2XLWVhYjIENCFieKuRyOVJTU9mXnJE0FDylpaUBgFrwpAyggoKC4OrqamXLWVhYdMEGBCwtlvrd4Mqx8tu3b7Pd4GagoqICt2/fVptX0dDwivKvffv2bF6zsDQh2ICApUVQUFCgMdGvoYlyyq9Wd3d3a5vdotE1AdPDw0MjSDBkAiYLCwuzsAEBS7NC11I6Z2dnjfX27FK6poO2JZq3bt1CRkYGAMDOzg69evVSKz9tSzRZWFiYhw0IWJos1dXVuHPnjsbM96qqKgBA+/btVcvilC+QTp06gcvlWtlyFkMpKytDYmIi4uPjVSs7ntzE6clAz8fHhx1yYGFhEDYgYGkSFBUVqU3yu3XrFlJSUqBQKLRuxxsUFARPT09rm81iRurq6pCcnKw23HCr3jbPnp6eGkMOAQEB4PPZDVhZWIyBDQhYLIpCocD9+/c1GvlHjx4BAJycnFS75ym/CHv16sUe2MMC4P8OgnoyeMzMzAQA2Nvba90V0snJybqGs7A0A9iAgMVsSCQSjS7/hIQEVFZWAgB8fHw0uoE7d+7MdvmzGIxYLNbYROru3buoq6sDh8NB165dNXaQ9Pb2ZoccWFjqwQYELIxQXFysMVEsKSkJcrkcXC4X3bt31+jyb926tbXNZmnB1NbW4t69exp+WVZWBgBo3bq1xk6T3bp1A4/Hs7LlLCzWgQ0IWAyCiPDgwQONLtuHDx8CAAQCgVqXf3BwMHr37g2BQGBly1lYHvtvVlaWxpBVdnY2gMeHRCmPmVb+9enTB46Ojla2nIXF/LABAUuDSKVS3Lt3T63xTEhIQHl5OQDA29tb4wurS5cu7BcWS7OjpKRE48Cne/fuqXq4/P39NSYwtmnTxtpms7AwChsQsABQbxCVf/fu3YNMJgOHw1E1iMoXf1BQELy9va1tNguL2ZBIJFqHHCoqKgA8DoifnJfQtWtXdg4MS7OFDQiaCcYci/vkkbhEhNLSUpSXl2s0cllZWQDYLlMWlsZQKBRqQ2bKP+WQmaOjo6r+KIOFrl27ws7OTmPYzBJHXbOwGAIbEDQDsrOz0aNHD1RXVxv0O4FAgKSkJFXjMXjwYFy7dk1138vLS+MLx9/fn+3yZ2ExEJFIhISEBLXhteTkZMjlctUzd+/eRc+ePQEYX6cBzXrNwsIU7A4ezQCRSITq6mosXboUffv2BZ/Ph0KhQKtWrWBjY4Pc3Fw4Ozvj9u3baNu2rWpjloiICIhEIlXDMXToUGRnZ2Pr1q0YOHAgu+yKhYUhPD09MWLECIwYMUJ1raamBnfv3sW6deuQmJiotpGWsk7v27cPYrEYeXl5CA4OBhFp1Ot79+7Bw8MDjo6OkMvlGvWahYUp2B6CZkBcXBxCQkJw48YNtG/fHgqFAm3bttXrN7GxsejXr5+FLGVhYdGH+vUzODgYRUVFbL1msTpsD0Ezgsvl4uzZsygtLcWLL74Ie3t7yOVylJeXQyQSITc3F926dcPgwYOtbSoLC4ue6KrXNTU1aN26NQYOHGhtU1laOGxA0Iy4ePEiQkND4eLigvj4eOTn56smMHXu3BlCoRDZ2dmQSCRwdXW1trksLCxaICLcvXtX9e/Dhw+jU6dODdbrmJgYZGZmQi6Xq07trD83gYWFKdiAoIlTUlKCHTt2AADatm0LR0dH1Yz/bt26AQAePHgA4PEkQS8vLwBAUlISgMdn0rOwsFgXhUKB69evIzIyEocOHVKt6klKSkKPHj0AoMF67e7uDnd3d9XzADBq1Ci8+uqrmDRpEp599lnY2NhYND0sLRN2DkETJTc3Fxs3bsTPP/+Muro6yOVyg1/uXC4Xbdq0wdKlSzFr1ix26SALiwWRy+WIjo5GZGQkDh8+jNzcXLRp0wYTJ07EkCFDMGvWLKNWGTg4OGDGjBk4e/YsHjx4AA8PD4wfPx6TJk3CyJEjYWtra4bUsDwNsAFBEyM1NRXfffcd9uzZA4FAgA8++AAfffQRJBKJ1jXLRUVFql4BJUSEkpISAMCePXtw8OBBuLm5Yd68efjwww/h4eFhkbSwsDxtyGQyXLp0SRUEFBQUoF27dpg0aRImT56MsLAw1bLexvYhaKxeBwQEoEOHDiAi3Lp1C5GRkfjf//6HtLQ0uLq6Yty4cZg8eTJeeOEF9pRQFoNgA4ImQmxsLNasWYNDhw6hTZs2+Pjjj/Hee+/BxcXFZNmZmZlYt24ddu7cCR6Ph/feew8LFiyAr68vA5azsDzd1NXV4eLFi4iMjMTRo0chEonQsWNHTJ48GZMnT8bAgQPNvnshEeHOnTuqIYm7d+/CyckJL7/8MiZPnoyXXnqJPU+ERSdsQGBFiAj//PMP1qxZg3PnzqFLly5YsmQJZsyYYZbIvrCwEN9//z22bNmC6upqvPHGG1iyZAkCAgIY18XC0pKRSqU4d+4cDh06hGPHjqG0tBRdu3bF5MmTMWnSJISEhFh1j4+kpCQcOnQIkZGRSEhIgEAgwOjRozF58mSMHj0azs7OVrONpenCBgRWQKFQ4NixY1izZg1iYmIQHByMZcuWYfLkyRbZJbC8vBw///wzNmzYgIKCAkycOBHLli1D//79za6bhaW5UlNTgzNnziAyMhJ//fUXysvL0b17d1VPQGBgYJPc6Cs9PV0VHNy8eRN2dnZ48cUXMXnyZIwdO5ZdkcTyfxCLxZBKpbRr1y4KCAggADRs2DA6ffo0KRQKq9hTU1ND27dvp65duxIAGjlyJJ0/f95q9rCwNDUqKyvpzz//pFdffZUcHR0JAPXp04dWrVpFd+/etbZ5BvPgwQNat24dDR48mACQjY0NjRkzhnbt2kXFxcXWNo/FyrABgQWoqKigjRs3kq+vLwGgV155hYRCobXNUiGTyeiPP/6gvn37EgDq378/RUZGklwut7ZpLCwWp6ysjA4cOEATJ04kBwcHAkD9+vWjb775hlJSUqxtHmPk5OTQ5s2baciQIcThcIjP59MLL7xA27dvp8LCQmubx2IF2CEDM1JcXIwtW7bg+++/R1lZGaZPn44lS5agV69e1jZNK0SEs2fPYs2aNYiKikJAQACWLFmCiIgIdikTS4tGLBbj+PHjiIyMxJkzZ1BbW4vQ0FBMnjwZEydOROfOna1tolnJz8/HkSNHEBkZiaioKADAsGHDMHnyZEyYMEHnlsosLQM2IDADDx8+xIYNG7B9+3YoFArMmjULCxcuRMeOHa1tmt5cu3YNa9aswbFjx9CuXTssXLgQ7777LpycnKxtGgsLI4hEIhw7dgyHDh3C+fPnUVdXh/DwcFUQ8LQeHlRUVISjR48iMjISFy9ehFwuxzPPPINJkyZh4sSJaN++vbVNZDETbEDAIMnJyfjuu++wb98+ODo64sMPP8S8efM01hM3J+7du4dvv/0WBw4cgIuLC+bOnYu5c+eiVatW1jaNhcVgCgoKVC+7f/75B0SEoUOHqr6EfXx8rG1ik6KkpETVc3L27FnU1dVh0KBBqtUUnTp1sraJLAzCBgQMcOPGDaxZswZHjhxB27Zt8fHHH2P27NktamlPVlYWNmzYgB07doDD4WD27Nn4+OOP2a8FlibPo0ePcPjwYURGRuLy5cvgcDh47rnnMHnyZIwfPx5t2rSxtonNgrKyMvz11184dOgQTp06BalUipCQENUqi65du1rbRBYTYQMCIyEiXLhwAWvWrMGFCxfQrVs3LFmyBG+88YbqAJKWSFFREX744Qds2bIFlZWViIiIwJIlS9C9e3drm8bCoiI7O1u11E4oFMLGxgYjR47E5MmT8corr7A9XCZSUVGBkydPIjIyEidPnkR1dTWCgoJUPQfK8xlYmhdsQGAgcrkcR48exZo1a3Dz5k3069cPy5cvx4QJEyyyh0BToaKiAtu3b8eGDRuQl5eH8ePHY/ny5RgwYIC1TWN5Srl//74qCIiJiYGdnR1GjRqFSZMmYezYsaoDgliYpbq6GqdPn1btz1BZWYmePXuqeg569+7dJPdnYNGEDQj0JDU1Ff/88w82bNiA1NRUDB8+HMuWLcPIkSOfameXSqXYt28fvv32W6SlpWH48OGYM2cORo4cyTbALGYnJSVFFQTEx8fDwcEBL730EiZPnowxY8YwsvU3i/5IJBKcPXsWkZGROH78OMrKyuDv7686y6Fv375PdXvZ1GEDAj24efOm6st3woQJWLp0KUJDQ61sVdNCLpfjyJEjWL16NeLi4sDj8VBbW2v2PdxZni6ICPfu3UNkZCQiIyNx584dODo6qu3Zz57q2TSora3FhQsXVGc8lJSUwM/PT9VzMGDAADY4aGKwAYEe5OTkYMKECXjrrbfwwQcfWNucJg0RYebMmSgpKcFff/1lbXNYWghffPEFcnNzcenSJSQnJ8PFxQVjx47F5MmTMWrUKDg4OFjbRJZGqKurQ1RUFCIjI3HkyBEUFRWhffv28Pb2xuTJk7FkyRJrm8iCpyAgaOyI0cbw9PR8atchmwtjyoIth+aPqeV+/vx5PP/88+BwOHjzzTcxefJkjBw5skVP3m3JyGQyXLlyBZGRkfjxxx9ha2sLqVSq9gzbVliHFh0QZGdno0ePHqiurjb4twKBAElJSayDMYSxZcGWQ/OGiXJXKBTYtWsXhg4dCn9/fzNZymINHj58CD6fD29vb9U1tq2wHnxrG2BORCIRqqursW/fPojFYuTl5SE4OBhEhFatWsHGxgZpaWlwdHREYWEhbGxsMHDgQCQlJSEiIgIikYh1LoZQlsXSpUvRo0cP1dnsynLIzc2Fs7OzqjwcHR1BRGw5NHPql3vfvn3B5/OhUChU5X737l3w+Xzk5eXBy8tLa/3jcrmYNWuWtZPCYgZ8fX01rj3Zbjs5OWm0F2lpaVAoFMjPz4eTkxO8vLzYtoIBWnRAoKRHjx4IDg5GUVERFAqF2r7cQ4YMsaJlTx+TJ09G+/btNcpBG3FxcRayisXcNFTubP1jaQhD2m22rWCGpyIgAAAul4uzZ8+itLQUL774Iuzt7SGXy1FeXo7KykqIRCL4+voiJCTE2qa2aBorB5FIhOLiYrRv3x6DBw+2tqksDKKr3CsrK9G2bVsMHDjQ2qayNCH279+v8pm6ujqVz+Tn50Mmk8HZ2RlDhw61tpkthqcmIDh8+DA6deoEFxcXxMfHIz8/H4GBgQgODgafz0dMTAwqKysRHR3Nzlg2IxcvXkRoaKjWcujcuTMSExNRWFjIlkMLxNHREZ06dUJSUhIkEomq7Pv16wc+n49Lly7hxIkT7Ml6TznKaW36tBV8Ph+xsbHs8kWGeGoCgokTJzZ6f8SIEar/Z7ufzMfw4cPRr1+/Bu+Hh4er/p8th5aFrjo4ZswYAGy5P62UlJRg3759+OGHHwAY11Zs2rQJn3zyCbuVupE8FQHB4cOHcfDgQfj5+aGmpgYhISHg8XgoLCxESUkJgMfjVampqSgsLHyqtiC2NJs2bcKgQYPUyiEtLU2V5126dEFsbCzs7OxQUVFhZWtZmKKhOpifn4/y8nL4+PggLy8PFRUVqK2ttba5LBZCoVDgn3/+wS+//IIjR45ALpdj6NChSE9P19pWZGRkQC6Xq/yltrYWUqlU5TPHjh3D3r17ER4ejlmzZmHKlCnsRlUGwC47bAB2CQuz7NmzB2+//TbkcrlBv7O3t0dKSgpbDs0UdgkZizYePnyI3bt3Y9euXXjw4AG6d++Od955BzNmzIBEIjHaZ+Lj4xEfH49ffvkF58+fh7OzM6ZNm4ZZs2ahf//+7NCCDlp0QACob3BRXV2N0aNHY+zYsVi4cCEAoLCwEGPHjsXcuXMRERGh+h27yQUzKBQKfPnll1i1ahWeffZZfPbZZ3rtL19RUYHPP/8c//77L1asWIFVq1axPTfNlCc3mdm/fz+2bNmC8+fPY/jw4ViwYAFee+01td+w9a/lUVdXh7///hu//PILTp8+DXt7e0ydOhXvvPMOwsLC1F7WTGxM9ODBA/z666/YtWsXcnNzERgYiHfeeQcRERHw8PBgLF0tCnqK2Lx5M/F4PMrMzFS7/uabb1L79u2ptrbWSpa1TIqLi+mll14iDodDX3zxBcnlcoN+L5fLafXq1cTlcun555+noqIiM1nKYkkmTZpEQ4cOJSKisLAwmjp1qpUtYjEnycnJtHjxYmrdujUBoIEDB9LPP/9MZWVlFtEvk8noxIkTNHHiROLz+WRnZ0fTpk2j8+fPG9wmtXSemoCgrq6OOnXqRK+//rrGvdu3bxMA2rt3rxUsa5nExcVRp06dyMPDg06fPm2SrPPnz5OXlxe1b9+erl+/zpCFLNZAoVCQt7c3LVu2jIiIFi1aRL6+vla2ioVpKisraffu3fTMM88QAPLw8KB58+ZRQkKCVe3Kz8+ntWvXUkBAAAEgPz8/+vLLLyknJ8eqdjUVnpqA4ODBgwSA4uLitN5/6aWXKDAwkBQKhYUta3ns2rWL7OzsKCQkhB48eMCIzJycHAoNDSVbW1v66aef2HJqpty/f58A0F9//UVEREeOHCEAlJ2dbWXLWExFoVDQjRs36L333iNnZ2cCQCNGjKCDBw9STU2Ntc1TQ6FQ0OXLl2nmzJnk4OBAXC6XxowZQ4cPH36qe4qfioBAoVBQv379aMSIEQ0+c+HCBQJAZ86csaBlLYuamhp69913CQC9++67jDcCEomE/vOf/xAAevPNN6mqqopR+SzmZ9++fQRANfyTn59PAOjgwYNWtozFWIqLi+n777+nwMBAAkDt2rWjTz/9lDIyMqxtml6IxWLatm0bDRgwgABQ69atafHixZSSkmJt0yzOUxEQKF/2jXVdK4OGkSNHWtCylkNmZiaFhISQnZ0d7dq1y6y69u7dSw4ODhQUFETp6elm1cXCLO+//z51795d7VqXLl1o7ty5VrKIxRjkcjlduHCBpk2bRnZ2dsTn82nChAl04sQJkslk1jbPaG7dukVz584ld3d3AkBDhgyh33777an5+HgqAoIXX3xRr+EAXcMKLNo5ffo0eXh4UKdOnSg2NtYiOhMSEqhr167k6uqq6n5mafoEBQXR22+/rXZtxowZFBISYiWLWAzh4cOH9NVXX5Gfnx8BoICAAPruu+8oPz/f2qYxSk1NDR04cIBGjBhBAMjFxYXmzJlDN27caNHDlS0+IEhMTCQAtGfPHp3PNjbxkEUTuVxOX3zxBXE4HBo9ejQVFxdbVH9paSm98sorBIBWrFjRrL9MngbKysqIy+XSzp071a5v27aNeDweVVRUWMkylsaora2lI0eO0JgxY4jL5ZKDgwO9+eabdPny5Rb9clSSkZFBK1asIB8fHwJAQUFB9MMPP1BJSYm1TWOcFh8QzJgxg3x9ffWeKNLQ0kQWdUpKSmjMmDHE4XBo1apVVlu+I5fL6ZtvvmGXJjYDjh07RgAoKSlJ7bpylc/FixetZBmLNlJSUmjJkiXUpk0bAkADBgygbdu2kVgstrZpVqGuro7+/vtvmjBhgmr54uuvv04XL15sMcsXW3RAsHfvXgJAH3/8sd6/qaioIB6PR46Ojma0rHkTFxdHfn5+5OHhQadOnbK2OUT0eGmip6cndejQgWJiYqxtDosWlC+WJ18ocrmcXF1d6csvv7SSZSxKqqqq6LfffqMhQ4YQAHJ3d6e5c+fSrVu3rG1akyIvL4++/fZb8vf3JwDUuXNn+vrrryk3N9fapplEiw4IVq1aRQAoOjraoN917tyZXFxczGRV80UqldLo0aMZX1LIFNnZ2RQaGko2NjY0atQoqq6utrZJLPVYtGgRjRgxQms3s7+/Pzk7Oz8VXdBNDYVCQTdv3qQ5c+aQi4uLarnggQMHmtxywaaGQqGgS5cu0Ztvvqlavvjyyy/T0aNHm+XyxRYdECgUCqqrqzPqt8b+riWzbt06AkDdu3dvsg2FRCKhvn37EgBatWqVtc1h0ZPOnTsTALbeWZCSkhL64YcfKDg4mACQj48PrVixotksF2xqiMVi+umnn6h///4EgLy9vWnp0qWUmppqbdP0psWfZcDCHOXl5di9ezdmzZoFgUBgbXMaRCKRYMeOHZg+fTq7Z3kzQSKRICkpCX379rW2KS2ampoaXLt2DTt37kRkZCTkcjnGjh2Ld955B6NGjQKf/1QcgGt2EhISsHPnTuzduxdisRhDhw7FrFmzMGnSpCbddrIBAQsLC8tTwIYNG1SHuvn7+6tOF/T29rayZS2XmpoaHDlyBDt37sTFixdhZ2cHuVyO/Px8tGrVytrmadBsw0EmTsMyVW5zPpHN0Px7mtIKNO/0WhM2r82HqXnL5XLh6OiIzZs34+2332aPArYADg4OeP311/H6668jIyMDEydORGJiIpKSkvDMM8+onmsq7XGz7CEw1xnrhsptrme2G5N/T1NageabXmtibF7b29sjMjISbdu2bfCZpz1oYP245dKU2uNm2UMgEolQXV2Nffv2oUePHnr9JikpCRERERCJRA1moiFy9ZHXVDE0/56mtALNO73WxJC8zsvLw5QpU1BTUwOJRIKXX3650eef9hcb68ctl6bUHjfLgEBJjx49IBKJ4OHhAYlEAnd3d3h7e8PW1haJiYkgIjx69AiOjo56VyIAEIvFqK6uBp/Ph7Ozs0rmlStX4OzsjKysLJSWlpoxZZahoXTGxMSAz+dDJpMBgEF511QRi8WIjY1FeHg4iEiV1vv378Pd3R15eXng8/lwcHBoEem1JmKxGHV1dXBycgIAtfrj7u6OjIwM5OTkoKamBvv27cP9+/dRXl6OsLAw2NraQqFQoKqqCkVFRQgPD2dfbPUQi8Xg8/mwsbGBQqFQ82M3NzfcuXMHTk5OcHZ2Zv24mSEWi6FQKBp8l9na2qKoqMis5co1m2QLMXLkSFy7dg3//PMPbGxsUFVVBZFIBCcnJ3A4HLi6umLMmDEGySwuLsa///4LmUwGZ2dnlJeX4/79++ByubCxsUGXLl0QFhZmphRZjtDQUNy6dQvnzp1TyztPT0/w+XxIpVI4Ojpa20xGCA0NhVQqxaFDh9TSCgBpaWnIzMwEAPTs2dOKVrYMQkNDcePGDRw+fFgtr318fFBVVQW5XA4fHx8Aj3sKnn32WTzzzDOora1Feno6nJycMGrUKMycORPp6ensi60eoaGhuHTpEiIjIzX8OD09HQBgZ2eHfv36WdNMFiMIDQ1t9F2Wl5dn9gmgzbqH4OLFi6iqqkL79u3h5eWFU6dOITAwEMHBwfD09ERMTAycnJxw7do12Nra6i1XIBAgNDQUxcXFyM3NRX5+PgIDAzFw4EDw+XzExMQYJK+pEhUVhdDQUJSUlCA+Pl6VzuDgYPD5fFy6dAnFxcWNju02FxpLa+fOnZGYmAiJRGKwr7BooiuvY2JikJubCwAYPnx4oy+vV199FXFxcZYyvcmjjx/L5XLWj5sh+rTHeXl5qmDaHDTrgEBXYzJixAjV/xvSqOgjtyU0UrrSqexZeRrSGh4ervr/lpBea2JI/Tl8+DAOHjwIPz8/1NTUICQkBDweD+np6XB0dERtbS1SU1MtZXqTh/XjlktTaI+bdUCwadMmDBo0SK0hKSwsRElJCQoKCjBs2DCkpaWhoqICtbW1esttqJFKS0tDly5dkJWVhfv375sxZZahoXRmZGQAALy8vJCWlmZQ3jVVtPlKbm4uUlJSMHDgQGRnZ6Ompgbt27eHRCKxtrnNmobqZVJSEkJCQpCXl4fs7GzY29vj66+/1kumQCCAp6enmS1vuigXgzVWZ5VDMUVFRSgtLW0R9fZpoqGyzc3NhYuLC3JyciCVSs3aPrHLDk2Q21xnPjelZS7mhl2uZTnYZYfmQSwWIyIiAqdOnYJCoTDot/b29khJSXlq86450JTa42YZEACaGzkkJCTg7bffxr59+/DZZ58hODgYK1asUPuNoRsT5eXl4eWXX8aGDRvw559/gs/nY/PmzQbJa6rUT2dpaSlGjhyJr7/+GufPn0d5eTm2b9+u9nxzTWtpaSmeeeYZ5OXlYceOHfDz89P6nEwmw4oVKxAVFYUNGzbglVdeaZbptTZKv1qzZg1OnjyJY8eOwd3dXXV/9erVOH36NI4ePaq63lx9yxIIhUK8/vrrEIvFWL16NUJDQ/X6XUVFBVavXo0zZ87grbfewg8//NBiJgi3ROq3x0SE559/HhMmTACHw8GhQ4dw/vx5tY2kzFZnrHB+gln47rvvSCAQUF1dHb377rvUu3dvk2UeOHCAAFBhYSH997//JQ8PjxZz7nV9jh49SgAoMzOT1q5dSwKBoFme1PUkZWVlNGDAAGrVqhXdvn1b5/O1tbX0yiuvkJ2dHZ0/f94CFrZMbt++TVwul9atW6dxr7CwkFxdXen999+3gmXNB5lMRl999RXxeDwKCwujzMxMg2UoFAratWsXCQQCCggIoPj4eOYNZWGc9PR0AkAnTpygkydPEgCLHZDUYgKC8ePH03PPPUdERL/++itxOBwqLS01SeYHH3xA/v7+RER07tw5AkD37t0z1dQmx5IlS6hdu3akUCgoOjqaANCNGzesbZZJVFRUUHh4OLm5uVFcXJzev5NIJPTSSy+Rg4MD/fvvv2a0sGWiUCjo+eefp65du5JUKtX6zPr164nL5eoVpD2N5Obm0nPPPUccDodWrFhh8gmQSUlJFBQURLa2trR582b2iOkmzm+//UYAqLi4mEpLS4nD4dCvv/5qEd0tIiBQKBTk5eVFn376KRERpaamEgA6deqUSXL79u1Lb731FhERlZeXE5fLpV9++cVke5sa4eHhNGXKFCJ6/EJUNhzNlaqqKnr22WfJ2dmZrl+/bvDvq6uraeTIkeTk5ERCodAMFrZc/vrrLwJAx44da/AZqVRK3bp1o5EjR7Ivpyf4+++/ydPTk9q2bUsXLlxgTG5NTQ3NmzePANDYsWOpqKiIMdkszPLee+9Rz549Vf/u3bs3vfvuuxbR3SICgrS0NFUXC5FmgGAMygBgx44dqmvBwcGqAKGlIJFIyM7OjjZu3Ki6FhYWRq+++qr1jDKBmpoaev7558nR0ZGuXLlitJzKykoaOnQoubi4NPveEkshlUrJ39+fhg8frvNFf/z4cQJAf/31l4Wsa9pIJBKaP38+AaCXX37ZbC/s48ePU6tWrcjHx4f++ecfs+hgMY3evXvTrFmzVP+ePXu2WoBgTlpEQLB7924CQCUlJaprr7zyimoIwRjOnz9PAOju3buqa/WHEFoKQqGQAFBMTIzq2uLFi6ldu3ZWtMo4pFIpjRkzhuzt7Rlp7MrLy2nw4MHk7u7Ojr/qwcaNG4nL5VJCQoLOZxUKBY0cOZL8/f0bHFp4WkhJSaG+ffuSra0tbdq0yey9Jg8fPqRhw4YRh8OhlStXmjwkwcIc2oYIlEMI9d9v5qJFBASzZ8+mXr16qV379ttvydHR0WhnX7VqFbm7u6tNIty/fz8BaFHdbevWrSMHBwe1SYRHjhwhAJSVlWVFywyjtraWJkyYQLa2tnTmzBnG5IrFYurfvz95enqyY96NUFRURG5ubvTee+/p/ZvExETicrlqvVNPEwqFgnbv3k2Ojo7k7+9v0FwXU5HJZPTFF18Ql8ul8PDwZlXXWzKnTp0iAJSSkqK69mQPuDlpEQGBtjGWK1euEACKjY01SuaoUaNo9OjRatcePHhAAOj48eNG29rUmDhxIg0bNkztWkFBAQGggwcPWscoA6mrq6OpU6eSjY2NWbqgi4uLKSgoiNq0aUPJycmMy28JfPDBB+Ti4kIFBQUG/W7OnDnk5ubWooJsfSgvL6fp06cTAJo5cyZVVFRYxY4rV65Qhw4dyM3NjQ4dOmQVG1j+j5UrV5Knp6daL5FyCHzFihVm19/sA4KSkhICQLt371a7XlNTQ7a2tvTDDz8YLFMmk5GLiwt9/fXXatcVCgX5+PjQ0qVLTbK5qaBQKKh169b0ySefaNzr2rUrzZ071wpWGYZcLqc33niDeDweHT582Gx6CgsLqWfPnuTj40Pp6elm09McuXPnDvF4PK3LDHWhXIb4n//8xwyWNU1u3LhBXbp0IWdnZ9q/f7+1zaGSkhKaOHEiAaA5c+ZQdXW1tU16ann22Wdp3LhxGtfrr6IzJ83+tMN58+YBgNrmJ8DjHbpCQkIQHR1tsMy7d++qjmOtD4fDQVhYmFEymyLbt29HYWGh1t3PwsPDm3w6FQoF3nvvPezfvx/79+/HhAkTzKbLy8sLFy5cgJOTE4YPH46srCyz6WpOVFRU4Nlnn4Wvry/mzp1r8O+9vLywcuVKbN26VW3Tr5aIQqHA+vXrERYWBg8PD8THx+P111+3tllwd3dHZGQktm3bht27d2PAgAG4e/eutc166khOTkZUVBQKCws17oWFheH69euoq6szrxFmDznMzI8//kitW7fWuufA9OnTyc7OjsRisUEyp0+fThwOh8rLyzXuffLJJ8ThcCgjI8NYk5sMly5dIjc3N7p165bGvW+++YYAUGJiohUs041CoSA+n08AaM+ePRbT+/DhQ/L19SUAdPr0aYvpbaooN+/S9lWjL3l5eQSgWU5k1Zdz587RiBEjCAAtXry4yU6kvH37NvXq1Yvs7e1p+fLlVFZWZm2TnhpKSkrI3d2d9u7dq3Hv7NmzBIB27txpVhuafUDQGOPGjTNqk53WrVsTAK279X3yyScEoEXuR1Cf9evXEwBau3attU3RilQqJT6fz8iOlIbyxx9/EACtQy1PG7W1tfTLL7+YPFNdKBQatWdEcyA3N5cAEIfDaRZBZFVVFUVERBAACg4OtrY5LEQUFxdHAGjMmDFm1dNszzLQh7q6Ohw4cABvvvmmQb9LSEhAZWWl2lGiSogIv/32G9544w3weDymTG1yEBH27NmD119/HTY2NtY2h4Wl2VJTU4OpU6dixowZmDx5srXN0Yu6ujq899576NOnDxYsWGBtc1gAHDp0CMOGDTPrqZ8tOiBgYWFhYWFh0Q++tQ3QhydPNtQH9gS1/8OQ/LNmvhlaztYu45bul5Ysj+bgoy29vHXR3OpnU6Up52OTDwjMeca6VCqFnZ2dXvL0fbapVQJD80+ffFPCZFqb0png+mCsX1rTZkOwZHkYqssaedjSy1sXza1+NlWMyUd922Qm2uMmHxCIRCJUV1dj37596NGjh87n8/LyMGnSJEgkErz88suNPsvj8SCXy/WyQ99nm1olMCT/Ll++jI8//lhnvilhMq2GlnNSUhIiIiIgEomskteG2gtY32ZDsGR5GKLLWnnY0stbF82tfjZVDMlHQ95lADPtcZMPCJSIxWLExsYiPDwcRARvb2/Y2tri/v37cHd3R05ODuRyOSQSCaRSKfbt24f79++r9hOwtbWFQqFAVVUVioqKUFZWhpUrV+p8Ljw8HCdPntTrWQ8PjyZbCcRiMRQKBSQSCdzd3VX5FxMTA6lUipKSEtUz+uSJuSp8Q+WcmZkJDw8PXLlyBd7e3rC3t2dMpyn06NEDIpEIAoEAfD4fzs7OKpuvXLkCd3d3FBYWgsfj6f0iaUqIxWJUV1fDw8NDa71LSEiAt7c3OByOybr4fD4cHBygUCg09Pzzzz/o0qWL1Sfy6sqPpKQk2Nvbw83NrVmWty6U6X/S15Xpf/DgAezt7Rnxh5aMWCyGTCaDQCAAh8NR5eOlS5fg6uqKjIwMyOVyvd5lTLbHzSYgCA0NxbVr13Do0CFMnToVVVVVKC8vBwDk5OSguLgY3t7e8PPzA/A4unr22WdRUlICiUSC7OxsBAYG4plnngGfz8e6dev0ek4oFOot83//+591MkcPiouLcebMGQwbNgzOzs4oLy9HeXk57O3t8ejRI/j6+qoqsa50JiYmmq2xKy4uBo/HQ0lJCTp06KCy89GjR7h//z66du2KkJAQxMXFmUW/MeTl5eHhw4caeWtra4uCggJ4enoiPDy8SdmsL6GhoWjfvj3+/PNPEBFefPFF2Nvbw8XFBaWlpRAIBBgwYAAjL+q4uDikpqZq1O+0tDR0794dRAR/f3+T9ZiCrvyQyWQYNmwYADTL8taFsh0uLS3VKKekpCTU1dVh2LBh7MokHRQXF+PcuXMYNmyYWjvn5uaG9PR0BAQEwNbWFoBl2+NmExBERUUhNDQUJSUliI+PR35+PgIDAxEcHAw+n4+YmBjU1dUhKSkJADB8+HD069evQXnKhkXXc6NGjcL+/fv1ejY4ONiIlFkGgUCA0NBQFBcXIzc3Vy3/AgMDcenSJb3zzpwvt4bsHDRokKqco6Oj4eDgYBb9xuDs7IyhQ4dq2NyvXz/w+XxcunQJZ86cgZeXl7VNNRhlvevQoQMkEglOnTql8htPT0+IRCKcPHkS3t7eJuvy8vJCaGgokpKSIJFINPIxMTERZ8+eZSBVxsPlchEdHY3g4GCtbVHnzp1x4cIFODs7g89vNs2r3jTWDnfu3BlRUVH4888/0bVrV2ub2qTRpz1OT08HYNn2uNl4rK5MGTFiBACoXhSbNm3CoEGDUFNTg5CQEPB4PBQUFMDBwQEikQixsbEAgMOHD+PgwYPw8/PT+mxxcbFqC19tMtPS0tClSxfk5OQgNTXVzLlgPLryb8yYMRCLxQB0551AIEBtba1V7FSWc1P6+po4cWKj98eMGQOgadmsL5YsD30aPgcHByxfvtxkXaagq7yboo8yha4yGjt2LICWmXYm0ac9VuahrveOVCplbAi12QQE2jKlsLAQJSUlKCgowLBhw5CWlob8/HzY2dlh79692Lt3b6MyeTwevv76a73083g8vWQKBAKzbhxhLNryLyMjA8DjL7P09HQUFBSAy+XqlU7APGltrJx9fX2Rl5cHV1dXSCQSRvUaS0MBZUZGBpKTkzFs2DBkZ2dDIpGYLYgyJw2lT1km/v7+uHr1KiNDBtrKPiUlBe3atUNhYSHkcjmKi4sZSJXx6MqPHj164M6dO5DJZKipqbGqreagoZeTXC6Hr68vUlNTYWdnh4qKCmub2qRpqD1u3bq16iVva2ur97sMYKY9bvIbE2VnZ8Pf3x9SqdSg37HLDh/DLjs0D0lJSQgKCjL4sBEHBwckJyc3KR/RBrvsUJ2nfdlhfHw8Bg4cCJlMpvdvWkramYRddmgCCoUCP/30E6RSKaZOnYqFCxc2+iVSVVWFpUuXIiYmBl9//bWqq/ZppkOHDkhKSlJthHHu3DksW7YMf//9NyZNmoT//Oc/iIiIUD1vrYDmSTvz8vLw8ssvY8OGDdi9ezfatGmDNWvWqP3GWramp6djypQpsLGxwTfffIPhw4fr9ZuFCxeivLwc9+7da/KN5JPlAQDjxo3D0KFDIRAIcOjQIZw/f15tNrmx5fGkrp07d2LPnj3Yt28fxo8fj40bN2Lo0KEm6zEFbflx7do1fPDBB4iMjMSsWbMwefJkvP/++2q/a2ofCMaQlpaGKVOmwNXVFZs2bULPnj0bfT46OhpLly5Fly5d9P7gelpQ+lFaWhrGjx+PF198UW0I7MGDB5g6dSref/99vPXWWwAs7ENmPSnBBCQSCU2bNo0A0Pr160mhUOj1u9raWpo1axYBoFWrVun9u6eFjz76iPz8/IiIaNiwYTRx4kQrW6Qd5Sl6hYWFtHjxYvL19bW2SUREdOLECXJ1dSV/f3+6e/euQb8tKSmh0aNHE4fDoW+++aZZ+abyRMI///yTTp48SQAoLS3NLLpeeuklevHFF0mhUJC3tzctW7bMLHpM5b///S95eHiQXC6nV155hYYPH25tkxhHKBRSq1atKCAggO7fv6/37+Li4sjb25s6depESUlJZrSwefL++++Tq6srFRYWatz76KOPyMnJifLy8ixuV5MMCEpKSmjYsGFkZ2dHf/75p8G/VygU9NVXXxEAeuutt7SeWvi0MmDAAIqIiCAiouXLl5O3t3eTfDF98MEH5O/vT0RER44cIQCUlZVlNXvkcjl9+eWXxOFwaOzYsQYfqV1fzsqVKwkATZo0SesR202RQ4cOEQB6+PAhlZaWEgDavXs343rkcjm5ubnRF198QUREkyZNoqFDhzKuhwmef/55evnll4mI6NtvvyVHR0eTT31sSkRGRpK9vT0988wzVFxcbPDvMzMzqWfPnuTu7k6XLl0yg4XNk9u3bxOXy6UNGzZovV9SUkIeHh70zjvvWNiyJhgQPHjwgHr06EEeHh505coVk2Tt2bOHbGxs6Pnnn2fP9abHx5ry+XzaunUrERH9/fffBMCgyN9S9O3bl2bOnElERAUFBQSADh48aBVbysrKaPz48apeJ7lcbrLMI0eOkLOzM/Xs2ZNSUlIYsNK8fPzxx9SxY0fVv3v16kWzZ89mXM/du3cJAF24cIGIHh/DbW9vT1KplHFdpiCTycjZ2Zm++eYbIiK6cuUKAaDY2FgrW8YMGzduJA6HQ1OnTqWamhqj5ZSWltKzzz5Ltra29PvvvzNoYfNEoVDQyJEjqVu3bo369JYtW4jD4VBcXJwFrWtiAcHNmzfJ29ubOnfuzFgjeeHCBXJxcaGgoCB6+PAhIzKbK1FRUQSAbt26RURExcXFBID27t1rZcvUKS8vJy6XS9u3b1dd69q1K3344YcWtyU5OZm6d+9OLi4udPz4cUZl37t3jwICAsjFxYX++usvRmUzzaBBg2jatGmqf8+ePZt69erFuJ7t27cTj8ejiooKIiK6du0aAaBr164xrssUEhISCAD9+++/RERUU1NDtra29P3331vZMtOQyWQ0f/58AkBLlixhJPiVSCQ0ffp0AkDfffddk+yRtBR//fUXAdDZltTV1VHPnj1p2LBhFs2vJhMQnDhxghwdHWngwIFUUFDAqOzbt29T+/btydfXlxITExmV3Zz4+uuvycXFhWQymepajx49aM6cOVa0SpPz588TALpz547q2ptvvkl9+/a1qB1Hjx4lZ2dn6tGjh9m+4svKyuiVV15htPeBaaqrq8nGxoZ++OEH1bXdu3cTACotLWVU18yZM9XKWSqVkr29fYPdq9Zi69atxOfzqaqqSnVt0KBB9Nprr1nRKtOorq6miRMnEpfLpR9//JFR2QqFgj755BMCQB988IFaG/S0IJVKyd/fn55//nm9XvJnzpwhAHTo0CELWPeYJhEQ/Pzzz8Tj8eiVV15Rq2BMkpubS8HBweTi4kLnz583i46mzpgxY+iFF15Qu/bOO+9QYGCglSzSzqpVq8jNzU3t5aj0EeWXozmpP84/ceJEs4/zy+Vy+uKLL4jD4dC4ceOMnp9gLi5fvkwA1Lov09LSCACdPHmSUV3dunXT6AkaMmQITZ48mVE9phIREUEDBgxQu7Zw4ULq0KGDlSwyjcLCQho8eDAJBALGe8Lqo6zH48aNo8rKSrPpaYps2LCBuFwu3b59W+/fjBkzhvz8/EwatjEEqwYEcrmcli9fbrGosby8nEaNGkV8Pp9+++03s+pqasjlcnJ3d6dVq1apXd+1axdxOJwmNcdi1KhRNHr0aLVrd+7cURtbNhelpaU0ZswYq6wE+Pvvv8nV1ZUCAgLo3r17FtOrizVr1mhMmFMoFOTl5UWffvopY3oKCwu1zhVZunQptW3btkl1Nfv5+dH8+fPVrh0+fJgAUE5OjpWsMo60tDTq2rUrtW7dmmJiYsyuT9kbPGDAAMrPzze7vqZAUVERubq60vvvv2/Q75KSkojP59OaNWvMZJk6VgsIJBIJvf766wSA1q1bZ7HKXltbS++88w4BoC+//LJJNTLm5N69ewSAzp07p3Y9OTmZANCZM2esZJk6crmcXFxc6KuvvtK47ubmRl9++aXZdN+5c4e6detGbm5udOrUKbPpaYzU1FTq2bMnOTk50ZEjR6xiw5OMGzeORowYoXF9/Pjx9NxzzzGm5+jRo1pXkxw/fpwA0IMHDxjTZQqPHj0iAPS///1P7Xp+fj4BoD/++MNKlhnO1atXydPTkwICAigjI8NiemNjY8nb25v8/PwoOTnZYnqtxX/+858Glxnq4qOPPiJnZ2eLLEO0SkCgnHlq7LJCU1EoFPTll18SAJo1a9ZTsSxx8ODBWlcUKBQKatWqFX322WdWskydxMREAkD//POPxj3l+nRz8L///Y8cHR2pT58+lJ6ebhYd+lJeXk6TJk0iAPTpp59adbxVoVCQp6cnrVy5UuPeSy+9RAAM3o+hIRYvXkzt2rXTCNJv375NAOj5559nRI+pREZGEgDKzc1Vu65QKAgAOTg4WMkywzh8+LBqWaFIJLK4/szMTMZWlDVldu7cSRwOh9avX2/U74uLi8nNzY2CgoLM3hZYPCDYtWsXtWvXjjw8POjy5cuWVq/Gb7/9Rnw+n/z9/ZvcLGammTFjBrm7u2sdi3rmmWeoU6dOTaK3ZM6cOcThcLSOLy5ZsoRsbW2NirIb4tGjR6oZ0K+++mqTGddUKBS0evVq4nA4NGzYMKut41ZuQnTs2DGNez/++CPZ2Ngw8uUuk8nIx8dH60u/srKSXFxcmszk1+HDh5OXl5fWe7169aJ+/fpZ2CLDqKmpoWeffVbl85Yan9aGcs8ZW1tbmjhxYpNog5jG1dWVAJg0NygoKIgA0MWLFxm0TBOLBwS2trYEoMmMke7bt48AULdu3axtitVo166dWWaMG4OTkxMB0LrBy7vvvksAGJ3/0a1bNwJAK1asaJKN0enTpwkAWWtT0QkTJlhkSEm5E2LXrl3NqocJrFkeTLBu3ToCQH379m0Sq1okEgl5eHgQgBY54fvAgQN09OhRk2SIxWJaunSp2ffjsPhZBr///jvatm2LHj16WFq1VqZPnw5nZ+cmeUKhpYiOjsaBAwfg5uZmbVPw559/orq6WutZ8lu2bEGrVq0wbdo0xvQtWLAAOTk5+PLLL9X25W8qjBo1Cr/99pvVjpPduHEjBgwYgBdeeMGsery9vfHll1/inXfeMaseJvj111/RtWtXa5thNLNmzYKdnR3eeecdcLlca5sDOzs7pKenY+/evWpnVrQUmGivXF1dNc5yMQdN/rRDFhYWFhYWFvNjUg9Bdna22ulfumjqJ38Zmh6gaaWppZWHITT3sjMEa5azJXU3F39uTuXBtH5z0FzKHTDMVkvVBVP0GB0QNLfz63XR3M87b+rnbD+Jvg6el5cHAI3amJeXhylTpqCmpsYgG5pK2RmCueqdPuVhTD5r021JXcZiiH9ay87m3mZpozm9Vwy11Vg7LaUHMCEgEIlEqK6uxr59+/SaD5CUlISIiAiIRKIm6YiGpgdoWmkyxP68vDxMmjQJEokEL7/8sk7ZTFc4Qxycy+VCoVDoJbe5lp0hmKPeGdrgmKLbkrqMxZiXkjXsbO5tljaa03vFEFtNsdNSegAThwwAQCwWqyaBOTs7w9vbG7a2trhy5QoAgIhgZ2fXZCYR6qJHjx4QiUQQCAQNpsnR0RE1NTVNMk1isRh1dXVwcnICAJXtmZmZ8PDwwPnz5yGXyyGVSrFv3z7cv38f5eXlCAsLg62tLRQKBaqqqlBUVITw8HCzVLj6Dt6Yfg8PD0RERKgqwokTJ7Q+GxcXh7Vr16p80cPDA0SkSvv9+/fh7u6OBw8egMPhwNXVtUmWnSGIxWIoFApIJBK4u7ur+Wi7du0QHx8PBwcHvdJpaHmIxWLExsYiPDxcaz5fv34dYrEYjo6OJutKSkpC3759tepJTEyEl5cX3NzcGC3PJxvghvyuvp3KdsPNzQ0CgQAcDkdlb2JiIsrLyzFs2DDGbKyPUrerq6tGvb9y5QocHR2Rm5uLDh06NBu/F4vFkMlkGnkZExMDR0dHlJSUgMfjNYn0iMVi8Pl82NjYQKFQqNlqZ2eHzMxMVFZWmk1PYmIiiAiZmZmora01SYfJU0xDQ0Nx69YtnDt3DjY2NqiqqoJIJIKPjw+Axy9PgUBgqhqLkpeXh3///RcymQzOzs4oLy/H/fv3YWtrq3pm1KhRVrSwYUJDQ3Hjxg0cPnxYrTwUCgUyMzPRsWNHBAcHA3iczmeffRbPPPMMamtrkZ6eDicnJ4waNQozZ840e9CjS79UKlU9V1VVhcDAQPTv3x/Z2dkQCAR45plnMGbMGHTu3FmV9lu3buHQoUNqaQeAtLQ02Nvbw9bWFkFBQWZLk6UoLi7GmTNnAEDNR7lcLnJycuDn54dXX33VIJm6yqOiogLA43yWSqVa8zkpKQkcDge9e/dG9+7djdZVWloKAKirq2tQj1wuB5/PR0BAgMH5p29+NOZ3/fr1U9mpfP7cuXMQi8VqZSKRSFBYWIiEhASz2AkAI0eO1FrvfXx8UFdXBx6Ph/DwcLPpZ5rQ0FDExMTgyJEjaunx9PSEXC5HRUWFWntsTUJDQ3Hp0iVERkZq2MrhcODr64uBAweaTY+TkxPKysoQERGhatuNxeQegqioKISGhqKkpATx8fHIz89HYGAggoOD0blzZyQmJqKoqAhisdhUVRbD2dkZQ4cORXFxMXJzc1Vp6tevH/h8Pi5duoSLFy82iWV6T9JYeShtv3PnDgBg+PDh6NevX4OywsPDzbrcTZd+pXPrek5Z2bhcLnx8fBAUFISkpCRIJBKNsouKikJMTIzWZY3NCYFAgNDQUA0fHThwIPh8PmJiYvD333+rAnN90DefddX5mJgY8Hg8k3SFhYUBALy8vBAaGqpRnsp0JiYm4sSJEzrnwRiDPvXDwcEBAHDx4kWEhobCzc0Nubm5iI2NVcsTmUymM09M4ejRowgKCmqwTIRCIc6cOQMvLy+z2cAkutqxyspKFBUVwdXV1dqmGtTmmktP586dceHCBbi7u5ukw+RWUZ9KA8Bq66iNYeLEiY3eHzNmDICmmSZd5TFmzBiV3YcPH8bBgwfh5+eHmpoahISEgMfjoaCgAA4ODhCJRMjPzzebrbr037x5s9HnCgsLUVJSAolEopKpq+zGjh0LoGmWnSHoKucRI0YAMCyd+pYHE7o3bdqEQYMGqenJz88HEaG2thapqal66TJn+6JP/bh9+7Zedip7FM3ld7r83tz6mcba+WkIhrS55tQzYsQIk/WYHBBoq9hpaWmQy+Xg8Xjw9/dHamoqiouLTVVlERpqBFJSUmBjYwNPT08UFBSgurra4FntlqAh+zMyMgA8/uJKTEyEnZ0dvv76a71kCgQCRjdu8vT0hEAg0Es/l8vV287G0l5XVwd/f3/Vl2ZdXZ2pybAq2updSkoK2rVrh8LCQojFYvj6+qoFSw1hSHkAugM0f39/xMfHax3PVOrau3cv9u7da1Q6MzIy4ODgAIlEArlcDldXV73SqS+G5kdDdirzo0ePHkhNTTVbm9FQeSjb4YCAAKSnp6OwsNCsvRRM0lhddnBwgFQqRWFhod4Tjs1JYz4qlUpRXFwMmUxmsp7GyrlLly7IzMw0+QPO6I2JmtPyEH1o7kt42GWH7LLDhmCXHRoOu+zQOjSn90pLXHZo0k6FT1aaiRMnYsCAARAIBDh58iROnz6tth1sU94QIykpCc8//zykUim+//77RicqERG2b9+O7du3Y9q0adizZ0+TGJN+sjxWr16NmzdvYuHChZg7dy4OHz6Mjh07qu435fIwlBs3bmDChAng8XjYtWuX1rE0mUyGBQsWIC4uDtu3b8ewYcOaZfrrl3NCQgLefvtt7N27F3PnzsXkyZPx/vvvqz1vro1w3nrrLfB4PPzyyy8AgAcPHmDy5Mn4/PPPMW7cOJN119eVmpqKadOmYfv27fjss88wYsQIfPzxx2rPN4WNiWQyGYYNG4bZs2fj3r17EIlE2Llzp9nsfLLOR0VFYeHChTh8+DBeffVVLFiwAK+99prZ9JuD+ml69913UVtbi927d4PD4SA7OxsTJkzAihUrVMMkTWFjos2bN+PQoUM4efIknJycUFtbi7FjxyI8PByfffaZyXbWzxO5XI7nnnsOb775Jh48eIDs7Gzs2bNH9axJ+cHUoQhFRUUEgPbt26c61zwzM5Mp8Wbl33//JTc3N+rduzdlZ2fr/btff/2V+Hw+vfTSS1RRUWFGC40jMDCQ3nnnHSotLSUOh0O//vqrtU0yC2KxmIKCgsjHx0enz1VWVtLgwYPJ09OzRZzDvnbtWhIIBFRbW0vjxo2jESNGWERvdHQ0AaDjx4+rXX/55ZepV69ejB8UtXXrVuLz+VRVVUXTpk2j0NBQRuUzxc2bNwkAXblyhTZt2kR2dnYkkUgspn/x4sXk6+tLRESDBg2i1157zWK6mSYmJoYAUGRkpNr1CRMmUEBAQJM4mImIqKysjFxcXGjJkiVq19esWUO2trb06NEjRvXVPyL+xx9/JD6fT9XV1YzIZiwgOH78OAGg+/fvU2FhIQGgAwcOMCXebBw4cIBsbW1p+PDhRp32d/bsWXJ2dqZ+/foxXvCmUFZWRhwOh3bu3ElERL1796ZZs2ZZ2Srmqa6upqFDh5Kbmxvdvn1br98UFxdTz549qWPHjvTw4UMzW2hexo8fT88++ywREX377bfk6Oio9aRIc+jt3r27RqMcFRVFAOjEiROM6ps+fToNGDCAiIi2bNlCNjY2jDWCTLJ582aytbWlmpoa1Qvt6tWrFtMfHh5Or776KhERLVy4kNq3b28x3UwzZcoU6tq1K8lkMrXrQqGQAJh8giBTrF27lmxsbDTaktLSUnJycqLly5czqu+nn34iHo9HlZWVdOvWLQJA//77LyOyGQsIli1bRm3btlV9GXTr1o0+/PBDpsQzjkKhoDVr1hAAmjFjhknHSiYkJFC7du2oQ4cOdPfuXQatNJ4zZ84QANVX8OzZs6lnz55WtopZ6urq6JVXXiEHBwe6cuWKQb/Nycmh9u3bU69evai4uNhMFpoXhUJBrVu3phUrVhAR0eXLlwkAxcXFmVVvSkoKcTgc2rFjh1abBgwYoApSmMLPz4/mz59PRERxcXEEgC5fvsyoDiaYOnUqDR48mIiIamtrycHBgdatW2cR3RKJhOzs7Gjz5s1ERHTo0CECYFCvZ1MhIyODuFwubd26Vev98PBwCg8Pt7BVmkilUmrXrh29+eabWu8vWLCA3NzcqLy8nDGdb7zxBvXv35+IiGQyGTk7O9Pq1asZkc1YQDBkyBCaNGmS6t8zZ86kvn37MiWeUerq6mjOnDkEgFauXMlI92ZOTg716dOHXF1d6eLFiwxYaRqff/45tWrVSpW23377jQA025ffkygUCnrnnXeIx+PR33//bZSMpKQkatWqFYWFhVFVVRXDFpqftLQ0AqBKf01NDdnY2NAPP/xgVr2zZ8+mNm3aUE1Njdb7f/75JwGgGzduMKLv0aNHBID+/PNPInpcf52cnGjNmjWMyGcSX19fWrhwoerfw4YNo4kTJ1pEt/LLWZnv+fn5BIB+//13i+hnkg8++IA8PT0b7AVSDksLhUILW6aOsl1tqHcyKyuL+Hw+bdy4kTGdnTt3pnnz5qn+/fzzz9PLL7/MiGxGAgKpVEr29va0fv161bXt27cTl8ttcmPrFRUVNGbMGOLxePTLL78wKlssFtPIkSPJxsaG9u/fz6hsQxk5cqSakyhfHkx35VqL5cuXEwD67bffTJJz/fp1cnR0pDFjxlBtbS1D1lkGbUGeuceN8/Pzyc7Ojr7++usGn5HJZNS5c2dV17WpREZGEgC1LtkRI0bQuHHjGJHPFNnZ2QSADh8+rLr2ySefUJs2bRifU6GN+vNJlDz58mgOFBUVkYODA/33v/9t8Bm5XE4BAQE0YcIEC1qmjkKhoD59+tBLL73U6HPTp0+nDh06MNK+5OXlaQR5n3/+OXl4eDDiY4wEBNeuXSMAdO3aNdW1u3fvEgA6f/48EyoYIS8vj0JCQsjJyYlOnz5tFh1SqZTefPNNAkDffPONRRqCJ5HJZOTk5KTWjfRk93JzZsOGDQRALQA1hbNnz5KNjQ298cYbTWaikj689957GsNAH3/8MXXo0MFsOj/99FNydHSkkpKSRp/bsmULcblcun//vsk6FyxYQB07dlS79tlnn5Gnp6dV6ldD/P777wSA8vPzVdf+/vtvAkAZGRlm1z9hwgSNoZr63cvNhVWrVpGDgwMVFRU1+tz27duJw+FQSkqKhSxT5/Tp0wRAZ4+wcpyfiTl1ymGgnJwc1TXl8HBSUpLJ8hkJCDZs2ED29vZq4/ByuZzc3Nzoiy++YEKFydy7d486depEbdu2pfj4eLPqUigU9PnnnxMAmj17tkUmedUnPj6eANClS5fUrmtrMJobe/fuJQAaM3pN5ffffycOh0Mff/xxk3rJNEbv3r3p3XffVbumrcFgisrKSvLw8KCPPvpI57NVVVXUqlUrmjt3rsl6Q0ND6fXXX1e7pmyMrfUy0MbcuXOpS5cuateKi4sJAO3Zs8esuhsK+OtPQGsOVFdXk5eXF/3nP//R+WxNTQ21adOG3nvvPQtYpsmIESMoJCREr/bi+eefp759+5rctixcuFAj4C8rKyMul6uaQG4KjAQEkyZNoiFDhmhcHz16NI0aNYoJFSbx77//kru7O/Xq1YuysrIspnfXrl3E5/Np9OjRFh06+fHHH7XOwtbWpdicOHHiBPH5fHr77bfN8tL+4YcfCAB9++23jMtmmoaWkiq7FP/44w/GdX7//ffE4/H0Xk782WefkUAgIJFIZLTO6upqsrGxoS1btqhdF4vFxOFwaNeuXUbLZpqQkBCaMWOGxvUePXrQnDlzzKo7PT1d65Bg/SVqzYGffvqJOBwOpaen6/X8V199RXZ2dlRQUGBmy9SJjY01aH7G2bNnGekxHzRoEE2bNk3jelBQEL399tsmySZiICBQKBTk7e1Ny5Yt07j3yiuvEAC9C9ccHDx4kGxtbem5554zalmhqZw5c4acnJyoX79+lJeXZxGdr7/+utZ12gcOHCAATabXxhCEQiE5ODjQuHHjzNrj8tlnnxEARqJtczJ79uwGlxt17txZr694Q8jKyiKBQGDQmG1hYSHZ2Nho/VjQl0uXLhEArb16tra25ODgYLRsJrl69SoBoPfff1/j3qxZs6hPnz5m1a+cT/LkUE5NTQ0BoG7duplVPxPk5uaq5vPoi0gkIltbW9XKDksgk8moY8eO1LZtW73bIoVCQd27d6c2bdoYvS9FY5OG33//ferevbtRcutj8vHHV69eRX5+PkJDQzXu9e3bFwAY2cfZUCoqKvDqq69i2rRpePXVV3H69GmrnE74wgsv4PLly8jPz0dISAh++ukns+qrqanBmTNntB6CoSyPprD/tyF89913CAsLQ9++ffH777+bdVfI//73v5gzZw7eeecdvPjii2bTYyrKHUC1HTHcr18/HDt2jNF699tvv6G6uhp9+vTR+zdeXl6oq6vD5cuXjda7Z88eODg4oHfv3hr3fHx84OzsbLRsJlGepaCsY/UZMGAAbt++jbS0NLPp37dvHzp37qyxQ6ednV2zOYJ+//79qKqqMujI9VatWkGhUODq1atmtEyd3NxcZGVlwdHRUe+2iMPhoFWrVigoKMCNGzeM0nvkyBHU1dWpTgKtT2hoKJKTk3Hv3j2jZKswNaIYP348AaBjx45pvW/K+n5TUE7smzx5cpMYE1bOQAZg1vG8EydOEAB68cUXtd63VnmYQv/+/Rtd2sM0UqmUAJCrq6tF9BlLQ2XZp08fAkB37txhTFd5eTlt27bN4LqUnZ1t0oobZZ3Rhlwut/j8nMZoqDyUQ1Hm2pdFoVA0mk91dXVNKp8aorKykn766SeDfSw3N9fsczSeZNu2bQYPA0ulUvrxxx+NnrisrNfadlj95ZdfCIDJm8+ZHBAkJibSu+++2yReuvW5ceMGLVu2zKLbhuoiJiaGlixZYta8kkql9Nprr1l8TM2c1NbWWrwcZTJZk9wJTx/u379PM2bMaHJ10hg2bNjQ7LfcrquroxkzZph1K/dly5aZbeUUS9Pg/PnztGjRIq33ZDIZzZw50+TheZMON2JhYWFhYWFpGTA+GKvvsaFK9D2ZyRC5Tf00L8B8+WSqLkvlXVO06UkMLSOAeVstlU/m8MfmIlNfmoI/6Is186khmos/PNXvMJP6F55AORMZ/388S58/gUCgcymgoXL1kWlNzJVPTOiyRN41RZtMtdEctloqn8zhj81FpjnzqDn5rrntbC7+8LS/w/TqIdA3sklKSkJ1dTX27dun10zRpKQkREREQCQSNRoNiUQiveXqK9OaGJIeoOE06VMuhpSJpfKuOZSnoWUEMG+rITZcvnwZ8+fPx+XLl/Wyt/4XCFP+aKzt+tpvrvZFHwxNT15eHuLj47Fy5Uq9yoTJr0xr5lNDNAUfs5ZMQ+UaUpelUins7Ox02gno52M6A4Ls7Gz06NED1dXVeikFALFYjOrqavD5fDg7O8Pb2xu2tra4cuUKnJ2dUVRUhNraWoOWlwCPM79v374gIpXM+/fvw93dHQ8ePIC9vb1B8qyNWCxGXV0dnJycAEAtTW5ubkhOToanp6fWdBlaLmKxGDKZDHK5HC4uLhplUlBQYHB3qKlIJBLY29trLc/4+Hj4+vqCyzV5ZaxJ9OjRAyKRCFlZWQgPD1ezNTExEXK5HESEYcOGmc0GuVwOqVSqUW7u7u6Qy+UQiURYvnw5ACAiIkIvmQKBAElJSWoNhFgsBp/Ph42NDRQKhUpXTEwM+Hw+ZDIZJBKJQfVWLBZDoVBAIpHA3d1da70tLi7GsmXL9La/ITuVeVJbWws7OzuD2xd90OUPPB4Pd+7cwdy5c1VLEfVJk7byeBJj6nxsbKyGnfXzqa6uziz51JhN2to8ZV3KysqCh4eHwT5WXV0NDw8PjbbEzc0N169fR7t27QxqSxp6h9Vvn9zc3MDj8RhLf1lZGZKTk/Hpp58C0M9veDwe5HK5Xrr18TGdAYEysvnoo4/Qp08flJWVoba2FiKRCN26dUNAQAB4PB7S0tIQHx+PLVu2IDQ0FNeuXUNpaSmmTp2KqqoqlJeXw8fHB5WVlfDw8ICLiwvIwPmMdXV1OHTokJpMAMjJyYFYLIanp6dFndtUGsonAEhPT4dEIgGXy4Wfn5/Gb/Utl71792LHjh0oLi7GuXPnMGzYMDg7O6O8vBzl5eVwcXGBSCSCt7e3Vj3mJDU1FY8ePdJIu3K9NpfLRUBAgEVt0sbIkSOxdetWDd9zcnKCSCRS7QlgLu7evYusrCyNuiQSifDw4UNIJBLU1NToVUeBx2vTtX3VFBcX46+//sKwYcPQoUMHlY/Y29tDJpPBw8MDffv2RVxcnN62N+bjaWlpyM3NVQUMuuw/duwY1q9fj9DQUFy6dElr+yISiSCVSmFra8tsIdSjMX94+PAh+vXrp1d6dJXHk+hb5//++2989913qrx/0s76+eTh4WG2fNJGcXExzp8/r+FjwONeFV9fXzz33HOM+Vh6ejqcnJzA4/EMaksak3n37l1IJBI4OTnB39/fgNQ3nH5l8NiqVSu96/KjR4+wcuVKvZ7V18f0nlQ4Y8YMrZvdKBkyZAji4uKwZcsWREVFITQ0FCUlJYiPj0d+fj4CAwMRHBwMPp+PxMRE5ObmwsfHx4CsfLzRSWhoKJKSkiCRSDTk3rt3z6RNUCxNY/nUuXNnJCYmoq6urtHNL3SVS3Z2Nnbs2AGBQIDQ0FAUFxcjNzdXI+8uXbqE27dvmyOZDdJQefbr10/lJxkZGRa1SRtHjx5FUFBQg+V06dIlnDlzBl5eXmbR7+/vD09PT6267e3tcfPmTQD61VEADTa2unwkMTERf//9t0H1Vh8fT0lJ0ct+R0dHrF+/HlwuFz4+PggKCmrQd6KiotCuXTu97TQEXf6wf/9+vdKjqzwaQp98+u6773TmfUxMjMV74BrzscDAQAiFQpw4cQJt27bVW6audAqFQgwaNMigfNYn7+RyucGbpDWUfqXf7ty5E4B+vmOIn+mbdr1Tc/jwYRw8eBB+fn6oqalBSEiIKvrg8XjIycmBt7c3AGD48OGNGhgeHg7A8IqgS25oaChsbGwMkmlNmMinTZs2YdCgQWplUlBQAAcHB4hEIsTGxuqla8yYMQaXh6nok34HBwcLWqSdiRMnNnp/zJgxAAz3Z33p27dvg/lUP48aqqP1/UEul6O4uFirLHPUW0PKWJf9ysAH0F0mY8eONVt56NI9cOBAALrbzE6dOuH27dsGDccC2ut8fn4+iAi1tbVITU0FoDvvR4wYAcB8fqsNXTaNGjUKALM+ppRpCObKO11yhw4dCqBx3+nSpQtycnLw77//AtD9DhAIBKitrdXLPp0BgaenJwQCAb7++mu9BOpKTHV1NQIDA5Gent5gw9QQ2hKem5uLlJQUDBw4EEVFRSgoKDBIpjXRp8GIj4/XWpjKctm7dy/27t2rU5e2vFN+fXt5eeHBgweoqalhPI2G2pSbmwsXFxcUFRU1+vKyFA2VUX5+PhISEvDCCy8gPT0dFRUVelc6Q9GWTykpKWjXrh2ysrJQXl4OOzs7g+qoQCCAp6enTj1P1llXV1dV96Y+NJR/ynLOycmBQqEwyP6GZGZkZMDBwQESiQSOjo6QSqV622lqepR11svLC3fv3mWkPJ7E0DrfkK2FhYWq+SB5eXkGj4ObgjYfKywshL29PYqLi/Ho0SN069aNER9TyjX0paiPzOLiYlWAzWT6KysrDfId5bCwPv6gj4/ptTGRvqsM8vLyMGXKFINeLOaYTKOPTGtizERNbWnSp1wMLRNL5F1zKE9jyghg1lZDbbC3t0dkZKRe3a31Zxwz5Y+m2A7ott9c7Ys+GOsP+pYJk6sMrJlPDdFUfMwaMo2Rq6/fML3KgPGdCp902E2bNuHMmTNYuXIl5s6diyNHjqgZZUxF2L9/P3744Qf8+uuviIiIwLZt2zBgwACDZVqTJ/Np8eLFKC0txahRo7B27Vr8+++/at3lTG06c+XKFXz00Uf4/fff8frrr2PZsmWYNGkSI3qMsen7779HZGQkTp48CScnJ1RUVOCll17CtGnT8MEHH1jUpoZsVJKTk4Px48dj8+bNWL16NUaMGIGPP/5Y7Tfm2pho2bJlSEpKwuHDh8Hj8ZCVlYWJEyfi008/xYQJE0zWXT+tRUVFePHFF7FmzRps27YN/fr1w4oVK9SeN3SDl7q6OgwZMgRz585FdHQ0bG1tsWnTJpNkAsDo0aPxwgsvQCwWIzU1FQcOHDBYpr7U1x0ZGYk1a9bgyJEjaN++PWQyGcaPH4+goCC1rztr+65yWdzq1avxwgsvAHjc1qSlpeHQoUOq3gFLb0xUWlqKkSNH4quvvsLu3bvRs2dPfP7552rPG+oPMpkMw4YNw+zZsxEbGwuFQoEtW7aYJBMAxo0bhyFDhkAqlSIhIQH/+9//DJb5pNxZs2bB3d0dXbt2xcGDB3Hx4kW1+RwtYmMibQwePJimTp3a4PntxjBlyhR65plnSC6Xk4uLC3311VemG2pF6h8hnZCQQAAoKirKLLpWrFhBrVu3JoVC0eD57ZaivLycXF1dafHixWrXFyxYQO7u7gYfHmJu6h8xO23aNBo0aJBF9GZkZBCXy6Uff/xR7fr48eMpICDA6MNSGiIyMpIAUG5uLmNH9yqPB46JiaHPP/+cPDw8TD5rQXlg2JEjR2jHjh3E5XKpvLzcZFt1IZPJqGvXrjR58mS1699//z3xeDyznllgKNOmTSM/Pz+1w42uXbtGAOjw4cNWs+v48eMEgDIzM+n999+ngIAAk2XevHmTANCVK1fo66+/JhcXF5LJZCbJzMvLIwD0xx9/0O7duwkAlZaWmiRTKpWSvb09bdiwgc6dO0cA6N69eybJZAqzTjGVSCSIjY1FWFgY3Nzc0KtXLwiFQpNkEhGio6MRFhYGLpeLwYMHIzo6miGLrUNmZiby8/MRFhaGXr16wcXFxeR8agihUIiwsDBwOByEhYVZNe927NihWkZVn/nz56O8vFw147apEB0djZ49e8Ld3R1hYWGIjY01aKzTWDZu3AgPDw/MnDlT7fqSJUuQkpKCv//+m1F9QqEQHTt2hI+PD8LCwnDnzh2IxWKTZTo4OCA4OBjh4eEoKSlRrS4wRSYADB48GGFhYVAoFIiJiTFJpj4cO3YM6enpWLx4sdr1t99+G66urho9H9YiKysLf/75Jz7++GO12fChoaEYMmQI1q5dazXboqOj4ePjgw4dOiAsLAwpKSkm74MiFApha2uLkJAQhIWFoby83OTjgJU+FhYWpjp2+Nq1aybJjI+Ph0QiQVhYGEJDQ8Hlcs3W3huKWQOC2NhY1NbWqmYnM/ECys7OxqNHj1Qyw8PDcfXqVSgUCpPttRb1GzYej4dBgwaZ5UVdV1eH69evq+VdRkaGVSZi1tXVYdOmTXj99dc1lod16NABr732GjZu3AiZTGZx2xpCKBSq5V1dXZ3azHdzUFxcjF27duHDDz/UONN+8ODBCA8PZ7xhj46OVksnEeH69esmyxwwYABsbGwQGhoKDodjciMYHR2NLl26oE2bNujevTvc3NzMHuASEdauXYuhQ4eqVhMocXR0xH/+8x/s2LEDpaWlZrVDHzZu3AhXV1e89dZbGvcWL16Mq1evWu2DQFmXOByOytdMfdFGR0cjJCQE9vb2GDBgAHg8nsnpEwqF6NChA3x9fdG1a1d4eXkxItPe3h59+/aFs7MzAgMDm8xHrVkDAqFQCIFAgMDAQACPG5d79+6ZVFnqvzyBx0GGWCxGUlKS6QZbiejoaAQEBKhmgIaFhZklyElMTER1dbUq0lX+1xrR6R9//IGcnBwsWrRI6/3FixcjKytLY7zOWojFYty9e1eVZ3369IGjo6PZ827r1q0gItV8iidZvHgxrly5YnJjqqSmpgZxcXGqdHbr1g2enp4mNVhEpBZMubi4oE+fPow0rEqZXC4XYWFhZi+P6OhoXLt2TaN3QMmHH34ImUyGbdu2mdUOXZSWluKXX37BBx98AEdHR437Y8aMQffu3a3SS1BbW4sbN26ofKxTp05o27YtI/6glOno6Ii+ffsyEnQqZSp7VZmQOWDAANXmWZbwW30xa0AQHR2NgQMHqvYGUGbs1atXTZLZrVs31SYwTa3LxRjqN2wAGOtSfRLlZK6QkBAAQPv27dG+fXuL553yK+ull15C7969tT4TFBSE559/HmvXrjV4R0tzcO3aNRCRqpz4fL7ZenKU1NTU4IcffsBbb73V4HKhsWPHIiAggLGG/ebNm6irq2O0EXzw4IFqSExJeHi4STKrqqpw69YtNZnKQNrQpWCGsHbtWvTo0QOjR4/Wer9NmzZ488038f3335tl2aO+/PTTT5DJZPjwww+13udyuVi0aBGOHz/OeDujC2WXubIuMeFjOTk5yMnJ0fAHU+qncsj7ybb5+vXrRvdcKoe8n5TJxJAJE5gtIHjyqwAAunTpgtatW5tU8E/KdHJyQlBQUJPpcjGU8vJy3L59W82RzRXkCIVC9O/fX22ZijXmEZw7dw6JiYkNfmUpWbx4MeLj4/HPP/9YyLKGiY6OhpeXF7p27aq6pnypmStg2bNnD0QikcZKhvpwuVwsXLgQR44cUW2FawpCoRBOTk7o06eP6lpYWBiuXbtmdCP4ZK+eUmZycrLR+0wod4p7smFlYty4IZKTk3H8+HEsWrSo0R3+Fi5ciIKCAuzbt88sduhCIpHg+++/x8yZM9G6desGn4uIiECbNm2wfv16C1r3uC4p55MoCQ8PR0xMjNF7eSh97El/uH//PvLz842SGRsbi7q6Og2ZVVVVSExMNEpm/fli9WUCpn0oM4XZAoKMjAwUFRWpZaapkWBFRQUSEhLUZAKmf21Yk+vXr0OhUKilyVzjSk9GpsDjvLPU5Dgla9euRUhICJ599tlGnxs5ciSCg4OtOvlJSf3JmErCwsIgEokYeRE/iVwux/r16zFx4kR06dKl0WffeOMNeHl5YcOGDSbrjY6OxqBBg9QmoSkbQWO3thYKhejevTtatWqlJhMwvhEUCoVwdXVFz549VdeU48bmagvWr1+Ptm3bYvr06Y0+5+/vj1deeQXr1q2zytymffv2obCwEAsXLmz0OTs7O8ybNw979uyx6DwioVCo1nMMPK5LEokEt27dMlqmcj5JfZmA8T4WHR0NR0dHteC4X79+sLW1Nbpt1hYcd+jQAT4+Pk3io9ZsAYEycYMGDVK7ruxyqaurM1hmTEwMFAqFWnQFPC74tLQ0FBUVGW+wlRAKhfDw8NA4JIPpcaWcnBw8fPhQa97V1tZabPvS+Ph4nD9/HosXL9Z5KBCHw8GiRYtw+vRpi5+zUB+ZTIbr169r5N2gQYMYmRynjePHjyMtLU1nLwrweBOTuXPnYvfu3SgsLDRap7JX78l0hoSEwMbGxuh0agtEO3XqBG9vb5NkDh48WO1LXTlubI6GNT8/H3v27MG8efP02ghm8eLFSE5OxokTJxi3pTEUCgXWrVuH8ePHo1u3bjqfnzNnDvh8Pn744QcLWKe+Sqw+ffv2hb29vdFlp02mr68vOnToYNLL+8ng2N7eHiEhIUb7rVAoVJsvBjA3N4ERzLWecfbs2dSrVy+N69HR0QSAbt68abDMVatWkbu7u8a661u3bhEAmj17ttH2WgOFQkE2NjbUuXNnjXv79+8nAFRUVMSIroMHDxIAKigoULteXV1NHA6HQkNDGdHTGHK5nPr06UO+vr5q66Ibo7a2ltq2bUtBQUGMr7fXl40bNxIA+vPPPzXu9enTh2bNmsWovsrKSvL19TVonwORSET29vY0atQoo/UmJycTADpz5ozGPU9PT3J1dTVYZllZGXE4HNq5c6fGvR49ehCPxzN4rbhcLic3Nzf64osvNO7NmzePunTpYrCduhg5ciQ5ODgYtAZ94MCB1KFDB6qqqmLcnoZYsWIFASChUKj3b+bNm0cODg50+/ZtM1r2GGU7tHXrVo17Q4YM0djbQR8qKyuJx+PRtm3bNO699tprNHjwYINlKvcfmDRpksa9RYsWUfv27Q2WWVNTQwBowIABGvc2btxI9vb2JJVKDZbLJGbpIZDJZDh79qzGshzg8deGra0tDh06ZJBMIsLff/+N/v37a4zfKU9fe/DggfFGWwGFQoG6ujqN5WTA/3V3HTlyhBFdhw8fRqdOnTTGFO3s7EBEJn1Z6ktCQgJu374NJycnvU8Js7GxgZOTExISEsw2NqyL9PR0ANB6fOqAAQNw7tw5o3q8GuLgwYN4+PAhOnbsqPdvWrVqBblcjjNnzhg9Dnv48GEAj+ewPImdnR2qqqoMlnn8+HG1yZj1cXJyglwuN3gS4JUrVyAWi7XKDAsLQ0ZGBpKTkw22tSEkEgnOnz8PhUIBNzc3vX/n6+uL7Oxs/Pnnn4zZootvvvkGgPYybIiwsDDU1NTg008/NZdZKpTDa9qODQ4NDcU///xj8JkqJ06cgFwu1+ghAB53zd+4ccPg3mPl3BZtczAGDx6MnJwcg+cRKNsIFxcXjXvKIZMzZ84YJJNxzBFlREVFEQAaOnSo1vsAyFDVjx49IgDUrl07rfcfPnxo9ejKGDIzM7V+IZWVlREA8vT0NFmHQqFoNM+Li4tN3n1LH2QyGS1YsMDgXo+CggL6+OOPTd51zFhkMlmDu88999xzBIDOnz/PmD6xWEzz58+nmpoag36XlJREK1euNFovn88nAFp7YiQSCT18+NBgmb6+vgSACgsLNe7J5XKjdvULDw8nAHT16lWNe3/88QcBoFdffdVguY3x6aefUkpKikG/qa6upvnz51tk90Ql27Zto1OnThn0G4VCQV988QUlJCSYySp1XQ2V+fTp0wkA7dmzxyCZfn5+BECrf65evZoA0JIlSwy2tSE7lbssjhs3ziiZ2upXSkoKAdDaq25JzBIQ1NTU0NChQxvcjnHVqlUGF5BCoaBRo0bRv//+y4SJzYI5c+bQ999/z4isiIgI2r17NyOyWP6P5ORkGjJkiEW7hc3FqlWraOnSpYzK3LZtG7399tuMyjx27BhNmDBB69bHdXV1NGrUKLp8+TKjOlnMT05ODj3zzDMGfzDs2rWrwS3YKyoq6Nlnn6W7d+8yYSIRPf5AeOmll+iff/5hTKZCoaDXXnuN9u/fz5hMY2D8cCMWFhYWFhaW5od+A7lNFH2PZVZi7ZPH9MXSJ4/pgzGnhDVVmUzosaQupvOJyaN2zS23udYFQ+WyMq1zOm1zqYsWw6r9EyaQlZVFAoFANTauz59AIKCsrKyn3k5z2NRcZDKlx5K6mM4nfew2V96bw1ZTaE7pfJplmoPmUhctick9BPpGQ1KpVK/1u/o+m5SUhOrqauzbtw89evTQKVN5LrhIJLJoRCYSiQyy8/Lly5g/fz4uX76s8/kno0t9y8IceWdoOq0lkwk9gP7l9GQZWTuflPJ02W2oj+ibH4bINaQuGNK+1C8Tc/mYMWXyNMtkuoyZfofk5eUhPj4eK1eubNRWQ2QaknbAMr0JJgUE2dnZ6NGjB6qrq3U+y+Px9F5eZMizEokE9vb2ICJ4e3vD1tYWmZmZ8PDwQGJiIgQCAdq0aaN3Q28uxGIxZDIZBAIBOByOytb79+/D3d0dOTk5KCgowLJlywA83lZUFwKBAElJSejQoYNBZfGkTXK5HC4uLiqbrly5gnbt2iEnJwdjxowxOJ11dXVwcnICAI10PnjwAM7OznpXbKXM6upq8Pl8ODs7a807Ho9nchmLxWLV3uX1/enKlStwdHREXl4efH190b59eyxfvhyA7nKqX0ZP6mosn2JiYtC2bVtG8ikmJgZeXl6Ij49HUlISuFyuXv7VmMz65SkWiw3yW+DxWRAODg5QKBRq+Qw8PvymvLxc7zwGDGsztJVJQ+WRmJgIIkJGRgZ8fX0N9jG5XA6pVKpWvxITE1FWVoaqqiooFAqDZWpr85R25ubmwsnJySiZtbW1Wss4ISEB3t7eBskDHuepQqGARCKBu7u7mj/W1tbC0dERbm5uevujOd8hDaU9Pj4eUqkUM2fOVC2H1MfWhtr7xMREODs7Iysry6C0Aw23JUxiUkCgjAQ/+ugj9OnTB2VlZaitrYVIJEK3bt0QEBAAHo+HvXv3YseOHTqfS0tLwz///IN9+/bpfPb8+fP44osvkJqaikePHmHq1KmoqqpCeXk5FAoFMjMzUVtbCxcXF3Tv3t1iO/E1RGhoKK5du4bS0lI1W4HHa3MrKyshkUggkUh0pv3u3btwdnZWi9b1LYuEhAQ8ePAAGzZsaNAmHx8f5OXlobKyEteuXVOdysVEOp2cnFBWVobOnTszIjMnJwfp6ela9wgwlNDQULRv3x5//vkniAgvvvgi7O3t0b17d5SXl6Ompga5ublwcHBATU2Nzrz++++/8d1332n9otKVT+3bt0d1dTUj+eTp6Ym8vDw4OjrC3t4eCoVC7/rVUJ64uLigtLQUlZWVaN++vV5+m5CQALFYjJUrVyIuLg6pqakafpefnw9vb2+IxWK98vju3bsQiURYuXKlUfVGV945OTmpet20nRqoi7t37yIrK0tDpkQiQU1NDdq3b2+wTG1tntJOgUAAZ2dnRmQCj33RxcUFtbW1BgcZxcXFOHPmDIYNGwZnZ2eUl5ejvLwctbW1qK2thbe3N3JycvTyR0PeIY8ePdLLH06dOoXVq1c3mnZvb2/cunVLL19MSEhAZmYm1q9f36g/FRUVgcfj4caNG3qlPSEhAe7u7hbp4WZkUuGMGTPQr1+/Bu9nZ2djx44dOp8bMmQI7OzssG/fPp3POjo64osvvoCXlxdCQ0ORlJQEiUSC/Px8BAYGIjg4GHw+H/fu3UNUVJTWzSAsSVRUFEJDQ1FSUoL4+Hg1Ozt37ozExETk5OQA0J2fQ4YMaTDA0fe3GzZs0MsmkUik2vhJH7hcLnx8fBAUFKRRJv369QOfz0dUVBRcXV31ltmYncoNjpg44Y7L5SI6OhrBwcEN5klMTAzu3LkDQHdeOzo64rvvvjM4TZ07d0ZUVBTGjh1rUCCrS+alS5dU29nqW7/0yZP9+/frJXPIkCGqZxuqtwMHDgSfz1cdaGWITFPqja68s7e3R0lJicFfyg2lU1kXjNlsy9/fH56eng3WWWPQZWdiYiIuXbpkkEyBQIDQ0FAUFxcjNzdXJVO5HbBQKFQdW8/kO0Rff3B0dMTq1at1pv3u3bt6yVP61/r163X6k1AoVB2UZorfMg0jAcGmTZswaNAg1NTUICQkBDweDwUFBXBwcIBIJEJsbGyDz6WlpaG6uhqBgYFITExU7WSlS6byBKvhw4c3mpnKHbus3UOgy87w8HA4ODgAeLxj3MGDB+Hn56eW/oyMDDg4OKCurg6pqala5TT02/z8fNVXWFRUlN42AYbn3cSJExu9b+iLzlx2akOX7SNGjFDpacxHi4uLcf/+/Qbl6ErT2LFjDbZdl8wxY8aoGsuG6iKPx0OXLl3w119/qX6nK0+UO5I25Hv180S5r7wuW1944QUsX75cp0yRSNRoedSvM1KpFPb29kblnbE+pk/7ZKjMvn37NijTXHbWb5+Ykjlq1ChV70tD/tilSxfk5OTg33//BaDbx3S9bwoLC2Fvb4/S0lJVG6rLTuWpjPr497Vr1/ROe2N1sb5MhUKhdhCUOTEpIPD09IRAIMDevXuxd+/eRp9Vdvvoes7QZ7VlZm5uLlJSUjBw4ECkpKSoujStSUPOlJKSgnbt2uHRo0coKyuDnZ0dvv76a71kCgQC1SEZyrLQ97eN2aR8MXh5eeH+/fsGbSXaWDDTunVrFBUVQSAQGLS9bmN2dunSBZmZmRCLxSafP99YMJWQkIAXXngB6enpyM/Ph52dnV4+Wr+M9NFljnxSNoKVlZW4c+cOuFyu3vVLn7yvrq42yG+Bhuuti4sLioqKDJZpSJuhrUwaS6dcLkdAQAAyMzMNPhWwsRddeno6+Hy+3tt4NyZT2Y4UFRXB3t7e4K20G3t5ikQi1NTUqLrSTZGpTHtWVhYePXqE8vJyvf2Rx+OZxR90pf3Bgwewt7dnpG2tLzc5OdmguthQW8IkJm9MZK1VBnl5eZgyZYpBLytLTMp4EmMm+9nb2yMyMhJt27Zt9DljVxmYI++MSac1ZDKlB9CvnLSVkbXzSR+7jfERc8jVty4Yu8rAXD5mqNynWaY5ythc7xBdtprLvwHLrDJo1jsV1n8B5uTkYPz48di0aRP++9//YsqUKZgzZ47a89bemKigoABjx47FvHnzVDNLly9fjjt37uDIkSOqLwVLb8ZSV1eHoUOH4sMPP8S5c+fQtm1brF69Wu15YzbkGD16NF544QXk5eVBJBJh586dJsucOXMm2rZtC09PT0RFRal1besrU5eeDRs24NixYzh16hQEAgFyc3PxyiuvYOnSpZgyZQqjuiQSCYYNG4aFCxfi+PHj8PPzw5dffmlwmurLJCKMGjUK48aNw/3791FdXY1t27YZbPeTeR8REYHOnTvD0dER169fVx2GZIrcBQsWoKamBgMGDMDu3bsRFRUFHo9nsExTeDKds2bNgru7O3x9fXH69GmcOnVK7Xlj0vnJJ5/g0aNHGDVqFDZv3oxLly6pTdY1RubmzZtx+vRpLFq0CEuWLMHp06fh5eVlkswDBw7g+++/x9atW/Huu+9iz5496NWrl0kyz58/j6VLl2LPnj2YMWMG1q1bh+eee85gmeagvp15eXl4+eWXsW7dOqxevRpjx47F3Llz1Z43tC7qqt/sxkRm4rfffiMAVFxcTOPGjaMRI0ZY2yQNFi1aRK6urmqHncTGxhIA+uOPP6xm17Vr1wgAXb9+3eijPZ8kOzubANDhw4dp48aNZGdnZ/LhUzU1NWRra0s//PAD/fnnnwSAHj16ZLKt9SktLSUnJydavny52vVXX32VunTpwvgBS5cuXSIAFB8fT/PmzdN6FLah3L9/nwDQX3/9Rd999x05Ojrqfdx0Q1RUVKiOmGXqaG6FQkGenp60cuVK1YFoljhgpzFqa2vJ3t6e1q9fT0ePHiUAjGwc07FjR/r444/pxo0bBBh2PHFDhIWF0dSpU1UHv/3vf/8zWeaUKVPomWeeIYlEQnZ2drRx40aTZc6fP586depERETt27enRYsWmSzTHNQ/In7SpEkNHs5nCOao3+bELMcfWwOhUIiePXvCw8MDYWFhuH79OmQymbXNUlFWVoaff/4Zc+bMUVsW1K9fPwwfPhxr164FWamzJjo6Gvb29ggODkZYWBhycnJUKx6MRSgUAnh8rGd4eDikUqnJk/5iY2NRW1urkllfD1P8/PPPqK2t1fgyWLRoETIyMnD06FFG9QmFQjg5OaF3794IDw/H/fv3VRNmjUU5cW/w4MEICwtDVVWV0bPPldy4cQNyuRzh4eGqvL969apJMtPS0iASiRAeHo4BAwaAz+erbLcW8fHxkEgkCA8Px+DBgwGY7mO5ubnIyspCeHg4goKCIBAITE6nVCrFzZs3ERYWhrZt28LPz89kmUSE6OhohIWFwc7ODgMGDGCkfgmFQpXPhIWFMV5nmSI6OhrdunVD69atERYWptovwRTMUb/NSYsJCJSODDyeEaucQNVU2L59OyQSCebNm6dxb/Hixbh586ZqJq2lEQqFGDhwIGxtbVV5aGqlFQqF6NKlC9q0aYPg4GA4ODiYLDM6OhqOjo4IDAyEj48POnbsyOgLRCqVYvPmzXjjjTc0xvQGDBiAYcOGMR64RUdHIzQ0FHw+n9G87969O1q1aoWQkBDY2tqanE/R0dFwdXVFz5490aFDB/j4+JgsUygUgsPhYNCgQRAIBOjbt6/VXxZCoRB2dnbo27cvWrduja5duzKSTuDxy9DGxgYDBw40OZ1xcXGora1l9EWbk5ODR48eqcmMjo42yd+rq6sRFxen1jbfvHnT5AnA5kAoFKrZKZFIcOvWLZNkmqN+m5MWERCIxWLcvXtX5cghISGwsbGx+teGktraWmzevBkRERFa1/SPGjUKffr0wdq1ay1uW/2vAgBo06YNunTpwshLSVkeTDWCQqFQVbmAx5WWycq1f/9+5OXlYeHChVrvL168GNevX1ftqGcqRKSWT76+vujQoQMjgZOyPO3t7RESEsJI3g8ePBhcLhccDoeRvBcKhejdu7dqTwrlC8iaREdHY8CAAarxfabS2blzZ9UeBkqZprxoo6OjIRAIEBgYqJIZFxdn0AQ5bTIBqHpGwsPD8ejRI2RnZxst8+bNm5DJZGpBRm1trWppYFOhsrISCQkJKjv79u0Le3t7k/zRXPXbnLSIgODatWsgIlUj6ODgwEgjyBS///47cnNzG3zRcDgcLFq0CCdPnjRqoxJTyMzMRH5+virvANMb5qqqKsTHx2uVaWwjqKxcT8o0tRFUolAosG7dOowdO7bBHdleeukl9OzZk7HALTU1FcXFxYzmfXl5OW7fvs2oTIVCgatXr2rIvHHjhkldqvUDF+DxC+jBgwfIy8szWqYpNORjt27dQmVlpdFyn0xnWFgYCgoKGt2nQhfKXj3l+vSwsDDIZDLcuHHDJJndunVTTUxUBgam+E50dLSqyxyAasikqbTNSmJiYiCXy1XlZGtra/KQiTnqt7lpEQGBUCiEp6enahc2oOlkPBFh3bp1GDNmjNps3Sd57bXX0K5dO6xbt86C1v1fZX+yYb516xaqqqqMkll/vLm+zPz8fGRmZholMz09HUVFRRoy6+rqcPPmTaNk1ufkyZNISkrC4sWLG3yGy+Vi0aJF+Ouvv1Q7rJlC/S5zJeHh4YiNjTV63wxlcPxkPpkyLyQpKQlisVhDpkQiQXx8vFEyS0tLce/ePTWZ1u5SVa6NfzKdCoUCMTExRsmsrq5GfHy8mkxT5yYoe/Xqy+zduzecnZ1NyrsnZXp5ecHf398kmcqeJeXKET6fj9DQ0CbRNtdHKBTCzc1N7WPA1I8Yc9Rvc9MiAgJlBM7hcFTXwsPDkZWVhdzcXCtaBpw5cwa3b99u9EUDPI5I58+fj3379uHRo0cWsk59vFlJWFgY5HK50Y1gdHQ0XFxc0LNnT9U1ZaUwtiGIjo7WqFy9e/eGk5MTI43L2rVrERoaimeeeabR515//XW0bdsW69evN1lndHS0Wpc58DjvTQlyoqOj0apVK7WzHUx90UZHR4PL5ap2JASgmhdibN4rJyTWD0TbtWuHjh07Wi0gqD/Wr6RHjx5wc3MzOp03btyATCZTk+nu7o6ePXsaLTMjIwOFhYVqL28ej4dBgwYZLbOiokKty1yJKR9WCoVCo8cFeNw2mzo3gWmio6NVQ2JKwsPDkZeXh6ysLKNlMl2/zU2zDwhkMhmuX7+u4XRMzRA2lbVr16J///4YOnSozmdnz54NBwcHfP/99xaw7DFPfhUAQK9eveDi4mLSC+TJytWqVSt0797d6MZFKBSiV69ecHNzU11Tfm2YWsYxMTG4dOkSFi9erBZUasPOzg4fffQR9u7da3LXdv3xRSWBgYFwdHQ0Ok3KBrh+OkydFyIUChEUFKQ6CRB4PC9kwIABJgV4rVu31ji8SfmysAbR0dEICAhQ2w2Oy+Vi8ODBJtUFFxcXjd5BU160SlvqB8dKmUKhEAqFwmCZMTExUCgUGu1oWFgYEhMTUVFRYbDM1NRUlJSUaJVZVFSEjIwMg2WaA21DYoDpQybmqN/mptkHBLdv30ZVVZVGxrdt2xYuLi5YtWqVlSwDDh48iIsXL+r1ogEAFxcXzJ49Gz/88AMjXdK6iI2NRWJiokajbEojqKxcT5YHYNoELW1fGvVlGvu1IZfLMW/ePHTu3Bnjx4/X6zfvvfcebGxs8OGHHxqlEwBKSkqQlJSkkSZTgpysrCxcuHBB6wl6psxC19awAablvVLmk/XCz88P169ft/hcGqlUil27dmmd9BsWFoarV68a9aIVCoUYNGiQ2mZLwOO8u3v3LsRiscEyv/zyS7Rq1Qru7u4aMktKSho856Qx/vvf/8LGxkbj1FBThky0dZkDjyfsAdDYgMta3Lt3D2VlZRo+7unpCXd3d6PsNEf9tgTNPiA4deoU+Hw+QkJCNO5VVVUhJSXFClY9ZtasWQCAl19+We/fvPDCC6iursZ7771nLrNUKCPf+l/dSsLCwnDlyhWDlwfFxsZCLBZrfXkrvzYM3Q8+Ly9PbRXJkzKLi4uNHss+d+4crl+/jtatW2s02g3h5uYGPp+Pw4cP67VVtDbOnj0LAFrTNHjwYFy+fNng/ejv3LkDItJ6XLVyFnpJSYlBMrOyspCWltZgeebn56tOg9OXqqoqXL16VfUFVh/lEcPGDlcZS1lZGSQSiVZ/Dw8PR1lZmcET9mpra3H58mWt6QwLCwMR4dy5cwbbmpGRoXV+T2hoKDgcDk6ePGmwzISEBNTV1WnUge7du8PV1VVjt0Z9OHPmjKq3sT7KfViaykvx1KlTGkNiSqqqqlQH7hmCOeq3RbDoNkhmAAA1lIycnByKj4+3rEH1+Pbbb2nDhg0G/UahUNCHH35Ix48fN5NV/4dMJqMzZ85ovbd48WICQGvXrjVI5sCBAwkAxcXFadzbvXs3AaCZM2caJDMiIoIA0IEDBzTuXb9+nQBQeHi4QTKVlJWV0fjx4yknJ8eg38XGxtLUqVNJoVAYpbdVq1YEgCoqKjTuffjhhwSAtmzZYrDc06dPa7Xp559/JgD0/vvvGyRv8uTJqh0nn0S5C9vw4cMNkrly5UoCQF999ZXGPYVC0WAazM358+e17qaZmJhIAKh///4GyduwYQMBoAULFmjcKysrIwDk5eVlsJ03b96kvLw8jesKhaLR9rAx7t27RxkZGVrvGSNTKpUSALK3t9d6PyEhgbKzsw220xwo06fN53Jzc+nmzZsGyzRX/TY3zT4giIiIoP/85z/WNqPFkZ2dTQEBAXT79m2Dfrdt2zYKCwvTusVvRUUF9enTh06fPm2QzBMnTlCfPn2osrJS415dXR0NGjSIfvnlF4NkWptly5bR+PHjtd7LyMggf39/Sk5OZkxfWVkZ9erViy5cuGDQ744cOUJBQUFUXV2tca+2tpYGDhxIv/32m0EyY2JiqHv37pSfn2/Q76yFTCaj8PBw2rp1q0G/u3PnDgUEBFBmZqbGPYVCQWPHjqUVK1YwZSYREb3zzjv0zjvvMCrzk08+obFjxxr8u8GDB9NPP/3EqC3mYObMmTR79mxGZVq6fjNFsz7ciIWFhYWFhYUZDDuIuxmg7xHASkw5bcoQXcaeMNdUZTYXzOEPlvQxU/U3l/K0VJqsXXb6wvpt0zgBUR+aSx3TC2t3UTBJVlYWCQQC1ZiQPn8CgcCo08wM1aWPnuYis7lgDn+wpI8xob85lKel0mTtsrOmndZOe3PxW2vnk7VpNj0E+kRtSUlJqK6uxr59+xrcfvbJ5yMiIiASiQyO8EQikd669NVjbZmXL1/G/PnzcfnyZZ3PKtfgP3kIkDakUins7Ox0PmeITH2eNYc/GJKfgGF5qk8+GZImZXqaenkakyZz11lA/7JjOu8M9Vt97DSHTKDplXFjmOMdwnT9VmKtXodmERBkZ2ejR48eqK6u1ut5sVgMmUwGgUAADocDb29v2Nra4v79+3B3d0d8fDx8fX1hb29vsm18Ph8ODg5QKBQaei5fvgw/Pz+9nUBJUlIS+vbtCyJSybxy5QqcnZ2Rm5urscWmPjSUJ1euXIG7uzuSkpKwdOlSAEBERIROeVwuV+912TweD3K5nFGZhjwrFotRXV0NDw8PtTxNTEwEESE3NxdOTk4G5alYLIZCoYBEIoG7u7tG2UdFRcHR0RHLli0DoF+e6ptPSv3ayjMxMRE8Hg+FhYV49OgRuFxusyhPQLvf379/H25ubrh16xY8PT3h4OCgt7yGEIvFiI2NRXh4uNY6lpmZCQcHByxfvhyA7rIzR94p7ZTJZJDL5XBxcdHwsatXr8Le3t4gH1PWBT6fD2dnZ61to1Qq1VumoWUsFovB5/NhY2Oj1mZeuXIFRISKigqD2zZ9MOYd0lj9vn37NmpqasxWvwUCAZKSkiweFDSLgEDfyF4ZWYaGhuLatWsoLS3F1KlTUVVVhfLycgCPj/iUSCQoLy+Hn5+fybbFxcUhNTVVQ09aWhrs7e3B5XI1Nv7RRV1dHQ4dOqQm08fHByKRCJ06ddLbqetTXFyMc+fOYdiwYejQoQPKy8tRXl6uOr2Oy+VCKpUaFMHr8+zJkyexcuVKvcuOSf26/MHJyUmVp8oTFPVFl4/Z2dmhsrISEonELPnUUHlKJBLw+Xy0atUKPj4+UCgUjOa9OcpTKVOb3wOPz7GwsbEBj8dDp06dGpWlD8XFxeDxeCgpKdGoCzY2NujatStsbW1RU1Nj1bxrzMeSkpLA4/FQWlqql4/pK9Pb2xvJyckGyTSkzoaGhuLSpUsa+n18fPDw4UNMnToVcXFxjcoyBibfIWlpaeBwOKiqqmK8fte3gekeEn1oFgGBkry8PHTo0AElJSWQSCTIz89HYGAggoODwefzVWdXR0VFITQ0FCUlJYiPj9d4js/nG7VDmDa8vLwQGhqKpKQkNZv69esHPp9v1I5rumRGRUWp7Y+tDwKBAKGhoSguLkZubq5K5sCBA8Hn81Ub++jK4/rbmOp69tKlS6qgS9+y00d/aWmpQTIb84fOnTsjJiYGUqlUdTytPujyMeBxd6K+adI3n5QyGypPpY/U30iGybxnujzr+4guvxcKhaqT+ExBV11ITEzEpUuX9LJfubmOrueioqIMzjsulwsfHx8EBQVp5InS1l27duklU7nRkz4y//nnH71kKjff0SePlG2Grrp44cIFjR0YmUTf+tVYPin98bffftM77/Ut+8TERLP0kOhLswoIxGIxjh8/Dj8/P9TU1CAkJAQ8Hg8XLlyAg4OD6jS34cOHo1+/fg3KCQ0NBQBGIlF9dBmqR5fMsWPHMi5TuUtXQ3l85MgRyOVyBAQE4MGDB40+e+zYMbRu3RqlpaX4999/AQCJiYkQCASq53x8fFBQUAChUAiRSISioiK9nhOLxaojd7U9m5aWBi6Xi5ycHNXJirrSPmLECACG+YMumeHh4apuZ11+KxKJVOfDa0tTRkYGampqUFJSguLiYr30v/rqq9i/f79B+WSqnYbI1OYjutI0atQoi9RZZdk1lE6lPxYXF6vGpHXlXWFhoeql3Fgd69Kli9rhZhMnTmw0LUOGDNFLf/3dQXXJfOGFF/TyW+UXs67niouLVVux61MXzdFDoESXrfU/FHXlk3L3zoZkXrx4Efb29ga1gwKBwKQjxU2lWexDYOj4z4oVKyCVSjUKKDc3FykpKRg4cCBSU1NRW1uLJUuWIDY2tlEn1UZcXBxCQkLwxhtvYNCgQRp6XFxcUFRUpCrgiIgInXqUMhuyPy0tDV26dEFycjLKysqwdOlSxmTGxcVh2bJlejujtcecDXlWWxmlpaWhuroaXbp0UU2MKi4u1ukP+uSnQCBAu3btcO3aNaxcuVLv7Z8NGWPUVZ75+fm4desWvvvuO73yydrlCehOU2ZmJgoKCvTye200VmfT0tJUAW9SUhKICPPnz9er7Mw1h6Ch/EhJSUG7du1QWFiI6upqLFiwQG8fa0hmYWEh7O3tkZ+fj7KyMnzyySeMp70x/fXLOD8/H8uWLTOqjBuCqXeIMp+UQxCG5H1zmEPQLAICQL8Zonl5eZgyZQpqamr0lmtsxhvqYProaQoy7e3tERkZqXPWcHNYZWAOfzA0PwH981SffDI0Tc2hPA1Nk6XqLKBf/jGdd8b4rS47zSFTKRdoOmXcGOZ6hzBZv5VYa5VBswkI9EVZ6NXV1Rg9ejTGjh2LhQsXAgBWrlyJuLg4HDt2TDXOy9QmJ3v27MHPP/+M1atXY8GCBTh69KjaqXPGbCJ0+vRprFixAj///DPee+89bN++Xe0QJ2NkxsXF4d1331XJ/PLLLzF69GiDZTYX6qediDBixAi8+uqruHnzJtzd3bF27Vq1543Z4GXq1Kno2bMnamtr8fDhQ9XYoiEyDaG+/gcPHmDy5MnYvHkzFi9ejA8//BDTp083m25zUT9NR44cwddff42tW7fi/fffx549e9SOD2aizmZmZmLSpElYuXIlxo8fDyLC9OnT4ebmhq1btzKiyxSe9LGIiAj4+fmBy+UiPT1dNRykxBi//fjjj1FdXY0+ffrg6NGjOHv2rNrpk+b02+rqagwbNgzLly/Hb7/9hmeeeQaLFy82m25j7QQe1+9evXpBKpVapH5bFSvsfWARNm/eTDweT23DiFu3bhEA2r9/P+P6xo8fT8899xyVlpYSANq9e7fJMj/44APq1q0byWQycnFxoa+//tpkmatXryZnZ2eSyWQUEBDwVJ0DkZycTADozJkztHz5cvL29jb5EB2xWEwcDod27txJW7ZsIRsbG637/puLX375hbhcLpWVldGQIUNo8uTJFtNtLt566y0KDg4miURCdnZ2tGnTJsZ1vPvuu+Tt7U0SiUR17cCBAwTAqgeiaaOyspJ4PB5t27aNfv75Z+LxeFoPzTEEhUJBXl5etHLlSjpx4gQBoPT0dIYs1s2FCxcIAN25c4feeOMNgw+OshRlZWVWrd+Wptkff6wNmUyGDRs24LXXXlOL3IKCgvDCCy9g7dq1Rp3h3hBEBKFQiLCwMLi5uaFXr16MHO2pPDOex+Nh0KBBjMiMjo5Wnc8eHh6uOgL5aUB5PntoaKjq6F7l5DdjuX79OogI4eHhCA8PR11dHW7evMmMwXogFArRp08fuLi4ICwsDEKhkFHftgbR0dEIDw+HnZ0dBgwYwLiPFhQUYM+ePZg3b55aF+6UKVPQsWNHrFu3jlF9pnLjxg3I5XKVj8nlcpOPh05PT0dRURHCwsIwaNAgAJY9jlgoFKr2UwkPD0d8fLzWI52tzbVr16xavy1NiwwI/ve//yErKwuLFi3SuLd48WLcunUL58+fZ0xfRkYGCgsLVWdfM/GiraioQEJCgmoma3h4OIRCoUETeJ6kfuACPJ4le/v2bdVs4ZZOdHQ0evfuDVdXV9UZ9aaWU3R0NFq1agV/f3/07t0bTk5OFm1Yo6Oj1Xzk0aNHyMrKsph+phGJREhNTVXz0ejoaEaDnB9++AF8Ph9z5sxRu87n87FgwQL8/vvvyM7OZkyfqURHR8PV1RU9e/ZEjx494ObmxojfcjgcDBo0CB4eHujZs6dFPw6io6MxePBgcLlchIWFQS6X48aNGxbTry9CodCq9dvStLiAgIiwdu1aPP/88wgODta4P2LECAQHB2uMHZuC0kGUkXZYWBju3r1r0l4HMTExUCgUqiAjLCwMpaWlSElJMVpmamoqSkpK1AIXhUJh8tdGc0HZ4wIArVq1Qvfu3U2u3MoAi8PhgM/nM9aTow8ikQgpKSmqNCmDnObcYF29ehUA1Hz00aNHqiXFplJVVYWtW7fi3Xff1bre/Z133oGLiws2bdrEiD4mEAqFqpcnl8vF4MGDGfHbXr16wc3NDQBUvUuWQKFQ4OrVq6qgr1evXnB1dW2SvZXWrN/WoMUFBBcvXkR8fLzW3gEA4HA4WLx4Mc6dO4eEhARGdEZHR6Nnz56qBkbp6MrGzViZbm5u6N69O4DH+xlwuVyTKo3yq0C5D4O/vz88PDyaZEVkmpKSEiQlJanKBvi/r09jkclkuHbtmlaZlui2V/qXUr+npyf8/f2bdXlGR0fDx8dHNdTHVE+Okp07d6K8vBzz58/Xet/JyQnvv/8+duzYwdjmZaagUChUAYGSsLAwXL161aTewvo9S0qZd+7csUia7927h7KyMpV+ZZDT1PxWLpdbtX5bgxYXEKxduxZBQUF4/vnnG3xmypQp6NChA2NjhfW/PAGga9eu8PLyMimSVEamXO7jInJ2dkZgYKBJMqOjoxEYGAgXFxcAUHXXNbWKaA6e/PJU/r8pQyZ37txBZWWlhszi4mKkpqaaZrAeCIVCtG3bVm07X+XQUnNFOX9AOdvdy8uLsSBHJpNh48aNmDp1Kjp27Njgc3PnzkVtbS22bdtmsk5TSU5Ohlgs1vCxsrIyo3ZBBYDS0lLcu3dPQyYR4fr16ybbrAuhUAgej6faDA1gJshhmtu3b6OiosJq9dsatKiAIDExEWfOnMGiRYvUls88iY2NjWqs0NSuSLFYjLt376pFkRwOx6QXrVwuV+tSU2Lqy7v+/IH6Mq9du6b3hhnNFaFQiDZt2qidXxEWFgYiwrVr14yWaWNjg/79+6uuhYaGgsPhWOSlrPzKq+/rYWFhattLNydqa2tx48YNrT7KRH5GRkYiMzNTbXmbNry9vTFjxgxs3rxZ701nzEV0dDS4XK6qVw94vKsoj8czui14smcJALp16wZPT0+LfBxER0cjKCgITk5Oqmvh4eEQi8VITk42u359sXb9tgYtKiBYv3492rdvj6lTp+p8dtasWXBycjJ5rLD+LNT6hIeH4/r165DJZAbLvHfvHsrLy7XKTE1N1bm5hjaKi4uRnJysVWZFRQXu3LljsMzmxJNfngAQEBCAVq1aGV25o6Oj0a9fP7UT+FxdXdGnTx+zN6zKl6e28lQoFBb50mOauLg4SKVSrWlKSEgwKchRzi0aOXKk1rlFT7Jw4ULk5+drrPe3NEKhUOPl6ejoiODgYKP9VigUonXr1ujSpYvqmvIjxhIvuid7VAHTgxxzYM36bS1aTEBw48YN7N+/H/Pnz4eNjY3O55Vjhdu2bTOp+yc6OhpeXl7o2rWr2vXw8HBUV1cbNU8hOjoaPB4PAwYM0JAJGDdpTNtXAQD0799f7ZCWlkh2djYuX76smo+hxJSenIqKChw9elSj3AHLTNCKj4+HRCLRKM+AgIBmOy9EKBTCwcFB44UdFhZm8uTXPXv2IC4uTmfvgJLu3bvj5ZdfxldffYWysjKj9ZpCVVUVIiMj0a1bN417xvqtQqHAL7/8gq5du2r0ooaHh+PatWtGfcToS0FBAdLT0zUCAicnJwQFBTWpdkhbjypg2QmYlqbFBATjx4+HXC7HlClT9P7NhAkTUF1dbdBvnuTy5csYPHiwRuXq168fbGxsVIdaGMKlS5cQFBQER0dHtesdOnRA27ZtjZIZFRWFNm3aaBwfKxAIEBwcbJTM5sLZs2ehUCi0ntOgHLs0tBFMTk5GdXU1SkpKtMpMSkpSHURkDv7991/Y2dmhb9++ate5XC4GDRqkOrWtOXHp0iX0799fI6Dv3r07XF1dERUVZbTsmTNnAgBGjhyp92+effZZPHjwAEuWLDFaryncv38flZWVqoO/6hMWFoaMjAzk5+cbJLOyshIFBQWqLYeflFlVVaU6bdEcKP2yoRdtU/Hbhw8fIjMzs0E7zV2/rYY1dkMyB59//jm9++67Bv1GoVDQa6+9Rhs3bjRKZ1JSEgFocJctAGRoFpeXlxMAat26tdb7XC6XABi0w55CoSAAxOFwtN739vYmACQWiw2ytblQV1dHmzdvJrlcrnHv22+/JQC0atUqg+V+//33VFNTo3H9+PHjBICmTJlilL360JhvBQcHEwBKS0szm36mKSgoIADUqVMnrfeNqUv1mT59On377bcG/aayspKee+45OnXqlNF6TWXLli1UVVWlcf3s2bMEgMaNG2ewzF9++YUKCws1rj948IAAUK9evYyyVR+cnJwIANXV1WncmzFjBgGgQ4cOmU2/vowePZoA0MWLFzXuWaJ+W4sWExBYg7KyMmrTpg39+eefWu9PmzaNnn32WYNkyuVy6tixI61fv17r/YULF1KfPn0MtjUwMJAWLFig9d6mTZuoQ4cOWl+YLZ0HDx5QmzZt6OzZs4zJLCsro/bt29OOHTsYk/kkQ4cOpenTp2u9d+DAAfL29jZ5e1tLIpVKqV27drRt2zat9+fMmUMhISEWtqrpUllZSR06dKAff/yRMZl1dXXUq1cvWrZsGWMyn6SxNvHq1avk5eVFycnJZtOvL99//z116tRJazBmifptLVrc4UYsLCwsLCwshsO3tgH6os/RlUqMOQWQKZks1sGQslRizAlxpspjYR5Dy57pctdXJhO62LaNxaxYu4tCH7KyskggEKjGEXX9CQQCtVMOLSWTxToYWpb6linrI00fY8qe6XI3pezZto2lKdEseghEIhGqq6uxb98+9OjRo9Fnk5KSEBERAZFI1GjUa4zMy5cv63xWKpWqnaDGxLPKGcFt27a1isym/gVhSFkq+X/t3XtYVOedB/DvXICZQe6ggEpExAhRBEYBzzEbVvNosonZbarS3aXb7do2zfO027Rp5Wld6m662cbEfWLSbbZNnmZ7ISEm1ibW2JrESzRz5CKDYnCMCIHxMgMMF5G5cZmzf/DMKeMAcwYG5szw+/ylcw7vvGfe33nP79ze9+zZs3jqqaembFODwSC6XDHljRfoM71Qas9AbpM/beRe31f/4G88ie1zZvpdYvshf34Tf/o2YHauUIjts2YjbmejnkDw97HpComEwG10dBROpxOxsbFITU1FZGQkmpqaMDIygsHBQVitVtEHBLf+/n64XC44HA4kJCQI5X7yySfQaDQYHBxER0cH5HI5ysvLfZanUChEj/ondl25XC56SM/ZKFOj0cBgMEg+wHNycmCxWJCamoqIiAi4XC6POFEoFOjo6IBKpcIPf/hDABDVpv39/WhoaBCGdx0fI9HR0ejs7ERFRYXo8gBxv6nRaEROTg5sNpvP8kKlPWdrm/r7+6FUKr3ava2tDQkJCaitrUV/f7/Xq7y+yhweHhYGBbq73U0mE5KTk/3ucyb7rsliTKPRwOFw+NUPucuc6Ddx95kjIyO4dOmSX2UGOm4B8X1WoON2tuoJhE6febeQSgiam5vR0dGBsrIyWK1WDAwMYMGCBTCbzbDb7Vi6dKnfZfb09OD48eN44IEHEBMTg4GBAWFse7PZjIyMDNxzzz1wuVw+M+5jx46hsrJSVGYudl13Bh+sMmdy9hMMJpMJ9fX1eOCBB5CRkSG0p8PhwODgIFauXAme52G320X/TsXFxaipqcHvf/97j9hLT0/HjRs3kJWVBafTGfAzSrFnj6HUnoHepvFtdObMGfT19Xm0EQC0tLQgOjoaS5cuRWRkpOi6utv97jLT09NhsVgQHR2NzZs3Q6/Xi/8BJtHT0wOFQoHe3l6PuI2MjITVakViYqLofsjXb7JgwQJYLBb09/dDrVaLKnN8uYG8+upvnxXIuJ2Nes5WXedKSCUEZWVlKCws9Pp87dq1wr/93TkfffRRn2W2tbUBGDvYZGRkoLe3Fw6HA2azGXl5ecjPz4dSqcTw8LCo9U6fPi2Mqe9rXfcgIb7WO3PmjOgy3aNs+VqvqakpIGc/c+krX/mKz3XcMeJr+92DpMjlcnzrW9+asKy1a9eKLq+pqQl9fX1+/6a+yr106ZLo75dKe/qqq3tUQrH7x1RtNJ4//YPYMgNhsn5ovNbWVgDi+gJAXP0dDoeoMqcTO2LK9LcfnA2BrGddXZ1k9rHpCKmE4OTJk7BarVM2nL8jXfkq88yZM2hsbAQwNnmSRqOB3W6HVqtFeno6Ojs7wXEcLBYL+vr6AIxdqjty5AgyMzOFdRUKBY4fP47Y2Fjcvn1bGBlwojJbWlogl8tx/fp1tLe3T1nmiRMnoFarcePGDWH2s6nq2dPTI9wzm6zMP/zhD8jKysL169dDblavw4cPIyUlZcod1t2xTvQ7tba2wm63o7e3VxiJzFeMuA9eU/2eo6OjWLJkCdrb2/2epW6q9hwcHERXV5fP75dae/ral9xn97626datW0KZvtqe4zikpKSIrqOY/mZwcNCvMqf7XeOHyp3ot7t58ybOnTuH3t5eYfRMX2WOj8PZiB0xZU7VD46Ph4lGawwUX32rxWJBQ0PDpPXs6uoCx3Ho6+uD0+n0e/RIKQmJcQj0ej20Wi2+/OUvo6SkxKPRWlpaoFAokJWVhebmZty+fRsVFRVoaGiYMuOeqszW1lYMDw8jJycHV69exbVr17Bv3z5R9zPpGYK5527LPXv2wOl0eu3Y7hhJSUmB2WxGT08PKisrRc9kN1W5WVlZaGhowI9+9CO/ZsajZwgCu02+2qi9vR3R0dFwOp0oLy+fsn8QG0/Lli2DwWDAnTt3sHv3bp99znS/y13/K1eu4Pnnnw/Yb3Lt2jV8+umnePnllwMaO/QMgfT7zMmERELgb8PNRtCqVCocOnTI51Pc9JbB3PO3Ld18tanJZMKOHTtgt9sDUt549JZBYLbJ3zYCfPcP04mn6R4AZqMfCqW4BegtAykJiYQA8Gy4o0ePYu/evThw4ACeeuopVFdXY+XKlcK60wnauro6PPnkk/jZz36Gb3/723jppZewceNGv8skwXH3jt3S0oIvfelLePHFF/Hd734Xe/fuxWOPPebxN/4OUNPX14cHH3wQzzzzDPbt24evfOUr2LVrl1/lkcC7u+1feukl/PnPf8ZXv/pV7N+/H2fOnIFKpRKWT2dgourqarz00kt49tlnsXv3bhw9etTjABqogYnu3LmD0tJS/PjHP8ZLL72EsrIyPPHEE35/z/gyXS4X/vqv/xpf/vKX8eGHH+K+++7Dj3/844DUnYSZoI2AMAPf+MY3+NzcXN5qtfJKpZJ/5ZVXZlzmM888w8fHx/MjIyP8woUL+R/96EcBqCkJlv/93//lFQoFPzg4yK9evdrvia8m8sc//pEHwLe1tfFbt27l/+Zv/iYANSWBxrIsv3PnTr6xsZEHwH/88cczLnPnzp08y7J8V1cXD4B/8803A1BTb3/+8595APyVK1f4bdu28Q8++OCMy7x06RIPgD9x4gT/zW9+k8/JyQlATUk4CsnpjzmOA8uy0Gg0KCwsDMjc7zqdDgzDQKFQgGXZsJ3ver7gOA4FBQWIjo4Gy7IBi5G0tDQsW7ZMiBGx917J3HA6nTh//jwYhsGaNWuwYMGCgOzL7j4nJSUF2dnZs9Y/cByHpKQkrFy5EgzDoKamRvR966nKVCgUKCoqAsuyMBgME07bTUjIJQT9/f1obm4W5qlmGGbGO6fL5cK5c+c8yqytrRVeIyShx53gAWPtefnyZeEtkOniOA4Mw0Amk4FhGPT39+PKlSuBqC4JEL1eD6fTCZZloVAoUFJSMuNk0Gg04saNG0I8BSrBnIg7bmUyGViWxeDgoPBa6UzKXLt2LRYsWCBsw7lz5wJRXRJmQi4hqKmpAc/zYFkWwNjO+fnnnwsPIE1Hc3MzBgYGPMq02+2z+u4rmT1msxltbW0e7QnMrBMcGhpCXV2dUFZxcTHkcvmsHRjI9HAcB41GI4wj4r6Sw8/gUSn3Ccf4BPPixYsYHByceYXHGRkZQW1trRBj69atQ0RExIxPeNxXNwAgMzMTqampFLdkQiGXEOh0OiQnJ2PFihUA/rKTziTA3ZfU1q9fDwAoLCxEVFQU3TYIUXd34MuXL8eiRYtmFCMXLlyAw+EQylywYAHWrl1LHavE6HQ6rF+/HhEREQDGYqC3txefffbZjMrMzs4WxhtgWRYulwu1tbUBqbPbpUuXMDg4KMSYWq2e8S3Rrq4uXLt2TSjTfXWL+jYykZBLCNzZrkwmAwCkp6dj2bJlMwpwnU4n3G8GgKioKKxbt452mhDFcRwyMjKwZMkSAIHpBHU6HVQqFQoKCoTP6FkTaeF53uNsGABKSkogk8lm1E53l7lq1SrEx8cHvO05jkNERATWrVsnfDbTuHX/7fj6syyLuro6uiVKvIRUQuC+pObOdt0CsdMEukwSPJO150w6QY7jsH79eo+x8BmGQUtLy6yOokbEa2trQ2dnp8fBLzY2FmvWrJn2Wfbg4CAuXrzoEU9yuRwMwwT86pBOp4NWq4VarRY+Y1kW7e3tHiMy+lvmkiVLPOZ5YRiGbomSCYVUQtDU1ASr1eqxwwNjO41er/drcBK3zs5OtLa2TljmjRs3YDQaZ1RnMrccDocwa9x4LMvCZrPh4sWLfpfJ8zx0Ot2EZQKgxFEi3O1QUlLi8flMruTU1tZidHR0wgTz3LlzAX3LZLJE1r1sumXeHbcFBQWIioqi213ES0glBK+++ioUCgW0Wq3H5wzDYHh4GOfPn/e7zLvvN7u5O5Vf/epX06wtCYaDBw9iaGgIxcXFHp/P5LmQjo4OmEwmrxhZunQpFi9eTAmBROh0OuTm5iIxMdHjc4ZhcOXKFWFuCn+8+uqr0Gg0XhPWsCyLgYEBNDc3z6jObjdv3kRHR4fXwTstLQ2ZmZnTOng7HA7hFczxoqKisGrVKvz617+eSZVJGAqphOD//u//MDo66jWFqft9408++cTvMj/55BOP+81u7ucJXnnllelXmMy5l19+GQAQExPj8bn7uZDpxggAbNiwweNz96th0ymTBN74V03Hm8lbJm+//TZsNhvkcs+ucv369VAoFAE7y3aXM1H9p3t7Qq/XY2hoyCvJAIBr167h4sWL9BwB8RTccZH8c/DgQb66unrCZQqFgvd3c0ZGRngAfFxc3ITLX331Vf7YsWP+VpME0fnz5/mf/vSnEy7Lzc3lAfBdXV1+lRkREcED4F0ul9eyRx55hAfA6/X6adWXBMaHH37IA+D/+Z//2WvZ0NAQD4BPSEjwu9zXX3+df++99yZcBsDvPmcyGo1m0hj74he/yAPgOY7zq8wVK1bwAHiLxeK17OLFi/wzzzwz7fqS8BRS0x/v3Llz0mXbtm1DU1OTX+XJ5XIsXLgQ27Ztm3D517/+db/KI8Gn1Wq9bim5/f3f/z327dsnXP0Rq7CwEC6XS3izZbydO3fi5MmTiI+Pn051SYCkpKRApVLhC1/4gteyiIgI5Obmipq8525f/epXJ11WWloqemIcXwoKCmCz2SaMsR07duD9999HUlKS32UODQ1NGJt5eXnIy8ubbnVJmAqZyY0IIYQQMntC6hkCQgghhMwOyd0y8Gd+aiDwU3cG+/uJb9RGJJDmUzz5s62hvJ1keiSVEBiNRuTk5MBms4n+G5VKhUOHDk15f9A9z4Gve4gmkwk7duzwazwDjUYDg8FAO84cma0YAcZmyouKihJVpth1qVMNPLEHNTFtNJ19Xmw8TdT2/hyQxcaY2PX83Vbq2+YfSSUEFosFNpsNFRUVyMnJgUajAQAkJSUhIiICN2/eRExMDC5fvgwAqKyshMPhwKOPPjpluXK53K8BRCoqKpCdnY24uDjwPO/1/bdu3YJMJkNXVxf27NkDi8VCO80cGR8jE7XRhQsXoFar0dXVhaGhITz33HOiYgQAFAqF6Klmxa5LnWpg+ZMQ+tOeFRUVKCgogFKphMvl8trnL126BLVajYqKCtHxdHfb+5vMiq2/P9sJjPWbWVlZ0Gg0Xtv52WefYdGiRQCA8vJy6tvmGUklBG7bt29HTU0NjEYjysrKoFKpMDo6itjYWFgsFqxcuRKDg4NwOp2oqqpCW1sbBgYGwDAMIiMj4XK5YLVa0d3djcTERJSXl6Oqqgo5OTl4//33fa6r0WhgNptx7733IiMjA6OjoxgYGMDQ0BCcTifWrFmDkpIS6PV67NmzJ9g/17zkjpFbt25NGCNqtRojIyOiYoRlWRw7dgyVlZUBXdcdT9SpBo47IfT129++fduvNnLHU19f34TxlJeXh+7ubtHxZDAYvNpebN39iTGx2zm+zPvvvx9XrlzB7du3sXbtWqhUKixZsgQDAwMAgEceeQR6vT6YzUyCRJIJgVwux7e+9a0p13EHrMlkQmlpKXp7e+FwOGA0GpGXl4eNGzdCqVTinXfeEdbLyMhAXl6ex3r5+flQKpU4c+YMrl+/DgB49NFHUVhYOLsbSWYkkDFSV1eHzMxMUes2NTWJXtcdeyTwfP32P/3pT0Wt526jQMbT5cuXvUY29Kfu/sTj/v37Ra135swZocykpCR8+9vfnrBu7mmjyfwkyYTg5MmTsFqtQnCbzWaPg3dTUxNaW1sBjD0XEB0dLbxbnp2dDQD4/PPPAUC4t+ZrvbS0NPT394v6fo7jsHXr1rn5MciEfLVRXV0dDAYDAN9tn5CQIIxi52tdtVrtETNiYo8Enq/f3n270Z82Onz4MFJSUiaNqTNnzogqMyIiQoi96dTdn3h0T/Mspn9rbGwEIG7fSUhI8NECJBxJMiHo7+/HkSNHkJmZCbvdDq1WC4VCgT/84Q9QKBTIyspCe3s7oqKiUF5e7rM8uVwuaj1f33/y5EmoVCpYLBa88847GBoamslmkhmYqo1GRkbgcDhgt9tFxwgwdi9W7LpiY0qj0SA5OVlUmcS35ORk0W3qT3sePnwYTqfTI57S09PR2tqKrq4uOBwOREVF+RVPd7d9cnIyNBpNwGPMn+0ExiaJ02g0HtvZ0tICuVyO9vZ24ZYpmX8kNTBRIJ8g7+7uRkpKCgCgubkZiYmJEz4VPH49k8mE7du3w+FwiP5+emhsbs1WjHR3dyM2NnbSs3qx6969Xk5ODsVGgE32pP502nM6+7zYeJqo7ad6y2C6MSY2bpubm/HEE0/QWwZkUpJKCADvHebf//3fcfXqVRQVFeGDDz7AsWPHPNafzXEIRkZGUFpaiq997Wt4++23sWXLFjz11FOz+v3Et/Ft9D//8z9466238Kc//QkxMTE4evQo9u7di4MHD2LFihUAqI3I1O7uc773ve/BarViyZIl+PTTT3Hw4EGP9UM5nsZv6549e3D9+nXk5eXh7NmzeO+99zzWDeXtJNMjuYTgbitXrsTWrVuxadMmPP744zAajVi6dOmcfHdjYyMKCwtx9uxZ/PznP0dHRwdNdSshd+7cQUZGBv7lX/4F//3f/w0AGBoaQlZWFjZv3kzTuxK/8TyPRYsW4Rvf+AaysrKwa9cu9PX1IS4uLthVC7jMzEz83d/9HTZs2ICysjKYzWbhlUMyP0l66OLu7m60tLSAYRhhWtC5PCBzHIeIiAhotVowDIOGhga/Li2S2fWrX/0Kg4ODHldtIiMj8dRTT+HNN9/EzZs3g1c5EpKuXbsmvKbHsix4nkdNTU2wqxVwt27dQnt7O1iWDUrfSqRJ0gmB+0lblmWxaNEiZGVlBWz+cTE4joNWq4VarQbLshgaGqL3cyViZGQEL774Ir70pS95XTH6+te/DrVajZdffjlItSOhyn1QLCkpQXZ2NpKTk8PyQOneJoZhsGTJEmRkZMxp30qkSdIJgU6nw+LFi4UOn2XZOQ1anU4nZM95eXmIjo6mnUYi3nnnHRiNRnz/+9/3WhYbG4tvfvOb+MUvfiEMtkKIGDqdDvfddx8SEhIgk8nAMExY7vM6nQ7Lli1Deno6gLG+NRwTH+IfSScEHMeBZVlhjnCGYXDx4kUMDg7O+nffunULHR0dYFkWAKBUKlFcXByWnUOo4XkeL7zwArZs2TLpQCrf+c53YLfb8dprr81x7Ugo4zhOOAkAxvqc2tpajIyMBLFWgTfRdp4/f55uic5zkk0InE4n6uvrPYKWZVmMjo6ivr5+1r/ffeC/e6fhOA4Sfw4z7J08eRKNjY34wQ9+MOk66enp+Md//EccOHAAw8PDc1g7Eqr6+/vR3Nzs1ecMDg7i0qVLQaxZYNntduj1eq++bXh4GA0NDUGsGQk2ySYEjY2NcDqdwhk6AOTm5iIuLm5OztI5jsPy5cuRmpoqfMayLLq7u4VREklwvPDCC8jPz8fmzZunXO/pp5/GjRs38NZbb81RzUgoG//MkptWq0VERERYXU6vr6/HyMiIx3bSLVECSDgh0Ol0UKvVHpeE5XI5NmzYMCc75/jnB9xKSkqEZSQ4mpqacPz4cXz/+98XbiVNZvXq1Xj44Yfxwgsv0FUd4hPHcUhJSRHGrwDGhqrWarVhtc9zHIcFCxZgzZo1wmfuW6LhlPgQ/0k2IeA4DkVFRcJY3W7r16/Hxx9/PKsPi9lsNjQ2NnolBPHx8bjvvvtopwkSnuexb98+LF26FDt37hT1Nz/4wQ9w6dIlHD16dJZrR0Kd+yTg7kRTq9Xiww8/DJv76zqdDiUlJVAoFB6fux8spOR5/pJkQsDzPHQ6ncclLbeuri5hCtHZMtElNbe5ftOB/MXBgwfx5ptv4oEHHvBKFCdTWloKpVKJxx57bJZrR0LZyMgIamtrJ9zn3aP7HT9+PAg1Cyye54WHte/GMAy6u7tx7dq1INSMSIEkE4LXX38dnZ2dE864tW/fPjz22GMoKyubte/ftWsXAHhcOnTTaDRobm7Ghx9+OGvfTyaWmJiIhIQEr+GjpyKTyfDkk0/SEKxkSs899xxsNhsWLlzoteyXv/wltm3bhi1btgShZoH1yiuvoLe3F4mJiV7L7r33XgDAE088MdfVIhIhyYRAqRybhHHDhg1ey+Li4vDee+8hKSlp1r5/4cKFiI+Ph1qt9lrmvo3g6/41CbwtW7agt7cXWq3Wr797+eWX0dHRMUu1IuEgKioKMpkMxcXFXsvS0tJw5MiRCfuDUDNV35qamoqoqCia+ngek+xcBi6XC3J5cPIV908y2UE/mHUjhMyO+bJfT7WdLpcLMpmMTnjmKckmBIQQQgiZO8pgV0CsqeYRvxtN2xma/GljQFw7z0aZZH6gPofMN0FNCMTucCaTCTt27IDdbhdVrkajgcFgCOjBwul0Iioqyud61DFMj9FoRE5ODmw2m+i/8dXOs1EmCW3B7nPmymz0bQD1b+EuaAnBdDrrXbt24aGHHgLP80hKSkJERAQuXLgAtVoNuVyOrq4uLF26FOXl5bBYLFMGrr/fr1AoMDo66nM9qXUMocJiscBms6GiogJKpRL5+fke7Xzz5k3ExMSgsbER6enp6Onpwe7du6ds5/FlZmdnQ6lUQqPReJXZ2dkJmUwGk8mEPXv2+IwdEpoC2edoNBrcvHkTsbGxSElJEdXnzJXZ6tsA6t/CXdASAndnXVVVhba2NgwMDIBhGERGRsLlcsFqtQrzkhsMBpSXl6OsrAyrV69GWlqaUM7999/vUa7Y6Yn9+f5jx46hsrLS57qJiYmS6hhC0fbt27F06VK4XC6PdnZ75JFHAIhvZzFluun1euzZs8f/SpOQMJ19PpB9zlyZjb5tfD9M/Vv4CvozBCaTCaWlpejt7YXD4YDRaEReXh42btwIpVKJpqYm9PX1AQCSkpLw0Ucfoa+vDw899BBUKhVGR0cxMDAAi8UCp9PpMfdAoL4/MzNT1LpvvPFGwH+f+eZPf/oT4uLi8NBDD2F4eNijfZVKJWQyGf7qr/7KrzLlcjk++OCDSeOmv78fixcvRmRk5CxtFZESf/b5mpoaGAwGr7gxm82IiIjApk2bgrw1kwtk39bU1IScnJwgbxGZbUFPCDZt2oTCwsJJl7MsK7z/e/LkSRQXFyM2NhaNjY0wm83Iy8tDfn4+li9fjsuXL8/K97e3t4tat6ioyO/vJ57UajUKCgpgMBjgcDiENi4sLBQ6puPHjyMlJUV0mWLipri4WHJnemR2+LPPTxaPRUVFUCqVeP/996e86hRMgezbWJal/WMeCHpCcPjwYVRXVyMzMxN2ux1arRYKhQItLS1QKBRYuHAhTp8+DWBsgJDo6GhER0cDALKzswEAn3/+OQAgIiICBoMhIN/f2dkJtVoNi8UiTAl64MABlJSUeKzX1dUFlUqFvr4+XL16NUC/yvzlq43VajXUarVf7SwmbvR6vd+xQ0KTP/u8r9hJS0uTbNz4s51T9cNZWVm4fv069W/zQNDGIfD3wRe5XA6XyyVqXTEPvtBDhdJCbxmQ2RbsPmeu0EOFZLqCOjCRP6/GmEwmAGMZ+YkTJ7B79278x3/8B/bu3YvXX39dmCa5u7sbOTk5ogKWXjuUlvHtMTIygtLSUuzatQu//e1v8dhjj+G73/0ugLE2TklJmdY4BH/7t38LhmGg1+uxYsUKPPvss36XSULXdPf5d999F//5n/+Jf/u3f8NPfvITfPTRR0hISJBs3NBrh2Q6QnKkwqeffhqHDh3ChQsXkJiYiN/85jf4p3/6p2BXiwTQhQsXUFBQgDNnzuD555+H0+nEBx98MKMyu7q6sGjRIlRXV+P06dM4e/YsmpubA1RjEs527dqFhoYGvPvuu8jMzMSRI0ewbdu2YFeLkIAKyYG73VMjJyQkIDc3FxzHBbtKJMB0Oh0iIiKwbt06MAyDmpoa0Zc1J+OOE4ZhwLIsLl++jN7e3kBUl4Q5d59zzz33ID09naZAJ2Ep5BICu90OvV4vzDrIsiztnGGI4zgUFhZCrVaDZVncuXMHn3766YzLXLJkCTIyMoT4qampCUR1SRizWCz47LPPwDAMZDIZGIahkxASlkIuITh//jyGh4fBsiyAsbO95uZm9Pf3B7diJKB0Op1w0F63bh2USuWME7/xZS5fvhwLFy6kZJL4dO7cOQB/mfqcYRjU19djaGgomNUiJOBCLiHgOA7R0dFYs2YNgLGdk+d5OtMLI7du3UJHR4eQ9Gk0GhQWFs7o4O10OnH+/HmhTJlMRleXiCgcxyEtLQ3Lli0DMHZV0uFw0Hv5JOyEZEJQUlICpXJsCIXs7GwkJyfTJbww4j5Iu8/I3P+eSRs3NDRgaGjIq8y6ujoMDw9Pv7Ik7LmvLMlkMgBAfn4+VCoV9Tkk7IRUQsDzPDiOE87yAAj39OhML3xwHIfMzEyPEeDco6rdunVr2mVqNBrh9VR3mXa7HRcvXpxxnUl4GhoaQn19vUefExkZiaKiIkoISNgJqYSgpaUFFovF4ywPGOvYa2trMTIyEqSakUAaf6/fzf3/6XbCOp0ORUVFiIiIED4rLCxEVFQUJZNkUo2NjXA4HBPGo06nQwi+tU3IpEIqIThy5AgAoKSkxONzhmFgtVrR1NQUjGqRALLZbGhsbPQ4IwOA9PR0LF26VIgBf0x0ZQkAoqKisG7dOjrTI5PiOA4qlQoFBQUen7MsC7PZLMwFQEg4CKmE4Ic//CEAICYmxuPzdevWISIigjr2MHD+/HmMjIx4HbwB4Pr16/jd737n91lZW1sburq6vM7ygLGOneKGTIbjOBQVFXnNhLlhwwZhOSHhIqQSgqeffhrf+c53IJd7VlulUmHBggWoqKgIUs1IoPzrv/4rZDIZ7r33Xq9lr7zyCrZv3y483CXW9773PQBAbm6u17L09HTcuHEDb7/99vQqTMJWV1cXDh06JExsNF5SUhLUarUwnDYh4SDosx3647nnnpt0WVxcHMxm8xzWhswGq9UKuVzudUYGAE8++SSefPJJv8t0j1Ex0ZTJ7iTh5s2bfpdLwpvdbgeAScfu12g09IYKCSshOZfBRIaHh2G1WhEfHx/sqpAZsNls4Hl+wrOy6RoaGoLdbkdcXNyEy3t6epCUlBSw7yPhY6rYGBoagtPp9LqFSUioCpuEgBBCCCHTJ7lbBv5M2wnQdJzhjuKBEELmhqQSAqPRiJycHNhsNtF/o1KpcOjQIY9BbCZCBwppEXOgN5lM2LFjh3AvVwyx8UBzwJPxxCaeFDcknEnqloFer4dWq0VFRQWys7MRFxcHnueRlJSEiIgI3Lx5EzExMbh16xb6+/tRWVkJp9MpqmyNRgODwUA7qAT4m/hVVFQgNzcXLpcL0dHRQjxcuHABarUag4ODMJvNOHDggOh4UCgUoqdTptgJb/7EI8UNCWeSukLgtn37dixduhQul2vSMz29Xo/du3ejqqoKbW1tGBgYAMMwiIyMhMvlgtVqRXd3N1iWhcFgQHl5OSwWC+2cEmCxWGCz2Xy2XWJiIsrLyyeNh/vvv1/4t16vx759+0TFw7Fjx1BZWUmxQwCIj8fbt29T3JCwJsmEQC6X44MPPkBfXx8eeughqFQqjI6OYmBgAGazGfHx8bhy5QqAscvKpaWl6O3thcPhgNFoRF5eHjZu3AilUgmO45CTkxPkLSIT8dV2b7zxBgDf8eBwOGC1WkWVefr0aWRmZopat6mpiWJnHvEVD/v37xe1Xl1dHcUNCUmSTAgAIDo6GsuWLYPBYIDD4YDZbEZeXh6KioqgVCrR2NgIANi0aRMKCwsnLWfr1q00TalE+Wq7oqIiAMDJkydRXFyM2NhYNDY2CrGQn5+P5cuXo6mpCT09PaLK3LZtm5Bo+FqXZVmKnXnEVzysXLlS1HqbN2+muCEhSbIJweOPPz7lcvfB4vDhw6iurkZmZibsdju0Wi0UCgXMZjN4nsfQ0BCuXr06F1Umfpqs7To7O6FWq3H+/HkA4g7carVaVJlmsxl1dXUAgAMHDqCkpMRjvZaWFmRlZeH69etwOp1QqVSz/0MQSZgoHtxxY7FY0NDQAGDyGGttbYVarcbw8DD1OSQkSfKhwj179sDpdHrtcO7OuqOjA93d3cJ6YtADPtLh70OFk8XDtWvXEB0dDYfD4Xc80MNhxI0eKiRkjKQSAnrtcP6g1w6JlNBrh4RILCEAvHfMf/iHf8DKlStRVFSEyspKnDhxwmN4Ytrpwtv4eOB5Hg8//DAefvhhJCUl4ec//znOnj0LpfIvd74oHgghZHoklxCMNzg4iLi4OPziF7/A5s2bkZWVhaNHj+KRRx4JdtVIEBiNRtxzzz149913sWjRImzYsAG1tbXC8ySEEEKmT9LTH9fW1sLlcoFlWWRmZiI1NRU6nS7Y1SJB4p57nmEYFBYWIioqiuKBEEICRNIJAcdxiI+Px6pVqyCTycAwjHBQIPOPTqdDdnY2UlJSEBkZifXr11M8EEJIgEg6IdDpdGAYBnL5WDVZlkVdXR3NQT5PcRwHhmGE/7MsC51OBwnf9SKEkJAh2YTA5XLh3LlzHgcAhmFgt9tx4cKF4FWMBMXg4CAuXrwIlmWFzxiGgclkQkdHRxBrRggh4UGyCUFzczMGBgY8DgB033j+qqurw+joqFeCCIBuGxBCSABINiHgOA4KhQLr168XPqP7xvOXTqdDfHy8xxjxycnJWLlyJSWIhBASAJJNCHQ6HQoKChAdHe3xOd03np9OnTqFkpIS4XkSN5ZlKUEkhJAAkGxCcPcDZG4Mw+DWrVswGo1BqBUJho6ODpw6dQptbW1eyxiGQVNTE+7cuROEmhFCSPiQZELw0UcfobW1VZimdrz8/HwAwN69e+e4ViRY0tLSkJ2djf/6r//yWrZ69Wq4XC48//zzQagZIYSED0nOdlhbWwsASE9P91qWkJAAAML0xyT8RUZGTjp73OLFiwFAmMGQEELI9Ehy6OLR0VE0NDRMOiTtZ599hqSkJCQnJ89xzYgUNTU1Yfny5ViwYEGwq0IIISFLkgkBIYQQQuaWJG8ZkPlJ7BS0bjSzISGEBE5QEwJ/DgA0D3l4MxqNyMnJgc1mE/03KpUKhw4dQlpa2pTrUTwQQohvQbtl4O8BQKFQYHR0VNS6Go0GBoOBDgIhRK/XQ6vVoqqqymPwoYmYTCZ88YtfhNPpFFU2xQMhhPgWtCsEFosFNpsNVVVVaGtrw8DAABiGQWRkJFwuF6xWK7q7u8GyLI4dO4bKykpR6xoMBpSXl8NisdABIAT19/djeHhYeEAwNTUVkZGRaGtrQ0JCAurr63H79m04nU6KB0IICaCgP0NgMplQWlqK3t5eOBwOGI1G5OXlYePGjVAqlWhqahLGI/C1LsdxPs8uibQVFxejpqYGfX19KCsrg9VqxcDAAACgpaUFarVadDzU1dVRPBBCiEhBTwg2bdqEwsLCSZezLIv29nZR627duhV6vT7QVSRz6PTp0yguLkZvby8aGxthNpuRl5eH/Px8LF++HJcvXxbW9RUPmzdvpngghBCRgp4QHD58GNXV1cjMzITdbodWq4VCoUBLSwuysrJw/fp1fPzxx1Ou29nZCbVajZ6engmHtyWhw9dBvri4WDjIHzhwACUlJR6x0NraCrVajeHhYTidTqhUqrmqOiGEhDR6qJBIgvuhwj179sDpdHolfe4DvdPpRHd3t7CeGBQPhBDiW1AHJqLXDokbvXZICCHBRSMVEskYnyAajUZ84QtfwM9+9jP8+te/RmxsLPbv3++xPh3oCSEkcIL+DAEhbhkZGcIB/tKlSwCA8vJymM1mvPbaaygoKIBMJgtmFQkhJGxJcvpjQnQ6He677z7Ex8eDYRh0dXXRA6OEEDKLKCEgksRxHFiWBQBs2LABwFiSQAghZHZQQkAkp6+vD83NzWAYBgCQkJCA3NxcSggIIWQWUUJAJKempgYAhITA/W+O44JVJUIICXuUEBDJ0el0SElJwYoVK4TPWJZFc3Mz+vv7g1cxQggJY5QQEMlxPz8w/o0ChmHA87xw9YAQQkhgUUJAJGVkZAS1tbUetwsAIDs7GykpKTh79myQakYIIeGNBiYiktLQ0IB169ZBp9N5JQVKpRKjo6NwuVw0HgEhhAQYXSEgkrJv3z7I5XLk5+d7Lfva176GVatWUTJACCGzgK4QEElJTExEX18fRkZGoFAogl0dQgiZN2joYiIpJ06cgNPppGSAEELmGF0hIIQQQghdISDS5s8U2QDNgEgIIdNFCQEJCjEHepPJhB07dsBut4suV6PRwGAwUFJACCF+ooSAzDmj0YicnBzYbDZR61dVVSEnJ8fnegaDAeXl5bBYLJQQEEKInyghIHPOYrHAZrOhqqoKbW1tGBgYAMMwiIyMhMvlgtVqRXd3NxITE1FeXo7+/n7YbDYolUrExMQgNTUVkZGRaGtrQ0JCAk6dOoXs7GyoVKpgbxohhIQsSghI0JhMJpSWlqK3txcOhwNGoxF5eXnYuHEjlEolfvOb3wAAiouLUVNTg76+PpSVlcFqtWJgYADA2FWBVatWged5ZGZmBnNzCCEkpFFCQIJm06ZNKCwsnHS5e6RCuVyO9PR0rF27FgaDAQ6HA2azGXl5eSgqKoJSqURdXR0iIyPnquqEEBJ2KCEgQXP48GFUV1cjMzMTdrsdWq0WCoUCZrMZPM/j6tWrwrqPP/74lGVt3rwZer1+tqtMCCFhixICMueSk5Oh0Wjw7LPPilp/ssShpaUFWVlZ6OjogMvlQkRExCzXnBBCwhcNTESCgl47JIQQaaGEgEja3YnD448/jqKiIiQmJuKNN97AqVOnIJf/ZY4uGpiIEEKmhxICEjIsFgtSUlJQVVWF1NRUPPjgg2hubkZubm6wq0YIISGPpj8mIePcuXMAAJZlUVRUBLlcDp1OF+RaEUJIeKCEgIQMjuOQlpaGe+65BzExMVi7di04jgt2tQghJCxQQkBChk6nA8MwkMlkAMbGKaArBIQQEhiUEJCQMDQ0hPr6emGwImDs1kFLSwu6u7uDWDNCCAkPlBCQkNDY2AiHwwGWZYXP3MkB3TYghJCZo4SAhASO46BSqVBQUCB8lpGRgcWLF1NCQAghAUAJAQkJHMdh/fr1HvMVyGQyMAxDCQEhhAQAJQRE8nieh06n87hd4MYwDOrr6+F0OoNQM0IICR+UEBDJO3XqFEwmE7Rardey4uJiOJ1OvPXWW0GoGSGEhA9KCIjkvfbaawCAqKgor2UxMTEAgF/+8pdzWidCCAk3NNshkbz9+/dj9erV2LZtm9ey1atX48UXX8SWLVuCUDNCCAkfNJcBIYQQQuiWASGEEELolgGRkLunOp6K0+mc8JmCidCUyIQQ4hslBEQSjEYjcnJyYLPZRK2vUCgwOjoqal2NRgODwUBJASGETIESAiIJFosFNpsNVVVVaGtrw8DAABiGQWRkJFwuF6xWK7q7u8GyLI4dO4bKykpR6xoMBpSXl8NisVBCQAghU6CEgEiKyWRCaWkpent74XA4YDQakZeXh40bN0KpVILjOGRmZopat6mpCTk5OUHeIkIICQ2UEBBJ2bRpEwoLCyddvnXrVrzxxhui1mVZFnq9PuB1JISQcEQJAZGUw4cPo7q6GpmZmbDb7dBqtVAoFOjs7IRarUZPTw90Oh0A4MCBAygpKfFYr6WlBVlZWbh+/TqcTidUKlWQt4gQQkIDjUNAJIEeKiSEkOCihIBIBr12SAghwUMJASGEEEJopEJCCCGEUEJACCGEEFBCQAghhBBQQkAIIYQQUEJACCGEEFBCQAghhBBQQkAIIYQQUEJACCGEEFBCQAghhBBQQkAIIYQQUEJACCGEEFBCQAghhBBQQkAIIYQQUEJACCGEEFBCQAghhBBQQkAIIYQQAP8P5yn21va/9+wAAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "tree.plot_tree(clf)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "id": "QQN2-a0dorFu" + }, + "outputs": [], + "source": [ + "decision_train_pred = clf.predict(train_x)\n", + "decision_test_pred = clf.predict(test_x)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "VAp47J6TorFu", + "outputId": "d82ff27f-694e-47c2-a42c-3f8d5265af24" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Decision Tree Training Accuracy: 100.0\n", + "Decision Tree Testing Accuracy: 73.0\n" + ] + } + ], + "source": [ + "print(\"Decision Tree Training Accuracy: \", round(accuracy_score(train_y, decision_train_pred), 2)*100)\n", + "print(\"Decision Tree Testing Accuracy: \", round(accuracy_score(test_y, decision_test_pred), 2)*100)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PbbF0VsCorFv" + }, + "source": [ + "\n", + "- Random Forest" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "id": "4IUxneQporFv" + }, + "outputs": [], + "source": [ + "rf = RandomForestClassifier(n_estimators=500, random_state = best_random_state)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 75 + }, + "id": "jlC_IHV1orFv", + "outputId": "e756eff0-f047-4caf-93be-615c45cd2c4d" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "RandomForestClassifier(n_estimators=500, random_state=91)" + ], + "text/html": [ + "
RandomForestClassifier(n_estimators=500, random_state=91)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ] + }, + "metadata": {}, + "execution_count": 38 + } + ], + "source": [ + "rf.fit(train_x, train_y)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "id": "vVXVMdGDorFw" + }, + "outputs": [], + "source": [ + "rf_train_pred = rf.predict(train_x)\n", + "rf_test_pred = rf.predict(test_x)" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6icezn_9orFw", + "outputId": "55688f9f-0236-4ce5-bee1-de5497cd32b8" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Random Forest Training Accuracy: 100.0\n", + "Random Forest Testing Accuracy: 73.0\n" + ] + } + ], + "source": [ + "print(\"Random Forest Training Accuracy: \", round(accuracy_score(train_y, rf_train_pred), 2)*100)\n", + "print(\"Random Forest Testing Accuracy: \", round(accuracy_score(test_y, rf_test_pred), 2)*100)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vqg0lFigorFw" + }, + "source": [ + "- SVM" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 75 + }, + "id": "j7BJiK7AorFx", + "outputId": "44959c84-2cf1-4fb2-80ab-f84798b8557b" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "SVC(kernel='linear')" + ], + "text/html": [ + "
SVC(kernel='linear')
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" + ] + }, + "metadata": {}, + "execution_count": 41 + } + ], + "source": [ + "classifier = SVC(kernel = 'linear')\n", + "classifier.fit(train_x, train_y)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "U4hdRnudorFx", + "outputId": "425d13c6-98ba-4878-ee41-824e9502896f" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "SVM Training Accuracy: 78.66\n", + "SVM Testing Accuracy: 77.27\n" + ] + } + ], + "source": [ + "print(\"SVM Training Accuracy: \", round(classifier.score(train_x, train_y)*100, 2))\n", + "print(\"SVM Testing Accuracy: \", round(classifier.score(test_x, test_y)*100, 2))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "13FNLw_dpqqP" + }, + "source": [ + "Deep Learing\n", + "*simple feedforward neural network" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "id": "13we5JS8p7g8" + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense, Dropout\n", + "from tensorflow.keras.regularizers import l2\n", + "from tensorflow.keras.utils import to_categorical\n", + "from tensorflow.keras.callbacks import EarlyStopping\n", + "from sklearn.preprocessing import StandardScaler" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": { + "id": "W2wjWgWaqdv9" + }, + "outputs": [], + "source": [ + "# Example: Let's assume train_y and test_y are not one-hot encoded\n", + "num_classes = len(np.unique(train_y))\n", + "train_y = to_categorical(train_y, num_classes)\n", + "test_y = to_categorical(test_y, num_classes)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "id": "hrI4nhHIqBGX" + }, + "outputs": [], + "source": [ + "# Feature scaling\n", + "scaler = StandardScaler()\n", + "train_X = scaler.fit_transform(train_x)\n", + "test_X = scaler.transform(test_x)" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "id": "c0VK1lgXqPaJ" + }, + "outputs": [], + "source": [ + "model = Sequential()\n", + "model.add(Dense(64, input_dim=train_x.shape[1], activation='relu'))\n", + "model.add(Dense(64, activation='relu'))\n", + "model.add(Dense(num_classes, activation='softmax'))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "id": "dSfi7fQfqmgJ" + }, + "outputs": [], + "source": [ + "model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "MBMroB0YqsZ4", + "outputId": "c54066b8-19fe-4678-d8a4-459388cd8d92" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/50\n", + "62/62 [==============================] - 2s 8ms/step - loss: 0.5957 - accuracy: 0.6840 - val_loss: 0.5412 - val_accuracy: 0.7273\n", + "Epoch 2/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.4757 - accuracy: 0.7720 - val_loss: 0.5210 - val_accuracy: 0.7532\n", + "Epoch 3/50\n", + "62/62 [==============================] - 0s 2ms/step - loss: 0.4538 - accuracy: 0.7850 - val_loss: 0.5201 - val_accuracy: 0.7468\n", + "Epoch 4/50\n", + "62/62 [==============================] - 0s 2ms/step - loss: 0.4388 - accuracy: 0.7915 - val_loss: 0.5247 - val_accuracy: 0.7597\n", + "Epoch 5/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.4307 - accuracy: 0.7866 - val_loss: 0.5279 - val_accuracy: 0.7662\n", + "Epoch 6/50\n", + "62/62 [==============================] - 0s 2ms/step - loss: 0.4207 - accuracy: 0.7964 - val_loss: 0.5310 - val_accuracy: 0.7468\n", + "Epoch 7/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.4150 - accuracy: 0.7980 - val_loss: 0.5400 - val_accuracy: 0.7597\n", + "Epoch 8/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.4071 - accuracy: 0.8078 - val_loss: 0.5323 - val_accuracy: 0.7532\n", + "Epoch 9/50\n", + "62/62 [==============================] - 0s 2ms/step - loss: 0.4025 - accuracy: 0.8029 - val_loss: 0.5421 - val_accuracy: 0.7468\n", + "Epoch 10/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.3974 - accuracy: 0.8078 - val_loss: 0.5525 - val_accuracy: 0.7597\n", + "Epoch 11/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.4050 - accuracy: 0.7948 - val_loss: 0.5457 - val_accuracy: 0.7208\n", + "Epoch 12/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.3864 - accuracy: 0.8257 - val_loss: 0.5597 - val_accuracy: 0.7403\n", + "Epoch 13/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.3785 - accuracy: 0.8127 - val_loss: 0.5829 - val_accuracy: 0.7468\n", + "Epoch 14/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.3723 - accuracy: 0.8290 - val_loss: 0.5896 - val_accuracy: 0.7403\n", + "Epoch 15/50\n", + "62/62 [==============================] - 0s 2ms/step - loss: 0.3726 - accuracy: 0.8192 - val_loss: 0.5749 - val_accuracy: 0.7597\n", + "Epoch 16/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.3626 - accuracy: 0.8208 - val_loss: 0.5774 - val_accuracy: 0.7403\n", + "Epoch 17/50\n", + "62/62 [==============================] - 0s 2ms/step - loss: 0.3535 - accuracy: 0.8306 - val_loss: 0.5938 - val_accuracy: 0.7468\n", + "Epoch 18/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.3567 - accuracy: 0.8339 - val_loss: 0.5932 - val_accuracy: 0.7338\n", + "Epoch 19/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.3440 - accuracy: 0.8371 - val_loss: 0.6072 - val_accuracy: 0.7273\n", + "Epoch 20/50\n", + "62/62 [==============================] - 0s 2ms/step - loss: 0.3373 - accuracy: 0.8534 - val_loss: 0.6110 - val_accuracy: 0.7273\n", + "Epoch 21/50\n", + "62/62 [==============================] - 0s 2ms/step - loss: 0.3321 - accuracy: 0.8485 - val_loss: 0.6200 - val_accuracy: 0.7143\n", + "Epoch 22/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.3202 - accuracy: 0.8648 - val_loss: 0.6396 - val_accuracy: 0.7273\n", + "Epoch 23/50\n", + "62/62 [==============================] - 0s 2ms/step - loss: 0.3208 - accuracy: 0.8518 - val_loss: 0.6470 - val_accuracy: 0.7078\n", + "Epoch 24/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.3131 - accuracy: 0.8762 - val_loss: 0.6404 - val_accuracy: 0.7078\n", + "Epoch 25/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.3087 - accuracy: 0.8697 - val_loss: 0.6449 - val_accuracy: 0.7078\n", + "Epoch 26/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.3016 - accuracy: 0.8664 - val_loss: 0.6817 - val_accuracy: 0.7338\n", + "Epoch 27/50\n", + "62/62 [==============================] - 0s 2ms/step - loss: 0.2962 - accuracy: 0.8762 - val_loss: 0.6971 - val_accuracy: 0.7273\n", + "Epoch 28/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.2981 - accuracy: 0.8664 - val_loss: 0.6788 - val_accuracy: 0.7078\n", + "Epoch 29/50\n", + "62/62 [==============================] - 0s 2ms/step - loss: 0.2851 - accuracy: 0.8746 - val_loss: 0.6976 - val_accuracy: 0.6948\n", + "Epoch 30/50\n", + "62/62 [==============================] - 0s 2ms/step - loss: 0.2750 - accuracy: 0.8860 - val_loss: 0.7293 - val_accuracy: 0.7078\n", + "Epoch 31/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.2686 - accuracy: 0.8876 - val_loss: 0.7208 - val_accuracy: 0.7013\n", + "Epoch 32/50\n", + "62/62 [==============================] - 0s 2ms/step - loss: 0.2639 - accuracy: 0.8876 - val_loss: 0.7449 - val_accuracy: 0.7078\n", + "Epoch 33/50\n", + "62/62 [==============================] - 0s 2ms/step - loss: 0.2555 - accuracy: 0.9039 - val_loss: 0.7383 - val_accuracy: 0.7078\n", + "Epoch 34/50\n", + "62/62 [==============================] - 0s 2ms/step - loss: 0.2496 - accuracy: 0.9023 - val_loss: 0.7726 - val_accuracy: 0.7013\n", + "Epoch 35/50\n", + "62/62 [==============================] - 0s 2ms/step - loss: 0.2442 - accuracy: 0.9137 - val_loss: 0.7973 - val_accuracy: 0.6883\n", + "Epoch 36/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.2488 - accuracy: 0.9007 - val_loss: 0.7848 - val_accuracy: 0.6948\n", + "Epoch 37/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.2414 - accuracy: 0.9072 - val_loss: 0.8017 - val_accuracy: 0.6948\n", + "Epoch 38/50\n", + "62/62 [==============================] - 0s 2ms/step - loss: 0.2313 - accuracy: 0.9055 - val_loss: 0.8272 - val_accuracy: 0.6883\n", + "Epoch 39/50\n", + "62/62 [==============================] - 0s 2ms/step - loss: 0.2235 - accuracy: 0.9218 - val_loss: 0.8343 - val_accuracy: 0.7143\n", + "Epoch 40/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.2213 - accuracy: 0.9235 - val_loss: 0.8287 - val_accuracy: 0.6818\n", + "Epoch 41/50\n", + "62/62 [==============================] - 0s 2ms/step - loss: 0.2214 - accuracy: 0.9153 - val_loss: 0.8593 - val_accuracy: 0.6883\n", + "Epoch 42/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.2112 - accuracy: 0.9251 - val_loss: 0.8627 - val_accuracy: 0.6948\n", + "Epoch 43/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.2081 - accuracy: 0.9300 - val_loss: 0.8830 - val_accuracy: 0.6623\n", + "Epoch 44/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.2052 - accuracy: 0.9137 - val_loss: 0.8844 - val_accuracy: 0.6494\n", + "Epoch 45/50\n", + "62/62 [==============================] - 0s 2ms/step - loss: 0.1966 - accuracy: 0.9300 - val_loss: 0.9286 - val_accuracy: 0.6818\n", + "Epoch 46/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.1934 - accuracy: 0.9300 - val_loss: 0.9353 - val_accuracy: 0.7013\n", + "Epoch 47/50\n", + "62/62 [==============================] - 0s 2ms/step - loss: 0.1858 - accuracy: 0.9414 - val_loss: 0.9280 - val_accuracy: 0.6688\n", + "Epoch 48/50\n", + "62/62 [==============================] - 0s 2ms/step - loss: 0.1847 - accuracy: 0.9349 - val_loss: 0.9669 - val_accuracy: 0.6948\n", + "Epoch 49/50\n", + "62/62 [==============================] - 0s 3ms/step - loss: 0.1748 - accuracy: 0.9365 - val_loss: 0.9919 - val_accuracy: 0.6494\n", + "Epoch 50/50\n", + "62/62 [==============================] - 0s 2ms/step - loss: 0.1766 - accuracy: 0.9300 - val_loss: 1.0252 - val_accuracy: 0.6688\n" + ] + } + ], + "source": [ + "history = model.fit(train_X, train_y, epochs=50, batch_size=10, validation_data=(test_X, test_y))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "mri-5gp8qxMR", + "outputId": "6d211131-6e56-4347-bb87-102b6aea1ae5" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "20/20 [==============================] - 0s 2ms/step - loss: 0.1642 - accuracy: 0.9446\n", + "5/5 [==============================] - 0s 3ms/step - loss: 1.0252 - accuracy: 0.6688\n", + "Training Accuracy: 94.46%\n", + "Test Accuracy: 66.88%\n" + ] + } + ], + "source": [ + "# Evaluate the model\n", + "train_loss, train_accuracy = model.evaluate(train_X, train_y)\n", + "test_loss, test_accuracy = model.evaluate(test_X, test_y)\n", + "\n", + "print(f'Training Accuracy: {train_accuracy * 100:.2f}%')\n", + "print(f'Test Accuracy: {test_accuracy * 100:.2f}%')\n", + "#overfitting model .........learning to much at time of training but not at the time of testing" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "uT4vjPoTtApP", + "outputId": "39616fa1-4c64-4643-ad32-d6c0d6f7ca70" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Epoch 1/150\n", + "31/31 [==============================] - 1s 9ms/step - loss: 1.0840 - accuracy: 0.6059 - val_loss: 0.8620 - val_accuracy: 0.7078\n", + "Epoch 2/150\n", + "31/31 [==============================] - 0s 4ms/step - loss: 0.8806 - accuracy: 0.7003 - val_loss: 0.7957 - val_accuracy: 0.7468\n", + "Epoch 3/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.8584 - accuracy: 0.6743 - val_loss: 0.7539 - val_accuracy: 0.7792\n", + "Epoch 4/150\n", + "31/31 [==============================] - 0s 6ms/step - loss: 0.7939 - accuracy: 0.7036 - val_loss: 0.7302 - val_accuracy: 0.7727\n", + "Epoch 5/150\n", + "31/31 [==============================] - 0s 6ms/step - loss: 0.7163 - accuracy: 0.7459 - val_loss: 0.7121 - val_accuracy: 0.7792\n", + "Epoch 6/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.7353 - accuracy: 0.7410 - val_loss: 0.6928 - val_accuracy: 0.7987\n", + "Epoch 7/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.7319 - accuracy: 0.7524 - val_loss: 0.6791 - val_accuracy: 0.7857\n", + "Epoch 8/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.6774 - accuracy: 0.7508 - val_loss: 0.6670 - val_accuracy: 0.7922\n", + "Epoch 9/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.6753 - accuracy: 0.7410 - val_loss: 0.6653 - val_accuracy: 0.7922\n", + "Epoch 10/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.6535 - accuracy: 0.7671 - val_loss: 0.6524 - val_accuracy: 0.7857\n", + "Epoch 11/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.6516 - accuracy: 0.7590 - val_loss: 0.6422 - val_accuracy: 0.7792\n", + "Epoch 12/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.6227 - accuracy: 0.7752 - val_loss: 0.6398 - val_accuracy: 0.7727\n", + "Epoch 13/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.6299 - accuracy: 0.7704 - val_loss: 0.6306 - val_accuracy: 0.7792\n", + "Epoch 14/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.5858 - accuracy: 0.7850 - val_loss: 0.6281 - val_accuracy: 0.7727\n", + "Epoch 15/150\n", + "31/31 [==============================] - 0s 4ms/step - loss: 0.5892 - accuracy: 0.7557 - val_loss: 0.6256 - val_accuracy: 0.7727\n", + "Epoch 16/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.5807 - accuracy: 0.7834 - val_loss: 0.6217 - val_accuracy: 0.7727\n", + "Epoch 17/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.5841 - accuracy: 0.7964 - val_loss: 0.6151 - val_accuracy: 0.7857\n", + "Epoch 18/150\n", + "31/31 [==============================] - 0s 4ms/step - loss: 0.5915 - accuracy: 0.7769 - val_loss: 0.6073 - val_accuracy: 0.7792\n", + "Epoch 19/150\n", + "31/31 [==============================] - 0s 4ms/step - loss: 0.5617 - accuracy: 0.7818 - val_loss: 0.6070 - val_accuracy: 0.7662\n", + "Epoch 20/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.5587 - accuracy: 0.7801 - val_loss: 0.6015 - val_accuracy: 0.7468\n", + "Epoch 21/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.5375 - accuracy: 0.7997 - val_loss: 0.5993 - val_accuracy: 0.7662\n", + "Epoch 22/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.5503 - accuracy: 0.7899 - val_loss: 0.5940 - val_accuracy: 0.7792\n", + "Epoch 23/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.5373 - accuracy: 0.7850 - val_loss: 0.5935 - val_accuracy: 0.7468\n", + "Epoch 24/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.5526 - accuracy: 0.7704 - val_loss: 0.5882 - val_accuracy: 0.7532\n", + "Epoch 25/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.5485 - accuracy: 0.7818 - val_loss: 0.5845 - val_accuracy: 0.7532\n", + "Epoch 26/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.5402 - accuracy: 0.7834 - val_loss: 0.5842 - val_accuracy: 0.7597\n", + "Epoch 27/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.5201 - accuracy: 0.7818 - val_loss: 0.5798 - val_accuracy: 0.7597\n", + "Epoch 28/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.5159 - accuracy: 0.7915 - val_loss: 0.5772 - val_accuracy: 0.7662\n", + "Epoch 29/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.5325 - accuracy: 0.7834 - val_loss: 0.5758 - val_accuracy: 0.7532\n", + "Epoch 30/150\n", + "31/31 [==============================] - 0s 7ms/step - loss: 0.5178 - accuracy: 0.7834 - val_loss: 0.5714 - val_accuracy: 0.7532\n", + "Epoch 31/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.5170 - accuracy: 0.7915 - val_loss: 0.5745 - val_accuracy: 0.7662\n", + "Epoch 32/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.5098 - accuracy: 0.7834 - val_loss: 0.5744 - val_accuracy: 0.7532\n", + "Epoch 33/150\n", + "31/31 [==============================] - 0s 5ms/step - loss: 0.5131 - accuracy: 0.7818 - val_loss: 0.5766 - val_accuracy: 0.7532\n", + "Epoch 34/150\n", + "31/31 [==============================] - 0s 4ms/step - loss: 0.5063 - accuracy: 0.7948 - val_loss: 0.5762 - val_accuracy: 0.7597\n", + "Epoch 35/150\n", + "31/31 [==============================] - 0s 3ms/step - loss: 0.5045 - accuracy: 0.7899 - val_loss: 0.5684 - val_accuracy: 0.7532\n", + "Epoch 36/150\n", + "31/31 [==============================] - 0s 3ms/step - loss: 0.4956 - accuracy: 0.7948 - val_loss: 0.5660 - val_accuracy: 0.7468\n", + "Epoch 37/150\n", + "31/31 [==============================] - 0s 3ms/step - loss: 0.5001 - accuracy: 0.7769 - val_loss: 0.5678 - val_accuracy: 0.7468\n", + "Epoch 38/150\n", + "31/31 [==============================] - 0s 4ms/step - loss: 0.4972 - accuracy: 0.7899 - val_loss: 0.5678 - val_accuracy: 0.7403\n", + "Epoch 39/150\n", + "31/31 [==============================] - 0s 3ms/step - loss: 0.4899 - accuracy: 0.7883 - val_loss: 0.5687 - val_accuracy: 0.7597\n", + "Epoch 40/150\n", + "31/31 [==============================] - 0s 3ms/step - loss: 0.4917 - accuracy: 0.7899 - val_loss: 0.5698 - val_accuracy: 0.7403\n", + "Epoch 41/150\n", + "31/31 [==============================] - 0s 3ms/step - loss: 0.4898 - accuracy: 0.7997 - val_loss: 0.5672 - val_accuracy: 0.7403\n", + "Epoch 42/150\n", + "31/31 [==============================] - 0s 3ms/step - loss: 0.5017 - accuracy: 0.7980 - val_loss: 0.5620 - val_accuracy: 0.7662\n", + "Epoch 43/150\n", + "31/31 [==============================] - 0s 4ms/step - loss: 0.4894 - accuracy: 0.7948 - val_loss: 0.5616 - val_accuracy: 0.7597\n", + "Epoch 44/150\n", + "31/31 [==============================] - 0s 3ms/step - loss: 0.4963 - accuracy: 0.8013 - val_loss: 0.5604 - val_accuracy: 0.7532\n", + "Epoch 45/150\n", + "31/31 [==============================] - 0s 3ms/step - loss: 0.4638 - accuracy: 0.7997 - val_loss: 0.5626 - val_accuracy: 0.7532\n", + "Epoch 46/150\n", + "31/31 [==============================] - 0s 3ms/step - loss: 0.4854 - accuracy: 0.7704 - val_loss: 0.5621 - val_accuracy: 0.7532\n", + "Epoch 47/150\n", + "31/31 [==============================] - 0s 3ms/step - loss: 0.4879 - accuracy: 0.7883 - val_loss: 0.5623 - val_accuracy: 0.7468\n", + "Epoch 48/150\n", + "31/31 [==============================] - 0s 3ms/step - loss: 0.4725 - accuracy: 0.8013 - val_loss: 0.5620 - val_accuracy: 0.7468\n", + "Epoch 49/150\n", + "31/31 [==============================] - 0s 4ms/step - loss: 0.4738 - accuracy: 0.8111 - val_loss: 0.5628 - val_accuracy: 0.7532\n", + "Epoch 50/150\n", + "31/31 [==============================] - 0s 3ms/step - loss: 0.4897 - accuracy: 0.7736 - val_loss: 0.5572 - val_accuracy: 0.7597\n", + "Epoch 51/150\n", + "31/31 [==============================] - 0s 4ms/step - loss: 0.4908 - accuracy: 0.7801 - val_loss: 0.5572 - val_accuracy: 0.7727\n", + "Epoch 52/150\n", + "31/31 [==============================] - 0s 4ms/step - loss: 0.4699 - accuracy: 0.7915 - val_loss: 0.5539 - val_accuracy: 0.7532\n", + "Epoch 53/150\n", + "31/31 [==============================] - 0s 3ms/step - loss: 0.4871 - accuracy: 0.7948 - val_loss: 0.5541 - val_accuracy: 0.7662\n", + "Epoch 54/150\n", + "31/31 [==============================] - 0s 4ms/step - loss: 0.4666 - accuracy: 0.7850 - val_loss: 0.5537 - val_accuracy: 0.7597\n", + "Epoch 55/150\n", + "31/31 [==============================] - 0s 3ms/step - loss: 0.4791 - accuracy: 0.7834 - val_loss: 0.5527 - val_accuracy: 0.7597\n", + "Epoch 56/150\n", + "31/31 [==============================] - 0s 4ms/step - loss: 0.4765 - accuracy: 0.7915 - val_loss: 0.5524 - val_accuracy: 0.7468\n", + "Epoch 57/150\n", + "31/31 [==============================] - 0s 3ms/step - loss: 0.4660 - accuracy: 0.7948 - val_loss: 0.5603 - val_accuracy: 0.7532\n", + "Epoch 58/150\n", + "31/31 [==============================] - 0s 3ms/step - loss: 0.4650 - accuracy: 0.7883 - val_loss: 0.5573 - val_accuracy: 0.7532\n", + "Epoch 59/150\n", + "31/31 [==============================] - 0s 3ms/step - loss: 0.4770 - accuracy: 0.7997 - val_loss: 0.5564 - val_accuracy: 0.7468\n", + "Epoch 60/150\n", + "31/31 [==============================] - 0s 3ms/step - loss: 0.4784 - accuracy: 0.7883 - val_loss: 0.5575 - val_accuracy: 0.7662\n", + "Epoch 61/150\n", + "31/31 [==============================] - 0s 3ms/step - loss: 0.4630 - accuracy: 0.7964 - val_loss: 0.5611 - val_accuracy: 0.7662\n", + "Epoch 62/150\n", + "31/31 [==============================] - 0s 4ms/step - loss: 0.4619 - accuracy: 0.7915 - val_loss: 0.5620 - val_accuracy: 0.7662\n", + "Epoch 63/150\n", + "31/31 [==============================] - 0s 3ms/step - loss: 0.4612 - accuracy: 0.7687 - val_loss: 0.5654 - val_accuracy: 0.7532\n", + "Epoch 64/150\n", + "31/31 [==============================] - 0s 3ms/step - loss: 0.4596 - accuracy: 0.7883 - val_loss: 0.5673 - val_accuracy: 0.7532\n", + "Epoch 65/150\n", + "31/31 [==============================] - 0s 4ms/step - loss: 0.4608 - accuracy: 0.8013 - val_loss: 0.5633 - val_accuracy: 0.7532\n", + "Epoch 66/150\n", + "31/31 [==============================] - 0s 4ms/step - loss: 0.4632 - accuracy: 0.7915 - val_loss: 0.5598 - val_accuracy: 0.7532\n" + ] + } + ], + "source": [ + "#using regularization , dropout , earlystoppinng for overfitting\n", + "# Build the model with regularization and dropout\n", + "model = Sequential()\n", + "model.add(Dense(64, input_dim=train_X.shape[1], activation='relu', kernel_regularizer=l2(0.001)))\n", + "model.add(Dropout(0.5))\n", + "model.add(Dense(64, activation='relu', kernel_regularizer=l2(0.005)))\n", + "model.add(Dropout(0.5))\n", + "model.add(Dense(num_classes, activation='softmax'))\n", + "\n", + "# Compile the model\n", + "model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n", + "\n", + "# Use EarlyStopping to prevent overfitting\n", + "early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)\n", + "\n", + "# Train the model\n", + "history = model.fit(train_X, train_y, epochs=150, batch_size=20, validation_data=(test_X, test_y), callbacks=[early_stopping])\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "dP0h9PDAsrbk", + "outputId": "8fa616c2-bb2f-4b7f-ac46-baead112545e" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "20/20 [==============================] - 0s 2ms/step - loss: 0.4426 - accuracy: 0.8029\n", + "5/5 [==============================] - 0s 3ms/step - loss: 0.5524 - accuracy: 0.7468\n", + "Training Accuracy: 80.29%\n", + "Test Accuracy: 74.68%\n" + ] + } + ], + "source": [ + "# Evaluate the model\n", + "train_loss, train_accuracy = model.evaluate(train_X, train_y)\n", + "test_loss, test_accuracy = model.evaluate(test_X, test_y)\n", + "\n", + "print(f'Training Accuracy: {train_accuracy * 100:.2f}%')\n", + "print(f'Test Accuracy: {test_accuracy * 100:.2f}%')" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "id": "3vnVSEv5w7yQ" + }, + "outputs": [], + "source": [ + "#saving to pkl file\n", + "pkl.dump(model, open('deeplearning.pkl', 'wb'))\n", + "# nb" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "_zNnNjwVorFy", + "outputId": "a53d6e1e-cc4c-4139-ae6e-a3d56cb9d1d7" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([ 10. , 139. , 80. , 0. , 0. , 27.1 , 1.441,\n", + " 57. ])" + ] + }, + "metadata": {}, + "execution_count": 53 + } + ], + "source": [ + "input_data = (10,139,80,0,0,27.1,1.441,57)\n", + "data = np.array(input_data)\n", + "data" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "gKucl9g3orFy", + "outputId": "1053ec1b-8127-4b8a-ebf9-b017a6035350" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but StandardScaler was fitted with feature names\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "std_data = scalar.transform(data.reshape(1, -1))" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "Q98ySHLOorFz", + "outputId": "2891824e-4941-4ba6-e8b2-5f2afdc02718" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([0])" + ] + }, + "metadata": {}, + "execution_count": 55 + } + ], + "source": [ + "prediction = rf.predict(std_data)\n", + "prediction" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0XbltysMorFz", + "outputId": "89f7149e-535a-4bf5-a491-bd82d56b6301" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "The patient does not have diabetes\n" + ] + } + ], + "source": [ + "if prediction == 1:\n", + " print(\"The patient has diabetes\")\n", + "else:\n", + " print(\"The patient does not have diabetes\")" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "HNMqeVbjorF0", + "outputId": "af17b1bc-0a84-474c-a58a-ac6279bd2826" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',\n", + " 'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],\n", + " dtype='object')" + ] + }, + "metadata": {}, + "execution_count": 57 + } + ], + "source": [ + "df.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "id": "cRBV717PorF0", + "outputId": "919759f9-1fa0-4e9d-896c-08ba569f6ed1" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "Text(0.5, 0, 'SkinThickness')" + ] + }, + "metadata": {}, + "execution_count": 58 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABl4AAAfKCAYAAAABNwP2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3Rc5Z3/8c+dGWnUe2+W5N4r2MZ0m2JiEoIDgYVACAkJCySBZLPxb5cNkA1mwwaSEC8pSyANSNjQA6YYYwwu2HLvVrN6733K/f0hW0HBTdJId0Z6v86556C5d575jMzx+Jnvfb6PYZqmKQAAAAAAAAAAAAyZzeoAAAAAAAAAAAAAowWFFwAAAAAAAAAAAB+h8AIAAAAAAAAAAOAjFF4AAAAAAAAAAAB8hMILAAAAAAAAAACAj1B4AQAAAAAAAAAA8BEKLwAAAAAAAAAAAD5C4QUAAAAAAAAAAMBHHFYH8Ader1cVFRWKjIyUYRhWxwEAAACGlWmaam1tVVpammw27sXCmTFnAgAAwFgzlHkThRdJFRUVyszMtDoGAAAAMKJKS0uVkZFhdQwEAOZMAAAAGKsGM2+i8CIpMjJSUu8vMCoqyuI0AAAAwPBqaWlRZmZm37+DgTNhzgQAAICxZijzJgovUt9S+aioKCYRAAAAGDNoGYWzxZwJAAAAY9Vg5k00dAYAAAAAAAAAAPARCi8AAAAAAAAAAAA+QuEFAAAAAAAAAADARyi8AAAAAAAAAAAA+IjD6gAAAADAYDQ1NamxsVGmaVodxe8YhqHY2FjFxMRYHQUAAACARZgznd5wzpsovAAAACDgVFVVqaurS+Hh4TIMw+o4fsc0TTU1Namrq0spKSlWxwEAAAAwwpgzndlwzptoNQYAAICA09HRwQTiNAzDUHh4uDo6OqyOAgAAAMACzJnObDjnTRReAAAAAAAAAAAAfITCCwAAAAAAAAAAgI9QeAEAAAAAAAAAAPARCi8AAAAAAAAAAAA+QuEFAAAAo055ebm+9a1vaebMmUpPT9e8efP0b//2b2poaDjrMUpKSpSUlKS9e/cOY1IAAAAAsAbzpuFD4QUAAACjSnFxsS677DIVFhbqV7/6lbZu3apHH31UGzdu1FVXXaXGxkarIwIAAACApZg3DS8KLwAAABhVvv/97ys4OFh/+ctfdN555ykjI0NLly7VCy+8oKqqKj388MOSpKSkJL3xxhv9njthwgQ9//zzkqQFCxZIkpYuXaqkpCRdc801fdc9++yzuuCCC5SRkaEZM2bo+9//ft+5srIy3XLLLcrOzlZubq6++tWvqqampu/8j3/8Y11yySV69tlnNXfuXGVnZ+t73/uePB6PnnjiCU2fPl3Tpk3T448/3i9bc3Oz7r33Xk2dOlW5ubm69tprtW/fPp/+7gAAAACMDcybhheFFwAAAIwajY2NWr9+vW677TaFhob2O5ecnKyVK1fqlVdekWmaZxzrrbfekiT93//9n/bu3aunn35akvT000/r+9//vr70pS9pw4YN+sMf/qCcnBxJktfr1S233KLGxka98soreuGFF3Ts2DHdcccd/cYuLi7WunXr9Pzzz+tXv/qVnn32Wf3TP/2TKisr9corr+j+++/X6tWrlZeX1/ec22+/XXV1dXruuef07rvvaubMmfrCF77AnWgAAAAABoR50/BzjOirAQAAAMOosLBQpmlq4sSJJz0/ceJENTU1qa6u7oxjxcfHS5JiY2OVnJzc9/jjjz+uO++8s9+kYO7cuZKkDz74QAcPHtT27duVnp4uSfrFL36hCy64QDt37uy7zjRN/exnP1NERIQmT56sJUuWqKCgQM8995xsNpsmTJigJ554Qh999JHmz5+vLVu2aOfOnTpw4ICcTqck6cEHH9Sbb76p1157TbfccssgflsAAAAAxiLmTcOPwgsAAABGnbO5M2swamtrVVVVpQsuuOCk548ePar09PS+yYMkTZ48WdHR0Tpy5EjfBCIzM1MRERF91yQmJsput8tms/V7rLa2VpK0f/9+tbe3a/Lkyf1er6urS8XFxb56ewAAAADGEOZNw4fCi5+obWhUd4/b6hj9OIMdSoyLtToGAADAWcvJyZFhGDp69OhJzx89elQxMTFKSEiQYRifmmi43af/99g/LsMfLIej/z/DDcM46WMn8rW3tys5OVkvvfTSp8aKjo72SSYAAM7El99d8J0DAFiHedPwo/DiJ7p73Hp9e77VMfpZsWCC1REAAAAGJC4uThdddJGefvppff3rX+/3D/7q6mr99a9/1XXXXSfDMBQfH6/q6uq+84WFhero6Oj7OTg4WFJv/+ETIiIilJWVpY0bN+r888//1OtPnDhR5eXlKi8v77t76/Dhw2pubv7UXVcDMWvWLNXU1MjhcCgrK2vQ4wAAMBS+/O6C7xwAwDrMm4af7cyXAAAAAIHjkUceUU9Pj774xS9q8+bNKi8v13vvvafrr79eKSkp+n//7/9Jki644AL99re/1d69e7Vr1y79y7/8i4KCgvrGSUhIUGhoqN577z3V1NSopaVFkvTd735XTz75pH7zm9+osLBQe/bs0f/+7/9Kki666CJNnTpVd955p/bs2aMdO3bo7rvv1nnnnac5c+YM+j1ddNFFWrBggW699VatX79eJSUl+vjjj/Xwww9r165dgx4Xo0d5ebluvvlmxcfHKzQ0VDNnztT27dv7zpumqf/4j/9QamqqQkNDtWzZslPe4QgAAIDRj3nT8KLwAgAAgFElNzdXb7/9tsaNG6evfvWrOvfcc/Wd73xHS5Ys0RtvvKHY2N62Jg8++KDS0tJ09dVX6xvf+Ib++Z//ud+dXg6HQz/60Y/0+9//XrNmzerbiPGGG27QD3/4Qz399NO64IILdNNNN6mwsFBS7zL33//+94qJidFnP/tZfeELX9C4ceP061//ekjvyTAMPffcc1q8eLG+9a1vafHixfr617+u0tJSJSYmDmlsBL7GxkYtWbJEQUFBevPNN3XgwAH95Cc/6ft/XZJ+/OMf6+c//7l++ctfauvWrQoPD9cVV1yhrq4uC5MDAADAKsybhpdhDtcOOgGkpaVF0dHRam5uVlRUlCUZyqpq/bLVWEYKE3kAAOB/CgsLFRkZaXUMv9fa2qrc3NxPPe4P//6F73z/+9/XRx99pI0bN570vGmaSktL03e+8x1997vflSQ1NzcrOTlZzzzzjG644YYzvgb/zwCQfPvdBd85AMDwYs509oZj3sSKFwAAAAAIYK+++qoWLFig6667TklJSZo7d65+85vf9J0vKipSVVWVli1b1vdYdHS0Fi5cqM2bN590zO7ubrW0tPQ7AAAAAJwdCi8AAAAAEMAKCwv15JNPauLEiXrrrbd055136pvf/KZ+97vfSZKqqqokScnJyf2el5yc3HfuH61evVrR0dF9R2Zm5vC+CQAAAGAUofACAAAAAAHM6/Vq3rx5evjhhzV37lzdcccd+trXvqZf/vKXgx5z1apVam5u7jtKS0t9mBgAAAAY3Si8AAAAAEAAS01N1bRp0/o9NnXqVJWUlEiSUlJSJEnV1dX9rqmuru4794+cTqeioqL6HQAAAADODoUXAAAAAAhgS5Ys0eHDh/s9duTIEY0bN06SlJOTo5SUFK1bt67vfEtLi7Zu3arFixePaFYAAABgLHBYHQAAAAAAMHj33nuvzjvvPD388MO6/vrr9fHHH+vXv/61fv3rX0uSDMPQt7/9bf3nf/6nJk6cqJycHN1///1KS0vTNddcY214AAAAYBSi8AIAAAAAAeycc87RSy+9pFWrVumhhx5STk6OfvrTn+qmm27qu+Z73/ue2tvbdccdd6ipqUnnn3++1q5dq5CQEAuTAwAAAKMThRcAAAAACHArVqzQihUrTnneMAw99NBDeuihh0YwFQAAADA2sccLAAAAAAAAAACAj7DiBQAAAGNCt9srl9szYq8X5LDL6Rj4fU5PPfWU/ud//kc1NTWaPn26Hn74Yc2bN28YEgIAAABAfyM5bxrNcyYKLwAAABgTXG6PXtp0YMRe7/PnTRvwJOLll1/WD37wAz366KOaN2+efv3rX+uLX/yiNm3apMTExGFKCgAAAAC9RnLeNJrnTLQaAwAAAPzEL3/5S91888268cYbNXnyZD366KMKDQ3Vc889Z3U0AAAAALBcoMyZKLwAAAAAfqCnp0e7d+/WhRde2PeYzWbThRdeqO3bt1uYDAAAAACsF0hzJgovAAAAgB9oaGiQx+P51PL4xMRE1dTUWJQKAAAAAPxDIM2ZKLwAAAAAAAAAAAD4CIUXAAAAwA/ExcXJbrertra23+O1tbVKSkqyKBUAAAAA+IdAmjNReAEAAAD8QHBwsGbPnq2NGzf2Peb1erVx40YtWLDAwmQAAAAAYL1AmjM5rA4AAAAAoNc3vvEN3XPPPZo9e7bmzZunX/3qV+ro6NANN9xgdTQAAAAAsFygzJksXfHywQcf6Oqrr1ZaWpoMw9DLL7/c77xhGCc9Hn300b5rsrOzP3X+kUceGeF3AgAAAAzdNddcowceeEA//vGPdemll2r//v16/vnn/W7ZPAAAAABYIVDmTJaueGlvb9fs2bP1la98Rddee+2nzldWVvb7+c0339Ttt9+ulStX9nv8oYce0te+9rW+nyMjI4cnMAAAAAJWkMOuz583bURfbzBuv/123X777T5OAwAAAABnNpLzptE8Z7K08LJ8+XItX778lOdTUlL6/fzKK6/okksuUW5ubr/HIyMjP3UtAAAA8ElOh01OB1scAgAAAMCpMG/yjYD5DVZXV+tvf/vbSStZjzzyiOLj4zV37lw9+uijcrvdpx2ru7tbLS0t/Q4AAAAAAAAAAIChsnTFy0D87ne/U2Rk5Kdakn3zm9/UvHnzFBcXp02bNmnVqlWqrKzUY489dsqxVq9erQcffHC4IwMAAAAAAAAAgDEmYAovv/3tb3XTTTcpJCSk3+P33Xdf33/PmjVLwcHB+vrXv67Vq1fL6XSedKxVq1b1e15LS4syMzOHJzgAAAAAAAAAABgzAqLwsnHjRh0+fFh//vOfz3jtwoUL5Xa7VVxcrMmTJ5/0GqfTecqiDAAAAAAAAAAAwGAFxB4vTz31lObPn6/Zs2ef8dpdu3bJZrMpKSlpBJIBAAAAAAAAAAD8naUrXtra2pSfn9/3c1FRkXbt2qW4uDhlZWVJ6m0D9sILL+gnP/nJp56/efNmbd26VZdccokiIyO1efNm3Xvvvbr55psVGxs7Yu8DAAAAAAAAAABAsrjwsn37dl1yySV9P5/Yd+XWW2/VM888I0l6/vnnZZqmbrzxxk893+l06vnnn9cDDzyg7u5u5eTk6N577+23fwsAAAAAAAAAAMBIsbTwcvHFF8s0zdNec8cdd+iOO+446bl58+Zpy5YtwxENAAAAAAAAAABgwAJijxcAAAAAAAAAAIBAYOmKFwAAAGCk9MijHq97xF4v2OZQsOwDes7mzZu1Zs0a7d69W9XV1XrmmWd01VVXDVNCAAAAAOhvJOdNo3nOROEFAAAAY0KP161XqnaM2Ot9LmWegm0Dm0R0dHRo+vTpuvHGG3XbbbcNUzIAAAAAOLmRnDeN5jkThRcAAADATyxdulRLly61OgYAAAAA+KVAmTOxxwsAAAAAAAAAAICPUHgBAAAAAAAAAADwEQovAAAAAAAAAAAAPkLhBQAAAAAAAAAAwEcovAAAAAAAAAAAAPiIw+oAAAAAAHq1tbWpqKio7+eSkhLt3btXsbGxysjIsDAZAAAAAFgvUOZMFF4AAAAAP7F79259/vOf7/v5P/7jPyRJX/ziF/XEE09YFQsAAAAA/EKgzJkovAAAAGBMCLY59LmUeSP6egO1ZMkS1dTUDEMaAAAAADizkZw3jeY5E4UXAAAAjAnBsivYZrc6BgAAAAD4LeZNvmGzOgAAAAAAAAAAAMBoQeEFAAAAAAAAAADARyi8AAAAAAAAAAAA+AiFFwAAAAAAAAAAAB+h8AIAAICAYxiG1RECAr8nAAAAYGxiLnD2huN3ReEFAAAAAccwDHm9Xqtj+DWv18tkCwAAABijmDOdneGaN1F4AQAAQMBJTk5Wa2srE4lT8Hq9am1tVXJystVRAAAAAFiAOdOZDee8yeHzEQEAAIBhFhoaqvT0dFVXV8s0TZmmaXUkv2EYhgzDUHp6ukJDQ62OAwAAAMACzJlOb7jnTRReAAAAEJBCQ0OVnZ1tdQwAAAAA8EvMmaxD4QUAAAAAAAB+yes1dai0WjvyK9Te2S2Xxyu3x6OEqHBNzEjUpIxExUawwhMA4F8ovAAAAAAAAMCv7Coo11/e360tB4+pqb3rtNdmJsbosvmTdMWCyZqYnjBCCQEAODUKLwAAAAAAAPAL1Y2t+tmLG7V2++G+x8JDgrVgUoYSoyMU5LDJbrOpor5FR8prVVbbrNLaJv127cf67dqPNS4pRp9dNEUXz8xRkMM+4Nd3BjuUGBfry7c0ZLUNjerucftkLH98fwAwGlF4AQAAAAAAgOWee2+nnnjlQ3X1uGUY0mcXT9fVi6ZpZm6qguwnL6K0dXbr9U179ZeN+1RS26RjNU164tUteuqtPM3KTdXUrOQBFWBWLJjgq7fjM909br2+Pd8nY/nj+wOA0YjCCwAAAAAAACxjmqZ+/vKH+t3b2yVJc8an6V+uv1hTs5LP+NyIUKfOnz5OTZ0udbvcOlxaoz2FlerodmnLwRLtKazUOZMzNTEjUTbDGO63AgCAJAovAAAAAAAAsIjH69Xq597Tix/ulSR98/Pn69bLFsgYRJHEGeTQrNw0TR+XoqMVddp5tFytnd3asKdQe4uqdN70cUqLj/b1WwAA4FMovAAAAAAAAGDEeb2m7n96rdZuPyzDkP79n5bp8+fPHPK4drtNUzKTNDEtQfuPVWnH0XI1tHbo9S0HNSkjUYumZikkOMgH7wAAgJOj8AIAAAAAAIAR97t3tmnt9sNy2G360W3Lddn8ST4d3263aVZumiZlJGr74TIdKKnWkbJaldQ0atHUcZqYnjColTUAAJyJzeoAAAAAAAAAGFv2H6vR/7y6SZL0/25c6vOiyyeFBAfp/Jk5+tx50xUbGaquHrfe312gN7YeVHN757C9LgBg7GLFCwAAAAAAAEZMZ7dLj/51ozxeU59ZOFWfO2/6iLxucmykVp4/U3sKK5V3tEzl9S36vw/2aO6EDM0Znyqbzbf3J9c2NKq7xz3kcVzuoY8BABhZFF4AAAAAAAAwIkzT1Prd+Wpo7VR2SpxW3XDpiLb7stlsmjMhXbmp8dq4r0jldc3afqRUhZX1umhWrk9fq7vHrde35w95nMtmj/NBGgDASKLVGAAAAAAEsAceeECGYfQ7pkyZ0ne+q6tLd911l+Lj4xUREaGVK1equrrawsQAxrLDpbUqq21WsMOuH3/1MwoLCbYkR1R4iK46d4oumTNBziCHGlo79PJH+/Tbt/PU2eOyJBMAYPSg8AIAAAAAAW769OmqrKzsOz788MO+c/fee69ee+01vfDCC9qwYYMqKip07bXXWpgWwFjV43Jr2+FSSdLNl87WhPQES/MYhqGJ6Qm6/qLZmpAWL1PSy5sP6os//IM+PlRiaTYAQGCj1RgAAAAABDiHw6GUlJRPPd7c3KynnnpKzz77rC699FJJ0tNPP62pU6dqy5YtWrRo0UhHBTCG7SqoUGePS9HhIfrMuZOtjtMn1BmkS+dO1IS0BG0/UqqyumZ942d/1TXnzdC3r71AUeEhVkcEAAQYVrwAAAAAQIA7evSo0tLSlJubq5tuukklJb13aufl5cnlcmnZsmV9106ZMkVZWVnavHmzVXEBjEGtHV3aW1QpSVo4NUtBdrvFiT4tKzlWv/jnq3X9RbMlSS9v2qdrHnhGL3+0T16vaXE6AEAgofACAAAAAAFs4cKFeuaZZ7R27Vo9+eSTKioq0gUXXKDW1lZVVVUpODhYMTEx/Z6TnJysqqqqU47Z3d2tlpaWfgcADMXWQyXyeE2lx0dpXFKs1XFOKcwZpO/fcKme+s71yk2NU1Nbpx764zv68qPP68CxU/+9CQDAJ9FqDAAAAAAC2PLly/v+e9asWVq4cKHGjRunv/zlLwoNDR3UmKtXr9aDDz7oq4gAxriqhlYVVjbIkLRo2jgZhiGv16uyqlqfjO9yu30yzifNnZCu5/7tZv15/S796m9btK+4Sl/6r+d07fkzdddnlygmYnB/vwIAxgYKLwAAAAAwisTExGjSpEnKz8/XZZddpp6eHjU1NfVb9VJdXX3SPWFOWLVqle67776+n1taWpSZmTmcsQGMYjvzyyRJkzOTFB8VLklyeTx6Z0ehT8a/bPY4n4zzj4Lsdt28bL6uOGeyfvriRr358SH9deNevbvjqP756vN0zfkz/LJlGgDAerQaAwAAAIBRpK2tTQUFBUpNTdX8+fMVFBSkdevW9Z0/fPiwSkpKtHjx4lOO4XQ6FRUV1e8AgMFoaO1QaW2zDElzJqRZHWdQEqMj9KPblus3912nCekJam7v0urn39P1D/1B7+QdYf8XAMCnUHgBAAAAgAD23e9+Vxs2bFBxcbE2bdqkz3/+87Lb7brxxhsVHR2t22+/Xffdd5/Wr1+vvLw83XbbbVq8eLEWLVpkdXQAY8CewkpJUnZKnKLCQixOMzTzJ2bo2VU36XtfvESxEaE6VtOof/3fv+lL//Wsth48ZnU8AIAfsbTw8sEHH+jqq69WWlqaDMPQyy+/3O/8l7/8ZRmG0e+48sor+13T0NCgm266SVFRUYqJidHtt9+utra2EXwXAAAAAGCdsrIy3XjjjZo8ebKuv/56xcfHa8uWLUpMTJQkPf7441qxYoVWrlypCy+8UCkpKXrxxRctTg1gLOjo6lF+RZ0kaVZuqsVpfMNht+mGi+fo1R9+RV//zCKFOYN0sKRGd/78RX3jp/+nA8eqrI4IAPADlu7x0t7ertmzZ+srX/mKrr322pNec+WVV+rpp5/u+9npdPY7f9NNN6myslLvvPOOXC6XbrvtNt1xxx169tlnhzU7AAAAAPiD559//rTnQ0JCtGbNGq1Zs2aEEgFAr/3HquX1mkqOjVBybKTVcXwqPCRYX1+xWNddOFtPrf1YL3ywWx8fLtXNjzynpXMn6M6rz1OwYXVKAIBVLC28LF++XMuXLz/tNU6n85SbPh48eFBr167Vtm3btGDBAknSE088oauuukr//d//rbS0wOwdCgAAAAAAEMhcbk/f6o9ZOaP3+5m4qDD9y/UX66alc/Xka5v1xscHtW5nvtbvKtDFs3KUHBelyABvsQYAGDi/3+Pl/fffV1JSkiZPnqw777xT9fX1fec2b96smJiYvqKLJC1btkw2m01bt2495Zjd3d1qaWnpdwAAAAAAAMA3jpTVqtvlUVSYU+NSYq2OM+zS4qP1wy9fqT//25d0yZwJ8pqm3ttdqD+/v1sf7itSR1eP1REBACPIrwsvV155pX7/+99r3bp1+q//+i9t2LBBy5cvl8fjkSRVVVUpKSmp33McDofi4uJUVXXqnpqrV69WdHR035GZmTms7wMAAAAAAGCsME1TB45VS5Jm5KTKZoydnlsT0hP0k69frd//642ak5sq7/HfxXPrd2nb4VK53B6rIwIARoBfF15uuOEGffazn9XMmTN1zTXX6PXXX9e2bdv0/vvvD2ncVatWqbm5ue8oLS31TWAAAAAAAIAxrq65XY1tnbLbDE1KT7A6jiVmZKfooS8t1YqFU5UUEyGP16ud+eX6y4bdyq+ok2maVkcEAAwjvy68/KPc3FwlJCQoPz9fkpSSkqKampp+17jdbjU0NJxyXxipd9+YqKiofgcAAAAAAACG7nBZrSQpOyVOwUGWbi9subSEaH3uvOm6fP4kRYY61d7Vo/d25uv1LQfU0t5ldTwAwDAJqMJLWVmZ6uvrlZqaKklavHixmpqalJeX13fNe++9J6/Xq4ULF1oVEwAAAAAAYEzyeLwqqOjdn3dyRqLFafyDYRjKTonTdRfN1oJJGbLbbKpsaNX/bdyjA8eqWf0CAKOQpbcdtLW19a1ekaSioiLt2rVLcXFxiouL04MPPqiVK1cqJSVFBQUF+t73vqcJEyboiiuukCRNnTpVV155pb72ta/pl7/8pVwul+6++27dcMMNSktLs+ptAQAAAAAAjEnHahrV7XIrPCRYaQnRVsfxKw67TfMmZmhCeoI27C5QZUOrPtxXpOLqBl0ye4JCnUFWRwQA+IilK162b9+uuXPnau7cuZKk++67T3PnztV//Md/yG63a8+ePfrsZz+rSZMm6fbbb9f8+fO1ceNGOZ3OvjH+9Kc/acqUKVq6dKmuuuoqnX/++fr1r39t1VsCAAAAAAAYs46U1UmSJqYnyGYYFqfxT1FhIVqxaJoWTxsnu81QWW2zXvxwr+qa262OBgDwEUtXvFx88cWnXU751ltvnXGMuLg4Pfvss76MBQAAAAAAgAHq6O5RaW2jJGkSbcZOyzAMzcxJVUZCjN7OO6zm9i69smm/Lp6dq/FpCVbHAwAMUUDt8QIAAAAAAAD/lF9eL9OUEmPCFRMRanWcgBAbGaprlsxQZmK0PF6v1u3M1678cqtjAQCGiMILAAAAAAAAhuxIWa0kaTKrXQbEGeTQFedM0azcVEnSx4dLteNomcWpAABDQeEFAAAAAAAAQ9LU1qmG1g4ZhqHcVFplDZTNMLRo6jidOzlTkrT9SJnyjlB8AYBAReEFAAAAAAAAQ1Jc3SBJSo+PUkiwpVsKB7Q5E9K1cEqWJCnvaJnyWPkCAAGJwgsAAAAAAACGpKiqt/CSnRJncZLAN3t8mhZNHSdJyjtSpg/2FVsbCAAwYBReAAAAAAAAMGhtnd2qbWqXJGUnx1qcZnSYlZuq2ePTJElP/m2bqhtbLU4EABgICi8AAAAAAAAYtOLqRklScmykwkKCLU4zepw7OVPZybFye7x6e/sRtXZ0Wx0JAHCWKLwAAAAAAABg0IqPtxnLSWG1iy8ZhqFL5kxQdnKMOntcemv7Ybk9XqtjAQDOAoUXAAAAAAAADEpXj0uV9S2S2N9lOAQ57Pr+dRco1BmkhtYObT1UYnUkAMBZoPACAAAAAACAQTlW3ShTUnxUmKLCQqyOMyrFR4Xp4lnjJUn7i6tUWtNkbSAAwBlReAEAAAAAAMCgFB1vM8Zql+GVmRSj6dkpkqT39xSos9tlcSIAwOk4rA4AAAAAAACAwNPj9qi8rlmSlDNKCi9er1dlVbU+GcvldvtknBMWTslSRV2zGts69cHeQl0+f5IMw/DpawAAfIPCCwAAAAAAAAasoq5ZHq+pqDCnYiNCrY7jEy6PR+/sKPTJWJfNHueTcU5w2G26dO4EvfTRPh2rblRBRb0mpCf49DUAAL5BqzEAAAAAAAAMWGltkyQpMzGGlRcjJD4qXPMmZEiSNh88ph6Xb1fVAAB8g8ILAAAAAAAABsQ0TZXV9rYZy0yMsTbMGDM7N1XR4SHq7HZp+5Eyq+MAAE6CwgsAAAAAAAAGpLm9S62d3bLZDKXGR1kdZ0yx221aMj1bkrS/uEp1ze3WBgIAfAqFFwAAAAAAAAzIiTZjqXFRCnLYrQ0zBmUkxig3NU6mpA/3Fck0TasjAQA+gcILAAAAAAAABqSsb3+XaGuDjGGLp2UryG5TTVObjpTVWh0HAPAJFF4AAAAAAABw1tweryrqWyT1rryANcJDgjVvYoYkafuRMrk9XosTAQBOoPACAAAAAACAs1bZ0CKP11R4SLBiI0KtjjOmTc9OUXhIsNq7enTgWLXVcQAAx1F4AQAAAAAAwFkr7WszFiPDMKwNM8Y57DbNn9S76mVnfrl6XG6LEwEAJAovAAAAAAAAGICymiZJUgb7u/iFSemJigkPUbfLrd2FlVbHAQCIwgsAAAAAAADOUmtHl5rau2QYUnoChRd/YLMZOmdyliRpb1GlOrp7LE4EAKDwAgAAAAAAgLNSVtcsSUqKiZQzyGFxGpyQnRKrxJhwuT1e7cyvsDoOAIx5FF4AAAAAAABwVirqWyRJ6QlRFifBJxmGoXOPr3o5VFLNqhcAsBiFFwAAAAAAAJyRaZp9hZe0eNqM+Zu0+CglxUTI4zW1t6jK6jgAMKZReAEAAAAAAMAZldW1qLPbJbvNUHJMhNVx8A8Mw9DcCemSpAPHqtXtclucCADGLgovAAAAAAAAOKO9xb2rKJJjI2W385WSP8pKilFcZJhcbo/2F7PqBQCswqckAAAAAAAAzmhPcbWk3pZW8E+GYWjO+DRJ0t6iKrncHosTAcDYROEFAAAAAAAAp+X1mtrXV3hhfxd/lpsWr6iwEHW73DpYUmN1HAAYkyi8AAAAAAAA4LQKK+vV0tEth92mxJhwq+PgNGz9Vr1Uyuv1WpwIAMYeCi8AAAAAAAA4re1HSiUd39/FxtdJ/m5ieoJCnUFq7+pRYWWD1XEAYMzhkxIAAAAAAACnte1ImST2dwkUdrtN08YlS+pd9WKapsWJAGBsofACAAAAAACAU/J6Te04SuEl0EzLSpbNZqi2uV01TW1WxwGAMYXCCwAAAAAAAE7paHmtmtu7FBrsUGI0+7sEilBnkCakJUiS9hZVWZwGAMYWCi8AAAAAAAA4pRNtxqZlJcnG/i4BZWZOiiSpqKpebZ3dFqcBgLGDT0sAAAAAAACc0ok2YzOyky1OgoGKjwpXalyUTFPaf6za6jgAMGY4rA4AAAAAAAAA/2Sapnbll0uSpo9LUn5Vs8WJxh7TNNXSOfg9Wsanx6iyoUUHj1WrtaPLh8kAAKdC4QUAAAAAAAAnVVzdqKb2LjmD7BqfGkfhxSJHO2oG/VwzzFSw06aebo8+PHBMU3MzfZgMAHAytBoDAAAAAADASZ1Y7TIjO1VBdrvFaTAYhmEoMSlUkvT2jgKL0wDA2EDhBQAAAAAAACe1q6BCkjRnfJrFSTAU8UmhMgypoLJBB9jrBQCGHYUXAAAAAAAAnNTOgt4VL3MmpFucBEMRFGRTTJxTkvTXjXssTgMAo5+lhZcPPvhAV199tdLS0mQYhl5++eW+cy6XS//6r/+qmTNnKjw8XGlpabrllltUUVHRb4zs7GwZhtHveOSRR0b4nQAAAAAAAIwutc1tKqttlmFIs3JTrY6DIUpM7m039ua2Q2rt7LY4DQCMbpYWXtrb2zV79mytWbPmU+c6Ojq0Y8cO3X///dqxY4defPFFHT58WJ/97Gc/de1DDz2kysrKvuOee+4ZifgAAAAAAACj1u7jbcYmpicqMtRpcRoMVURkkDISotTV49bfth60Og4AjGoOK198+fLlWr58+UnPRUdH65133un32C9+8Qude+65KikpUVZWVt/jkZGRSklJGdasAAAAAAAAY8nOfPZ3GU0Mw9Dl88brt2/v1F8/2KMvXjRbhmFYHQsARqWA2uOlublZhmEoJiam3+OPPPKI4uPjNXfuXD366KNyu92nHae7u1stLS39DgAAAAAAAPzdruP7u8wdz/4uo8WFM7MVEuxQQWW9duaXWx0HAEatgCm8dHV16V//9V914403Kioqqu/xb37zm3r++ee1fv16ff3rX9fDDz+s733ve6cda/Xq1YqOju47MjMzhzs+AAAAAIyIRx55RIZh6Nvf/nbfY11dXbrrrrsUHx+viIgIrVy5UtXV1daFBOD32rt6dLi0VpI0ZwIrXkaL8JBgXbFgsiTplU37LU4DAKNXQBReXC6Xrr/+epmmqSeffLLfufvuu08XX3yxZs2apW984xv6yU9+oieeeELd3afeJGzVqlVqbm7uO0pLS4f7LQAAAADAsNu2bZt+9atfadasWf0ev/fee/Xaa6/phRde0IYNG1RRUaFrr73WopQAAsG+okp5TVNp8VFKjo20Og586JrzZkiS3tlxRG2dp/7+DAAweH5feDlRdDl27JjeeeedfqtdTmbhwoVyu90qLi4+5TVOp1NRUVH9DgAAAAAIZG1tbbrpppv0m9/8RrGxsX2PNzc366mnntJjjz2mSy+9VPPnz9fTTz+tTZs2acuWLRYmBuDPdhxvQ8X+LqPPrNxUZafEqavHrbe2H7Y6DgCMSn5deDlRdDl69KjeffddxcfHn/E5u3btks1mU1JS0ggkBAAAAAD/cNddd+kzn/mMli1b1u/xvLw8uVyufo9PmTJFWVlZ2rx580nHYl9MALsKKiRJcyawv8toYxiGrjlvuiTajQHAcHFY+eJtbW3Kz8/v+7moqEi7du1SXFycUlNT9YUvfEE7duzQ66+/Lo/Ho6qqKklSXFycgoODtXnzZm3dulWXXHKJIiMjtXnzZt177726+eab+93hBQAAAACj2fPPP68dO3Zo27ZtnzpXVVWl4OBgxcTE9Hs8OTm5b471j1avXq0HH3xwOKICCABuj1f7inv/fpidy4qXwTJNUy2dbT4YaOhD/KMVC6fpFy9/pH3FVcovr9OE9ATfvwgAjGGWFl62b9+uSy65pO/n++67T5J066236oEHHtCrr74qSZozZ06/561fv14XX3yxnE6nnn/+eT3wwAPq7u5WTk6O7r333r5xAAAAAGC0Ky0t1be+9S298847CgkJ8cmYq1at6jevamlpUWZmpk/GBuD/Civr1dntUnhIsHJT46yOE9COdtT4YJSpPhijv7ioMF0wK1frd+Xr5U379N3rLvb5awDAWGZp4eXiiy+WaZ66bH+6c5I0b948ehIDAAAAGNPy8vJUU1OjefPm9T3m8Xj0wQcf6Be/+IXeeust9fT0qKmpqd+ql+rqaqWkpJx0TKfTKafTOdzRAfipPYW9bcZmZKfIbvPrLvUYgs8vmaH1u/L1xtaD+uY15ys4yNKvCQFgVOHTEwAAAAAC2NKlS7V3717t2rWr71iwYIFuuummvv8OCgrSunXr+p5z+PBhlZSUaPHixRYmB+Cv9hRWSurdhB2j1+Jp45QUE6Gm9i5t2FNodRwAGFUoZQMAAABAAIuMjNSMGTP6PRYeHq74+Pi+x2+//Xbdd999iouLU1RUlO655x4tXrxYixYtsiIyAD+3t6h3f5eZORReRjO7zaarF03TU2s/1mtbDuiy+ZOsjgQAowYrXgAAAABglHv88ce1YsUKrVy5UhdeeKFSUlL04osvWh0LgB9qauvUsZpGSRRexoIVi6ZJkjYfKFZdc7vFaQBg9GDFCwAAAACMMu+//36/n0NCQrRmzRqtWbPGmkAAAsbeot42Y9nJsYoOD7E4DYbbuORYzcxJ1d6iSq3dflg3L5135icBAM6IFS8AAAAAAACQ9Pf9XWayv8uYsWLhVEnS37YcsDgJAIweFF4AAAAAAAAg6e8rXmgzNnZcvmCyHHabDpfV6khZrdVxAGBUoPACAAAAAAAAebxe7SuukiTNovAyZkSHh+jCmbmSpL9tPWhxGgAYHSi8AAAAAAAAQAUV9erodinMGaTxafFWx8EIWrFomiTpzY8Pyu3xWpwGAAIfhRcAAAAAAAD0tRmbnp0iu42vjMaSJdOzFRMeorqWDm09VGJ1HAAIeHyKAgAAAAAAQHuOF15oMzb2BDnsuuKcKZKkv205YHEaAAh8FF4AAAAAAACgvYXHCy+5FF7GoqsXTZUkrd+dr7bObovTAEBgo/ACAAAAAAAwxrW0d6m4ulGSNIMVL2PS1Kxk5aTEqdvl0bs7j1odBwACGoUXAAAAAACAMW7fsSpJUmZijGIjQi1OAysYhqEVx1e9/G3LQYvTAEBgo/ACAAAAAAAwxu0v7i28zMhOsTgJrLT8nKkyDCnvaJkq6putjgMAAYvCCwAAAAAAwBi3j8ILJKXEReqcSZmSpDe2HrI4DQAELgovAAAAAAAAY5hpmtpX1Ft4mU7hZcxbsWiaJOn1rQdkmqbFaQAgMDmsDgAAAAAAAIDhUdvQqO4e92mvqW5qU2Nbpxw2myKCDZVV1Z70Opf79ONgdLh0zgQ9/Nw6ldQ0aU9RpWbnplkdCQACDoUXAAAAAACAUaq7x63Xt+ef9pqCijpJUmxkqN7eVXTK6y6bPc6n2eCfwkKCtXTuRP1t60H9bctBCi8AMAi0GgMAAAAAABjDapraJUmJMREWJ4G/WLFwqiTpre2H1eNipRMADBSFFwAAAAAAgDGspqlNkpRE4QXHLZicqcTocLV2dmvTgWNWxwGAgEPhBQAAAAAAYIzyer2qa+5d8ULhBSfYbTZdsWCyJOnNbYcsTgMAgYfCCwAAAAAAwBjV0Nopj9erYIdd0eEhVseBH1l+7hRJ0gd7CtTW2W1xGgAILBReAAAAAAAAxqgTbcYSYyJkGIbFaeBPpmQmKTs5Vt0uj97fXWB1HAAIKBReAAAAAAAAxij2d8GpGIahK8/pXfXyxse0GwOAgaDwAgAAAAAAMEbV9q14Cbc4CfzRicLLx4dKVN/SbnEaAAgcFF4AAAAAAADGoB6XW41tnZKkpGhWvODTspJiNCM7RV7T1Nvbj1gdBwACBoUXAAAAAACAMaiuuXcFQ0RosMJCgi1OA1Omuu3d6rJ3qdverW57j0yZVsfS8uOrXt7cRrsxADhbDqsDAAAAAAAAYOTVHC+8JLLaxTKmTHU6utQU0qzmkBb12F39zju8dv2uyq4OR6dC3SEyZIx4xsvmT9JP/m+D9hVXqbS2SZmJMSOeAQACDSteAAAAAAAAxqC/7+9C4cUKLptLRTElOhpfqNrwevXYXTJMQ3avXTavTYZpyG3z6K3GvToaX6ijcYXqsneNeM6E6HCdOyVLkrSWVS8AcFZY8YJT8nq9KquqtTrGpziDHUqMi7U6BgAAAAAAAa22ubfwkhQdbnGSsafR2azyqEp5bB4ZpqGo7kjFdEUpqjtStuP3SZsy1RrcppRxwdrSXKDOoC4diS9UamuyEjrjRnT1y/JzJmvLwWN68+ND+uryhTKMkV95AwCBhMILTsnl8eidHYVWx/iUFQsmWB0BAAAAAICA1tntUltnj6TeFQ0YGaZMlUZVqDG0SZIU6gpRVnOGQjzOT11ryFBUT6TuSb9IzQXvqjSqQq3ONlVEVanV2aZxzRmym/YRyX3JnAl6+Ll1Kq5u1KHSGk3NSh6R1wWAQDWoVmO5ubmqr6//1ONNTU3Kzc0dcigAAAAAGO2YVwGw0onVLjHhIQoO4r7ckdBbdCnvLbqYUnJboiY25J606PKPgrxBymnKUnpLqgzTUKuzTYUxx+QxPMMfXFJEqFMXzuz9bFq77fCIvCYABLJBFV6Ki4vl8Xz6L/bu7m6Vl5cPORQAAAAAjHbMqwBYqbapXRL7u4wUU6bKIivUGNosmVJ2c6ZS2pMG1C7MkKGEzjhNaMiR3WtXR3CnimJKRqz4cuU5UyT17vPi8XpH5DUBIFAN6JaGV199te+/33rrLUVHR/f97PF4tG7dOmVnZ/ssHAAAAACMNsyrAPiDEyteEqMpvAw3U6bKI6vUENYkmVJWc4aiu6MGPV6YO1S5jeNUEFus9uAOFcWUKLdxXN/eMMNlyfRsRYY6Vdvcrh1Hy3XO5MxhfT0ACGQDKrxcc801kiTDMHTrrbf2OxcUFKTs7Gz95Cc/8Vk4AAAAABhtmFcBsJppmp9Y8cL+LsOtIbRR9WENkilltqQrtjv6zE86gxPFl8LYY2oP7lBpVIWyWtIHtIJmoIKDHFo2b6Je+mif1m47ROEFAE5jQIUX7/FlhDk5Odq2bZsSEhKGJRSGj8vtUXlds8rrW+RyeySZMk0pMsyp9IRoJcdEyGYb3jskAAAAgLGMeRUAq7V19qizxyXDMBQfReFlOHU6ulQeWSVJSm1LVlxXjM/GDneHKacpSwWxxWoKbVaEK0zxnXE+G/9krjxnil76aJ/e3XFU//rFS9gfCABOYVB/OxYVFfk6B4ZZWV2z9hZWqqK+WR6vedJrdhwtV5DdpsykGM2bmDHCCQEAAICxhXkVAKucaDMWFxkqh52bL4dLl9elY9GlMg1Tkd0RSuyI9/lrRLjCldqWrMrIapVHVinUFaowd6jPX+eEeRPTlRQToZqmNn24v1iXzpkwbK8FAIFs0GXpdevWad26daqpqem7Y+uE3/72t0MOBt9o6+zW5gPHVFTV0PdYZKhTWUkxCg8JlozeJaj1Le0qr2tWV49bhZUNKqxsUE1Ds9ISYxUVFmJVfAAAAGBUY14FwAq1Tcf3d4lhf5fh9EzlB+p29MjhcSirefjagCV2xKs9qEMtIa06Fl2qiQ3j5TDtw/JadptNVyyYrD+8m6e3tx+m8AIApzCowsuDDz6ohx56SAsWLFBqaqoMY/j6R2Lw9hdXaeuhErk9XhmSpmWnaFpWkmIiQk/6Z2aapuqa27W7sEKFlQ36YN8x2YwSLZo6TtOzk/lzBgAAAHyIeRUAq9Q29+7vkhRN4WW4FBsV+qD5kGRK45oz5DCHryWXIUNZLek64ihQj8Ol8qgKjWsevv1XrlgwSX94N08f7C1UZ7dLoc6gYXstAAhUg/pb/5e//KWeeeYZfelLX/J1HviAaZraerBEe4oqJUkpsZFaMiP7jH1bDcNQYkyEls2bpNrmNuWX1WpvcbU2HShWdVOrLpyZqyDH8NwxAQAAAIw1zKsAWME0zb7CS2IM+7sMB5fc2mLbL0lKak9QhGv4f892065xzZk6GleoppAWxXS2Kronclhea2pWsjISo1VW26wP9hTqinMmD8vrAEAgG1Qjz56eHp133nm+zgIf8Hi9Wr+roK/ocu6UTF29eNqAN8tLjI7Q/TdepMXTxskwDBVU1OulD/equb1zOGIDAAAAYw7zKgBWaG7vksvtkd1mU2xEmNVxRqWdtiPqMLqUGBSl5PbEEXvdMHdo3z4y5VEV8hieYXkdwzB0xfzeYstbeYeH5TUAINANqvDy1a9+Vc8++6yvs2CIPF6v3t5+WPkVdTIMQxfPHq8549MH3bLAMAzNzEnV1YumKcwZpKb2Lr26+YCa2ii+AAAAAEPFvAqAFWqO7++SEB0mm40Wh77WqFbtNwolSV9OuUC2wX31NmgpbUkKdgfJZXerMqJm2F7nigW9hZeP9hertaNr2F4HAALVoFqNdXV16de//rXeffddzZo1S0FB/Xs5PvbYY2c1zgcffKBHH31UeXl5qqys1EsvvaRrrrmm77xpmvrBD36g3/zmN2pqatKSJUv05JNPauLEiX3XNDQ06J577tFrr70mm82mlStX6mc/+5kiIsZWn1LTNPXRvmKV1jbLYbfpsnmTlJkU45OxU+Iide0FM/XG1kNqaO3Qa1sOaMXCaYqNDPXJ+AAAAMBY5Kt5FQAMRF+bMfZ38TlTpjbb98g0TGV5UzQ3Mltvq3hEM9hkU0Zrmgpjj6k+tEGxXdEKd/l+ZdOE9ASNT41XQWW91u8u0GcXT/f5awBAIBtU4WXPnj2aM2eOJGnfvn39zg1kdUV7e7tmz56tr3zlK7r22ms/df7HP/6xfv7zn+t3v/udcnJydP/99+uKK67QgQMHFBISIkm66aabVFlZqXfeeUcul0u33Xab7rjjjjF359i+4iodKq2RIWnZvIk+K7qcEOYM1opFU/X6loNqaO3Q61sO6DOLpioukmXJAAAAwGD4al4FAANRe3zFS2IMhZeTMU1TLZ1tg3puiaNKVY4G2U2bpnfkSKaPw52lyJ4IxXbGqDG0SWWRFZrUMF6Gej9X7Iahsqpan7zOoinpKqis1ysf7dW8nKQhjeUMdigxLtYnuQDAHwyq8LJ+/XqfvPjy5cu1fPnyk54zTVM//elP9e///u/63Oc+J0n6/e9/r+TkZL388su64YYbdPDgQa1du1bbtm3TggULJElPPPGErrrqKv33f/+30tLSfJLT35XUNGrLgWOSpIVTxykraXg+qEKCg7Ri0VT9betB1bd06M2PD+nzS2YoLCR4WF4PAAAAGM18Na8CgLPl9XpV33Jixcvwb/geqI52DLxFl1deHUrIlyQltiWooqNFllVeJKW1JqvF2aquoG41hDYqvjNOkuT2eLV2Z75PXmPh5Az9af0e7Sqs1AsfHVSoM+jMTzqFFQsm+CQTAPiLkW00OQBFRUWqqqrSsmXL+h6Ljo7WwoULtXnzZknS5s2bFRMT01d0kaRly5bJZrNp69atpxy7u7tbLS0t/Y5A1dLepXU782VKmpyRqJk5KcP6eiHBQfrMwmmKCQ9Re1eP3tp+WG7P8GzWBgAAAAAAfKehtVMer6lgh13R4SFWxxlVGkIb5bK75PA4+ja4t5LDdCi5LVGSVBVeK4/h++9uUuMilRAdLtOUiqoafD4+AASyQa14ueSSS0679P29994bdKATqqqqJEnJycn9Hk9OTu47V1VVpaSk/ksZHQ6H4uLi+q45mdWrV+vBBx8cckarmaapDXsK5HJ7lBwbofNn5IxIS4KQYIeuPGeKXvpon2qb2/X+7gItnTuRdggAAADAAIzEvAoAPqm2+Xibsehw5vA+5JVX1eF1kqTk9kTZ/OQ+5/jOWNWFNajH0aOasDqltief+UkDND41XnXN7SqoqNO0cb4fHwAC1aA+CebMmaPZs2f3HdOmTVNPT4927NihmTNn+jqjz61atUrNzc19R2lpqdWRBmV/cbUqG1rlsNt0yZwJsttH7oM9KjxEl8+fJJthqLCyQXlHykbstQEAAIDRINDnVQACT23T8TZj7O/iU3VhDXLb3Qr2BCmuM8bqOH1ssim1rbcYUhterx6by+evMT6td3VPZUOr2jq7fT4+AASqQa14efzxx0/6+AMPPKC2tsFtQPaPUlJ6W2ZVV1crNTW17/Hq6uq+DShTUlJUU9O/76bb7VZDQ0Pf80/G6XTK6XT6JKdVWtq79PHhEknSwilZigob+SXCqfFRumBmjjbsKdSO/HIlx0YqMylmxHMAAAAAgWgk5lUA8El/X/FC4cVXPIZHNSdWu7Ql+c1qlxOiuyMV3hOm9uAOVUVU+3z8iFCnkmMjVd3YqsLKBs3KTT3zkwBgDPDpp8HNN9+s3/72tz4ZKycnRykpKVq3bl3fYy0tLdq6dasWL14sSVq8eLGampqUl5fXd817770nr9erhQsX+iSHPzrRYszt8So1LsrSpZyTM5P6Xn/97nx1dPVYlgUAAAAYDXw5rwKAE9wejxpaOyRJiTHhFqcZPWrD6uWxeeR0OxXbFW11nE8xZCittffm5MbQZpV01fn8NU6seimo9P3YABCofFp42bx5s0JCzn7lRVtbm3bt2qVdu3ZJkoqKirRr1y6VlJTIMAx9+9vf1n/+53/q1Vdf1d69e3XLLbcoLS1N11xzjSRp6tSpuvLKK/W1r31NH3/8sT766CPdfffduuGGG5SWlubLt+ZXDpbU9LUYu2h2ruV9WRdNHae4yDB19bi1fle+TNO0NA8AAAAQyAY6rwKAs1HX3CHTlEKdQQoPCbY6zqjgMTyqDauXJKW0JcqQf+6bE+YOVXRXlCTpr7XbfD5+bkqcDPW2smvp6PL5+AAQiAbVauzaa6/t97NpmqqsrNT27dt1//33n/U427dv1yWXXNL383333SdJuvXWW/XMM8/oe9/7ntrb23XHHXeoqalJ559/vtauXdtvEvKnP/1Jd999t5YuXSqbzaaVK1fq5z//+WDeVkDocbm1/UjvnjTnTs60pMXYP3LYbVo2b6Je/HCvyutbtKugQnMnpFsdCwAAAPBrvppXAcDZ+GSbMatv4Bwt6kMb5bV55XQHK7o7yuo4p5XSlqhmZ4u2tRYqTRmKl+9W54SFBCstPkrl9S0qqKjnOyEA0CALL9HR/f9yttlsmjx5sh566CFdfvnlZz3OxRdffNrVEYZh6KGHHtJDDz10ymvi4uL07LPPnvVrBrqdBRXq6nErOjzE0hZj/ygmIlRLpmdrw55CbT9SqoyEaDbrAwAAAE7DV/MqADgbtU3tkqQk2oz5hFde1R1f7ZLYnuC3q11OCPGEKKYrWk2hzdppO6xl3nN9Ov74tAQKLwDwCYMqvDz99NO+zoGz0NrRpb1FlZJ623vZbP61YdukjESV1jarsLJe7+8p0LVLZspu96+MAAAAgL9gXgVgJH1yxQuGrimkWS67Ww6Pwy/3djmZ5PZENYe2qMRWrTpvkxIU47Oxs1PitHFfkRpaO9TY2qHYyDCfjQ0AgWhQhZcT8vLydPDgQUnS9OnTNXfuXJ+Ewsl9fLhUXq+ptPgoZSXFWB3nUwzD0PkzslVR36zG1k7tzC/XgsmZVscCAAAA/BrzKgDDrdvlVnN7794biax4GTJTpmrCj6926YiXzbdbKA+bEI9TS6In6sPmI9ppO6zLvAt9N3awQ5mJ0SqpaVJBZb0WUHgBMMYNqvBSU1OjG264Qe+//75iYmIkSU1NTbrkkkv0/PPPKzEx0ZcZIam6sVUFFb0f6oumjvPbfqwhwUE6f0aO3t1xVDsLKpSdEqeEaP5RBwAAAPwj5lUARkpdc2+bschQp0KCgyxOE/hanK3qdnTL5rUpvjPW6jgD8vmEc/RR0xGV2mpU621UonyXf3xqfG/hpaJe8ydm+O13VwAwEgZVkr/nnnvU2tqq/fv3q6GhQQ0NDdq3b59aWlr0zW9+09cZIenjQyWSett5+XshIzc1XjkpcTJNUxv2FMjr9VodCQAAAPA7zKsAjJTapuNtxljt4hM1x/d2ie+Mk920W5xmYFKdMco1MyRJu235Ph17XEqc7DZDze1dqm/p8OnYABBoBlV4Wbt2rf7nf/5HU6dO7Xts2rRpWrNmjd58802fhUOvyoYWVTa0ymYYWjApw+o4Z2XJjGw5gxyqb+nQ7sJKq+MAAAAAfod5FYCRUnN8xQv7uwxdh6NTHcEdMkxDiR1xVscZlFneCZKkEluVGtXqs3GDHXZlJfWuoCmoqPPZuAAQiAZVePF6vQoK+vTS1KCgIFY3DIOdR8slSZMyExUR6rQ4zdkJcwZr8bRxkqQdR8vV2tFtcSIAAADAv/hqXvXkk09q1qxZioqKUlRUlBYvXtyvcNPV1aW77rpL8fHxioiI0MqVK1VdXe2T9wAgMPx9xQuFl6GqC2uQJMV0RSnIG5ht22IVqSxviiRpr49XvYxPi5ckFVTWyzRNn44NAIFkUIWXSy+9VN/61rdUUVHR91h5ebnuvfdeLV261GfhINU0tamsrlmGIc0Zn2Z1nAGZmJ6g1LhIebxebT5QbHUcAAAAwK/4al6VkZGhRx55RHl5edq+fbsuvfRSfe5zn9P+/fslSffee69ee+01vfDCC9qwYYMqKip07bXX+vz9APBPjW2dau/qkSEp0c9bl/s7t+FWU0izJCk+QFe7nDD7+KqXAqNcbfJdW7CspFgF2W1q6+xRzfGCHwCMRYMqvPziF79QS0uLsrOzNX78eI0fP145OTlqaWnRE0884euMY9qOo2WSeosYUWEhFqcZGMMwtGRGjgzDUHF1o45VN1odCQAAAPAbvppXXX311brqqqs0ceJETZo0ST/60Y8UERGhLVu2qLm5WU899ZQee+wxXXrppZo/f76efvppbdq0SVu2bBnGdwfAXxwt792PJCYiVEGOwNqPxN/UhzbKNEyFukIU5g61Os6QJCpWqd4EmYapfbZCn43rsNs0LqW3KFVQUe+zcQEg0DgG86TMzEzt2LFD7777rg4dOiRJmjp1qpYtW+bTcGNdXXO7SmqaZEiaMz7d6jiDEhcZppk5KdpTWKlN+4uVnhAth31Q9T4AAABgVBmOeZXH49ELL7yg9vZ2LV68WHl5eXK5XP3GnDJlirKysrR582YtWrTopON0d3eru/vv7YJbWloGnQmAtY6U9+61QZuxoTFlqj6s94bShI54GTIsTjR0s8wJqlSdDhvHNFsTFSrftLefkBqv/PI6FVTWa9G0cbIZgf+7AoCBGtA34O+9956mTZumlpYWGYahyy67TPfcc4/uuecenXPOOZo+fbo2btw4XFnHnJ35vXu75KbFKyYicO+kmD8xQ+EhwWrt7Nau4+8JAAAAGKuGY161d+9eRUREyOl06hvf+IZeeuklTZs2TVVVVQoODlZMTEy/65OTk1VVVXXK8VavXq3o6Oi+IzMzczBvFYAfOHp81UFSDG3GhqLF2SqX3SW7166Yriir4/hEmpmgBDNaHsOrg7Yin42bnhgtZ5Bdnd0uVdVTuAcwNg2o8PLTn/5UX/va1xQV9ekPmOjoaH3961/XY4895rNwY1lLe5eKqno3bJs7ITBXu5wQ5LBr8bRxkqTdhRVq7eg+wzMAAACA0Ws45lWTJ0/Wrl27tHXrVt1555269dZbdeDAgUFnXLVqlZqbm/uO0tLSQY8FwDqmaSr/eOGFFS9DUxfa+x1NfGesbIPr3O93DBmaeXyvl0PGMbnl8cm4dptNOSnxkqT8StqNARibBvRJsXv3bl155ZWnPH/55ZcrLy9vyKEg7TvWe/dZRmK04iLDLE4zdDkpcUqNi5LHa+rjwyVWxwEAAAAsMxzzquDgYE2YMEHz58/X6tWrNXv2bP3sZz9TSkqKenp61NTU1O/66upqpaSknHI8p9OpqKiofgeAwFNW16zWzh7ZbMao+G7BKl32LrU52yVTiu+ItTqOT40zUxRhhqrL6FGBUeazccen9RZeiiob5PV6fTYuAASKARVeqqurFRQUdMrzDodDtbW1Qw411vW4PTpc2vt7nJF96slQIDEMo2/VS0FFvaoaWi1OBAAAAFhjJOZVXq9X3d3dmj9/voKCgrRu3bq+c4cPH1ZJSYkWL148pNcA4P/2F/fe1JkQFS67bXSs0rBCfWjv3i5R3ZEK9gZbnMa3bLJpmjdHkrTfVihTpk/GTY2PUmhwkLpdbpXX0W4MwNgzoE/d9PR07du375Tn9+zZo9TU1CGHGuuOlNbK5fYoOjxEmYkxVsfxmYTocE3JTJIkbT5QLNP0zYc5AAAAEEh8Pa9atWqVPvjgAxUXF2vv3r1atWqV3n//fd10002Kjo7W7bffrvvuu0/r169XXl6ebrvtNi1evFiLFi3yxdsB4Mf2H6uWJCVGs7/LYHnlVWNos6TeNmOj0SQzS0GmQ01Gm8oN39xQbTMM5aTGSZIKaDcGYAwaUOHlqquu0v3336+urq5Pnevs7NQPfvADrVixwmfhxiLTNLX/eJuxGdkpMgzD4kS+tWByhoIcdtU2t+toeZ3VcQAAAIAR5+t5VU1NjW655RZNnjxZS5cu1bZt2/TWW2/psssukyQ9/vjjWrFihVauXKkLL7xQKSkpevHFF332fgD4rxMrXtjfZfCana3y2DwK8jgU2TM6f4/BCtIkM0uStN8o9Nm441N7240VVzXI46HdGICxxTGQi//93/9dL774oiZNmqS7775bkydPliQdOnRIa9askcfj0b/9278NS9CxorSmSc3tXQp22DUpI9HqOD4X5gzW3Alp+vhQqT4+VKLc1Hg57Cx3BgAAwNjh63nVU089ddrzISEhWrNmjdasWTOk3AACi9vj1aGSGklSEoWXQWs43mYsrjNWhkbXzbGfNM2bowNGocpttWr0tihWQ9/bKyUuUmHOIHV0u1RW16xxyaNzxRAAnMyACi/JycnatGmT7rzzTq1ataqvVZRhGLriiiu0Zs0aJScnD0vQsWLv8btRpmQmKchhtzjN8JiRnaoDx6rV1tmjfcVVmjM+zepIAAAAwIhhXgVgJBRW1qvL5VaYM0jR4SFWxwlI3fYetTnbJVOK64yxOs6wilSYxpmpKjYqtd9WpPO9s4c8pmEYyk2N177iKhVU1FN4ATCmDKjwIknjxo3TG2+8ocbGRuXn58s0TU2cOFGxsfzlOVRNbZ0qr2uWIWl69uidaDnsNi2YlKn3dxdoV365pmYlyRk04P8VAQAAgIDFvArAcDvRZmxCWvyoa2M+Uk6sdonsiVCwN9jiNMNvujdXxbZKFRhlmq8pCpVzyGOeKLwcq26Q2+Ol6wmAMWPQf9vFxsbqnHPO0bnnnsvkwEcOHl8CnJkUq8iw0X03yoT0BMVGhqrH7dGu/HKr4wAAAACWYF4FYLjsO75/7MS0eIuTBCZTphpCmiT1thkbC5IUq0QzRh7Dq0NGsU/GTI6NUHhIsFwer0prm3wyJgAEAsrMfsLl9uhIWa0kaWpWksVphp/NMHTu5N6N2/YVV6mts9viRAAAAAAAjB4HiqslSRPTKbwMRouzVW67Ww6PXVHdY2OPHEOGpntzJUkHbcVyyzP0MQ1D41N7/x8sqKgf8ngAECgovPiJzYdK1e1yKzwkWJmJMVbHGRFZSTFKiY2Ux2sq72iZ1XEAAAAAABgVOntcyq+ok8SKl8E6sdoltitGtjH09Vm2mapwM0RdRo8KDd90KMk9/v9gSU2jXO6hF3MAIBCMnU8OP/f2jnxJ0uTMRNlsY6P3qmEYOndK76qXI6W1amzttDgRAAAAAACB70hprTxeUwlRYUqICrM6TsBxGW61OFslSXGdMdaGGWE22TTt+KqX/bZCmTKHPGZidLgiQ51ye7wqqWka8ngAEAgovPiBkpom7Snq7b06OWP0txn7pJS4SI1LjpUpadvhEqvjAAAAAAAQ8PYV937HMG1cigxjbNzc6UtNoc2SIYW6QhXiGd178J7MJDNLDtOuRqNVFUbdkMczDKNv1UthJe3GAIwNFF78wMsf7ZUkZSbGKDLMaXGakXfu5EwZkoqrG1Xd2Gp1HAAAAAAAAtqBY737u8zITrE4SWA60WZsrK12OcGpIE0yj+/LaxT4ZMwT+7yU1DSqh3ZjAMYACi8Wc7k9enXzAUnSlKyxtdrlhNjIME3MSJQkfXyoRKY59GWsAAAAAACMVX0rXrKTLU4SeIq7atUV1CXDNBTTFWV1HMtM8+ZIplRuq1WThn6TbHxUmKLDQ+TxmiqpbvRBQgDwbxReLPbBnkI1tHYoJjxE45JirI5jmQWTMmS3GapsaFVpbZPVcQAAAAAACEjN7V198+rp41jxMlAbmw5LkqK6I+UwHRansU6UwpVl9hbuDtqKhzyeYRjKPb7qpYB2YwDGAAovFjNlKiMxWsvmjpfNNnb/OCJCnZp+fAn0x4dK5WXVCwAAAAAAA3aizVhGYrSiw8fe/iRD4ZVXHzUfkTR224x90jQzV5J01ChVt1xDHu9Eu7HS2iZ1u9xDHg8A/NnY/abfTyybN0kvP3CbvnjhTKujWG7O+HQFO+xqaO1QQQV3PwAAAAAAMFD7j/W2GZvBapcBKzNq1OLplMPjUGRPhNVxLJdqxivWjJTb8OioUTLk8WIjQxUTESqv19Qx2o0BGOUovPgBm82QM2jsLl89ISTYoVm5aZKkHUfL5PWy6gUAAAAAgIHY37e/C4WXgTpqlEqSYruiZciwOI31DBm9e71IOmArlldD+57GMIy+VS/ccAtgtKPwAr8yIydFziCHmtu7dLS81uo4AAAAAAAEDNM0+wovM7KTLU4TWLrVo1KjRpIU2xVjbRg/Mt5Ml9MMUpvRoTKjeujjpfUWXsrqmtXVQ7sxAKMXhRf4lWCHXbPHn1j1Ui6v12txIgAAAAAAAkNNU5vqWjpktxmanJlkdZyAUmxUymt4lemMV6ibvXFOcMihSeY4SdJ+o2jI48VEhCouMkymaaq4qmHI4wGAv6LwAr8zfVyyQoOD1NrZrcNlrHoBAAAAAOBs7D/WuyJhfFqCQoODLE4TWApsZZKk86MnWZzE/0z1jpNhGqq01alRLUMe78Sql4JK2o0BGL0ovMDvBH1i1cvO/HJ5PKx6AQAAAADgTE60GZs+jjZjA9GmDlUZDZIpnRc90eo4fidCYRpn9u4ZtN829FUvucf3eamob1Znt2vI4wGAP6LwAr80bVyywpxBauvs0aHSGqvjAAAAAADg9/oKL9kpFicJLAVGuSQp1YxXfFCkxWn80zRvjiSpwChTl3qGNFZ0eIgSosJlmlIR7cYAjFIUXuCXHHab5k5Il9S76sXNqhcAAAAAAE7J6zV14HirMVa8nD1TZl+bsfFmhsVp/Fey4hRvRsljeHXEKBnyeLnH240V0m4MwCjlsDoAcCpTMpO0q6BC7V09OlhSrZk5qVZHAgAAAADALx2raVRbV4+cQfa+L7VxZg1qUZPRJrtpU7bJ9w6nYsjQNG+uNtp36aCtSDM8uTJNUy2dbYMaLyk2RJJUWd+i6qZGudxuX8YFAMtReIHfstttmjcxXRv3FmlXQYWmZiXJYbdbHQsAAAAAAL+zt6hSkjQ1K1lBzJ3PWv7x1S6ZZrKCFWRxGv+WY6Zpm3lA7UaXjhlVkrJ1tGPw7eHDIxxqb3NrR3m5btYcn+UEAH9AqzH4tUkZiYoMdaqz26X9xdVWxwEAAAAAwC+dKLzMymXVxtnyylTh8f1daDN2Zg7ZNdkcJ0k6YCsa8nix8b2rXhrru4c8FgD4Gwov8Gt2W++qF0naXVihHrfH4kQAAAAAAPifvUVVkkSb7gGoNurVaXQr2AxShplodZyAMNWbLcM0VG00qLizdkhjxcY5JUltrS7Vt3T4Ih4A+A0KL/B7E9MTFRUWoq4et/YXV1kdBwAAAAAAv9Le1aP88jpJ0iwKL2et4Phql2wzVXbRnu1shClEOWaaJGltw54hjRXstCs8sre925ZDpUPOBgD+hMIL/J7NZmj+8VUvewor1N7VY3EiAAAAAAD8x4Fj1fKaplJiI5UYE2F1nIDgkVfFRm97ttzjhQScnWneHEnSppYjchnuIY0VF9+76uWjAxReAIwuFF4QEManJygmPETdLo9e23rI6jgAAAAAAPiNE/u7zGR/l7NWbtSqx3Ap1HQqxUywOk5ASVKsEswYuU2vGsIahzTWiXZjR8vrVVHf4ot4AOAX/L7wkp2dLcMwPnXcddddkqSLL774U+e+8Y1vWJwavmYzDM2f1LvR3SubD6qlvcviRAAAAAAA+Ie+wgttxs5a4fE2YzlmmmwyLE4TeKYfX/VSF9ogU+agxwkKtivieLuxd3cc8Uk2APAHfl942bZtmyorK/uOd955R5J03XXX9V3zta99rd81P/7xj62Ki2GUmxqvuMgwtXe79Id386yOAwAAAACA5UzT1J7CE4WXFIvTBAa33CoxeveQzfWmW5wmMGWbaYpxhMltd6spZGgrVU60G3s7j8ILgNHD7wsviYmJSklJ6Ttef/11jR8/XhdddFHfNWFhYf2uiYqKsjAxhovxiVUvz63fqca2TosTAQAAAABgrfK6ZjW2dcpht2lKZpLVcQJCiVEjt+FRhBmmRMVYHScg2WXTstgZkqS60PohjRUTHyLDMHTgWLVKa5t8kA4ArOf3hZdP6unp0R//+Ed95StfkWH8fRnon/70JyUkJGjGjBlatWqVOjo6TjtOd3e3Wlpa+h0IDNnJscpNiVVHt0u/f2e71XEAAAAAALDU3qLelRtTMpPkDHJYnCYwnGgzlmumyaDN2KAtjZ0uwzTUEdypDsfpv4s7naAgm2Zk9xYN32HVC4BRIqAKLy+//LKampr05S9/ue+xf/qnf9If//hHrV+/XqtWrdIf/vAH3XzzzacdZ/Xq1YqOju47MjMzhzk5fMUwDN10yWxJ0p/f36X6lnaLEwEAAAAAYB32dxmYbrlUZtRIos3YUEU7whTT1dt1pjasYUhjLZna+90c7cYAjBYBVXh56qmntHz5cqWlpfU9dscdd+iKK67QzJkzddNNN+n3v/+9XnrpJRUUFJxynFWrVqm5ubnvKC0tHYn48JEFE9M1IztFXT1uPf3WNqvjAAAAAABgmT3HCy+zKLyclWNGpbyGVzFmpOJEq/qhSuiIlyQ1hTSrx9Yz6HHOnZwhh82mI2W1Kq4aWhEHAPxBwBRejh07pnfffVdf/epXT3vdwoULJUn5+fmnvMbpdCoqKqrfgcBhGIbuvPo8SdL/fbBH1Y2tFicCAAAAAGDkdfW4daS0VpI0MzfF4jSBoa/NmDftDFeOXi2dbT45ZEph7lBFdIdLhlQ3hFUvkWFOnTslS5L0zg5WvQAIfAHT/PPpp59WUlKSPvOZz5z2ul27dkmSUlO502M0WzQ1S3MnpGtnfrl+u/ZjrbpxqdWRAAAAAAAYUYdKq+X2epUQFabUOG4qPZNOdavSqJMk5ZpjtM2YaepoR42PBpsqSUrsiFebs131oY1Kbk+U3bQParTLF0zSpgPFenv7EX3tqkU+yggA1giIFS9er1dPP/20br31Vjkcf68VFRQU6Ic//KHy8vJUXFysV199VbfccosuvPBCzZo1y8LEGG6GYeifj696eemjfaqob7Y4EQAAAAAAI2tvUZWk3v1dDINN4s+kyKiQaUgJZoyiFG51nFEjsidCIS6nvDav6kMbBz3OJbPHK8hhV0FlvQoq6nyYEABGXkAUXt59912VlJToK1/5Sr/Hg4OD9e677+ryyy/XlClT9J3vfEcrV67Ua6+9ZlFSjKT5kzK0cEqW3B6vfvPGVqvjAAAAAAAwovYUVkjqLbzgzApttBkbDoYMJR7f66UurF5eeQc1TmRYiBZPHSdJejuPdmMAAltAFF4uv/xymaapSZMm9Xs8MzNTGzZsUH19vbq6unT06FH9+Mc/Zs+WMeTEXi+vbzmgkprB31UBAAAAAECg+eSKF5xemzpUYzRK5hhuMzaMYrqi5fA45LK71RTSMuhxLl/Q+93fO3lHZJqmr+IBwIgLiMILcCqzclN1/owcebymfvW3LVbHAQAAAABgRFQ3tqqmqU12m6Fp45KtjuP3Co3e1UEpZrzCFGJxmtHHJpsSOuIkSbVhdTI1uKLJhTNzFeywq7i6UUfLaTcGIHBReEHAu/PqxZKktdsOqbCy3uI0AAAAAAAMv71FlZKkiemJCnUGWZzG//W1GWO1y7CJ74yTzWtTV1C32oLbBzVGRKhTS2bkSJLe2n7Yl/EAYERReEHAm5qVrEvnTJBpSr98fbPVcQAAAAAAGHZ7CnsLLzNzUixO4v+a1KoGo0WGaSjbpC3bcHGYdsV1xkiSasIGv1rl8vm0GwMQ+Ci8YFT4xorFMgzp3R1Hdbi0xuo4AAAAAAAMqxMrXmbmUkg4k0Jbb5uxdDNRIQq2OM3oltgRL5lSm7NdnY6uQY1x4cxchQQ7VFbXrIMl1T5OCAAjg8ILRoUJ6Qm6Yv5kSdKTr7HqBQAAAAAwerncHh0s6b3pcFYOhZfTMWWq0KDN2EgJ9gYrpjtKUu9eL4MR6gzSBTNzJUlv5x3xWTYAGEkUXjBq3PGZRbIZhj7YW6h9xVVWxwEAAAAAYFgcKatVj9uj6PAQZSbGWB3Hr9WrWS1Gu+ymTeNM2rKNhMT2BElSY0izemyuQY1x+bwT7caO0m4MQECi8IJRIzslTp9ZNFWS9D+vbrI4DQAAAAAAw+Pv+7ukyjAMi9P4t6LjbcYyzWQFyWFxmrEhzB2q8J4wyZDqwuoHNcaSGTkKcwapsqFFe4u4uRZA4KHwglHljqsWyWGzacvBY9pxtMzqOAAAAAAA+NyJ/V1oM3Z6tBmzTtLxVS/1oY3yGJ4BPz8k2KGLZo2XJL2dd9in2QBgJFB4waiSnhCtzy2ZLql3rxeWowIAAAAARpsThZeZObTOOp1qNajd6FKQ6VCGmWR1nDElsidCTrdTXptXdaENgxrj8vm97cbe3XFUXi/f7wAILBReMOrcfuVCBTnsyjtapo8Pl1odBwAAAAAAn6lvaVd5fYsMQ5qWTeHldE60GRtnpsghu8VpxhZDhpKPr3qpDa+XR94Bj7F42jhFhASrpqlNuwsrfB0RAIYVhReMOilxkfrCBTMl9e71wqoXAAAAAMBocWK/i9yUeEWGOi1O47+88qrI6P2ynjZj1ojpilawO1gem0cNYQNf9RIc5NDFs0+0Gzvi63gAMKwovGBUuu2KcxUS5NDeokp9uK/I6jgAAAAAAPhE3/4uuezvcjqVRp26jB6FmMFKMxOsjjMmGTL69nqpCauXdxCrXi5fMFmStG7HEXm8A38+AFiFwgtGpYTocF1/8WxJ0ppXN9ELFAAAAAAwKuwq6F3FMZPCy2kVHl/tkm2mysbXX5aJ7YpWkCdIbrtbDaGNA37+wilZigpzqq6lQzuOlg9DQgAYHnzyYNT68uXnKCLUqSNltXpz2yGr4wAAAAAAMCQ9Lrf2F/e2Gps7nvZZp+KRR8eM3pVBuV5+T1ayyfb3VS/hA1/1EuSw69I5EyVJb+cd9nk+ABguFF4wasVEhOq2KxZI6t3rpdvltjgRAAAAAACDd7C0Rj1uj2IjQpWVFGN1HL9VZtSqx3ArzAxRsuKsjjPmxXXGyOFxyGV3qTG0acDPv3zBJEnSup35cntoNwYgMFB4wah2wyVzlRQTocqGFr3wwR6r4wAAAAAAMGi78nvbZ80ZnybDMCxO478Kjd6WVDlmmgzxe7LaJ1e9VIfXDnjVy4JJmYqJCFVTW6e2HykdjogA4HMUXjCqhQYH6RsrFkuSnnpzq1o7uy1OBAAAAADA4OwuPF54mUD7rFNxya0So7cd23jajPmN+M5YBXkcctndqh/gXi8Ou01L506QJL29/chwxAMAn6PwglFvxaJpykmJU3N7l555a5vVcQAAAACfWr16tc455xxFRkYqKSlJ11xzjQ4f7t8Hv6urS3fddZfi4+MVERGhlStXqrq62qLEAAbDNE3tyu9dyTFnfJrFafxXiVEtj+FVlBmueEVbHQfH2WRTcnuiJKkmvE6eAa56uXz+ZEnSe7uOyuX2+DwfAPgahReMeg67Tfdcc74k6bn3dqqmqc3iRAAAAIDvbNiwQXfddZe2bNmid955Ry6XS5dffrna29v7rrn33nv12muv6YUXXtCGDRtUUVGha6+91sLUAAaquLpRTe1dcgbZNSUzyeo4fos2Y/4rrjNWwe4gue1u1YfVD+i58yamKyEqTC0d3dp6qGSYEgKA71B4wZhw0axczRmfpi6XW7/622ar4wAAAAA+s3btWn35y1/W9OnTNXv2bD3zzDMqKSlRXl6eJKm5uVlPPfWUHnvsMV166aWaP3++nn76aW3atElbtmyxOD2As7W7oLfN2IzsVAU57Ban8U/d6lG5USNJyqXNmN8xZCi5vbdoWBNeL49x9itX7Dabls6bJEl6e/vhM1wNANaj8IIxwTAMffPzvateXvlovworB3ZnBQAAABAompubJUlxcXGSpLy8PLlcLi1btqzvmilTpigrK0ubN3NTEhAodhbQZuxMjhlV8hqmYs1IxSrS6jg4idiuaDndwfLYPKod4KqXy+ZNlCS9v7tAPS73cMQDAJ+h8IIxY874dF08e7y8pqk1r3xkdRwAAADA57xer7797W9ryZIlmjFjhiSpqqpKwcHBiomJ6XdtcnKyqqqqTjpOd3e3Wlpa+h0ArHVixQuFl1MrON5mjNUu/suQoZS2E6te6uSyuc76uXPGpyspJkJtXT3afODYcEUEAJ+g8IIx5e7PLZHNMLR+d0HfP1oBAACA0eKuu+7Svn379Pzzzw9pnNWrVys6OrrvyMzM9FFCAINR39KukpomGYY0KzfV6jh+qUNdqjLqJEm5JoUXfxbdHaWwnlCZhqmqiJqzfp7NZmjZ8VUvb+cdGa54AOATFF4wpuSmxutz502XJP3spY0yTdPiRAAAAIBv3H333Xr99de1fv16ZWRk9D2ekpKinp4eNTU19bu+urpaKSkpJx1r1apVam5u7jtKS0uHMzqAM9h1/MbBCWkJigwLsTiNfyo2KmUaUqIZo0iFWR0Hp2HIUFpb7+dPQ0iTOh1dZ/3cy+dPliRt2FOgrh7ajQHwXxReMOZ8fcVihQQ5tKugQu/uOGp1HAAAAGBITNPU3XffrZdeeknvvfeecnJy+p2fP3++goKCtG7dur7HDh8+rJKSEi1evPikYzqdTkVFRfU7AFiHNmNnVmijzVggCXeFKborSjKkioiTt708mZk5KUqNi1JHt0sf7SsaxoQAMDQUXjDmJMVE6JbLF0iSfvriRu6QAAAAQEC766679Mc//lHPPvusIiMjVVVVpaqqKnV2dkqSoqOjdfvtt+u+++7T+vXrlZeXp9tuu02LFy/WokWLLE4P4GycWPEym8LLSdX2tKjGaJRMKcfkdxQoUtuSZZiG2pzt2t16dnu2GIahy+b3thtbu/3QcMYDgCGh8IIx6dbLFyg5NkKVDS3647t5VscBAAAABu3JJ59Uc3OzLr74YqWmpvYdf/7zn/uuefzxx7VixQqtXLlSF154oVJSUvTiiy9amBrA2Wrv6tHBkmpJ0rwJGWe4emza3NzbzSLVjFeYaMUWKJyeYCV0xEmS/lD1oVzes7sx9qpzp0qSPthbpJb2s29TBgAjicILxqTQ4CB9+/MXSpJ++9bHqm5stTgRAAAAMDimaZ70+PKXv9x3TUhIiNasWaOGhga1t7frxRdfPOX+LgD8y57CSnm8ptLjo5QSF2l1HL+0qaW38JJr0mYs0CS3J8rhtau8u1HPFW86q+dMykjUxPQEudwevb3jyDAnBIDBcVgdALDK5Qsm6c8bdmlXQYV+/vKH+tFty62OBAAAAABAP3lHyyRJ8yay2uVkmtSqY111MkxD2Waq1XEwQHbTrtTWFJVGl+s3+e9qpiNdicFn3lfs/GlZOlpepxc37tGiif/w526YUpDpk3xOe7ASo2N9MhaAsYXCC8YswzD03esu1pf+61m9+fEhXX/hbPrlAgAAAAD8yg4KL6dVaOvd/ybDTJRTwRanwWDEdkUrPNWrQx2Venjf37TUe84Zn+PySoakQ6W1+tOGfYoO/3uLucvmjNO6lgM+yXZV/EyfjANg7KHVGMa0aeOS9bnFMyRJj77wvrxe39wRAQAAAADAUHX1uLWvuEqSNG8ibbT+kSlThUa5JNqMBTJDhm5LuUiGaeiYrUplRs0ZnxMWEqyMxGhJ0tHy2uGOCAADRuEFY95dnztP4SHBOnCsWq9v9c0dEQAAAAAADNXeokq5PV4lRocrIyHa6jh+p05NajHaFWw4lGWyb1UgywyJ13QzR5K02bZXLrnP+JyJ6YmSpKNldTJNbqQF4F8ovGDMi48K19euWihJeuLlD9XW2W1xIgAAAAAA/t5mbP7EDBmGYXEa/5Nv6/39nBOVqyC66Qe8ud7JCjdD1Gp0KM926IzXZ6fEKshhV2tnt6oaWkcgIQCcPQovgKQbL5mrrKQY1bd06LdrP7Y6DgAAAAAAyjva20aLNmOf5pVXRUbv/i7nR0+2OA18IUgOne+dI0k6YCtSpepOe73DblduSpwk6UgZ7cYA+BcKL4CkIIdd933hIknSn97bqZKaJmsDAQAAAADGtB6XW3uLegsL8yZmWJzG/5QZNeoyehRqOjUzItPqOPCRdDNRk71ZkqSN9t1nbDk2MaO33VhhVYNcbs+w5wOAs0XhBTjughk5WjxtnFxujx79y3r6gwIAAAAALHOgpFrdLo9iI0KVc/yufvxdvtHbZizXTJfd4Out0eRc73RFmKFqMzq03XbwtNemxkUqKswpl9ujwsr6EUoIAGfGJxNwnGEY+pfrLlaQw66P9hfrvZ35VkcCAAAAAIxReUf+3maM/V3665ZLpUa1JGmCl9VAo01vy7HZkqSDtuK+P+uTMQxDkzOTJEmHS2k3BsB/UHgBPiE7JU5fvnyBJOnHf1mv9q4eixMBAAAAAMaiHfm9KzrmTaCw8I+KjQp5DK9izEjFKcrqOBgGaWaipnlzJEkf2HaqXZ2nvHZSRqIMSVWNrWpqO/V1ADCSKLwA/+ArV56rjMRo1Ta368nXNlkdBwAAAAAwxrg9Xu0u6N3fZf4kCi//qMDWW5Sa4M2QIVYDjVbneKcq3oxWt+HS+/Yd8sp70uvCQ4KVmRQjSTpUWjOCCQHg1Ci8AP/AGeTQqhuWSpKeX7+LD20AAAAAwIg6cKxaHd0uRYU5NT4t3uo4fqVVHaoyGiRTGm+mWx0Hw8guuy7xzFeQ6VC10aAdtsOnvHbK8XZjR8vq5PacvEADACOJwgtwEounjdPl8yfJa5r6zz+9y4c2AAAAAGDEbDtcKklaMClTdhtf3XxSgdG72iXVTFC4Qi1Og+EWpfC+/V722PJVcor9XrKSYhTqDFJnj0s78itGMiIAnBSf3sApfOe6ixQZ6tSBY9V69r0dVscBAAAAAIwR2w6XSJLOmZxpcRL/Ysr8e5sx8+8t2EzTVEtnm08OmVa9O5xKjpmmqd5sSdL7tjw1qOVT19hsNk1MT5AkvberaCTjAcBJ+XXh5YEHHpBhGP2OKVOm9J3v6urSXXfdpfj4eEVERGjlypWqrj555RsYqMToCN37hQslSU++tkklNU3WBgIAAAAAjHrdLrd2F/besU/hpb86NavZaJfdtCnbTO137mhHjU8OKi/+aaF3ulK98XIbHr1r/1id6v7UNSfaje0oqFRba89IRwSAfvy68CJJ06dPV2VlZd/x4Ycf9p2799579dprr+mFF17Qhg0bVFFRoWuvvdbCtBhtPrd4us6dnKlul0c//OM78nr5BxgAAAAAYPjsLapUt8ujhKgw5aTEWR3Hr5xY7TLOTFWQHBanwUiyyaZLvQsUZYarzejUOvs2ueXpd01MRKhS46JkmqYO7mm0KCkA9PL7wovD4VBKSkrfkZDQu2ywublZTz31lB577DFdeumlmj9/vp5++mlt2rRJW7ZssTg1RgvDMPTvNy1TSLBDeUfL9NJHe62OBAAAAAAYxU7s73LO5CwZhmFxGv/hlVeFRrkkabyZbnEaWMGpYF3mOVfBZpBqjEZ9YNsp7z+sUJqenSxJOrivQR726wVgIb8vvBw9elRpaWnKzc3VTTfdpJKS3j6neXl5crlcWrZsWd+1U6ZMUVZWljZv3nzaMbu7u9XS0tLvAE4lIzFGd312iSTppy9uVEV9s8WJAAAAAACj1d8LL7QZ+6Qyo1ZdRo9CTafSzUSr48Ai0YrQpd75spmGim2V2mTbI/MTxZfs5FjFhIeoo92tony+7wNgHb8uvCxcuFDPPPOM1q5dqyeffFJFRUW64IIL1NraqqqqKgUHBysmJqbfc5KTk1VVVXXacVevXq3o6Oi+IzOTf8zg9G64ZI5m56aqvatHD/z+bVqOAQAAAAB8rqOrR/uKer/TWDAp4wxXjy0FRm+bsVwzTTb//joLwyzNTNTF3nkyTOmIrUQf2w70FV9sNpuWzs2VJO3f3WBlTABjnF9/Ui1fvlzXXXedZs2apSuuuEJvvPGGmpqa9Je//GVI465atUrNzc19R2lpqY8SY7Sy22x68NYrFRLs0PYjZXpu/U6rIwEAAAAARpmdBRVye71KjYtSekK01XH8RrdcKjF6C1LjvRSkIGWbaTrfO0eStN9WqJ22I33Fl8vmjpdhSJVl7Wqo67IwJYCxzK8LL/8oJiZGkyZNUn5+vlJSUtTT06OmpqZ+11RXVyslJeW04zidTkVFRfU7gDPJSorRfSsvlCT94pUPVVhZb3EiAAAAAMBosu1wb3v1cyZnsr/LJxQbFfIYXsWYEYoXBSn0mmhmaqFnuiRpl+2I8myHZMpUfFSYssf3fte3fzff3QCwRkAVXtra2lRQUKDU1FTNnz9fQUFBWrduXd/5w4cPq6SkRIsXL7YwJUazlRfM0uJp49Tt8ug/fveWXB6P1ZEAAAAAAKME+7uc3FFb7+9lgjdThihI4e+mm7k61zNNkrTHlq+ttv0yTVPTZ8dLko4cbFJPD9/dABh5fl14+e53v6sNGzaouLhYmzZt0uc//3nZ7XbdeOONio6O1u2336777rtP69evV15enm677TYtXrxYixYtsjo6RinDMPSDL12uyFCnDhyr1i9f22x1JAAAAADAKNDS3qVDpTWSKLx8UpNaVWM0yjANTTBpM4ZPm2GO13memZKkA7Yi/aZivVIzQxUdGyxXj1dH9jdanBDAWOTXhZeysjLdeOONmjx5sq6//nrFx8dry5YtSkxMlCQ9/vjjWrFihVauXKkLL7xQKSkpevHFFy1OjdEuKSZC99+8TJL0zNvbtPXgMYsTAQAAAAAC3fajZTJNKTs5VkkxEVbH8RsnVrtkmEkKU4jFaeCvppjZusAzR4YprW88oHer92nanFhJ0p4d9fJ6TYsTAhhrHFYHOJ3nn3/+tOdDQkK0Zs0arVmzZoQSAb2WzZuka88v0Ysf7tX9z6zV8//2JcVFhVkdCwAAAAAQoLYc6L2pb9HUcRYn8R9eeZVvlEmSJpmsAsLpTTQzFex1aKNjl0o76tUe063gkHC1NPeouKBFuRPZHwjAyPHrFS+AP/vOdRcpNzVOdS0d+sHv3+LuCQAAAADAoG053k1h0TQKLyeUGTXqNLoVYgYr00y2Og4CwDgzVffnfF4h9iA1eNukcZ2SpN15dRYnAzDW+PWKF8CfhQYHafXtn9Et//WsPtpfrN+/s11fvuIcq2MBAAAAAAJMaW2Tyuqa5bDbtGBi7z4mtQ2N6u5xD3lsl3voYwwH0zTV0tl22msOhBRJdinTlay27o7TDObjcAhoE8KS9bn0BXqrcrcas9uko8GqruhQdUWHktPoVgJgZFB4AYZgYnqCvnvdxfrRs+v0i1c+0rRxyTp3SpbVsQAAAAAAAeREm7HZuWkKCwmWJHX3uPX69vwhj33ZbP9dQXO0o+aU51w2tyoielcp2FqCddRz6mulqT5OhkAXGRSqq9Pn692qvSpL75ZZGqIPt5Zq5ecnWx0NwBhBqzFgiK49f6auXjRNXtPUqqfeUHVjq9WRAAAAAAABpK/NGPu79GkMaZIMKawnVCGeEKvjIAA57UG6Mm2Osmf2rnKpLerWB0VH5DVZIgVg+FF4AYbIMAytunGpJmckqrGtU9/7zd/kcnusjgUAAAAACAAuj0fbDpdKkhZPo4OCJJky1RDaKEmK64qxNgwCmt2w6fLJ0xSVZpdk6OCuJr1btVcur3+24AMwelB4AXwgJNihR+9YochQp/YWVeqRP78nkzsoAAAAAABnsL+4Sm1dPYoJD9HkzCSr4/iF9qAOdTt6ZPPaFNMVbXUcBDjDMHTReb1FTfNYiI41NOi18h1qc3dZnAzAaEbhBfCRjMQY/egry2UY0ksf7tOz7+20OhIAAAAAwM9tPr6/y7lTsmS38TWNJNUfX+0S0xUtu2m3OA1Gg7TMcCWnhUleQ7aCcDX0tOmVsu2q6WqxOhqAUYpPdMCHzp+Ro29fe6Ek6fG/fqAP9xVZnAgAAAAA4M+2HCyRJC2axv4ukuQ23GoO6f0yPL4z1uI0GC0Mw9CCRb0ryrzFoYr2hqvT06O/VexQYVu1xekAjEYUXgAfu3npPF1z3gx5TVOrnnpD+eV1VkcCAAAAAPih1o4u7S+ukiQtmkLhRZIaQ5tkGqZCXSEKc4daHQejSMa4CCUmh8rjNpVWkanMsHh5TK/eq96vnY3FtIwH4FMUXgAfMwxDq268VPMnZqi9q0ffXPOyqhtbrY4FAAAAAPAzHx8uldc0lZMSp5S4SKvjWM6U2ddmjNUu8DXDMLRgce+ql4N7GnVB9DTNiM6UJOU1FOqjuiPyUnwB4CMOqwMAA+X1elVWVWt1jE9xBjuUGNf7D8Mgh12P3rFCX/nvP6u4ulF3PfGinvrOFxUdHmJxSgAAAACAv/hoX7EkadFUVrtIUntQh7odPbJ5bYrpirY6DkahrJxIJSSFqK6mS/t21mvRkomKCgrVprojOtRSrk5Pjy5JmiaHjb2FAAwNhRcEHJfHo3d2FFod41NWLJjQ7+eYiFD94p5r9ZX//rMKKxv07f95Wf/zrZUKDQ6yKCEAAAAAwF+YpqkP9/fuC3r+jByL0/iHE6tdYrqiZTf54hu+ZxiG5i9M0luvlWjPjnrNmBOvadEZCrUHa331fh1rr9Wblbt0RcpsBdv52hTA4NFqDBhGafFR+sXdn1dkqFO7Cyv1r7/5m1xuj9WxAAAAAAAWO1xWq7rmdoU6gzR/YrrVcSznMtxqDmmRRJsxDK/sCVFKSgmV2+XV9i01kqSciCQtT5ujYJtD1V3NeqNyp7o8LouTAghkFF6AYTYhPUE//efPyRlk14f7ivT9//2bXB6KLwAAAAAwln24t3e1y8IpWQoO4s76htBGmYapsJ5QhblDrY6DUcwwDC26IEWSdHBPg5oauyVJqaGx+kzaXIXYglTX3ao3KnaqydVhZVQAAYxPdpySaZpq6WyzOsanmAG40dncCen6yTc+q/uefFXrdxdo1f++odVfvUpBdpZOAwAAAMBYtHFfb+FlyfRsa4P4AVOm6sMaJEkJnXEWp8FYkJYZoaycSJUUterjj6p1+YosSVK8M1KfSZ+nNyp2qqGnTfcf/D/9JvrrSgiJsjgxgEBD4QWndbSjxuoIJzHN6gCDct607N7iyy9f1Xu78vX/nnpDD99O8QUAAAAAxprG1g7tK66UxP4uktTibJXL7pbDa1d0F19wY2QsPD9FJUWtKjzSrOrKDiWnhkmSYoPDtSJtnt6o3Knyrkbdte0pPXnu1xTnjLA4MYBAQqsxYAQtmZ6tn3z9agU57Fq3M1/3PfmqOnvoGQoAAAAAY8mmA8dkmtKkjEQlx0ZaHcdydaG9q13iOmJl46sqjJD4xBBNmhYjSdryQVW/DivRwWFakTZP8cERKmqv1d3bf6vmHtqOATh7fJoBI+z8GTl67BufVUiQQx/tL9Y//+yvamnvsjoWAAAAAGCEfHi8zRirXaQue5fanO2SKcXTZgwj7JzzkmW3G6osb1fBkeZ+5yKDQvXg5GsV74xUfmuVvrn9abW5+P4G/5+9+46TpK7zP/6q6twTenIOO5vzsgGWJUcRFFFR8QDFM3t4Bs4T9PQUTw/D6Xly/gDDiUpSlCwgcZe0LGxi82zenZ0cu2d6pmPV74+ebXbYhU0z07M77+fjUY/qrvpW9ae7pnvqW5/6fr8iR0aJF5EMOHPWBG778pXk+Dy8sbOZT//sz7T1jL3xdERERERERGR4JZIWr2zcDcBZsydkNJaxoMPfDUAgmoPbcmU4GhlvcnLdzD+tGIBXljYTiyWHrK/w5fO/iz5JnsvP5lAjX1v9R6JJ9VwiIoenxItIhsybVMFv/uUjFAWy2N7UybU/vIeNu1syHZaIiIiIiIiMoHU7m+gdiBLI8jKnrjzT4WRU0kjS7e0BoLBfrV0kM045tZjcgJv+cIJVrx481vGknFJuPfWTZDk9rO7exXfW3U/StjIQqYicSJR4EcmgKZVF3PmvVzG5opCOYJhP/+zP/H1lfabDEhERERERkRGyv5uxM2ZOwGGO78syXb5uLNPCk/CQHc/KdDgyTjmdJmeen0qCrl/dQXfnwd2JTcut4Cfzr8VlOHiudQM/2/zYkDFhRETeypnpAETGu4rCAP/3tav45v89wUsbdvGN3z7O1n3tfOHyM3A6xvdJuIiIiIiIyImkvaubaCzxjmWeXb0NgJnVhexraX/bcvHEO+/nRJe0Ldr9XQAU9xdiYGQ4IhnPaifmUjsxhz07e3npuSbe+6E6DGPo3+Siwkl8d+6H+dYbf+L+va9S7MnlE5POy0zAIjLmKfEiMgZk+zz89xfexy8efIk/PrOK3/39ddbuaOKWT11GSV52psMTERERERGRIxCNJXhs5fa3Xd/TN0BDRxDDMOjoi75j2Yvn1Y5EiGPG6707iTviOC0H+QOBTIcjwpnnVbBvz1YaG8Js3dTDtFn5B5W5uHwuXbE+frr5Mf7ftqeo9BdwcfncDEQrImOdEi8iY4TDNPnqlecws7aU79/9DGu2N/LRH9zF9667hLNm12U6vGF1JHeBZYLH7aS44OATKxERERERkeGwuzU1kHxFYS4e1/i+JPN451ogNbaLqZ7wZQzIzXOzaEkJK15q5eWlTVTWZEPhweWuqj2Dpv5u7t3zMt9b/xfKffnMzqse/YBFZEwb3//lRcagSxZNY0ZNCTf++m/U72vnS798iA+cOZuvXnkO2T5PpsMbFoe7CyxT3rtocqZDEBERERGRk9iellTXWnVl4/uGrza62D7QimEbFA4UZDockbR5i4rZuS1Ee+sALzzTyIc/Nf+Q5b40/VIa+jt5qX0LX1v9R3635AuU+8b391pEhtItBSJjUE1JPnd+/aP8w/mnAPDgyxv4yH/8keWb9mQ2MBERERERETkm/ZEYrT19ANSWju9kwwZzJwD5kQAuS/cEy9hhmgbnX1KF6TDYu6uXpWt3H7KcwzD5j3lXMTmnjK5YH/+y6o/0J6KjG6yIjGlKvIiMUR6Xk3/9yPn8+qsfpqooQEt3L9ff+gA3/uZvtHT1Zjo8EREREREROQr7uxkrzssiy+vOcDSZ00s/e4xmAIrCh+jHSSTDCoq8LDq9BIBfPbaS9sGE6VtlOT3894KPU+jJYXtfC9/f8AC2bY9mqCIyhum2ApExbuHUKv70rY/xvw+/xJ+WvsHTq7by4vqdfOrdi7nmwgV43foai4iIiIiIjHV7Wge7GRv3rV12YBswJ6sas9Wb6XBkDAkNHDrBcbQcGCxw1R7XPuadUU3rjpfZ0xLk23c+yf/70pWYpnFQuVJfHj885Wo+/9qveaZlPTMClXys7pzjem0ROTnoiq2MeTY2lmGRMBNYhsW2/haa6cAyLJKkJhsbExPH4GTaJg4cODDx4MKDGyeOTL+VY+bzuPjXj5zPFWfM5of3PcfaHU388pGX+fOytXzmssVcceZsXI4T9/2JiIiIiIiczGLxBI0dIQAmlI3fxMsAUbYaewF4X9ECHts59sb+lAyxbbb1tw3LrhLJJHcse+2495Nd6sDT6eC1+gbufOp1Pvnu0w5Zbl5+Lf8y4738eNMj/LL+70zNKWdx0ZTjfn0RObEp8SIZZ2MTdcSIOqNEHFFijhgJR5K4mSAxONnGm001v7N75zH95TptB17ceHDjtd348JCNj2zbTxY+sm0f2fhwjOEEzdSqYn77Lx/hide38L8Pv0xLVy//ee9z/OHpVXziklN5z+IZeFz6WouIiIiIiIwle9t7sGybQJaXvGxfpsPJmI3mTpKGRZGdx0x/JY+hxIuMXV6fk09dsoD/99jr3PboKyycWsW8iRWHLHtl9WI2Bxt5tHEV//bGffx+yfVU+sdvklVElHiRURY34/S7Buh3DhBxRok6o0QdMTi4teZBTCvVkiXf6yMWs9OtWxyYYBvpFjAWb7aESZIkShzbsEkYSfoYoI+Bd3w9n+0hYGeTR/aQeRY+jCMJdIQZhsFlp83govlTeODlDfz2iRXs6wjy/buf4bZHX+Gj583nyrPnjOuTeREREZHx5IUXXuAnP/kJq1atorm5mQcffJD3v//96fW2bfOd73yHX//61/T09HDmmWdy2223MWWK7sYVGS27W1Lju9SN49YuMeJsMXYDMM+ajGFkvn4tcjjnza1jZ0uIJ1fW883fPsF9/3YNOf6Du8gzDIOvz3wfO/pa2RTcx9fX3M1vT/8cXsf4Hc9JZLxT4kVGzP6WLH3uMGF3mD5XPwlH4pBlTcvEk3TjTXhwJ924LCdOy4kz6Uw/NjEBuPH883hgxaajiiNBkqgRJ2rEiBkJokaMiBmj34gQNiP0GxH6zQhJw2LAiDJgRGmhc8h+HLZJrpVFXjKHPCubvGQ2ASs73YVZPHHo9zZS3C4nHz3vFK5YMou/vriOu59bTWt3H7985GV+/firXLRgCh88aw7zJ1fqhFZERETkJBYOh5k3bx6f/OQn+eAHP3jQ+h//+Mf84he/4Pe//z11dXV8+9vf5pJLLmHTpk14vRpfQWSkJZIWDW2pxMuE0vwMR5M5W4w9xIwEeXY2NXZZpsMROSKGYfDNqy9kw+4W9nUE+c4fnuK/Pnv5Icd78Thc/OiUq7lu+S/Z1tvMDzY8yPfmfkTXZETGKSVeZFgljSS97jC9nl563X3E35poscGb8OKPe/ElvHiSHrwJD07LeeStSYal308HDnzk4CMnHZpN0kgSc8RTrXEcqRY5EWeMqCNK0rDodvTS7egd8n48SQ++uBdPR4wzfNOZmlNOwO0/zviOnM/j4tqLFnLV+afw1Mqt3PXMKur3tfP4a1t4/LUt1JTkccmiabz71Onj+u4qERERkZPVpZdeyqWXXnrIdbZt8/Of/5xvfetbXHHFFQD84Q9/oLS0lIceeoiPfvSjoxmqyLjU0NZDPGmR7XNTnJed6XAyIkGSjeZOAOZYk8dEbxIiRyrb5+GHn76MT/7Xn1n6xg5+++QKPnPZ6YcsW+rL4z9PuZrrX/8tf29+gxmBSq6ecNYoRywiY4ESL2NEPJEgNNCX6TCGsg9fBCBhJAh6egl6Q/S5w0PGYzFsg6yYn6y4n+xYFr64L9U12BhkYOC0nTgTTvyJod107W+9M+CMEHFFGHBGGHAOkHAkU92lOaPc3fIyd7e8DEClr4AZgUpmBqqYGahkWm4lWU7PiMbvcjh4z+IZXHbadDbuaeWBF9fz5Mot7G3r4dePr+DXj69galUx586dyDlzJjKjpvSQd2iIiIiIyMlj165dtLS0cNFFF6WXBQIBFi9ezPLly9828RKNRolGo+nnoVBoxGMVOVntaO4AYGJ54bi9832b0cCAESXL9jHJrsx0OCJHbWZtGd/4hwu5+Y9Pcftjy5leXcLZcyYesuyCgjq+Mv0yfrr5MW6tf5IpOeWcWjhplCMWkUxT4mWMsBiOVhzDbcbbrrGwCHl66fYFCbl7h4yZ4k64yY1mkxvLISvmT3cRdiIzMPAmPXiTHogGgMEuzMxEKgnjilBTkc2+eDdNA900DnTRONDFMy3r09tPyCpiRqCKmYEqZgQqmZpTjsfhGv5YDYPZE8qYPaGMf/nwuSx9Ywd/X1nPq5v2sHVfO1v3tfPrx1dQlOtn4dRqFkyuZOHUKurKCsZtJUBERETkZNXS0gJAaWnpkOWlpaXpdYdyyy23cPPNN49obCLjQTyRZG9bDwCTygszG0yGJEmyztwGwBxr0klxjUDGD4dhsK+lHYCFE0u4bNFUHl+5lW/+9nF++plLqSjMPeR2Z7gnszp/Js93b+Iba+7hF7M+zszy2tEMXUQyTIkXOSoDzgidvm66vT1YppVe7o17yYvmEojk4E2Oj36iDQxclgtXzEVuLIev1pzPpKoKQvEBtgQb2RTcx+ZQat4aCbIr3M6ucDuPN60BwGGYTM4pY0bumy1jJmaX4jQdwxZjltfNexbP4D2LZ9DdN8BL63fywvqdLN+0h45QP39fWc/fV9YDkJftSyVhplQxZ2I5kyuK8Lr1EyEiIiIyHn3jG9/ghhtuSD8PhUJUV1dnMCKRE9Petm4SSYscv4eiQFamw8mIrUYDYSOC3/Yy1a7JdDgiRyWRtHhyzfb08/LiPErzc2jt7uXG3z3FFWfMfttrJ9VMoNCxj85EiB9se5jflf4TblPXWUTGC33b5bAsLILeEB2+LvrdA+nlrqSL/IEA+ZHAuEm2HIlcl4/TiiZzWtHk9LLOaC+b35KM6Y6FqQ81UR9q4qF9rwPgMZ1MySkfTMSkWsbUZhVhGsd/R1B+to/Ll8zi8iWziMUTrNvVzKqt+1i9vZH1O5vp6RvgubXbeW5t6oTCYRpMKC1gWnUx06pLmFaVmgeydKxFREREThRlZakBrFtbWykvL08vb21t5ZRTTnnb7TweDx7PyHaVKzIe7GjqBFKtXcZjDwMHtnaZa03GyfDdaCiSCQ7T5OIFU3jw5Q0EwxGeXlXPZafNwOE4+LqNEwcXJE/lYccLbOtv4aebH+Mbs94/+kGLSEYo8SJvqy8ZodXfToe/i4QjkVpoQyCaS+FAPtmxLA2Id4QKPTmcVTKds0qmA6lBTlsjwVQiJtjIplBq3peIsCHYwIZgQ3rbLIeH6YEKZuRWpceNqfDlH9dJu9vlZNHUahZNTd21GE8k2bSnlVXb9rF6WyOb97bS3TfAjuZOdjR38vhrW9LbFuT4mVCWT11ZARNKC5hQVkBdWT5l+bkaM0ZERERkjKmrq6OsrIxnn302nWgJhUKsWLGCL3zhC5kNTuQkF4snaGjvAWBSxfjsZqze2Jtu7TJNrV3kJOH3urn01Ok8vHwjzV29LFu3g/NPmXzI6zQ5+DnPWsDTjhU82PAaswPVXF61MANRi8hoU+JFDhI347T7O/nnbX8gmpNKuDiTTooG8ikYKMBl6c/mUA7s9/NITaWUqYFSrggswKqyaYn2sH2gle39LWzvb2VnfxvhZJRVXbtY1bUrvV2Ow8skfynV3kJqvIVUewup8hbgdwy9K9HjdlJckH/YOFxOB/MmVTBvUgWffHcqMdQeDLOloY36hja2NLSztaGNxs4QXb39dPX2s3pb45B9eF1OakvzmVBWwITSfOrKU4mZ2tJ8PK6hfzPxRILQQN9RfVajIZ5IZDoEERERkaPW19fH9u1vdoOya9cu1q5dS0FBATU1NXzlK1/h+9//PlOmTKGuro5vf/vbVFRU8P73vz9zQYuMA7tbu0laNoEsLwU5/kyHM+oSJFlnpn6b5llTcKi1i5xECnL9XLxwKk+8toXtTZ1k+zycNv3QycUqu4SrypZwX8tyfrTpYabklDE9UDnKEYvIaNMVdEmLm3Fas9rp8vVgGzbYqbFbivsLyYvkagC8w3hrv5/HzkkJVZRQxelY9NBHh9GTnroI0ZuMsLZ3D2t79wzZMsv2kmfnECCbXDuLi6ZM5hTPRCp8+Uc1doxhGJTkZVOSl805cyaml4cjMfa0drGrpZvdLV3saulid2sXe9t6iMQT1O9rp37f0OSTaRhUFgWYVFHIxPJCJpUX4nYkqe9rHXMtZCzsTIcgIiIictRWrlzJ+eefn36+f2yW6667jjvvvJOvf/3rhMNhPvvZz9LT08NZZ53Fk08+iderLmRFRtLO5sFuxirGZzdjW4299BsRsmwvU22NESUnn6qiAOfMqWPZup2s3dFEjt/DjJrSQ5b9UOli9iW7eal9CzeuuZvfn/FF8tzjLyErMp4o8SIkjSRtWR20+ztTCRcgK+bn+knn8+TKXepO7CiMRCsOJyZlFFBGAQBJLIJmHz2OPkJmOD1FzBhhI0LYiNBIKvnx6s4NsBNMDMp8eVT6Cyj25FLizaXEG6DYk0uxN5cSTy557qzDJmeyvG5m1pYxs7ZsyPJE0qKpM8iu5i52tXaxu6WbXYOJmb6BKA3tPTS097D0jR1DtvN4Hfh8Trx+B36/E3+WC7fHHJeVEhEREZFjdd5552Hbb38DiWEYfO973+N73/veKEY1/Nq7uonGhqeF8pG2DBc5VpFYgn3tQSA1vst4EyfBG+mxXdTaRU5e06pL6B2IsnpbIy9t2EWW101NycH/X5LJJJ+rPo/toWaaIz18feUf+LdpV+A4hjF9PQ43xQH9DxMZ65R4GccsLDr8XbRldZA0kwD4Yz7K+0rJjmdxSnYtf2d3ZoM8kdg22/rbRvEFnWQRIIsA5UDCSBJxRog6o0QdMWKOGLkBN+2JEJFknKaBbpoGut9xj1lODwGXPzW5U/Mclxevw43P4cbvcON1uPE73XhNF07TgcMwcRgmpsMkp9pkQU0Ji4yy1DIMQn1R9rUGaWgNsq81xL7WIHuauxmIJohGkkQjSTggLIfTwJvtwJflwJftwJftxOUx0gnAA1Myhp16DdM2lSAUEREROclFYwkeWzkcLczhvYsmD8t+RN7OzuYOLNumIMdP/jjsZmyjsZMBI0qO7WeqxnaRk9zCKVX09kfZ1tjBs6u3cfmSWRQFsoaUsbBZFtzKkuJpPNK4krWhvfxg2yMsKpx01K93WeGc4QpdREbQmE683HLLLTzwwANs2bIFn8/HGWecwY9+9COmTZuWLnPeeeexbNmyIdt97nOf4/bbbx/tcE8YNjZdvh5as9qIO1J3jHkSHsr7SsiN5ugC9gnKaTvIjmeRHX/zn/tNi85nYmU5ndFe9g100dTfTXs0RFskODgP0R4J0RntxcImnIgSTkQPm6A5JgZQlprsueCImNi9Duh1Yocc2EEnhJwkExDuSRDuOeBuRm8SozCOURDHKIxDbpK3Noox7FQCxhycOywnTsuBw3ak5pYDp+3ElXTiTrpwWS4ctu66EhERERGR4bd1XwcAU6uKMxzJ6IsQZb2Z6u1ggTUdh7otl5OcYRicM3ci4UiMps4QT76+hSvOmE2O33NQ2UJPNmcXT2dp2ybW9uyh2JtLbdb4+50QGQ/GdOJl2bJlXH/99Zx66qkkEgm++c1v8q53vYtNmzaRlfXmxeXPfOYzQ5rN+/3j726SIxV29dOY08yAKwKAK+mirK+Y/EieEi4nKcMwKPLmUuTN5ZT8CYcsk7QteuMDBGP9BOOD0+DjvkSEgWScgWSMgUSMgWSMSDI1T9oWSdsenCcH5xZJyyJJarllW+muL/Z3gJG0kgx4EuCxoCiaXmcnwe51YPc4sYODU8gBEQd2owO7cbAfcqeFkZ/AKI5hFMchkADDJmkkSabfVeywn43DcuBKunBbLtwJF892bSDkj1KXXaq+VkVERERE5Jj09A3Q1tOHYcDkyvHXzdgb5jbiRoJCO5eJdkWmwxEZFQ7T5OKFU3nklY109w3w+GubueKMWXjdroPKTs4poz0aYmNwH0vbNvH+ylMJ6BqEyElnTCdennzyySHP77zzTkpKSli1ahXnnHNOernf76esrOytm8sBEkaC5pxWunw9AJiWSVm4mML+AkzdfXISs9nX1XrEpR1AAV4KnF5wFoxYVJFwgh89t/TtC2QNThVgJW3CfXH6egenvjhWwsRud2O3u1NxOw2yAk6y8p3480wcPkiYCZJmkoSRTM3NJAkzQdyME3fESZoWSTO1LkIEPPCbpqX8pikVV4E7iwlZJUzMKWF6biUzA1VMyCo+7Dg4IiIiIiIyvm3dlxpzs7o4D7/HneFoRlcv/Ww29gCwyJqhGzxlXPG4nFx62nQefmUjwXCEJ1+v5z2LZ+ByHnwd4bTCyXREe2mNBHmmdT3vq1yES9cbRE4qYzrx8lbBYGpguoKCoReE7777bu666y7Kysq4/PLL+fa3v/2OrV6i0SjRaDT9PBQKjUzAY4CNTaevm5bstvQ4LvkDeZT3luKyT6jDL8fAtm0e71yf6TAOcoF3+hGXNR0GOQE3OYFUhcW2bQb6E/SF4oRCMXqDcZIJm2BnnGBnHACv10Eg30Nevo+CHBfGW/slA5JGkrgZJ+bYP8WoLM2mNRGkOdJDVyxMV2wXq7t3pbfxOlxMy61gZm4VMwNVzM2vodynAe1ERERERCQlaVlsaxy/3YytNuuxDItyq4gKe/y9f5Fsn4fLTpvOI8s30dbTxzOrt3HJoqkHlXMYJheWzubBfa/THQvzYvtmzi+ZdcjrFyJyYjphrrxblsVXvvIVzjzzTGbPnp1efvXVV1NbW0tFRQXr1q3jxhtvpL6+ngceeOBt93XLLbdw8803j0bYGdXvHGBfblO6WzFv3EtVbzlZcTVfHC+choMFrtpMh3EQwz72EwnDMPBnufBnuSgp92NbqRYxoWCMUDBGuC9BJJIk0txPa3M/DqdBIM9DXr6b3Dw3DkeqhZfDduBIOvAmvel937j4fCZVVTCQiLE73M7ucBvbelvYHNzHlmAT4WSUN7r38Eb3nvQ25b58FhbUsaBgIgsL6pSIEREREREZx9bvbiUcieF2OqgpGV91gw562GHuA+BUtXaRcSw/x8+7T53GY69upqG9h6XrdnLx/AkHlfM7PVxYOpu/Na1hZ18bhe5s5r1NF/EicuI5YRIv119/PRs2bOCll14asvyzn/1s+vGcOXMoLy/nwgsvZMeOHUyaNOmQ+/rGN77BDTfckH4eCoWorq4emcAzwMKiJbuNdn8nGKluxcr7SigcKNCJzziTSCa5Y9lrmQ7jIDeed+6w7cswDbJz3WTnuqmohkTCIhSMEeyOEuyOkUzYdHVE6OqIYBiQG3CTX+ghL9+Dw3nobvZ8TjczApXMCFRy6eAyy7bYE+5gU3BfetoSaqJ5oJvHGrt5rHE1kErELCqYyOlFUzitcLL6aRURERERGUeeXZsaVH5SRSFOx/jp1tvG5lXHBgAmWZUUkZfZgEQyrDQ/h4sXTOHvq+rZ3tjBXc+9QeUZB3c9WObLY0nRFF7p2MrrXTvJc2dRm6XWYiIngxMi8fLFL36Rxx57jBdeeIGqqqp3LLt48WIAtm/f/raJF4/Hg8fjGfY4x4Kwq5+G3EaiztTA4nkDASr6ynBZJ8ShFjluTqdJQaGXgkIvtm3T1xunZzAJE40kCfbECPbEMIzedBImkO/B6TQ53Jg4LmCer5J5vkooW8xAMsaW3mY29u5jQ2gf28OtNA9082jjKh5tXIWJwZTsMuYHapkfqGVSVinmUTYb9jjcFAfG151yIiIiIiInor6BKMs3NwDjr5uxnUYTbUY3TtvBImtGpsMRGRNqSvM5d+4klr6xg0dfred0dxmnLDr4t2FmoIruWJjNoUaeb93E5ZULKfRkZyBiERlOY/pqvG3b/PM//zMPPvggS5cupa6u7rDbrF27FoDy8vIRjm5sSWLRkt1Kh78LDHAmnVSFKgjEcjIdmkjGGIZBTq6bnFw3VTU2kYEk3Z0RuruiRAbekoTJc/Ny2V76qntxuo7uzrQCfy7n+GeyxJpKayRIY383+wY66Y6Fqe9rpr6vmfsaX8Vruqj2F1KbVUylv+CIBs67rHDOsb59EREREREZRU+t2koskSSQ5aUkb/xcNE2QYKW5CYC51mSy8GU4IpGxY2pVMf3ROK9t2curL7Tg8zuZNvPgmyuXFE0hGO+naaCbp1ve4H2Vp+J3HtxCRkROHGM68XL99ddzzz338PDDD5OTk0NLSwsAgUAAn8/Hjh07uOeee7jssssoLCxk3bp1fPWrX+Wcc85h7ty5GY5+9PS5wjTkNhEbbOWSP5BHZW8ZDvvwF3VFxgvDMPD5nfj82VRUZzPQnxiahOmO8fOHXsXlNpk4JcDUGXlUVGcd1cB2LtNJlb+QKn8hi5lMXyLCvv4u9vV30jjQRcSKs62vhW19LTgMk0pfAbVZRdT4i/DphEpERERE5IRl2zZ/eWEdANOrS8bVANnrjR2EjQjZto/Z9qF7HhEZz+ZNLKck4OWxFVtZ+vd9eL0OaifmDiljGiYXlM7mkcaVhOIDPN3yBpdVLDiiGzZFZGwa04mX2267DYDzzjtvyPLf/e53fOITn8DtdvPMM8/w85//nHA4THV1NVdeeSXf+ta3MhDt6EuP5ZLVCYBrsJVLrlq5iBzWW5MwXR0REn3QEeqnfmM39Ru7ycp2MWV6gCkz8iks9h71a2Q7vUzPrWB6bgWWbdEaCbIn3MGecDu9iQh7+zvY298BQKk3QG1WMbX+Io0LIyIiIiJygtm4p5UtDW24HCbTqsdPN2N99LPO3A7AqdZMnOgischbGYbBxy48hfpgG9u29PD0Y3u5/EMTKa0YWvf3OlxcUjaPRxpX0R7t5fnWjVxUNueouywXkbFhTCdebNt+x/XV1dUsW7ZslKIZWwacEfbm7iPiigJQ0J9PRV+pWrmIHAOf30llTTb/ev453LNjNds2d7Nja5BwX5y1KztYu7KDwiIvU2bkMXl6Htk5rqN+DdMwKfflU+7LZ3HhZLpjYfaE29nT30FHtJfWSJDWSJDXOreT58qiNquICVnFh/0dFBERERGRzLv/hTcAOGtWLV730dcXTkQ2NsvNDSQNizK7kAn2+OryXeRomIbBeZdUEhlI0LCnj8cf2s37r5pIfuHQmzwDbj/vKp/L401r2NvfwasdW1lSNHVctaITOVmM6cSLHMzGpsPfRXN2K7Zh47QcVAUrNZaLyDAwDYOKqiwqqrI48/wK9u7qZdvmHvbs7KWzI0Lniy2seKmFqppsps7Kp25S7lGPBwOpu10KPNkUeLKZX1BHXyLC3nAHu8PtNA/00BMP09MT5o2ePbzUvoULymZzXuks5udPwKlmxiIiIiIiY0owHOGplfUAXLpoKttbgxmOaHTsNVpoMFsxbYMzknMw0IVhOTmFBvqOex+2beNwmLzr8hoe/csu2loG+NsDu3n/RycddHNnqTfAeSUzebZ1A5tCjWQ5vczLrz3uGERkdCnxcgKJm3H25jbS5wkDkBPNpjpUicvSYRQZbk5naqyXiVMCRAYS7NwWYuvmbloa+2nY00fDnj7cbpOJUwNMm5VPWYX/mO9AyXZ6mRmoYmagimgyTkN/J3vC7TT0d9EZ6+P+va9y/95XyXX5OLt4BueWzuT0osl4HRoXRkREREQk0x59dRPReJKpVcVMqyoaF4mXOAleNTcAMNueRB66GVROUrbNtv62YdjRDABcbgeXfmACD9+3k57uKH97YBdXfGQiXt/Qa3t12SUsTkxmRed2Xu/agdt0MiNQOQxxiMho0RX7E0TQE6Iht4mkmcSwDSp6yygcyNcdJSKjwOtzMnNuATPnFhDsjrJ1Uw/1m7vpC8XZsqGbLRu6yQ24mTYrjykz8skNHHtCxONwMTmnjMk5ZSSsJOXOXDb0N/Fi22Z64v38rWk1f2tajcd0cXrRFM4rnclZxdM1LoyIiIiISAbYts1fX1gHwIfOmTtuugNabdYTNiLk2H5OsaZmOhyRE4rP5+Q9V07gwXt30N0Z5cmH9/CeK+twvaVHjTl5NUSScd7o2cPLHfW4TQeTcsoyFLWIHC0lXsY4C4umnBY6/d0A+OJeaoJVeJOeDEcmMj4F8j2cemYpi84ooWlfmK2betixNUgoGOP1V9p4/ZU2KqqymDorn0lTcnG5j71rMKfp4NT8iXxg0hISVpJ1PXtY2rqZZa0baY70sKxtE8vaNuEwTObnT+C80lmcWzqTUm9gGN+xiIiIiIi8ndfqG9jT1k2W181lp06nq+fkb+3SSZBNxi4AllhzcKLukEWOVk6um/d8sI6H/7yDlqZ+nvnbXi55Xy2mOTR5u6hgIjErweZQI0vbNuM0nVCYoaBF5Kgo8TKGRRxR9gQaiLiiABSHCynrK8Hk6MeUEJHhZRgGldXZVFZnc9YFFezaFqR+YzeNDWGa9qWml541mDglwNRZ+VRWZx3X3W9O08GCgoksKJjIV6dfxtbeZpa1bmJp6ya297WwsmsnK7t28l+bH2VGbiVnFk9jSfFUZgaqcBj6zRARERERGQn3PrcGgMtOm4Hf66Yrw/GMtISV5EXHWmzDps6qoMouyXRIIieswmIvl14xgcf+uos9O3tZ9nQj572rcsi1A8MwOKNoKjErwY6+Vp5tWc+inFqqCkozGLmIHAklXsYgG5subw9Nuc1Yho0z6aAmVEVOLDvToYnIIbhcJlNn5jN1Zj69oRhbN/ewdWM3wZ7Bx5t7yM5xMXVmHlNn5pOXf3wt1gzDYFpuBdNyK/jslIvY19+ZTsKs69nL5lAjm0ON/GbHc+S6fJxeOIUlxVM5vWgKhR71vSwiIiIiMhx2NnfywvqdGAZcfcH8TIczKh7qWEmXEcJjuzjdmp3pcEROeOVVWVz0nhqeenQP9Ru78Wc5WXzW0O7EDMPg3JIZJG2L3eF2frL9bxRkBzi3dGaGohaRI6HEyxiTNJLsy2mmx5dqnpwdzaImVInLcmU4MhE5Ejm5bhYuLmHBacW0NvezdVMP2+t76OuNs3pFO6tXtFNa7mfarDwmTc3D4z3+ZvlV/kKuqTuba+rOpjPay8vt9bzSvpXXOrcTig/wVMs6nmpJ9Ts9LbeCJUVTWVI0hTl5NThNdQsgIiIiInIs7npmNQDnzZ1EbWl+hqMZeZ0Eeax9FZDqYsyHukAXGQ51k3M556JKlj3dyJrX2vH5ncxdUDSkjGmYXFA6i+dbN7Er3MZNa+/hP+d9lPPLlAAVGauUeBlD+p0D7AnsI+aMgQ1lfSWU9BdhMD4G5xM5mRiGQVlFFmUVWZxxXjm7d4So39jNvj19tDb309rcz8vPNzNhUi5TZ+ZRPSHnoL5cj0WhJ4f3VS3ifVWLSFhJNgb38Up7Pcs7trEl1Eh9qIn6UBN37lxKlsPDKQUTWFBQx8KCiUzNKVciRkRERETkCLQH+/jba5sB+PjFizIczchLYvGiYy1JLCrjxRRGcgnRd3w7tYcnNpETgdNwsMBV+7brFyyoJS+SzcMv1vPK0mZm5pRx2szKg8rNr6rlT63LealnK9984z6+kXg/76s6+X+DRE5ESryMAZZt8beONWwv2IVt2LiSLmqDVWTF/ZkOTUSGgdNpMnlaHpOn5RHui7NtS6orsq7OKDu2BtmxNYg/y8mU6amuyAqLvcPzuqaDefm1zMuv5QtT30VXtI9XO7axvGMrr3ZsIxjv5+X2el5urwcgy+nhlPwJLCyYyNy8GqblVuBxqLWdiIiIiMhb3ff8WuKJJPMmljNvUkWmwxlxb5hb6TJCZDu8BNoL2G61D8NeZwzDPkRODIlkkjuWvfaOZWzbprjMR3vLAL99bA0vbN9FTsB9ULl/veAi8rKyeaxxNd/f8ACd0T4+MfHc4xpXVkSGnxIvGdYd6+N76/+auvBpQCCSS3WoAoetu85FTkZZ2S5OWVTMvIVFdLRFqN/YzfYtPfSHE7yxqoM3VnVQVOJl2sx8Js/IG9bXLvBkc1nlfC6rnE/SttjR28LKrp2s7trFmq5d9CYiQxIxTsPBtNxyZudVMztQw5y8Gsp9eTqZExEREZFxLRyJ8ZcXUl35jofWLi108oaxDYB/LDuHF5oaMxyRyMnJMAyqa7OJxyx6uqJs3xpk+qx8fP6hl28dhsm3Z19JoTuH3+9axm3bnqIjGuKGGe/FYZgZil5E3kqJlwy7Z9fLvNxej8twUBIsoXAgX12LiYwDhmFQXOqjuNTHknPL2Lurl/qNPezdFaKjLUJHWzPLX2hmy7RePnLOfM6aXYfLOXwJWYdhMjW3gqm5FVw94SyStsX23hZWDSZiNvTspSsWZmNwHxuD+/gTywEocGczO6+aOm8xE/1FTPSXkOUcO307exxuigMnf//aIiIiIpI5D728gd6BKLUl+Zw7d1KmwxlRUeIsc6zBNmCyVcWSwBReQIkXkZFiGAZ1k3PZtjk1Vuy2zT1Mn52P2+M4qNz10y6h0JPNz7b8jfv3vkpjfxffn/dRsl3D04uGiBwfJV4y7NOTL6BxoIuLs2dxz8vrMx2OiGSAw2FSNzlA3eQAAwMJtm/pYeumHtpbB1ixeR8rNu8jL8vLu0+dzmWLZzCrtnTYW504DJNpuRVMG0zE2LZN00A3G3oaWN+zlw3BBupDTXTF+nihbTMvsDm9bY7TS6Enh0JPNoXuHIo8OfgzlIy5rHBORl5XRERERMaHSCzBH55eCcC1Fy0YlnEaxyobm1fMdYSNAXJsP0ssnWuLjAbTNJg0LUD9xm4iA0m2belh2qx8nM6DW7N8dMKZFHlzuXndX3ilYyuffPU2/mvBx6jJKspA5CJyICVeMszjcPGfp/wDO/Y1ZToUERkDfD4nc+YXMWd+EV0dEeI7nby4bg8doX7uW7qW+5aupaIwl4sXTuVdC6cyvbpkRLr+MgyDSn8Blf4CLqmYB0AkGWdrqIn1PXt5rW0b63v30ZeI0Ds47Q6/2c+zz+Gm0J09mJDJodCdTa7Lp27KREREROSE9pcX19EeDFNWkMPlp8/MdDgjapvRwC6zCcM2OC+5AJcuIYmMGqfTZMr0PLZsSCVfdtQHmTIj75DJ3ovK5lDpK+BfV/+R3eF2Pvnqbdw89yOcWTwtA5GLyH76rykiMkYVFHm5bNocvvHRd7Fi8x4eW7GZZet20NQZ4vdPreT3T62kujiPdy2cysULpzKlsmhEExteh4u5+bXMza/l3MBUHu9cTyQZpyvaS0esj85oL53RXoLxfgaSMfYNdLFvoCu9vdMwKXBnU+DJpmAwKVPgzsJl6l+RiIiIiIx9/ZEYv3syNTj2Zy87Hbfr5D2P7SLEcjPVK8cCaxrFqDtfkdHm9jiYPD2P+k3d9PXG2bU9xMQpuYcsOyNQyZ1L/omvr7mbDcEGvrrq93ys7hy+MOVinKbGkRbJhJP3LEFE5CRgWxYtwXZqK/xc/4GFfPo983i9vomX1u9hZX0TDe09/PbJ1/jtk69RVZzLWXNqOGtOLTUlgRGNK55MAKlkTIW/gAp/QXpdwkrSFeujI9pLZ7SPrlhqStgWbdEQbdHQkH3lunwUDiZkCt05FHiyyXJ41DpGRERERMaUe59fS3ffANXFebz3JG7tEiXOc46VJA2LSquYOfbkTIckMm75s5xMnhpg25YeerqiNOzpw7btQ5Yt8uZy++LP8IstT/Dnvcv5464XeKN7N/8x7yrKfUqeiow2JV5ERMawuJXkme6NQxdWwNyKPKafn8Oenb3sqA+yd3cv+9pD3PfcBu57bgN5BR7qJuUyYXIuJWXD38XXRYHpb7vOaToo8QYo8b6Z/LFsm1C8P52I6Yz10RXtpT8ZIxQfIBQfYNcBXZV5TOcBrWKyKfRkk+fOwmEc3KetiIiIiMhI6+2PpMd2+fx7l+B0nJznpTY2L5prCBlhsmwf51oLMNENUSKZlBNwM2FSLru2h2hvGeCRV+u5obrykGXdppOvzbychQV1/MeGB1jXs5erX/oFX53xHi6vXKgbHEVGkRIvIiInKLfbwZTpeUyZnkc0mmT3jhA76oPs29NHT1eUNV3trHm9HX+WkwmTcpkwKZfK6iwchxiQb6SZhkGeO4s8dxaTKE0vH0jEUkmYwURMZ6yPnlg/UStBc6SH5khPuqyBQZ7bn24Vs7+VjM/hHvX3IyIiIiLjyx+fWU3vQJRJ5YW8a9HUTIczYtYZ29lrtmLaJhckF+FF59oiY0FBkZd43GLfnj7ueu4NpteWc9lpM962/Plls5maW8F31v2ZdT17+f6GB3i+dSPfnPUBir2H7q5MRIaXEi8iImOYmXSwwFV7+IIuWDIPmAf90TgbdrSxdlsrG3a20R9OsGldF5vWdeF1O5k9sYRTppQye1IJfo/rmOMaDj6nmypnAVVv6aqsJ96fTsTsbyUTsxJ0x8J0x8LQ9+Y+/A43hZ4cijw5lDiyycrOIt+dPSzxiYiIiIi09fRx93OrAfj85UtwmCdna5cGo5XV5hYATrdmU0xeZgMSkSFKy/3EoknaWgb47h+eojDHz+IZb3+9oNJfwB2LP8u9u1/mtq1P8XJ7PR956b/5wpR3cWXNYvUoITLClHgRERnDEokkdyx77dg2zoMZp+TTG4rR0xWlpztGJJZg5ZYmVm5pAgOys13k5rkJ5Lnx+Z1H3Oz4xgvOPbaYjoDTdFA0mEjZz7Zt+hKRwZYx+7sq6yOUGKA/GaO/v5OG/k7WdO/mP7c+Qrkvn9mBKmYGqpmVV8X03Aq8ahkjIiIiIsfg5399gYFonLkTy7nglJNzvJMuQjxvrsI2YKpVwzS7JtMhicghVNVmMym/iOWbG/iXOx7ljq98iFkTyt62vMMwubbubM4onsp/rP8rG4P7+K/Nj/JY42pumnUFMwNVoxi9yPiixIuIyEnMNA0CeR4CeR5qbJv+vgQ93VF6uqJEIkn6euP09cZpagjjdBnkBtzk5nnIDbhxucbO3S+GYZDj8pHj8lGbVZxeHrMS6URMRyREfyJKY6Sb5oHU9HTLeiB1sjkpu5RZgSpm5lUzK1BFXXaJ7vARERERkXe0ats+nlxZj2HAjVedf1KOj9BPhKcdr5EwkpRbRZxhzcHQuC4iY5JhGPzz+xaTsOD1+ga++L8P8psbPsykiqJ33G5idim/Of3zPNjwGv9v61NsCTXyj8tv49KKU/jC1HdResAYrSIyPJR4EREZJwzDICvHRVaOi8qabKKRJKGeKMFgjN5gnETcpqsjSldHFAB/lpPcPDe5uW6yclyY5tirfLlNJ2W+PMp8eRCAywrnEMjJZXOwkY3BfWwMNrAxuI/OaC9be5vZ2tvMg/teB8DncDMzUMnsQA1z8muYHaimwKMuykREREQkJZG0+NGfngfgyrPmMqOm9DBbjE22bRMa6DvkugRJXvCvJWwMkG35ODU8nT7632FnIxSkiBwxl9PkX646nX//v3627uvkcz//Cz/87MWUFRy+Pnt6dh3TZl/LHxpeYlnnFh5vWsOzLRu4pu4srp1wNtku7yi8A5HxQYkXEZFBTuMIx1MZRYY9cskOj9dBcZmf4jI/lmUT7o0TDMYI9cQY6E/QH05NLY39GAZkZbvIyXWRk+smFk+OWFzHK8fl47SiyZxWlOoGwrZt2qIhNvakkjCbgg1sDjbSn4yxqmsXq7p2wa7UtpW+AmbnVTM7r5o5eTVMySnDZepfpYiIiMh49JcX3mB7YweBLC//9L4zMh3OcdnW33bQMhubXXl76XX04bAcVHVVsifZfZg9vf1g3iIyOmzbZmnfFs64vIT2P/fR1TnA137zJO/7yESyc45sHNcpeRUEvNlsCzaxua+J/9vxPH/Z+yrXTDibq2qX4Hd6RvhdiJz8dDVJRGRQInkc46mMkBvPG7mxVA5kmgY5ATc5ATfUQDyWJBSMEeyJ0ReKE49b6W7Jmhv7+cTWhygu81Ja7qe0wk9puR9/1pGd4I02wzAo9QYoLQtwQdlsAJK2xa6+Njb0NLC+Zy8bgg3s6mujcaCLxoEu/t78BgAe08n03Mp0ImZ2XjUlaoItIiIictLrCIa57dHlAFz/vjPIy/ZlOKLhZWOzN7eRXk8fhm0woacaT1IXWkVOJF6fk/deWcfDf9pJKBjj0ft38r6PTCQr+8jq5iXeXK6rOINt8Q7u2PY0u8Lt3LbtKe7d/RJXTTiDK6tPJ8/tH+F3IXLyUuJFREQO4nI7KCz2UVjsw7ZtopEkvaE4faEYvYOJmObGfpob3+yGICfXlU7EFJemth3tcWJsy2JfV+sRlfVisCirhkVZNVAJ4USUbeEWtva1sLWvma19LfQlo7zRs4c3evaktyt0ZzMtu5ypWWVMzS5jYlYJ7ndoFeNxuCkO5B/3exMRERGR0WHbNt+762l6B6JMry7hA2fNyXRIw8rGpimnhR5fEGyY0FNNdjwr02GJyDHIynZx+YfrePjPOwn2xHjk/p2878NHnnwxDIMLymZzbulMnm5ex6+3P0tDfyd3bHuGO3cs472VC/iHCWdSk/XOY8iIyMGUeBERkXdkGAZenxOvz0lxaSoRc938hTy4cz2tzf20NvXT1RmlNxSnNxRke31wcDsI5HsoKvZSVOKjqMRHYbEXn3/k/vXErSTPdG88rn1ke/0s8E5ifuFEgvF+2iIh2qIh2iJBumN9dMb6eKVrG690bQPAxKDQk0OJN5cSTy4l3gDZTm964NXLCk+uirqIiEgmfPO3j9PdG6YnHMXjduL3uCkOZFEUyMLldGQ6PDnJPPjyBl7asAuX08H3rrsEhzm6NxONJBubluw2OvxdANSEKsmN5WQ4KhE5Hjm5bt734Yk88uedBLtjPPqXXVz+obojTr4AOAyTd1ecwkVlc3imZT337H6JLaEm/tqwggcaXuOckhlcW3c2c/Nq0nVdEXlnSryIiMhRMQyD8oIcpvsLmD67AIBoNEl7ywCtzWFamwfoaBugP5ygpytKT1c0nYwB8Hod5BV6yC/wkFfgJb/AQ36hh6xsF6Y5dk7gDMMgz51FnjuLqZQDELcStEd7aYsEUwmZSJCIFac9GqI9GmJ/ysfncA8mYgLUuvIpzM3H53Rn7s0cQntXN9FYItNhHMTjdlJcoBZCIiIy1CubdhPqjx603DCgIMdPbUk+kyqKyM85ubqDktHX0N7DT/+yDIAvXnEmkytPnru8bWyas1tpz+oEoDJURn4kL7NBiciwyA0MJl/u30lPV5SH/7ST936ojtzA0dVDnaaDd1ecwiXl81jVtZO7d7/Ey+31LGvbxLK2TUzPreSKqkVcUj6PbJd3hN6NyMlBiRcRETluHo+Dqtpsqmqz08v6w3E62iJ0tA0MThFCwRiRSJKWxn5aDuimDFLjzGTnuFJjzeS6yA24ycl1k53jwp/lxJ/lxOXO7B2tLtNJhS+fCl8qMWDbNr2JSCoREw3RHgnSEe1jIBljT7iDPeEOXu/agaP+QSbnlDE7UJ0eL6baX5jRO4WisQSPrdyesdd/O+9dNDnTIYiIyBj07WsuZmdTG69vayYSj9PXH6Wtp4/+aJzOUD+doX5Wb2+kMNfPtKpiplWXqCWMHLWkZfGd3/+dgWichVOquOaCBZkOadgcKulSNFCY4ahEZDjl5qWSL4/+NTXmy0P37eC9H6qjoPDoEySGYbCocBKLCiexs6+Ve3e/zOONa9gSamTLpkZ+vuVxLiibzRVVC5mfX6dWMCKHoMSLiIiMCH+Wi5o6FzV1b3ZdEI9b9HRF6e6KpOadqRYxwZ4olmUTCsYIBWNvu0+ny8Tvd6YTMW6PA4/Hgds7OM/fw55kCKfLxOk0cToNHM4DHjsMMAyM1Axj8DFw0ImibdtYlo1lMTi3sa2Dl1kW5CZzybZymEAlcUeCnmg/3dF+eqL99Mei9MWjbLa62Gx3cb/1BlgGblwUOnModGST58wi1/RhWAYJy8ayrFQMQwLaP7MPiPHN1YYBDtMcnAwcpoGZfnzA3JGaY9vUN3WnljsGt3OYOAe3cx5Q9sB1qc9MJ9UiIjK6LlwwhWkVeSQZ2uVT30CUps4QO5s7aWgP0hnq55VNe1i5dR8za0uZPaEMv3dstTqVseuOx15l7Y4msrxubr7uXWOqNfbxsGyLxpxmOv3dAFSGyikaKMhwVCIyEnLz3Lz/qkk89tdddHdGeeRPO7nsgxMoKfMfsvyRjJPqBq6rOJMriuezrGMLz7ZvZF+kiyea1vBE0xrKPQEuKJ7FOfnTKPblDsv70FipcjJQ4kVEREaNy2VSXOqjuHRoNyCWZRPui6fGiQnG6A2lEjC9wTjhcJyBcIJ43CIRt94xOfMSTccV3/6EjG0PTWocH8/gNFQEaCRGI11A13C92IgzYDBRY+B0OHA6TFxOBy6HidPhwOU0cTkcuJxvWed0DC5/s5zb6cDjcuJ2Ok+aCxsiIjK6sn0eplYVM7WqmEgszo6mTtbvaiHUH2HtjibW72pmdl05p0yqwONS9Vfe3tOrtvKbJ1YAcNNHL6CiMJDhiIZHgiT/s+/vqaSLDVW95RQq6SJyUsvKdnHFRybytwd20946wCN/3skF765m4tSDf9eOdpxUl9vFJRXzaIuGqA81sauvjeZokLv3vcLd+16h2JNLXXYJE7NLyHYee1dkGitVTgY68xQRkYwzTYOc3FTXYlRlHbJMPJakvz9Bfzg1DfQniEaTxCLJ1DyaJCvppSXcm0rSJCySCXtwbjHYiOQdHUnCxXQYmMb+uYFhGpjm4HPzLZPDoMiVTU84imkMLhucx804USNGxIwxYEaImwkwAdPmwAYlDkx8tgc/Xvx48eHBhweDVKH9RW3Asgdb5dipybZtLBssy8K2GbK8KMdHc3eYpGW9OSXtIY8Tg48t64BWNkAiaZFIQjSePPyHeoRcTgcel4OnV9ZTGMgi1+8l1+8lx+8ZfJya52V7KcjNojDHT162TwkbERFJ87pdzJpQxozaUva2drN2RxNtPX28saOJzXtaOWVSBbPrynE6Tp6B0mV41De08Z0//B2Aay9cwHsWz8hwRMMjQoxnHK/R1tuNYRvUBCvJi54cCSUReWden5PLP1zH04/tpWF3H089tpfTzipl/qnFx92DgWEYlHoDlHoDLCmaws6+Nrb3ttASCabHP32tczslnlwmZpcyIbv4uJIwIicqJV5EROSE4HI7CLgdBPIObj2y30WB6TwT3HLIdZZlk0ymkg7Y+5MsqYTCgY8tC0yTwYTK/mRJKrFyLCeoF/pm8vTaPYctFyVGlxGik2BqboTooRfbsOmnjwNHxDFtk3xyyLdTUx455Nk5ZONLJ2QO5+J5tTz9xuHjgtRnk7QGkzLJVDImMZikiSeSxJNJ4gmLeDJJYnAeTyRJJN9c/+ZjK70uFk8QT6YyYvFEapu+gRi7WruPKC7TMMjP8VGQ46cw1z84z6Iw109JXjal+TmU5udQnJeFy6F+/kVExgvTMJhQVkBtaT5723p4rX4v3b0DvFbfwOa9bZw+ozb9f1+ku7efG25/lEgswekzavnSB87OdEjDoptennW8TsgI4zfdlHdUkB0/9A1OInJycrsdXPr+CbyytJkNazt57aVWujujnHNRJS7X8NyE4DKdTMutYFpuBYv8Nfyh+RV29rXREumhLRqiLRri1c5tFLizqc0qosZfRJEnR91Xy7igxIuIiBw1p+Fggas202EcxJEYg3Ed4YUdD27K7SLKKUqP55IkSQ99dBr7kzFBuggRNxJ0EqTTCA7Zh9N2kEc2eXYqEZN/DAmZQzEMA6fDSN0h7Drm3RySZVlE40mi8QSxeIJ5daV4PB5C/VFC/RFC4Qih/ii9/al5d18/XaF+esIRLNtOD6i8rfGd4ofC3CzK8nMozc+mJC+HsoIcyvJzqCwKUFUUIDdLd2CJiJxsDMOgtjSf6pI8tjd28Hp9A70DUZ5evZWWriD/ds3FTK0qznSYkkG9/RH++ZcP0dwVoqYkjx9+6rKTokXUbqOJF8y1JIwkWbaXf5/wfu5pXp/psEQkA0zT4KwLKsgr8PDy801s29xDR+sAF7+3hoKi4a0D5bn8zAxUMTNQRTgRZXe4jZ19bbRFgnTF+uiK9bGmezc+h5safyE1WUWU+/Jxm7o8LScn/WWLiMhRSyST3LHstUyHcZAbzzt3zMV14/nnHfO2DhwUEqDQDqSTMTY2vfTTNdgiptvopcfoJUiYhJGkgyAdh0jIBMgm384hYGcTIIu9kSwSJHGS2ZYgpmni85j4PKmMzsLJFVSVHf4iWDyZpKd3gM7eVOKlKxSmszeVlOkM9dPa00trVy+tPX0kkhYdwTAdwTAbdh96f7l+TzoJU1WcR2VRgMqiANXFAUrzc3CYJ/5FGBGR8co0DKZWFVNXVsAbO5p4Y2cT63e3cvV/3s2VZ8/h85efQX627/A7kpNK30CU6299kE17WsnL9vGzz7/vhL8Rw8JitVnPOnM7AGVWIedbC6n2FmY4MhHJtNmnFFJQ6OGZxxvo7orywD3bOfP8Ci48c2RagGY5PcwKVDMrUE0kGaOhv5O94Q729XcxkIxR39tMfW8zBgal3lwqfQVU+gso8uRiqjWMnCSUeBERERlhoYG+Yd9nATkUkJN+bmHRZw7Qa/YTNMP0mmFCZphes5+EkTyohcxzO1aBE7JsHwE7i1yyB+dZBOxssvFjHkcrmWNlWRb7WtqPuHy2yyC7MIvawkN3nWHZNsFwhI5Qfyr5EuofnMK09YRp7e6jZ7BVTWhvG5v3th20D5fDpLokj9rSAiaU5lM7OE0oLSBwgl+gERE5kcQTieP+nzq1Jp+K4iw6ewZYvrmB+19Yx5Ov1/P59y7hQ+fOVdeU40R/JMaXfvkQG3a3EMjycvuXr2Ri+YmdnAjSxzLHGjqMHgBmWRM51ZqBiW4eEZGUiupsPvyxKTz7RAP79vSx7OlGgrteZNZ5eanxVkeI1+FmSk45U3LKSdoWzQPd7A13sq+/k1BigJZIkJZIkFXdu3CbTip8+TiT8G6vmwp//ojFJTLSlHgREREZSbbNtv6DL+aPJBd+CvBTQDE2NlFHjIgzStQZJeqIEnXEwGvRb0UJGwOEjQGa6BiyD9M2ycVPrp1FDlnk2H5yBp9n4RuxljLxZJKnV+8ckX0DGA4nxfm5FOfnMmOwV7p4Iknv/q7NDujWLNQfoXcgSjxpsbO5i53NXQftLy/LO5iIGZqUqS7Ow+XUxTsRkeFkMXz/U2/64Pn09Fv85P6lbN3Xzk/uX8pfXlzH1z58HktmjrFuS2VYdYX6ueGOR1i3s5kcn4f/96UPntBdztnYbDX2ssLcSMJI4radnGHNZaJdmenQRGQM8vmdvOeDE1i7soOVr7SydnsrG/a0s/isUmbNK8Q0R/bmO4dhUuUvpMqfSnaH4gM09nfRONBF00A3MSvB7nA7t4ef4/bdz1HtL+TUwkksLJjI/II6ijw5h3kFkbFDiRcREZGTmIGBN+nBm/RA9M3lXz/vXP62fjtBwoSMMEGjjyB9hIwwIcIkDYse+ugxDnFnsQ1ZeMnBT479ZlImNc/Ci/u4xpQZbS6ng4JcPwW5/oPW2bbNaVPKiVoGe1q62d3azZ7WLva0dadby/TsbOaNnc1DtnOYBlVFedSVpxIyE8oKmFBaQF1ZPjl+tZIRERkLFk6t4u5vXM1DL2/gl4+8wq6WLq6/9QHOmTORGz50DjUlusv2ZLN1Xztfue1hWrp600mXGTWlmQ7rmHXTy3LHelqMTgDKrULOtuaTjbrOE5G3ZxgG808tpm5SLmuf62LL3g5efr6ZTW90sfjsMmon5mCMUndfuS4fuYFKZgQqsWyLjmhvqjuyeJSt4RYa+jtp6O/kgYZUl+ITsoqZX1DHwoI6FuTXUeTNHZU4RY6FEi8iIiLjkGEYxAbi+HDjw00pb15csrHpN6L0mf30mv2EzUiqZYwZIWwOkDCShIkQJkKLcXArEIdt4re8+GwPfsuL3/bgG5zvX/52LWZse2T6GD5WhmFQnOvHNE1qCrI4e2ZVet1ALE5TZy+NnSEaO0Kp+eDjSDzBnrZu9rR1H7TPvCwv1cUBKgtzU2PKFOVSVZRLUSDrqPoz9ridFBfooqCIyPFwmCZXnj2Xdy2cyq8eX8Gfnl/LC+t38sqm3Vx9wXw+felisn2eTIcpw2DpGzv4t989wUA0Tk1JHj//whVMKCvIdFjHJE6CN8xtrDd2YBs2DttkoTWdWfbEE+rmFxHJrLwCD9/7x/O49aVXeP3lVrq7ojz58B7KKv0sXFxCVW32qCVgAEzDpMQboMQb4LLCOeTlBljdtYuVnTtZ3bWTbb0t7A63szvczoODiZjarCIWFExkQX4dp+TXUurLG7V4RQ5HiRcREZHx6Ii7QHPjx42fXIpJJWWSRpKYI0bUESfmiBFzxog54kQdMeJmnKRh0evop5f+t92rw3LgTrpwJV24LBfupAun5WRKXw7dhPDhxYNrTFw8OJLuz3Ky/UzP9jO9tgzbtglHYqnWMH0DQ6b+aDy1PBxh/e7WIftwmCZ52V7ysn2pKctHXraXQJYPp+Pg/tnfu2jysL5PEZHxLMfv5V8+dC4fPGsOP71/Ga9s2s0fnl7Fo8s3cd27FvHhc+bh87gyHaYcg76BKP/91xd48OUNAJw2rZoff+a95J6A47QlSbLF2MMb5jYiRgyAaquU063Z5HBwy10RkcMxTYNZ8wqZPD2Pta+3s25VBy2N/fztgd0UFHqYu7CIydPzcDpHf7yobKeXc0pmcE7JDCDVLdna7t2s6tzJ6u5dbA01syfcwZ5wRzoRU+INMCevmrl5tczNq2FqbjkuU5e/JTP0lyciIiJHzMDAaTtxJpz4Ewevt7CIO+LEzQQxR5y4I07MHJw74sTNOJZpkTSTDJhJBlyRIdvfsrcxfXZi2gY+PPgYbC1DqrWMDy9+PPhsD148eHHjxDEmkjSQaiWT7fOQ7fNQVRQYsi4WTwxNyAw+DoUjJC2LzlA/naGDE1Y5fs9gIsaXTs4EwxGqDiopIiLHo66sgP/95w/w0oZd/PT+Zexp6+bnD7zI759ayccvXsSVZ89RC5gTyPJNe/iPu56mpbsXgGsuXMCXPnAWLseJNQ5bgiTbjQbWmdvpMwYAyLH9LLZmUWOXZTg6ETkZeDwOFp9Vxqx5haxd2c6WDd10dUZZ+lQjryxrZuKUAFOm51FRnTWqrWAOlOvyHTIRs7prF6u7drGtt5m2SJBnW4I825JKtntMJ9NyK5iWW8H03EqmByqoyyrBaZ5Y/wfkxKTEi4iIiAwbExNP0oMn6YH4wettbCzDSidh9idn4mYqWZOX66E90kvUiGMZdrpLs8PlVBy2iQc3Xtx47NTcixuv7caL54B1Ljy4cOPChXPUkzVul5OSvGxK8rKHLLcsi1B/lJ7wAD19qWRMsG+A7r4BYokkvf1RevujNLT3pLd5dPkm8rK86fFjqksCVBXlUVkUoKoocELeySsiMlacNbuOxTNqeHzFFn77xAr2dQT5nwdf5DdPrOCKM2bxD+fPp/ItyXUZO7bua+d/H36ZlzbsAqCqKMB3PvYuFk49sW5Z6I6HWW1uYbOxm6iROrHy215OsaYw1a7BZPTvQBeRk1t2jouzzq/g1CWlbF7fxYa1nfT1xtmyoZstG7rx+Z1U12ZTPSGHqtpsfP7MXVp+ayJmIBFjU3Af63v2sq5nL+t69hCKDww+3pvezm06mZxTxrTcCiZmlVCbXUxdVjEl3kDGkkpyclLiRUREREaNgYHDduBLOPBxcGLgxvnn8cy6vSRJMkCUfqIMGFEGiNC/f06UASPCAFEixEgaFknDop8I/UeQpEnHYhu4ceJmMBlju958jBu37cSDi+xgjEajB7ftHlyX2mY4L3aYppnuYowDxvi1bZuBWDydjOkJpxIyPX0Regei9IQjrN3RxNodTQftM8fnoao4lYSpHJyqigKU5udQWpCDz60uc0TkxLGjt4WGSCdRRxTDNjAwMW1j8LExIol0l8PBFWfM4rLF03l8xRZ+//RKdrd0cc9za7jv+bWcPqOWy5fM5Lx5k/C4VLUeCzbtaeWPz6zi7yvrAXCYBh85dx5fvOKsE6aruARJGoxWthsN3Lm1HctMjX+XbfuYZU1kml37tmPlicj44DQcLHDVDsu+zOShf088XgennFrMvEVFNO8Ls21LDzu2BhnoT7B1cw9bN/cAkBNwUVrmp7jMT0lVO3W5JeTleI87gWFFLfZ1tR6+4FuUGlmU5s/govwZ2LZNU6SHPQOdNCWC1Ica2RJqIpyIsim4j03BfUO29Tnc1GYVMyGrmCp/AWW+PMq8eZT68ij1BugN9hGNHaLbh2Nh2OAanvFNPQ43xYGxN/Zne7CbaDI2LPsaq+/xcHR2KCIiImOOAwfZ+MnGD/vPR9/mvDRBggix1GSk5tH041RyJppeHidKHMuwsA07/bwX3jZh88q+9Rzq+obTduAeTMS4cOG2nbgGkzIunLjtAx6/TZnDdZFmGAZ+jxu/x01FYe6QdRfPm0ACB7tbutnV2sW+9h4aO4I0dgTpCPXTOxBl8942Nu899Fg+gSxvKgmTn01Zfs7g4xzK8nMozsumKNeP3+t+29hEREbT9a//H12xPig69HrTMnFaDhy2A6flxGE5cA4+diWduKz944o5cdhHd9F6fwLm8tNnsnzTbu5+bg2vbt7DK5t288qm3eT4PJx3yiTOmzuJ02fWKrE9yvoGojyzeht/eXEdm/a8eZHukkXT+MLlS6gpGfsXaqLE2Ge0sddoZZ/RRtx488JeiZ3PbGsiNXaZWriICACJZJI7lr02LPu68YJz33G9YRhUVGdTUZ3NWRdU0NLUT8PuPhp299LZHqE3GKc3GGR7fZDlNAOpcWPcHhO324HLbeJ2m7jcjsG5icNh4nAaOBzG2yZobrzgXJ7r2zgs7/GywjlUFaTubrNsi8b+braEGtnW28zucDt7+trZ29/JQDLGllAjW0KNh9xPwOnHGXcN9qqQ6lnBa7vxDXZ/7bZdQ+uDON/2d/viU2p5NrRp2N7fWBRNxni8c/2w7GusvsfDOWkSL7/85S/5yU9+QktLC/PmzePWW2/ltNNOy3RYIiIicpRCA33HtJ178OQ29zCDy9rYWFjEjAQxI0HciBMjQdxITTEjPrg8QZwEuQE3zb3B9LKEkQQgYSRJkCQ9Issx3NRl2AZOHLhsJy7bgXMwMeOyU8tSz/evTz12Dj5ui+UxtaqKmvI83uWYOqTSMhCNp5Mw+94yb+3upT8aJxiOEAxH2Lqv/W3j87qdFOb4KQxkUZjjpyDXT2Hum4/zsn3k+r0Esrzk+r143SfNqaXISetErTfluf3EkwnC8Ri2YWMbQ7PxlmkRMy0O2c/lW5iWyde2NVHVXEixN5cSb4ASz+DcG6DUGyDX5TvoYpBpGpw5u44zZ9ext62bx17dzGOvbqKlu5dHl2/i0eWb8LgcLJpazcIpVSycWsX0mpITbjyRsc62bfZ1BHll426WrdvJyq0NJJIWAC6ngwtPmcx171rEtOqSDEf69vqJ0GH00GJ00mJ00kloyN90lu1lkl3FdVMXs3FLKIORioi8yeEwqazOprI6m9PPLiMaSdLW2k9b8wAdbQPEum0aO3uxLJvIQJLIQPII9plKwDicJqaZ+l9rmgY/61lOl9mH02nidBo4XSYOp4nDkVpvGAzODUwzlSBKLzMPuLXNgOUtDRTm9GIwWA5wk8UsYzKznVMgD6yARVe0j5ZIkPZokK5YH92xcHoeteJ0EwfiYLw5JqfhtMEx2HrFYYPTxjgg1+KwzaE349kuXDiob6in0+7DZThwmg5cpvOAxw5cxuDcdOA0BtebDkzePll1MrFte/C+y9Q8aVuZDegYnRS14z/96U/ccMMN3H777SxevJif//znXHLJJdTX11NSMnZPtkREROQtbJtt/YduoTHyTBhsw3Lgvco3zj2XHy1dln5uY5M0kiTNJEnDwjKsAx4nSZoWSSOZWj64LvU4tc4yUmUxwDZs4oNJn6P17LaVsC312MDA53Dhd3rwOdzpeZbTg6/Qja/ETa3TzXRHOX5HLWbCQTxsEwkn6e9L0tcbIxiK0h0coDM4QFewn0gsQSSWoLEzRGPnkV30cTsd5GZ5Cfi95Pg96YSM3+vG73Hh87jI8rjxeV349z/2uPB73XhdTtwuBy6nA7fTiduZeux06O5ekeFyIteb7jvrK+zY18QPn30eSP0W26QSMBZ26nfYTJI0kiTMJEkzlShPOBLEzHh6bpkWlmnRGO2mMdr9tq/nMV2UeA9MxqQeF7izyXdnUZCVw8cunc/n3nM6q7c3svSN7Sx9YyfNXSFe3riblzfuBsDrcjK5sojp1SVMrS5mQmk+tSX5FAUyNzjxicSybJo6g+xs6WJnUyfrd7ewbmcTnaH+IeUmlBXw/jNmcfmSWeRn+zIU7VAWNhGi9NJP0OgjaITpJkSnEWTAiB5UPs/OocYupcYqo5g8DAwqPPlsRIkXERmbPF4H1bU5VNfmAHCBdzq3PLOUaDRJPGoRiyWJxw6cWyQSFsmEhTV4HT2ZtEkmbYgNvbD+as++t77cMXuKvYcv9I6yjq64+WYSJuG0iTptDJcNLgtcEXDa7HaFUsmawclwWeDc/9wCBxzqNMHAOCgx82rbVvK92ficbvyO/fXBN+uEfodncJ0bn8OD3+lOl3EZzlTyajChYw4+trFJWBYJO0ncSpKwkyQsi7idJJF+niRqJYgm4wfM4+nnbX3dbA43k7QtErZFcnAfqefJ1NwaXG4fsNyysN7S3cWW7n38T+Enj+MYZsZJkXj52c9+xmc+8xn+8R//EYDbb7+dv/3tb/zf//0fN910U4ajExERkZOJgYHTduJMHvtplI2NtT9pM5iUsQYTNknDwhpM5Ax9PJjAGSzndBlErHh6f/3JGP3H0oeuAeQOTgeMOexIAFETR9SJI+bEjDkxow6ImtgREytqkIxBMgrJmI1tQyyRpCMYpiMYPubP5q1Mw8DpNHE5TFyDyZhUciaVlDFNA9MwcZiDFQXzzceGYeAwDeKJBNipO+D2s9Pn8vaQ5wee4tv20BP+N8scsPwt2711mwOXvVlm8L2ZBt/9+CVMLC888g9E5DicTPWm9Lgudqo3SFfSCYe/sZakkSRuJvjQolk4cly0RYK0RYK0R0K0Dj7uifcTteI09HfS0N/5jvtzm07y3VnkVvqprvVQHcqnv9WmpzlOe1OESCTBht0tbNjdMmQ7j8tBQcBPfo6Pwv2tCXP9FOZkkZ/tI8vrIcuzP2ntxudx4nO7cDpSv30O88S549W2beKJJNFEkng8STSRIBZPEo7ECPVHUlM4Qqg/SjAcoSc8QGtXLy3dvbR09RJLHHxgnQ6T2RPKOHfuJM6dO5EJZQXDGm/StohbSeJ2kriVIDH4OJqME05EU1NycJ6I0BeP0BntpT3aS3NfF02OIBGi2G93iGwIkE2pXUC5XUipXUg2YyNhJCJyPEzTwOdz4jvMT5plpRIuyYRFMmGTSFrYVmq5ZdlcMGkSmyItJOKpRE0iYQ8mbWxs28aywbZSdRDLSi1LP7YgfcZuQ74rC7fDic0B5/MHnLO/2bqC9H4OtS4WjxPqT9W3bFLlEskk8YRFPJnEsgZLWkZqOqAR7ltrCIcd3cXYn6w5IBnjssFpkXDZRNIJGotWRzuYbeCwMRy8mfhxkJqbdqrOZzDk8QlyGgEcwec1Rp3wiZdYLMaqVav4xje+kV5mmiYXXXQRy5cvP+Q20WiUaPTNO0yCwSAAoVDm7iTp7e0lNtB/+IKjaCzGBIrraIzFmEBxHY2xGBMorqMxFmMCxXU0Rjomc3A68NGR+MrZZ/P8xgYSJEmQIEGS+OA8YaQex0mQJEmcZKqbtMGyqXLW4LL95SwSWCRJYvHmHWeWB+Ked47FBkgYEE9NdtxMPY4NPk8aqfUHzO3E4OP9kz1YQUnCgf22JYF4FAaO+JM5sazas42irNEfD2L/ee+hEkVycjraetPJXGcygVo7j4k55ZBz8PpoMk5HtJf2SJD2aC/tkRDt0RAd0V66Y330xPrpjvbRn4wxQJQBwjQduAMfMBHsiUDYgR1yYAed0OvEDjtgwKQ/ZtAfDnNc9/MaNpiDF06MN+cYDOli5bC7ebsy75A0sG2GjMF24PP9F7rSy63jvLJj2jhzBqeAjbvQwpln0eDo4q7YJu5aOfi69gEBveXRkAts6fnQi24J2yZuJUnaR5DBO0IG4MNLrp1FLlkE7Czy7QD55OAacjnGYoCDb1ro7e1loP/4b2YYznMZ7Ssz+xqLMWlfmdnPSOxrIDo8N031xo8+LhMwneB6yxXqs6aXYUWH55zjXfmzqCw4/pa9ja0dPLlm59uuT1oWyaRFPJFMTZZFIpEklrCIxRPEE0liidQNCEXZPvYOdKVaB8WSxKIW0ahFPJZ8M/FzcONI3sygwCEHIj0qByRkjAMfH7DuwFcePGEwUk/Sq/d332YMnoiYRuoGGZvUjQxvbmekz1HSyw44Z9m/x9SqA14L8EzJJjQjM+egx1NvMuwTvLbV1NREZWUlr7zyCkuWLEkv//rXv86yZctYsWLFQdt897vf5eabbx7NMEVERERExpyGhgaqqqoOX1BOeEdbb1KdSUREREQk5VjqTSd8i5dj8Y1vfIMbbrgh/dyyLLq6uigsLBy25tqhUIjq6moaGhrIzc0dln3KyNCxOnHoWJ0YdJxOHDpWJw4dqxPDiXScbNumt7eXioqKTIciY9Ro1JmOxon0/ToZ6fPPHH32maPPPrP0+WeOPvvM0uefOYf67I+n3nTCJ16KiopwOBy0trYOWd7a2kpZWdkht/F4PHg8Q/vMyMvLG5H4cnNz9SU5QehYnTh0rE4MOk4nDh2rE4eO1YnhRDlOgUAg0yHIKDraetNo1pmOxony/TpZ6fPPHH32maPPPrP0+WeOPvvM0uefOW/97I+13nTkHYmPUW63m4ULF/Lss8+ml1mWxbPPPjukCb2IiIiIiMh4pXqTiIiIiMjoOeFbvADccMMNXHfddSxatIjTTjuNn//854TDYf7xH/8x06GJiIiIiIiMCao3iYiIiIiMjpMi8XLVVVfR3t7Ov//7v9PS0sIpp5zCk08+SWlpacZi8ng8fOc73zmoeb6MPTpWJw4dqxODjtOJQ8fqxKFjdWLQcZKxbizWm46Uvl+Zpc8/c/TZZ44++8zS5585+uwzS59/5gz3Z2/Ytm0Py55ERERERERERERERETGuRN+jBcREREREREREREREZGxQokXERERERERERERERGRYaLEi4iIiIiIiIiIiIiIyDBR4kVERERERERERERERGSYKPFyHG655RZOPfVUcnJyKCkp4f3vfz/19fVDykQiEa6//noKCwvJzs7myiuvpLW1NUMRj1+33XYbc+fOJTc3l9zcXJYsWcITTzyRXq/jNDb98Ic/xDAMvvKVr6SX6ViNHd/97ncxDGPINH369PR6Hauxo7GxkWuvvZbCwkJ8Ph9z5sxh5cqV6fW2bfPv//7vlJeX4/P5uOiii9i2bVsGIx6fJkyYcNB3yjAMrr/+ekDfqbEkmUzy7W9/m7q6Onw+H5MmTeI//uM/sG07XUbfK5Hh9ctf/pIJEybg9XpZvHgxr732WqZDOum88MILXH755VRUVGAYBg899NCQ9fpdGzm6tpBZul4wdugawOhSnT6zVE/PnNGqeyvxchyWLVvG9ddfz6uvvsrTTz9NPB7nXe96F+FwOF3mq1/9Ko8++ij3338/y5Yto6mpiQ9+8IMZjHp8qqqq4oc//CGrVq1i5cqVXHDBBVxxxRVs3LgR0HEai15//XXuuOMO5s6dO2S5jtXYMmvWLJqbm9PTSy+9lF6nYzU2dHd3c+aZZ+JyuXjiiSfYtGkTP/3pT8nPz0+X+fGPf8wvfvELbr/9dlasWEFWVhaXXHIJkUgkg5GPP6+//vqQ79PTTz8NwIc//GFA36mx5Ec/+hG33XYb//u//8vmzZv50Y9+xI9//GNuvfXWdBl9r0SGz5/+9CduuOEGvvOd77B69WrmzZvHJZdcQltbW6ZDO6mEw2HmzZvHL3/5y0Ou1+/ayNG1hczS9YKxQdcAMkN1+sxQPT2zRq3ubcuwaWtrswF72bJltm3bdk9Pj+1yuez7778/XWbz5s02YC9fvjxTYcqg/Px8+ze/+Y2O0xjU29trT5kyxX766aftc8891/7yl79s27a+U2PNd77zHXvevHmHXKdjNXbceOON9llnnfW26y3LssvKyuyf/OQn6WU9PT22x+Ox77333tEIUd7Gl7/8ZXvSpEm2ZVn6To0x73nPe+xPfvKTQ5Z98IMftK+55hrbtvW9Ehlup512mn399dennyeTSbuiosK+5ZZbMhjVyQ2wH3zwwfRz/a6NLl1byDxdLxhdugaQGarTZ47q6WPLSNW91eJlGAWDQQAKCgoAWLVqFfF4nIsuuihdZvr06dTU1LB8+fKMxCip7kHuu+8+wuEwS5Ys0XEag66//nre8573DDkmoO/UWLRt2zYqKiqYOHEi11xzDXv37gV0rMaSRx55hEWLFvHhD3+YkpIS5s+fz69//ev0+l27dtHS0jLkWAUCARYvXqxjlUGxWIy77rqLT37ykxiGoe/UGHPGGWfw7LPPsnXrVgDeeOMNXnrpJS699FJA3yuR4RSLxVi1atWQ75Npmlx00UX6Po0i/a6NLl1byBxdL8gMXQPIHNXpM0P19LFjJOvezuEOdryyLIuvfOUrnHnmmcyePRuAlpYW3G43eXl5Q8qWlpbS0tKSgSjHt/Xr17NkyRIikQjZ2dk8+OCDzJw5k7Vr1+o4jSH33Xcfq1ev5vXXXz9onb5TY8vixYu58847mTZtGs3Nzdx8882cffbZbNiwQcdqDNm5cye33XYbN9xwA9/85jd5/fXX+dKXvoTb7ea6665LH4/S0tIh2+lYZdZDDz1ET08Pn/jEJwD9/o01N910E6FQiOnTp+NwOEgmk/zgBz/gmmuuAdD3SmQYdXR0kEwmD/l92rJlS4aiGn/0uzZ6dG0hM3S9IHN0DSBzVKfPHNXTx46RrHsr8TJMrr/+ejZs2DCkL0QZW6ZNm8batWsJBoP85S9/4brrrmPZsmWZDksO0NDQwJe//GWefvppvF5vpsORw9h/ZzfA3LlzWbx4MbW1tfz5z3/G5/NlMDI5kGVZLFq0iP/8z/8EYP78+WzYsIHbb7+d6667LsPRydv57W9/y6WXXkpFRUWmQ5FD+POf/8zdd9/NPffcw6xZs1i7di1f+cpXqKio0PdKRESOi64tZIauF2SGrgFklur0maN6+tgxknVvdTU2DL74xS/y2GOP8fzzz1NVVZVeXlZWRiwWo6enZ0j51tZWysrKRjlKcbvdTJ48mYULF3LLLbcwb948/ud//kfHaQxZtWoVbW1tLFiwAKfTidPpZNmyZfziF7/A6XRSWlqqYzWG5eXlMXXqVLZv367v1RhSXl7OzJkzhyybMWNGugn5/uPR2to6pIyOVebs2bOHZ555hk9/+tPpZfpOjS3/+q//yk033cRHP/pR5syZw8c+9jG++tWvcssttwD6XokMp6KiIhwOh75PGabftdGhawuZo+sFmaFrAGOL6vSjR/X0sWGk695KvBwH27b54he/yIMPPshzzz1HXV3dkPULFy7E5XLx7LPPppfV19ezd+9elixZMtrhyltYlkU0GtVxGkMuvPBC1q9fz9q1a9PTokWLuOaaa9KPdazGrr6+Pnbs2EF5ebm+V2PImWeeSX19/ZBlW7dupba2FoC6ujrKysqGHKtQKMSKFSt0rDLkd7/7HSUlJbznPe9JL9N3amzp7+/HNIeeRjscDizLAvS9EhlObrebhQsXDvk+WZbFs88+q+/TKNLv2sjStYWxR9cLRoeuAYwtqtOPHtXTx4YRr3vbcsy+8IUv2IFAwF66dKnd3Nycnvr7+9NlPv/5z9s1NTX2c889Z69cudJesmSJvWTJkgxGPT7ddNNN9rJly+xdu3bZ69ats2+66SbbMAz7qaeesm1bx2ksO/fcc+0vf/nL6ec6VmPHv/zLv9hLly61d+3aZb/88sv2RRddZBcVFdltbW22betYjRWvvfaa7XQ67R/84Af2tm3b7Lvvvtv2+/32XXfdlS7zwx/+0M7Ly7Mffvhhe926dfYVV1xh19XV2QMDAxmMfHxKJpN2TU2NfeONNx60Tt+pseO6666zKysr7ccee8zetWuX/cADD9hFRUX217/+9XQZfa9Ehs99991nezwe+84777Q3bdpkf/azn7Xz8vLslpaWTId2Uunt7bXXrFljr1mzxgbsn/3sZ/aaNWvsPXv22Lat37WRpGsLmaXrBWOLrgGMHtXpM0f19Mwbjbq3Ei/HATjk9Lvf/S5dZmBgwP6nf/onOz8/3/b7/fYHPvABu7m5OXNBj1Of/OQn7draWtvtdtvFxcX2hRdemD6Jsm0dp7HsrSddOlZjx1VXXWWXl5fbbrfbrqystK+66ip7+/bt6fU6VmPHo48+as+ePdv2eDz29OnT7V/96ldD1luWZX/729+2S0tLbY/HY1944YV2fX19hqId3/7+97/bwCE/f32nxo5QKGR/+ctftmtqamyv12tPnDjR/rd/+zc7Go2my+h7JTK8br31VrumpsZ2u932aaedZr/66quZDumk8/zzzx+yfnvdddfZtq3ftZGkawuZpesFY4uuAYwe1ekzS/X0zBqNurdh27Z9LE1xREREREREREREREREZCiN8SIiIiIiIiIiIiIiIjJMlHgREREREREREREREREZJkq8iIiIiIiIiIiIiIiIDBMlXkRERERERERERERERIaJEi8iIiIiIiIiIiIiIiLDRIkXERERERERERERERGRYaLEi4iIiIiIiIiIiIiIyDBR4kVERERERERERERERGSYKPEiIiLH7bXXXsMwDAzD4Hvf+16mwxERERERERkT9teTDpxcLhcVFRVceeWVvPLKK4fc7rzzzkuXv+WWW952/83NzTidznTZ3bt3D1k/YcKEQy4XEZGRpcSLiIgctz/+8Y/px3fffXcGIxERERERERl7rrvuuvT0vve9D7/fzwMPPMBZZ53FPffc847bvlMd69577yWZTA53uCIicpyUeBERkeMSj8e57777ACgrK2Pr1q2sWLEiw1GJiIiIiIiMHXfeeWd6+utf/8rWrVu58cYbsW2bL33pS8Tj8UNuN3/+fDZu3MjatWsPuf6uu+4iPz+furq6EYxeRESOlhIvIiJyXJ588kk6Ojo488wz+ad/+idgaAsYERERERERGco0Tb73ve/hdDrp7Oxk48aNhyx3zTXXAIdu9bJ582bWrFnDhz/8Ydxu94jGKyIiR0eJFxEROS533XUXANdeey3XXnstAH/605/e9o6tdevWcfnll5OXl0dOTg7nnHMOTz/9NEuXLsUwDD7xiU8ctI1t29x7771ccMEF5Ofn4/V6mTFjBt/97nfp7+8fsfcmIiIiIiIyUtxuN4FAAIBEInHIMosXL2by5Mnce++9WJY1ZN3+G97218NERGTsUOJFRESOWTAY5JFHHsHtdvORj3yEuro6zjjjDDo6OnjyyScPKr98+XKWLFnCY489Rm1tLe9973uJRCK8+93v5oEHHjjka1iWxTXXXMPVV1/N66+/zimnnMJll11GOBzm5ptv5vzzz2dgYGCk36qIiIiIiMiw2rVrF52dnbhcLiZPnvy25a655hoaGxtZunRpeplt29xzzz3U1tZy1llnjUK0IiJyNJR4ERGRY/aXv/yFSCTCpZdeSkFBAfDm3VZv7W7Msiw+8YlP0N/fzw9+8APeeOMN7r33Xl577TV+9atfceuttx7yNX76059y7733ct5557Ft2zaef/55HnjgAbZv386nPvUpXnvtNW6++eaRfaMiIiIiIiLDpK+vj5deeomPfOQjAHzhC18gLy/vbcvvr2Pt720A4KWXXmLPnj1cffXVGIYxovGKiMjRU+JFRESO2aGatn/kIx/B5XLx6KOPEgwG08ufe+45tm7dypQpU7jpppuG7OdTn/oUZ5555kH7TyQS/PjHPyYrK4v77ruPsrKy9Dq3282tt95KWVkZv/rVrw5qdi8iIiIiIjJWGIaRnnJycjj77LOpr6/n1ltv5ec///k7bjt58mROO+00/vrXvxKJRIChXT6LiMjYo8SLiIgck7179/LCCy+Ql5fH5Zdfnl5eWFjIZZddRiQS4f77708vf/nllwG48sorMc2D//1cddVVBy1bvXo1HR0dnHHGGZSWlh603ufzsXDhQrq7u9m2bdtwvC0REREREZFhd91116Wnj370oyxZsoRwOMz3vve9Q3bT/FbXXnstoVCIRx99lFgsxv3338/8+fOZOXPmKEQvIiJHy5npAERE5MR09913Y9s2H/rQh/B4PEPWXXvttTz88MPcddddfPrTnwagubkZgOrq6kPur6am5qBlu3fvBuDpp58+bPP5jo4Opk2bdrRvQ0REREREZMTdeeedBy1bs2YN5557Lu973/vYsGHDO9ZnPvrRj3LDDTdw991343Q66e7u5lvf+tYIRiwiIsdDiRcRETkm+7sZW7p06UGDOcZiMQBeeOEF9uzZQ21t7TG9xv7uwyZPnnzIrsgOVFhYeEyvISIiIiIikgnz58/nc5/7HP/1X//Fbbfd9o5djhUXF3PxxRfzxBNP0Nvbi8Ph4B/+4R9GL1gRETkqSryIiMhRW7VqFZs3bwZg+/btbN++/ZDlbNvm7rvv5pvf/Cbl5eUANDQ0HLLsoZZXVVUBMH369EPeISYiIiIiInIiq6urAziirpOvvfZannjiCZ577jkuvvjidB1LRETGHo3xIiIiR23/QI5f+9rXsG37kNPSpUuHlN3fYuXBBx/Etu2D9vnnP//5oGWnnnoqgUCAZcuW0dXVNULvRkREREREJDN27twJQHZ29mHLvv/976eqqorCwkI+8YlPjHBkIiJyPJR4ERGRo5JMJrn33nsB3rFp+9lnn01lZSWbN29m1apVXHDBBUyZMoX6+np+/OMfDyl755138uKLLx60D4/Hw9e//nV6e3v54Ac/mK6UHKixsTHd7ZmIiIiIiMiJYs2aNfzqV78C4LLLLjtseb/fT0NDAx0dHVx99dUjHZ6IiBwHdTUmIiJH5amnnqK1tZWpU6eyYMGCty1nmiZXXXUVP/vZz/jjH//IwoUL+f3vf89FF13ETTfdxL333svMmTPZsWMHr7/+Otdffz2//OUvcbvdQ/Zz0003sWXLFv74xz8yY8YM5s+fT11dHbFYjPr6ejZt2sTcuXP52Mc+NtJvXURERERE5Jgc2EIlFouxZ88eXn31VSzL4vLLL1d9RkTkJKMWLyIiclT2ty45koEc95e59957SSQSLFmyhFdeeYX3vve97Nq1i0ceeQSXy8Xjjz/OkiVLACgsLByyD9M0+cMf/sDDDz/MxRdfzK5du/jrX//KSy+9hNfr5V//9V/5v//7v2F+lyIiIiIiIsPn97//fXr605/+xJYtWzjnnHP47W9/y0MPPYRp6hKdiMjJxLAP1dG+iIjIKPv85z/PHXfcwX333cdVV12V6XBERERERERERESOiRIvIiIyarq6ugiFQkyYMGHI8j/96U9cc8015OTksG/fPrKysjIToIiIiIiIiIiIyHHSGC8iIjJqtm7dypIlS5g7dy4TJ04EYPPmzdTX1+NwOLjjjjuUdBERERERERERkROaWryIiMioaWtr43vf+x7PPfccTU1NhMNhioqKOOOMM/ja176WHudFRERERERERETkRKXEi4iIiIiIiIiIiIiIyDAxMx2AiIiIiIiIiIiIiIjIyUKJFxERERERERERERERkWGixIuIiIiIiIiIiIiIiMgwUeJFRERERERERERERERkmCjxIiIiIiIiIiIiIiIiMkyUeBERERERERERERERERkmSryIiIiIiIiIiIiIiIgMEyVeREREREREREREREREhokSLyIiIiIiIiIiIiIiIsNEiRcREREREREREREREZFhosSLiIiIiIiIiIiIiIjIMFHiRUREREREREREREREZJgo8SIiIiIiIiIiIiIiIjJMlHgREREREREREREREREZJkq8iIiIiIiIiIiIiIiIDBMlXkRERERERERERERERIaJEi8iIiIiIiIiIiIiIiLDRIkXERERERERERERERGRYaLEi4iIiIiIiIiIiIiIyDBR4kVERERERERERERERGSYKPEiIiIiIiIiIiIiIiIyTJR4ERERERERERERERERGSZKvIiIiIiIiIiIiIiIiAwTJV5ERERERERERERERESGiRIvIiIiIiIiIiIiIiIiw0SJFxERERERERERERERkWGixIuIiIiIiIiIiIiIiMgwUeJFRERERERERERERERkmCjxIiIiIiIiIiIiIiIiMkyUeBERERERERERERERERkmSryIiIiIiIiIiIiIiIgMEyVeREREREREREREREREhokz0wGMBZZl0dTURE5ODoZhZDocEREREZERZds2vb29VFRUYJq6F0sOT3UmERERERlvjqfepMQL0NTURHV1dabDEBEREREZVQ0NDVRVVWU6DDkBqM4kIiIiIuPVsdSblHgBcnJygNQHmJubm+FoRERERERGVigUorq6On0eLHI4qjOJiIiIyHhzPPUmJV4g3VQ+NzdXlQgRERERGTfUZZQcKdWZRERERGS8OpZ6kzp0FhERERERERERERERGSZKvIiIiIiIiIiIiIiIiAwTJV5ERERERERERERERESGiRIvIiIiIiIiIiIiIiIiw8SZ6QBERERERI7FwMAAra2t2LaNbduZDmfMMAwDwzAoLS3F5/NlOhwREREREckQ1Zne3kjXm5R4EREREZETzsDAAI2NjeTk5GCaasT9VpZl0djYSGVlpZIvIiIiIiLjkOpMhzeS9SZ94iIiIiJywmltbVUF4h2YpklOTg6tra2ZDkVERERERDJAdabDG8l6kz51ERERETnh2LatCsRhmKap7gRERERERMYp1ZmOzEjVm/TJi4iIiMgJRwmFI6PPSURERERkfFJd4Mgp8SIiIiIiIjLOvPDCC1x++eVUVFRgGAYPPfTQkPW2bfPv//7vlJeX4/P5uOiii9i2bduQMl1dXVxzzTXk5uaSl5fHpz71Kfr6+kbxXYiIiIiIjB9KvIiIiIiIiIxh4XCYefPm8ctf/vKQ63/84x/zi1/8gttvv50VK1aQlZXFJZdcQiQSSZe55ppr2LhxI08//TSPPfYYL7zwAp/97GdH6y2IiIiIiIwrSryIiIiIyEmnsbGRL3/5y8yZM4fKykoWLFjAv/3bv9HV1XXE+9i7dy8lJSWsX79+BCMVObxLL72U73//+3zgAx84aJ1t2/z85z/nW9/6FldccQVz587lD3/4A01NTemWMZs3b+bJJ5/kN7/5DYsXL+ass87i1ltv5b777qOpqWmU342IiIiIjBWqN40cJV5ERERE5KSye/duLr74Ynbu3Mkdd9zBihUr+MlPfsKLL77IZZddRnd3d6ZDFBk2u3btoqWlhYsuuii9LBAIsHjxYpYvXw7A8uXLycvLY9GiRekyF110EaZpsmLFikPuNxqNEgqFhkwiIiIicvJQvWlkKfEiIiIiIieVm266CbfbzZ///GfOOOMMqqqquPDCC7n//vtpaWnhP//zPwEoKSnh8ccfH7Lt5MmTue+++wDSF6kvvPBCSkpKeP/7358ud88993D22WdTVVXF7Nmzuemmm9Lr9u3bx8c//nEmTJjAxIkT+fSnP01bW1t6/Y9//GPOP/987rnnHubPn8+ECRP4+te/TjKZ5NZbb2XWrFnMnDmT//7v/x4SWzAY5Ktf/SozZsxg4sSJfPCDH2TDhg3D+tnJiaelpQWA0tLSIctLS0vT61paWigpKRmy3ul0UlBQkC7zVrfccguBQCA9VVdXj0D0IiIiIpIpqjeNLCVeREREROSk0d3dzfPPP88//uM/4vP5hqwrLS3lyiuv5OGHH8a27cPu6+9//zsAf/nLX1i/fj2/+93vAPjd737HTTfdxMc+9jGWLVvGH//4R+rq6gCwLIuPf/zjdHd38/DDD3P//fezZ8+eg8bS2L17N88++yz33Xcfd9xxB/fccw9XX301zc3NPPzww3z729/mlltuYdWqVeltPvWpT9HR0cG9997LM888w5w5c/jQhz6kO9FkRHzjG98gGAymp4aGhkyHJCIiIiLDRPWmkecc1VcTERERERlBO3fuxLZtpkyZcsj1U6ZMoaenh46OjsPuq7CwEID8/PwhrQn++7//my984QtDKgXz588H4IUXXmDz5s2sXLmSyspKAP73f/+Xs88+mzVr1qTL2bbN//zP/5Cdnc20adM488wz2bFjB/feey+maTJ58mRuvfVWXn75ZRYuXMirr77KmjVr2LRpEx6PB4Cbb76ZJ554gkcffZSPf/zjx/BpycmgrKwMgNbWVsrLy9PLW1tbOeWUU9JlDrx7ECCRSNDV1ZXe/q08Hk/6b01ERERETi6qN408JV5ERERE5KRzJHdmHYv29nZaWlo4++yzD7l+27ZtVFZWpisPANOmTSMQCLB169Z0BaK6uprs7Ox0meLiYhwOB6ZpDlnW3t4OwMaNGwmHw0ybNm3I60UiEXbv3j1cb09OQHV1dZSVlfHss8+mEy2hUIgVK1bwhS98AYAlS5bQ09PDqlWrWLhwIQDPPfcclmWxePHiTIUuIiIiIhmmetPIUeJFRERkFLW2dTMQiQ/b/nxeF6Ul+cO2P5ETXV1dHYZhsG3btkOu37ZtG3l5eRQVFWEYxkEVjUQi8Y77f2sz/GPldA49DTcM45DL9scXDocpLS3lwQcfPGhfgUBgWGKSsauvr4/t27enn+/atYu1a9dSUFBATU0NX/nKV/j+97/PlClTqKur49vf/jYVFRXp/rVnzJjBu9/9bj7zmc9w++23E4/H+eIXv8hHP/pRKioqMvSuTn7D/T9/P/3vFxERkeOletPIU+JFRERkFA1E4tz5l43Dtr9PfGjWsO1L5GRQUFDAueeey+9+9zs+97nPDTnhb21t5a9//Ssf/vCHMQyDwsJCWltb0+t37txJf39/+rnb7QZS/Q/vl52dTU1NDS+++CJnnXXWQa8/ZcoUGhsbaWxsTN+9VV9fTzAYPOiuq6Mxd+5c2tracDqd1NTUHPN+5MS0cuVKzj///PTzG264AYDrrruOO++8k69//euEw2E++9nP0tPTw1lnncWTTz6J1+tNb3P33XfzxS9+kQsvvBDTNLnyyiv5xS9+MervZTwZ7v/5++l/v4iIiBwv1ZtGnnn4IiIiIiIiJ44f/vCHxGL/n707j4+qvvc//j4zk33fSAJkYwkJAWRVFkUFBFRUBNdaa63VLlar3ra/6721vdVWq72tttartbVa26p13wUVFFQW2dcQlkAChOz7Npnl/P4ISUUFWWZyZiav5+MxjwfM8j3vSB/NnPM5n8+3S1deeaVWrlypgwcPaunSpbriiiuUkZGh//qv/5IknXXWWfrrX/+qLVu2aOPGjfrxj3+ssLCw3nVSU1MVFRWlpUuXqrq6Ws3NzZKkH/3oR3r00Uf15z//WaWlpdq8ebP+8pe/SJLOPvtsFRYW6nvf+542b96s9evX6wc/+IGmTp3aOwbqZJx99tmaOHGirrvuOn3wwQcqLy/Xp59+qnvvvVcbN2486XURHM455xyZpvmFx1NPPSWp+y6/u+++W5WVlers7NT777+v/Pz8I9ZITk7WM888o5aWFjU1Nemvf/3rEWMbAAAA0L9w3uRfFF4AAAAQUoYMGaJ3331XOTk5+va3v63TTz9d//Ef/6Fp06bp7bffVlJS94ieX/ziFxo4cKAuuugiffe739X3v//9I+70cjgc+tWvfqWnn35aY8aM6d2I8aqrrtI999yjJ598UmeddZauueYalZaWSuq+AP70008rMTFRF198sS677DLl5OTo8ccfP6WfyTAMPfvss5oyZYp++MMfasqUKfrOd76j/fv3Ky0t7ZTWBgAAAND/cN7kX4bprx10gkhzc7MSEhLU1NSk+Ph4q+MAAELYvvJqn48ay80e4LP1gGBRWlqquLg4q2MEvJaWFg0ZMuQLz/P9FyeK/82cOF//zu/B734AAHA8OGc6fv44b6LjBQAAAAAAAAAAwEccVgcAACCQVVU3qKPT5bP1XC63z9YCAAAAAABA4KHwAgDAMXR0unw6JuTqi/K/+k0AAAAAAAAIWowaAwAAAAAAAAAA8BEKLwAAAAAAAAAAAD5C4QUAAAAAAAAAAMBHKLwAAAAAAAAAAAD4CIUXAAAAAAAAAAAAH6HwAgAAAAAAAAAA4CMUXgAAAAAAAAAAAHwk4AsvBw8e1Ne//nWlpKQoKipKo0eP1tq1a3tfN01TP/vZz5SZmamoqCjNmjVLu3btsjAxAAAAAlGH06PG5q4+e3Q4PSeV84knntCECROUlZWluXPnav369T7+LwEAAAAAX64vz5tC+ZzJYXWAY2loaNC0adN07rnn6p133lFaWpp27dqlpKSk3vc88MAD+sMf/qC//e1vysvL01133aU5c+Zo+/btioyMtDA9AAAAAonT6dHjz2zss+Pd9LWxioqwn9BnXn31Vf385z/Xb37zG40fP16PP/64rrzySq1YsUJpaWl+SgoAAAAA3fryvCmUz5kCuuPl/vvvV1ZWlp588kmdfvrpysvL0+zZszV06FBJ3d0uDz30kH7605/qkksu0ZgxY/T000+roqJCr776qrXhAQAAgBP02GOP6etf/7quvvpqjRgxQr/5zW8UFRWlZ5991upoAAAAAGC5YDlnCujCy+uvv66JEyfq8ssv14ABAzRu3Dj9+c9/7n197969qqys1KxZs3qfS0hI0BlnnKGVK1cedV2n06nm5uYjHgAAAICVurq6tGnTJk2fPr33OZvNpunTpx8xahcAAAAA+qNgOmcK6MJLaWmpHn30UQ0fPlyLFy/W9773Pd16663629/+JkmqrKyUJKWnpx/xufT09N7Xvsx9992nhISE3kdWVpb/fggAAADgONTX18vj8XyhPT4tLU3V1dUWpQIAAACAwBBM50wBXXjxer0aP3687r33Xo0bN0433XSTbrzxRj322GOntO6dd96ppqam3sf+/ft9lBgAAAAAAAAAAPRnAV14yczM1MiRI494rrCwUOXl5ZKkjIwMSVJVVdUR76mqqup97ctEREQoPj7+iAcAAABgpeTkZNntdtXU1BzxfE1NjQYMGGBRKgAAAAAIDMF0zhTQhZdp06appKTkiOd27typnJwcSVJeXp4yMjK0ZMmS3tebm5u1evVqTZkypU+zAgAAAKciPDxcp512mj766KPe57xerz766CNNnDjRwmQAAAAAYL1gOmdyWB3gWG6//XZNnTpV9957r6644gp9+umnevzxx/X4449LkgzD0G233aZf/vKXGj58uPLy8nTXXXdp4MCBmj9/vrXhAQAAgBP03e9+V7fccotOO+00jR8/Xn/605/U3t6uq666yupoAAAAAGC5YDlnCujCy6RJk/TKK6/ozjvv1N133628vDw99NBDuuaaa3rf85Of/ERtbW266aab1NjYqDPPPFOLFi1SZGSkhckBAAAQaCIi7Lrpa2P79Hgnav78+aqrq9MDDzyg6upqjRo1Ss8991zAtc0DAAAACE19ed4UyudMAV14kaR58+Zp3rx5R33dMAzdfffduvvuu/swFQAAAIJNVIRdUSfxxb6v3XDDDbrhhhusjgEAAACgHwqG86ZgOGcK6D1eAAAAAAAAAAAAggmFFwAAAAAAAAAAAB+h8AIAAAAAAAAAAOAjFF4AAAAAAAAAAAB8hMILAAAAAAAAAACAjzisDgAAgC9VVTeoo9Pls/VcLrfP1gIAAAAAAEDoo/ACAAgpHZ0uPfXiNp+td/VF+T5bCwAABB5f37TRg5s3AAAA+i8KLwAAAACAfsvXN2304OYNAACA/os9XgAAAAAAAAAAAHyEwgsAAAAAAAAAAICPMGoMAAAA/YLZ1SnT5eyz4xlhETLCI0/oMytXrtQjjzyiTZs2qaqqSk899ZQuuOACPyUEAAAAgCP15XlTKJ8zUXgBAABAv2C6nDr41lN9drxBF37zhE8i2tvbVVRUpKuvvlrXX3+9n5IBAAAAwJfry/OmUD5novACAMBJME1TrW1dqm/sUENTp2w2QzHRYYqOClNSQpQiI/gVC+DEzZw5UzNnzrQ6BgAAAAAEpGA5Z+KqEAAAx8nj8WpPWYO2llSrpLROXV2eL32fzWYoZ1CCCoalqmBYquJjI/o4KQAAAAAAAKxC4QUAgK/Q1eXRinX79enGg+rodPc+bxhSQlykkhK622LbOlxqa+9SW7tLe/c3au/+Ri36cLcmjB6oc6bkKCY63KofAQAAAAAAAH2EwgsAAEfh9Zp6/s0devjJT9Xa3iVJiokOU1H+AI0akaaB6XGy221f+Fx9Y4d27K5V8e5aHTjUrLWbK7R5R5WmTczSgjlD+vrHAAAAAAAAQB+i8AIAwJdoaOzQi28Xq6KqRZKUlBCpmdPyVDg8TTabcczPJidGaerELE2dmKV9Bxr13vJSVVS16IMV+3TtbW9q5plDFR/H+DEAAAAAAIBQROEFAIDP2b6zRq+/VyJnl0cJcRGaPH6wJp028Eu7W75K7uBEffvqcdqyo1rvfLBbm3fUaE95o66YV6TsQQl+SA8AAAAAAAArUXgBAOAwr9fU4mV79OnGg5KkrIHxevp3F+rD1RWntK5hGBpTmK6szHgtWrZbO0vr9bcXN+miWfkaW5Thi+gAQkRra6v27t3b+/fy8nJt2bJFSUlJGjx4sIXJAAAAAMB6wXLOROEFAABJbrdXL79TrOLdtZKkaZOydO6UXGUOiPXZMZISo/Tcwxfr2tvf0radNXrt3RLZ7YZGF6T77BgAjs4Ii9CgC7/Zp8c7UZs2bdKll17a+/ef/exnkqQrr7xSDz/8sM+yAQAAAMCX6cvzplA+Z6LwAgDo97pcHv3r9W0qLW+Q3W5o4fmFKhye5pdjRUeFaeEFhYqKDNPazRV6ZdEOhTnsKhiW6pfjAfg3IzxSRnik1TGOadq0aaqurrY6BgAAAIB+KtDPm4LlnOnEh9UDABBCnE63/v7SZpWWNygszKavzR/tt6JLD8MwdMGMYTqtMF2mKb349nbtKav36zEBAAAAAADQNyi8AAD6LY/Hq3+9sU0HDjUrMsKhbyw8TUOyk/rk2IZh6OLZI1Q4LFUej6nn39iu2vr2Pjk2AAAAAAAA/IfCCwCgXzJNU68uLtHe/Y0KD7PrGwvHaHBmfJ9msNkMLbygUDmDE9Tl8uj5N7epy+Xp0wwAAAAAAADwLfZ4AQBYqqq6QR2dLp+t53K5j+t9731Uqq0l1bLZDF1x0Uhlpsf5LMOJsNttuuyCkfrTP9appq5db72/U/PnFsgwjOP6vGl6ta/cd7NNoyLDlD6gb7p+AAAAAAAAQhGFFwCApTo6XXrqxW0+W+/qi/K/8j1rNh3UynUHJEkXnzdCQ3OSfXb8kxEbE66FFxbq6Rc3afOOamUPStCEMQOP67NdXR49+0axz7J887Iin60F+NPxFif7O/47AQAAAP0T5wLHzx//rRg1BgDoVw4cataiD/dIkmZMy9NpI9MtTtQtd3CiZk7LkyS98+Fu1dS1WZwICGyGYcjr9VodI6B5vV5OtgAAAIB+inOm4+Ov8yYKLwCAfqO9w6UX3tour9dU4bBUnTkpy+pIR5g6MUvD85Ll8Zh6/b2d8npNqyMBASs9PV0tLS2cSByF1+tVS0uL0tMDo7gMAAAAoG9xzvTV/HnexKgxAEC/4PWaevmdYjW3OJWcGKVLZo8IuDvBDcPQvJn5euTpNTpwqFlrNlXojHGDrI4FBKSoqCgNGjRIVVVVMk1TpkmhsodhGDIMQ4MGDVJUVJTVcQAAAABYgHOmY/P3eROFFwBAv/DxmnLtKWuQw2HTFReNVEREYP4KjI+L0Kwzh+jtpbu05JNSjRiaosT4SKtjAQEpKipKubm5VscAAAAAgIDEOZN1GDUGAAh5h6pa9OHKfZKkC2cMV3pqrLWBvsLEMZnKHhgvl8urt5bs5K4UAAAAAACAIELhBQAQ0txur15dXCLTlEYOT9PYogyrI30lwzB00XkjZLcb2r2vQdt21lgdCQAAAAAAAMeJwgsAIKQtW7VP1XVtio4K0wUzhlkd57ilJkfrzEnZkqQlH++V281meAAAAAAAAMGAwgsAIGQdrGzWJ2v3S5LmzcpXTHS4xYlOzNSJWYqLCVdjc6c+3XjQ6jgAAAAAAAA4DhReAAAhyeP594ix0QUDVDgs1epIJyw8zK4Z0/IkScs/LVN7h8viRAAAAAAAAPgqFF4AACFp5foDqq1vV0x0mM4/N3hGjH3emMJ0ZaTFyun0aNmqMqvjAAAAAAAA4CtQeAEAhJymlk4tX91dpDjvrCGKigyzONHJs9kMnTd9iCRp7eYK1TW0W5wIAAAAAAAAx0LhBQAQct5dViqXy6vsgfEaU5hudZxTNiQ7ScPzkuX1mvpgxT6r4wAAAAAAAOAYKLwAAELKinUHtX1XjQxDumDGcBmGYXUkn5h5eK+XbTtrVFPXZnEaAAAAAAAAHA2FFwBAyPB4vLrnD59IkiadNkjpabEWJ/Kd9LRYFQxLlSR99Gm5xWkAAAAAAABwNBReAAAhY92WQ9q7v0kx0WE6d0qu1XF8bvoZ2ZKkrSXV7PUCAAAAAAAQoCi8AABCgtPp1rJVZZKkc6bkKjLSYXEi38scEKf8ISkyTbpeX3qidAABAABJREFUAAAAAAAAAhWFFwBASFix7oDaO1zKHZygcUUZVsfxm56ul83FVapv7LA4DQAAAAAAAD6PwgsAIOi1tnVp5fr9kqTbvz1Jdnvo/noblBGvYbnJdL0AAAAAAAAEqNC9MgUA6DeWrS6Ty+XVoIw4zT4r1+o4fvfZrpfqOvZ6AQAAAAAACCQUXgAAQa2uoV3rtxySJM06a4gMw7A4kf9lDUxQVma8vF5Tz7623eo4AAAAAAAA+AwKLwCAoPbR6nJ5vaaG5SYrd3Ci1XH6zOQJgyVJz76+XS6Xx+I0AAAreTwe3XXXXcrLy1NUVJSGDh2qe+65R6Zp9r7HNE397Gc/U2ZmpqKiojRr1izt2rXLwtQAAABA6KLwAgAIWg2NHdq8o0qSdM6UHIvT9K2CoalKjI9UY7NTm4qrrI4DALDQ/fffr0cffVR//OMfVVxcrPvvv18PPPCAHn744d73PPDAA/rDH/6gxx57TKtXr1ZMTIzmzJmjzs5OC5MDAAAAoYnCCwAgaH20plymKQ3NSdKgjHir4/Qpm83QGeMGSZJWbzh4xF3NAID+ZcWKFbrkkkt04YUXKjc3V5dddplmz56tTz/9VFJ3t8tDDz2kn/70p7rkkks0ZswYPf3006qoqNCrr75qbXgAAAAgBFF4AQAEpcbmTm3a3t3pcfbk/tXt0mPcqAzFxoSptr5du/fVWx0HAGCRqVOnasmSJdq5c6ckadOmTfr44491/vnnS5L27t2ryspKzZo1q/czCQkJOuOMM7Ry5covXdPpdKq5ufmIBwAAAIDjQ+EFABCUPlmzX16vqbysRGUNTLA6jiUiwh26/IICSdLKdQcsTgMAsMp//ud/6qqrrlJBQYHCwsI0btw43XbbbbrmmmskSZWVlZKk9PT0Iz6Xnp7e+9rn3XfffUpISOh9ZGVl+feHAAAAAEKIw+oAAACcqOZWpzZsOyRJmn5G/+x26XHtglF66sUt2ru/UTV1bUpLibE6EgCgjz3//PP65z//qWeeeUZFRUXauHGjbrvtNg0cOFDXXXfdSa1555136o477uj9e3NzM8WXE9DQ1KHv/NcirVxfocgIh6Ijw5QQF6HpZ+RoYEac1fEAAADgZwHd8fI///M/MgzjiEdBQUHv652dnbr55puVkpKi2NhYLVy4UFVVbDAMAKFu5br98nhMZQ+MV87g/tnt0mNgeqxGDEmRJK3dfMjiNAAAK/z4xz/u7XoZPXq0rr32Wt1+++267777JEkZGRmS9IVzpaqqqt7XPi8iIkLx8fFHPPDVvF5TK9cf0KNPr9WyVfvV1eVRc4tTlTWtKimt0xP/2qDVGw6wNxsAAECIC+jCiyQVFRXp0KFDvY+PP/6497Xbb79db7zxhl544QUtW7ZMFRUVWrBggYVpAQD+1ul0a/2W7rEoZ52RI8MwLE5kvYmnDZQkbSquVJfLY3EaAEBfa29vl8125Kmd3W6X1+uVJOXl5SkjI0NLlizpfb25uVmrV6/WlClT+jRrKHO7vfrbi5v07rI9crm9On1spr599Th9++px+tr8USocliqv19SiD/fo+Te3q7PTbXVkAAAA+EnAjxpzOBxfehdWU1OTnnjiCT3zzDOaMWOGJOnJJ59UYWGhVq1apcmTJ/d1VABAH1i/5ZC6XB6lpURraE6S1XECwpDsJCUlRKqhqVPbSqo1blSm1ZEAAH3ooosu0q9+9StlZ2erqKhIGzZs0O9+9zt961vfkiQZhqHbbrtNv/zlLzV8+HDl5eXprrvu0sCBAzV//nxrw4eQ9z4qVfnBJkWE23Xe9KH6zZ3T9dybu3pfH5abrE83Vujd5Xu0Y3etOjpd+sbC02SzcRMJAABAqAn4jpddu3Zp4MCBGjJkiK655hqVl5dLktatWyeXy6VZs2b1vregoEDZ2dlauXLlMdd0Op1qbm4+4gEACHwej1erNx6UJE0ZP5hul8MMw9CE0d3FFsaNAUD/8/DDD+uyyy7T97//fRUWFupHP/qRvvOd7+iee+7pfc9PfvIT3XLLLbrppps0adIktba2atGiRYqMjLQweejYWVqnTw9/R7nswpGaMDrzC99TDMPQGeMG6VtXjlV4mF1lB5q0fHWZFXEBAADgZwFdeDnjjDP01FNPadGiRXr00Ue1d+9enXXWWWppaVFlZaXCw8OVmJh4xGfS09NVWVl5zHXvu+8+JSQk9D7YJBIAgkPx7lo1tzgVEx2m0QXpVscJKGOLMmS3G6qoalFFZYvVcQAAfSguLk4PPfSQysrK1NHRoT179uiXv/ylwsPDe99jGIbuvvtuVVZWqrOzU++//77y8/MtTB06Wlqdeu3dEknS5PGDNCw3+ZjvH5QRrwtnDpckLV9dpn37G/0dEQAAAH0soAsv559/vi6//HKNGTNGc+bM0dtvv63GxkY9//zzp7TunXfeqaampt7H/v37fZQYAOAvpmlq5boDkqRJpw2UwxHQv8L6XEx0uEYOT5Mkrd1SYXEaAAD6B9M09eriErV3uJSeFqOZ04Yc1+fGFKZrbFGGTFN66Z1itbV3+TkpAAAA+lJQXbVKTExUfn6+du/erYyMDHV1damxsfGI91RVVX3pnjCfFRERofj4+CMeAIDAVn6wSRVVLXLYbZo4ZqDVcQJSz3+XrTuq1elkw14AAPxt284alZY3yOGwaeH5hSd0Y8j55w5TanK0Wtu69MZ7O/2YEgAAAH0tqAovra2t2rNnjzIzMzVhwgSFhYVpyZIlva+XlJSovLxcU6ZMsTAlAMAfVq3v7nYZMzJdMdHhX/Hu/ilrYLzSUqLlcnu1dUe11XEAAAhppmnq4zXde5CeOSlLaSkxJ/T58DC7LruwUDaboZLSOkaOAQAAhJCALrz86Ec/0rJly7Rv3z6tWLFCl156qex2u66++molJCTohhtu0B133KEPPvhA69at0/XXX68pU6Zo8uTJVkcHAPhQU3OnSkrrJEmTxw2yOE3gMgxD44q6uz43bj/2fmcAAODU7ClrUFVNm8LCbDp97Ml9P0lPjdX40ZmSpCWflMo0TV9GBAAAgEUCuvBy4MABXX311RoxYoSuuOIKpaSkaNWqVUpL655h/+CDD2revHlauHChpk+froyMDL388ssWpwYA+Nq6LYdkmlJuVuIJ303a34wpTJfNZuhgZYtq6tqsjgMAQMj65HC3y4TRmYqKDDvpdaafni2Hw6YDh1p6bzQBAABAcHNYHeBYnnvuuWO+HhkZqUceeUSPPPJIHyUCAFRVN6ij0+Wz9VyuY+9F4vF4tX7rIUlib5fjEBMdruF5ySrZU6cN2yo1e/pQqyMBABByDhxq1r4DTbLZDE0Zn3VKa8XFRmjyuEH6eM1+Lf1kr/LzUmSzGT5KCgAAACsEdOEFABB4OjpdeurFbT5b7+qL8o/5+o7dtWprdyk2OlwFQ1N8dtxQNrYoQyV76rS5uEozp+XJbg/oBlcAAILOJ2v3S5LGFAxQfFzEKa83bWK21m4+pJq6dm3ZUaXTRmac8poAAACwDldiAAABbe3mCknS+NEZFBCO0/DcZMVEh6mt3aXd++qtjgMAQEiprW/Xjt21kqSpE0+t26VHZKRD0yZ1r/XByn3yeLw+WRcAAADW4AoWACBg1dS1ad+BJhmGejeexVez220aXZAuSdq4rdLiNAAAhJY1m7pvChkxNMWne8+dMXaQYqLD1NTs1PZdtT5bFwAAAH2PwgsAIGCt3dy9t0v+kBQlxEVanCa4jCvqHlGyc2+92tq7LE4DAEBo8HpNbdtZLUkaP8q3N4WEhdk16bTu/ew+3XjAp2sDAACgb1F4AQAEJJfLo03F3d0aE8cMtDhN8BmQGqOB6XHyek1t2VFtdRwAAELCvv2Namt3KSrSoaE5ST5ff8LogbLZDB041KKDlc0+Xx8AAAB9g8ILACAgbd9VK6fTo8T4SL9c2OgPThvZPW5sc3GVxUkAAAgNW0q6b2YoHJ7ml73nYmPCNWrEAEnSpxsO+nx9AAAA9A0KLwCAgLRxe3e3y9iiDBmGYXGa4FSUnybDkA5Vt6q2vt3qOAAABDW326vi3TWSpNGHiyP+cPrY7k7frTtr1NrGuFAAAIBgROEFABBwGpo6tG9/oyRp7OGuDZy4mOhwDctNliRt3kHXCwAAp2J3Wb2cTo/iYsKVPSjBb8cZlBGvwZnx8npNrd1c4bfjAAAAwH8ovAAAAs7Gbd1FgiHZSUqIj7Q4TXAbXdBduNpSXC3TNC1OAwBA8Np6eM+0ohFpstn82417xrhBkqS1myvk8Xj9eiwAAAD4HoUXAEBAMU1Tmz4zZgynpmBoisLD7Gps7tSBQ2zSCwDAyejq8qiktE6Sevdg8afCYamKiwlXW7tLxbtr/X48AAAA+BaFFwBAQNlb3qimFqciIxwqGJZidZygFxZmV+GwVEnS5sN36gIAgBNTUlort9ur5MQoDUyP8/vx7Habxo7qvgGl54YUAAAABA8KLwCAgLLx8MWFUSMGKMxhtzhNaBhd2H1n7raSasaVAABwErbtrJEkjRqRJsPw75ixHmNHdhde9pQ1qLnV2SfHBAAAgG9QeAEABIzOTreKd3WP0xjHmDGfyctKUmx0uDo63dpT1mB1HAAAgorH41Vpeffvz4LDXaR9ITkxStkD42Wa0ubiqj47LgAAAE4dhRcAQMDYtqtGbo9XA1JilJkea3WckGGzGSoakSaJCzcAAJyo8oomuVxexUSHKSOtb7+fnFbUM26sSqZp9umxAQAAcPIovAAAAsaWHd1FgTGFA/psjEd/Mbqge9zYztI6dbk8FqcBACB47N7X3e0yLCe5z7+fFA1Pk8NhU219uw5WtvTpsQEAAHDyKLwAAAJCU0unyg40Sere3wW+NTA9TkkJkXK5vdpVWmd1HAAAgsaeffWSpKG5SX1+7IgIh0YeHm+2aTtdqwAAAMGCwgsAICBs3VEtScoZlKCE+EiL04QewzBUlN89bmzr4Q2CAQDAsbW0OlVV2yZJGpLd94UX6d/jxraWVMvt9lqSAQAAACeGwgsAICBsOVx46RmJBd8rOtxJtGtvnZxOt8VpAAAIfHvKuseMDUyPU0x0uCUZ8rISFR8XoU6nWzv21FqSAQAAACeGwgsAwHLVtW2qqm2TzWZo5OGuDPheemqMUpOj5fGYKmHcGAAAX2m3hWPGehiGodMK0yX9u0MYAAAAgY3CCwDAclt2dM8sH56XrKjIMIvThK4jxo2VcOEGAIBj8XrN3o6XYTnJlmbp2f9u1756Nbc4Lc0CAACAr0bhBQBgKa/X1JaSnjFj6RanCX09hZc9ZQ3q6HRZnAYAgMBVUdWiTqdbERF2Dc6MtzTLgNQYpaVEy+s19e7yvZZmAQAAwFej8AIAsNSGbVVqanYqPNyu/CHW3k3aH6SlxCg9NUZer6ni3cyJBwDgaHrGjA3JSpLNZlic5t9dL28s2WVxEgAAAHwVCi8AAEu9tXSPJKlwWKrCHHaL0/QPRSO6u162ldRYnAQAgMC1p6y78DIsNzBuDOnpWv1k7QHV1rdZnAYAAADHQuEFAGCZz47L6LmLE/5XlN/933rv/ga1dzBuDACAz3N2uXWwskWSNDQnyeI03VKSopU5IFYej6mX3i62Og4AAACOgcILAMAy5QebVNvQocgIh/KyEq2O028kJ0YpPS1GpimV7GHcGAAAn3fgULNMU0qIj1BCfKTVcXoVHb5R5bnXt1qcBAAAAMdC4QUAYJltu7pHXRUMS5Xdzq+kvlQ4rHtcCfu8AADwRWUHmyRJOQMTLE5ypJ5xY8tW7dOhqhaL0wAAAOBouMoFALCE12uq+HDhpeciAvrOyOGpkqQ9ZQ3qdLotTgMAQGApP1x4yR4UWIWXxPhIjR+VLtOUXnhrm9VxAAAAcBQUXgAAlig/2KS2dpcS4iIYM2aBtJQYpSZHy+s1tbO0zuo4AAAEDLfbq4OHurtJAq3wIknzZg2XJP3rDQovAAAAgYrCCwDAEtt2dne7zDozhzFjFikc1t31wrgxAAD+7VB1i9wer6KjwpSaHG11nC84/5whkqSV6/YzbgwAACBAcaULANDnvF5Txbu7Cy9zzx5icZr+q/DwuLHd++rV5fJYnAYAgMDQs79L9sB4GYZhcZovykiL1eTxg2Wa0quLd1gdBwAAAF+CwgsAoM+VHWxUW7tLkREOTR4/yOo4/VZGWqwS4yPldnu1e2+91XEAAAgIgbq/y2ctOL9QkvTyomKLkwAAAODLUHgBAPS57Tu7R1sVDEtVmINfRVYxDKO366WnAwkAgP7MNE3tr2iWFNiFl0vnFEiSPlixV/UN7RanAQAAwOdxtQsA0KdM09SOw3uKjDx80R/WGTk8TZK0s7RebrfX4jQAAFiruq5NnU63wsJsyhwQZ3WcoxqWl6IxhenyeEy98f5Oq+MAAADgcyi8AAD61IFDzWpt71JEuF1DspOsjtPvDcqIU1xsuLpcHu0pY9wYAKB/6xkzNjgjXjZb4O3v8lm948beYdwYAABAoKHwAgDoUz3dLsPzUmS382vIaoZhqHBYd9dL8eF/GwAA+qtg2N+lx4K53YWXxct3q7XNaXEaAAAAfBZXvAAAfcY0Te3YUydJKhiaYnEa9OjZ56VkT526XB6L0wAAYA3TNFV2uPCSEwSFl1EFAzQsN1lOp0dvL91ldRwAAAB8BoUXAECfqalrV31jh+x2Q8Pykq2Og8OyByYoJjpMnU63Vq4/aHUcAAAs0dTsVEtrl2w2Q4Mz462O85UMw9DCCxg3BgAAEIgovAAA+kzPKKsh2UmKCHdYnAY9bDZDI4Z2d70s+rDU4jQAAFjjQGWzJCk9NUZhYXaL0xyfnnFjby3dpc5Ol8VpAAAA0IPCCwCgz+zY0114KRiWanESfN7Iw+PG3lu+Vx6P1+I0AAD0vYqqFknSoCDodukx8bSBGpwZr9a2Lr3/MTdPAAAABAoKLwCAPtHY1KnK6lYZhjRiCPu7BJrcwYmKjHCorrFDH31aZnUcAAD63MHKw4WX9DiLkxw/m82mS+cWSGLcGAAAQCCh8AIA6BM93S7d+4mEW5wGn2e32zRiaHdB7KW3uXADAOhfvF5Th3o6XjKCp/AiSQvO7x439tq7JXK7PRanAQAAgEThBQDQR3bsZsxYoCs8/G/z8jvF8noZNwYA6D9q6trkcnsVHm5XSlK01XFOyJmTspWaHK36xg4tW0XXKgAAQCCg8AIA8Lv2DpfKK5okSQVDKbwEqqE5yYqJClNFVYtWbzhodRwAAPrMwcPdLgPT42SzGRanOTEOh12XzB4hiXFjAAAAgYLCCwDA73btrZdpSumpMUpMiLQ6Do7C4bBpxrQcSdIri7hwAwDoP4Jxf5fPWnjBSEndv7/pWgUAALAehRcAgN/tLK2TJOUPSbE4Cb7K7OlDJEmvLNoh0zQtTgMAQN+oOFx4GRhk+7v0mDE1T/FxETpU3UrXKgAAQACg8AIA8CuPx6vdZfWSKLwEg3MmZys83K7d++q1fWeN1XEAAPC7jk6XqmpbJUmDgrTwEhHh0LyZ+ZIYNwYAABAIKLwAAPxq34FGdXV5FBMdFrQXM/qT2JhwzTqzp+uFCzcAgNC3fVetTFOKjQ5XfGyE1XFO2oLzCyV1F17oWgUAALAWhRcAgF/tLP13t4thBNdmtf3VpXMLJEmvLt5hcRIAAPxv0/ZqSd3dLsH8XWXuOcMUGeFQaXmDNm2vtDoOAABAv0bhBQDgN6Zpsr9LELpo1ggZhrRuyyGVH2y0Og4AAH61qbi78BKs+7v0iIkO19xzhknq3qsNAAAA1qHwAgDwm+q6NjU2d8puNzQkO8nqODhO6WmxmjYxWxJdLwCA0Ldpe5Wk4N3f5bM+O24MAAAA1qHwAgDwm55ulyHZSQoPs1ucBieCcWMAgP6gvqFdZQebJUkD04O/8DJvZr4cDpu2llRrZ2mt1XEAAAD6LQovAAC/YcxY8Jo/p7vwsnx1meoa2i1OAwCAf6zZVCFJSk6MUlRkmMVpTl1SYpRmTM2TxLgxAAAAKwVV4eXXv/61DMPQbbfd1vtcZ2enbr75ZqWkpCg2NlYLFy5UVVWVdSEBAJKktvYuHTjUIonCSzAakpOsMYXp8nhMvfn+TqvjAADgF+u2dBdeQqHbpQfjxgAAAKwXNIWXNWvW6E9/+pPGjBlzxPO333673njjDb3wwgtatmyZKioqtGDBAotSAgB67NpbL0nKGBCr+NgIi9PgZPSMG3tlERduAAChacO2Sknd31dCxSWzR8gwpE83HtT+iiar4wAAAPRLQVF4aW1t1TXXXKM///nPSkr69+bMTU1NeuKJJ/S73/1OM2bM0IQJE/Tkk09qxYoVWrVqlYWJAQC793UXXobnJVucBCerZ9zY4mV71NbeZXEaAAB8b8PWQ5KkzLTQKbxkDIjTtInZktirDQAAwCpBUXi5+eabdeGFF2rWrFlHPL9u3Tq5XK4jni8oKFB2drZWrlx51PWcTqeam5uPeAAAfMfj8Wp32eHCSy6Fl2B12sgM5WYlqtPp1rvL9lgdBwAAn2pq7tSesgZJodXxIjFuDAAAwGoBX3h57rnntH79et13331feK2yslLh4eFKTEw84vn09HRVVlYedc377rtPCQkJvY+srCxfxwaAfu3AoWY5nR5FRTo0KCPe6jg4SYZhaP7sw+PGFnPhBgAQWjZt7z5nHJgeq+ioMIvT+FbPuNDlq8tUU9dmcRoAAID+J6ALL/v379cPf/hD/fOf/1RkZKTP1r3zzjvV1NTU+9i/f7/P1gYA/Ht/l2G5ybLZDIvT4FT0XLh58/2dcrk8FqcBAMB3evZ3GTk81eIkvpeblaTxozPl9Zp6/b0Sq+MAAAD0OwFdeFm3bp2qq6s1fvx4ORwOORwOLVu2TH/4wx/kcDiUnp6urq4uNTY2HvG5qqoqZWRkHHXdiIgIxcfHH/EAAPhOT+GF/V2C37RJ2UpNjlZDU6eWry6zOg4AAD7Ts79LUX7oFV4kacFcxo0BAABYJaALLzNnztSWLVu0cePG3sfEiRN1zTXX9P45LCxMS5Ys6f1MSUmJysvLNWXKFAuTA0D/1dTcqeq6NhmGNDSHwkuws9ttuvi8EZKkVxZx4QYAEDp6O17y0yxO4h89+7y8/3Gpmpo7LU4DAADQvwR04SUuLk6jRo064hETE6OUlBSNGjVKCQkJuuGGG3THHXfogw8+0Lp163T99ddrypQpmjx5stXxAaBf2rWvu9tlcEZ8yM1L7696xo29uniHTNO0OA0AAKfO6XRr+64aSVJRCI4ak6TC4WkqGJaqri6P3l66y+o4AAAA/UpAF16Ox4MPPqh58+Zp4cKFmj59ujIyMvTyyy9bHQsA+q3eMWND6HYJFbPOHKKY6DAdrGzR2k0VVscBAOCUbS2pltvtVXJilAamx1odx296x43RtQoAANCngq7w8uGHH+qhhx7q/XtkZKQeeeQR1dfXq62tTS+//PIx93cBAPiP2+3V3vIGSdLw3BSL08BXIiPDdP65wyV1d70AABDsNmzr3t9l3KgMGYZhcRr/6Rk39vbSXerocFmcBgAAoP8IusILACBwlR1slMvtVVxMuNLTYqyO4xOm6VVHc5PPHqbptfpHOimXzukeN/bKYu6YBQAEvw1bu/d3GVeUaXES/xo/OlPZgxLU3uHSu8v3WB0HAACg36DwAgDwmd2H93cZlpccUnePtpVu9tkjWF0wY7gcDpuKd9WqZE+t1XEAAJ9z8OBBff3rX1dKSoqioqI0evRorV27tvd10zT1s5/9TJmZmYqKitKsWbO0a1f/3fejt+OlKLSnJRiGwbgxAAAAC1B4AQD4zJ6y7jFjQ3PY3yXUJCZEacbUPEmMGwOAQNPQ0KBp06YpLCxM77zzjrZv367f/va3SkpK6n3PAw88oD/84Q967LHHtHr1asXExGjOnDnq7Oy0MLk1PB6vNm2vkiSNGxXaHS/Sv8eNvf5eiVwuj8VpAAAA+gcKLwAAn2hucaqmrl2GIQ3JTrQ6Dvzg0rmHx41xxywABJT7779fWVlZevLJJ3X66acrLy9Ps2fP1tChQyV1d7s89NBD+ulPf6pLLrlEY8aM0dNPP62Kigq9+uqr1oa3wK69dWrvcCk6Kkz5Q0J/T7qpE7M0IDVGjU2d+nDlPqvjAAAA9AsUXgAAPrGnrHvM2MD0OEVFhlmcBv5w8XkjJEmrNxxURWWzxWkAAD1ef/11TZw4UZdffrkGDBigcePG6c9//nPv63v37lVlZaVmzZrV+1xCQoLOOOMMrVy58kvXdDqdam5uPuIRKnr2dxlTmC67PfRPie12m+Yf3qvtpXe2W5wGAACgfwj9b5kAgD7x7zFjSV/xTgSrgRnxmjx+sCTptXdLLE4DAOhRWlqqRx99VMOHD9fixYv1ve99T7feeqv+9re/SZIqK7sLDenp6Ud8Lj09vfe1z7vvvvuUkJDQ+8jKyvLvD9GH+sv+Lp+18PC4sZffKZbbzbgxAAAAf6PwAgA4ZV6vqdJy9nfpDxg3BgCBx+v1avz48br33ns1btw43XTTTbrxxhv12GOPnfSad955p5qamnof+/fv92Fia23ZUS1JOm1k/ym8nDs1TylJUaqpa9eyVWVWxwEAAAh5FF4AAKfsUHWLOjrdigi3a3BmvNVx4Ec9o0o+WLlPjU0dFqcBAEhSZmamRo4cecRzhYWFKi8vlyRlZHQXGKqqqo54T1VVVe9rnxcREaH4+PgjHqFia0l34WXUiAEWJ+k7YWF2XTq3u+vlhbe2WZwGAAAg9FF4AQCcsp4xY3nZSbLZDIvTwJ/yh6RqZH6a3G6v3lq6y+o4AABJ06ZNU0nJkSMgd+7cqZycHElSXl6eMjIytGTJkt7Xm5ubtXr1ak2ZMqVPs1qtqblTBw5171dTlJ9mcZq+dcW8IknSS28zbgwAAMDfKLwAAE7Znn31ktjfpb+YP7u76+XVxTssTgIAkKTbb79dq1at0r333qvdu3frmWee0eOPP66bb75ZkmQYhm677Tb98pe/1Ouvv64tW7boG9/4hgYOHKj58+dbG76PbdvZ3e0yODNeiQlRFqfpW+dOzVVKUpRq69v14cp9VscBAAAIaRReAACnxOl0a//hO0cpvPQPPfu8vPPBLnV0uCxOAwCYNGmSXnnlFT377LMaNWqU7rnnHj300EO65ppret/zk5/8RLfccotuuukmTZo0Sa2trVq0aJEiIyMtTN73+uOYsR4Oh10LL+geSff8m4wbAwAA8CcKLwCAU7J3f6NMU0pOjFJSP7tztL+aMGagBmfGq63dpfc/LrU6DgBA0rx587RlyxZ1dnaquLhYN9544xGvG4ahu+++W5WVlers7NT777+v/Px8i9Jap6fw0t/GjPW4/MLuwsvL7zBuDAAAwJ8ovAAATknP/i50u/QfhmFo/hzGjQEAgk9/7niRpHOm5Co1OVp1DR36YMU+q+MAAACELAovAIBTsqeM/V36o55xY6+/V8IdswCAoNHfCy/d48YKJTFuDAAAwJ8ovAAATlp9Y4camjplsxnKy6Lw0p9MPyNHSQmRqq1v14q1+62OAwDAV6qubVVNXbsMQyoc3j9HjUnSFfOKJEkvvb1dXV1ui9MAAACEJgovAICT1tPtkjUwXuHhdovToC85HHZddN4ISdIrixg3BgAIfNt21kiShmQnKSY63OI01jl7cq4yBsSqoalT7y7fY3UcAACAkEThBQBw0vbs69nfJdniJLDCpYf3eXllcbFM07Q4DQAAx9bfx4z1sNttuuqiUZKkZ17dYnEaAACA0EThBQBwUjwer/bub5TE/i791eyzhyoq0qGyA03atL3S6jgAABxTT+GlKL9/F14k6WvzR0uSXnu3RK1tTovTAAAAhB4KLwCAk3LgULO6XB5FR4Upc0Cs1XFggeiocM05e5gkxo0BAAIfHS//NvG0gRqWm6z2Dpdef7fE6jgAAAAhxy+FlyFDhqiuru4Lzzc2NmrIkCH+OCQAoI/tKesZM5YkwzAsThNcOpqbfPYwTa+lP8ulcw+PG1tUbGkOAAg0nBMFFtM0Kbx8hmEYvV0vz7zGuDEAAABfc/hj0X379snj8XzheafTqYMHD/rjkACAPtZTeBmSzZixE9VWutmHq03w4Vonbt7MfNnthrbsqNaeffUamst+PwAgcU4UaA5WNqu5xSmHw6YRQ1OsjhMQrr5klO5+aJkWL9uj2vo2pSbHWB0JAAAgZPi08PL666/3/nnx4sVKSEjo/bvH49GSJUuUm5vry0MCACzQ3uFSRVWLJPZ36e+Sk6J19uRcLf1kr15dvEP/8Z2pVkcCAEtxThSYtu7o7nbJH5Ki8HC/3H8YdAqGpWn86Eyt33JIL761Xd+9dpLVkQAAAEKGT79xzp8/X1J32/J11113xGthYWHKzc3Vb3/7W18eEgBggdLy7m6XAakxiouNsDgNrHbp3AIKLwBwGOdEgal3zFg+Y8Y+62uXjNb6LYf0zKtbKLwAAAD4kE/3ePF6vfJ6vcrOzlZ1dXXv371er5xOp0pKSjRv3jxfHhIAYIE9++ol0e2CbpfM7t7n5ZO15aqqabU4DQBYi3OiwNRTeCkakWZxksBy5cVFMgzpo0/LtW9/g9VxAAAAQoZPCy899u7dq9TUVH8sDQCwmGmavfu7DMthPw9IWQMTNHHMQJmm9Pp7JVbHAYCAwDlRYOnteBlBx8tnDc5M0IxpeZKkv7/kyz3oAAAA+je/DbddsmSJlixZ0nuX12f99a9/9ddhAQB+tnNvvVrauuRw2JQ9KOGrP4B+Yf6cAq3dXKFXF+/QjV+bYHUcAAgInBMFBq/Xq+27aiRRePky1102Vks+3qu/vbhRP/3hdBmGYXUkAACAoOeXjpdf/OIXmj17tpYsWaLa2lo1NDQc8QAABK/lq/dLknIHJ8jh8MuvEQShS+d2jxt7/+NSNbd0WpwGAKzHOVHg2FveqI5OtyIi7BpKt+4XLDi/ULEx4dpT1qBP1pRbHQcAACAk+KXj5bHHHtNTTz2la6+91h/LAwAs9NGn3YWXIVy4wGcUDk9T/pAU7Syt06IPd+uKi0ZZHQkALMU5UeDoGTM2cnia7HZuGvm8mOhwXX7hSD35/Eb97cVNOvP0HKsjAQAABD2/fOvs6urS1KlT/bE0AMBCHR0ufbqxQpI0LCfJ4jQIJIZhaP6c7q6XVxbtsDgNAFiPc6LAwf4uX+26y8ZKkp5/c5vaO7qsDQMAABAC/FJ4+fa3v61nnnnGH0sDACz00adlcnZ5FBcbrtTkaKvjIMD0jBt7a+lOOZ1ui9MAgLU4JwocPYWXonwKL0dz1hnZys1KVHOLU69yAwUAAMAp88uosc7OTj3++ON6//33NWbMGIWFhR3x+u9+9zt/HBYA4GeLl+2RJA3NSWbjVXzB6WMHKXNArA5Vt+qDFXs199zhVkcCAMtwThQ46Hj5ajabTddddpp+8eAy/e3FTfrapWOsjgQAABDU/FJ42bx5s8aOHStJ2rp16xGvcaEOAILX4mW7JTFmDF/OZrPpktkFeuwfa/XK4h0UXgD0a5wTBQaXy6OS0lpJFF6+yjcWdhde3vtojw4catLgzASrIwEAAAQtvxRePvjgA38sCwCw0MFDzdq2s0aGIeVlU3jBl7t0bnfh5bV3d+jRey+UzcYmxgD6J86JAsOuvXVyubyKjQlX9iAKCccyJCdZ08/I0fLVZXrq+Y366Q/PtjoSAABA0OJqCADguLy7vHvM2JjCAYqOCvuKd6O/OmdKrhLiI1RV06ZV6w9YHQcA0M99dswYnUZf7cavjZck/eW59fJ6vRanAQAACF5+6Xg599xzj/mldunSpf44LADAj3oKL2dNyrI4CQJZeLhDF87I1zOvbtEri3Zo6sRsqyMBgCU4JwoMPYWXovw0i5MEh4Xnj9StP3tHZQea9N7yUs05Z5jVkQAAAIKSXzpexo4dq9NOO633MXLkSHV1dWn9+vUaPXq0Pw4JAPAjj8er9z7qLrxMP4ML6Ti2S+cWSJJeWVQs0zQtTgMA1uCcKDB8tuMFXy0qKkzXLjxNkvT4M+ssTgMAABC8/NLx8uCDD37p8//zP/+j1tZWfxwSAOBH67ccUl1Dh+LjIjS2aIC27aq3OhIC2Nxzhikiwq49ZQ3aVlKtUQXpVkcCgD7HOVFgoPBy4m68erz+8NfVev29Eh2qalFmepzVkQAAAIJOn+7x8vWvf11//etf+/KQAAAf6BkzNmNqnsIcdovTINDFxkTovLOGSpJeXbzD4jQAEFg4J+o7HR0u7SlrkETh5USMKkjX1IlZcru9euqFjVbHAQAACEp9WnhZuXKlIiMj+/KQAAAfWLxstyRpztlDLU6CYDF/zuFxYxReAOAInBP1nR17auX1mkpJilJ6WqzVcYLKjVePlyT95dn18nq9FqcBAAAIPn4ZNbZgwYIj/m6apg4dOqS1a9fqrrvu8schAQB+0tzSqZXrD0iSZk8fKsltbSAEhYvPGyGbzdD6LYdUdqBROYMTrY4EAH2KcyLrfXbMmGEYFqcJLldcVKTbfrFIpeUNWvLxXp03nZtvAAAAToRfOl4SEhKOeCQnJ+ucc87R22+/rZ///Of+OCQAwE8+WLFPbrdXw3KTNSQn2eo4CBJpKTE6c1K2JOm1d+l6AdD/cE5kvZ7CS1E+Y8ZOVHRUuL5+6RhJ0qN/X2NxGgAAgODjl46XJ5980h/LAgAs0LO/y2zudMQJmj+nQMtXl+mVRTt067cmWx0HAPoU50S+V1XdoI5O13G/f83G/ZKkzAFR2ldefdT3uVzB1c1rmt5j/jwnKyoyTOkDknr//v1vTNIjf1uj194toXsVAADgBPml8NJj3bp1Ki4uliQVFRVp3Lhx/jwcAMAP2N8FJ+vSuQW64+7FWr66THUN7UpJirY6EgD0Oc6JfKej06WnXtx23O9fv7VKkrSnrOmYn7v6ovxTztaXuro8evaNYp+v+83Lio74+8j8AZp5Zp6WfLxX//f0Gt3/X+f5/JgAAAChyi+jxqqrqzVjxgxNmjRJt956q2699VZNmDBBM2fOVE1NjT8OCQDwgz376rWnrEEOh03nTs2zOg6CTG5WksYWZcjrNfXGeyVWxwGAPsU5kbWcTreaWpySpAGpMRanCV63fPMMSdJfnl2vjo7j7zYCAADo7/xSeLnlllvU0tKibdu2qb6+XvX19dq6dauam5t16623+uOQAAA/6BkzNnVCluJiIyxOg2A0f06BJOmVRezzAqB/4ZzIWjX17ZKkuJhwRUWGWZwmeM2bla/crETVN3bomde2WB0HAAAgaPil8LJo0SL93//9nwoLC3ufGzlypB555BG98847/jgkAMAPGDOGU3Xp3O7Cy7vL96itvcviNADQdzgnslZ1bZskul1Old1u083fmCRJevjJ1TJN0+JEAAAAwcEvhRev16uwsC/eVRQWFiav1+uPQwIAfMzl8mjpir2SpNnTKbzg5IwuSFdedqI6ne7eQh4A9AecE1mruq678JKWwv5ip+pbV45TVKRDm7ZX6eNPy62OAwAAEBT8UniZMWOGfvjDH6qioqL3uYMHD+r222/XzJkz/XFIAICPrVp/QC2tXUpNjtb40ZlWx0GQMgxDl87pvtv71cWMGwPQf3BOZK3ejpcUOl5OVXJStL6+YIwk6fd/XWVxGgAAgODgl8LLH//4RzU3Nys3N1dDhw7V0KFDlZeXp+bmZj388MP+OCQAwMd6uhPOO2uIbDa//LpAP9EzbuyN93fK5fJYnAYA+gbnRNbq6Xhh1Jhv3Hr9GZK692zbs6/e4jQAAACBz+GPRbOysrR+/Xq9//772rGj++7WwsJCzZo1yx+HAwD4wbvL90hizBhO3ZQJWUpLiVZNXbuWrdqnWWfxvykAoY9zIuu0d7jU1u6SJKUlU3jxhVEF6Tr/3GF654Pd+t2fV+qRX11odSQAAICA5tNbmJcuXaqRI0equblZhmHovPPO0y233KJbbrlFkyZNUlFRkT766CNfHhIA4Ae19W1au7l7NAqFF5wqu92mS2Z3d70wbgxAqOOcyHo93S6J8ZEKD7dbnCZ0/Pi70yRJTz6/QbX1bRanAQAACGw+Lbw89NBDuvHGGxUfH/+F1xISEvSd73xHv/vd73x5SACAHyz5eK9MUxo1YoAGZnzx/9OBE9UzbuyVRTvYVBpASOOcyHr/3t8l2uIkoeWcKbmaOGagOjrdeuRva6yOAwAAENB8WnjZtGmT5s6de9TXZ8+erXXr1h33eo8++qjGjBmj+Ph4xcfHa8qUKXrnnXd6X+/s7NTNN9+slJQUxcbGauHChaqqqjqlnwEA8O/9XeacTbcLfGPmtCGKj4tQRVWLVq47YHUcAPAbX58T4cT1dLyksb+LTxmGoR9/d6ok6Y9Pfar2ji6LEwEAAAQunxZeqqqqFBYWdtTXHQ6Hampqjnu9wYMH69e//rXWrVuntWvXasaMGbrkkku0bds2SdLtt9+uN954Qy+88IKWLVumiooKLViw4JR/DgDoz0zT1OJl3fu7zDl7mMVpECoiIhy6ZPYISdLzb26zOA0A+I+vz4lw4mp6O14ovPjagvMLlZedqNr6dj31/Ear4wAAAAQsnxZeBg0apK1btx719c2bNyszM/O417vooot0wQUXaPjw4crPz9evfvUrxcbGatWqVWpqatITTzyh3/3ud5oxY4YmTJigJ598UitWrNCqVat88eMAQL+0fWeNKqpaFBnh0JmTsq2OgxByxbwiSdKLb21n3BiAkOXrcyKcGNM0VV3XLkkaQMeLzzkcdt1x4xRJ0m8fXym322NxIgAAgMDk08LLBRdcoLvuukudnZ1feK2jo0M///nPNW/evJNa2+Px6LnnnlNbW5umTJmidevWyeVyadasWb3vKSgoUHZ2tlauXHnSPwMA9Hc9Y8bOnpyjqKij37ELnKjzzhrKuDEAIc+f50T4aq1tXep0umUYUmoSe7z4w/VXjFNqcrRKyxv07GtHLzICAAD0Zz4tvPz0pz9VfX298vPz9cADD+i1117Ta6+9pvvvv18jRoxQfX29/vu///uE1tyyZYtiY2MVERGh7373u3rllVc0cuRIVVZWKjw8XImJiUe8Pz09XZWVlcdc0+l0qrm5+YgHAKDbu8u7x4zNns7+LvCtiAiH5s8pkMS4MQChyx/nRDh+Pfu7pCRFy+Hw6ekuDouJDtePvtO918sv/7BcHg9drAAAAJ/n8OVi6enpWrFihb73ve/pzjvvlGmakro34ZszZ44eeeQRpaenn9CaI0aM0MaNG9XU1KQXX3xR1113nZYtW3ZKOe+77z794he/OKU1ACAUdXS4tGxVmST2dwkmHc1NPlvL4/bvRrmXXzhST7+4SS++tV0P/nyObDYuigEILf44J8Lxqz68v0taMt0u/vT9b0zSA49+op2ldXr+jW26ev5oqyMBAAAEFJ8WXiQpJydHb7/9thoaGrR7926Zpqnhw4crKSnppNYLDw/XsGHdF/8mTJigNWvW6Pe//72uvPJKdXV1qbGx8Yiul6qqKmVkZBxzzTvvvFN33HFH79+bm5uVlZV1UvkAIJR89GmZOp1uDcqI08j8NKvj4Di1lW722Vqmd4LP1voynx03tmLtfp15eo5fjwcAVvD1ORGOH/u79I242AjdceMU/fQ3S3XPH5bpiouKZLdzMwUAAEAPv30zSkpK0qRJk3T66af79ATD6/XK6XRqwoQJCgsL05IlS3pfKykpUXl5uaZMmXLMNSIiIhQfH3/EAwBw5JgxwzAsToNQ9NlxYy+8td3iNADgX/46J8LR9XS8DEih8OJvP/jm6UpMiFTxrlq99Da/0wEAAD4roG9JufPOO7V8+XLt27dPW7Zs0Z133qkPP/xQ11xzjRISEnTDDTfojjvu0AcffKB169bp+uuv15QpUzR58mSrowNAUFr04W5J0txzGDMG/7n8wpGSpBff2i6vl7nwAADfME1TNYf3eKHjxf8S4iN12w3d5973/H45v9MBAAA+I6ALL9XV1frGN76hESNGaObMmVqzZo0WL16s8847T5L04IMPat68eVq4cKGmT5+ujIwMvfzyyxanBoDgtL+iSdt21shmMzTrzCFWx0EIO++soUqI//e4MQAAfKGxuVMut1d2u6HkxCir4/QLt15/huLjIrS1pFovvEnXCwAAQI+ALrw88cQT2rdvn5xOp6qrq/X+++/3Fl0kKTIyUo888ojq6+vV1taml19++Sv3dwEAfLnFy7q7XU4fO0jJSWxIaxnTlM3rkmF6pMMbMoeaiAiHLpnNuDEAgG/1jBlLTY6WzcbI1L6QlBilH900VZL0098slcvlsTgRAABAYHBYHQAAEBgYM9bHTFPR7gYlOQ8qseugol0NivS0KMLTKpv+ParDK7s6HAlqdySo3ZGkxoiBaojIUpc9uEeoXDGvSE+/uEkvvrVdD/58jmy2gL4XBAAQBKrr2iWxv0tfu+3bk/XwU6u1e1+9nnx+g266ZqLVkQAAACxH4QUAILfbo/c/LpVE4cWvTFOd5cUa0fCB0tt3KNLb9pUfscmjGHe9Ytz1kvYqp3W9JKklLFXVUcPUVTPTz6H947yzhhwxbuzM03OsjgQACHI9+7ukUXjpU3GxEfrprdP1w58v0i8eXKZrF5ymqKgwq2MBAABYisILAECrNxxUU7NTyYlRmjhmoNVxQo5hepTZtl05retU/qvfqqfE4JFdzRGZaggfpJbwNHXa49Vpj5XbFilDpgzTK4fpVJS7SVHuRsW66pTs3K84V43iXLWKc9Vq30/P16SIwToQM1qV0QUyDbulP+vxCg/vHjf29Iub9MJb2ym8AABOWc+osQEpjEzta9+5ZqJ+9+eVKjvQpD/+7VP9+LvTrI4EAABgKQovAIDeMWOzpw+V3c7IJ18xTI8Gtm1TXvNqRXuaup9zhOlQWJ4qYopUF5kj0zj2r2KXotThSJT078JEuKdNyZ1lGti+XanOciU5DyjJeUDDmj7R3vgzdDCm6CvXDQSMGwMA+IrXa6q24fCosVQ6XvpaRIRDv7jjXH3zjld13x8/0o1Xj1diQpTVsQAAACzDFQ4AQG/hZc7ZQy1OEjoSnQc0pfJvKmp4V9GeJjlt0SpJOFtDHlimzakXqzZq6EkXR7rsMaqMGan1aZcp7773tSvhTDlt0YryNGtkw3s669ATymgrlkzTxz+Vb31+3BgAACervrFDHo+psDCbEuMjrY7TL319wRiNzE9TQ1On7v3jR1bHAQAAsBSFFwDo56prW7V2c4Ukac7Z7O9yqhyeDo2sX6zTq59TrLteXbYolSSeo48yb1RZ/CTZYxJ8erywpHTtjZ+sjzJv1I7EGeq0xyrS06Ix9W9pYs2/FNtV49Pj+VJ4uEPzZxdIkp5/c5vFaQAAwaxnzFhacowMw7A4Tf9kt9v0wH+dJ0n6/V9Xa8++eosTAQAAWIfCCwD0c+99VCpJOm1kujLT4yxOE9ySOss1rfIpDW7bIkk6EDNGH2feoLK4ifLa/LvJrNcWpvK48fo489vaFT9NHsOhZOcBTa56WsMaP5Jhevx6/JN1+bwiSdJLbxfL6/VanAYAEKyq6w7v78KYMUtdMGO4Zk8fqq4uj35y73tWxwEAALAMhRcA6OcWL+seMzb3HLpdTprpVV7TSk2seUER3ja1OpL16YCrtD15tty2vh134jUc2pswRZ9kfEtVUcNlk6khLat1RtU/FeOq7dMsx+Oz48Y+WcO4MQDAyenpeBmQEm1xkv7NMAz99q7ZstkMvfxOsZat3Gd1JAAAAEtQeAGAfszr9Wrxsj2SKLycLIe3U+NrXtLw5k9kyNTBmFFanf51NUYMtjRXpyNem1Iv0aaUi9Rli1S8q1qTK/+urJYNAbX3S3i4Q5fOKZQkPfvaFovTAACCFR0vgWNUQbpu+toESdLtdy+Sx0NHKwAA6H8ovABAP7ZxW6Wqa9sUGxOuqROyrI4TdCLdTTq96hmlOsvkMRzamjxX25LnymMLtzpar6roEVqR8U3VRObJLo8KG5eoqH6RbF6X1dF6XX3JKEnSC29tl8sVmCPRAACBy+32qr6xQ5I0IIXCSyC4+0fnKj4uQhu2VupvL2y0Og4AAECfc1gdAABgnUUfdo8ZmzE1T+Hh/Eo4EXFdlRpf87IivO3qtMdqfepCtYanWR3rS3XZY7UhdYFyWtYqv2m5BrVvU5yrRhtTL1GnI8HqeJoxLU8DUmNUXdumJR+Xau65w62OBAAIIrUN7TJNKTLCodiYwLn5IdiYplf7yqt9tt4Prpuge/+4Qj/+1buaOiFTBcMzfbY2AABAoOMqGwD0Yz2FF8aMnZjkzjKNq31FdtOtlrA0rU9dIKcjzupYx2YYKoufpJbwdI2pe6N79FjVP7Q+dYGaI6y9EOJw2HX5hSP1yN/W6NnXt1J4AQCckM/u72IYhsVpgldXl0fPvlHss/VsNrvSkqNVU9+ue37/kf75xyt8tjYAAECgY9QYAPRTTc2dWrn+gCRpztlDLU4TPFI69/UWXWojcvTpgKsCv+jyGfWR2VqVfq2aw9IV7u3QpJp/Ka1jt9Wx9LX5oyVJL79TrI6OwBmDBgAIfD37u6Sxv0tAsdttunBm980Uz76+Xas3HLA4EQAAQN+h8AIA/dTST/bK7fYqf0iKhuQkWx0nKKR07NXYmu6iS3XkUG1Iu1QeW4TVsU5YpyNeawZc2b3vi+nW2NrXlNWywdJMUyZkKWdwglrbuvTW0p2WZgEABJea3o4XCi+BJmdwok4rTJdpSt/7rzfl8XitjgQAANAnKLwAQD+1aFl3lwPdLscnpXOfxta+Krs8qo4apk2pF8s0gndip8cWro2pl+pAzBgZMlXYuER5zassy2MYhq66eJQk6dnXtlqWAwAQfKrr2iVJA+h4CUjnTR+i+LgIbdhaqf97eo3VcQAAAPoEhRcA6IdM02R/lxMQ7zzUW3SpihqmTSkXyTTsVsc6ZaZh0/ak87Q7fqokaXjTx6p+5fcyTdOSPFdf0j1u7K2lO9XU3GlJBgBAcOnq8qjx8O8MOl4CU0x0uH7ynTMkSf/9wBLtr2iyOBEAAID/UXgBgH5ox+5alR9sUkSEXWdPzrU6TkDrqtqn8bUvd+/pEpmrzSFSdOllGCpNmKqShLMlSbVvP65tj/63JcWXMYXpGpmfJqfTo1cW+W5zXwBA6Kqp7x4zFhsdruioMIvT4GiuvqRIUydmqaW1S9/5zzcsu8kDAACgr1B4AYB+qKfbZfrpOYqJDrc4TeBydNbrwO9vUri3Q01h6dqUcnFoFV0+oyx+kooTZ0iSSl/4oyXFF8MwdDXjxgAAJ6D68P4uaSnRFifBsdhshp74zcUKD7frnQ9265+vbLY6EgAAgF9ReAGAfmjxMsaMfRWbu1PDVt8td91BtTkStSFtgTy20C5S7Y8br8xv/EJSd/Gl5Mlf9XmGnn1elnxSqqqa1j4/PgCEgl//+tcyDEO33XZb73OdnZ26+eablZKSotjYWC1cuFBVVVXWhfSR6rruwgv7uwS+gmFp+vlt3R22P/z5In7PAwCAkBa8uwIDAE5KW3uXPly1T5I052wKL1/K9Cpn40OKbt4re1yK1sdeqi57/7igk3TWZUpNjNaWP/xYO//+gOxRMRp+9e0nvV5VdYM6Ol3H/X6HXRpTOECbi6v12N9X67rLRh/xelRkmNIHJJ10HgAIdWvWrNGf/vQnjRkz5ojnb7/9dr311lt64YUXlJCQoB/84AdasGCBPvnkE4uS+kZ1bbsk9ncJFj/+7jS98NZ2bdxWqR/c9bZeeOwKqyMBAAD4BYUXAOhnlnxcKqfTo9ysRI3MT7M6TkDK3PkvJR1aKa/hUNZ3H1LHc5usjtSn8i79jtydHSp+/GcqfvznckTFKm/+jSe1VkenS0+9uO2EPpM5IE6bi6v1xHObZH6uOfeblxWdVA4A6A9aW1t1zTXX6M9//rN++ctf9j7f1NSkJ554Qs8884xmzOgeK/nkk0+qsLBQq1at0uTJk62KfMroeAkuYWF2/fV/L9GkeY/rxbe269lXt+jq+aO/+oMAAABBhlFjANDPvLlkpyRp3sx8GYZhcZrAk1jxiTJ3PidJKh/zPUUNG29xImsMv/o25X/j/0mStvzhR6pY9lqfHbvocEFw/6FmNTZ39tlxASDY3Xzzzbrwwgs1a9asI55ft26dXC7XEc8XFBQoOztbK1eu/NK1nE6nmpubj3gEmo5Ol1rbuiRJacns8RIsxo3K1F0/7B459v2fvqX9FU0WJwIAAPA9Ol4AoB8xTVNvvv/vwguOFNlcppyNv5ckVQ25WPXZs77iE6FtxDf/S87GWpW9/oTW/+rbikhMVcpp0/x+3LjYCOVmJWrf/kZtLanWmZOy/X5MAAh2zz33nNavX681a9Z84bXKykqFh4crMTHxiOfT09NVWVn5pevdd999+sUvfuGPqD5TXdvd7ZIQH6GIiMA7tTVNrzqafV9UME2vz9f0N9P0al95de/fv3bJCL2yaLs2ba/W1Te/oKcfvEg224nfEMQIUgAAEKgC79spAMBvNmw9pEPVrYqJDtPZk3OsjhNQbO52DVl7v+wep5pTT9PBwm9aHclyhmFozK3/K2d9lSo/flOr//sqnfnwYsXnjfT7sUeNGNBdeNlB4QUAvsr+/fv1wx/+UO+9954iIyN9suadd96pO+64o/fvzc3NysrK8snavlJdF/j7u7SVbvbDqhP8sKZ/dXV59OwbxUc8d9bpOdq+s1afrD2g7//0XU0eP/iE12UEKQAACFSMGgOAfqRnzNh5Zw1VZGSYxWkCiGkqe9P/KbLtoLoiU7Rv/H9INrvVqQKCYbdrwk+fUPKoyXK3NWn1f16mzvoqvx935PBU2WyGqmrbVHN4fj8A4MutW7dO1dXVGj9+vBwOhxwOh5YtW6Y//OEPcjgcSk9PV1dXlxobG4/4XFVVlTIyMr50zYiICMXHxx/xCDQ9+7ukBXDhBUeXkhSt2dOHSpLe/7hUVbWtFicCAADwHTpeAKAf6R0zNosxY5+VWrZIyRUfyTRs2jvhx3JHJFgdKaDYI6J0+q+e00c/mKW2/bv16X9fpWkPvS17RJTfjhkVGaZhucnaWVqnLSXVmjE1T9IXR5X44jiMKAEQ7GbOnKktW7Yc8dz111+vgoIC/b//9/+UlZWlsLAwLVmyRAsXLpQklZSUqLy8XFOmTLEisk/UHB41FsgdLzi2CWMytXNvnXbtrdeLbxXrxq+NV3gYN78AAIDgR+EFAPqJyuoWrdlUIUm64NzhFqcJHFFNpRq87S+SpIOF16ktudDiRIEpPD5ZZ9z7vD76/gw17linDfd/TxPuelKGceLz2I/XqBEDugsvxdU6d0quDMP40lElp4IRJQBCQVxcnEaNGnXEczExMUpJSel9/oYbbtAdd9yh5ORkxcfH65ZbbtGUKVM0efJkKyKfMtM0ezteBqRGW5wGJ8swDF0ye4T+9I91qq1v1ztLd+mSOQVWxwIAADhljBoDgH7inQ92S5ImjM5UZnqcxWkCg+F2Km/d/8rmdasx/QxVD7nE6kgBLXbwME26+58y7A5VfPCySp6616/HKxiaovAwuxqbO7W/otmvxwKAUPfggw9q3rx5WrhwoaZPn66MjAy9/PLLVsc6aW3tLnV0umUYUmoyhZdgFhMdrgUXFMowpI3bq7Rpu/9HmgIAAPgbhRcA6Cd69ndhzNi/Dd7+xOF9XZJVNvYHkh+7N0JF6tizNOb2hyRJO5++XxXLX/fbscLC7Bo5PFWStKmYizAAcCI+/PBDPfTQQ71/j4yM1COPPKL6+nq1tbXp5ZdfPur+LsGg+vCYsaSEKIU5GE0V7HIHJ+rsyTmSpLeW7lRtfbvFiQAAAE4NhRcA6AecTrfeXb5HkjRvJoUXSUqoXK20ssUyZahs7G3yhAfepsGBKufCb2jIZTdLkjbc9x017/Xd6K/PG1OYLknavrNGbrfXb8cBAASXf48ZY3+XUHHW6TnKzUqUy+XV829sk7PLbXUkAACAk0bhBQD6geWry9Ta1qWMAbEaPzrT6jiWc3TWK2fjw5Kk6qHz1ZJ2msWJgs/I796j1HFny9PZpjV3Xa2ulga/HCc3K1HxsRHqdLq1s7TOL8cAAASf3sJLCmPGQoXNZmjh+YWKiwlXTX27Xn+3RKZpWh0LAADgpFB4AYB+oGfM2IUzhstm6+f/12+aytn0RzlcLWqPH6KKEddYnSgo2ewOTfj5U4pKz1bbwVKt/9W3ZXo8Pj+OYRgaXThAkrSZcWMAgMN6Ro0NSKHjJZTExoTr8nkjZbMZ2r6rVivXHbA6EgAAwElxWB0AAOBfpmnqjfdLJPWPMWOm6VVHc9NRXx9waJkSqtfJa4RpR/6N6mhjhvjJikhI0en3/FMf/eA8Va9+T7ue+a3yr/3JEe/xuLuO+e9xPEZkxeiTNdKuvXWqa2g7pbUAAMHPNE3V1HX//mbUWOjJGpiguecM09tLd+n9j0uVOSBWedlJVscCAAA4IRReACDE7dhdq73ljQoPt2vWWUOsjtMn2ko3f+nzke5m5Vb+XZK0O36KaqvqJH3V+KoJvg0XYhKGn6Yxtz+ojfd/TzueulfJo6codexZva+bXvOo/x7HK0pSWpxU0yK98+Fe2R3hp5gaABDMmlqc6nJ5ZLMZSk6MsjoO/GDimExVVDZr4/YqvfDWdn376vH8WwMAgKDSz+fNAEDo6xkzdu6UXMXGRFicxkKmqZH1ixVmdqkxfKD2xU20OlHIyJ57jbLmXiN5vVp3z7fUWV/t82OMSDckSa+/t9vnawMAgkvPmLHUpGjZ7ZzShiLDMHTBzOEalBGnjk63nn1tqzqdbqtjAQAAHDe+pQJAiHvz/e7Cy7xZoT9m7FgGt21WqrNMHsOhrclzJYNfgb40+tb/VVxOgZz1VVp/740+3+9leLpkGNLmHTWqrWc8HAD0Z9V1h/d3SY22OAn8Kcxh15UXFSkuNly19e166e1ieb2m1bEAAACOC1edACCE1Te065O15ZKkC2f038JLhLtF+Y3LJEm7Es5Se1iyxYlCjyMqRhP/52nZI6NVu+4D7Xrmtz5dPzrcUPbhf7bNxVU+XRsAEFxqDne8pKWwv0uoi4uN0NUXj5LDYdPuffV6d/keqyMBAAAcFwovABDCFi/bI4/HVFF+Wv/dlNQ0NbLhPTkOjxgrjx1ndaKQFZdboNE/7C647HjqXtVu/Nin6/eMG9tcXCXT5I5XAOivqno7Xii89AeZ6XG6dE6BJGn1hoNauf6AxYkAAAC+msPqAAAA/+nZ3yWQx4yZplcdzU1+Wz+9o0RpnaXyyqZtybMZMeZn2XOvUd2mj7V/0T+17pffUs5/Pe+ztfNSpdiYMDW1OFV2sEm5gxN9tjYAIDh4PN7ekZPpdLz0GyPz0zSrKU/vf7xX7y7bo7iYcI0aMcDqWAAAAEdF4QUAQpTb7dE7H+ySJM2bGbiFF0lqK93sw9Um9P4pzNOhwoYlkqTS+MlqC0v14XFwNKNv/V81Fq9TS9kOHXziPyVzSvcGLafIYTc0Z3qeXnpnpzYXV1F4AYB+qL6xQx6PqfAwuxITIq2Ogz40dWKWmlu79OnGg3p18Q7FRIdZHQkAAOCouO0XAELUynUH1NDUqeTEKE0eP9jqOJbIb/xQ4d4OtTpStDf+dKvj9Buf3e+lbfsK5bWs9tnaF583TJK0fWeNXG6Pz9YFAASHqtqeMWPRMnxQ1EfwMAxDc84eqpHDU+XxmPrX69u0fVet1bEAAAC+FIUXAAhRr727Q5J0/rnD5HDYLU7T95I6yzWofZtMSduS58g0aPLsS5/d72Vo0wrFd1X6ZN2JozOUEBchZ5dHJXvqfLImACB49BZeUmItTgIr2GyGLp1bqJzBCXJ2eXT9f7ypsgONVscCAAD4AgovABCCTNPUK4u6Cy+Xzi20OE3fM0yPChvelyQdiDlNTREDLU7UP2XN+ZriJ8yRTV6NrntbNq/rlNe02QyNKUyXJG0urjrl9QAAwaW6t+OF/V36K4fDpqsuGqW0lGhV17Xr/G/8Q/UN7VbHAgAAOAKFFwAIQVt3VKu0vEEREXbNOXuo1XH6XE7LWsW669Vli9KuxLOsjtNvGYahzGt/pk57rGLc9cpvWuaTdXsKL7v31au1rcsnawIAgkNP4SWdwku/Fhnp0NcvHaPMATEq3lWri771rDo6Tv0GDwAAAF9h7goAhKBXF3d3u8w+a6ja2tpVW9fks7VdLrfP1vIHV32FhjavlCTtTDxbbhsb71rJHpOorclzNbHmRWW3blRN5FDVReWd0poxDpcy06J1qKZd6zaW6fTRA056LY+bwg0ABIvWti41NndKouMFUnxchJ767UW68gevasXa/Vr4nX/p1b9cpfBwLnMAAADr8Y0EAELQK4uLJUnz5xSoo9Olp17c5rO1r74o32dr+UPNv+6X3XSrIWKwKqKLrI4DSfWRuSqLHa+c1vUaVb9IKzKuk8sefdLrtZVuVn6SqUM10qatFRoZfeikN1g2vRNOOgcAoG/t3FsvSYqLCVd0VJjFaRAI8ock642/Xq3Z1/xd73ywW1+75SU998hl/XJ/QwAAEFgYNQYAIabsQKM2bK2UzWboovNGWB2nT6V27FHrxvfllaHixJnSSV6Mh+/tSjhLrY5kRXjbNLLhPck0T2m94emS3SY1tEvVLT4KCQAIaDv21Emi2wVHOvP0HL32xNUKD7frpbeL9a0fvSav12t1LAAA0M9ReAGAENMzZuzMSdlKS+k/FyZsXpcKGpZKksrjJqg1PM3iRPgsry1MW1IulFc2pXfs0sD2U+vCinAYGnr4n7j40KkVcQAAwWHHbgov+HLnTR+qFx69XHa7ob+/tFk3//fbMk/xJg8AAIBTQeEFAEJMT+Hl0rkFFifpW3ktqxXtaZIjMV174qdaHQdfoiU8XXsSpkmSChqWKsrdeErrFWZ2dzTtqpJcHi6uAECoKyntHjWWTuEFX+Li2QX6x+8XyDCkx/6xVj/+5bsUXwAAgGUovABACKmtb9Py1WWSuvd36S+iXfXKa14jSUq78j/lsYVbnAhHszdukhrCB8lhdmlU3TuSefKjQAYlSnGRUpdHKq3xXUYAQOAxTVMlh0eNpafGWpwGgeqqS0brLw9cLEn67eMrdfdDyyxOBAAA+isKLwAQQt58f6e8XlNjizKUm5VkdZy+YZoqaFgimzyqjcxV7LjzrE6EYzFs2ppyvtxGuJK6Diq7df3JL2UYKsjo7nph3BgAhLaKyhY1tThlGFJqcrTVcRDAvnXVeP3+F3MlSf/zuw/1v499YnEiAADQHzmsDgAA8J2X3ymW1L+6XdI7dirVWSaP7CpOnKmphmF1JHyFDkeiShLPVlHDexre9LFqI4eqPezkCoUFmdKafdLBRqm5w1R8FP/+ABCKtuyokiSlJEXL4eD+wY7mJp+vaZ5CF2qgufVbk9Xa1qX/fmCpfvyr9xQZ6dAPvnmG1bEAAEA/QuEFAEJEU3OnFi/fI0m67IKRFqfpGzavS/mN3SMk9sWfro6TvHiPvncwZowy2ncqxVmmovpFWjPgKukkimbxkYYGJ5k60CDtqDR1eh6FFwAIRVtKqiWxv0uPttLNflh1gh/WtM5/3TJd7R0u/erhj3TLXe8oMsKhb18dWj8jAAAIXAF9q9B9992nSZMmKS4uTgMGDND8+fNVUlJyxHs6Ozt18803KyUlRbGxsVq4cKGqqqosSgwA1nlzyU51dXlUODxVRSMGWB2nT+S0rFWUp1md9jjtjTvd6jg4EYahbcmz5TbCDo8c23DSSxVm9owbE5voAkCI2lzcfY43gMILTsA9P56hO26cIkm66f+9oX+8vMniRAAAoL8I6MLLsmXLdPPNN2vVqlV677335HK5NHv2bLW1tfW+5/bbb9cbb7yhF154QcuWLVNFRYUWLFhgYWoAsMaLb22X1H+6XSLcLRrSslqStDNhury2MIsT4UR1OhK0M/FsSdLwpuWKcjWc1DpDUqVwh9TqlA6c3BIAgADXM2qMjhecCMMw9L93zdb3vzFJpildd/ureuHNbVbHAgAA/UBAjxpbtGjREX9/6qmnNGDAAK1bt07Tp09XU1OTnnjiCT3zzDOaMWOGJOnJJ59UYWGhVq1apcmTJ1sRGwD6XEurU+98uEuSdNmF/aPwMrzpI9lNtxrCB6oyuv/saRNqDsScpoz2EiU796uoYbHWpl15wiPHHHZD+QNMba2Qig+Zykpm3BgAhBKXy6Pi3bWS6HjBiTMMQw/fc76cXW498dwGfe2WlxQeZtcl/WhPRAAA0PcCuuPl85qaujcQTE5OliStW7dOLpdLs2bN6n1PQUGBsrOztXLlyqOu43Q61dzcfMQDAILZ20t3yen0aHheskYXpFsdx+8SnBUa2N7d4VOSNOOk9gZBgDAMbUueI7cRpmTnAWWd5MixnnFjpbVSp4txYwAQShwOm/Z8fKue/N8LlRgfaXUcBCGbzaY//foiXXPpaLndXl3x/Re06INdVscCAAAhLGgKL16vV7fddpumTZumUaNGSZIqKysVHh6uxMTEI96bnp6uysrKo6513333KSEhofeRlZXlz+gA4HcvvNU9MuGyC0bKCPUihGmqoHGpJOlgdJGawzMsDoRT1eFI1K6E6ZKk/KblinI3nvAaaXFScozk8Uq7q30cEABgKcMwNDgzQedMyQn97znwG7vdpqd+N1+XXThSXV0eXXrjv7T0k1KrYwEAgBAVNIWXm2++WVu3btVzzz13ymvdeeedampq6n3s37/fBwkBwBpt7V16e2n3HXuXzyuyOI3/ZbZvV0JXpdxGmHYlnmV1HPjI/tixqo8YLLvpVlH9Ysk8sa4VwzB6u16KD9HxAgAAvsjhsOuff1igi2blq9Pp1kXXP6uPPy2zOhYAAAhBQVF4+cEPfqA333xTH3zwgQYPHtz7fEZGhrq6utTY2HjE+6uqqpSRcfQ7oCMiIhQfH3/EAwCC1Tsf7FJHp1tDspM0tii0uz/s3i4Nb1wuSSqNn6wue6zFieAzhqFtyXPlMRxKdu7X4LZNJ7zEiHTJZkjVLVJdK8UXAADwReHhDj3/6OWaPX2o2jtcuuC6f+rTDQesjgUAAEJMQBdeTNPUD37wA73yyitaunSp8vLyjnh9woQJCgsL05IlS3qfKykpUXl5uaZMmdLXcQHAEi++1b3XyWUXhv6YsbyWTxXpbVO7PUHlcROsjgMf6x451t3FlN+4XBHulhP6fFS4odzU7j/T9QIAAI4mMjJMr/zlSp0zJVctrV2ac+0/tGn70ceVAwAAnKiALrzcfPPN+sc//qFnnnlGcXFxqqysVGVlpTo6OiRJCQkJuuGGG3THHXfogw8+0Lp163T99ddrypQpmjx5ssXpAcD/2tq79Mb7OyV17+8SyqLcjcppXiNJ2pl4jryGw+JE8Ify2HFqDM+Uw+xSQeOSr/7A5/SMG9tRKbk9FF8AAEHGNGXzuhTuaVOUq0HRrno5PB0nPIITXy06KlxvPHm1pk7MUmNTp+Z8/e/as6/e6lgAACBEBPRVq0cffVSSdM455xzx/JNPPqlvfvObkqQHH3xQNptNCxculNPp1Jw5c/R///d/fZwUAKzx+rslau9waWhOkiaeNtDqOH41vHG57PKoLiJb1VHDrI4DfzFs2p40W5Or/q70jt0a0L5T1dH5x/3x7GQpNkJqdUp7aqQRoT19DwAQ5GymWymd+5TgrFB8V5XiXdUK93Z84X1e2eS0x6glPF31i9xK6qxQU8RAbkQ5RbExEXrrqa/pnCue0qbtVZp9zd/18cvfUmZ6nNXRAABAkAvob2nmcdzVExkZqUceeUSPPPJIHyTyn6rqBnV0uny2XlRkmNIHJPlsPQCB6bnXt0qSrr5kdEiPGUvq3K+Mjp0yZagk8VwphH9WSK3hadoXf7qGNK9SQcMS1Udmy22LPK7P2gxDIwdKn+41ta3C1IgM/rcCADg20/Sqo7mpLw+oJOd+ZbZvV3r7LoWZzi99m9sIkylDYWaXbPIqytOiqI4W1b7ykCZJchvhqo4aqqroEaqNzJXZD4swpunVvvLqU17nz78+X5d992WVljdo5lVP6blHLlF87PF99zgRnKcDANB/9L9vZgGqo9Olp17c5rP1vnlZkc/WAhCYGho79M6HuyRJV108yuI0fmR6NaJxqSTpQMwYtYanWRwIfaE0frLS20sU427Q8MblKk6efdyfLcyU1uyTDjVJ9W2mkmMovgAAjq2tdLMfVv3cfnSmqZTOfRrW/IkSuv69n0inPU41kXlqDk9XS3i62hxJ8hjhvTea2Ey3wj3tivQ0K76rUhOHRqh2w8eK9LZpYHuxBrYXq8sWpQMxY7Q/dqycjv7TrdHV5dGzbxT7ZK1L5hTor//aoOLddbrhR29r9jnDFOaw+2TtHpynAwDQf1B4AYAg9cqiYrlcXo0uGKCiEQOsjuM3g9q2KN5VI5cRod0J06yOgz7iNRzanjRbk2r+pay2zaqMLlRDZNZxfTY2wlBuiqm9tdK2ClNnDafwAgCwVrzzkEY0fqikroOSJI/h0KHokToUXaiGiMHH7Ob1Gg51OuLV6YhXY8RgXXzT9Xr5nr8qoeuQMtpLlN5RokhPq4a0rFZuyxpVRY/QnvjJag9L6asfLyQkJ0bp6wvG6KnnN2rtlkq1tLl0xUVFstn4HgEAAE6czeoAAICT8+zhMWOh3O3i8HZqeNPHkqQ9CVPlskdbnAh9qSEySwdiRkuSRja8J5vpPu7PFg3svkhSUim5PWxIDACwhmG6NazxI51e/YySug7KI7v2xU7QR5k3anvy7O6bCk5mhKphqClioEqSztVHmTdpY8rFqo8YLJu8ymwv1rTKp1RU944i3X04Qi0EZKTF6upLRiki3K6S0jq98V7JcY1ABwAA+DwKLwAQhCqrW7T0k72SQrvwMqRppcK9HWp1JGt/7Fir48ACOxPPltMWrRh3vfKaVx3357KSpbhIyemW9tT4MSAAAEfh3L9Dk6v+oSEtq2WTqUPRBfo489vamXSuuuwxPjuOadhUHZ2vtQOu0sr0a1UdOVSGTA1q36YzDz2h/MYPZfd++T4y+KKcwYl68K6ZMgxp4/Yqvf9RqdWRAABAEKLwAgBB6MW3t8vrNXX62EEakpNsdRy/iHbVK7t1gyRpZ+I5Mg3fzthGcHDbIrUjaaYkKa/5Uzkrdh/X52yGoZGZ3XcQb6vgTlUAQN9Kb9+h8vuvUZyrVl22KG1MuVhbUub5ff+VlvB0bUy7VKsHXKO6iBzZ5FVuy1qdeeivymzbJtG9cVxmTMvRxeeNkCStWHdAazdXWJwIAAAEGwovABCEnn2te8zY1ZeEbrfLiMYPZZNXNZF5qo0aYnUcWKgqKl/VkUNlk1dVf//5cV80Kszsnt5yqEmqa+NCEwCgD5imhjZ9otPq3pTp6lRNZJ4+ybhe1dH5fRqjKSJT6wZcrvWpC9TmSFSEt02j69/RxJrnFeVu7NMswWpsUYbOmZIrSXp76S7t3ldvbSAAABBUKLwAQJDZW96gFWv3yzCkyy8ssjqOX6R07FVaZ6m8sqkk8Vyr48BqhqHipFlyG+HqLN2orNaNx/WxmAhDeYf3Fd5O1wsAwM8M060xdW9qaPNKSVLSed/UhtRLLd2jrjZqiFZkfFM7E6bLYziU7NyvqZVPKbtlPd0vx2H6Gdk6rTBdpim98NZ2Vde2WR0JAAAECQovABBk/vHyZknSzDOHaFBmvMVpfM8wPRrR+IEkqTx2nNrDQnOUGk6M0xGnXQlnSZKGN32kCHfLcX1u5MDucWMllZLbwwUmAIB/2Ey3xta+royOEnll09akOUq77MeSYf0pt2k4tC/+dK3I+KbqI7JkN90qaFyqSdXPKdpFF8exGIahebPylTMoQV1dHj3z6ha1tnVZHQsAAAQB678FAgCOm2maevqlTZKkaxeMsTiNf2S1blKsu15dtiiVJkyxOg4CyP7YsYocMlYOs0uFDe8f15262clSXKTkdEu7q/sgJACg3+kuuryqtM5SeQyH1qctUEXsaKtjfUGHI1Fr067Q9qRZchthSuo6qClVTyuneY1keq2OF7AcDpuuvLhIKUlRampx6tnXtsrl8lgdCwAABDgKLwAQRFZvOKDd++oVHRWmBecXWh3H58I87Rra9IkkaXfCmXLbIi1OhIBiGEq/9hfyyqYBnXuU3rHzOD5iaGRmd9fLNsaNAQB8zGa6NbbmFaV27pPHcGhD6gLVR+ZaHevoDEMHYsdqRcb1qo3Mld10a0TTMp1e/ay6qsqsThewoiLD9LX5oxUV6VBFVYteWbRDJqPaAADAMVB4AYAg8veXuseMLTi/ULExERan8b2hzSsUZjrVEpamAzGBd6corBcxcJj2xp8hSSpoWCqHt/MrP1OYKdkMqbJZqmvlIgkAwEdMr0bXvaVUZ5ncRpjWpy5UfWS21amOS6cjXutTF2pr0hy5jAgldh1S2S8XKnXfIvZ+OYrkxChddfEo2e2GinfX6v2PSq2OBAAAAhiFFwAIEl1dbj33+lZJ0jcWnmZxGt+L7apRVmv3GLUdiecGxEx0BKbS+DPU6khWhLdNwxuXf+X7YyIM5aZ2/5muFwCAT5imRjR+oPSOXfLKrg2pl6ohMsvqVCfGMFQRO1orMq5TXUS2zK4OZW95VEM/vUeOzgar0wWk7EEJuvi8EZKkFesOaOO2SosTAQCAQOWwOgAA4Pi8vXSX6hs7NDA9TjOm5Vkdx7cOX7wwZKoqargaguRu0VBk2G3aV+67zVC8puGztXqYhkPbk2fr9OrnlNW2WYdiRqoxYvAxP1M00FBpjamSKmnKUFNhdt/nAgD0H7kta5TTukGStCXl/KD+7uJ0xGtd2uW6ZopDVS/9TgnV61S47FaVj7lZTZmTrY4XcMYUpquuoUPLV5fpzSU7lZYSrUEZ8VbHAgAAAYbCCwAEiadf6u4GuebS0bLbQ6sbJK1zj1Kc5fLIrp2JZ1sdp19zubz6+yvbfLbeVfOG+Wytz2qMGKwDMaM1uG2LRta/q5UZ35BpHP1rTVaSFB8lNXdIJZXSqEF+iQUA6AfS23cov6m743JH4jmqii6wOJEPGIaSZn1Dy6oHKXfDg4pu3quha+9TbdZMHRj1bXkd0VYnDCjnTMlRVU2rSkrr9Pwb23Xj18YrNibc6lgAACCAhNaVOwAIUfUN7XpzSfdG4tcuCK0xY15Xl0Y0fihJKoubqA5HoqV5EDx2Jp4tpy1ase565TWvOeZ7DcPQ6EHdXS5bDppsiAsAOCmxXTUaVb9IklQWO0HlcRMtTuRbnfE5KjnzN6octkCmDKXuX6LCZbcppm671dECimEYunRugVKSotTc6tSLb22Xx+O1OhYAAAggFF4AIAj889Utcrm8GluUodGF6VbH8anGJU8r2t0opy2md9N04Hi4bZEqSZohSRrSvErRrvpjvr8wQ3LYpPo2qaKxDwICAEKKw9OhsbWvym66VRuZq5IQ7dI17WGqKLxOO6f+Ss6oAYpor1L+iv/SwOKnZXhdVscLGBERDl118SiFh9tVdrBJi5fvsToSAAAIIBReACAI/PVf3TPEv3XlOIuT+FZYZ53q3v6TJGlX4lny2BjRgBNTGTVCtZG5ssmjkQ3vScfoZIkIMzQio/vPmw/S8QIAOAGmV2Pq31K0p0kd9nhtSb5QMkL7dLotpUjFZ/9edVkzZMhUxu6XNOKjHyuypdzqaAEjNTlaC+Z2j5pbs7FCG7dVWpwIAAAEitD+pggAIWD9lu6TuIgIu66ZP9rqOD41sPhpmc52NYZnqiK6yOo4CEaGoeKkWfIYDiU792tg29Zjvr1n3NjeGqmlk+ILAOD4DG1eodTOffIYDm1MnS+XPcrqSH3CGxatsrE/VOnE/5Q7LE7RzXtVsPwOpZW+IZmM1pKkEUNTdfbkHEnSm0t26mBls8WJAABAIDj6LrToUx53lzqam3y6HoDgVFXdoI7Of49xePAvKyRJs8/KU3NLq5pbWk9oPZfL7dN8vhLdUKKUAx9KknYkzpAMw9pACFodjkTtjp+mEU3LlN+0TLVRQ9Rlj/nS96bEGhqUaOpgo7SVrhcAwHFI7izXkOZVkqRtSbPVEj7A4kR9rzFzilqTRihn0x+VUL1OWdv+ooSqT1U29odyRaVaHc9yZ0/OUWV1q0pK6/T8G9t149fGKzaGTm4AAPozCi8BwvSaaivd7MP1JvhsLQB9q6PTpade3CZJcrk9euGtYklSYnx07/Mn4uqL8n2azydMr7K2PC5Jip96qZr3Z1ocCMGuPG6CMtuLFe+qVn7jh9qacuFR3ztmsKGDjaa2H5I6nYFZmAQABIYwT7tG1b0lQ9KBmNGqjBlpdSTLuCOTtef0u5RatkiDt/1V8bWbVbjsVu0f/V01DJpudTxLGYahS+cW6M/PrlddQ4defHu7vrHwNNls3FgEAEB/xagxAAhgxbtq5XR6lBgfqbzsRKvj+EzK/qWKadotjyNKqfN/aHUchADTsGl70nkyZWhge7FSOvcd9b25KVJshNTpkt5cWtp3IQEAwcU0Nap+kSK9bWp1JKsk8VyrE1nPMFSbe76Kz35QbYnD5XC1KW/9b5W7/rdyOH03wSEYRUQ4dNXFoxQeblfZgSYt+WSv1ZEAAICFKLwAQADbcHiDzrFF6TJCZBSXzdWmgcVPS5IO5V8lR0KaxYkQKpojMlUeO06SVFj/nmxe15e+z2Yzevd6+fsr22WajBwDAHxRVusGpXWWyiO7NqfMk8fG6KgeztjBKpn2ax3Kv1KmYVPyweUa+cHNSi5/X+rHv1dTk6N1yXkjJEkr1u7Xjj21FicCAABWofACAAGqvrFD+/Y3SpLGjsywNowPZe78l8K6mtQZM0g1eUcfBwWcjN0JZ6rTHqdoT5OGNq886vtGDpTsNmn7rjqtWLu/DxMCAIJBjKtW+Y3LJEk7E89Waz/c1+Ur2Rw6NOJrKpl2v9rjc+VwtSh308MavvKnimg9aHU6y4zMT9MZ4wZJkl5dvEP1jR0WJwIAAFag8AIAAWrD1kOSpKE5SUqIj7Q4jW9EtBzQgL1vSpIOjPq2TFuYxYkQajy2cBUnzZIk5bSsUWxXzZe+LzLMUH56958ffnJ1X8UDAAQBw/RqVP0i2eVRbWSu9h/upsSXa0/K146zfquDhdfJawtXXN1WFS67VRk7n5Ph+fLu01B33llDlJUZL6fTo+ff3CaX22N1JAAA0McovABAAPJ4vL1jxiaMDpGN501Tg7f9RYbpUVP6JDUPGG91IoSomqihqooaLptMFTUslkzvl76vZ9zYS+8Uq6KyuS8jAgACWG7Lp0roqpTLiNC2pDlSiIx79SubQ1XDFmj7OQ+rKW2cbF63BpY8q4LltymuZpPV6fqc3W7TZfNGKjoqTFU1bXp76W6rIwEAgD5G4QUAAlDx7lq1tbsUFxOuEUNTrY7jEwlVa5RQs0Fem0MHim6wOg5C3I6kmXIZ4UroqlRW68YvfU9anKGJo9Pldnv12D/W9m1AAEBAiu2q1tCmFZK6f5c4HXEWJwouXTEZ2nPGz7V3/H/IFZ6gqNYDGr7qZzrw8HcV2dK/RnvGx0bosgsKZRjSxm2VWn+4mx0AAPQPFF4AIACt3VQhSRo/OlM2W/DfZWl4ujRo2xOSpOohF8sZEyJdPAhYTnusdiVOlyQNb/pYEe6WL33ftZeOlCT96Z/r5HS6+ywfACDwGKZHo+rfkU1eVUUN16HoQqsjBSfDUMOg6dp+7v+pOu9CmYZdbVuWqXDZrcra/JgczkarE/aZvOwknTs1V5L09tJd2rbzy0egAgCA0EPhBQACzM7SepUdbJJhdBdeQkH67pcV2V6prshkVQ6/3Oo46CcOxJymxvCBcphdKmhc8qXvOe+sXA3KiFN1bZteeGtbHycEAASS3OZPFe+qUZctqnu/MEaMnRJPeKwOjLpJ2895WLGnzZRhepVW9o6Kln5X6btelOFxWh2xT5w5KVv5ecnyeEx9778Xq6Gxw+pIAACgD1B4AYAA889Xuy/+jhiaqvjYCIvTnLqItkPK2P2iJOlA0bfldURbnAj9hmFoe9J58sqm9I7dGtC+6wtvCXPY9L1rJ0mSfvfnlTJNs69TAgACQLSrTkObV0mSdiTOUJc9xuJEocMZO0iDbv6jdk75ldoShsru7tCgHX9X0dLvKa30DRnu0C7AGIah+XMLlBgfqf0Vzbru9lfk9X75/nMAACB0UHgBgADS2ubUK4tKJEkTx4RAt4tpavCWP8nmdak5bawaM6danQj9TGt4mvbFdRdWChqXyO794sWd7147UVGRDm3YWqkPV+7r44QAAKuZXq+K6t+VTR7VROapMrrA6kghqTV1lErO+l/tG3e7uiJTFd5Zp6xtf9GoJTcqfffLsrnbrY7oN1GRYbpi3kiFh9v1xvs79cCjn1gdCQAA+BmFFwAIIM++tlUtbV1KTozSkOwkq+OcssRDK5RQs0Fem0P7R32HkR2wRGn8ZLU5EhXpadXwpo+/8HpKUrS+eflYSd1dLwCA/qXpoxeU1HVQbiNMxf+fvfuOj6JaGzj+m+2b3nuA0FvoVZCiFBEFFEQUC5Zrw6tefe1XvVbsHcWG2MUCKqggHaX3TuhJIL23Tbad948lkUjoSTbA8/18ht2dcvaZnWUzZ5455wQPlvOVuqTpyIsbwLaLppCSeCcV1giM9kJid3xG+/n/ImrXt+jtJd6Osk5ER/rzv/9cCMDjLy9k0fL9Xo5ICCGEEHVJEi9CCNFAKKV459NVAHTtEI12llf6dc4y4rZ9AkBm89FU+MV4OSJxvnLrDl9IA+JLNhBYceiode67tReaBrPn72LnHhn4VgghzhdGWy45M14DYHfghZQbArwc0blJKTe2osKqqay0jNSQ3qzr9iK7Wv0LmzUKg6OEmKRvaDf/FqLWT0Zl7Ky2TU2TUmdXl13jLm/DhKs64XYrxk38gUPpRd4OSQghhBB1xODtAIQQQngsXnGALTuzsFoMdG4X5e1wzlh00nRM5blU+ESR0Xy0t8MR57k8S2MO+bQjtmwb7fLmsjLqBtza36dBLZuGcfmgVvwyL4k3Pl7JBy9e7sVohRBC1JfY7VNxl5dSYIom1a+Tt8M5p5Xu21zj/BICORB6LVG2XSQUrcTfkUPMoT+IOfQHOZYmpPp1JtuSAFpN9412rduga5mmaUx+/lLWb01n845Mrp74PYumT8Bo1Hs7NCGEEELUMmnxIoQQDcSbH3sGdB19aWusFqOXozkzlqIDROz/BYDU9reh9GYvRyQEJAUNoELng58zj6aHB1A+0gO39Qbg8x82kZ1bWt/hCSGEqGd+OZsJSfsLNN3hLsakeuw1mo4Mn9asiLyRdWGjybY0RQFh5QfonDOTC9M/pknRaoyus38cGB+riR8/GEuAv5lla1J5ZNJ8b4ckhBBCiDogZ5ZCCNEA7D2Qx6z5SQBMGJPo5WjOkHLTaPMUNOUmP6o3RZFn152I4tzl1FvZETwIgCZFq/C3Z1VbfmHPxnTrEEN5hZP3Pl/jjRCFEELUF7eT+C0fAhDY/2qKTRFeDkgAoGnkWhPYEH4lf0Xfyn7/7th1FqyuIloWLqV/2hQ65vxMuG0PmnJ5O9rT1jwhlGmvjQI848v98Os27wYkhBBCiFoniRchhGgA3pm2CqVg2MDmNGsc7O1wzkjIwUX45e/ApbdwsP0t3g5HiGqyfFqSYW2JDkW7vDkop6NqmaZp/N/tFwDwzqerKC2zeytMIYQ4JZMmTaJ79+74+/sTERHBqFGjSEpKqrZOeXk5EydOJDQ0FD8/P0aPHk1mZqaXIva+iP2/Yi1JxWEKJGzEv70dToNxojFVTnc6rVgMQewO6s/S6NvZGjyUQmMkOtxE2nbTOecn+qdNIWv6JKyF+0CpWv0c/jkmTW1NLuff5xZXDGvDg3d4zjtu/r+f2bUvp1b3QQghhBDeJWO8CCGElxUVlzN1+gYA7rull5ejOTN6ezGx26cBkN7yahzWcO8GJEQNdgZfTGhFCgGOLHL/mEaL1s9ULRt9aRsSGgWxP6WAqdM38O+benoxUiGEODlLlixh4sSJdO/eHafTyWOPPcaQIUPYvn07vr6+APznP//h119/5fvvvycwMJC7776bK6+8kmXLlnk5+vpnKM8jetc3AKS1uYF2voFejqjhONY4LGfu9FtAu3VG0vwSSfNLxM+eTUzZNqJLd2B2l1Kw8Eva8CU2/8bkxV5Ifkxf7L7RtRJxXXwWyl39c3jh4YtZteEQS1clM/q271j5y634+phq/X2FEEIIUf8k8SKEEF42dfoGikvstGkRxuB+zUhOzfZ2SKctbvtUjPYibH7xZDUd4e1wxGk63TtTzxZ2vS87gwaSmPc72bPeo3jUdfg3agmAwaDnwdv7cNfjv/Lah8u547puMuCtEKLBmzNnTrXX06ZNIyIignXr1tGvXz8KCwv55JNP+Prrr7nooosA+PTTT2nTpg0rV66kV6+z+8aPUxW3fRp6p43SoJbkxl/k7XDEKSgxhbPLNIDdgf0ILT9Av8ZlFG1YgLU4mdidycTu/JLSwGbkx/SlIKYvdp+G3YWcwaDn28lj6DxsCluTsrjj0dl8/uYVaJrm7dCEEEIIcYYk8SKEEF7kdLp4+9NVgKe1y9lcyfLP2kBo6kIUGikdJ4JO/sScrWr3Ds+GOcZPuk9bost2EFZ+gE2v3E2ft+ag6Tw9sE64qhP/e2MxyQcLmT5rK9dd2dHL0QohxKkpLPQk0ENCQgBYt24dDoeDQYMGVa3TunVrGjVqxIoVK2pMvFRUVFBRUVH1uqioqI6jrh9+udsIObQEhUZq4m2gSe/bZyOl6cixNiXmtptYNmMjQRkrCU77E/+czfgW7sW3cC9xOz6jNKgl+TF9yY/pg8Ma5u2waxQd6c/0yVdx8TWf8eWMzfTpFs8d13f3dlhCCCGEOENylimEEF70w6/b2Z9SQFiID9dd2cHb4Zw2ndNGo83vAZCdcCmlIW28HJEQJ6BpbA8egs7sQ97Wlez/6cOqRVarsarbv5feW4aq5X7jhRCiLrndbu677z769OlD+/btAcjIyMBkMhEUFFRt3cjISDIyMmosZ9KkSQQGBlZN8fHxdR163XO7iN/yAQA5jYdQFtTCywGJ2uAy+ZHbaBB7ej3NlsHTSEm8k+LQRBQavgW7iNs+lcT5t9By2aOE75+NoTzP2yEfpX/vJkx6xJMYvfd/c1i76ZCXIxJCCCHEmZLEixBCeIlSihff+wuAe27qiY/17O3POWbnF5htWVRYI0hrfb23wxHipJQbAogYfT8AOz56mtL0A1XL7ry+G/5+JrYmZfHbwt1eilAIIU7dxIkT2bp1K99+++0ZlfPoo49SWFhYNaWmptZShN4TfuA3rMXJOI3+pLW+ztvhiDrgNAeS0+QSdl/wHFsGf0pq+9soCWkLgF/eduK3fkTivJtpsfxxwg78jqGiwLsBH+H/br+AUUNbY7e7uPK26WRkFXs7JCGEEEKcAUm8CCGEl/yxZC+btmfi62Nk4o1nb3cCvnk7CN//GwApHe7CbbB6OSIhTl5w/6sJ7dAHV3kpm165G+V2AxAUaOWO67oBMGnyn9LqRQhxVrj77ruZPXs2ixYtIi4urmp+VFQUdrudgoKCautnZmYSFRVVY1lms5mAgIBq09nMUFFATNLXAKS1vg6X6ezeH3FiTksw2QnD2dVnElsGfcLBtjdTEtwKDYV/7lYabZlC4h830XzFk4Qm/4He7t3u9DRNY9rro2jZNJTUtCKu+Nd0yssdXo1JCCGEEKdPEi9CCOElL73vae3yr2u6EhLs4+VoTo/mstN44ztoKHLiL6Y4orO3QxLilGg6HR0fehe9xYecDUvZP/ODqmX33dILk0nPsjWpLFl5wHtBCiHECSiluPvuu5k5cyYLFy4kISGh2vKuXbtiNBpZsGBB1bykpCRSUlLo3bt3fYfrFbE7PkPvLKM0sBk5jQd7OxxRzxzWMLKajWRX35fZevFHHGw7gdLA5mi4CcjZROPNk+nwx400W/k/QlLm4yrzThImMMDCrE+vISjQwsr1B/nXw7Pk5g8hhBDiLCWJFyGE8II1Gw+xaPkBDAYd99929l7wiN41HUvpIRzmYA61vdnb4QhxWvxim9H29mcB2P7hU5SkeLoWi4kK4NZxXQB49q2lXotPCCFOZOLEiXz55Zd8/fXX+Pv7k5GRQUZGBjabDYDAwEBuueUW7r//fhYtWsS6deu46aab6N27N7169fJy9HXPN28noakLAUhNvB00vZcjEt5k94kgq9kVJPV7ja0XfcCh1tdTFtAUTbkJzN5Ak03vsO/B/nTI+YUw21405arX+Fo2DeP7969Cr9f4csZmXpz8V72+vxBCCCFqhyRehBDCCypbu1w7KpH4mEAvR3N6rIX7iNw7A/BcxHCZ/LwckRCnr8nIWwnvNhC3vZz1k27D7XIC8PBdfTAadSxctp+/Vid7OUohhKjZ+++/T2FhIQMGDCA6Orpqmj59etU6b7zxBpdddhmjR4+mX79+REVFMWPGDC9GXU+Ui/gtntaMOfGDKAtu5eWARENi940is8UYdvZ/g20D3yOt1Xhs/o1QTjtRtl10yZlJ/7QptMpfQIA9A+qp9cmgC5vxzjOXAvDYSwv4ac6OenlfIYQQQtQeSbwIIUQ927knmxm/eypPD93Rx8vRnCa309PFmHKTH30BBdFnb6sdIcDTr3qnh97D4BtIwc517PnmTQAaxQYx4apOgLR6EUI0XEqpGqcJEyZUrWOxWJg8eTJ5eXmUlpYyY8aMY47vci4JS56LT9E+nEZf0trc4O1wRANW4RdLRsux7Oj/No0e/4EDfl2p0PlgcttoXLKBXplfckHGNBoVr8XostV5PHfe0L1qHMjr7p3Bpu0Zdf6eQgghhKg9kngRQoh69uxbS1EKRg5pRbtWEd4O57RE7v3p8EUMP1Lb3+btcISoFdbwWBLveRmApM8mUbhnCwCP3NUXvV7jj6V7WbXhoDdDFEIIcQoMFYXE7PwSgLRW43Gaz85WxqKeaRqWRm3YFTyQpTF3sD7sStJ9WuPSDPg5c2ldsJj+aVNIzP2V4PLUOm0F8+b/LmHQhU0pLXNw+U1fk5FVXGfvJYQQQojaJYkXIYSoR0l7c/j2l60APHlffy9Hc3rKDyYRvesbAA62uwWnJdjLEQlRe+IGjyOq72Uop4P1k27DZa+gaeMQrr+yIwDPvrXEyxEKIYQ4WTE7v8DgKKUsIIGcJpd4OxxxFlKajhxrU7aEXsbimDvZHjyYImMEOlxEl+2ge/Z0+mRMpXHRmjppBWMw6Pnuvato2TSU1LQirvjXdMrLHbX+PkIIIYSofZJ4EUKIevT8O0txuxWXD2pJl8QYb4dzyjSXg4ypD6NzOymI7E5e3EBvhyRErdI0jY73v4UpKIzifdtI+mwSAI/9+0J0Oo1fF+xmzcZDXo5SCCHEifjk7yI0ZT7gGYsOTe/liMTZzqUzc9CvIyujbmBF5HWk+nbAqRnxdebTqnAJ/dI/oE3eH/g6cmr1fYODrMz69BqCAi2sXH+Q8ffMwOVy1+p7CCGEEKL2SeJFCCHqye79uXw109N10VP/GeDVWE5X9K6vqTiYhMMUSErHu0HTvB2SELXOHBxOx/vfAmDPt2+St20VLRJCGX9FIgBPvLrQm+EJIYQ4EeUmfssHaChy4wZSGtLG2xGJc0yxKYodIUNYEnMn24KHUGSMQK+cxJdupk/GNLpkfU+YbV+tdUPWsmkYMz+6GpNJz4zfd3DPk7+j6rCLMyGEEEKcOUm8CCFEPXn+bU9rl+EXt6Brh7OvtYtv7jYi98wEIKXDXTjNQd4NSIg6FH3h5cQNHgduNxsm3Y6zrJin7huAwaBj7pK9/Lkq2dshCiGEOIbQlPn4Fu7BZfDhUNsJ3g5HnMNcOhOH/DqwMvJ61oRfTaa1BQoIq0imS84M+mRMJa5kIzrlPOP3GtA7ga/evhJNg/c+X8Pzby898x0QQgghRJ2RxIsQQtSDPftz+XLmZgCeum+Ad4M5DTpHGU02voWGIuCCKyiM7uXtkISoc4n3vIw1Io7SQ/vY/OYDNGsSws1Xdwbgv68slDtNhRCiAdLbi4nd8TkAaa2ulRtFzgO2osJan06ZppFviWdT2Ej+ir6VA35dcWgmfJ35tM2fz4VpH9KkaDUuW8kZ7euY4e14+5lhADzx6iI++HLtGZUnhBBCiLrT4BMvS5cu5fLLLycmJgZN0/jpp5+qLVdK8eSTTxIdHY3VamXQoEHs3r3bO8EKIcQxPPX6YlwuxbCBzeneKdbb4ZwapWi05X3MZZlUWCOIuPoxb0ckRL0w+gXR5b+fgE7HwXnfkjr3a/57Tz9MJj1LVyWz4K993g5RCCHEP8Ts/BKDoxibf2Oym1zq7XBEPSjdt7nWpzNhMwSxK3ggS2PuYGfQRdj0/pjdZbQsXMruRwazc+pzVBTmnnb5d0/oyeP/vhCAOx+bzRc/bjqjeIUQQghRNxp84qW0tJSOHTsyefLkGpe//PLLvP3220yZMoVVq1bh6+vL0KFDKS8vr+dIhRCiZhu3pfP1T56xXZ5/6GIvR3PqQg4uIuTQUpSm40CX+9Fb/bwdkhD1JjSxN60neJKNm998gGBXFnde3w2Ax1+WVi9CCNGQWAv2EpY8F4DUxNtBp/dyROJ85tKZSPHvwl/Rt7I15BJKDSG4y4rY9cXLzB/Xjq2TH6E8N+O0yn72wYv49009UAom3P8TP/y6rZajF0IIIcSZavCJl2HDhvHcc89xxRVXHLVMKcWbb77Jf//7X0aOHEmHDh34/PPPSUtLO6pljBBCeMvjL3sG4h43oj2d20d7OZpTYy5NJ37LBwCktxwng9OK81KLax8gtNOFuMpLWffszTz4rx74WI2s3niIX/5I8nZ4QgghAJSb+K0foKHIi+1HSWg7b0ckBABK05Pm255lUROIu+MNAlt2xlVexr4f3mP+tR3Y+t5jVORnn1KZmqbx5v8u4earO+N2K665+0dmzZNzEiGEEKIhMXg7gDOxf/9+MjIyGDRoUNW8wMBAevbsyYoVKxg3blyN21VUVFBRUVH1uqioqM5jFUKcn5auPMBvC3djMOh49v8GejucU6K5HTRZ9yp6VznFIe3IaDHG2yEJ4RWaXk+Xxz5iya0XULh7E/k/vcK9Nw9i0uS/eOTF+Qy/uAUGg9xVLYQQdc3ltB9z/I2IjKX45Sfh0lvYGz8a++mM0yFEXdJ0BPa4hOBel1Gy9S8yf3qHsj3r2ff9uxz4ZSqhg64n/NJbMfgFn3SRj03sSU5eCb/M283o26czffJVXDFMbpQSQgghGoKzOvGSkeFplhsZGVltfmRkZNWymkyaNImnn366TmMTQgilFI++tACAW8Z1pnlCqJcjOjUx2z/Dt3APTqMfB7r8BzS5sCzOX9bwGDo/MoVVj41l3w/vMeG/ffgw2MrOPTlMnb6B28Z383aIQghxzlNuVeP4GwZ3OY3TvwJgj19P8g+lAqmnUHLX2glQiBNwONx8O3s7EAKtnyQgdAPRO7/Ct3AP2b9+QMbcz8lKuJysZiNxGU+ue98ObaJwuxWzF+zhqju/4+t3RjP28vZ1uyNCCCGEOKEG39VYXXj00UcpLCysmlJTT+WkXAghTs7s+btYvjYVi9nAk/f293Y4pyQobTmR+2cBkNzpHhzWcC9HJIT3Rfa+hKZj7gJg39v/5tFbOwPw5GuLKCmtON6mQggh6lCzwmWY3DZKDCGk+HfxdjhCnBxNoyiiC0kXvsre7o9RFpCA3mkjevd3tFtwBxF7f0ZzOU5YjF6v440nB3H96A64XJ5ux76csakedkAIIYQQx3NWJ16ioqIAyMzMrDY/MzOzallNzGYzAQEB1SYhhKhNDoeLB5//A4B7b+lJTNTZ8ztjLk2n8aZ3AMhsdgWFUT29HJEQDUebfz1NYIuO2Ivy6Lr3bZo1DiYzu5TXPlzh7dCEEOK85GfPolHJRgB2Bl+Mkha64myjaRRG9WRnv9fZ1/VhbH7xGBzFxG2fSttFdxF8cAko93GLMBh0fPraqKoxX66/dyZvT11ZTzsghBBCiJqc1YmXhIQEoqKiWLBgQdW8oqIiVq1aRe/evb0YmRDifDfly7Uk7c0lPNSHRyde6O1wTprmqiBh7UvonWWUhLTlUOvrvB2SEA2K3mSm6xNT0Vt8Kdq8lLt7esYQeGXKMjKyir0cnRBCnGeUom3+fDQUGdaW5FkaezsiIU7IVlRY81RcTLpfO9Z3eYbdLW+hwhSM2ZZFwobXabn4P5iSVxxzW5fTjl6v46OXL+ffN/UA4N6n5vD4SwtQSnl5j4UQQojzU4Mf46WkpIQ9e/ZUvd6/fz8bN24kJCSERo0acd999/Hcc8/RokULEhISeOKJJ4iJiWHUqFHeC1oIcV7Lyy/jqdcWAfDMAwMJDLB4OaKTpBSNNk/Bp2g/DlMg+7v8H+ga/J8JIeqdX3wLOj7wFuufv5WEda/SufkTbNhTyhOvLuKjl0d4OzwhhDhvxJZuJciehlMzkhQ00NvhCHFSahqn6J/2E0xy+A00LllHQtFq/EoO0H7zi2RbEtgd2I8SU/VugJXbM06RTqfjraeHERXux+MvL+SFd/8kI7uEKZMuw2iU1mBCCCFEfWrwLV7Wrl1L586d6dzZ04/6/fffT+fOnXnyyScBeOihh/j3v//NbbfdRvfu3SkpKWHOnDlYLGfJhU4hxDnnmbeWkF9YTvtWEdx6zdnTz3j4gV8JPbgQhY4DXR7AYQ31dkhCNFhxg8aScMVtaBpcy7cAfPLtetZtTvNyZEIIcX4wuspoUbgEgL2Bfagw+Hs5IiFql1tnZH9AL/6MvpVkv8640RFevp/emZ/RLvd3zM6aW9pqmsZj/+7HRy9fjk6nMXX6Bi698SsKCm31vAdCCCHE+a3B38o8YMCA4zaN1TSNZ555hmeeeaYeoxJCiJol7c1h8mdrAHj9yaEYDGfHnWV+OVuI2/YJAIfaTqA4vOMx11XKja2osL5CE6JOaXodB1KyTmtb38vuw2fLGlru2cBFkYdYmBnLHY/OYvXs29A0rZYjFUIIcaQWhUsxucspNoaT4nf23OgixKly6H1ICr6YFL8utCj8iyhbErFl24iyJZHs15X9ATWPx3jrNV2JDPPjmrt/YP6f++g96hNmf3otzZqE1PMeCCGEEOenBp94EUKIs4VSivufmYvT6Wb4xS0Y3K+Zt0M6KcaybBLWvYym3OTF9ier6Ym7SjqZLhJOXtdaLEuIU+NwuPli5rbT3t7Y5N+0TvkP11l/ZZnuFtZuTuermZu57spjJy+FEEKcmaCKQ8SVbgVge/AglNbgO3IQ4ozZjMFsDruc5IputChcQkjFQZoWryK2dAv5f4Wy3zAOTVf9pq/EVsF8N/kKbnnoV3buyaH7ZR/y3nND6dUl9qTe02oxEhkRXBe7I4QQQpzzJPEihBC15Oe5O/lt4W6MRh2vPTHU2+GcFJ3TRrM1z2O0F1EW0JTkDhNB7tQX4qQ5rKHs7/oQLVY+ydjg5XyReyEPPT+PkUNa4+9n9nZ4QghxztGUizb58wA46JtIofnkLiALca4oNEezNvxqwsv30rJgCb7OfNI/e4p9M6ZysO1NFEd0Pmqba0cl8u0v20jLLObae35mSL9m9Owce8IWuhPGtKur3RBCCCHOeXJrkBBC1ILSMjv3PPU7AA/e3odWzcK8HNFJUC4S1r+GT9F+HKZA9nV/FGWQC8VCnKqSsPaktv8XI4PWE2UsID2rhOfeXurtsIQQ4pzUqHg9/o4c7DoruwP7eTscIbxD08i2Nmd51AR2Bl2EzicAa3EyLVb9j2arnsFSnFJtdX8/MxOu6kiH1hEoBXOX7GXmnJ04HC4v7YAQQghx7pPEixBC1ILn3l5KaloRjeMCefyeC70dzkmJ3fYpgZlrcOtM7O3xOHafCG+HJMRZK6fJMAoShnBr2CIAXv9wOVt2ZHo5KiGEOLc48tJpVrQcgF2B/XDorV6OSAjvUpqeFP8uJDz3O5lNR+DWDARmraPNknuJ3zwFQ0VB1bpGo55Rl7TmkgHN0DTYsjOLj75eT1ZOqfd2QAghhDiHSeJFCCHO0PZdWbz6geciwDvPXIqP1eTliE4s7MDvRO6fBcCBzvdSFtzKyxEJcfZLbXcrA7pF0tN3D06X4tb/m4Hb7fZ2WEIIcc7ImP4iBuUg3xRLmm97b4cjRIOh9w1iT/wYNnR7gdywrmjKTXjy77RdcAchW7+ivCAbW1Eh5cVFdGjmz9XDmuNrNZCdV8ZHX69j+aq9lBUWYCsqrDa5nHZv75oQQghx1pIxXoQQ4gwopZj4399wOt1cPqgllw9u+AmMwPSVxG/5EIBDra+jIKavlyMS4hyhM9D47ne4L/tGbl4Vz+rNmUyeupx/3yr/x4QQ4kxlrpxL8fr5uNHYETxIxqQT4h9K922mFMi1DiQ4vDktCxYT6Mikyf7viEyZw66gfmRaW4GmEQqM7aJYsANS8hTzlh9k3+6DDGilYTH+/X9Lubt6bX+EEEKIs50kXoQQ4gx8/M16Fq84gNVi4K2nh9VKmS6nHVtRYa2UBaDU33fc++ZuI2H9a2i4yWk0iMzmY2rtfYQQYPAL5rI3v2LCmIm8f7AXj74wlysvbU9sTJC3QxNCiLOWq8LGlrcfBCDFvyslpnAvRyREw5ZviWdV5HVEl22nReGfWF1FdMydTYFpPUlBAyg0x+Bj0risA2xMhZX7FHuzIbNIMaQdRAdKYlMIIYQ4U5J4EUKI03QwvZAHnp0LwPMPXUxCo+BaKVe5FaX7NtdKWR6eO9UsRck0W/M8OredgsgepCTeJXeLClEH/GKb8fSU/7FwzDSSyqO48bpXmLfgOTT5/yaEEKfFVWEjuE037OXl7PW5wNvhCHF20DTSfduRaW1Jk+K1NCleTZA9jZ5ZX5Pu05rdgRdSbgikcyOIDYK52xVFNpi5QdGjCXRp5O0dEEIIIc5uMsaLEEKcBqUUtz8ym+ISO726xHHPzT29HdJxmcoyab7qaQyOUkqCW7O/y/+BTu/tsIQ4Z4V37MW7T/ZHh5sFu428+eAL3g5JCCHOWqaAELo+MZVmT/2IS9fwx9IToiFx64zsC+zNX9G3cNA3EQVEl+2kT/pUWhQsRe+uICJA4+puGi0iQSlYtV8xY4NiX0qBt8MXQgghzlqSeBFCiNPw1czN/LZwNyaTnqmvjkSvb7g/p478DFos/y+m8lxsfvHs7fFflMHs7bCEOOcNuv4aJg71B+Cp74tYNe19L0ckhBBnN71vkLdDEOKsZdf7sT1kKCsjbyDX3Ag9LhKKV3Nh+sfElWzErFcMbqNxcRsNkwEyi2DEv37ijY9W4Ha7T/wGQgghhKim4V4pFEKIBio9s5h7n5oDwFP39adNi4bbz7jJVcrBN27BbMui3Dea3b2fwWXy93ZYQpw3Xnv/ftrGaBS7rUyctILUedO9HZIQQgghzmPFpgjWhV/F+rArKDWEYHLbaJs/n94ZnxFWfoDWURrXdNeID4YKu4v7n5nLwLGfsS85z9uhCyGEEGcVSbwIIcQpUEpx0wM/kVdgo3P7KB68o4+3Qzomo6uMrtnf48g8QIU1nN29nsVpCfF2WEKcV4xGPdM/uwOTXrGurCkvP/ou6X/N9nZYQgghhDifaRo51mYsj7qRHUEXYddZ8XPm0jXnR7pk/0CULofLO2o8858++PoYWboqmQ5D3uf9z9eglPJ29EIIIcRZweDtAIQQ4mwy+bPVzF2yF4vZwJdvXYnR2DDHSTG5SumW9R1+zlz0geHs7vosDp+G2zJHiHNZ+9aRPPfwYB56YT4fZ11I4uP/ZsQLOqL6XOrt0IQQQghxHlOanlT/LqT7tqVp0UoaFa8nrPwAoeXJHPRNZNBFo+jfeywPTVrEqg1p3PX4r3zx40ZeeHgATeICT/t9rRYjkRHBtbgnQgghRMMjiRchhDhJ23dl8eBz8wB45b+DadsywssR1czsKqFr1nf4OfMo1/nS+v6prFkr/TIL4U3333YBs+Yn8efqVF4+NJSwJ2/kguc+J6r3MG+HJoQQQojznFNnYVfQAFL9OtGiYClRtl3El25m1yNDOZgwmqF9LyMowMqCZftZsf4Qg6/9hv69G3NB13h0Ou2U32/CmHZ1sBdCCCFEwyJdjQkhxEmw252Mv2cG5RVOLhnQnIk39vB2SDUyO4volvUtfs48bHp/1kSMwxTV1NthCXHe0+t1fPXOGEKCrOytiGJaZm/WPnU9Gct+83ZoQgghhBAA2AxBbA4bweqIcRSaolAVZcTu/IL2i+9mWOQ+7rq+K00bBeF0uVnw134++mY96VnF3g5bCCGEaJAk8SKEECfhoRfmsXFbBmEhPnz62kg07dTv7Kprvo5cemZ9g6+zAJs+gLURV2MzShN+IRqK+JhAPntjFACzCruwPD+eNU+O5+C86d4NTAghhBDiCAXmOFZFjCfq5pewW0Ix27JJWP8avbY8yR39YOSQVljMBjKySvjo6/XM+3MfDqfL22ELIYQQDYokXoQQ4gR+/G07b32yCoCpr44kKsLfyxEdLbAine5Z32BxFVNqCGFNxDhshiBvhyWE+IfLBrXigdt6A/Bu3uVkVPiyftJt7P/pIy9HJoQQQghxBE0joOdlbBv4PmmtxuPSW/At2E2rlU9yVeG7PDgykLYtwlEKlq9NZcoX6ziQWuDtqIUQQogGQxIvQghxHHv253Lz//0MwEN39uHywa28HNHRQm376Zr9HSZ3OYWmKFZHjKPcEODtsIQQxzDpkUH07BxLsV3Ha2U3Ue7Ss+WtB0j6/CWUUt4OTwghhBCiijKYyWg5lm0XTSGryXDcOgP+uVvotv5xHgn7jhsuCsbf10RegY3PftjEL/OSKC93ejtsIYQQwusM3g5ACCEaKpvNwZg7vqOouIILezTi+YcuqnG9zKx8bOWOWntftzr5bsziSjbROn8+OhQ5liZsCh2BS2eqtViEOB/YigprrSyX037CdYxGPd9PGUu34R+SlF3KJ2H3cKf9dZI+fR5bRgod7n8TncFYazEJIYQQQpwppyWYg4m3kdnsCqJ2f09Y6nwCszcwmg30bt+LaQWDWZVUyoatGezel8fQAc1o1zK8QXbRLIQQQtQHSbwIIUQNlFLc9fivbNqeSXioD9+8OwaDQV/jurZyB9N+2FZr7z3usuYnEyAtC5fQpHgtAGk+bdkWMhSl1RyjEOLYSvdtrrWylLvrSa0XHxPIjA+vZuDV0/hjh5u2lz7FwD3PkvL7F5RlHaT7/z7H6BdYa3EJIYQQQtQGh084qR3vIrP5lUTvnk5I6mJiclfyGCtZ1W4AH6V2I7vIzo+/7WDD1gyGX9yCkCCrt8MWQggh6p10NeZli5bvp++Vn3DH4/NYuNPN8j1utqUpcksUbuluRAiveeOjFUz7fiM6ncY3744hNrrhdN2ld9vpmPtzVdJld0AftoYMk6SLEGeZPt0bMeWFywB487disi6bjN7iQ866Rfx192BKDu7xcoRCCCGEON/ZigprnApdVnY2ncD67pPIirgAhY6eFYt5L+wNrojeiUGn2JeSz3ufr2H+kiSK8/Ortj2ZFsJCCCHE2U5avHjZ/pR8lq1J/cdcT8LFpIfoQEWLSI2m4WDUSxNdIerD74t28+Dz8wB4/cmhXNy3qZcj+puPI49OOT/h58zDjZ6tIZeQ4dvG22EJIU7TzeO6sHlnJm99soq7J+/jxxe/xPztXRQn72TpHQPp+t+Piew11NthCiGEEOI8daKWwaVArvkCrNFtaVK0hpjSrUzw/Y0hccuZnHMJW8tiWLY+g207MujXUiM+RDvpFsJCCCHE2UxavHjZxX2b8v2Uq3jmP33omaDRIQ5ig8CgB7sLkvNg/g7F1GWK+dvd5JRIKxgh6tLOPdmMm/gDbrfi1mu6cM/NPb0dUpUw2156Zn6JnzOPcr0fayKulqSLEOeAV/87hJFDWlFR4WL8U2sIuX8Gwe164CwtZNVjY9n1xcsot9vbYQohhBBCHJPNEMSOkMH8GXMb+/17EGEu47nob/m/yNkE6UspsMEvmxRzt7k5lFHs7XCFEEKIOictXryscVwQjeOC2NMqgMyNKwBPqxa3W5FbCvtzFEmZUGSDpExIylQ0CVV0a6IRGSAtYISoTZnZJQy/8WuKiiu4sEcjJj93aYMYDFJTbpoVLqNp8SoA8k2xbAobgV3v6+XIhBC1wWDQ8827Yxh63Rf8uTqFEf+ew1/ff03Az5NI/uUTdk59jtzNy+j86IdYQiK9Ha4QQgghxDHZ9b7sDurH/oAexJdspId+A118PuWrvD78XtiRPVk6ht7wPQ9P7MfDd/XBx2rydshCCCFEnZAWLw2UTqcR7q/RI0HHdT01RnfRaBHhScscyIUf1il+3+KmyCYtYISoDcUlFQy/8Sv2peST0CiIHz4Yi8nk/dy02VlMt6zpVUmXFL9OrI0YK0kXIc4xVquRX6ZeQ2LrCDKyShh6wzeEXP0/Oj30Hnqzley1i1h86wVkrVng7VCFEEIIIU7IqbOwP6AXS2NuY2/EEK6K3cXr8V/S3pJKhUPxzJtLaNHzJb76bhVKxrcVQghxDpLEy1lA0zSiAjWGtNNxbU+N1lGgabAvB75erVi1343DJScqQpwuu93JmNu/Y92WdMJCfJj75fVEhPl5OyzCbXvpnfk5wfZDODUTm0IvY2fwIJSm93ZoQog6EBRoZc4X15HQKIi9yfn0v+pTVOJl9JuyBP+m7bDnZ7PyoSvY8vb/4bSVejtcIYQQQogTUpqeDJ/WrIm8hoxGw7ij5Q4eip1DuKGItHwX1z3wO117PMq8r3/E7XJ6O1whhBCi1kji5SwT5KNxcRsdV3fTiA0ClxvWHoBv1yjSCiT5IsSpcrvd3PLgL/yxdC8+ViO/TruWFgmh3o2pvJS2eX/QOWcmJreNImMEKyKvJ9OntVfjEkLUvZioAJZ8fxPNGgezP6WAAWOnkauPpN97C2ky8lYA9s/8kMW39iZn419ejlYIIYQQ4uQVmyLZEXoJN035iIXPNuamZrsxaQ42ZFgY8vAWBna+lVnPPkbhns3SCkYIIcRZTxIvZ6lQP42RnTSGttPwM3vGgJm5QfHXbjdOaf0ixElxu93c8ehsvpyxGb1e44cPxtKjc5xXY/LN20Hy82OIK92MAg74d2N15LXYjMFejUsIUX/iYwJZ/P0EWiSEcCC1gH5jPiUpuZgO971Or1d+whoRR1naAZb/51I2vX4f9qI8b4cshBBCCHHSDH5BtL/uXj5Z9CXrvh7OpW2caCiW5jdh1IcGxox8mm9G92Lr5EfI2fiXtIQRQghxVpLEy1lM0zSaR2iM66HRJtozb9NB+G6tYudeuQgjxPEopfj3E7/z0dfr0ek0vnjzSoYNbOG1eHTOcmK3fkzLZY/iyErBpvdnbfhYdgUNwK15f6wZIUT9iosOZPF3E2jVLJTUtCL6XDmVJSsOENHtIgZMXUnj4RMASJ41lYU3dCXl9y9Rbrd3gxZCCCGEOAWaptG+7wX8+sdzrP/tXwzpGoQbHfOLErlxzWAee387v/17NHOvbMb6SbeTtvQXHCWF3g5bCCGEOCmSeDkHmA0aF7XWMbyDhq8J8stgzF2/8PE366R5rhA1UEpx/9Nzee/zNWgaTHt9FNeMSvRaPH45m2mz5F4i989CQxHQeyQrom4k39LIazEJIbwvJiqAv2bczAXd4ikoLGfIdV/w9czNGH0D6Ph/b9Pnzd/xb9IGe2EuG1++i7/uHkTulpXeDlsIIYQQ4pR1Soxj7k/3sfynW+jfMx4nBmYVduH2lFv5YF8im36bxdqnruP3kY1Zekd/tk35L5kr5kgiRgghRIMliZdzSJNQjau7azQOgQq7i389NIvr7plBcUmFt0MTosFwudzc+dhs3vzEc3Hy45dHcP3ojl6JxVBRQJP1r9NyxROYyzKwW8LY0/Mpoia8gFNn8UpMQoiGJSzEl/lf38DoS9tgt7sYf88MHntxPk6ni9COfej/0V+0veM59BZf8nesZdk9Q1jz5HWUpO72duhCCCGEEKesd9d4Fn1/M/O+vp7uHWModxv5uaAbt6X8iyklV3KwPJCCpA3snf42qx4bW5WI2Tr5EVLnfk3Rvm3SNZkQQogGQfqvOcdYTRrDO4Bvy268/slavv5pC2s3p/Hd+1fRsW2Ut8MTwqvsdic33DeT6bO2oWnwwkMDuOiCOA6kZJ1RuQ7HKZ7Yu12EJc8hZudXGJylKDRymlzCodY34Db6nFEsQgjv0vS6M/5NOZLVYiQyIpjv3r+Kh56fx2sfrmDS5L9YtfEQ37w7mogwP5pffQ9xg8aSNG0Syb99Rvqfv5Cx7FfiBl9Ni+sfxC+2Wa3FI4QQQghR1zRNY9CFzbi4b1PmLN7DpHf/5M/VKfye0YTfuYl+7XwZ0yyd1gULsaXtoyBpAwVJG6q21xnNBDRtS2DzjgS06IBffAt8Y5tiDY9F08n9x0IIIeqHJF7OQZqmcds1HRg1LJFxE39g175ceo74iLefHsa/ru2KpmneDlGIeldaZmfM7d8xZ/EejAYdI4e0otyumPbDtjMu+5rLW57cikoRkLWWuO3TsJQc9MQV2IzUDndSFuS98WWEELXH4XDzxcwz/12pNGFMOwB0Oh2vPjGUbh1iuPWhX1i4bD9dhn3AV2+Ppn/vJlhCo+j4wFskXHkHOz56iswVc0id+zWp874l7uKxNL/mPgIS2tZaXEIIIYQQdU3TNIYNbMGwgS1YtiaFV6Ys45d5SSzdVsrSbQE0bXQTN45ozvCm+ZgyNlO4ZzNFe7bgLCs+KhkDnoSMT0wTfGOb4hvTFJ+oRlhCozCHRmMJi8ISGoXedHTPA4U5mbgqymt9/9xo6Kj97uH1ZguBYZG1Xq4QQohTI4kXL8vfsZaUOV9RXFpBi4Ik3Joel2bCrrPi0Fup0PlSbgjArvOBU0yYXNCtERvm3MGN/5nJrwt2c/sjs1myMpkPX7ocXx9THe2REA3PofQiRtzyDeu3pONjNfLe80PZn1pcrzFYC/cRu/1TAnI2A+AwBZDe6hpyGg8FTV+vsQghzl7jRibSsW0UV942nZ17chh49TTuvbkXLzx8MVarkYCENvR84Tvyd65j12cvkrlyLgfnfcvBed8S0WMQzcbeQ1iX/nIThhBCCCHOKn26N6JP90bsS85j8mdr+GT6eval5PPUu2t4Rq8xbGAnxo24jsufbYGuOI2i3Zsp3L2Zon1bKT20j9L0A7gdFZQkJ1GSnHTM9zH6B2EOicQUEILJPxhjQDAuTU9FxgH0Jgs6swW9yYrebEFnsnjmmcyn1ZImuP8Ycpb8cCYfS40iBo+v9TKFEEKcOkm8eFlJyi6Sf/kEgITjrOfSDNj0gZQYw6qmQlMUFQb/45YfGuzDL1Ov4fUPV/DIi/P5+qctbNyewY8fjKV18/Ba3BMhGqb1W9K4/KZvSMssJizEh58/GUdMhIX9qbV3R/rxGG05xOz8kpCDi9FQuHVGsppeTkbzMbiNvvUSgxDi3NKmRThrZv+L+5+Zy0dfr+fNT1by26LdTH11JH26NwIguHVXek76nvyd69jz7Vuk//kLWavnk7V6Pn6NW9FkxC3ED7kGo1+gl/dGCCGEEOLkNW0cwmtPDuWZ/xvI97O38fG361m2JpXZ83cxe/4uzGY9lw5swdWXt+ey8cOrbjpVLhe27IOeJMyhfZQc3Et51iHK8zIoz02nPCcDt70cR3EBjuKCU45LM5jQm8yHkzGeR53JXJWYqXo0W9FbfNFbfHDaSlBKyQ0xQghxjpLEi5cFNEuk1YRHyc3KZe2f69EpFwZ3BUa3DZPbhtlVgtlVgl458XPm4ufMBdvfd2eU6/0oNEWTb44j19KYUkPoUS1jdDod/3dHH3p2juPqu75n+65sul/2EVNfHclVl7Wr710Wot58P3sbE+7/iTKbg7Ytw5k19RqaNg6p1fEXjsVQnkfk3p8IP/A7OrcdgLzYfqS1vh67T0Sdv78Q4tzm52vmw5dGcMUlbbj1wV/YtS+XvldO5borO/DyY4OJjvTcmBHcuivd//c5pYf2se/H90j5/StKkpPY+s5D7Pjof0RfOIK4QWMJ6zoAnV5OC4UQQghxdvD1MTFhbGcmjO3Mjt3ZfPPzFqbP2saufbnMnLOTmXN2YrUYGH5xSy67uCVD+jUjOqoxPlGNCe868KjylFI4Sgooz8mgIi8TR0kB9qJ8HMX5FKUlU7xrPe4KGy57Oa4KG+6Kclz2CpTTU9dTTjtOpx3KTr5nhQMzP0DT6dFbPYkYg48/Rl9/DD4BGHz9Mfj4H54XgKaXXhKEEOJsIzVsLwtsnkhg80T27Ell15ZPa1xHU04szmJ8nfn4OnLxd2Tj58jGz5GDxVWCxbabSNtuwJOIyTU3pnBlOOUho7GE/H2B98KejVn/++1cc/ePLF5xgLF3fs99a1N5+fHBGI3yR1ycOyoqnDz4/B+88+lqAIb2b8b0964iMODo/nprm9GWTeSeGYSlzEPndgBQHNKWQ+1ulnFchBC1btjAFmydfxcPPv8HU6dv4MsZm/lp7k4eu/tC7rm5Z9Vdnr6xTUm851Va3/IkB//4lgO/fELxgR1V3ZCZgyOIvWg0sYPGEtSqi9x5KYQQQoizRpsW4Tzzfxfx9AMD2bwjk+9mbWP6rK3sTc7nh1+388Ov2wHo0CaSof2bMbR/c/p2b4TZ/PclMU3TMPkHY/IPhoQ21crPO5RM1ryvanxv5XbhtlfgslfgtpdXPXrmHfHoqPAkaypsuMpLcZaXoZwOlNuFs7QIZ2kRFbkZNe+gpmH0DcB4uOszo3/Q4W7QQjAFBKPp5HqOEEI0RJJ4OQsozYDNGIzNGEyOtWnVfL3bToA9k0B7GiHlKQTbD2FxlRBbto1DnzzMoU8eJqB5B6L7XkZ0v5H4N2lNVIQ/876+nv++spCX3lvGm5+sZPWmQ3z33lXERgd4cS+FqB0HUvMZe+f3rNmUBsBDd/bh+YcuwmCo25NRU2kGUXt+ICR1ETrlBKAkuDUZLa+mKLzzKY/RVNtsRYVefX8hzie1+f/NdfguyuMJDrLy8SsjuX18N/795G+s2nCIx15awJufrOSRu/pyx3XdsFqNAJTZbAT2GEqH7kMo3rOJ7GWzyV45l4r8LPb9+D77fnwfS1RjwntdQkiXgfg1aXPcPstre1BYGQxWCCGEEKdL0zQ6to2iY9sonnvoIjZsTWfG7zuYu2Qv67aksXlHJpt3ZPLKlOVYLQYu7NGYvt0b0bdHI3p2jsXHeupj4Wo6PXqLD3qLzylvG9DrMnLnf4WrvAynrQRnaTHOMs/kKC3yPC8tRrmcOEoKcZQUQvqB6oXodJgCQjEHhWE6PPlnJKOi409r3BkhhBC1RxIvZzGXzkS+JZ58SzwHAnqiU06CKg4RWn6ANsEllKfsoGjPZor2bCZp2gv4xbcgut9IovuNYNIjg+jdJZ4b75/J8rWpdLpkCp+/eQXDBsod+eLspJTi0+kb+M8zcykqriA40MLnb17BZYNa1en7+uTvIu2Tj2m3+lc05QagODSR9JZjKQlN9HrCpVLpvs21WFrXWixLiHNPbf5/U+6T///WvVMsy3+6ha9/2sJTry1mX0o+9z8zl5enLGPiDd25/bpu6CvKq92x6R+bgN8V/6I0bT/Fe7dRkrqb8oxkUn/6gNSfPkBv9cM3rhl+cc3xiW6Mzlj9gkRtDworg8EKIYQQojZomkaXxBi6JMbw3EMXk51byvw/9zF3yR7mLt1LRlYJfyzdyx9L9wJgMOjo0j7ak4jp3og+3eOJCPOr0xj1ZgtGv8DjjrmnlMJlK8VenI/jcNdnjuIC7MX52AvzUE479oJs7AXZVdukL57JRqsfgS06ENSyE4EtOhLUsjN+8S2kyzIhhKhHkng5h7g1A3mWxuRZGjP8iZuID7WQuXIu6Ut/JnvdIkpSd7P7q1fZ/dWr+EQ1psWAK1g8eSg3vbiFjdsyuPSGr3jgtt688PDFmEzy1RBnj7SMIm57ZBa/LvB0ude7axzfvDuGxnFBdfJ+mstBcPoywvfPxrdgN8WABhSGdyGj5VhKQ9qcqAghhKgTOp2O667syNWXt+fzHzfx7FtLSD5YyBOvLuL5d/5kzJAELo9xkxirVXUnpun0+MU1xy+uOW5HBSUpuylJ2UVp2gFcthKKdm+iaPcmNL0Bn6jG+MQ0wSeqMabgcC/vrRBCCCHEyQkP9eWaUYlcMyoRpRRbd2axdFUyf61J4c/VyRzKKGb1xkOs3niI1z9aAUDLpqH07d6ITs19aFasSAij3rtj1TQNg48fBh8/iIyvtkwp5emirCAbe0EOFfmeR0dxAS5bCXmbl5O3eXnV+nqLD4EtOhLSrifB7XoS0q4HZjmfE0KIOiNX189h5uBwGg27jkbDrsNRWkTmijmkL/2FrNXzKMtIZs+3bwJvMim2NV/2uoyvVrp57cMVLF2VzJdvX0nLpmHe3gUhjsvlcjPli7X899WFFBSWYzLpefb/BvLAbReg19d+s2pjeS5hB+YQlvIHxooCANw6A0E9h7PK0A9bUPNaf08hhDgdRqOeW8Z14YbRHfl+9jbe+Hglazen8eWs3XwJNAvXuKKLjuGJOqIC/76AoDOaCWjWnoBm7XG7nNgyUik9uIeSg3twlhRSemgvpYc8d4bqzVZyt6/FoNfjE90YY0CIjA0jhBBCiBPS9Dr27Emt9XINBj1Op+uk1rUaYWjfaIb2jUapHqRllrB2Sybrtmaybksmu/bns2tfLrv25VZtE+hnpHPrYDq1DqFzq2DatwjCaj79y2rlmvW0twVPUqaqxUzc33XRkAFjqcg4QMmBHZTs307pge2UJO/EVV5G3pYV5G1ZUbWuJSIe/5adCGjRiYAWHfGJa37cMWOkW1ghhDh5kng5Txh9A4gbNJa4QWNx2krJWj2PQwt/JHPFHOyHdjKWnTSKasa7uZeyZlManYa8z6tPDOXOG7rLRRTRIK1Yl8rE//7Khq2eAQi7Jkbz2RtX0K5VRK2+j+ZyEJi5hpCDCwnMWo+mPCfydksIOY2HkdN4CFeN6YFt1q5afV8hhKgNRqOea6/owDWjElm+NpU3P1jMrAX72JuteHWui1fnuugQpzG0nY6BrXQ0OeJOTp3egG9sAr6xCYT3GIS9IIfSQ/soy0jGlpmKq8JG3toFVe+lt/hijYjFEh6LNTwGc2gUOoPRW7suhBBCiAbK4XDz7nOf1nq5d//3pjMuNwQY3AQujNXIKIT0QoUuKIoNWzMoLHGweG0mi9dmAqDTIMwPogIhKlAjOgD8LCd//eTeJ248o1iPRSk3pTtXowH+0fH4R8ejeg7GXpRHeU4a5VmHsGUfwl6QQ3lWKuVZqWT/NcuzT0YTlrAYrBFxWCPjsITHVjufk25hhRDi5Eni5TxksPoS038UMf1H4SgtIuOv2Rxa+AO91y6iueVT3socymZbYyb+9zemf7WAj98aR4s2Cd4OWwgAkvbm8MSrC/l+9nYAggItPP/gRZ6xC2qrlYtS+BTsIjR1EcFpf2JwlFQtKgluQ1bTyyiI6gU6+QkVQpwdNE2jT/dGtInpz0PdUvl9q5tfNrpZn6LYfFCx+aCLV+a6iA6E3s109G6q0auZjjA/rWp7c3A45uBwQtr3RLlclOemo8x+5K78jfKsQ7jKSylJ2UVJyuFEtE6HJSTSk4g5nJAx+gZ48VMQQgghhDg5FqNGkzBoEqZx93+H89YzU8kpoSoZk1EIpXbIKvZMmw8qAPzMiujDiZioQAjzBZ3O+zezajod5qAwzEFhBDbvAIDLXk55dhq27EOUZx2iPCcNt8NOWfoBytIPVG6IJSwKa0Q81sh4QkoLvbcTQghxlpGrhuc5o28A8UOvJX7otVQU5pK+5CdazP+Bz//ax+c5F7J0B3Qc+hF3dM7i37cPIK7f5ccd+E2IurI/JZ/n31nKtO834nIpNA1uGtuZFx8dRHio75m/gVJYi5MJTF9JyKGlWEoPVS2yW0LJixtAXtwAyv0bnfl7CSGEF/lbNMZ20zO2m56sYsX87W7mbXezLlmRXggz1ruZsR7ARctIjV5NNTrGa3SM0xET5EnCaHo91og4gvuPwScwCLfTQUVuBrbsNMqzD2E7nIgpz0mnPCedgh1rATD4+GMJi8YcGoUlJBJzaBQGay38hgshhBBC1CG9TiMyACIDoGO8hlKKkorqiZicUiipgN1ZsDvLk4gx6CAyQFW1iokK8CR1GgK9yYJvbFN8Y5sCoNxu7AU52LIOeqbMVJxlxZRnp1GenUb+tlWkLfqRgIR2hHToTWiHPoR2uABLaJSX90QIIRomSbyIKubAUJqMuIUmI26hW/Yhxnz7Pf/3UTJb8wN5Y30cv97zJxNjnqfXgC7EDhxNZO9LMFh8vB22OMet25zGK1OW8f2v23G7PSevIwa34rkHLyKxzRn2Lavc+OYnEZSxksD0lVjKMqoWufRmCqJ6kxc/kOKwRNCO3c+tEELUldruA11vMKDaX1L1Ohy4pjdcA9gqnKzfkceKTdms2JzDjn2F7MpU7MpUsALARWigicQWwSS2CKJDy2A6F+rxaX8JGmA5PMHhwV7zM7Alb6P8wFbKk7dTkb4HZ1kxJSnFf7eKAQyB4ZjjWmKObYVz3TJ8rFYsIbXbbaQQQgghRG3SNA1/C/hboEWkJ5Fidyqyiv9OxmQWQYUTDhV4JvDUZ4N9PImY2N930bFCkXBEV6/epOl0mEMiMIdEENS6i+d8rrQQW2YqZZmeRIyjKI+ifVsp2reVAz99BIAlshEBrboQ2KoLAa27YYmIO+X9kbFjPDKz8rGVO2q9XKvFSGREcK2XK4Q4Pkm8iBpZw2MZ+u/7GDzRzdvvzuG/b69mV0U09+0fy6DcrVy36C5C/XVE9bmUuIvGEN7tInRGk7fDFucIm83Bj79v56Ov17N0VXLV/CH9mvG/+wfQu2v8aZdtL86ncM0c4jfNIihzNcaK/Kplbp2JovBOFET3piC6F26DJBaFEN5V232g3/3fm5j89uzjrmMFLmoMvaM1DhZAWoEiqwhySiC30F6tb3NYiY/J0795mB+E+mmE+kGQ1XNnqEdz0DVHH20nwJ5JgCPT82jPxMeZh7MwG2dhNqXblpH3x1T2vQGWsBiCWnYisGVHAlt2IrB5ByxhMQ3iooQQQgghRE1MBo24YIgLBvC0iskvg/RCyCj0tCwutEF+mWd67JVlAARaoXMjjc7xOjo10kiM1bCavH/Oo2kaRr8gjH5BBDRLBMCv00DSf3ofW1YqtsxUKvKyKM9MoTwzhaylPwGgt/rhExmPNTIOa2Q8pqDwE57DydgxHrZyB9N+2Fbr5U4Y067WyxRCnJgkXsRx6XQ67rvnUq66qi8PPv8H3/y8lXlFiSwrbc2Vgau47I+ZHJr/HcaAYGIuHEnsxWMI7dAHTS+tA8SpcbvdLFuTyvRZW/nqpy0UFJYDoNdrXDMykf+7/QI6tj31JswuewX521eTvXYR2esWUbBrA7jdhFcuN/hQGNmNgqjeFEV0xm2w1uJeCSHE2ctq0mgRAS0iPBVlp0uRUwKZxZBZ5EnGFNqgzA4peZ6p8k5OnQYhvqoqGRPiC6G+RpzmOPItfyfP9W5PMsbfkUmAPYsmgeXYM/ZTnpNGRk4aGct/q1rXGBBMQNP2BDZrT0CzRAKatsM/oQ16kwUhhBBCiIZG0zznQCG+0C7Gcz5lsysyijyJGF1gJFt2ZFJog8VJisVJLgD0Os/5V9sYjfaxGu1jNFpGapgbQBdlxsBQ/Ju0xr9Ja+DwODFZhyjLTMWWdZDynDRcthKKD+yg+MAOAHQmC9YITxLGGhmPJTQSTSfXjIQQ5z5JvIiTEhsdwNfvjmHijT2496nfWbclnS/z+vKrrQ9Xhm5giPsvkn+dRvKv0zAHRxDRcwiRvYYS3nWAjAkjjqmiwsnSVcn8unAXP/y6nUMZxVXLGscFcsvVXbj56s7ERp/8YMwVhbkUbF9D3vbV5G9bQ/6ONbjKy6qtY45pRqq5NUUR3SgOS0TpjLW2T0IIca4y6LXD/ZMDeCr+Nz1wHZOe/MLTGqbEk5jJLQWHy9NCJqcEKpMxAGaDJyET7AshvhohPkZC/eKw+nm6pBj05E00iQ2mcM8WCpM2ULBrI4W7N1GSsgtHUT65G/8kd+OfVeVpOj1+8S0IaNbOk4xp1p6Apu2xhEVL6xghhBBCNDhWk0ZCGCSEadz7xKXYlnzJzgzFhhTFxhTF+hQ3WcWwM0OxM0MdHnfPM1ZMiwiNNjEazcI1mkVoNA/XiA4Enc575zx6kwXfuGb4xjUDwO10UJ6Tji3T0yLGln0It72c0oN7KD24BwDNYMQSFlPVKsYSHuu1+IUQoi5J4kWckj7dG7F69r/45uetPP3GYnbvz+OTg12Y6d+DK1sX0d/2MwH56aTO+ZLUOV+i6Q2EJPYmstdQInsOwa9xK7kQch5zOFys35rOn6uSWbIqmYXL9lNm+7v/0gB/M6OGtubakYkMurAper3u+OWVFlG0bztFe7eQv2Mt+dtXU3pw71HrmYMjCOs6gPCuAwnvOoBMm5EVddB8Vwghzje+VqNnoNgjkjFKKYrKIbcEckoUuSWQV+ppHVPh9HS3kV4IRyZkLEYI8VHkv7GMC7o3pX2raNpd1IGmY+4CPHdTliQnUbh3K0V7t1C0dxtFe7dgL8qjOHknxck7ObTwx6ryTAEh+DVpjX/j1vg3boV/k9b4NWolCRkhhBBCNBg6gwFjp2EkAonADXjOozJyy9m2p4BteyunQvKL7OzIUOzIUNXKsFr0NIvzJyHWj9gIH6LDrCSsySU02zOOjE8td1lWrlmrjRf4Txqebmsr+5FQLicVaXuw7dtE2b7NFO/bhttWhD09laL0w+MY6vQkL19AQOse+Lfuhk+Lrhh8a+cGXhnbRAjhTZJ4EadMp9Mx/ooOXH15O76auYVn3lzCvpR8Pl7jw2fG8VzeO4xLYw7SOGMuZQd3V92dun3KfzGHRhHa4QJCO/YlrGNfScScw4qKy9lzII+tSVms35rOus3prN+aXi3RAhAd4cewgS0YOaQVQ/s3x2w++mfJVWGjNG0/JSm7PQP57d1K0b5tlKUfqPG9/eJbENyuB8FtexDSvif+TdpU/56lZNXmrgohhDiCpmkEWj39lTcN//u31+lSFNg8SZi8UkVuqed5kQ3KHZBWCF//spOvf9lZtU1EmC/tWobTrmXE4ce+tLp6JO1CfQEoz0n3JGL2eRIxhXu3UpK6G3tRHnmbl5O3eXm12Ay+AZ5ETOPWhxMznufWiDg03fGT/UIIIYQQtcnhcB937D0D0DEIOnRRFFdoZBd7bmzJL1PklUJBGdjKXWzdU8DWPQVHbLmp6lmQD4T6QoBVI8DieQy0QoAF/CwaBp2nazODnr+f68DlBqcbnC5wVD66wLVvPX8u3IDTDS7X4XUOT5WvXTXMc7qtuNw9gZ417+xuYB4Y2IpR24RRrzDodegNegwmM0aLFbPFiNlkwGzWYzYZsBx+rJxnMRkwm/SYzZ5Ho1HPv8YlnvmBOg6lFLZyB8UldopLKigu9TwWlVR45pVWUFTsme95rL7MVu7E4XBhPzyVlzsoKrHjdit0Oq1q0ut0nueahsmkw2I2HP4MDJjNnkerxYC/rwl/XzN+fib8fExebQ0lhJDEizgDBoOeG6/qxPgrEvllXhJvfLSSv9akMGNpFjMw0Sj2Oq4eHM+F4emEpi4kb9NfVORmkLZoBmmLZgBgCgojtEMfQhJ7EdSyM4EtOmCw+nl5z2pfZlY+tnLHiVc8WcqF0+GsteIsFgNxcdEnvb7L5SavwEZWTimZOSVkZpeyLyWf3ftz2ZOcR9LeHHLybDVuGxRgpluHaLp3jKZv93jaNA8FpXAW57F35RIcuenYs1OoyEzGnnmAiowDOPIzQKkayzOFROIb3xK/Jm3wb9ER/+Ydq3Vv5wTy01Kqx++s3f5klXJjKyqs1TKFEOJcY9BrhPlBmB9Uto4BcLgUBWWeJExCp/akpBSwY18+KeklZOWUkpVTyqLlB6qV5e9rpGlcAE3jA0iI8ychrgPNuvYlYWQAIX5QnrafsrR9lGekYM85SMmBnZQe2oeztIj87WvI376mWnl6iw9+8S3xjW3qmeKaVT03B0dUJe9r+++53IUphBBCiBPRtMNJEws0C4fK8yiXW1Fkg7wyTxKmuFxRUg7mwCAOpRVQWuGZX1AGf7c0rrleffI2nOH2x+fEgFMZsDnxVOYrgFInUHz8DY9h0rt/4etjxNfH5Hm0eh79fE34Wk0YDLrDiQ2tWqJDKbDb/06I2B0u7HYXFXZnVXKl8tHlOtPPtO74+hjx9zOzYl0K7VpGktAomIT4IJo2CqZJfBA+VpO3QxTinCaJF3HGDAY9Vw5ry5XD2rJucxoff7Oeb37ZQsqhQl6ZVsgrQKPYfoy4+GZ6N3bSUu3AnrScvG2rsRfkkL70Z9KX/uwpTNPwi29BYIuOnkRMy474N26NKSjsrG4ZYyt3MK2WurZSSjF6aFPefeEzXG5wKc8dJe4jnldOblXD8yPnucGlFJ16tsfH14cK+98nExWHTzIqKv5+XlJqJyu3lJy8MtzuE59c+FqNhAUZiQvW0SjQQRP/MmJNaZjsOzBsLSB/bQ5rbTkYy3PQuY+fSNKZzBj9QzAHh2MOifA8BkWgt1ir1nFmp5KfnXrCuAx9rz/xB32KSvdtrsXSutZiWUII0bAZ9Rrh/hDuD/f+qxuuZV8BUFphZF+2Yk+WZ9p9+DGjCIpLHWxKymVTUu5R5fmaoVGwp/uzJu0607z5cOI6BBAT7kOolo+1JAWydlOSvIvi5J2UpO7GVV5G4e6NFO7eeFR5eotvVRLG6R/JuhQ9dmsYdms4dms4bqPPae/7hDHtTntbIYQQQpzf9DqNYF8I9q2c47lmcu8TV+Ba9hXF5Yq0AkV+maeFcaHN0x1ssU1RWA6l5ZUtVNTfLVQOt27RHW75YjzcEsag97SOMcU2I2nTbk/rGD0YdEe3mjmy5YxB//dz/eGp2pWdwy/+9X/j+f63vThdbrAVYsg/gKEwFX1RGlpRBvYKOza3iVK32fPoMlOmTJQqX0q0AErxpUyZKHMaKHeA3fn39YrSMgelZbV4I+wx+PmaPC1O/Mz4+5oI8Dfj72s+/Hj0a38/Mz5WI0aDDpNRj8mkJzunkN8W70enabjdyjMpz6PLrXC7lKdlTIWzaqqwOymvcFFmc1BS6mlJU1JqR6m/9z0jq4Q/lu4/KubIcF8S4v9OxjRtFEzC4ce46IATdv8uhDi+cybxMnnyZF555RUyMjLo2LEj77zzDj169PB2WOedrh1i6NohhjeeGsrPfyTxzc9b+GPpXlIOFfLu5+t4F8/Ab10TR9C75520Di2niWsPwTkbKNq9kfKcNEpSdlGSsotDC76vKtfoF4RffHN841vgd3jyjU3AEh6LKSCkwSVlKiqcFJV4mpQWlVSQtDeDpL05VNhdhycndrsLh9ON0+nG4XQdfnTjdB45/5/L3LjdimfeXFqr8a5L3npa2wVZIcTqIsjsIMpqI8ZUSJQ+l3B3OqH2Q/hrpZ4V7UD24ekYFBoOSzAOSyh2nwjKfWOoODxdProPauOsBnechRBC1B1fs0ZinEZiXPX5FQ5Faj6k5CpS8hQHDj+m5CrSCqG0gsN9oANJO4GdR5VtMukJD0kkPLQXoWFWQqxu/DQbFlcxpoo8jLYcDCUZ6IvTsJZVYCrIxrQ9HaPmwqy58NNcmDQnRs0FRgtun9CqRIwnKROGwxKC0xyEwxyEy+gHmlRcRcMg9SYhhDg/+Fs0WkXVbh1a36cvbz179LiqZyrAz4yvz+HWF/4WiIjkyG7J/MvziCzci0/hPqzFyViK9mIpTUNT7hrLc2oGii2xBDRpjTMoHpdfJA5rKA5LCHZjEOXKiK3Chdvl9iQ03AqlFG43uA/3tmEy6jEadZgMnkejUY/RoMPXx0hIkJUm8WFViRRfHyO6Wui29kCKmXVbj3Ph5CS53Yoym4PiUk+3Zq2aBpGaXszBtCJS04tJTSuiuNROZnYpmdmlrFx/8KgyjAYdsVH+xEX70ygmgPjYQM/j4deBARYMOhc+mv2M4/0nvdlCYFhkrZdbVwpzMnFVlNd6uXX1ORw8mE55ee31onMks1GHr6H2yz7bvhOVzonEy/Tp07n//vuZMmUKPXv25M0332To0KEkJSURERHh7fDOSxaLkatHtOfqEe0ps9mZ/+c+Zs3fxaLl+9mbnM+aTWms2ZRWtb7V0p6WTfvTopk/8X42AhxZ+BYfwJKXhE/hPoKKi3DsWEv+jrVHvZfOZMEaHoM1Ig5LWAyW8BhMgaGYAkIwBYYcfvS8NvgGoNPX/LV3u92UljmqkiWefjcrqiVQjuybs6iGZZXz7HZXnX22R+2/ptBrCoPmxqBT6DU3Bk1h0FwYNDdGzX34uQvjEZMB5+GLRg58TWBUDvSucgw4MGrOw9tWrut5NOscBOrLCNTbCNDbMGj/OMmpbA4MVXeuKE2HwxSI0xyE0xyIwxzkuRBlCsRhDcNuCTv8GAK6mo+NwT8YpyRdhBBCAGajRvMIaB5x9N8Fu1NxMB9S8xWZhYqi0PbklmgczCgiNa2Qg+lFlJY5sNtdHMoo5lBGTd1WWIH4w9PJ0R/+O6nX3Ohxo9dK0WvF6NnvmadV9tOt80x6HTq9gTk//8l7L19Jl57tT/vzEOJUSL1JCCHE2chpCaHIEkJRZPeqeZrLgaXkIJbiZE8ypiQNc2ka5tJ0DG4HwbZk2JFMTR2Nu/QW7NZwHJZgnOZgHOZgHJYgnKYgzzxTAC6jH06jL3aD9fANNH+3mpkwJo4mjcLrfsdPk06n4edrws/XRHQEjLu8Jd/M2kVcdBC98PSkUl7hJL+wnILCcvKLyskvtHmeF5ZTUFSOw+nmwMFCDhysuVt1i9lAQnwAEbp8IgM0IgI0IgMgMkAj0h9C/DSCrJ7WUqcqYvD4o+YppcDtRnH4UblRbjcoNyiFOjzPsw5V61Q9HrVOZTnqqHWoLJsjt1E1rqPcLoqy0ylYt9AzTynPOv9c9/D8qufuGtY9/Fj53KdRa8xWH5TbhXK5qt7v79eVk2c+1ea5UC43yuWsPs+tqKiwk5mWc9xj4FbgUHrsbj1OpUcBbjSU8hxPNxrq8ORGw40eNIiNC0dfmoNBp45o/aYw6rXDrd40NJ3mubFap0PTdGg6HZpODzp91fO/53keIwaMJnDouFP+LnnbOZF4ef311/nXv/7FTTfdBMCUKVP49ddfmTp1Ko888oiXoxM+VhMjhrRmxJDWAKSmFbJ4xQHWbDrEui3pbNyWQZnNwabtmWzannnElrGHp4sACPbT42dyY8KO2W3D6CrD5CrFpHNiTHWhoYD8w5OHQsOpdDiUAbsy4HDrcWhGHJhwYMSu9DiUgXKXnrJaHvcDwMfgxtfowqp3YlB2fPQOrHoHPjoHFs2OWXNg0pyYNTsmzYEZO2bsWLRyzNgxaU5MOidmrTJJ4qyePNFc1NVYaZregN7ii8Hqg97i43luOfzc6nlu9AvE6BfkmfyDPK/9g8gudjFzSSZOoy/uqpMUIYQQom6ZDBpNw6FpuOePY8TgLoTENq62TpnNTnZuGdmHu87MzvM8zyuwHXVzReUNGLZyJxUVTspsDspsDpwud7Whx1zocSn9qXebnucm9+AhkMSLqCdSbxJCCHGuUHojtsAEbIEJR1wFApQLky0Xc2kafZo62bJyMyZbFiZbDqayLIz2QvSucqwlqVhLTtxVuULDZfTBZfDFZfTDZfTlQFo0+eERGKw+6ExW9GYLepMFndmC3mRFZzKjN1vRmz3PPReS9Wh6A5pe9/drnR5Nf/hR01Gelo2l+PAYtcrtuZ9VKUBVPWpHPlduNLcLTblAeR4rXx/5vGDpRsIOpP29zO1EU26aHn6OjxvN6kKLdKK53Si3k8JyHdllRnJsBrJtJrLLTeSUm8kqt1DoMFNe4WTHnjx2HP6UaqKh8NdXEGgoJ8BQTqDBhr++AqvOjo/OjlWr6XkF1mkfYdIcGJUDg+bEqBx1du2rIcvZshqn0nsSIMqA46jnBuxuPQ70ONwG7FXLDFQoA3Z35XNT1XYVh+fZVZuq9e1uzzXTynIr3Aacp5sy2HPiVUyHr3H+85rn368d/1hWQeLeeTwtiZf6Z7fbWbduHY8++mjVPJ1Ox6BBg1ixYkWN21RUVFBRUVH1urDQk70tKiqq22CPo7i4GLu99pqlFRcXe3V/jifQT2Pk4ARGDk4APAO1H0gtYPf+XHbvz2N/aj4Z2SVVU2ZOCU6HIr/oyJSK+fBUGwPSKo5sqqHDhY/OjkVnx6pzeH74Nc/ryvmViRMfvR2rzo5VOzzpHFh1nj8WFp0TvVY7g6wpTY9bZ8CtN6F0Vkz+PuQVlHnmawZceB7d6HFXztP0KM1w+PXfy12awfO8cj2dkStvGknjZk3QWzwnBgaLLzrj6Q+y5kzNplhXAi7AZTvj/S8uLsZlq73/H/riYirKS2utvJKS2v3/K+VJeVKelHc+l1ebv/eW4mIMNZwPBQfoCA7wp2WC/ymVl5yazdc/e6qXbrfC6XTjdHkml8vTRYXLdbgv7spHpwPNXgoVxWj2UjR7GVSUojlshPlBXNMrvHLOVvmeStXOuYpo+E613nQ+1Jkq1fZvmZRbf2VLuVKulFtzubV5PnUkfR3GXJt19AqdL8X+LTB2a86+7DbVF7oqMNnyMJXnYKwoRG8vwFhegMFeiLGiAENFIQZHEXpHGTq3A1DgLAFKgEz0QEbmZjJqLdrqmtRBmfvXQdgpbuOH51ZoAPSA7+EJqHAbyHL6k+v0J8/pS57TnzyXL/lOX/JcfuQ5fSlxW1FAkVujyGHF06r89K/h6ah+E3JlLy86FDpNoTuclNJp6u+2GJpCB1XraIBeU2gaVa///kf7+7nmKcHD8xoq00samsbh5Z5JoVBOh2fe4TIUGm6lw4WGS2m4Kyd0uNTheWi40FUtcx3x6HRruJS3bmJ2HZ4qeT6zyr3VjvyoKj8JDVCgM+g9dSS3Z19qYgfsaIDx8HRi+dnKa+egZ1Jv0tRZXttKS0sjNjaW5cuX07t376r5Dz30EEuWLGHVqlVHbfO///2Pp59+uj7DFEIIIYQQosFJTU0lLi7uxCuKs96p1pukziSEEEIIIYTH6dSbzvoWL6fj0Ucf5f7776967Xa7ycvLIzQ01CuDdxcVFREfH09qaioBAQH1/v7ixOQYNXxyjBo+OUYNnxyjhk+OUcN3thwjpRTFxcXExMR4OxTRQJ1Jnels+X8gvEe+I+J45PshTkS+I+JE5DsiTuRkvyNnUm866xMvYWFh6PV6MjMzq83PzMwkKiqqxm3MZjNms7navKCgoLoK8aQFBATIj0EDJ8eo4ZNj1PDJMWr45Bg1fHKMGr6z4RgFBgZ6OwRRj0613lQbdaaz4f+B8C75jojjke+HOBH5jogTke+IOJGT+Y6cbr3prB/x2mQy0bVrVxYsWFA1z+12s2DBgmpN6IUQQgghhBDifCX1JiGEEEIIIerPWd/iBeD+++/nxhtvpFu3bvTo0YM333yT0tJSbrrpJm+HJoQQQgghhBANgtSbhBBCCCGEqB/nROLl6quvJjs7myeffJKMjAw6derEnDlziIyM9HZoJ8VsNvPUU08d1ZRfNBxyjBo+OUYNnxyjhk+OUcMnx6jhk2MkGrL6qjfJ/wNxIvIdEccj3w9xIvIdESci3xFxIvXxHdGUUqrOShdCCCGEEEIIIYQQQgghhDiPnPVjvAghhBBCCCGEEEIIIYQQQjQUkngRQgghhBBCCCGEEEIIIYSoJZJ4EUIIIYQQQgghhBBCCCGEqCWSeBFCCCGEEEIIIYQQQgghhKglknjxssmTJ9OkSRMsFgs9e/Zk9erV3g7pvDVp0iS6d++Ov78/ERERjBo1iqSkpGrrlJeXM3HiREJDQ/Hz82P06NFkZmZ6KWLx4osvomka9913X9U8OUbed+jQIa677jpCQ0OxWq0kJiaydu3aquVKKZ588kmio6OxWq0MGjSI3bt3ezHi84vL5eKJJ54gISEBq9VKs2bNePbZZ1FKVa0jx6h+LV26lMsvv5yYmBg0TeOnn36qtvxkjkdeXh7jx48nICCAoKAgbrnlFkpKSupxL85txztGDoeDhx9+mMTERHx9fYmJieGGG24gLS2tWhlyjMS55lTrMd9//z2tW7fGYrGQmJjIb7/9Vk+RCm84le/HtGnT0DSt2mSxWOoxWlHfTnTuU5PFixfTpUsXzGYzzZs3Z9q0aXUep/CeU/2OLF68+KjfEU3TyMjIqJ+ARb06met3NZFzkfPH6XxH6uJ8RBIvXjR9+nTuv/9+nnrqKdavX0/Hjh0ZOnQoWVlZ3g7tvLRkyRImTpzIypUrmTdvHg6HgyFDhlBaWlq1zn/+8x9mzZrF999/z5IlS0hLS+PKK6/0YtTnrzVr1vDBBx/QoUOHavPlGHlXfn4+ffr0wWg08vvvv7N9+3Zee+01goODq9Z5+eWXefvtt5kyZQqrVq3C19eXoUOHUl5e7sXIzx8vvfQS77//Pu+++y47duzgpZde4uWXX+add96pWkeOUf0qLS2lY8eOTJ48ucblJ3M8xo8fz7Zt25g3bx6zZ89m6dKl3HbbbfW1C+e84x2jsrIy1q9fzxNPPMH69euZMWMGSUlJjBgxotp6cozEueRU6zHLly/nmmuu4ZZbbmHDhg2MGjWKUaNGsXXr1nqOXNSH06nnBgQEkJ6eXjUlJyfXY8Sivp3o3Oef9u/fz/Dhwxk4cCAbN27kvvvu49Zbb2Xu3Ll1HKnwllP9jlRKSkqq9lsSERFRRxEKbzqZ63f/JOci55fT+Y5AHZyPKOE1PXr0UBMnTqx67XK5VExMjJo0aZIXoxKVsrKyFKCWLFmilFKqoKBAGY1G9f3331ets2PHDgWoFStWeCvM81JxcbFq0aKFmjdvnurfv7+69957lVJyjBqChx9+WPXt2/eYy91ut4qKilKvvPJK1byCggJlNpvVN998Ux8hnveGDx+ubr755mrzrrzySjV+/HillBwjbwPUzJkzq16fzPHYvn27AtSaNWuq1vn999+Vpmnq0KFD9Rb7+eKfx6gmq1evVoBKTk5WSskxEueeU63HjB07Vg0fPrzavJ49e6rbb7+9TuMU3nGq349PP/1UBQYG1lN0oqE5mb+rDz30kGrXrl21eVdffbUaOnRoHUYmGoqT+Y4sWrRIASo/P79eYhINyz+v39VEzkXObyfzHamL8xFp8eIldruddevWMWjQoKp5Op2OQYMGsWLFCi9GJioVFhYCEBISAsC6detwOBzVjlnr1q1p1KiRHLN6NnHiRIYPH17tWIAco4bgl19+oVu3blx11VVERETQuXNnPvroo6rl+/fvJyMjo9oxCgwMpGfPnnKM6skFF1zAggUL2LVrFwCbNm3ir7/+YtiwYYAco4bmZI7HihUrCAoKolu3blXrDBo0CJ1Ox6pVq+o9ZuE5h9A0jaCgIECOkTi3nE49ZsWKFUedtw0dOlT+rpyDTreeW1JSQuPGjYmPj2fkyJFs27atPsIVZwn5DREnq1OnTkRHRzN48GCWLVvm7XBEPfnn9buayO/I+e1kviNQ++cjknjxkpycHFwuF5GRkdXmR0ZGSh+UDYDb7ea+++6jT58+tG/fHoCMjAxMJlPVRZRKcszq17fffsv69euZNGnSUcvkGHnfvn37eP/992nRogVz587lzjvv5J577uGzzz4DqDoO8tvnPY888gjjxo2jdevWGI1GOnfuzH333cf48eMBOUYNzckcj4yMjKO6UTAYDISEhMgx84Ly8nIefvhhrrnmGgICAgA5RuLccjr1mIyMDPm7cp44ne9Hq1atmDp1Kj///DNffvklbrebCy64gIMHD9ZHyOIscKzfkKKiImw2m5eiEg1JdHQ0U6ZM4ccff+THH38kPj6eAQMGsH79em+HJupYTdfvaiLnIuevk/2O1MX5iOG0txTiHDZx4kS2bt3KX3/95e1QxBFSU1O59957mTdvngy42UC53W66devGCy+8AEDnzp3ZunUrU6ZM4cYbb/RydALgu+++46uvvuLrr7+mXbt2Vf1kx8TEyDES4gw5HA7Gjh2LUor333/f2+EIIcRZoXfv3vTu3bvq9QUXXECbNm344IMPePbZZ70YmRDibNGqVStatWpV9fqCCy5g7969vPHGG3zxxRdejEzUNbl+J07kZL8jdXE+Ii1evCQsLAy9Xk9mZma1+ZmZmURFRXkpKgFw9913M3v2bBYtWkRcXFzV/KioKOx2OwUFBdXWl2NWf9atW0dWVhZdunTBYDBgMBhYsmQJb7/9NgaDgcjISDlGXhYdHU3btm2rzWvTpg0pKSkAVcdBfvu858EHH6xq9ZKYmMj111/Pf/7zn6pWZHKMGpaTOR5RUVFHDVjsdDrJy8uTY1aPKpMuycnJzJs3r6q1C8gxEueW06nHREVFyd+V80Rt1HMrW+Tu2bOnLkIUZ6Fj/YYEBARgtVq9FJVo6Hr06CG/I+e4Y12/q4mci5yfTuU78k+1cT4iiRcvMZlMdO3alQULFlTNc7vdLFiwoFp2TdQfpRR33303M2fOZOHChSQkJFRb3rVrV4xGY7VjlpSUREpKihyzenLxxRezZcsWNm7cWDV169aN8ePHVz2XY+Rdffr0ISkpqdq8Xbt20bhxYwASEhKIioqqdoyKiopYtWqVHKN6UlZWhk5X/c+/Xq/H7XYDcowampM5Hr1796agoIB169ZVrbNw4ULcbjc9e/as95jPR5VJl927dzN//nxCQ0OrLZdjJM4lp1OP6d27d7X1AebNmyd/V85BtVHPdblcbNmyhejo6LoKU5xl5DdEnI6NGzfK78g56kTX72oivyPnl9P5jvxTrZyPKOE13377rTKbzWratGlq+/bt6rbbblNBQUEqIyPD26Gdl+68804VGBioFi9erNLT06umsrKyqnXuuOMO1ahRI7Vw4UK1du1a1bt3b9W7d28vRi369++v7r333qrXcoy8a/Xq1cpgMKjnn39e7d69W3311VfKx8dHffnll1XrvPjiiyooKEj9/PPPavPmzWrkyJEqISFB2Ww2L0Z+/rjxxhtVbGysmj17ttq/f7+aMWOGCgsLUw899FDVOnKM6ldxcbHasGGD2rBhgwLU66+/rjZs2KCSk5OVUid3PC655BLVuXNntWrVKvXXX3+pFi1aqGuuucZbu3TOOd4xstvtasSIESouLk5t3Lix2jlERUVFVRlyjMS55ET1mOuvv1498sgjVesvW7ZMGQwG9eqrr6odO3aop556ShmNRrVlyxZv7YKoQ6f6/Xj66afV3Llz1d69e9W6devUuHHjlMViUdu2bfPWLog6dqJzn0ceeURdf/31Vevv27dP+fj4qAcffFDt2LFDTZ48Wen1ejVnzhxv7YKoY6f6HXnjjTfUTz/9pHbv3q22bNmi7r33XqXT6dT8+fO9tQuiDp3M9Ts5Fzm/nc53pC7ORyTx4mXvvPOOatSokTKZTKpHjx5q5cqV3g7pvAXUOH366adV69hsNnXXXXep4OBg5ePjo6644gqVnp7uvaDFUYkXOUbeN2vWLNW+fXtlNptV69at1YcfflhtudvtVk888YSKjIxUZrNZXXzxxSopKclL0Z5/ioqK1L333qsaNWqkLBaLatq0qXr88cerXSCWY1S/Fi1aVOPfnxtvvFEpdXLHIzc3V11zzTXKz89PBQQEqJtuukkVFxd7YW/OTcc7Rvv37z/mOcSiRYuqypBjJM41x6vH9O/fv+o3rNJ3332nWrZsqUwmk2rXrp369ddf6zliUZ9O5ftx3333Va0bGRmpLr30UrV+/XovRC3qy4nOfW688UbVv3//o7bp1KmTMplMqmnTptXq6eLcc6rfkZdeekk1a9ZMWSwWFRISogYMGKAWLlzoneBFnTuZ63dyLnJ+O53vSF2cj2iHgxFCCCGEEEIIIYQQQgghhBBnSMZ4EUIIIYQQQgghhBBCCCGEqCWSeBFCCCGEEEIIIYQQQgghhKglkngRQgghhBBCCCGEEEIIIYSoJZJ4EUIIIYQQQgghhBBCCCGEqCWSeBFCCCGEEEIIIYQQQgghhKglkngRQgghhBBCCCGEEEIIIYSoJZJ4EUIIIYQQQgghhBBCCCGEqCWSeBFCCCGEEEIIIYQQQgghhKglkngRQog6pmnaUZPRaCQmJobRo0ezfPnyGrcbMGAAmqZx4MCB+g34JDRp0gRN06rNO3DgwFH7qdfrCQsLY8iQIfz4449eilYIIYQQQoizQ031hrCwMBITE5kwYQI//vgjTqfzuNs3adLkjOP43//+h6ZpTJs27YzLasimTZtW42ceFxfHNddcw/r16+v0/RcvXoymaUyYMKHa/HPx86/cp+NNixcv9naYZ6Qh1+GFEPXP4O0AhBDifHHjjTdWPS8uLmbTpk3MmDGDmTNn8uWXX3Lttdd6Mbra4+vry5gxYwBwOBzs2LGDefPmMW/ePB5++GFefPFFL0cohBBCCCFEw1ZZd3C73RQWFrJr1y4+//xzPvvsM5o3b85XX31Fjx49vBzlmZs2bRo33XQTTz31FP/73/+8FkezZs3o27cvACUlJaxdu5Zvv/2WH3/8kR9++IERI0Z4LbZzTceOHenUqVONy6Kiouo3mFOkaRqNGzeWxIoQ4qRI4kUIIerJP+9WcrvdPPbYY7z00kvcc889XHXVVRiNRu8EV4vCwsKO2tfKCtXLL7/M+PHjSUxM9E5wQgghhBBCnAVqaumwd+9eHnvsMb777jsGDhzIsmXLjrqAvWPHjnOiTlHf+vbtW+0zdzgc3HXXXXz88cfccccdXHLJJZhMpnqL5+6772bcuHFER0fX23vWl1GjRnk1yVaXPv/8c8rKyoiNjfV2KEKIBkC6GhNCCC/R6XQ888wzGAwGcnNz2bZtm7dDqjMTJkxg4MCBKKX4+eefvR2OEEIIIYQQZ51mzZoxffp0brnlFsrKyrj55puPWqd169Y0a9bMC9GdW4xGI2+++SZ+fn6kp6ezevXqen3/sLAwWrduTWBgYL2+rzgzjRo1onXr1pL8FEIAkngRQgivMplMVSfTx+ur+Z+2b9/O+PHjiY6OxmQyERsbyw033EBSUtIxt/ntt98YPHgwwcHBWCwWWrVqxSOPPEJBQUGN69tsNh5//HESEhKwWCw0a9aMp556Crvdfkr7WKlz584ApKamAn+PCTNgwACKioq4//77SUhIwGg0ct9991Vtl5eXx6OPPkrbtm2xWq0EBgZy0UUXMXv27BrfZ+vWrVx33XU0bdoUi8VCeHg4nTp14r777iM9Pb3ausuXL2fUqFE0btwYs9lMVFQUPXr04JFHHqGkpKRqvRP1sVzTmDdH9teckZHBrbfeSlxcHAaDgTfffLNqvdTUVO6++26aNWuGxWIhJCSEyy677Jhj/wghhBBCiPPba6+9hq+vLxs2bOCvv/6qtqymMV6UUnzzzTeMGzeOli1b4uvri7+/Pz169OC9997D7XYf9/1WrVrF0KFDCQoKIiAggMGDB7Ny5cpjrr9jxw4mTJhAfHw8ZrOZyMhIxo0bd9SNZgMGDOCmm24C4Omnn6421sc/z7tPtsxKlXWf2NhYzGYzMTEx9O3bl6effvq4+3okX19fWrZsCfxdhwFPve3999+nd+/eBAQEYLVa6dSpE2+++eYx63Tbtm1j1KhRBAcH4+/vz4UXXsicOXOO+d7Hq38cOHCAa6+9lvDwcHx9fenWrRvffvtttfrVscpavXo1l112GaGhoWiaxsaNG6vWW7VqFVdddVVVHTMuLo5bb72VlJSUY8Y5Z84chg8fTnh4OGazmaZNm3L//feTm5t7zG1ORk31q0rHGhdnwoQJVePELF26lIsuugh/f38CAgIYPnw427dvP+5+jBgxgsjISMxmM/Hx8Vx22WVV45RWjgUEkJycXO27euTnfbwxXk6lDn/kPubl5XHnnXcSHR2N2Wymffv2TJ069QSfoBCiIZDEixBCeNH+/fvJzc3FaDTSvHnzk9pmwYIFdOvWja+//pro6GhGjx5NREQEX3zxBd26dePPP/88aptJkyYxfPhwFi9eTNeuXRk1ahRlZWW89NJL9OzZk8zMzGrr2+12hg4dygsvvEBhYSHDhw+nTZs2vPLKK4wZMwal1Cnva3FxMQBms7nafJvNRv/+/Zk2bRqdOnVixIgRBAcHA7Br1y46derEiy++iM1mY+jQoXTr1o1Vq1Zx+eWX8+qrr1Yra926dXTv3p2vvvoKf39/Ro4cSa9evXA4HLz11lvVTmpnzZrFhRdeyC+//EJ0dDRXXnklnTt3Ji8vj5deeomcnJxT3seaZGdn0717d3799Vd69+7NsGHD8PHxAWDFihV07NiRyZMnYzQaGT58OO3bt2fu3Ln069eP6dOn10oMQgghhBDi3BEYGMiwYcMAWLRo0QnXr6io4Nprr2X+/PlERUVx+eWX06tXL7Zt28bEiRNrbDlTafny5fTr14+DBw8ybNgwWrVqxfz58+nfvz9//PHHUev/9NNPdO7cmc8++4ywsDBGjBhBQkIC3333HT169GDp0qVV615yySX06dMH8Iz7ceONN1ZNR9aNTqVMgMmTJzN8+HAWLVpE8+bNGT16NO3btyc5OfmUu7j6Zx3GZrMxZMgQ7rrrLnbt2kWvXr0YPHgw6enp/Oc//2H06NFHJbLWrl1Lr169+Pnnn4mLi+Oyyy7DZrNx6aWX8v33359SPHv27KFHjx588803BAUFMWLECHx9fbn22mur3dxVk6VLl9K3b18OHDjAkCFD6NevHzqd57Lge++9xwUXXMCMGTNo3Lgxo0aNIjQ0lE8++YRu3bqxY8eOo8p75JFHGDZsGPPnz6dVq1aMGDECg8HAG2+8UWMds77MmjWLiy66iLKyMi699FKio6P57bff6NevHxkZGUet/8ADDzBs2DB+/fVXWrRowejRo2nWrBnLli3j2WefBaB58+ZV4y75+vpW+65ecsklJ4zpdOrwAAUFBfTu3ZtffvmFCy+8kD59+rBz505uueUWPv744zP4lIQQ9UIJIYSoU4D6589tcXGx+vPPP1W3bt0UoO65556jtuvfv78C1P79+6vmlZSUqMjISAWod999t9r6r7/+ugJUXFycstlsVfNXr16tdDqd8vPzUytXrqyaX15erq666ioFqNGjR1cr68UXX1SA6ty5s8rJyamav3v3bhUTE1PjPu3fv18BqnHjxkfti81mU02aNFGA+uijj6qtD6jevXur/Pz8ats4nU6VmJioAPXyyy8rl8tVLY6EhASl1+vVli1bqubfcMMNClCvvvrqUTHs2LFDpaWlVb3u16+fAtQPP/xw1LqrV69WRUVFVa+feuopBahPP/30qHWVUqpx48ZHfR6LFi2q2r8rrrii2jFRSqnCwkIVHR2t9Hq9+vLLL6stW7NmjQoODlZ+fn4qKyurxvcUQgghhBDnnprOs2vy3HPPKUBdc801R23/z/Nxh8OhZs6cqex2e7X5WVlZVfWRJUuWVFtWef4LqMcff1y53e6qZe+9954CVHR0tCorK6uav3//fuXr66v8/PzUvHnzqpX3+++/K6PRqOLj41VFRUXV/E8//VQB6qmnnqpxP0+nzEaNGilN09SaNWuqre92u9WiRYuqzat8/xtvvPGo9962bZvS6/UKULt371ZKKXXXXXcpQF199dWqoKCgat2ioiJ16aWXKkC9//771d6zbdu2ClBPPvlktfInT55c9Rn/8/2PVf+4+OKLFaDuuOMO5XQ6q+bPmTNHGY1GBaj+/fvXWBagXnrppaP2c8WKFUqv16vY2Fi1du3aass+/vhjBaiePXtWm//dd98pQLVv377qs6nc3yeffLLqM6opjmMd6yPVVL+qVFnP+udnduONNypA6XQ6NXPmzKr5TqdTjR49WgHqiSeeqLbNF198oQAVExOjNmzYUG1ZWVmZ+uOPP6rNO1Z9t1Jt1eGPrEuOGzdOlZeXVy2bOXOmAlSjRo2OGYcQomGQxIsQQtSxyhOmmiZ/f3/1zjvvVKvIVKrppG3q1KlViYqadO3aVQHVLuRXJiMeffTRo9bPzMxUVqtV6XQ6lZKSUjW/UaNGClALFy48apv333//pBMvdrtdbd68WQ0fPlwBKjQ0tKqCcmTi5Z+VIqX+PqH8Z1Ko0owZM45KWg0bNkwBauPGjTVuc6Q2bdoooFqF6VjOJPFiNpvVwYMHj9rmjTfeUIB64IEHaiyz8iT89ddfP2F8QgghhBDi3HCyiZcpU6YoQF1yySVHbX+8C8P/NG/ePAWo+++/v9r8yvPfxo0bK4fDcdR2PXv2VID64osvqubde++9ClDvvPNOje91zz33KEDNmDGjat6JEi+nU6bValXBwcHH3Ocj1ZR4KSkpUfPnz1etWrVSgBo0aJBSylN3qkz0HJlwqpSenq5MJpPq0KFD1byFCxcqQDVt2rRaoqRS5ed4MomX3bt3K0AFBQWp4uLio8oaP378cRMviYmJNdY7R44cqQA1a9asmj4iNWLECAWo9evXV83r2LGjAqrdBFfJ7XarTp06Kb1er7Kzs4+K41jTkZ/BmSRexo8ff9Q2a9eurfGzqawTfvvttzW+1z+dTuLldOrwlfsYEBBQ7UbISu3btz/qfYQQDY90NSaEEPXkyObI48aNo3fv3pSWlvLMM88ct3/fI1U2QR4/fnyNy6+77rpq651om4iICIYMGYLb7WbZsmUApKSkkJKSQkREBAMHDjxqm2uuuea4MR7Z563JZKJDhw78+uuvREZG8vPPPx81QGR0dDTdunU7qpzKrguuvPLKGt/nwgsvBKg20GXXrl0BmDhxIosXLz7uuDmV615//fWsWbPmhH1bn64uXboQGxt71PzT2T8hhBBCCCGAqq5/jzUORk02btzIyy+/zMSJE7npppuYMGEC77//PgC7d++ucZvRo0djMBiOml9ZJziy3lEX57enWyfIz8/nlltuOeYYMP/02WefVdVh/Pz8GDRoEElJSXTr1o0vvvgC8Iy74XA4uOSSS7BarUeVERUVRYsWLdiyZQs2mw34+/MZM2YMer3+qG1OVLc6UmV97ZJLLsHPz++o5VdfffVxt7/sssuO+r643W4WLFiAj48PQ4cOrXG7f37GWVlZbNq0iRYtWtC+ffuj1tc0jT59+uByuVi3bt1Ry//ZrVzl1Ldv3+PGf7KGDBly1LzKsXqOHPMzLS2NHTt2EBQUxNixY2vlvWtyOnX4Sl27diU0NPSo+TXtjxCi4Tn6r6cQQog6UdPAiBs2bKB///6MGDGCrVu30qpVq+OWkZaWBnDUgJmVKucfOnTotLepXL9x48Y1rh8YGEhQUBAFBQU1Lvf19WXMmDEA6PV6goKC6NKlC1dccUXV2CZHatSoUY3lVA5IOH78+GOepALVxmJ58MEH+euvv1i8eDEDBw7Ez8+P3r17M3z4cCZMmFAt6fPCCy+wZcsWZs2axaxZswgODqZv376MGDGC6667DovFcsz3PBUn2r/Kfq2PpbbGmhFCCCGEEOeOynPEkJCQE65rt9uZMGEC33zzzTHXqRzL5J+OVSeorENU1h3g7/Pbmm46OtKpnN+eTpmTJ09m1KhRTJ06lalTpxIZGUn//v258sorj5kAadasWdWFf6PRSGRkJBdeeCGDBw+uGgelMpaPPvqIjz766Ljx5OXlERsbe8K61bHqaDWpvMgeHx9f4/Jj1TuOtzwnJ4eSkhIATCbTcbev/IwrP4fdu3efMPFX07EeNWrUKY+1cyri4uKOmufv7w94xjuqlJqaCkDTpk1PKYF5qk6nDl+ppn2BmvdHCNHwSOJFCCG8qHPnztx+++28+uqrvP/++yccEPFETueEsbZPMsPCwmpMMh3LsRIclS1QLrnkEiIjI4/7fpUCAgJYuHAhy5YtY9asWSxevJiFCxcyb948Jk2axJ9//kmLFi0AT4Vl7dq1LFy4kNmzZ7NkyZKqJMzLL7/MihUrary76Hixns7+jRkzBl9f32Nu37p165OKQQghhBBCnD82bNgAQNu2bU+47uuvv84333xDYmIiL7/8Ml26dCE4OBij0ciuXbto1apVVQuaM1F5fls5CPmx9OzZs07L7NChA9u3b2fOnDn89ttvLF68mO+++47vvvuO3r17s3jx4qOSDH379j1hHaYylk6dOtGxY8fjrms2m4+73BtqqpdU7pOfnx+jR48+7vbt2rWrtk1UVNQxW8lUOlbC6UycqKeCykTZ2eJ49fGzbV+EENVJ4kUIIbwsISEBOHbz/iPFxMQAnu68alLTHWExMTHs37+f5OTkGitm/9wmOjr6uO9RVFR0zNYutany7p5bb731hJWAI2maRt++favuWMvKyuK+++7jm2++4fHHH+e7776rWtdgMDBkyJCq5ujJycncfPPNLFy4kJdeeomXX34Z+Pvur8q7wY7kcrnIyMg4rf1LSkrikUceqer2TAghhBBCiBMpLCxk7ty5ADV2DfxPM2fOBOCbb76punhead++fcfd9lh1gsr5lfUT8Jzf7t27l9dee+2kb2A6kdMt02KxMGrUKEaNGgXAtm3buPbaa1mxYgUff/wxd91112nFAp4kzTvvvHNS25yobnWs+ccrq7Klxj8da/7xhIWFYbFY0Ol0fPrppyd1U17l53CqN9ydiiPrX//sVu109rMmlS2H9u3bh1Kqzlq9nE4dXghxbpDUqRBCeFllZaemfnr/qbJ/3WN1E/Dll19WW+9E22RnZzN37tyqfnjBc1dSfHw8WVlZLFmy5Khtvv322xPGWRsGDx4M/F1RPF0RERFVTdm3bt163HUbN27Mww8/fNS6lZWcXbt2HbXNokWLcDgcpxxXbe2fEEIIIYQ4vzzwwAOUlpbSvXt3evfufcL18/PzgZq7LTrypqSazJgxA5fLddT8yjrBkeNynM75beUF9mONzVhb58zt2rVj4sSJwInrBMcycOBA9Ho9s2fPPunz/8q62I8//lhjS41TqVtdcMEFAMydO5fS0tKjlp/oWNbEYDAwYMAAioqKWLBgwUltExcXR+vWrdm+fXuN9aPacLz617x582rlPWJiYmjTpg0FBQV8//33J7WN0Wg87jiiNTmdOrwQ4twgiRchhPCiDRs28OGHHwJw6aWXnnD9sWPHEhkZyf+zd+fxUZWH/se/Z/bJvkASAknY9x2pRioooIhLtaAt1FZrbe21YFvpSm+1VdvSenurt16qtT+Lelu02rrXahUVt6CAsiNb2CEL2Sbb7Of3R2A0ssgyk5NMPu/Xa16SOWfO+U5UkiffPM/z1ltvxV53xO9//3utWrVKvXv3bjdDZN68ebLZbLHjRwSDQd18881qbW3VrFmz2q0VfNNNN0lqG9TV1tbGni8vL9cdd9xxem/2FM2ePVvDhw/XX//6V915551HrV9rmqbefvvt2CaTknT//fdr586dR13rhRdekNR+PeS77777mDNVjnXu5MmTJbV9U3zkN5IkaefOnfr2t799Gu9O+uY3v6m8vDzdddddeuCBB44aiIXDYb300kunPTAEAABAcikvL9cXv/hFPfjgg0pNTdWDDz54Uq87shH3/fff3+75v//973rkkUdO+Npdu3bp9ttvb/fcAw88oLKyMuXn57cbd3zve9+T1+vV97//fT355JNHXSsQCOjvf/+79u3bF3vuyGyALVu2HPP+p3rNlpYW/f73vz9qhn40GtWLL74o6fh7pHya3r1762tf+5p27dqluXPnqrKy8qhztm/frn/84x+xj88//3wNHTpUO3bs0C9+8Yt25/7xj39UWVnZSd9/0KBBmjZtmurq6vSjH/2o3fjh5ZdfPu1fkPvP//xP2Ww2XX/99Xr99dePOt7U1KQ///nPam1tjT136623KhqNavbs2VqzZs1Rr6mpqfnUfXBOZMqUKZKkRYsWtSv+Hn300RPuVXSqfvzjH0uSFixYoHXr1rU75vf7jyp5CgsLVVlZeUorQJzOGB5AkjABAAklyZRkXnfddbHH3LlzzXPPPde02WymJPPyyy83I5FIu9dNmTLFlGTu3Lmz3fOvvPKK6fV6TUnmhAkTzLlz55rjxo0zJZlpaWnmG2+8cVSGX/7yl6Yk0+FwmNOnTzfnzJljFhUVmZLMQYMGmRUVFe3ODwQC5qRJk0xJZnZ2tjl79mzzsssuM71er3nZZZeZxcXF5ie/hOzcudOUZJaUlJzU5+XI+VOmTDnuOVu3bjX79etnSjLz8vLM6dOnm1/60pfMiy66yMzLyzMlmXfffXfs/DFjxpiSzOHDh5uzZ882v/jFL8ae83g85ltvvRU7NzMz07TZbOa4cePML3zhC+bVV19tDh482JRk5uTkmFu3bm2X5dprrzUlmZmZmebll19uTps2zUxNTTWvvvpqs6Sk5KjPx2uvvRb79348ZWVlZo8ePUxJZlFRkTlz5kzzS1/6kjl16lQzKyvLlGQ+9dRTJ/X5BAAAQNf3ybHDV77yFfOKK64whw0bZhqGEfv+feXKlcd9/Se/H1++fLlpt9vbjR/OOussU5L5/e9//5jfk//sZz8zJZnf+MY3TKfTaY4YMcKcO3euOXHiRFOS6XQ6zX/9619H3f/pp582U1JSTEnmwIEDzcsvv9ycM2eOed5555mpqammJPODDz6Ind/a2hr7vn7KlCnm9ddfb95www3m22+/fVrXrKuri+U755xzzDlz5pizZs2KjX369u1rHjp0KHbtJUuWfOr37B/X0tJiXnjhhaYkMzU11Zw0aZI5d+5c83Of+5w5cOBAU5J5xRVXtHvNihUrYjlHjRoV+zwahmF+61vfOub9j3z+lyxZ0u75rVu3mj179oz9dzB37lxzypQpps1mM+fPn29KMi+88MKTutbH3XfffbH/RkaOHGnOmjXL/OIXv2ieffbZptvtNiWZdXV17V7zk5/8xJRk2mw2c/z48ebVV19tXnXVVea4ceNMu91uZmZmHjPHz372s0/9PFdUVMTe5+DBg82rrrrKHDNmjGm3281bbrnlmJ+z6667zpRkvvbaa8e85vHGqjfffLMpybTb7eZnP/tZc+7cueb5559vZmVlmWPGjDnmuf369TOvueYa84YbbjDvuuuu2PF4jeE/bSz5ae8VQOdA8QIACXZk8PTxh81mM3Nycszzzz/ffPDBB48qXUzz+N+0maZpbtiwwZw7d66Zn59vOp1Os1evXuaXv/xl88MPPzxujueff96cNm2amZmZabpcLnPgwIHmD3/4Q7O2tvaY5zc3N5sLFy40i4uLTZfLZfbt29f8yU9+YgYCgWMWDYkoXkzTNOvr681f/OIX5vjx4820tDTT4/GYffv2NWfMmGEuXrzYrK6ujp377LPPml/72tfMESNGmFlZWWZKSoo5ePBg8+tf//pRn5tHHnnE/NKXvmQOGTLETE9PN9PT083hw4ebCxYsMPft23dUjkAgYP74xz82i4qKTJfLZQ4YMMD8xS9+YYbD4dMuXkzTNA8ePGj+8Ic/NEeMGGGmpKSYKSkp5oABA8wrrrjCfOihh8zGxsYTfyIBAACQND45bnA4HGZOTo45cuRI87rrrjOffPJJMxwOn/D1x/p+vKyszJw6daqZnZ1tpqenm+eee675j3/847jfk3/8h/XvvPOOOW3aNDM9Pd1MS0szp02b1q4Y+aTt27eb3/rWt8xBgwaZHo/HTE9PN4cMGWLOmTPHfPzxx81AINDu/JUrV5oXXnihmZmZGSuXPlkSnOw1Q6GQuXjxYnPWrFnmgAEDzJSUFDMrK8scPXq0efvtt5s1NTXtrnuqxYtpmmY4HDYffvhhc+rUqWZOTo7pdDrNwsJCs7S01Lz99tvNLVu2HPWadevWmZdffrmZmZlppqammqWlpebzzz9/3DHDicqS8vJyc+7cuWZubq7p9XrNcePGmf/3f/9nvvXWW6Ykc86cOSd9rY/74IMPzOuuu84sKSkxXS6XmZWVZY4YMcL82te+Zj7//PNmNBo96jXLly83r776arOwsNB0Op1mbm6uOXr0aHP+/Pnm8uXLj5njZIoX0zTNzZs3m5dddpmZnp5upqammpMnTzZfffXV437OTrd4MU3TfOaZZ8wZM2aYOTk5psvlMvv06WNedtll5pNPPtnuvKamJnP+/PlmUVGR6XA4jvp/J15jeIoXIDkYpmmaJzMzBgAAAAAAAEDn8+tf/1oLFy7Ur3/969i+lQAA61C8AAAAAAAAAJ2c3+9XeXm5hg8f3u751157TVdccYVaW1u1fft2lZSUWJQQAHCEw+oAAAAAAAAAAE6svr5eI0aM0JAhQzRo0CB5PB5t27ZNa9eulST99re/pXQBgE6CGS8AAAAAAABAJ9fa2qrbbrtNL7/8svbu3Sufz6esrCxNnDhRN998s2bOnGl1RADAYRQvAAAAAAAAAAAAcWKzOgAAAAAAAAAAAECyoHgBAAAAAAAAAACIE4oXAAAAAAAAAACAOKF4AQAAAAAAAAAAiBOKFwAAAAAAAAAAgDiheAEAAAAAAAAAAIgTihcAAAAAAAAAAIA4oXgBAAAAAAAAAACIE4oXAAAAAAAAAACAOKF4AQAAAAAAAAAAiBOKFwAAAAAAAAAAgDiheAEAAAAAAAAAAIgTihcAAAAAAAAAAIA4oXgBAAAAAAAAAACIE4oXAAAAAAAAAACAOKF4AQAAAAAAAAAAiBOKFwAAAAAAAAAAgDiheAEAAAAAAAAAAIgTihcAAAAAAAAAAIA4oXgBAAAAAAAAAACIE4oXAAAAAAAAAACAOKF4AQAAAAAAAAAAiBOKFwAAAAAAAAAAgDiheAEAAAAAAAAAAIgTihcAAAAAAAAAAIA4oXgBAAAAAAAAAACIE4oXAAAAAAAAAACAOKF4AQAAAAAAAAAAiBOKFwAAAAAAAAAAgDiheAEAAAAAAAAAAIgTihcAAAAAAAAAAIA4oXgBAAAAAAAAAACIE4fVATqDaDSqAwcOKD09XYZhWB0HAAAASCjTNNXY2KjCwkLZbPwuFj4dYyYAAAB0N2cyburUxUskEtHPf/5z/eUvf1FFRYUKCwv11a9+VT/96U9j3+ybpqmf/exn+tOf/qT6+npNmjRJ9913nwYNGnTS9zlw4ICKiooS9TYAAACATmnv3r3q06eP1THQBTBmAgAAQHd1OuOmTl28/OY3v9F9992nhx9+WCNGjNCqVat0/fXXKzMzU9/+9rclSXfddZd+//vf6+GHH1a/fv106623asaMGdq0aZM8Hs9J3Sc9PV1S2ycwIyMjYe8HAAAA6Ax8Pp+Kiopi3wcDn4YxEwAAALqbMxk3deri5Z133tEVV1yhSy+9VJLUt29fPfroo3rvvfcktc12ueeee/TTn/5UV1xxhSTpkUceUX5+vp5++mnNmTPnpO5zZPZMRkYGgwgAAAB0GywZhZPFmAkAAADd1emMmzr1gs7nnnuuli1bpq1bt0qS1q5dq7feekszZ86UJO3cuVMVFRWaPn167DWZmZk6++yzVVZWdtzrBgIB+Xy+dg8AAAAAAAAAAIAz1alnvPz4xz+Wz+fT0KFDZbfbFYlE9Mtf/lLXXHONJKmiokKSlJ+f3+51+fn5sWPHsmjRIt1+++2JCw4AAAAAAAAAALqlTj3j5fHHH9df//pXLV26VO+//74efvhh/fa3v9XDDz98RtdduHChGhoaYo+9e/fGKTEAAAAAAAAAAOjOOnXx8oMf/EA//vGPNWfOHI0aNUpf+cpXdMstt2jRokWSpIKCAklSZWVlu9dVVlbGjh2L2+2OrU3MGsUAAAAAOqtFixZp4sSJSk9PV15enq688kpt2bKl3Tnnn3++DMNo9/iP//iPdufs2bNHl156qVJSUpSXl6cf/OAHCofDHflWAAAAgG6jUy811tLSIputfTdkt9sVjUYlSf369VNBQYGWLVumsWPHSpJ8Pp/effdd3XTTTR0dFwAAAB2otbVVlZWVMk1TpmlaHafTOPKD9/z8fHm9Xqvj4AwtX75c8+bN08SJExUOh/WTn/xEF110kTZt2qTU1NTYed/4xjd0xx13xD5OSUmJ/TkSiejSSy9VQUGB3nnnHR08eFDXXnutnE6nfvWrX3Xo+wEAAEDHYcx0fIkeN3Xq4uXyyy/XL3/5SxUXF2vEiBH64IMP9Lvf/U5f+9rXJLV9cr773e/qF7/4hQYNGqR+/frp1ltvVWFhoa688kprwwMAACBhWltbtX//fqWnpx/1izqQotGo9u/fr969e1O+dHEvvvhiu48feugh5eXlafXq1Zo8eXLs+ZSUlOPO+v/3v/+tTZs26ZVXXlF+fr7Gjh2rO++8Uz/60Y/085//XC6XK6HvAQAAAB2PMdOnS+S4qVN/xu+9915dddVV+ta3vqVhw4bp+9//vr75zW/qzjvvjJ3zwx/+UDfffLNuvPFGTZw4UU1NTXrxxRfl8XgsTA4AAIBEqqysZABxAjabTenp6UctyYuur6GhQZKUk5PT7vm//vWv6tGjh0aOHKmFCxeqpaUldqysrEyjRo1Sfn5+7LkZM2bI5/Np48aNx7xPIBCQz+dr9wAAAEDXwZjp0yVy3NSpZ7ykp6frnnvu0T333HPccwzD0B133NFuWj0AAACSm2maDCA+hc1mYzmBJBONRvXd735XkyZN0siRI2PPf+lLX1JJSYkKCwu1bt06/ehHP9KWLVv05JNPSpIqKiralS6SYh9XVFQc816LFi3S7bffnqB3AgAAgERjzHRyEjVu6tTFCwAAAHAsFAonh89Tcpk3b542bNigt956q93zN954Y+zPo0aNUq9evTRt2jTt2LFDAwYMOK17LVy4UAsWLIh97PP5VFRUdHrBAQAA0OEYC5y8RHyuqLwAAAAAoJObP3++nn/+eb322mvq06fPCc89++yzJUnbt2+XJBUUFBy1fMKRj4+3L4zb7VZGRka7BwAAAICTQ/ECAAAAAJ2UaZqaP3++nnrqKb366qvq16/fp75mzZo1kqRevXpJkkpLS7V+/XpVVVXFznn55ZeVkZGh4cOHJyQ3AAAA0J1RvAAAACDp7N+/X9/5znc0atQo9e7dW+PHj9d//ud/qra29qSvsWfPHuXl5Wn9+vUJTAqc2Lx58/SXv/xFS5cuVXp6uioqKlRRUaHW1lZJ0o4dO3TnnXdq9erV2rVrl5599llde+21mjx5skaPHi1JuuiiizR8+HB95Stf0dq1a/XSSy/ppz/9qebNmye3223l2wMAAICFGDclDsULAAAAksquXbt04YUXqry8XH/84x/17rvv6r/+67/05ptv6pJLLlFdXZ3VEYGTdt9996mhoUHnn3++evXqFXv87W9/kyS5XC698soruuiiizR06FB973vf0+zZs/Xcc8/FrmG32/X888/LbrertLRUX/7yl3XttdfqjjvusOptAQAAwGKMmxKL4gUAAABJ5cc//rFcLpcef/xxnXvuuerTp4+mTZumJ554QhUVFfrVr34lScrLy9MLL7zQ7rUDBw7UY489Jkk666yzJEnTpk1TXl6errzyyth5S5cu1Xnnnac+ffpo5MiR+vGPfxw7tm/fPl177bXq27ev+vfvr69//evtlni66667dMEFF2jp0qUaN26c+vbtqx/+8IeKRCK69957NWLECA0fPlx33313u2wNDQ265ZZbNGzYMPXv31+zZs3Shg0b4vq5Q+djmuYxH1/96lclSUVFRVq+fLlqamrk9/u1bds23XXXXUftyVJSUqIXXnhBLS0tqq6u1m9/+1s5HA4L3hEAAAA6A8ZNiUXxAgAAgKRRV1en1157Tddff728Xm+7Y/n5+Zo9e7aeeeYZmab5qdd66aWXJEl///vftX79ei1ZskSStGTJEv34xz/WV77yFS1fvlz/93//F9t3IxqN6tprr1VdXZ2eeeYZPfHEE9q9e7duvPHGdtfetWuXli1bpscee0x//OMftXTpUn3pS1/SwYMH9cwzz+jWW2/VokWLtHr16thrbrjhBh06dEiPPvqoXnnlFY0aNUpXXXUVv4kGAAAA4JQwbko8fsUJAAAASaO8vFymaWrQoEHHPD5o0CDV19fr0KFDn3qt3NxcSVJ2drby8/Njz99999266aab2g0Kxo0bJ0l64403tHnzZq1atUq9e/eWJP3v//6vzjvvPH3wwQex80zT1P/8z/8oLS1NQ4YM0aRJk7Rjxw49+uijstlsGjhwoO699169/fbbmjBhglasWKEPPvhAmzZtiu3Jcfvtt+tf//qXnnvuOV177bWn8dkCAAAA0B0xbko8ihcAAAAknZP5zazTUV1drYqKCp133nnHPL5t2zb17t07NniQpCFDhigzM1Nbt26NDSCKioqUlpYWO6dnz56y2+2y2WztnquurpYkbdy4Uc3NzRoyZEi7+/n9fu3atStebw8AAABAN8K4KXEoXgAAXVJjTY2iwWCH3c/mcin98G9xAOi8+vXrJ8MwtG3btmMe37Ztm7KystSjRw8ZhnHUQCMcDp/w+p+chn+6Prm3hmEYx3zuSL7m5mbl5+frqaeeOupamZmZcckEdHaJ+NrP13cAANAdMW5KPIoXAECXFA0GFS0r67gblpZ23L0AnLacnBxNmTJFS5Ys0Te/+c123/BXVlbqH//4h66++moZhqHc3FxVVlbGjpeXl6ulpSX2scvlktS2/vARaWlpKi4u1ptvvqnPfvazR91/0KBB2r9/v/bv3x/77a0tW7aooaHhqN+6OhWjR49WVVWVHA6HiouLT/s6QFeWkK/9fH0HAADdEOOmxLN9+ikAAABA1/HrX/9awWBQX/ziF1VWVqb9+/fr1Vdf1Re+8AUVFBToJz/5iSTpvPPO05///GetX79ea9as0Q9+8AM5nc7YdXr06CGv16tXX31VVVVV8vl8kqTvf//7uu+++/SnP/1J5eXlWrdunf7f//t/kqQpU6Zo2LBhuummm7Ru3fklm3QAAQAASURBVDq9//77mj9/vs4991yNHTv2tN/TlClTdNZZZ+m6667Ta6+9pj179ui9997Tr371K61Zs+a0rwsAAACge2LclFgULwAAAEgq/fv317///W+VlJTo61//uj7zmc/oe9/7niZNmqQXXnhB2dnZkto2WSwsLNTll1+u//iP/9C3vvWtdr/p5XA49Mtf/lKPPPKIRo8eHduIcc6cObrzzju1ZMkSnXfeebrmmmtUXl4uqW2a+yOPPKKsrCx97nOf01VXXaWSkhI98MADZ/SeDMPQo48+qtLSUn3nO99RaWmpvvnNb2rv3r3q2bPnGV0bAAAAQPfDuCmxDDNRO+h0IT6fT5mZmWpoaFBGRobVcQAAJ6Hh4MEOXWrMVlqqzF69Oux+AE6svLxc6enpVsfo9BobG9W/f/+jnuf7X5yqzvDfTCK+9vP1HQAAJCvGTCcvEeMmZrwAAAAAAAAAAADECcULAAAAAAAAAABAnFC8AAAAAAAAAAAAxAnFCwAAAAAAAAAAQJxQvAAAAAAAAAAAAMQJxQsAAAAAAAAAAECcULwAAAAAAAAAAADECcULAAAAAAAAAABAnFC8AAAAAAAAAAAAxAnFCwAAAAAAAAAAQJw4rA4AAAAAdAQjHJZCoY67odMp03Hq324/+OCD+sMf/qCqqiqNGDFCv/rVrzR+/PgEBAQAAACA9jp03JTEYyaKFwAAAHQPoZD8byzvsNt5Jk+RTnEQ8fTTT+tnP/uZ/uu//kvjx4/XAw88oC9+8Yt655131LNnzwQlBQAAAIDDOnDclMxjJpYaAwAAADqJ+++/X1/+8pc1d+5cDRkyRP/1X/8lr9erRx991OpoAAAAAGC5rjJmongBAAAAOoFgMKi1a9dq8uTJsedsNpsmT56sVatWWZgMAAAAAKzXlcZMFC8AAABAJ1BbW6tIJHLU9PiePXuqqqrKolQAAAAA0Dl0pTETxQsAAAAAAAAAAECcnNrONQAAHEdjTY2iwWDcrmeaphQMSg6HDLv9qOORcFhG3O4GANbLycmR3W5XdXV1u+erq6uVl5dnUSoAAAAA6By60piJ4gUAEBfRYFDRsrLTf73fr+C+vQrt369oS4vMUEiKRiWbTfasLDmys+Xo0VOOggIZhiFNmBDH9ABgPZfLpTFjxujNN9/UJZdcIkmKRqN68803dcMNN1icDgAAAACs1ZXGTBQvAABLhevr5d+8WeGqSsk0jz4hGlWktlaR2loFduyQLT1dniFD5Rg3jhkvAJLOf/zHf+jmm2/WmDFjNH78eP3xj39US0uL5syZY3U0AAAAALBcVxkzUbwAACxhRqMKbN0q/5YPY4WLPTtbruIS2bOzZXO5ZLhcivr9itTWKlxXq9C+fYo2Nqpl1UrZdu9SytBhcuTmWvxOACB+rrzyStXU1Oiuu+5SVVWVRo4cqccee6zTTZsHAAAAACt0lTETxQsAoMNFGn1qWbVKkYYGSZKzV6E8w4fLnp5+1Ln2tDTZ09LkKi6WOXyEAuU7FNi+XdHqajUdOiTPiJFyDxjQtvwYAJyI0ynP5Ckder/TccMNN3S6afIAAAAAuomOHDcl8ZiJ4gUA0KHC9XVqfvttmaGQDKdT3jFj5ezd+6SKE8PplGfIULn7D1DL7t0KbVgv/4b1itTUKGX8eBmn+QUbQPdgOhySg29/AQAAAOB4GDfFh83qAACA7iNcW6umt9pKF3t2ttKnTZerT59Tnq1iOJ3yfuEL8o4eIxmGQgcPqOmttxQNBhOUHAAAAAAAADg5FC8AgA4RPnRITe+8LYVDsufmKu3cSbJ5PKd9PcMw5O7fX2mTJ8twuRRpqFfz229TvgAAAAAAAMBSFC8AgISLNDaqaUWZFA7L0bOn0krPjduyYI7sHKV99ryPypd3KF8AAAAAAABgHYoXAEBCmaGQmt9dIYXDsufmKvWcUhlxXivUnpHxUflSX6/msndkRiJxvQcAAAAAAABwMiheAAAJY5qmmlevVrSpSYbHo9SJn5FhtyfkXvaMDKVN+qwMp1ORujq1rPlApmkm5F4AAAAAAADA8XT64qVv374yDOOox7x58yRJfr9f8+bNU25urtLS0jR79mxVVlZanBoAIEmBrVsUrjgo2WxKPfvsM9rT5WTYMzOV8pnPSIah0N69CmzfntD7AQAAAAAAAJ/U6YuXlStX6uDBg7HHyy+/LEm6+uqrJUm33HKLnnvuOT3xxBNavny5Dhw4oFmzZlkZGQAgKVxTI//mzZIk75gxcmTndMh9nT3z5B05SpLk37hBocqKDrkvAAAAAAAAIEnxXWQ/AXr27Nnu41//+tcaMGCApkyZooaGBj344INaunSppk6dKklasmSJhg0bphUrVuicc86xIjIAdHtmJKKWD96XJDmLiuUu6duh93f176+Ir0HB3bvVvHKV0i+4QPbU1A7NAAAAAAAAgO6p0894+bhgMKi//OUv+trXvibDMLR69WqFQiFNnz49ds7QoUNVXFyssrKy414nEAjI5/O1ewAA4sf/4Ydt+7q43fKOGtXh9zcMQ94xY2XPzpbCIbWsXiUzGu3wHAAAAAAAAOh+Ov2Ml497+umnVV9fr69+9auSpIqKCrlcLmVlZbU7Lz8/XxUVx19aZtGiRbr99tsTmBQArNdYU6NoMNhh94uEwzIkhevrFdi+TZLkHTNWNperwzJ8nGGzKeWsiWp87VVFamsV2LZVniFDLckCoHOIBsOKBiMddj+byy6b69S+3S4rK9PixYu1du1aVVZW6qGHHtIll1ySoIQAAAAA0F5HjpuSeczUpYqXBx98UDNnzlRhYeEZXWfhwoVasGBB7GOfz6eioqIzjQcAnUo0GFT0BLP/4m7CBJnRqFref18yTTl795brDP++PlP21FSljB6jlvdXy//hh3L0zJMjp2P2mgHQ+USDEW175t0Ou9+gK84+5UFES0uLRowYoblz5+r6669PUDIAAAAAOLaOHDcl85ipyxQvu3fv1iuvvKInn3wy9lxBQYGCwaDq6+vbzXqprKxUQUHBca/ldrvldrsTGRcAuqVA+Q5FfQ0ynE55R422Oo4kyVlUJGdlpUL796ll9Sqln3+BDKfT6lgAcEzTpk3TtGnTrI4BAAAAAJ1SVxkzdZk9XpYsWaK8vDxdeumlsecmTJggp9OpZcuWxZ7bsmWL9uzZo9LSUitiAkC3FW1pUWDLFkmSZ8RI2TweixO1advvZYwMr1fR5ma1bt5kdSQAAAAAAAAksS4x4yUajWrJkiW67rrr5HB8FDkzM1M33HCDFixYoJycHGVkZOjmm29WaWmpzjnnHAsTA0D3E1i+XGYoJFtGhlwlJVbHacfmcill3Hg1v/O2guXlcvXpI0dOrtWxAAAAAAAAkIS6xIyXV155RXv27NHXvva1o47dfffduuyyyzR79mxNnjxZBQUF7ZYjAwAkXqS5WcF3V0iSvCNGyjAMixMdzZmXJ2dRsSSp5YMPZEajFicCAAAAAABAMuoSM14uuugimaZ5zGMej0eLFy/W4sWLOzgVAOAI/6aNUiTStnl9Xp7VcY7LO2qkwpUVijY2KrB1qzxDh1odCQAAAAAAAEmmS8x4AQB0XuHaWoX275cMQ96RnXO2yxE2l1ve0WMkSf6tWxRp9FmcCAAAAAAAAMmmS8x4AQB0Xv7Dm9U7x46VPTPT4jSfztm7txx79ypcWaHWtWuVOumznbosAtC9NDU1aefOnbGP9+zZo/Xr1ys7O1t9+vSxMBkAAAAAWK+rjJkoXgAApy1cW6NwdbVkGPJMnSrtKLc60qcyDEMpY8bI90qVwocOKbR/v1yd6AszgMSxuewadMXZHXq/U7V27Vp9/vOfj3182223SZK++MUv6t57741bNgAAAAA4lo4cNyXzmIniBQBw2vxbtkiSXEXFsmVlW5zm5NlSUuQZPET+DzerdcN6OQsKZDj4kggkO5vLIZurc/+/PmnSJFVVVVkdAwAAAEA31dnHTV1lzMQeLwCA0xKur1e4slKS5B482OI0p849aJBsKaky/X75t3xodRwAAAAAAAAkCYoXAMBpCWxtm+3i7NNH9rQ0i9OcOsNul3fUKElSYPt2RRobLU4EAAAAAACAZEDxAgA4ZRGfT6EDByRJnsFDLE5z+hwFBXLk50umqdb1662OAwAAAAAAgCRA8QIAOGX+rVslSc7CQtkzMixOc/oMw5B31GjJMBSuqlSoqtLqSAAAAAAAAOjiKF4AAKck2tqq0P59kiR3F57tcoQ9LU2ufv0lSa0bNsg0TYsTATgZhmFYHaFL4PMEAAAAdE+MBU5eIj5XFC8AgFMS2FkumabsublyZGVZHScuPEOHyHA6FfX5FNyz2+o4AE6CYRiKRqNWx+jUotEogy0AAACgm2LMdHISNW6ieAEAnDQzElFw1y5JknvAQGvDxJHN5Y7N3vFv3iwzHLY4EYBPk5+fr8bGRgYSxxGNRtXY2Kj8/HyrowAAAACwAGOmT5fIcZMj7lcEACSt4N69MoNB2VJS5OzVy+o4ceXu31/BneWKtrQosH27PEOHWh0JwAl4vV717t1blZWVMk2TZQI/xjAMGYah3r17y+v1Wh0HAAAAgAUYM51YosdNFC8AgJNimqYC5TskSa5+/ZNu+RrDbpdnxAi1rFwp/7atcvXtK5vHY3UsACfg9XrVt29fq2MAAAAAQKfEmMk6LDUGADgp4UOHFPX5JLtdrpISq+MkhLOwt+zZ2VIkIv/mTVbHAQAAAAAAQBdE8QIAOCmBHdslSa7iYtlcLovTJIZhGPKOHCVJCu7erUhDg8WJAAAAAAAA0NVQvAAAPlW0pUXhigpJkrv/AIvTJJYjN1fOwkJJUuvGjRanAQAAAAAAQFdD8QIA+FSB3bskSY6ePWVPT7c2TAfwDB8hGYbCVZUKVVVaHQcAAAAAAABdCMULAOCEzGhUwd27JUmukr7Whukg9rQ0ufv3lyS1btgg0zQtTgQAAAAAAICuguIFAHBC4cpKmX6/DJdLzl69rI7TYdxDhspwOhX1+RTau8fqOAAAAAAAAOgiKF4AACd0ZJkxV1GxDLvd2jAdyOZyyT14sCSpdfNmmeGwxYkAAAAAAADQFVC8AACOK9raqnBFhSTJ1bfE4jQdz92vvwyPR2ZrqwIrVlgdBwAAAAAAAF0AxQsA4LiCe9r2drHn5sqenmFxmo5nOBzyDB0qSWp9dZmira0WJwIAAAAAAEBnR/ECADgm0zQV2NVWvLhL+lobxkKu4hLZ0tJkNjer4V//sjoOAAAAAAAAOjmKFwDAMYWrq2W2tshwOuXs3dvqOJYxbDZ5hg2XJDW8+C9FfA0WJwIAAAAAAEBnRvECADim4N49kiRn7z4y7HaL01jLWVgoe+/eMv1+1T/7nNVxAAAAAAAA0IlRvAAAjmKGwwodOCBJchUVWZzGeoZhKOXimZIk36vLFKqutjgRAKC7WLRokSZOnKj09HTl5eXpyiuv1JYtW9qd4/f7NW/ePOXm5iotLU2zZ89WZWVlu3P27NmjSy+9VCkpKcrLy9MPfvADhcPhjnwrAAAAQLdB8QIAOEro4AEpEpEtNVX2nByr43QKzsGD5Rk+QgqHVf/kk1bHAQB0E8uXL9e8efO0YsUKvfzyywqFQrrooovU3NwcO+eWW27Rc889pyeeeELLly/XgQMHNGvWrNjxSCSiSy+9VMFgUO+8844efvhhPfTQQ7rtttuseEsAAABA0qN4AQAcJbhnr6S22S6GYVicpvPI+cIXJElN77yt4L69FqcBAHQHL774or761a9qxIgRGjNmjB566CHt2bNHq1evliQ1NDTowQcf1O9+9ztNnTpVEyZM0JIlS/TOO+9oxYoVkqR///vf2rRpk/7yl79o7Nixmjlzpu68804tXrxYwWDQyrcHAAAAJCWKFwBAO9HWVoWrqyRJTpYZa8fdv79SJk6UTFN1T/zd6jgAgG6ooaFBkpRzeEbq6tWrFQqFNH369Ng5Q4cOVXFxscrKyiRJZWVlGjVqlPLz82PnzJgxQz6fTxs3bjzmfQKBgHw+X7sHAAAAgJND8QIAaCe4b58kyZ6TI3tqmsVpOp/s2VdJhqGWD96Xf9tWq+MAALqRaDSq7373u5o0aZJGjhwpSaqoqJDL5VJWVla7c/Pz81VRURE75+Oly5HjR44dy6JFi5SZmRl7FPHLGAAAAMBJo3gBALQT3LtHkuQqKrY4SefkKixU2uQpkqTaxx+XaZoWJwIAdBfz5s3Thg0b9NhjjyX8XgsXLlRDQ0PssXcvS2wCAAAAJ4viBQAQE2loUNTnk2w2OXv3tjpOp5X9+c/LcDoV2LJFrevWWh0HANANzJ8/X88//7xee+019enTJ/Z8QUGBgsGg6uvr251fWVmpgoKC2DmVlZVHHT9y7FjcbrcyMjLaPQAAAACcHIoXAEDMkQ3jnfkFsrlcFqfpvBw5OcqYfqEkqe7xx2VGoxYnAgAkK9M0NX/+fD311FN69dVX1a9fv3bHJ0yYIKfTqWXLlsWe27Jli/bs2aPS0lJJUmlpqdavX6+qqqrYOS+//LIyMjI0fPjwjnkjAAAAQDdC8QIAkNT2g53Q/v2SJOfHfpMWx5Z52WUyvF4F9+5V84oVVscBACSpefPm6S9/+YuWLl2q9PR0VVRUqKKiQq2trZKkzMxM3XDDDVqwYIFee+01rV69Wtdff71KS0t1zjnnSJIuuugiDR8+XF/5yle0du1avfTSS/rpT3+qefPmye12W/n2AAAAgKRE8QIAkCRF6uoUbWmR7HY5P7EBL45mT09X1qWXSZLqnvyHzHDY4kQAgGR03333qaGhQeeff7569eoVe/ztb3+LnXP33Xfrsssu0+zZszV58mQVFBToySefjB232+16/vnnZbfbVVpaqi9/+cu69tprdccdd1jxlgAAAICk57A6AACgcwjt3ydJcvbqJcPBl4eTkTHjIvle/rfCVVVqfP212PJjAADEi2man3qOx+PR4sWLtXjx4uOeU1JSohdeeCGe0QAAAAAcBzNeAAAyTVPBI8uMFfa2OE3XYXN7lHXFlZKk+meeUdTvtzYQAAAAAAAALEfxAgBQpLZGpt8vORwsM3aK0s8/X468PEUaGuT790tWxwEAAAAAAIDFKF4AAB/NdunVS4bdbnGarsVwOJQ9+ypJUv0//6lIY6PFiQAAAAAAAGAlihcA6OZM01TocPHi6t3H4jRdU+rZZ8tVXCyztVX1zz9ndRwAAAAAAABYiOIFALq58KFDMgMBGU6nHHl5VsfpkgybTdlXf0GS1PjKKwrX1FicCAAAAAAAAFbp9MXL/v379eUvf1m5ubnyer0aNWqUVq1aFTtumqZuu+029erVS16vV9OnT9e2bdssTAwAXUvowJFlxgpl2Dr9l4VOyzt6tDxDhsgMhVT39FNWxwEAAAAAAIBFOvVP2Orq6jRp0iQ5nU7961//0qZNm/Tf//3fys7Ojp1z11136fe//73uv/9+vfvuu0pNTdWMGTPk9/stTA4AXYNpmgodOCBJcvbubXGars0wDGV/4YuSpKY33ojtmwMAAAAAAIDuxWF1gBP5zW9+o6KiIi1ZsiT2XL9+/WJ/Nk1T99xzj37605/qiiuukCQ98sgjys/P19NPP605c+Z0eGYA6EoitbUyAwHJ4ZSjZ0+r43R5nkGDlDJ+vFref191//i78r/9HasjAQAAAAAAoIN16hkvzz77rM466yxdffXVysvL07hx4/SnP/0pdnznzp2qqKjQ9OnTY89lZmbq7LPPVllZ2XGvGwgE5PP52j0AoDsKHTw826WggGXG4iT7qqslw1DLqlUK7NhhdRwAAAAAAAB0sE79U7by8nLdd999GjRokF566SXddNNN+va3v62HH35YklRRUSFJys/Pb/e6/Pz82LFjWbRokTIzM2OPoqKixL0JAOik2i0zVtjL4jTJw9Wnj9ImTZIk1T7+N5mmaXEiAAAAAAAAdKROXbxEo1GNHz9ev/rVrzRu3DjdeOON+sY3vqH777//jK67cOFCNTQ0xB579+6NU2IA6DoiDQ2KtrRINpucefmf/gKctKxZsyWHQ/7Nm9W6YYPVcQAAAAAAANCBOnXx0qtXLw0fPrzdc8OGDdOePXskSQUFBZKkysrKdudUVlbGjh2L2+1WRkZGuwcAdDehgwclSc78fBmOTr3lV5fj7NFDGdOmSZLqnnhcZjRqcSIAAAAAAAB0lE5dvEyaNElbtmxp99zWrVtVUlIiSerXr58KCgq0bNmy2HGfz6d3331XpaWlHZoVALqa2P4uvQotTpKcsi7/nAyPR8Fdu9S8cqXVcQAAAAAAANBBOnXxcsstt2jFihX61a9+pe3bt2vp0qV64IEHNG/ePEmSYRj67ne/q1/84hd69tlntX79el177bUqLCzUlVdeaW14AOjEIk1Nivp8kmHIcYIZgjh99owMZV48U5JU/4+/y4xELE4EAAAAAACAjtCpi5eJEyfqqaee0qOPPqqRI0fqzjvv1D333KNrrrkmds4Pf/hD3Xzzzbrxxhs1ceJENTU16cUXX5TH47EwOQB0bkdmuzh69JTN5bI4TfLKnDlTtrQ0hSoq1PTWW1bHAQAAAAAAQAfo9Iv6X3bZZbrsssuOe9wwDN1xxx264447OjAVAHRtoQOHlxkrZJmxRLJ5vcq6/HLVPvqo6p56SqmlpRRdAAAAAAAASa5Tz3gBAMRf1O9XpK5OkuRkmbGES582XfbsbEVqa9T42mtWxwEAAAAAAECCUbwAQDcTqqiQJNmzsmXzei1Ok/xsLpeyDu87Vv/sM4r6/dYGAgAAAAAAQEJRvABANxOqOCiJ2S4dKf28yXLk5yva2KiGl160Og4AAAAAAAASiOIFALoRMxJRuLpakuTs1cviNN2H4XAoe9ZsSVLDCy8o0tRkcSIAAAAAAAAkCsULAHQj4epqKRKR4fXKlpFhdZxuJfXss+UqKpLZ2qqGf/7T6jgAAAAAAABIEIoXAOhGPr7MmGEYFqfpXgybTdlXXS1J8r38b4Xr660NBAAAAAAAgISgeAGAbsI0TYUqKiRJzgKWGbOCd+xYuQcOlBkMqv6Zp62OAwAAAAAAgASgeAGAbiLSUC/T75ccDjl69LA6TrdkGIayv/AFSVLj668rVFVlcSIAAAAAAADEG8ULAHQToYOHZ7v0zJNht1ucpvvyDh0m78hRUiSi+qeesjoOAAAAAAAA4oziBQC6ifDh/V0cBQUWJ0H2VVdJkpreeVuhgwctTgMAAAAAAIB4ongBgG4g2tqqSEODJMlJ8WI5d//+8o4dK5mm6p55xuo4AAAAAAAAiCOKFwDoBkKVlZIke3a2bG63xWkgSdmfnyVJai57R0FmvQAAAAAAACQNihcA6AbClYf3d8lntktn4e7XTynjxkumqfpnnrY6DgAAAAAAAOKE4gUAkpwZjSpUXS1JchTkW5wGH5f1+c9LkprLyhQ8cMDiNAAAAAAAAIgHihcASHLhmhopHJbhdsuemWV1HHyMu29fpUyY0Dbr5emnrY4DAAAAAACAOKB4AYAk99EyY/kyDMPiNPikrCsPz3p5d4WC+/dbnAYAAAAAAABniuIFAJJcqLJSkuRgf5dOyV1SopQJZ7HXCwAAAAAAQJKgeAGAJBZpbla0sVEyDDl69rQ6Do4j+8heL+++q+C+fRanAQAAAAAAwJmgeAGAJBauapvtYs/Jkc3lsjgNjsdVXKyUiRPZ6wUAAAAAACAJULwAQBILVbQVL878fIuT4NNkX3GlJKl55XsK7ttrbRgAAAAAAACcNooXAEhSZiik8KFqSZKT/V06PWa9AAAAAAAAJAeKFwBIUqHycikSkeHxyJaRYXUcnITsz39eMgw1v/cee70AAAAAAAB0URQvAJCkQlu3SmpbZswwDIvT4GS4+hQp5ayzJEn1zz9ncRoAAAAAAACcDooXAEhS4cPFiyOP/V26kqzLPydJai4rU6iqyuI0AAAAAAAAOFUOqwMAAOIvXFOjSFWlJMnRs6fFaZJDJBpVw8GDib+R2y3nkCEKbdmi6scfV+rs2Qm/pc3lUnpubsLvAwAAAAAA0B1QvABAEmrdsF6SZM/Ols3lsjhNkgiHFV29ukNu5c7LU2jLFgVWrZQ7O1s2rzexNywtTez1AQAAAAAAuhGWGgOAJNS6vq14YZmxrsmR20P2khIpGlVg+3ar4wAAAAAAAOAUULwAQJIxo1G1btwoSXLm51mcBqfLPWWKJCmwa6eigYDFaQAAAAAAAHCyKF4AIMkEyssVbW6W4fXKnpVtdRycJsfAQbJnZkmRiALl5VbHAQAAAAAAwEmieAGAJNO6fp0kyTFwoAwbf813VYZhyD14kCQpuLNcZjhscSIAAAAAAACcDH4iBwBJ5sj+Ls7Bgy1OgjPl7FUoW0qqzGBQwT17rI4DAAAAAACAk0DxAgBJJNLcrMCOHZIk5+AhFqfBmTJsNrkHDpQkBbZvlxmNWpwIAAAAAAAAn4biBQCSiH/jRsk05SwslD0ry+o4iANXcbEMl0vRlmaFDh6wOg4AAAAAAAA+BcULACSR1g1ty4x5R46yOAnixXA45O7fX5IU2LZNpmlanAgAAAAAAAAnQvECAEmkdeNGSZJ31EiLkyCeXP36S3a7IvX1Ch86ZHUcAAAAAAAAnADFCwAkiVBVlcLV1ZLdLs+QoVbHQRzZ3G65ikskSYHt2yxOAwAAAAAAgBOheAGAJHFktot7wADZPB6L0yDe3AMGSJLClZWKNDZanAYAAAAAAADHQ/ECAEnCf2SZsREjLE6CRLCnpclRUCBJCpTvsDgNAAAAAAAAjofiBQCSgBmNqnXTkeKF/V2SlXvAQElScM8eRYNBi9MAAAAAAADgWCheACAJBPfsUbSpSYbHI3f//lbHQYI4evSQPTNTikQU3LXL6jgAAAAAAAA4BooXAEgCR/Z38QwZKsPhsDgNEsUwjNheL4HyHTKjUYsTAQAAAAAA4JM6dfHy85//XIZhtHsMHTo0dtzv92vevHnKzc1VWlqaZs+ercrKSgsTA4A1/JvY36W7cPbuI8Ptlun3K3Rgv9VxAAAAAAAA8AmduniRpBEjRujgwYOxx1tvvRU7dsstt+i5557TE088oeXLl+vAgQOaNWuWhWkBoOOZoZD8W7ZIkrwjKV6SnWG3y92vbTm5wI4dFqcBAAAAAADAJ3X69WgcDocKCgqOer6hoUEPPvigli5dqqlTp0qSlixZomHDhmnFihU655xzOjoqAFjCv327zGBQ9sxMOXv3sToOOoCrXz/5t25RpK5O4bo6ObKzrY4EAAAAAACAwzr9jJdt27apsLBQ/fv31zXXXKM9e/ZIklavXq1QKKTp06fHzh06dKiKi4tVVlZ2wmsGAgH5fL52DwDoqlo3bpAkeYYPl2EYFqdBR7C53XIW9pYkBXeWW5wGAAAAAAAAH9epi5ezzz5bDz30kF588UXdd9992rlzp8477zw1NjaqoqJCLpdLWVlZ7V6Tn5+vioqKE1530aJFyszMjD2KiooS+C4AILH8G4/s7zLS4iToSO5+/SRJwX37FA0GLU4DAAAAAACAIzr1UmMzZ86M/Xn06NE6++yzVVJSoscff1xer/e0r7tw4UItWLAg9rHP56N8AdAlRVtaFChvm/HgHT7c4jToSPacHNkzMxVpaFBw9255Bg2yOhIAAAAAAADUyWe8fFJWVpYGDx6s7du3q6CgQMFgUPX19e3OqaysPOaeMB/ndruVkZHR7gEAXVHr5s2SacpZUCBHjx5Wx0EHMgxDriOzXnbtlGmaFicCAAAAAACA1MWKl6amJu3YsUO9evXShAkT5HQ6tWzZstjxLVu2aM+ePSotLbUwJQB0nCPLjHmGj7A4Cazg6lMkOZyKNjcrXFVldRwAAAAAAACoky819v3vf1+XX365SkpKdODAAf3sZz+T3W7X3LlzlZmZqRtuuEELFixQTk6OMjIydPPNN6u0tFTnnHOO1dEBoEO0xvZ3oXjpjgyHQ67iYgXLdyiws1zO/HyrIwEAAAAAAHR7nbp42bdvn+bOnauamhr17NlTn/3sZ7VixQr17NlTknT33XfLZrNp9uzZCgQCmjFjhv7whz9YnBoAOka4tlahgwckw5CH/V26LXe/fgqW71C4okKR5mbZU1OtjgQAAAAAANCtderi5bHHHjvhcY/Ho8WLF2vx4sUdlAgAOo/WTZskSa5+/fhhezdmT0+Xo2dPhaurFdy1i9lPAAAAAAAAFutSe7wAAD7i37hBEsuMQXL16y9JCu7eJTMSsTgNAAAAAABA90bxAgBdkGmaH+3vMpzipbtzFhTI8HplBoMKHdhvdRwAAAAAAIBujeIFALqg0IEDitTXy3A65R40yOo4sJhhs8ndt58kKbBzp8VpAADx9sYbb+jyyy9XYWGhDMPQ008/3e74V7/6VRmG0e5x8cUXtzuntrZW11xzjTIyMpSVlaUbbrhBTU1NHfguAAAAgO6D4gUAuqDWw8uMuQcPls3lsjgNOgNXSYlkGIrU1ipcX291HABAHDU3N2vMmDEn3Nvy4osv1sGDB2OPRx99tN3xa665Rhs3btTLL7+s559/Xm+88YZuvPHGREcHAAAAuiWH1QEAAKfOv3GTJMk7YqTFSdBZ2DweOQt7K7R/n4I7y+UYN97qSACAOJk5c6Zmzpx5wnPcbrcKCgqOeWzz5s168cUXtXLlSp111lmSpHvvvVeXXHKJfvvb36qwsDDumQEAAIDujBkvANDFmJGIWj/cLEnyDh9ucRp0Ju7+bcuNBfftUzQYtDgNAKAjvf7668rLy9OQIUN00003qaamJnasrKxMWVlZsdJFkqZPny6bzaZ3333XirgAAABAUmPGCwB0MYFdO2W2tsqWkiJX375Wx0EnYs/JlS0jQ1GfT6G9e+UeMMDqSACADnDxxRdr1qxZ6tevn3bs2KGf/OQnmjlzpsrKymS321VRUaG8vLx2r3E4HMrJyVFFRcUxrxkIBBQIBGIf+3y+hL4HAAAAIJlQvABAF+Pf1DbbxTN0qAwbExfxEcMw5O7bV63r1imwe5dc/fvLMAyrYwEAEmzOnDmxP48aNUqjR4/WgAED9Prrr2vatGmndc1Fixbp9ttvj1dEAAAAoFvhJ3YA0MX4Nx8uXoaxzBiO5uxTJNlsivp8itTVWR0HAGCB/v37q0ePHtq+fbskqaCgQFVVVe3OCYfDqq2tPe6+MAsXLlRDQ0PssXfv3oTnBgAAAJIFxQsAdCFmOCz/1i2SJO+wYRanQWdkc7nk7N1bkhTcvcvaMAAAS+zbt081NTXq1auXJKm0tFT19fVavXp17JxXX31V0WhUZ5999jGv4Xa7lZGR0e4BAAAA4ORQvABAFxLYWS4zGJQtLU3OPn2sjoNOyl3SV5IU3LdPZihkbRgAwBlramrSmjVrtGbNGknSzp07tWbNGu3Zs0dNTU36wQ9+oBUrVmjXrl1atmyZrrjiCg0cOFAzZsyQJA0bNkwXX3yxvvGNb+i9997T22+/rfnz52vOnDkqLCy08J0BAAAAyYniBQC6kI+WGRvG/i44LnturmxpaVIkouD+fVbHAQCcoVWrVmncuHEaN26cJGnBggUaN26cbrvtNtntdq1bt06f+9znNHjwYN1www2aMGGC3nzzTbnd7tg1/vrXv2ro0KGaNm2aLrnkEn32s5/VAw88YNVbAgAAAJKaw+oAAICT17qprXhhmTGciGEYcpX0lX/jBgV37ZK7bz+rIwEAzsD5558v0zSPe/yll1761Gvk5ORo6dKl8YwFAAAA4Dj4dWkA6CLMUEiBbVslSZ6hFC84MVdxsWQYitTXK1xfb3UcAAAAAACAboPiBQC6CP+OHTJDIdkyMmKbpwPHY3O75Ty8bn9w9y5rwwAAAAAAAHQjFC8A0EX4N2+SJHmHDpNhGBanQVfgKukrSQru3SczHLY2DAAAAAAAQDdB8QIAXYR/c9v+Lp7hLDOGk+Po2VO2lBQpHFLowH6r4wAAAAAAAHQLFC8A0AVEg0H5t2+XJHmGDbc4DboKwzBis14Cu3ZZmgUAAAAAAKC7oHgBgC4gsH2bFA7LnpUlZ0GB1XHQhbiKiyXDUKS2VhGfz+o4AAAAAAAASY/iBQC6AP+mw8uMDWN/F5wam9crR36+JCm4e5e1YQAAAAAAALoBihcA6AJaD+/v4mWZMZwGd9++kqTg3r0yIxFrwwAAAAAAACQ5ihcA6OSiAb8C5Tsktc14AU6VIy9fhscjMxhU6OBBq+MAAAAAAAAkNYoXAOjk/Fu3SZGI7Dm5cuTlWR0HXZBhs8lVUiJJCu7aZW0YAAAAAACAJEfxAgCdnH/zJkmSl/1dcAZcxW3FS/hQtSLNTRanAQAAAAAASF6ORFy0f//+WrlypXJzc9s9X19fr/Hjx6u8vDwRtwWATq2xpkbRYPCUX9e0dp0kySwsVMMpLBMVCYdFTYMj7KmpcuTlKVxVpeDu3fIOH2F1JABIaoyJAAAAgO4rIcXLrl27FDnG5r2BQED79+9PxC0BoNOLBoOKlpWd0mvMUEiRfXslSfaGhlN7/YQJp3QvJD9XSd+24mXPHnmGDpNhY+IrACQKY6L4C4fC8vviO2vTEwrH9XoAAACAFOfi5dlnn439+aWXXlJmZmbs40gkomXLlqlv377xvCUAJLVwTY1kmrKlpMiWkmJ1HHRxzl69ZLhcMv1+hSsr5ezVy+pIAJB0GBMljmmaatheEddrui8w43o9AAAAQIpz8XLllVdKkgzD0HXXXdfumNPpVN++ffXf//3f8bwlACS18KFqSZKjR0+LkyAZGDabXMXFCmzfrsDuXRQvAJAAjIkAAAAAxLV4iUajkqR+/fpp5cqV6tGjRzwvDwDdTvjQIUmSoyd/nyI+XCUlCmzfrnBFhaKtrbJ5vVZHAoCkwpgIAAAAQEIWd9+5cycDDAA4Q9FgUJH6eknMeEH82NMzZD+80XNwzx6L0wBA8mJMBAAAAHRfcZ3x8nHLli3TsmXLVFVVFfutryP+/Oc/J+q2AJA0IjU1kiRbaiqzEhBX7pIStdTUKLh7l9yDB1sdBwCSFmMiAAAAoHtKSPFy++2364477tBZZ52lXr16yTCMRNwGAJJabH+Xnsx2QXw5C3tL69Yp2tKi8KFq2a0OBABJiDERAAAA0H0lpHi5//779dBDD+krX/lKIi4PAN1CqPrw/i4sM4Y4MxwOuYqKFNy5U8Fdu+W2OhAAJCHGRAAAAED3lZA9XoLBoM4999xEXBoAuoVoMKCor0GS5GB9eCSAq6SvJCl08ICizc3WhgGAJMSYCAAAAOi+ElK8fP3rX9fSpUsTcWkA6BbCh9pmu9jS02XzeCxOg2TkyMqSPTNTikYVfP99q+MAQNJhTAQAAAB0XwlZaszv9+uBBx7QK6+8otGjR8vpdLY7/rvf/S4RtwWApBGOLTPGbBckjqtvX7WuXavAyvdkXn01+w8AQBwxJgIAAAC6r4QUL+vWrdPYsWMlSRs2bGh3jB/qAMCnCx+qlsT+LkgsZ+8+at2wQZHKSgW2b5dn0CCrIwFA0mBMBAAAAHRfCSleXnvttURcFgC6hWggoGhjoyRmvCCxbC6XnIWFCu3dq8blr1O8AEAcMSYCAAAAuq+E7PECADh9R2a72DIyZHO7LU6DZOfu21eS1LxihaKtrdaGAQAAAAAASAIJmfFywQUXnHD6/KuvvpqI2wJAUvhofxeWGUPi2XNyZevZU9HqajWtKFPGBVOtjgQASYExEQAAANB9JWTGy9ixYzVmzJjYY/jw4QoGg3r//fc1atSo077ur3/9axmGoe9+97ux5/x+v+bNm6fc3FylpaVp9uzZqqysjMO7AABrfLS/C8uMIfEMw5B74mckSY3Ll1ucBgCSR6LGRAAAAAA6v4TMeLn77ruP+fzPf/5zNTU1ndY1V65cqT/+8Y8aPXp0u+dvueUW/fOf/9QTTzyhzMxMzZ8/X7NmzdLbb799WvcBACtF/X5FD/89SfGCjuKeMEGtL72oYHm5Ant2y11cYnUkAOjyEjEmAgAAANA1dOgeL1/+8pf15z//+ZRf19TUpGuuuUZ/+tOflJ2dHXu+oaFBDz74oH73u99p6tSpmjBhgpYsWaJ33nlHK1asiGd0AOgQR2a72DMzZXO5LE6D7sKWlqaU8eMlSU2vM+sFABLpdMdEAAAAALqODi1eysrK5PF4Tvl18+bN06WXXqrp06e3e3716tUKhULtnh86dKiKi4tVVlZ2xnkBoKOxvwuskj7lfElS0ztvKxoMWhsGAJLY6Y6JAAAAAHQdCVlqbNasWe0+Nk1TBw8e1KpVq3Trrbee0rUee+wxvf/++1q5cuVRxyoqKuRyuZSVldXu+fz8fFVUVBz3moFAQIFAIPaxz+c7pUwAkCix/V16sswYOpZ35EjZc3MVqalRy6qVSjt3ktWRAKBLi+eYCAAAAEDXkpDiJTMzs93HNptNQ4YM0R133KGLLrropK+zd+9efec739HLL78c198KW7RokW6//fa4XQ8A4iHa2qpoc7MkyZFL8YKOZdhsSp8yRfVPPqnG5cspXgDgDMVrTAQAAACg60lI8bJkyZK4XGf16tWqqqrS+MPrzktSJBLRG2+8of/93//VSy+9pGAwqPr6+nazXiorK1VQUHDc6y5cuFALFiyIfezz+VRUVBSXzABwusLVh/d3ycqW4XRanAbdUfp5k1X/1FPyb96sUEWFnCf4WgoAOLF4jYkAAAAAdD0JKV6OWL16tTZv3ixJGjFihMaNG3dKr582bZrWr1/f7rnrr79eQ4cO1Y9+9CMVFRXJ6XRq2bJlmj17tiRpy5Yt2rNnj0pLS497XbfbLbfbfYrvBgASi2XGYDVHbq68o0erde1a+V57Vblzv2R1JADo8s50TAQAAACg60lI8VJVVaU5c+bo9ddfj81Eqa+v1wUXXKDHHntMPXue3KbR6enpGjlyZLvnUlNTlZubG3v+hhtu0IIFC5STk6OMjAzdfPPNKi0t1TnnnBPX9wQAiRY+dEiS5Ohxcn9HAomQMXWaWteuVdMbbyh79lWyuVxWRwKALileYyIAAAAAXY8tERe9+eab1djYqI0bN6q2tla1tbXasGGDfD6fvv3tb8f1Xnfffbcuu+wyzZ49W5MnT1ZBQYGefPLJuN4DABIt0tysaEuLZBhy5OZaHQfdmHfMGDl69FC0uVnNK1ZYHQcAuqyOHBMBAAAA6FwSMuPlxRdf1CuvvKJhw4bFnhs+fLgWL158xhtJvv766+0+9ng8Wrx4sRYvXnxG1wUAKx2Z7WLPzpbhSOgqkMAJGTab0qdOU93jf5Nv2StKnzzZ6kgA0CUlckwEAAAAoHNLyIyXaDQq5zE2hnY6nYpGo4m4JQB0abH9XXqwvwuslz55suRwKLhzpwLl5VbHAYAuiTERAAAA0H0lpHiZOnWqvvOd7+jAgQOx5/bv369bbrlF06ZNS8QtAaDLMk2T/V3QqdgzMpT6mbMlSb5XXrY4DQB0TYyJAAAAgO4rIcXL//7v/8rn86lv374aMGCABgwYoH79+snn8+nee+9NxC0BoMuKNjfLbG1t298lJ8fqOIAkKWP6dElS87vvKtLYaHEaAOh6GBMBAAAA3VdCNhIoKirS+++/r1deeUUffvihJGnYsGGafviHOACAjxxZZsyek8P+Lug03AMGyFVSouDu3Wp68w1lXnKp1ZEAoEthTAQAAAB0X3Gd8fLqq69q+PDh8vl8MgxDF154oW6++WbdfPPNmjhxokaMGKE333wznrcEgC7vo2XG2N8FnYdhGLFZL75XX5XJfgQAcFIYEwEAAACIa/Fyzz336Bvf+IYyMjKOOpaZmalvfvOb+t3vfhfPWwJAl2aapsLVbTNe2N8FnU3qOaWypaQoXFWl1vXrrY4DAF0CYyIAAAAAcS1e1q5dq4svvvi4xy+66CKtXr06nrcEgC4t2tQoMxCQbDb2d0GnY3O7lXbeeZIk37JXLE4DAF0DYyIAAAAAcS1eKisr5XQ6j3vc4XCo+vBvdgMApHD14WXGcnJl2O0WpwGOljF1miSpde1ahfgaDgCfijERAAAAgLgWL71799aGDRuOe3zdunXq1atXPG8JAF1a+NDhZcZ6sswYOidnr17yjBwpmaYaX33V6jgA0OkxJgIAAAAQ1+Llkksu0a233iq/33/UsdbWVv3sZz/TZZddFs9bAkCX1W5/l549LE4DHF/GtLZZL41vLFc0GLQ4DQB0boyJAAAAADjiebGf/vSnevLJJzV48GDNnz9fQ4YMkSR9+OGHWrx4sSKRiP7zP/8znrcEgC4r0tAgMxSSHA7Zs7KtjgMcV8rYcbLn5CpSW6OWlSuVNmmS1ZEAoNNiTAQAAAAgrsVLfn6+3nnnHd10001auHChTNOUJBmGoRkzZmjx4sXKz8+P5y0BoMuKLTOWmyvDFtcJiEBcGXa7MqZeoLq//12+l/+t1HPPlWEYVscCgE6JMREAAACAuBYvklRSUqIXXnhBdXV12r59u0zT1KBBg5SdzW9zA8DHxZYZ68H+Luj80s8/X/XPPKNAebkC27fJM2iw1ZEAoNNiTAQAAAB0b3EvXo7Izs7WxIkTE3V5AOjSzGhU4ZoaSZKjJ8ULOj97RqZSzz1XTcuXq+HFFyleAOAkMCYCAAAAuifWtgEAC0Tq66VwWIbTKXtmptVxgJOSOWOGJKll1SqFqqssTgMAAAAAANA5UbwAgAVi+7v06MFeGegyXH2K5B05SjJN+f79stVxAAAAAAAAOiWKFwCwQGx/F5YZQxeTcfHFkqTG5a8r2tJicRoAAAAAAIDOh+IFADqYGYl8tL9LD4oXdC3eUaPk7N1bpt+vxuXLrY4DAAAAAADQ6VC8AEAHi9TVSdGoDLdbtvR0q+MAp8QwDGXOaJv14nv53zIjEYsTAQAAAAAAdC4ULwDQwUIfW2aM/V3QFaWee65s6ekKHzqk5nfftToOAAAAAABAp0LxAgAdLHzocPHSo4fFSYDTY3O5lDljhiSp/p/PyzRNixMBAAAAAAB0HhQvANCBzHBYkdpaSW0zXoCuKn3adBkej0J796p13Vqr4wAAAAAAAHQaFC8A0IHCtTWSacrwemVLSbU6DnDa7KmpSr/gAklSw/PPW5wGAAAAAACg86B4AYAOFD68v4uT/V2QBDJnXCzZ7fJv2SL/tm1WxwEAAAAAAOgUKF4AoAOFqw9Jkhw9WGYMXZ8jJ0dpkyZJkhr+yawXAAAAAAAAieIFADpMtLVVkfo6SezvguSRecmlkmGo5f33Fdy31+o4AAAAAAAAlqN4AYAOEt5ZLkmypaXJ5vVanAaID1dhoVLOOkuSVP/ssxanAQAAAAAAsB7FCwB0kND2HZIkR48eFicB4ivrc1dIkprffVfBAwcsTgMAAAAAAGAtihcA6CDh8sPFC8uMIcm4S0qUMn68ZJqqf/YZq+MAAAAAAABYiuIFADpAxOdT5OBBSZKjB8ULkk/WlZ+XJDWXlSl0+L91AAAAAACA7ojiBQA6QOvmzZIkW0aGbG63xWmA+HP37Svv2LFts16eY68XAAAAAADQfVG8AEAHaN2wQZLkZJkxJLHsw7Nemt55R6HKSovTAAAAAAAAWIPiBQASzDRN+Te2FS+OvDyL0wCJ4+7fX97Ro6VoVPVPP211HAAAAAAAAEtQvABAgoUrKxU+dEiy2+XI7WF1HCChsmdfJUlqeudtBfftszgNACSHN954Q5dffrkKCwtlGIae/kS5bZqmbrvtNvXq1Uter1fTp0/Xtm3b2p1TW1ura665RhkZGcrKytINN9ygpqamDnwXAAAAQPdB8QIACXZkmTFHSYkMh8PiNEBiufv1U8pZZ0mmqbon/2F1HABICs3NzRozZowWL158zON33XWXfv/73+v+++/Xu+++q9TUVM2YMUN+vz92zjXXXKONGzfq5Zdf1vPPP6833nhDN954Y0e9BQAAAKBb4SeAAJBgrYeXGXMOGmxxEqBjZM++Si2rV6tl1SoFysvl7t/f6kgA0KXNnDlTM2fOPOYx0zR1zz336Kc//amuuOIKSdIjjzyi/Px8Pf3005ozZ442b96sF198UStXrtRZZ50lSbr33nt1ySWX6Le//a0KCws77L0AAAAA3QEzXgAggcxIRK2bNkmSnIMGWpwG6Biu3r2Vdu4kSVLd3/9ucRoASG47d+5URUWFpk+fHnsuMzNTZ599tsrKyiRJZWVlysrKipUukjR9+nTZbDa9++67x7xuIBCQz+dr9wAAAABwciheACCBAuXlMltbZUtNlb13H6vjAB0ma9bnJbtdrRvWq3XzZqvjAEDSqqiokCTl5+e3ez4/Pz92rKKiQnl5ee2OOxwO5eTkxM75pEWLFikzMzP2KCoqSkB6AAAAIDlRvABAAh1ZZswzfLgMG3/lovtw9sxT+vnnS5LqHv+bTNO0NhAA4JQsXLhQDQ0NscfevXutjtQmEpbdd0jOmn2ytTZKfH0BAABAJ8RPAQEggVo3tBUv3hEjLU4CdLysK66U4XYrsGOHmt97z+o4AJCUCgoKJEmVlZXtnq+srIwdKygoUFVVVbvj4XBYtbW1sXM+ye12KyMjo93DKqZpyr9li1qfeFye/R/KVX9QjuY6uat3yV2xTfamWgoYAAAAdCoOqwMAQLKKtrYqsGOHJMk7cqRaIhGLE6ErMU2p1dfUIffyhMIJua4jK0uZl1yi+qeeUt0Tjyt1/HgZTmdC7gUA3VW/fv1UUFCgZcuWaezYsZIkn8+nd999VzfddJMkqbS0VPX19Vq9erUmTJggSXr11VcVjUZ19tlnWxX9pEWbm3XwN7+WwmEZkqJOj6LuFNmb62ULBeSq3a9Ia6OCPYolw7A6LgAAANC5i5f77rtP9913n3bt2iVJGjFihG677TbNnDlTkuT3+/W9731Pjz32mAKBgGbMmKE//OEPR61vDABW8H+4WYpE5MjLkzMvTzp40OpI6EJMmWrYfux19+PNfUHifks485JL1PjaawpXVcm37BVlXjwzYfcCgGTV1NSk7du3xz7euXOn1qxZo5ycHBUXF+u73/2ufvGLX2jQoEHq16+fbr31VhUWFurKK6+UJA0bNkwXX3yxvvGNb+j+++9XKBTS/PnzNWfOHBUWFlr0rk6ePS1N6eedJ7/Pp8Z99TJdXskwFMoqkKOpVo76StlbfXI0VCmcxVgQAAAA1uvUS4316dNHv/71r7V69WqtWrVKU6dO1RVXXKGNGzdKkm655RY999xzeuKJJ7R8+XIdOHBAs2bNsjg1ALRhmTFAsrk9yp41W5JU/8wzijQ3W5wIALqeVatWady4cRo3bpwkacGCBRo3bpxuu+02SdIPf/hD3Xzzzbrxxhs1ceJENTU16cUXX5TH44ld469//auGDh2qadOm6ZJLLtFnP/tZPfDAA5a8n9PR4/qvyXPlLJnulI9mtdjsCmf0VCintyTJ6auSraXBwpQAAABAm0494+Xyyy9v9/Evf/lL3XfffVqxYoX69OmjBx98UEuXLtXUqVMlSUuWLNGwYcO0YsUKnXPOOVZEBoCY1g1tJbF3JMULure0yZPV8O+XFNq3T/XPPqPcuV+yOhIAdCnnn3++zBPsYWIYhu644w7dcccdxz0nJydHS5cuTUQ8y0XSshUK+eVsPCRXzV4FHK62WTEAAACARTr1jJePi0Qieuyxx9Tc3KzS0lKtXr1aoVBI06dPj50zdOhQFRcXq6ys7ITXCgQC8vl87R4AEE/h2lqFDh6QDEOe4cOtjgNYyrDZlPPFOZIk37//rVBFxyyhBgDoPsJZBYp40mSYplyH9rRtlgYAAABYpFPPeJGk9evXq7S0VH6/X2lpaXrqqac0fPhwrVmzRi6XS1lZWe3Oz8/PV8Wn/EBn0aJFuv322xOYGkB3d2SZMXe/frKnplqcBrCed/RoeUePVuu6dap86CGlX3ddh93b5nIpPTe3w+4HALCAYSjYo1ieA1tlCwdlb6pVJJ2/+wEAAGCNTl+8DBkyRGvWrFFDQ4P+/ve/67rrrtPy5cvP6JoLFy7UggULYh/7fD4VFRWdaVQAiDlSvHhYZgyQ1LYMTs6XrtH+jRsV2rRRgaefljO/gzZALi3tmPsAAKxlsyuUmSdX3QE5G6oUSc2SbHarUwEAAKAb6vRLjblcLg0cOFATJkzQokWLNGbMGP3P//yPCgoKFAwGVV9f3+78yspKFRQUnPCabrdbGRkZ7R4AEC9mNKrWjW3FC/u7AB9xFRYqY/qFkqTW9etkRqMWJwIAJJtIWo6iDpeMaFgO3yGr4wAAAKCb6vTFyydFo1EFAgFNmDBBTqdTy5Ytix3bsmWL9uzZo1J+sxWAhYJ79yra2CjD7ZZn4CCr4wCdStaVV8pITVW0qUmB8nKr4wAAko1hKJTV9ot4jsZDUiRkcSAAAAB0R516qbGFCxdq5syZKi4uVmNjo5YuXarXX39dL730kjIzM3XDDTdowYIFysnJUUZGhm6++WaVlpbqnHPOsTo6gG4stszY0KEyHJ36r1mgw9lTU+W9+GK1/OMf8n+4Wa4+fWTzeKyOBQBIIlFvhqIur2zBVjkbqhTK6W11JAAAAHQznfonglVVVbr22mt18OBBZWZmavTo0XrppZd04YVty5Tcfffdstlsmj17tgKBgGbMmKE//OEPFqcG0N3FlhkbwTJjwLG4z5qowLJlitTXq3XDeqWeNdHqSACAZGIYCmX1kruqXPamWoUzesp0uKxOBQAAgG6kUxcvDz744AmPezweLV68WIsXL+6gRABwYtFgUIEtWySxvwtwPIbNJu/YsWp6/XWF9u1TqLhEzrw8q2MBAJJI1JOqiDtV9kCz7I01Cmf3sjoSAAAAupEut8cLAHRmga1bZYZCsmdny9mbZS2A43FkZcvVv78kqXXtGpmRiMWJAADJJpzeQ5LkaKqVolGL0wAAAKA7oXgBgDiKLTM2fIQMw7A4DdC5eYcNl+HxKNrcLP/WrVbHAQAkmag3XVGHS4YZlb25zuo4AAAA6EYoXgAgjlo3HC5eWGYM+FSG0ynvqNGSpMC2rYo0NVqcCACQVAxD4fRcSZKjsUYyTYsDAQAAoLugeAGAOAnX1yu4e7ckyTuK4gU4Gc7CQjny8qVoVK1r18rkh2IAgDiKpGbLNGyyhQOy+ZusjgMAAIBuwmF1AABIFq3r10mSXP36yZ6RaXEa4OQZNpsaDh7ssPtFwmEdWYjPMAx5x4xW47JlCldXK7Rvn1xFRR2WBQCQ5Gx2hdNy5Gw8JEfjIQW96VYnAgAAQDdA8QIAcdK6rq14STm8dBLQVZiRsKIr3+u4G06Y0O5De2qaPEOGyr95k1o3rJcjP182l6vj8gAAklokPVeOxkOy+5tkhPwynR6rIwEAACDJsdQYAMSBGYl8tL/LGIoX4FS5Bw2SLT1dZiAg/6ZNVscBACQR0+FS1JshSbI31VmcBgAAAN0BxQsAxEGgvFzR5mbZUlPl7j/A6jhAl2PYbEoZM1aSFNy1U+HaWmsDAQCSSjgtW5LkaK6TzKjFaQAAAJDsKF4AIA6OLDPmHTFSht1ucRqga3L06CFnUbEkqeWD92VGIhYnAgAki6gnXabdISMaka210eo4AAAASHLs8QIAcdCybq0klhkDToZpSq2+pmMf7NtPqqhQtLFRjevXy9F/4BnfzxMKn/E1AABdnGEonJotp69ajqY6BVMyrU4EAACAJEbxAgBnKOJrUHDnTkmSdxTFC6xlmqaiUSkaiSoSafuzIckwJMMwZHe0PQzDsC6jTDVsrzjucVtmgdyH9iiya6da/HaZLu8Z3c99gXlGrwcAJIfI4eLF5m+UwiHJ4bQ6EgAAAJIUxQsAnKHW9RskSa7iEjmysqwNg24hGjXV0hRWS3NYrc1h+VvCCvgjCgajCgUiip7E0vV2hyGXyyaXx67M4L+VFmlWek6KMnqkKC3bK7vDutVIo94MRbwZsrf65KrZp0DBwLbmCACAM2A63Yq4U2QPtMjRXKdwZp7VkQAAAJCkKF4A4Ay1rD+8vwvLjCFBQsGoGuoC8tUF1dgQUnNT6KT2BTZsks3WVliYpmRGTZmHJ39EwqZawxG1tkTUsHxz+9cZUkaPVGUXpCm7IE09ijKV0SOl42bJGIaCOYXyHGyWLeSXw1fND8cAAHERSc2RPdAie3Odwhk9rY4DAACAJEXxAgBnwIxG1bp+vSSWGUP8mKap+vIq7d7eqLpDfjU3Hr1HicNhKCXNKW+qXd4Uh9xeu1xuu1wumxwum+z2Yy8nFo2aCoeiCodNBQMRBf0ROUcOV8umcvlqWtRY06JQIKKG6mY1VDdr1/pKSZI7xamexZnqWZylvJJMpWV7E1vE2J0KZfWSq3afHA1ViqRkyHR6Enc/AEC3EEnJkFlnky0clC3QYnUcAAAAJCmKFwA4A4EdOxRtbJQtJUWegWe+CTi6t4bqZu3eUKl9Hx5Si++tdsdSUh3KzHEpPcultAynPF77aRUfNpvRVtC4264pSXmzPiN737Y/m6ap1sag6iubVHuwUbUHG1Wzz6dAS0j7PjykfR8ekiR50lzK75ut3oNzldc3Sw6n/Qzf/dEiqVmKtNTL7m+Ss2a/gvn9WXIMAHBmbHZFUjLlaK6TvbnW6jQAAABIUhQvAHAGWtaukSR5R42S4eCvVJy6UCCs3RsqtWt9peorm2PP210OZWbZldvTo6xct1zu+Bcbx2IYhlIy3ErJcKtwUK4kKRqJqvZgo6p216t6T4Nq9vvkbwpq94ZK7d5QKbvTpvx+2eo9KFe9BuTI5Y3TZsWGoVBOb9kObpM92CJ7U40i6T3ic20AQLcVSctuK15aGmT6/VbHAQAAQBLip4QAcAZa16yRJKWMHWdtEHQ5vkPN2v7+Qe3eUKlIqG3DFsNmqNfAHJUMz1OPWReo9v+esjhlG5vdph59MtWjT6Y0SYqEIjq036eD22t1YFuNWnwBHdhaowNba2QYUs/iLBUN66neQ3rI5TmzbzVMh0uhrAK56g7IWV+hqDdDpsMVp3cGAOiOoq4URR1u2cIBhTasl4YMtjoSAAAAkgzFCwCcpnBNjYJ79kiGIe9o9nfByTm0r0Efrtinih0fLW+SkZui/uMKVDQsT+6UttkiEXecZo0kgN1pV37fbOX3zdaYaf1VX9XcVrxsq1FDdbOqdterane9Pnh5uwoG5Kh4eJ56DciR3WE7rftF0nIUaWmQPdAsZ80+BfP6seQYAOD0GYYiadmy1VcotHq1NHu21YkAAACQZCheAOA0taxdK0lyDxwoe3q6xWnQ2VXtrtemt3fr0F5f7LnCwbkaOL5QPYszE7tRfQIZhqHs/DRl56dpxHklaqpr1b4th7R3U5UaqltiM2Gcbrt6D+6hkpF5yh5nnupN2pYcq9gme6BZ9qZaRdJzE/OGAADdQjg1S476CkX37VVw3z65+vSxOhIAAACSCMULAJymljUfSJJSxo61Nkg3ZZpSq6+pw+7nMaXTqUZqDzRqwxu7VLW7XlLbcmJ9R+Zr8Nl9lJ7jjWvGM9ESp8+lzS4VD89W8fBs+WpadWBbrQ5sq5O/KaRd69v2skl9dY9y0yLKK0yR23Nye9eYTvfhJccOyll/UFFPmkynOy6ZAQDdkN2pqDdD9lafGt98Q7lzv2R1IgAAACQRihcAOA3RQED+jRslsb+LVUyZathe0WH3c59/arM0muv9Wvf6Tu3fckhSW+HSf2yBhp5TJG965ysMEvW57NXDroLcXPnqgqquaNWhCr+aKxvUXCnt2dGk7Fy38np7ldPTI5vtxNVWJC1XkRZf25JjtfsUzOvPkmMAgNMWTsuWvdWnprfeUs7VX5DhYHgMAACA+OA7SwA4Df7Nm2WGQrLn5MrJ0hT4mFAgrA9X7NW2lfsVjbRNkykZka/hny1WaqbH6niWMAxDmTluZea41W9IVKGhY7Tt0dflqwuqriagupqAHE5DPXulKL/Qq9T04+xvYxgK5faR7eA22QMtsjfWKJLRo2PfDAAgaUQ96TLS0xVtbFTLmjVKPessqyMBAAAgSVC8AMBpaFmzRlLbMmNddW8OxJdpmtq/5ZDWLCuXvykoScorydKYaf2V2TPV4nSdh91uU68pw+TZtl6tLWFVHWhR1YFWBQNRHdzTrIN7mpWW4VReoVc9C7xyOG3tXm86XIeXHDsgZ0OFot50lhwDAJwew5Bz7DgF33xDjcuXU7wAAAAgbiheAOAUmab5UfEybqylWdA5NNW3as3LO1RRXidJSs3yaMzU/uo1MIdi7gS8KQ6VDMxQ8YB01dcEVLm/VbXVfjX5QmryhbRrq0+5+V7lF3qVke2KfS4jaTmKtPpk9zfJVbNXgfwBLDkGADgtzvETFHzzDbWuW6twba0cOTlWRwIAAEASoHgBgFMU3LtHkdoaGS6XPMOGWx0HHeiTG9Cbpqld66q15b0DioZN2WyG+o/P14Bx+bI7bGptbD7te3WnORyGYSi7h0fZPTwKBSOqOtiqqv2tamkOq/pgq6oPtsrjtSu/d4p69vLK7bErlNNbtoPbZAu2yuGrVjgzz+q3AQDogmw9esg9ZIgCW7ao6a03lfW5K6yOBAAAgCRA8QIAp6jl/fclSd4RI2VzuSxOg4708Q3oW1vC2r6xXr76kCQpI9ulAcMylZJqqGlX1RnfK+/8M75El+R02dW7JE2Fxalq8oVUub9F1RV++Vsj2r29Ubu3Nyq7h7uthMnqJXfdfjkaqhTxZsh0dc89dAAAZyZ98hQFtmxR4xtvKPOyy2XYbJ/+IgAAAOAE+I4SAE7RkeIlZfx4i5PACqZp6uDeZq0pq5avPiSb3VD/oRkaOSFHKan8PkO8GIah9EyXBg7P0mem5GngiExlZDklSXWHAvpwbZ1WvB9UY8QrQ6ZcNXsl07Q4NQCgK0r9zEQZHo/CVVXyf/ih1XEAAACQBCheAOAUhGtqFNy1SzIMpYwbZ3UcdLBQMKLNa+pU/qFP0aiUmePSuNIe6lWUyl4uCWS325RfmKJRE3to3Lk91btvqpwum0JBUx/s9CoYMWQL+eXft1/hUNTquACALsbm9iittFSS1PjGcovTAAAAIBlQvADAKTgy28U9aJDsGRkWp0FHqlq3Rx+UHVLdoYAMQ+o3OEMjxufI42WWS0dKSXWo76AMnXVenoaOyVZqtldbKtMkSZnROm1esV+b19aqprJV0QgzYAAAJyd9yvmSpJaVKxVpPv092gAAAACJPV4A4JQ0v79akpQ6YYLFSdBRTNPU3vIm7X3lKcmUvKkODRmVpdR0p9XRujWbzVBunke5eR4FWjPUWLVb6UaLhhc06t3ddtVWBWR3GOqR75Ft0z7lFvVhzX4AwHG5+vWTs6hIob171VxWpozp062OBAAAgC6M4gUATlKkuTm27nfKeIqX7iAYjGjb+nrV1wYlSfm9veo3JFN2O8uKdSZur0PqUyLz4FaluSMa0z+kTfs8CgaiqtzfqsqfP6H373tZA2dM0MAZ45U9oFdCl4arr65VOBBK2PU/yeF2KqtnTofdDwCSkWEYSp88RbV//YsaX39d6dOmsYwoAAAAThvFCwCcpNa1a6VIRM7eveXMz7c6DhKsyRfS5rW1CvqjstkMjbvpQnm2rrc6Fo7H7lAwp7fch/Yo1+HTZz7TQ3UtDlUfbFVtXUTNlfVa+8gyrX1kmTKLe6rv+aPVb+po9RhaFPcfrIUDIe3+1wdxveaJlMxkvykAiIe0c89V3eN/U3DPbgV27JBn4ECrIwEAAKCLongBgJPUcniZMWa7JL9Dla3atqFB0agpT4pdw8Zkq3jyMFVRvHRq0ZRMhVOy5Gipl6t2n7IKBikrx63c665S8x6ftr+4WvtWfKiGPdWxEiatV3ZbCXPBaOWN7CubneXIAKC7sqenK/Xss9X01lvyvfIKxQsAAABOG8ULAJwEMxRSy7p1kqTU8eMtToNEie3nUt4kScrKdWvIqCw5nPwwvqsI5RTKHmiSLRyUs/6gQjm9ZXc51H/aWPWfNlbBZr/2vr1JO19bp73vbFbTwTpteHS5Njy6XO7MVBWVDlVR6TD1OWeIPFlpVr8dAEAHy5h+oZreekvN772ryJfmyp6RaXUkAAAAdEEULwBwElo3bZLp98uenS1Xv35Wx0ECRCJRbdvQoJoqvySpsDhVfQely7CxvnuXYrMrmNNH7updcjTVKuLNaHfYlerRgIvGa8BF4xX2B7Xv3S3a+epa7XlrowINzdr+4mptf3G1ZBjKG1GsonOHq8/ZQ9RjaB/ZHHaL3hQAoKO4+/eXq39/BcvL1bh8ubIu/5zVkQAAANAFUbwAwEloXrVKkpQybrwMG7Mfkk3AH9HmNbVqbgzLMKQBwzKV3zvF6lg4TVFvusJpuXI01chVu09mS8sxz3N4XOo7ZZT6ThmlaDiiyvW7tPedzdr7zmbVbj+gqg27VbVht1Y/8C85U9wqGNNfvSYMUK/xA9VjSOcpYiJmVIf2VXbY/Rxup7J65nTY/QCgo2VMm65D5Q/I9+qryrz0Mr73AwAAwCmjeAGAT2FGImpZ3Va8pH5mosVpEG9NvpA2fVCrUDAqp9OmoWOylZHtsjoWzlAoq0A2f5Ns4YD8zz0rDRt6wvNtDrt6jRugXuMG6DPzLlNTZb32rfhQe9/ZpIPv71DA16K9ZZu1t2yzJMmZ4lb+mH7KG1mivOEl6jm8yLKlyaKhsPYt29hh9yuZOa7D7gUAVkg9+2zVPrpUkZoataxZwzKzAAAAOGUULwDwKfwffqhoU5NsaWnyDDnxD2/RtdTXBLR5bZ2iEVMpaQ4NG5stj5cvjUnBZlMwt4/clTsU3rBeTWVlSistPemXp+VnaegV52joFefIjEZVu/2gDqzeroPvb9fBD3Yo2NiqfWUfal/Zh7HXZPTpoZ7Di5XSO1v+Kp+8OelyuJ2JeHcAgASyuVxKnzJFDf/8pxpfeYXiBQAAAKeMny4BwKdoXvmeJCllwlky7J1jaSGcuUOVrdq6vl6mKWXmuDR0TLYcDpYSSSamO0XhjDw5fVWqefgheYYMkSPn1JfIMmw25Q7urdzBvTVq7hRFI1HV7Tiog2t2qHrjHlVv2qOGPdXy7Tsk375D7V7rTPXIm5Mub05a2z+z0+TOSOk0y5QBAI4tfepUNbzwglo3rFdw/365eve2OhIAAAC6EIoXADgBMxqN7e+SOpFlxpLFwb3NKv/QJ0nKzfNo8Kgs2WyGxamQCOHMPLnTnYru36/q//cnFXz/B2e8Vr/N/lERc4S/oVmHNu9V1aY92r96m2o/3Kdgk1+h5raHb291u2u40jxyZ6TInZEqd2aKPJltf3ale2WzUwACgNWcPfOUMn6CWlavUsM/n1fPG79pdSQAAAB0IRQvAHAC/q1bFPX5ZEtNlXf4cKvj4AyZpqm95U3aW94kSSrok6L+QzNkGJQuScsw5J19tVru/4P8GzaocdkyZVx4Ydxv48lMVZ9zhqrPOUNVfNEY7f7XBwoHQvLXNam1tvHwo0n++iZFgmEFm/wKNvnVeKD2qLzu9LZSxpWeIne6t+2fGV6501Nkd/GtGwB0lKzLLlPL6lVqKitT9qzZcvToYXUkAAAAdBGdevS+aNEiPfnkk/rwww/l9Xp17rnn6je/+Y2GDBkSO8fv9+t73/ueHnvsMQUCAc2YMUN/+MMflJ+fb2FyAMmiZeVKSVLK+PEyHJ36r0x8CtM0Vf6hTxX7WiRJRf3TVNQ/jdKlG7D17KmcL85Rzf89otq/PSbPiBFyFRYm/L4Ot1NpBdlKK8iOPWeapsL+kAINzQr4WuRvaFHA16xAQ4sCvhZFwxEFfK0K+Fol1Rx1TbvbGSthXOmH/5mfrkBji1ypnjOezQMA+Ih7wAB5hg+Xf9MmNfzrBeV+5VqrIwEAAKCL6NQ/RVy+fLnmzZuniRMnKhwO6yc/+Ykuuugibdq0SampqZKkW265Rf/85z/1xBNPKDMzU/Pnz9esWbP09ttvW5weQFfXbpmxs1hmrCszo6a2bqzXoQq/JKn/0Az1Kkq1OBU6Uvq0aWr+4H35N2xQ9R/vV+Gtt1lSphqGIafXJafX1a6QkdpKmVBLoK2UaWwrX4KNLQo0tirY2KqwP6hIIKSW6pBaqn2x1+15a+ORi7ctYXZ4hsyRYqbtzylyuJ0d+VYBIClkXXa5KjZtUuPy5cq64krZMzKsjgQAAIAuoFMXLy+++GK7jx966CHl5eVp9erVmjx5shoaGvTggw9q6dKlmjp1qiRpyZIlGjZsmFasWKFzzjnHitgAkkRgx3ZF6upkeDzyjhxpdRycJjNqasuGetVU+mUY0uCRWepR4LU6FjqYYbOp59e/of0/Wajgzp2qf/ZZZc+aZXWsdgzDkCvVI1eqR+nHOB4Jhg+XMC0f/dPXqkg0opaKeplRU8HDJU3jgaNfb3c55EpPkTc7TZ7sVHmz0+XJTpMrzcPMLwA4Ds+IEXL166fgzp1q+PdLyrnqaqsjAQAAoAvo1MXLJzU0NEiScnJyJEmrV69WKBTS9OnTY+cMHTpUxcXFKisrO27xEggEFAgEYh/7fL5jngege2t+7z1Jh5cZc/Kb4l1RNGpq68dKl6FjspXT02N1LFjEkZOj3Ou+qur7/qD6Z59Rypgxcg8YYHWsk2Z3OZSSm66U3Pa1TOG0Edr/ygaFWgIKNrYq4GtfzAQaWxRuDSoSDKu1xqfWmvbf99icdnmy0tqu3SNTKT0z5M1OY9kyAFBbKZ512eWquvf3anzlFWVdeplsXn6BAwAAACfWZYqXaDSq7373u5o0aZJGHv7N84qKCrlcLmVlZbU7Nz8/XxUVFce91qJFi3T77bcnMi6ALs6MRmPFS+rEz1icBqcjGjW1dX29aqooXfCRtNJStby/Ws3vvtu25Nidv5DN7bY61hn7+GyZTy5hJqlt75jGVgUamtVa1yR/fZNaa5sUaGhWNBRRS3WDWqobJO1ru57dppTcDKX0zFBqz0yl9cqRK5X/fwB0TykTJsjZq5dCBw+q4cV/KfvznWvGJAAAADqfLlO8zJs3Txs2bNBbb711xtdauHChFixYEPvY5/OpqKjojK8LIHn4t2xRpK5OtpQUpYwebXUcnCJKF5xI7nVflX/rVoUqKlT3t78p99rk3yzZ5rDLm50mb3aasvrmx543o1H5G1rkr2tSyyGfWg41qLnap2gorOaqejVX1av68LnujBSl9cqRLc2tlAs9SumRac2bAYAOZthsypo1W9WL/1cNL7yg9AumyvGJX/4DAAAAPq5LFC/z58/X888/rzfeeEN9+vSJPV9QUKBgMKj6+vp2s14qKytVUFBw3Ou53W65k+C3WwEkTvOKMklSyllnscxYFxONmtqyvk61VQEZNmnYmGxl96B0wUfsaWnqccPXVfnb/5LvlZflHTdOKaNGWR3LEobNFitksvu3fe9kmqYCDS1qrm5oK2Iq69VS42tbwszXopot+7TqnmeVWZKnotKhKpk8SgVj+snmsFv8bgAgcVI/8xn5XhygwI4dqn/yH+rxtRusjgQAAIBOrFMv3m2apubPn6+nnnpKr776qvr169fu+IQJE+R0OrVs2bLYc1u2bNGePXtUWlra0XEBJAkzHFbzeyslSWnn8HdJVxKNmtry/9m77/A4qnOP49+Z7epdsmzLvTfcMMam2mBMCQRCCzeUQEISICRwIZDckJDkBhJuIAkhkEZJAQIJNZhqwDTbuGLc5d7UrC6ttG3O/WNt2cIVW/Kq/D7PM8/unpmdeXd0tDtn3jlnlinpIoeWNHo0qdOmAbDzz38i1tCQ4Ig6Dsuy8Gckkz2okN6ThzH0gsmM/q/T6X/GWPJG9iG9Xz5YFrWby1n+9Hu88q2H+PvMu3j37n+w8d1lRJpCh96IiEgnY1kWWZd/GYD6OXMIb9ua4IhEREREpCPr0D1ebrjhBp588klefPFFUlNTW+7bkp6eTiAQID09nWuvvZZbbrmFrKws0tLSuOmmm5g8eTInnHBCgqMXkc6qaflynMYGXOnp+IcPT3Q4cpiMMRQvr6GqYnfSJYvMHPVulAPLuuwympavIFpWSuVfnyDvWzckOqQOy+3zkNEnj4w+efSZOZaU1BRKFq9n8/vL2fLBSkK1jRTPWkjxrIW4fB56TRrCoLMnUjR1OC5Phz7cFBE5bP7Bg0maOJHgggVUPf00Bf99W6JDEhEREZEOqkO3hB9++GEATj311Fbljz32GFdffTUADzzwALZtc9FFFxEKhZgxYwa///3vj3GkItKVNMybB8SHlLDsDt0xUHYxxrB+VS07y+L3dIn3dFHSRQ7O9vnJ/cb1lPz0pzTOm0fD2HGkqMfsIcWMQ0N9A6mD8hk5KJ/hV51G1ept7Pi4mNIFxTSW1bD5veVsfm853tQAvU8aTtFpo8jof+BhYA/E7fOQkZvVDp9CROTIZF1yKcHFi2latozgp59226EqRUREROTgOnTixRhzyGX8fj8PPfQQDz300DGISES6OicUIrh4EQDJGmasUzDGsKm4nrLtTQAMHpWh4cXksPkHDCTjC1+g5oUXqHzicXyDBuHJyUl0WB2aE4mybfaKfcrTC7JIO/d4mqsbqFpfQlXxDsL1TayftYj1sxYRyEole3AhWQMLcfu9h7WtPjPHtnX4IiJHxZOfT9q06dS98TqVjz+G/39/ju3XcYeIiIiItKZLuUVE9tL0yVJMczPunBx8AwcmOhw5DNs2NrBjcyMAA4enk5MfSHBE0tlknH8BvgEDcYJBKv7wCMZxEh1Sp2VZFoGsVHpOHMzIy05hwIxxZPYvwHLZNFXVs23eGj59ag6b319BU1V9osMVETkimRddhCs7m2hFBVVPP53ocERERESkA1LiRURkLw1zdw0zdsIJWJaV4GjkUHZsaWTL+vhN0fsNSSO/Z1KCI5LOyHK5yP3GN7D8fkJr1lD7n5cTHVKXYNkW6b1z6Xf6GEZ9+VR6nziMQHYqJuZQuWYbq577iOJZC6nbXnlYvZxFRDoKOxAg97qvAVD/9myaln+a4IhEREREpKNR4kVEZJdYQwPBT5YCkKJhxjq8Te+sYOOaOgB690+hsCg5wRFJZ+bJzyf7yqsAqH7uOZrXr0twRF2L2+chd3gRQy+YzOBzjyejXz5YUL+jknWvLmTNS/Op2VSmBIyIdBqBESNInTYNgIo//xknGExwRCIiIiLSkXToe7yIiLSn+spKnHC45XXz3I8gGsXVowdNHg9NJSVtur1YNIr60LSNbWt2suTF1QAUFiXTu39KgiOSriBlyhSaln1C47x5VDz8MD1/+jPsgIaua0uWZZFSkElKQSah+ibKP93EzjXbCFbUsuGtpQSy0ygcP5C03jnqdSgiHV7WpZfR9OmnRMvL2fnE4+R+45v67hIRERERQIkXEenGnHAYZ+7cltehOXMA8GTntCpvM+PHt/06u6GKLTV8/PJqMIb8ngH6Dk7VSQ5pE5ZlkX3V1TQXFxMtL6fy738j92tfT3RYXZYvNUDvE4dRMLY/5cs3U7FyC02Vdax/YzHJeen0PH5IokMUETko2+8n92tfp+Sen9M4dy7enr3I+MIXEh2WiIiIiHQAGmpMRASI1dcTq64Gy8Lbq1eiw5EDqK1o5KPnVuLEDD0mDmDAsHQlXaRNuZKTyfvGN8GyaHj/fRrmz090SF2eJ+Cj58TBjLz0ZPJG9cVy2TSW17L2Px8z75fPUbOlPNEhiogckH/IELL/6ysAVP/rWRo/1u+GiIiIiCjxIiICQHjLFgDcefnYfn+Co5H9CdaF+OCZ5URCMbJ7pjHx22cp6SLtwj9kCOnnnQdA5WOPEt25M8ERdQ9uv5dek4Yw8tKTyRnaCywomb+Wf132C+b95kXCjc2JDlFEZL/Spk8nbcYMACr+8AfdJ0xERERElHgRETHGEN4aT7x4i4oSHI3sT7gpwgfPLKepIUxqdoApFw3H5dVomdJ+Mi/4Ir4BA3CCQSr+8AjGcRIdUrfhSfJRNHUEwy6cQv64AZiYw6dPvsuzl9zDutcXYYxJdIgiIvvIuvzLBI47DhOJUHb//YQ2bEh0SCIiIiKSQEq8iEi3F62owDQ3Y3k8eAoKEh2OfEYsEuPD51ZSVxkkkOLlpEtG4g14Eh2WdHGW2x2/SbLfT/OaNdS+8p9Eh9TtBDJTOPEHFzPj/q+R1iuH4M463rnr78y68WHqtqkXkoh0LJZtk/etG/D2749TX0/JvffQtGJFosMSERERkQTR5cIi0u3tHmbM06sXlsuV4Ghkb8YxzH95DZXb6vD4XEy9ZCRJaRoKTo4NT34+2V/5Cjv/9Ceqn3uOwIiR+Pr3T3RY3UrMOCT1yebU+65m3Usfs+bfH7FjYTH/uvwXDL30JAaeNxHb1XbXEbl9HjJys9psfSLSvdh+Pz2+dwdlv/kNzStXUPqr/yPvG98g+fhJiQ5NRERERI4xJV5EpFszkQiRkh0AeHtrmLGOxBjD0rfWs6O4EttlMfnC4aTnJic6LOlmUqaeRNMny2j8eD7lD/+enj/9me4DdQw5kSjbZsevGPcnBxh6wWS2fLCC+h1VrPjbO2x8dRF9ThlFIDOlTbbXZ+bYNlmPiHRfjcEggSuuIPb0U0Q+/ZTyhx7C/+mnBM6cgeU+sua37fWSmp3dxpGKiIiISHtS4kVEurXwtm0Qi2GnpuLKzEx0OLKXtR9vZ/2SEgCOP3cIeUUZiQ1IuiXLssi+5hqa160jWlZG5d//Ru51X0t0WN2WLy2JgTMnUFW8g23zVhPcWcfqF+bSc+Igckf0wbKsRIcokhA//vGPufvuu1uVDRkyhNWrVwPQ3NzMrbfeytNPP00oFGLGjBn8/ve/Jz8/PxHhdmlOOIxZsICk/gNoagwS3rCe5jlziCxdStKECbhS0z7/SidPbvtARURERKRd6R4vItKthTdtAsDbp69O2HUg21ZX8Om7GwEYfXp/eg3NTXBE0p25kpPJ/cb1YFk0vPceDfPmJTqkbs2yLLIH92TYRVNI65WNiTlsm7eG4lkLCTc2Jzo8kYQZMWIEJSUlLdMHH3zQMu+73/0uL7/8Ms8++yxz5sxhx44dXHjhhQmMtuuzLIuk0aNJnjQJy+slVltL/bvv0rx6NSYaTXR4IiIiItLOlHgRkW4rum0bsdoasG28Rb0THY7sUrm9jo9fWQvAgHE9GDShMMERiUBg6DAyzvsCADsfe5RIeXmCIxJvsp8BM8bTe8pwbLeLhpIqVj33ETWb9beR7sntdlNQUNAy5eTkAFBbW8tf/vIX7r//fk4//XTGjx/PY489xkcffcQ8JZLbnadHIamnT8OdlwexGM2rV1E3+y3CW7dijEl0eCIiIiLSTjTUmIh0W6H58wHwFBZie30JjkYAGmqa+Oi5lThRh4IBWYyZNkA9kaQNGHZuKzv6tUw8Edcny4ht3siOBx4g6fob9ztefzQSOeptyeGxLIvcYb1JLcxi49vLaKqsY8ObS8gdXkTPSUOwXbrGSLqP4uJiCgsL8fv9TJ48mXvuuYeioiIWLVpEJBJh+vTpLcsOHTqUoqIi5s6dywknnLDf9YVCIUKhUMvrurq6dv8MXZXt95M8+UQi27fTtGI5pqmJ4KKF2GvX4B80CE+v3li2vq9EREREuhIlXkSkW3KamwktXQKAr2+/BEcjAOHmCB8+u4JQMEJGfjInfGEotq2kixw948CWN5a0ybrs/DGkbd8O27dR8YcnaOo/bp9lCqeNaJNtyeHzpycz5AuT2LFgLeXLN1OxcgvBnbX0m3Yc3mR/osMTaXeTJk3i8ccfZ8iQIZSUlHD33Xdz0kknsXz5ckpLS/F6vWRkZLR6T35+PqWlpQdc5z333LPPfWPkyFmWhbdXLzw9ehBav47mtWtx6usJLl6MtXIlvgED8fXti+XxJDpUEREREWkDuqxGRLqlxnnzIBzGTknBlZ2d6HC6PSfmMPf5VdRXNRFI9TLlohG4va5EhyWyD8eXTOPg+E2OA9tX4ananuCIZDfbZdPrhKEMOHMcLq+bxvJaVr8wl4bS6kSHJtLuZs6cycUXX8zo0aOZMWMGs2bNoqamhmeeeeaI13nnnXdSW1vbMm3durUNI+6+LJcL/+AhpM84C/+IEVh+P6a5meYVy6l9/TWaVizHaWpKdJgiIiIicpTU40VEuqW6d98BwNunr4aySjBjDIteK6ZiSy1ur4spXxpJIFVDv0nHFcnuRXPhEPw71pC8Zi61487G+JISHZbskl6Uy9ALJrP+zSU0Vzew9pUF9J48lJxhvfV9L91GRkYGgwcPZt26dZxxxhmEw2Fqampa9XopKyujoKDggOvw+Xz4fPo9bi+Wx4N/0GB8/QcQ3raN0LpinPp6QsXFhNatw9u7N76Bg3ClpRFzHGpLStp0+7bXS6ouPhIRERFpN0q8iEi3E9q0ifCGDeBy4S0qSnQ43d6qj7aweXk5lgUnnD+MjLzkRIckckjBfmNx15bjbqwmZc1H1I86HSx1JO4ofGlJDPnCJLa8v4LqDaVs/WgVjRW1FE0Zju1Wbzrp+hoaGli/fj1f+cpXGD9+PB6Ph9mzZ3PRRRcBsGbNGrZs2cLkyZMTHKlYLhe+Pn3wFhURLSulubiYWGUl4S1bCG/Zgjs/H19WJlRWtW3yWH97ERERkXalxIuIdDt1b70JgHfkSGxdyZlQm1eUs/KDLQCMPXMgBf0zExyRdEWW26ZgYp82X68ZfCmRvz+Kp7aM3Ng2XJNPAsDtVq+KjsDlcdP3tNEk5aSxfcFaqop30FzdQP/px+FNCSQ6PJE29d///d+cd9559OnThx07dvCjH/0Il8vF5ZdfTnp6Otdeey233HILWVlZpKWlcdNNNzF58mROOOGERIcuu1iWhaegB56CHkSrqgitKyayYwfRsjKijz6KKyMD38BBeHr2VO89ERERkU5AiRcR6VZi9fU0zp0LgG/KVNixI8ERdV8VW2pYOGstAIMn9aL/cT0SHJF0WbEYtf96uV1W7UrLw1u5jejc9wmu34bjTyH32kvbZVvy+VmWRf7ofgSy09j49icEd9ax+sV5DJwxjqSc9ESHJ9Jmtm3bxuWXX05lZSW5ublMnTqVefPmkZubC8ADDzyAbdtcdNFFhEIhZsyYwe9///sERy0H4s7Kwn38JGINDYTWryO8dSuxmhqCCxdgr1mNf+gwPIWFSsCIiIiIdGBKvIhIt1L/7juYSARvv364i4owSrwkRH1lkI+eX4VxDL2G5DDqlL6JDknkiMSSM4k2N+JurMZbuZXmgoGJDkn2I61nNkMvmMyGNxfTVNXA2v8soN/pY0gvyk10aCJt4umnnz7ofL/fz0MPPcRDDz10jCKStuBKSSFpzHH4Lr2M8PPPE96wHqe+nuCCj3FlZOAfMQJPbl6iwxQRERGR/dBg5CLSbZhYjLrZswFIO+NMXSWYIKFgmA/+tYJIc5SswlQmnjNYfwvp1CKZhTgeH1YsinfnVozjJDok2Q9faoDB504itWc2TjTG+jcXU7Fqa6LDEhE5JDs5mcCwYaSecSa+IUPA7SZWU0Pjhx/SOH8escaGRIcoIiIiIp+hxIuIdBvBRYuIVVVhp6WRMmlSosPplmKRGB/+eyWNNc0kZ/iZctFwXB7d6Fo6OdsmnFOEsWxcoUbC77yd6IjkAFxeNwNnjCN7cE8wsPXDlWxfsBZjTKJDExE5JNvrJTBsOGlnnIm3f3+wLCIlJdTPnk3TyhWYWCzRIYqIiIjILkq8iEi3UfvmGwCknXY6lseT4Gi6H2MMC15ZS9WOejx+N1O+NAJfkjfRYYm0CePxE8nqCUDkvXfxVGkYw47Ksm2KThpBj3EDACj7ZCOb3l2GE1NPJRHpHGyfj6TRY0g97XTcuXngOITWrqX+7dlEKioSHZ6IiIiIoMSLiHQToU2bCK1ZAy4XqaefnuhwuqXlczaxbc1OLNvixC8OIy07KdEhibSpWHIG0ZQsAJLXfIQdakxwRHIglmXRY9xA+pw8EiyL6vWlrHt1IeHG5kSHJiJy2FxpaSSfeCJJxx+P5ffjNDbS+OEHBJcsxkQiiQ5PREREpFtT4kVEuoXa114DIHniRNyZmQmOpvvZsLSENfO3ATDh7MHkFmUkNiCRdhLJ7IFdWIgdDZGy6gNwNOxLR5Y9uCcDzxqP7XHRUFrNBz96iqZq3StBRDoPy7LwFvYk9fRpePv2BSC8eTP177xNtHJnYoMTERER6caUeBGRLi+ycyeN8+YCkD7z7ARH0/2UrK9iyRvrABg+tYg+I/ISHJFIO7Js/JdchuP24q7fSdLGpYmOSA4hrWc2g889HrffS+3GMv7zjQdpLK9JdFgiIp+L7fWSdNxYUqaehBVIwgkGaXj//fi9XxwNpSgiIiJyrCnxIiJdXt1rr4Lj4B8+Al+/fokOp1upLm1g3ourMAb6jMxn2IlFiQ5JpN3ZmVk0Dp4MgH/Hajw7tyQ4IjmUpOw0Bp97PIHsVGo2lfPS1x+kbpuuFBeRzsedk0Pa6afj6d0bgNDatTR88D5OU1OCIxMRERHpXtyJDkBEpD3F6uupf/ddADLOPSexwXQzwbpmPvzXcmIRh7w+GYw/ayCWZSU6LJFjIpLdi6ZewwhsW0XK2rnUJqXjJKUnOiw5CH9GMlN+9mXm3v0MDSVVvHjdb5hy16WkFeW22zbdPg8ZuVnttn4R6Z4sj4fk8RMIF/QguGQxsaoq6t95m6SJE/HkquexiIiIyLGgxIuIdGl1b72JCYfx9umDf8TIRIfTbYSbo3zw7AqaGyOk5yYx+YvDsF3qZCndS1Of43DXVeKpKyd15XvUHncWuD2JDksOwp+RTP/Tx1D86kKaqxt4946/MvCs8STntk/SrM/Mse2yXhERAG/PnrjS02n8+GOculoaP/wQ/7Dh+AYPTnRoIiIiIl2ezoKJSJflhJqpe/NNANLPPU+9LY4RJ+Yw94WV1O0M4k/xMuVLI/H4lOeXbsi2aRg2FccbwNVUR8raj8CYREclh+BJ8jH4nIkk5aYTC0UonrWAhtLqRIclInJEXCkppJ5yCt6i+HCvzatW0jhvLk4wmODIRERERLo2JV5EpMuqn/MeTkMD7rw8kidOTHQ43YIxhkWvFVOxuRa318XUL40gKc2X6LBEEsZ4A9QPPxlj2Xgrt+HfuiLRIclhcPu9DJo5gZQemTiRGOteW0R9SVWiwxIROSKWy0XSuPEExo4F2yZaVkbdb39DaOPGRIcmIiIi0mUp8SIiXZITDlM76xUA0s8+G8vW192xsPKDLWxeXo5lwQnnDyMjPyXRIYkkXCw1h8aB8eRvYPMneKq2JzgiORwur5uBM8aT1isbJxpj/euLqd+h5IuIdF6+Pn1JOfkU7KRknOpqSn72UxrmzUt0WCIiIiJdksZ+EZEuqWHOHGJVVbiyskg96eREh9MtbHx7Bas+2gLAyJN7k5bjIVjX0G7bUz8a6UzCBQNprq/CX1pM8uoPqRs7EyeQmuiw5BBst4v+08ey4a2l1G3byfo3FjPgzHGkFmYlOjQRkSPizsgg5dRTadqwnsjq1VT8/iEi27eT8cUv6kIlERERkTakxIuIdDlOOEzNyy8BkPGFL2B5dDPr9la2qZol/1oJQK9+yaR5o9SuK23Xbead2q6rF2lzwQHjcQWr8dTtJGXlHOqOmwEufT91dPHky3EtyZd1ry9i4IxxpBZmJzo0EZEjYnu9pFx1Nc5771H76ixqXnyB8I7t5H7969g+f6LDExEREekSdEmLiHQ59W+/TaymBld2Nqknn5LocLq82opG5j6/ChNzyCnwUzRAV/GL7JftomHYyTjeAO5gLclr54ExiY5KDsPu5Eta7xxMzGHd64up31GZ6LBERI6YZdtkXX45OV/7GrhcBBcsoORnPyNapSEVRURERNqCEi8i0qU4oWZq/vMyAJnnX4DlVse+9tRY28z7zywnGo6RM7wng0ZkYFlWosMS6bCMN0DDsJMwlo1v5xb8W1ckOiQ5TLuHHds7+VK3XckXEencUk86mR53fh87NZXw5s3s+NFdNK9fl+iwRERERDo9nZEUkS6lfvZsnLo63Lm5pEydmuhwurTmxjDv/3M5zQ1h0nKSmHTrudQ8/VKiwxLp8KJpuQQHTCB53cckbf6EWCCNSG5RosOSw2C77D33fNlawfo3FjNwxnjd80XkGNi5Zhs7N22npjKE4xiMAa/Pxutz4fHa2PaRXfhh2Ta1JSVtFmcsGqWzXYLiHzyYwh/fTdmvHyCydSulP/85OddeR8qJJyY6NBEREZFOS4kXEekynGCQmldeASDjAvV2aU+RUJQP/7WChuomktJ8nHTJSLwpGhNc5HCFegzCFazFv2MNKWs/os6fTCxV9wzpDOLJl+NaJ1/OGk9KQWaiQxPp0mbd9Aih2sYDzk9OdZOW4SU1w0tGlg+P9/AGdzCxKM6Cj9sqTBg/vu3WdQx5cnMp/J8fUvHIIwSXLKbikYcJb99O5kUXYdkaKENERETk89IRlIh0GTUvv4xTX4+nRyEpJ05JdDhdVizqMPf5VVSXNuANuDnpkpEEUn2JDkuk0wn2H0c4qxDLiZG64l3s0IFPKErHYrts+k8bQ2rPbJxojHWvL6KxvCbRYYl0aWm9sknpkUlSipuUNA8paR68fpvdI5w21kcp2Rpk7ac1LHivjJVLqigvaSIWdRIbeCdiBwLk3Xwz6eeeC0Dtyy9R/uBvcZqbExyZiIiISOfT4RMv7733Hueddx6FhYVYlsULL7zQar4xhrvuuosePXoQCASYPn06xcXFiQlWRBImsnMndW+8DkDWZZdiuVwJjqhrMo5hwStrKN9cg8tjM/XikaRmJyU6LJHOybJpGDKVaFIGdqSZlBVzIBZJdFRymGy3iwFnjCWlIBMnEmPda4sIVtYlOiyRLuuCR7/LGb+5mrGTcxkzKYcxk3KYeFI+k6cVMOGkPIaMzqBH7ySSU9wYA9U7QxQvr2HB++VsKq4j1BxL9EfoFCzbJuuSS8m5/npwuwkuWkTJT39CZOfORIcmIiIi0ql0+MRLY2MjY8aM4aGHHtrv/F/+8pf89re/5ZFHHmH+/PkkJyczY8YMmnVVjki3Uv3sM5hIBP+wYQSOG5vocLokYwxLZ69n2+qdWLbFiV8cTlaP1ESHJdK5uT00jDgFx+PH3VhNyuoPwejq7M7CdrsYMGMcyXkZxMJRimctpKmqPtFhiXQrlmXh87vIyQ/Qf2g6x03OZeyJufTun4I/4CIWNWzf1MiiD8opXlFDc1M00SF3CqlTptLjzu/jSk8nvHUrO350F81r1iQ6LBEREZFOo8MnXmbOnMnPfvYzvvjFL+4zzxjDr3/9a/7nf/6H888/n9GjR/PXv/6VHTt27NMzRkS6rtCGDTTOnQtA1uVfxrI62y1NO4dVH21h/eL4zWePP3cI+f10PwORtuD4U6gffgrGsvFWbSewcWmiQ5LPweVxM/CscSTlphELRSh+dSHNNRo2TiSRkpLdFA1IZdyUXIYdl0lahhdjoHxHE4s/qmDT2jqiESW5D8U/aBCFP74bb9++OPX1lNx7D/XvvpvosEREREQ6hU595+mNGzdSWlrK9OnTW8rS09OZNGkSc+fO5bLLLtvv+0KhEKFQqOV1XZ2GhRDprIwxVD31JAApU6bg69s3sQF1UWsXbGflB1sAOG76AHoPy01wRCJdSywth8Yhk0lZ/SGB7atwAqmEegxKdFhymFxeDwPPmkDxrAU0VdZTPGsBg889Hl+ahmIUSSTLssjK9ZOV66euJszmdfXUVYfZvrmRsh1B+gxMJdcxiQ4zIWKOQ21JyWEtm3ztdfDsM4SXLWPno3+hfs1qks45t9XQvrbXS2p2dnuFKyIiItLpdOrES2lpKQD5+fmtyvPz81vm7c8999zD3Xff3a6xicix0Th/Hs1r1mB5PGR+6eJEh9MlrV+8g2VvbwBg+NQiBo4vTHBEIl1TOLcvwaZ6kjYvI2ndAhxfEpGsnokOSw6T27cn+dJc3UDxrAUMOud4fKmBRIcmIkBahpeR47Oo3hliU3E9TY1R1q+qo/pHzzJ+ag/Sc5MTHeKxFY3iLFp02IsH+vXHDkdoXr2K0IcfElu7lqSJx2N7vfEFJk9up0BFREREOqcOP9RYe7jzzjupra1tmbZu3ZrokETkCDjBIFX/+AcA6eedh1tX2bW5jctKWfLmegCGnNCLYScWJTgika6tufdIQvn9sTCkrHofV51uZtyZeAJeBs2cgC89iXBDM8WzFhBu1H0HRTqK3T1gxp6QQ78hadgui6q1Jbz12GKWv7cJJ6bhxw7Esiz8Q4eSdPzx4HIRraigYc67RGtqEh2aiIiISIfUqRMvBQUFAJSVlbUqLysra5m3Pz6fj7S0tFaTiHQ+1c/9m1htLe78AtLPPifR4XQ5W1aWs+jVYgAGji9k5Ml9df8ckfZmWTQOnEQ4sxDLiZG64l3soIZE7Uw8ST4GnT0Rb2qAcH0TxbMWEAmGDv1GETlmLNuisCiZcSfmUnj8AIyB1XO38vbfPqFuZzDR4XVo3sKepJ58ClYgCaexkYb35hDatCnRYYmIiIh0OJ068dKvXz8KCgqYPXt2S1ldXR3z589nsro6i3RpoU2bqHvzTQByrrpyzzAH0ia2rdnJgv+sAaD/cQWMmdZfSReRY8W2aRg2lWhKNnY0ROryt7FCOhHYmXiT/fHkS4qfUG2Q4lcXEm0OJzosEfkMn9/FpFvP5YTzh+L1u6kpa+CtJ5ZQvHA7xnTPe78cDld6OqmnnYo7Px8ch6alS2h49hmckJLMIiIiIrt1+MRLQ0MDS5cuZenSpQBs3LiRpUuXsmXLFizL4jvf+Q4/+9nPeOmll/j000+58sorKSws5IILLkho3CLSfozjUPn4Y2AMyZMmERg5KtEhdSk71lUy/6XVGAN9RuYz9syBSrqIHGsuD/UjTiUWSMUVaiTt09lYYQ1Z1Zn4UgMMOnsiniRf/J4vry4kGookOiwR2Y9eQ3M546vjyO+XiRN1+GT2Bt7/53KCdUokHIjt9ZF8wmT8w4YDEF64kJKf3E3kIPdaFREREelOOnziZeHChYwdO5axY8cCcMsttzB27FjuuusuAG6//XZuuukmvv71rzNx4kQaGhp47bXX8Pv9iQxbRNpR3VtvEdqwAcvvJ+vLVyQ6nC6ldEMV815YhXEMvYflMmHmICVdRBLEeP3UjzydmDcJV1MdqSvewYqq10Rn4ktLYtDZE3EHvDRV1rPutYXEwtFEhyUi+xFI9TH14hGMPWMALrdN+eYa3nx0MVtXlic6tA7Lsiz8Q4aQPGUqVkoK4a1b2f6ju2hcsCDRoYmIiIgkXIdPvJx66qkYY/aZHn/8cSB+sPeTn/yE0tJSmpubeeuttxg8eHBigxaRdhMpLaX6mX8CkHXJJbgzMxMcUdexfe1OPvz3SpyYoXBwNhPPGYxlK+kikkiOP4X6UafjeHy4G6pIWfEuxHTivjPxZyQzaOYEXD4PwYo61r22iFhEf0ORjsiyLAaMK2T61WPJ7JFCJBRl/strWPDKGiIh/d8eiCc3l/Rv34xv8GBMUxPlD/6WnU88rqHHREREpFvr8IkXEZHdjONQ8ac/YsJh/MOHk3r6tESH1GVsWVne0tOl15AcTvjCUGyXfiJEOgInKZ36kafjuDx46ipIVfKl0wlkpcaTL143jeU1rH9jMU40luiwROQAUrOTOO2KMQw7sQgs2Ly8nNlPLKGqpD7RoXVYdno6Pe64k/SZZwNQP3s2O+66i9CmTYkNTERERCRBdFZNRDqN2ldfJVRcjOX3k3Pd17BsfYW1hY3LSvn45TUYA0Uj8jheSReRDieWkkXDyNMwLjee2jIlXzqhpJw0Bp41HtvjoqGkmvVvLtGwYyIdmO2yGXFSH065fDSBVB8N1c288/dPWDN/K8aYRIfXIVluN1mXX07+bbfjysggUrKDHXf/mOoXX8BE9X0nIiIi3YvOrIlIpxDevp2a5/4NQPaXr8CTk5PgiLqGdYt2sOjVYgD6H1fAxHMGY2t4MZEOKZqWS/2IvZIvK+co+dLJJOdlMHDGeGy3i/rtlXz8f89r2DGRDi63dzpnfHUsPYfkYBzDp+9u4v1/LqepXsNoHUjSqFH0/N+fkzR+AsRi1Pz73+y4+8eEtmxOdGgiIiIix4w70QGIiByKEwpR/vuHMJEIgdGjSTnllESH1CkYA011DQecv2FJGavn7QCg7+hchpxQQFN94xFvz3fE7xTpWiy3TcHEPu209j44wwqIPvc0nppSsrfMxRUb1k7bkvaQUpDJgDPHsu71xZQuWk/xKwsYesHkRIclIgfh9Xs44fyhbFpWxtLZ6ynfXMObjy1mwtmDKRyYnejwOiRXaip53/42jXM/ovJvfyO8eTM7fvQjMs45l/QvfAHb6010iCIiIiLtSokXEenwKv/+dyJbt2KnpcWHGLPUI+NwGAy160r3LTeGrRsa2LohnpTp1S+FwjwXdevLjmp7eace1dtFuo5YjNp/vdyum7Aze+Ot2ATbttD06J+wek/GeJT+7CxSC7MZcMZY8LoYcv4JiQ5HRA6DZVn0G1NAdq80Pn5pNTXljXz075UMGNeD0af1x+XWYBKfZVkWKSdOwT98BJVPPEFw0UJqXnqRhnlzyf7KlSSNGZPoEEVERETajY4ORaRDa/jwQxrmvAuWRd43v4U7IyPRIXVqjmNYt7K2JelSNDCVPgNTlcwS6WQcfzKhvH4Y24WzfTupy97ECjclOiz5HNJ65TDqqtP1/SvSyaRlJ3HaV45j0ISeAKxfXMLbf11CbcWR9xru6twZGeR9+9vk3fRtXFlZRMvLKfvV/1H2m98QKTu6C39EREREOiolXkSkwwrv2MHOxx8DIOP8CwiMGJHgiDq3aNRh1dJqynfET872H5pG734pCY5KRI6U8SURyuuPlZqKO1hL2tLXsYO1iQ5LRKTLc7ltxkzrz5QvjcCX5KG2IsjsJ5awZv42jOMkOrwOybIskidOpNc995I2cybYNsFFC9l25x1UPfUUsUYlrkRERKRr0VBjItIhOcEg5b/9DSYUwj9sGBkXXJDokDq1UHOMVUuraKyPYtsWQ0ZnkJXrT3RYInKUjNdP4NKvUf+HP+JqbiDtkzdoGH4y0fT8RIcmItLl9RiQxRlfHcfCWWsp3VDNp+9uZEfJs0w4uSepWYFEh3dQh7oX4Oflj0QPazk7ECD78i+TetJJVD35FE3LP6X21VnUv/8e6WefQ9r06dh+HaOKiIhI56fEi4h0KPWVlcSammh4/HEiO3ZgpaXhv+hL1LXDMASxaJTuMMBLsCHCyiXVhJpjeLw2w47LJDVdNzQV6SrsrCzqxswgdeUc3PU7Sf30bRoHTyac1zfRoYmIdHn+ZC9TvjSCTZ+W8cnsDVSuKeHN9WUMn1LE4Ik9sV0dc5CJA90L8Ej5TjOfa3lvr97k33YbTcuWUfXUk0R27KD6mX9S++os0s8+O56A8SkBIyIiIp2XEi8i0qE44TDBv/yZyPr14HKRPG4cLF9OuwzaMH58e6y1Q6mpCrH6k2piUYM/ycWIsVn4k/TVL9LVGK+fulHTSFnzEd7KraSs+ZCmxmqa+o4Bq2Oe9BMR6Sosy6Lf6ALy+mSw6MMyyj/dwvI5m9i6spxxZw0iuzAt0SF2SJZlkTRmDIGRI2mYO5eaF18gWlZG9T//Se2sWWSccw6p06YpASMiIiKdks6+iUiH0jx/HqH16wFIGjced0ZmgiPqvDbNXs7KxVUYA6kZHoaNycLj1QlYkS7L5aZh2FQCm5YS2LaKwLaVuBqraRwyBePxJTo6EZEuLzndz9T/+SJb//oqn7y9gdqKIO/87RP6jspn5Ml98aeox/H+WC4XqVOnkjJ5Mg0ffRRPwJSXU/X001S//B88U07Ce/xkrKSko96W2+chIzerDaIWEREROTglXkSkw2hcvJjgCy8A4B82DG/PnokNqJOKRR2WvrWejZ/Eh4/IzvczeEQGtqs7DKwm0s1ZNk39xhFLziK5eB7e6hJcS1+jYehUYqnZiY5ORKTLsyyLPiPzKeifxbJ3NrB5eTmbPi1j25qdDJ3cm0HjC3F5XIkOs0OyXC5STzqpJQFT+e9/Y6qrCL/xKqG33iCU15/mnkNxko68B1GfmWPbMGIRERGRA1PiRUQ6hKaVK6l46HfgOHh6F+EbPCTRIXVKwboQ815YRVVJPVhQNCCVXn2TsSwlXUS6k3BeX2JJaaSsfA9XcwNpn7xBU9/jaO45FPR9ICLS7nxJHiaeM4T+x/Vg6ewNVJfUs3zOJtYt2sGwE3vTb3RBh73/y5GwbJvakpK2W+GgQaTccivBD+fhLPoYKsrwlxbjLy3G6jcA17jjsYr6fu5jXItY28UoIiIichBKvIhIwoU2bKDs1w9gIhE8I0aQNGCgEgVHoGJrLfNeWEUoGMHjdzPxu+dgLfw40WGJSILEUrKoGzuT5OL5eCu3krRxMe6aEhoHnYDxHf1wLSIicmjZPdM4/Stj2LKinBXvbyZYF2LJG+tZM28bQyb1os/IfNzezt8DxsSiOAva+Lhz3DgaVm4Cfy52XhLu+p3YTfWwcT3RjetxPD6iKdnEkjPAPrx96PvaZW0bo4iIiMgBdJ1LbESkUwpt2Uzp/92HaW7GP3w4KZd/GcvWV9PnYYyheOF23nv6U0LBCOm5yUy76jjyj+ub6NBEJMGMx0fDsJNoHHg8xnbhrS4hfdF/8JauA2MSHZ6ISLewe/ixGV+bwHFnDMCf4o0nYN5cz6yHP2b5e5sI1oUSHWbHZVk4/hTCuX0J9RhMNCUbY9nYkRDe6h34t6/GU7UdK9yU6EhFREREWqjHi4gkTGj9ekrv+yVOMIivf3/yb/4O9TU16FTg4Qs3R1nyxjq2rqoAoPewXMafNQi316WBFEQkzrII9RhENC2X5LXzcDdUklI8n0j5JhoHTcIJpCY6QhGRbsHlthk4rpB+o/LZuKyM4oXbaaxpZvXcrayet5X8vpn0HZVP4aBsXG5diLQ/xuMjklVIJCMfV2M17voq7GgId0MV7oYqYr4kYilZxJLSwdI+FBERkcRR4kVEEqJ5zRpKf/V/mOZmfIMGUXDrf2MHAlBTk+jQOo2KLTUseGUtwboQlgWjTuvPoAmFGqZNRPYrlpxB3XFn4t++hsDmT/DUlpG+6D80Fw6huWgkxu1NdIgiIt2Cy+Ni4PhCBoztwY51lRQv3M7OrXWUbaymbGM1bq+Lgv6ZFA7KpqB/Jp5EB9wR2S5iqTnEUrKxQ424GqpwBWtxhYK4QkFMdQnR5Exiqdn6fRMREZGEUOJFRI654LJllP/2N5hwGP+wYeR/9xZsvz/RYXUaTsxhxQebWTNvGwDJGX6OP3cI2T3TEhyZiHR4lk1zr2GEs3uRtH4B3uoSAttX4SvfQFPRaEIFAw57nHwRETk6lm3Rc3AOPQfn0FDdxKZPy9i8vJym+hDbVu9k2+qdYEHGSxvIyXKT0zudzPwUktJ9x/xCG2MMsaghEnGIRhyiERN/jMZfl/3tfZztJcQiDrFobNdjfDLGtI7XAguwXTZur6v15HHh8bnwJ3vx+rfR1BjF47NxH6gH0K5hyBx/CpFYBHdDNa6GKuxYBE/9Ttz1O3H8KURTstXDU0RERI4pJV5E5Jiqe/ttKv/6BDgOgdGjyfv2zdheXYV2uOoqg3z88hpqyhoA6DsqnzHT+uPx6etcRA6fE0ilYcRpeKp3kLRhMa6mOpLXL8C/dQXNvUcoASMicoylZAYYeXJfRpzUh6qSekrWVbGjuJK6nUFqNpZTsxHWLdoBgNvrIi0niZTMAElpPpLT/fhTvHj9brx+N26fG5fLwnbZWLaFE3NwHIMTM/HnMYfIlp3U1YR3JVHiiZTIXomUlsRKS9khBgNev7jtd8pLq1ue2i4Lr9fGF3DhD7gJJLnwJ7nxJ8Vfu1wWuDxE0/OIpuViN9XjbqjE1dzQMjkuD6F33yF2wQW40tPbPl4RERGRvehMnYgcE8ZxqH7mn9TOmgVAytSp5Hz1Wiy3voYOhzGGDUtLWfb2BmJRB6/fzfizBtFzSE6iQxORBLPcNgUT+xzhu/tiYpNwPl1C7OO5uBrqSV6/gOTSlbhGj8MePRYrOaXVO9xuDWcoItJeLMsiuzCN7MI0Rp7cl6b6EBWebHa+t5TK7XXU7QwSDceo2lFP1Y76o9jSoiN6l+2y8Hhs3B4LtyfeE8XtsUkdN5TQirXYtoXtsrBtK578sYHdvV1MPHmzO4XjOPGe3LGoIRYzux4dolFDJOQQCyTRVF67K2FkaG6K0dwUo5bwPnF5fTbJKR6SUt3xx5QAgZy+uGJhXA1VuBursWMRwrPfYsu775A8YQKp06bhHzJUw/SKiIhIu9AZTxFpd7HGRnb+8Y8El8SvhMu48CIyzj9fjZzDVLczyOI3itm5tQ6AvD4ZTDxnMIFUX4IjE5EOIRaj9l8vH/16Motweapx11VgNzYSm/s+0bkfEEtKI5acieNPAcsi99pLj35bIiJyWAKpPnqPH0KRP97b2Yk51Fc1UVfRSGNtiGBdM8G6EKFghHBTlHBzhEgott91WVZ8eC/bZWH5vNiRcDx54rFxu609zz27kyu7Eyt75tn2/o/f8/7rJMr/XNKmnz3vukso//MzxKIO4ZBDOBwj1BSjKRijuSlKczBGUzBKLGri80MhqitDrT5vINlNSlqA1NQUspNCZGS5cbZtpXH+fBrnz8fTsydpp08jZcoU7KSkNo1fREREujclXkSkXYW3bKHst78hWl4Obje5115HypQpiQ6rU4hFHVbP3crqeVsxjsHlsRl5Ul8GTihU0kpE2p5lE0vNJpaSiStYh6u+Elc4iDtYiztYi7HdxJLTiW3aCMYB6wDj7YuISLuxXTbpucmk5yYfdLn40GIOxjG7eqHEhx3bLTZuHOV/fqa9w20TLrdNwG0TSHZD5r7zIxGHpsYojfURgg1Rgg0RGhviCZn46yjlwHrA5TX0GjyCnulBAjXbiGzfTuXf/krVM/8kZfJkUk+fhq9v32P8CUVERKQrUuJFRNqFMYaGD96n8oknMOEw7pwc8m68CV///okOrVMo31zD4jfW0VDVBEDBgCzGnjGA5HR/giMTkS7PsoklZxBLzsAKN+FuqMIVrMVyorjrK2l67C9kuL1EMnsQyexBND0fx5e8ZygZERFJONu2sLvJvbo8HhtPhpe0jD33jTTGEGqO0VgfpaEuQkNtmPq6CLFwlM3Ly9gMuOxUeqSF6J0dJpkQ9e++S/277+Lq3Rv/5BPxjh6N5fEcdNu210tqdnY7f0IRERHpjJR4EZE2F6uvZ+fjjxFcsACAwOjR5F7/DVypqQmOrOMLBcMse2cjm5eXA+BP8XLctP70HJKjXi4icswZb4BIVk8imYXYzfW4GmtxE8YOBvFVbMZXsRmAmC+JaFousZRsoilZxFIyMW7vIdYuIiLSPizLwh9w4w+4yc6LX7hkjCHpnDOpfWte/B45JfVsL29kW42fjECUXhlN5KWGYetWGrf+k7pn/4WTWUDK8EEEcvbT1QZg8uRj+KlERESkM1HiRUTaVHDZMnb++U/EamrA5SLzixeSfu65WLaGpDEGmuoa9jsvFnHYuKycDUvKiEYcAIpG5DBkUiEen4um+sbPvT3dAUZE2oxl4QTScAJpZHztUpqXr8HZuB6zdTOmrARXKIirYjPsSsQAkJyMlZGFlZWNlZmNlZWFlZkFqelY7sM7BHW7j23C2e22KJjY55htz2L/92EQEZG2Z1kWqYWZZIzMp8/IfCA+tG9NWQOVO+qp3FbL5pJqsj0N9MxoJuCJ4araTuiD7ZSF/TQl5eLv1ZPs3umkZgV0UZSIiIgclBIvItImYnV1VD75JI0ffQiAp7CQ3G98U2Mk78VgqF1X2rrMGMp3NLFlfT3hUDzhkpzqZsDQdFIzPAS3Vhzx9vJOPZpoRUT2zzKG+rlL4y88WVCYgR0OYoeC2OEmrHATdiwCjY2YxkbM9q37rMPYLozLE5/cHozLHX9uu8DlxthujO0i57rLj+2Hi8Wo/dfLx2xzvq9ddsy2JSIi+3K5bbJ7ppHdMw0m9sQYQ2NNM5XbaqnZsp1AYznpnmYyvM1kRLfSXLyd4oV+KpqTSe2RSW6JTZ+po8kdVoTLq9MrIiIisoeODETkqBjHoeGDD6h66imcxgawLNLOOIPMSy7F9mqYmQMxxlBTGWJTcT3BhigAPr+LPgNTySnw6wo6Eek8bBvHn4LjT9lT5sSwIiHsaAgrEsKKhrEjIaxoCMsYLCeG5cQg0nzQVTf+9MdkuLw4Hh/G49/1uOu5O/68pcwdf45Lh7ciInJkLMsiJTNASmYARhUA0FxZS/3qYuydJfg9UQbkBOlnglQ01LL1X6Us++u72B43ucN6kz+mPwWj+5E/ui/+jJRDbE1ERES6MrVMReSINRevpfIf/yC8YQMA3qIicq75Kr4BAxIcWcdljKGuOszWjQ3UVoUBcLktevdLoUfvZGyXEi4i0gXYLowviZgvqXW5MfGkTCyKFYvEp+iux1gUy4numW8ccBxspxk70gzUHtamje2KJ2P2Tsy49yRoHG8Ax5uE40vCeP1gaShMEenYDjZc7ZHSkLSHz5+djn/KBEwsRmTHDkIbNkB1FfmpYfJTwwSjbrZW+ShdsYGyZZtYtut96X3yyB/dL56IOa4f6b1zdXGViIhIN6LEi4h8bpGyMqr/9SyN8+cDYPn9ZJx/AekzZhz2uP3djTGGkkUbWLGgkvraCACWBT2KkunVLwWPRyf+RKQbsKz4UGIuNwb/wZc1DtmXnEPJ25/Ge89EQliR5j09Z3aXRXfPC2EZB8uJ4QoFIRQ8ZDgGC+P1x5MxvmRCzhZcDVUYtxfHvav3jE6SiUiC7W+42qPVnYekDR5NEis9E9fY8VgN9Tjbt+FUlJNEmCF5UQbnB2lOyqG0xsPmTc3Ubi6ndnM5a1+Ot5n8mSnkj+obT8aM6UfO0N4ankxERKQL0698B1FfWYkTDh+z7dleL6nZ2cdse9J57V03Y9XVNM9+i9CiReA4YFn4JkwkMGMGVmoqdRVHfj+S3WLRKF3pFJdxDNvW7GT13K3UVjQC8Yur83sm0bNPMv6AvoZFRPbLsrHT0oilZB3e8sZALNoyvJkdad5rmLPmPYmacFP8njThpviwZ+Em7HATNFQR+XArew+SaSw7noTxxJMzu5M02K52+cgiItL+2iyJ5cok9/av4tu6mfo57xHetJFAYwX9PNBvmBt69qPOk8PWrSHKV++gubqBze8tZ/N7y+Nv97rJGdabgjH9yB/dj9xhvUnKSW+b2ERERCThdMavg3DCYZy5c4/dBidPPnbbkk7NCYeJvPEGoXXFhLdsiZ/YAtx5+fiHD8edkQHLl+O01QbHj2+rNSVUJBRl8/Jy1i3aQUN1EwBuv4f8Ai+FRcl4fTppJyLSpiwL3B4ctwf8KcQOtbxx4smYUDCeiGluJCPHQ/Oy5VjRcHwyzq5eNs0QrGl5q+PyYLyBlp4yji+gIctERLohy+clPGQUviGj8FTuJLJsKdFlS3HKSmFzMWkUM8LlYtT0/oSze1Id8lO+sYbKNdsJ1zVR9slGyj7Z2LI+X0YymQMKKBjZj+whPcke1JO0XtlYtn5jREREOhslXkRkv4wxhNaupf6F54msWNFS7s7NxT90GG71mNqvmrIG1i8pYcvKcmKReDrK63czcEJP+l1zFjVPv5TgCEVEBADLxngDxLwBYsR/03zTh1FXGu+diHHi95+JhLAjTdjh5njvmFgEOxaBpgiuprr4olg4vqRdUzKOL0m9YkREugHjwJY3luxVkg2Dp+HqWYO3YjPeis24mutx1hfjXl9MLpDlTSI6Oo+grze1TW6qd4ZoLK+lubaRUE0jpYvWU7pofcsaPUk+sgYVkjOkF9mDepLRL5/Mfvl4UwLH/POKiIjI4VPiRURacZqaaPjoQ+refpvI1q0t5e6CAvyDBivhsh+xqMO21RWsX1JC1Y76lvK0nCT6j+1B35H5uL0uYimHuJ+BiIh0HJaN8fgwHh8OaXvKY1HsSDN2uCneWybUuOu+Mo24Qo1ABQbiSRh/KjF/CsYb0L1iRES6kVhyBk3JGTT1GY3dVIe3ageequ246ypwhYO4KjbhYxOZQJHbQ2xINpFANs3Gh1WQTzDoYuf6cqrWlxAJhvbpGQOQlJtORt88MvsVkNE3n4y+8YSMPzMFS785IiIiCafEi4hgHIfm1atoeP8DGhcuwIRCAFheL94xx+FNS8WVmnaItXQvxjGUb6lh68oKtq/dSSQUH9TGsi16Dcmh/9ge5PRKU6NHRKSrcblxXCk4/pT4a2Pi95EJNWI3N8YfYxFcoSCuUBBPbRnGdhHzp8QTMYEUcHkS+xlEROTYsCycpHSak9Jp7jUMYlHcdRV4astw15bjbqiK96SsKcVTU0oSQCnxhExGBp6ZhThJqTSFLRrqItRWBKkqqaemPEiwooZgRS07FhS32qQvLYn0Pnmk9cwmrWc2qb1ySCvMJq1XNoFstU9ERESOFSVeOohoJEpzXcMx254/Ej1m25KOyTgOofXraPx4AY0LFhCrqmyZ5+nRg9TTp5EydSoNdXXH9v5DHZgxhuqSBrasLGfb6gqaGyMt85LSfPQ7roB+owvwJ3sPshYRETlcltumYGKfY7e9IzkXZVkYj4+Yx0csJSteFA1jN9Xjam7Abm7AcmK4g7UQrAXA8QaI+VOJbduG6d1LY/eLiHQXLjfRzB5EM3vEXzsOrmAN7vpKXMFaXMFavE4Tpq6WWE0NsZqa+NuA9F1T0e4nbnf89wcX4YhFc3OM5sYIkVgD0e07ad5qUR+zicQsoo5FJGbjuL0k9cghrWcuqb2yScnPIDkvg5T8TJLzMwhkpWK79JskIiLSFpR46SCMMdSuKz1m2/OdZo7ZtqTjcELNNK9cSXDpJwSXLiFWXd0yz05KInnSCaRMnYJv4KA9V0LV1SUo2o7BiTlUbK2lZH0VJeuqaKxpbpnn9bvpNTSH3sPz1LtFRKQ9xGLU/uvlY7a5vOsuaZP1GLeXWGo2sdRsMCY+JFlzPa6m+j3DlIWbCP7hYYIeF8nHT2qT7YqISCdj28RSsloS9wB9Zo4lKyuVcMkOItt3EN1ZQbS6mlh1dfyxqhqnsQGiUaxoFDfxEztJbuIJmUMqI1JiEd1mEXEsqmI25Y4VT9AYF3h9WMnJuFJTsTPS8OZk4euRQyA3g0BOKr60AC6/j6wePdpnn4iIiHQRSrwkWPO6ddTPeZdQUxOeqh0YywLLBtvG2K745PJgXB5wuTU+uHwuTjhMaP16mlevonnNGkLFxZjInl4alt9P0rhxJE+YSGD0aGyvemoANDeGKV1fRcn6Kso21RANx1rmuTw2hYOyKRqeR37fDF0RJiIiB2dZOP5kHH8y0YwCiEVwNcWTMC4Txj9iZKIjFJE2ZAw0tfFIBr42XZu0pfbomWkRpb62FpKSYdAg7EGD+GwrzUQiOHV1mKYmTDCI09SEaQq2vDZNTTjBPWVOMIhTV49lHAA8LoPHZQgAEPvM2oNANdQTn7YCSyAas6iNWYRjNlHLQ7HHj/EFIDkZOzUNd0Y6npwsPLnZ+PKy8Gel4Akcfu11+zxk5GYdekEREZFOQomXBIuUltIwZw5w6D+GAXC5WxIxjtu756avbl88MSPdWqy2ltCmTTSvXUvz6tWENqyHWOsDaXdODoExY0g67jgCw0dgeTTOfHNjmJ3b6ti5tZadW2upKW9sNd+X5KHHgCwKBmRR0C8Tt9eVoEhFRKTTc3larm7O/erFuJKTEx2RiLQhQ9uPZJB3apuuTtpSO/TM9F13Cc7Hiw+5nLVrgvhQZAD4A/HpM2LjxlH+52fAOOA4WE4My4mCE8NyYuDEIBbDiUQx0SjEolixKLaJ4bZi2Ba4XQa3y5CEA0SBJohWQy3xadue7TkGaqI2EccmYtxEbQ+O7cXx+HA8fow/CfxJWEnJ2CkpuAN++p9//NHsNhERkQ5HZ+oTzFdUROaXvkRjZRWNiz6N36B198GQiWHFdh/0ROIHVbsOgKCJz576NbYLx+PDuHcdzHj9OB4f2Oop09UYxyFaUUF4yxZCmzcR3ryZ8ObNLWMA782VkYF/6FD8Q4bgHzoMT2Fhtx4SyziG+qomqssa2LnoLXYuXk99VdM+y2UWpFAwIIseA7LILEjp1vtMRETah+VSIl9ERPYVbK9eU5YNLhvjcmMO0ZfKEO8LEzMGjBM/DxGNEAtH8A8bSN2qLVjh5vgQmtEQbhPBTRS35WBb4Pc4+FuSNM17VhreNe01onU4ZlH2wXNstzzE3D7wBSCQjJ2Wijs9A092Br68XHz5OSQV5ODPSMaXGtA90o6RmooqoqHIoRf8HNTDSUS6AyVeEsxbVIS3qIjo5i3Urq848ILGgBPFikawYlGsWBg7EsaKhrAiIexYBMuJ4QoFIRRs/dbdCRmPP56Q8fhwGhsPsCHpSJxgkEhpKZGSkvhUWkLztm3EKiogsp8DH8vCzsnBXVSEp19/3P37Y2dlYVkWBmgCmko/3xV4sWiUzppycGJOPMlS2kBNWUP8sbyBWMTZZ9n03CRyeqeT0yud3N7p+FM07JqIiIiIiBx7HarXlGWBFR8GHY8POwDpM6dT61mFAXa3rMK7l3di2JFmTLAR09iAaWyA5iBWuAkrHMLlhHE7YdxE8VgxLAu8LoPXFSOe6mmGSC1EiCdn9upJEwKCDoSjNmHHJmbFRwLB6wd/ADuQhCs1BVdaGu6MNLxZGfhys/FlZxDITMWXloQ74NVFdZ9TNBRh86tL2nSdfWaObdP1iYh0RF0m8fLQQw9x3333UVpaypgxY3jwwQc5/viO31V1w+ylfPCLfwEG09yMZVnxzikWLc+tvZ7bLgvbtnC5XNiuJGxXMi6Xhcs2+F1RfHYUnxXBZ4XxmDAus/+ETOO9P2dzWhrenj3x9uyFp1cvvD174unVS0NeHCPGcYjV1RGt3El0ZyXRnTt3Pd9JtDL+2jTt2xOjhW3jSk3DlZGOKz0DV3o6rvR0LPeuf+toFNauxbBrmLojNX780by73RljCDdFqK9qpr4qSH1lU/yxqonG6ibMfj68y2OTnptM9rhB5HqbyemVhjegIddERESk6+us7ab21Ja9C3Q/FukO2ureNsYYaG7CqauDSJhYZTXR6lpitbWYhgZMMIgVasKOhHCbMDYGlw0Br0Ng7yHPYrXQSHza2XobkV1TrQNRx8IxNjHLhbHd4PJgPB4sjzc++TzYXi8unxfb78Pt92EH/LgDPlxJATxJflyBXZPfg+V2Y7nc4HJh7ZpwueJt8n3KXHuW7UCJH+M4xCIxnEiMWCRKLBzFiUR3lcVfV+2ooG57JSbmYBwHJ+Z85rnZ89zZNc8YMLQ8gmlVVl68DWv3fGfXPMvCsq34+S/bAtvCsu2W1/srt90ubLeN5Xbh8XtJzkzFdrtwedzYHlfr5x43LrcL27OrzO3C5XXHy71uXLsebU/H+huJSOfVJRIv//znP7nlllt45JFHmDRpEr/+9a+ZMWMGa9asIS8vL9HhHVS0OUyotq17n7iAABDAtgzJ3hjJvijJ3hipvijJvhgBj4NTV0dzXR3Nq1a1erfjDUBKOlZ6Bq7sHNy5uXgL8vEVFuLvkYcnNUk/QgfhhMPEamt3TTV7Pd811ewpN/vrtfIZrvR0PAUFeHr0wNOjB2GfD2vbduykpC7ftdo4hlBThFAwQnNDmObGMMG6UHyqbY4/1of224NlN7fXRUZ+Mpn5qWQUpJCZn0xqVhKWbWHGj8datOgYfiIRERGRxOnM7ab21Ja9C3Q/FukW2uHeNnnXXYJr8WJIzQVy97uMiUZxQiFiwSbCdY1EgyGiTc04oRBOKBwfFSIawXIi2E4MlxXD3nUZossGl90ygBoQbj302QE4e80+yGWRn4vBwlgWWDbGsrFsG2Pb8aHgLAuDDXZ8nrFswGp5bqxdz3eXOfF76jjGwnEMTnzkemIxgxMzxBxDLGqIRR2cmCEadXCiTvz1rkcDGGPtetw1YbE7Z3KweRzh+BhVxTvaaG+2D3tXgsbt8+DyeloSMq0TNJ9N2Lhxe93Ye5W5PK1fh5qbMRBfftc2bI8b164kkb0rSfTZ1wc7B6dh20Q6ri6ReLn//vv52te+xjXXXAPAI488wiuvvMKjjz7KHXfckeDoDq7vKaPIfaqIqm3bqfzXa3tdARDP/JvPPHdiJv4D6pg9z3e9bvlhjcV/VKO7flwbozb1odZ/apdlWpIxyb4YKd4oKb4Yfo+DHW6CqiaoKsXZuOc4ZPd1YOGYRcRxE7E8xGwvMY8ffAEsfwArKQlXUjJ2UhJ2SjKulBTcSQHcAd+uyYvb78Xt88Qf/fFHl8+Dy+NKaCLBGIMJhzGh+IGbaQ7tetz1OtSME2wi1tiA09CIE2zEaWgkFmzEaWjACQZxGhoOK5nSwrJwZWbizs7BnZONOycn/jx79/NsbL+/1VtqS0pwamrb+NO3PccxxCIxYrsO5mJRh1jEIRKK7ppiRJrjz8OhKNFQjHAoSuSVTYTLqmgOhgkFI4fdXSeQ6iU1O4m07CRSswKk7nr0p6gruYiIiAh07naTiIjlduNyu3ElJ+PNzTnk8rHxE9j82qdYsXhCxoRDmKZmnFAzpjkEkTBE4wkbKxbFxGJYThQTc8DEsBwHy4nF73FjDBYOFoZ4pwuza3QSgw17nu8etYQ9z/f5HBisXffOiQfatvtpH27a7ezf3gmY1o/xBM2+j/H5dnIy0VB0V6Jpd7kF1l6Jnl1le6939zywcMxeySADrmQ/4brmPefPnPh5HscxuxJUux4dg3F2nVfbNZkYe5JLWBgTiT9vsnCC8b5VxsQ/h7OfBJQxeyej4vG1Jcu2sFw2tiueqGt57rLxZ6XiSwng8rh2nVv7bGLItd8kkMsbPw/32UTRgXoBxbcXf7TdLiyX3dIT6WiYXdlCE88YtrzGcTB7v979fH/DmhxyBx7l32P3+/daj3WQefvdrvWZJ/tblx1PulqWtee5HU/I7vNc57k6hU6feAmHwyxatIg777yzpcy2baZPn87cuXMTGNnh8aYE8KYEiLnChNLab6gj4xiieyVk0s46jUByGuHGZsINzYQbm6hraKaytg5qq6GhFru5AXc4iMdpxkcYnyuK3TL+6u4Ou8H4QUJw11R1gO0bCBtodiwcYxEzVvx701g4jhUfF9YQv+qDXV8wloVl2cSPauJXf1h2vGupbcd/kC32/o6zANPy5ROft+eneveBUstBk3HiE/Evcctpu3uZGMvG8fpxPAEcjx/HG4jfY8fr3/W4q9yXHP9suz9HNVAdwhTvALN9V4/cPb/exhhCDQ0427fv1V1390bB0OqXPp7IY+/5tPxIHeh9LYm+3Qcgb+/AVFXvdXDi7DpYceKvY/HyWGxPciUWjc87MpX7lHgDbvzJXnzJHpJS/SSl+0hO8xFI85Gc7ieQ6sPl7tq9f0RERESORmdvN4lI19eWw/4B+GyLgkn922x93owATbPfxYkanNieCwx39ySJ9yKJt42dvS5AjJ8sdsBhV1Jn92uDqyB/V5eVGHZ87C1sCzDOnkd2nb/YdVcd2+xKS+xaxtqdCMLsWQe7z3/sde5jdzZi13v3ZC12dZsxe53w3uvkNwc52W1ZtKRVaPV4CMEwbXpXVYv4OakOcpYznkSy9vRu2pWkie/m3RdZx8+F7Z082n0+xtmdyNlfryP2zAPi90Kq++ye3/NXie6aWsW3a+H46TPTcm7N2rtsr9cWZs85OHafa2PXbRL2uj1Cy+s9y7S8n5b0Wsu5uj2Ryue1Z+9ZGOsAz2Gv5Gbr5CfWZ5Ole+bF68eude2uc3vVqd3zd69zd33aXVcdx2mViNxd383uuPee0aqs9TnOls9qDP5+RZzwf7cd2c5KoA7ylXTkdu7cSSwWIz8/v1V5fn4+q1ev3u97QqEQoVCo5XVtbbz3QF1dXfsFegj19fU0hJrbf0M24AVf73Qyi3p/rrc6sRjh6hpCpRVEKioJV1YRra7BqasjFmyApmZMuAkrHL9qxI5F4j/mB4nFBbhch9jw7t7Ah+lz/tzvV8yA41i7xoCNP8aceJIoErOIODYRxyIWs4jEbKLO3o/xhFL8S2h3f6HE1a2jt/2o12DbFi63C5fHxu114fG58fg+8+h14/bbuAcNwFe2HV9SPNHiC3ji47gegIOhMdx80O7hB2Lq67GCwUMv2EacY/V/vktA29P2OuC2tD1tr6NuK1Hb8ybo+HP3ca85wIkU6Xo+b7upu7SZ2vr/vj2+RzrDOjtDjO2xzs4QY3uss71irFixqU3XmTu+hop/PN9267vyi1Ss3nJYy1qA2wL3Aa+vjZ8zyL10KvYnn7RRhHHmuOOwli49qnXs3QJ3xoyh4onndq285dTpnudm1+naVld37jkTa+25CrSlPO20E9i5bFtLYqhl3u4EkQFw9vQMakk27fW6Zdn4lFyYTmjtxpaYOGBMe8qs/ZTtfu5KScLGAhPvebG7B8bevTPa0u6EBcTPlXVGzl7Vo63W15Ic2PvP2d7211Hl0IseoPDwg979toOcAksY6zOPbbrSw1hxfVk0YcegR9Nuskwnb23t2LGDnj178tFHHzF58uSW8ttvv505c+Ywf/78fd7z4x//mLvvvvtYhikiIiIi0uFs3bqVXr16JToMOQY+b7tJbSYRERERkbgjaTd1+h4vOTk5uFwuysrKWpWXlZVRUFCw3/fceeed3HLLLS2vHcehqqqK7OzshIyRV1dXR+/evdm6dStpaWnHfPudnfbf0dM+PDraf0dP+/DoaP8dHe2/o6d9eHQSsf+MMdTX11NYWHhMtieJ93nbTWozSXei+iXtRXVL2ovqlrQn1a89jqbd1OkTL16vl/HjxzN79mwuuOACIN4omD17NjfeeON+3+Pz+fD5fK3KMjIy2jnSQ0tLS+v2lfloaP8dPe3Do6P9d/S0D4+O9t/R0f47etqHR+dY77/09PRjti1JvM/bblKbSboj1S9pL6pb0l5Ut6Q9qX7FHWm7qdMnXgBuueUWrrrqKiZMmMDxxx/Pr3/9axobG7nmmmsSHZqIiIiIiEiHoHaTiIiIiMix0SUSL5deeikVFRXcddddlJaWctxxx/Haa6/tc+NIERERERGR7krtJhERERGRY6NLJF4AbrzxxgMOLdbR+Xw+fvSjH+3TlV8Oj/bf0dM+PDraf0dP+/DoaP8dHe2/o6d9eHS0/+RY6qztJv2fSHtS/ZL2orol7UV1S9qT6lfbsIwxJtFBiIiIiIiIiIiIiIiIdAV2ogMQERERERERERERERHpKpR4ERERERERERERERERaSNKvIiIiIiIiIiIiIiIiLQRJV5ERERERERERERERETaiBIvCfbQQw/Rt29f/H4/kyZN4uOPP050SB3SPffcw8SJE0lNTSUvL48LLriANWvWtFrm1FNPxbKsVtM3vvGNBEXc8fz4xz/eZ/8MHTq0ZX5zczM33HAD2dnZpKSkcNFFF1FWVpbAiDuWvn377rP/LMvihhtuAFT/9ue9997jvPPOo7CwEMuyeOGFF1rNN8Zw11130aNHDwKBANOnT6e4uLjVMlVVVVxxxRWkpaWRkZHBtddeS0NDwzH8FIlzsP0XiUT43ve+x6hRo0hOTqawsJArr7ySHTt2tFrH/urtvffee4w/SeIcqg5effXV++yfs846q9UyqoMH3n/7+060LIv77ruvZZnuXAcP59jlcH57t2zZwjnnnENSUhJ5eXncdtttRKPRY/lRRDoEtZvk89B3sBxL9957L5Zl8Z3vfKelTPVLjtT27dv5r//6L7KzswkEAowaNYqFCxe2zFc7Wo5ULBbjhz/8If369SMQCDBgwAB++tOfYoxpWUb1q20p8ZJA//znP7nlllv40Y9+xOLFixkzZgwzZsygvLw80aF1OHPmzOGGG25g3rx5vPnmm0QiEc4880waGxtbLfe1r32NkpKSlumXv/xlgiLumEaMGNFq/3zwwQct87773e/y8ssv8+yzzzJnzhx27NjBhRdemMBoO5YFCxa02ndvvvkmABdffHHLMqp/rTU2NjJmzBgeeuih/c7/5S9/yW9/+1seeeQR5s+fT3JyMjNmzKC5ubllmSuuuIIVK1bw5ptv8p///If33nuPr3/968fqIyTUwfZfMBhk8eLF/PCHP2Tx4sU899xzrFmzhi984Qv7LPuTn/ykVb286aabjkX4HcKh6iDAWWed1Wr/PPXUU63mqw4eeP/tvd9KSkp49NFHsSyLiy66qNVy3bUOHs6xy6F+e2OxGOeccw7hcJiPPvqIJ554gscff5y77rorER9JJGHUbpLPS9/BcqwsWLCAP/zhD4wePbpVueqXHInq6mqmTJmCx+Ph1VdfZeXKlfzqV78iMzOzZRm1o+VI/eIXv+Dhhx/md7/7HatWreIXv/gFv/zlL3nwwQdbllH9amNGEub44483N9xwQ8vrWCxmCgsLzT333JPAqDqH8vJyA5g5c+a0lJ1yyinm5ptvTlxQHdyPfvQjM2bMmP3Oq6mpMR6Pxzz77LMtZatWrTKAmTt37jGKsHO5+eabzYABA4zjOMYY1b9DAczzzz/f8tpxHFNQUGDuu+++lrKamhrj8/nMU089ZYwxZuXKlQYwCxYsaFnm1VdfNZZlme3btx+z2DuCz+6//fn4448NYDZv3txS1qdPH/PAAw+0b3CdxP724VVXXWXOP//8A75HdXCPw6mD559/vjn99NNblakO7vHZY5fD+e2dNWuWsW3blJaWtizz8MMPm7S0NBMKhY7tBxBJILWb5GjpO1jaQ319vRk0aJB58803W7UHVb/kSH3ve98zU6dOPeB8taPlaJxzzjnmq1/9aquyCy+80FxxxRXGGNWv9qAeLwkSDodZtGgR06dPbymzbZvp06czd+7cBEbWOdTW1gKQlZXVqvwf//gHOTk5jBw5kjvvvJNgMJiI8Dqs4uJiCgsL6d+/P1dccQVbtmwBYNGiRUQikVb1cejQoRQVFak+7kc4HObvf/87X/3qV7Esq6Vc9e/wbdy4kdLS0lZ1Lj09nUmTJrXUublz55KRkcGECRNalpk+fTq2bTN//vxjHnNHV1tbi2VZZGRktCq/9957yc7OZuzYsdx3330avuAz3n33XfLy8hgyZAjf/OY3qaysbJmnOnj4ysrKeOWVV7j22mv3mac6GPfZY5fD+e2dO3cuo0aNIj8/v2WZGTNmUFdXx4oVK45h9CKJo3aTtAV9B0t7uOGGGzjnnHNa1SNQ/ZIj99JLLzFhwgQuvvhi8vLyGDt2LH/6059a5qsdLUfjxBNPZPbs2axduxaATz75hA8++ICZM2cCql/twZ3oALqrnTt3EovFWv3IAuTn57N69eoERdU5OI7Dd77zHaZMmcLIkSNbyr/85S/Tp08fCgsLWbZsGd/73vdYs2YNzz33XAKj7TgmTZrE448/zpAhQygpKeHuu+/mpJNOYvny5ZSWluL1evc5YZufn09paWliAu7AXnjhBWpqarj66qtbylT/Pp/d9Wp/34G755WWlpKXl9dqvtvtJisrS/XyM5qbm/ne977H5ZdfTlpaWkv5t7/9bcaNG0dWVhYfffQRd955JyUlJdx///0JjLbjOOuss7jwwgvp168f69ev5/vf/z4zZ85k7ty5uFwu1cHP4YknniA1NXWfISpVB+P2d+xyOL+9paWl+/2e3D1PpDtQu0mOlr6DpT08/fTTLF68mAULFuwzT/VLjtSGDRt4+OGHueWWW/j+97/PggUL+Pa3v43X6+Wqq65SO1qOyh133EFdXR1Dhw7F5XIRi8X43//9X6644gpA52nagxIv0unccMMNLF++vNX9SYBW4wmOGjWKHj16MG3aNNavX8+AAQOOdZgdzu4MNsDo0aOZNGkSffr04ZlnniEQCCQwss7nL3/5CzNnzqSwsLClTPVPEiUSiXDJJZdgjOHhhx9uNe+WW25peT569Gi8Xi/XX38999xzDz6f71iH2uFcdtllLc9HjRrF6NGjGTBgAO+++y7Tpk1LYGSdz6OPPsoVV1yB3+9vVa46GHegYxcREWl/+g6WtrZ161Zuvvlm3nzzzX2OfUSOhuM4TJgwgZ///OcAjB07luXLl/PII49w1VVXJTg66eyeeeYZ/vGPf/Dkk08yYsQIli5dyne+8x0KCwtVv9qJhhpLkJycHFwuF2VlZa3Ky8rKKCgoSFBUHd+NN97If/7zH9555x169ep10GUnTZoEwLp1645FaJ1ORkYGgwcPZt26dRQUFBAOh6mpqWm1jOrjvjZv3sxbb73Fddddd9DlVP8Obne9Oth3YEFBwT43zY1Go1RVVale7rI76bJ582befPPNVr1d9mfSpElEo1E2bdp0bALsZPr3709OTk7L/63q4OF5//33WbNmzSG/F6F71sEDHbsczm9vQUHBfr8nd88T6Q7UbpKjoe9gaQ+LFi2ivLyccePG4Xa7cbvdzJkzh9/+9re43W7y8/NVv+SI9OjRg+HDh7cqGzZsWMsw8WpHy9G47bbbuOOOO7jssssYNWoUX/nKV/jud7/LPffcA6h+tQclXhLE6/Uyfvx4Zs+e3VLmOA6zZ89m8uTJCYysYzLGcOONN/L888/z9ttv069fv0O+Z+nSpUD8h0v21dDQwPr16+nRowfjx4/H4/G0qo9r1qxhy5Ytqo+f8dhjj5GXl8c555xz0OVU/w6uX79+FBQUtKpzdXV1zJ8/v6XOTZ48mZqaGhYtWtSyzNtvv43jOC2Jre5sd9KluLiYt956i+zs7EO+Z+nSpdi2vU/XYInbtm0blZWVLf+3qoOH5y9/+Qvjx49nzJgxh1y2O9XBQx27HM5v7+TJk/n0009bNW52J1k/2ygX6arUbpIjoe9gaU/Tpk3j008/ZenSpS3ThAkTuOKKK1qeq37JkZgyZQpr1qxpVbZ27Vr69OkDqB0tRycYDGLbrVMBLpcLx3EA1a92YSRhnn76aePz+czjjz9uVq5cab7+9a+bjIwMU1pamujQOpxvfvObJj093bz77rumpKSkZQoGg8YYY9atW2d+8pOfmIULF5qNGzeaF1980fTv39+cfPLJCY6847j11lvNu+++azZu3Gg+/PBDM336dJOTk2PKy8uNMcZ84xvfMEVFRebtt982CxcuNJMnTzaTJ09OcNQdSywWM0VFReZ73/teq3LVv/2rr683S5YsMUuWLDGAuf/++82SJUvM5s2bjTHG3HvvvSYjI8O8+OKLZtmyZeb88883/fr1M01NTS3rOOuss8zYsWPN/PnzzQcffGAGDRpkLr/88kR9pGPqYPsvHA6bL3zhC6ZXr15m6dKlrb4XQ6GQMcaYjz76yDzwwANm6dKlZv369ebvf/+7yc3NNVdeeWWCP9mxc7B9WF9fb/77v//bzJ0712zcuNG89dZbZty4cWbQoEGmubm5ZR2qgwf+HzbGmNraWpOUlGQefvjhfd7f3evgoY5djDn0b280GjUjR440Z555plm6dKl57bXXTG5urrnzzjsT8ZFEEkbtJvm89B0sx9opp5xibr755pbXql9yJD7++GPjdrvN//7v/5ri4mLzj3/8wyQlJZm///3vLcuoHS1H6qqrrjI9e/Y0//nPf8zGjRvNc889Z3Jycsztt9/esozqV9tS4iXBHnzwQVNUVGS8Xq85/vjjzbx58xIdUocE7Hd67LHHjDHGbNmyxZx88skmKyvL+Hw+M3DgQHPbbbeZ2traxAbegVx66aWmR48exuv1mp49e5pLL73UrFu3rmV+U1OT+da3vmUyMzNNUlKS+eIXv2hKSkoSGHHH8/rrrxvArFmzplW56t/+vfPOO/v9v73qqquMMcY4jmN++MMfmvz8fOPz+cy0adP22beVlZXm8ssvNykpKSYtLc1cc801pr6+PgGf5tg72P7buHHjAb8X33nnHWOMMYsWLTKTJk0y6enpxu/3m2HDhpmf//znrZIKXd3B9mEwGDRnnnmmyc3NNR6Px/Tp08d87Wtf2+cknurggf+HjTHmD3/4gwkEAqampmaf93f3OnioYxdjDu+3d9OmTWbmzJkmEAiYnJwcc+utt5pIJHKMP41I4qndJJ+HvoPlWPts4kX1S47Uyy+/bEaOHGl8Pp8ZOnSo+eMf/9hqvtrRcqTq6urMzTffbIqKiozf7zf9+/c3P/jBD1ou3jRG9autWcYY0+bdaERERERERERERERERLoh3eNFRERERERERERERESkjSjxIiIiIiIiIiIiIiIi0kaUeBEREREREREREREREWkjSryIiIiIiIiIiIiIiIi0ESVeRERERERERERERERE2ogSLyIiIiIiIiIiIiIiIm1EiRcREREREREREREREZE2osSLiEg3EQwG+e1vf8uZZ55Jjx498Pl8pKamMnz4cK6++mpeeuklYrFYq/f07dsXy7ISFLGIiIiIiEjiWZbVadpFB2rDWZZF3759j31AIiLdlDvRAYiISPv78MMPufjiiykpKcHv9zNx4kQKCwsJhUKsX7+eJ554gieeeILhw4ezYsWKRIcrIiIiIiIiIiLSaSnxIiLSxS1evJhp06YRCoW47bbb+J//+R/S0tJaLbN161buv/9+HnnkkQRFKSIiIiIiIu1l1apVeDyeRIchItJtWMYYk+ggRESkfTiOw8iRI1m1ahU//elP+Z//+Z+DLr9o0SLGjx/f8rpv375s3rwZ/VSIiIiIiEh3tXvors7QLlIbTkSkY9A9XkREurBZs2axatUqioqKuPPOOw+5/N5JlwN59913sSyLq6++er/zr776aizL4t13391nXmVlJT/4wQ8YNWoUycnJpKWlMWrUKG6//XZKSkpaLRuNRnnwwQcZP348KSkppKSkcPzxx/Pwww/vcy8agIaGBu655x7GjBlDeno6KSkpDBgwgIsvvpjXX399n+WDwSD33HMPY8eObVn/CSecwBNPPHHIfSAiIiIiIt3bpk2bsCyLU089laamJu644w769OmDz+dj4MCB/OIXv9hv8mPz5s1885vfZPDgwSQlJZGVlcWIESO4/vrrWbNmTctyR9Pu2p/93eNl721UVVXxzW9+s+V+oCNHjuTRRx893N0hIiKfoaHGRES6sFdffRWAiy++GJfLldBYVq1axZlnnsm2bdsoKChgxowZAKxdu5b77ruPE088kQsuuACAWCzG+eefz6xZs0hLS+OMM87AGMPbb7/Nt771Ld58803+9a9/Ydt2y/LTp09n/vz55OTkcOqpp+L3+9m2bRuzZs0iOTm5ZXsA5eXlnHHGGSxbtoyCggJOOeUUjDF89NFHXH311SxcuJAHH3zwmO8jERERERHpXMLhMGeeeSYrV67k1FNPpbGxkTlz5nDHHXdQX1/Pz372s5Zlt27dyrhx46iqqmLQoEGcffbZxGIxNm/ezJ/+9CcmT57MkCFDjvlnqKmpYfLkyTQ0NHDSSSexc+dO3nvvPa699locx+G666475jGJiHR2SryIiHRhn3zyCQBjx45NaBzRaJQvfvGLbNu2je985zv84he/wOv1tsxfsWIFfr+/5fWvf/1rZs2axYgRI5g9ezb5+fkAlJSUcNppp/H888/z+9//nhtvvBGA9957j/nz5zNx4kTee++9Vuuqq6ujuLi4VTzXXHMNy5Yt4+abb+YXv/gFPp8PgLKyMs4991x+97vfcc4553DWWWe12z4REREREZHOb+7cuZxyyils3Lix5V6aCxcu5IQTTuCBBx7gjjvuICUlBYA///nPVFVVceONN+5zodeWLVuIRCLHPH6AF198kcsuu4zHH3+8pW30wgsv8MUvfpGf/vSnSryIiBwBDTUmItKFVVZWApCTk7Pf+ddeey1XX311q+mDDz5o8ziee+451qxZw4gRI/i///u/VkkXgBEjRjBgwICW17/97W8BuP/++1uSLgA9evTgvvvuA+A3v/lNS3lFRQUAU6ZMaZV0AUhLS2s1hNrSpUuZNWsWEydO5P77729pWADk5+fzxz/+EYCHH374qD6ziIiIiIh0fbZt84c//KEl6QIwYcIEZs6cSTAYZOHChS3lu9st06dP32c9RUVFrdpEx1JaWhq/+93vWrWNLrjgAkaOHMmWLVvYtGlTQuISEenM1ONFRKQbe+KJJ/a5X8qpp57K1KlT23Q7b731FgDXXXfdIYc827JlC1u2bCE3N5czzzxzn/nnnnsuGRkZrFu3jtLSUgoKCjjuuOOwbZvHHnuM4cOHc+GFF5Kdnb3f9b/xxhtAvCGxe6iyve2+58vHH3/8eT+miIiIiIh0M3369Nnv8GCDBw8GaHUvy90XhH3/+9/H5XIxffr0fS4cS4Tx48fvt/00ePBgli9fTklJyT73hxERkYNTjxcRkS5s98Hzzp079zs/Go1ijMEYw/XXX99ucWzduhXgsK7g2rFjBxBvwOyPZVkt87Zv3w7EGwS//OUvCQaDfP3rXycvL48xY8Zwyy23sGzZslbv33211g9+8AMsy9rv1NDQcMB9JiIiIiIisluvXr32W56amgpAKBRqKbv66qu55JJLWLlyJeeddx6ZmZmcfPLJ/PznP6e0tPSYxLs/n+cziIjI4VGPFxGRLmzMmDF8+OGHLFmyhCuuuOKYbNNxnHbfhmVZ+5TdeuutXHLJJbzwwgu8+eabvP/++zzwwAP8+te/5oEHHuDmm29uFd/UqVMT1pVfRERERES6hv31oj8Ql8vFP//5T+644w5efPFF3n77bebPn8/777/Pvffey2uvvcaJJ554WOtqy3bX5/kMIiJyeJR4ERHpwmbOnMnvf/97nn32WX7xi18ccpivw7H7/iwNDQ37nb+7d8veevfuDcD69esPuf7CwkIANm/efMBlds/r2bPnPtu56aabuOmmm4hGozz99NNcc8013H777Vx55ZVkZma2XM11wQUXcOuttx4yHhERERERkbY0duxYxo4dy49//GPq6ur48Y9/zAMPPMB3vvOdliGPj6TdJSIiHYdS2iIiXdjZZ5/NsGHD2LJlC/fcc0+brLNHjx4ArF27dp95VVVVLF68eJ/y3TeP/Mtf/nLIK7OKioooKiqioqKC2bNn7zP/lVdeobq6moEDB1JQUHDA9bjdbv7rv/6LiRMnEg6HKS4uBuCMM84A4Pnnnz9oHCIiIiIiIu0tLS2Ne+65B8uyWL58eUv5kbS7RESk41DiRUSkC7Ntm7/97W/4fD5++MMfcvvtt1NbW7vPcpWVlaxZs+aw1tmvXz+Kior49NNPefHFF1vKGxsb+frXv05dXd0+77nwwgtbbsx4++23E4lEWs1fsWIFGzZsaHl90003AXDLLbdQUVHRUl5aWsptt90G0DJ0GMA777zDW2+9tU9SZ+PGjaxatQrLslp6ukyaNIkzzjiDDz/8kBtuuGG/8X7yySe89tprh7U/REREREREDsff/va3VsmV3V599VWMMS0jBcCRtbtERKTj0FBjIiJd3Pjx43nrrbe4+OKLue+++/jtb3/LpEmTKCwspLm5mW3btvHJJ58QiUQYOnQoEyZMOOQ6f/SjH3Httddy0UUXcfLJJ5OSksLHH39MWloa559/fquGAcR7n/z73//mjDPO4Fe/+hVPPvkkkydPxhhDcXExy5cv5/nnn6d///4AfPe73+Xtt9/m1VdfZdCgQZx++ukYY5g9ezb19fVccMEFfOtb32pZ/yeffMJ3v/tdcnNzGT9+PNnZ2VRUVDBnzhxCoRA33XRTyxBmAH//+98566yz+P3vf8+TTz7JcccdR2FhIbW1tSxbtoytW7dy8803c9ZZZ7XRX0FERERERLq7f//731x55ZUMGDCAUaNGEQgE2LhxI/Pnz8e2bX72s5+1Wv7ztrtERKTjUOJFRKQbmDp1KuvXr+fPf/4zL730EsuXL2fu3Ln4fD569uzJJZdcwpe+9CXOPfdc3O5D/zR89atfxbZtfvWrX/Hhhx+SmZnJeeedx7333nvA+6aMHDmSTz75hPvuu4+XXnqJWbNm4fP5KCoq4nvf+x4nnHBCy7Iul4uXXnqJ3//+9zz++OO8/vrrAAwfPpxrrrmG66+/vtUNIM8991wqKyt55513+OSTT6isrCQ3N5epU6fyrW99iy9+8YutYsnLy+Ojjz7iT3/6E08//TRLlizho48+Ij8/n/79+/Ptb3+byy677Eh2tYiIiIiIyH7dcsst9OrViw8//JD333+fxsZGCgsLufTSS7n11lv3uQjuSNpdIiLSMVjGGJPoIERERERERERERERERLoC3eNFRERERERERERERESkjSjxIiIiIiIiIiIiIiIi0kaUeBEREREREREREREREWkjSryIiIiIiIiIiIiIiIi0ESVeRERERERERERERERE2ogSLyIiIiIiIiIiIiIiIm1EiRcREREREREREREREZE2osSLiIiIiIiIiIiIiIhIG1HiRUREREREREREREREpI0o8SIiIiIiIiIiIiIiItJGlHgRERERERERERERERFpI0q8iIiIiIiIiIiIiIiItBElXkRERERERERERERERNqIEi8iIiIiIiIiIiIiIiJtRIkXERERERERERERERGRNqLEi4iIiIiIiIiIiIiISBtR4kVERERERERERERERKSNKPEiIiIiIiIiIiIiIiLSRpR4ERERERERERERERERaSNKvIiIiIiIiIiIiIiIiLQRJV5ERERERERERERERETaiBIvIiIiIiIiIiIiIiIibUSJFxERERERERERERERkTaixIuIiIiIiIiIiIiIiEgbUeJFRERERERERERERESkjSjxIiIiIiIiIiIiIiIi0kaUeBEREREREREREREREWkjSryIiIiIiIiIiIiIiIi0ESVeRERERERERERERERE2ogSLyIiIiIiIiIiIiIiIm1EiRcREREREREREREREZE2osSLiIiIiIiIiIiIiIhIG1HiRUREREREREREREREpI0o8SIiIiIiIiIiIiIiItJGlHgRERERERERERERERFpI0q8iIiIiIiIiIiIiIiItBF3ogPoCBzHYceOHaSmpmJZVqLDERERERFpV8YY6uvrKSwsxLZ1LZYcmtpMIiIiItLdHE27SYkXYMeOHfTu3TvRYYiIiIiIHFNbt26lV69eiQ5DOgG1mURERESkuzqSdpMSL0BqaioQ34FpaWkJjkZEREREpH3V1dXRu3fvluNgkUNRm0lEREREupujaTcp8QItXeXT0tLUiBARERGRbkNDRsnhUptJRERERLqrI2k3aUBnERERERERERERERGRNqLEi4iIiIiIiIiIiIiISBtR4kVERERERERERERERKSNKPEiIiIiIiIiIiIiIiLSRtyJDkBERERE5Eg0NTVRVlaGMQZjTKLD6TAsy8KyLPLz8wkEAokOR0REREREEkRtpgNr73aTEi8iIiIi0uk0NTWxfft2UlNTsW114v4sx3HYvn07PXv2VPJFRERERKQbUpvp0Nqz3aQ9LiIiIiKdTllZmRoQB2HbNqmpqZSVlSU6FBERERERSQC1mQ6tPdtN2usiIiIi0ukYY9SAOATbtjWcgIiIiIhIN6U20+Fpr3aT9ryIiIiIdDpKKBwe7ScRERERke5JbYHDp8SLiIiIiIiIiIiIiIhIB6bEi4iIiIiISAf23nvvcd5551FYWIhlWbzwwgsHXPYb3/gGlmXx61//ulV5VVUVV1xxBWlpaWRkZHDttdfS0NDQvoGLiIiIiHRTSryIiIiISJezfft2br75ZkaNGkXPnj0ZN24cP/jBD6iqqjrsdWzZsoW8vDw+/fTTdoxU5NAaGxsZM2YMDz300EGXe/7555k3bx6FhYX7zLviiitYsWIFb775Jv/5z3947733+PrXv95eIYuIiIhIJ6B2U/txJzoAEREREZG2tGnTJs4++2wGDBjAH/7wB4qKilizZg133303s2fP5tVXXyUzMzPRYYoctpkzZzJz5syDLrN9+3ZuuukmXn/9dc4555xW81atWsVrr73GggULmDBhAgAPPvggZ599Nv/3f/+330SNiIiIiHRtaje1L/V4EREREZEu5Y477sDr9fLMM89w4okn0qtXL6ZNm8azzz5LaWkpP//5zwHIy8tj1qxZrd47cOBAnn76aYCWE9TTpk0jLy+PCy64oGW5J598kpNOOolevXoxcuRI7rjjjpZ527Zt48orr6Rv377079+f6667jvLy8pb5v/zlLznttNN48sknGTt2LH379uX2228nFovx4IMPMmLECIYPH84DDzzQKrba2lq++93vMmzYMPr378+FF17I8uXL23TfSefkOA5f+cpXuO222xgxYsQ+8+fOnUtGRkZLnQaYPn06tm0zf/78/a4zFApRV1fXahIRERGRrkPtpvalxIuIiIiIdBnV1dW88847XHPNNQQCgVbz8vPzueiii3jxxRcxxhxyXa+//joA//rXv/j000957LHHAHjssce44447+MpXvsKcOXP429/+Rr9+/YD4CfArr7yS6upqXnzxRZ599lk2b968z5BOmzZtYvbs2Tz99NP84Q9/4Mknn+TLX/4yJSUlvPjii/zwhz/knnvuYdGiRS3vufbaa9m5cydPPfUUb731FqNGjeJLX/oS1dXVR7XPpPP7xS9+gdvt5tvf/vZ+55eWlpKXl9eqzO12k5WVRWlp6X7fc88995Cent4y9e7du83jFhEREZHEULup/WmoMRERERHpMjZs2IAxhkGDBu13/qBBg6ipqWHnzp2HXFd2djYAmZmZ5Ofnt5Q/8MADfPOb32zVKBg7diwQvwn6qlWrWLhwIT179gTgd7/7HSeddBJLlixpWc4Yw29+8xtSUlIYMmQIU6ZMYf369Tz11FPYts3AgQN58MEH+fDDDxk/fjzz5s1jyZIlrFy5Ep/PB8Ddd9/Nq6++yssvv8yVV155BHtLuoJFixbxm9/8hsWLF2NZVput98477+SWW25peV1XV6fki4iIiEgXoXZT+1PiRURERES6nMO5MutIVFRUUFpaykknnbTf+cXFxfTs2bOl8QAwZMgQ0tPTWbt2bUsDonfv3qSkpLQsk5ubi8vlwrbtVmUVFRUArFixgsbGRoYMGdJqe83NzWzatKmtPp50Qu+//z7l5eUUFRW1lMViMW699VZ+/etfs2nTJgoKCloN2wAQjUapqqqioKBgv+v1+XwtjVURERER6ZrUbmo/Srx0EBVV1YTC0USHcUA+r5vcLN1MSURERDq2fv36YVkWxcXF+51fXFxMRkYGOTk5WJa1T0MjGj348dhnu+EfKbe79WG4ZVn7LdsdX2NjI/n5+Tz//PP7rCs9Pb1NYpLO6Stf+QrTp09vVTZjxgy+8pWvcM011wAwefJkampqWLRoEePHjwfg7bffxnEcJk2adMxjPlIdvc20N7WfREREpCNTu6n9KfHSQYTCUf6zcF2iwzigcycMTHQIIiIiIoeUlZXFKaecwmOPPcb111/f6oC/rKyMf//731x88cVYlkV2djZlZWUt8zds2EAwGGx57fV6gfj4w7ulpKRQVFTE+++/z9SpU/fZ/qBBg9i+fTvbt29vuXprzZo11NbW7nPV1ecxevRoysvLcbvdrXo2SPfQ0NDAunV72gobN25k6dKlZGVlUVRU1DK8w24ej4eCgoKWOjds2DDOOussvva1r/HII48QiUS48cYbueyyyygsLDymn+VodPQ2097UfhIREZGOTO2m9mcfehERERERkc7j3nvvJRwOc+mllzJ37ly2b9/O22+/zSWXXEJBQQHf//73ATjppJN49NFH+fTTT1m6dCm33XYbHo+nZT05OTkEAgHefvttysvLqaurA+C///u/efjhh/nTn/7Ehg0bWLZsGX/+858BOOWUUxg2bBjf/OY3WbZsGYsXL+bGG2/kxBNP5Ljjjjviz3TKKacwYcIErrrqKt555x22bNnCxx9/zM9//nOWLl16xOuVzmHhwoWMHTu2ZciFW265hbFjx3LXXXcd9jr+8Y9/MHToUKZNm8bZZ5/N1KlT+eMf/9heIYuIiIhIB6d2U/tS4kVEREREupT+/fvzxhtv0KdPH6677jqOP/54br31VqZMmcKsWbPIzIwP/3P33XdTWFjIeeedxze+8Q2+9a1vtbrSy+1287//+7/89a9/ZfTo0S03Yrzsssv46U9/ymOPPcZJJ53EFVdcwYYNG4B4N/e//vWvZGRk8IUvfIEvfelL9OnT56hPcFuWxVNPPcXkyZO5+eabmTx5Mtdffz1bt24lNzf3qNYtHd+pp56KMWaf6fHHH9/v8ps2beI73/lOq7KsrCyefPJJ6uvrqa2t5dFHH201XraIiIiIdC9qN7Uvy7TXHXQ6kbq6OtLT06mtrSUtLS0hMWwrrejQ3ebPnTCQXgVq1IuIiEjHsGHDBlJTUxMdRodXX19P//799ynvCMe/0rl0hDrT0dtMe1P7SURERBJNbabD1x7tpoT2eHnvvfc477zzKCwsxLIsXnjhhVbzLcva73Tfffe1LNO3b9995t97773H+JOIiIiIiIiIiIiIiIgkOPHS2NjImDFjeOihh/Y7v6SkpNX06KOPYlkWF110UavlfvKTn7Ra7qabbjoW4YuIiIiIiIiIiIiIiLTiTuTGZ86cycyZMw84v6CgoNXrF198kdNOO22fbj+pqan7LCsiIiIiIiIiIiIiInKsJbTHy+dRVlbGK6+8wrXXXrvPvHvvvZfs7GzGjh3LfffdRzQaPei6QqEQdXV1rSYREREREREREREREZGjldAeL5/HE088QWpqKhdeeGGr8m9/+9uMGzeOrKwsPvroI+68805KSkq4//77D7iue+65h7vvvru9QxYRERERERERERERkW6m0yReHn30Ua644gr8fn+r8ltuuaXl+ejRo/F6vVx//fXcc889+Hy+/a7rzjvvbPW+uro6evfu3T6Bi4iIiIiIiIiIiIhIt9EpEi/vv/8+a9as4Z///Ochl500aRLRaJRNmzYxZMiQ/S7j8/kOmJQRERERERERERERERE5Up3iHi9/+ctfGD9+PGPGjDnkskuXLsW2bfLy8o5BZCIiIiIiIiIiIiIiInsktMdLQ0MD69ata3m9ceNGli5dSlZWFkVFRUB8GLBnn32WX/3qV/u8f+7cucyfP5/TTjuN1NRU5s6dy3e/+13+67/+i8zMzP9n777jq6oP/4+/z53Ze5MQwt5bEFEEQQEnzmKxWrXa9lut4/utLVat2mG11vpzVGuHo3VUq+KoYlkCypAhG4FASEjIIuvmZt5xfn+gaVNBGTc5N8nr+XjcPpp7zj33fbWU+8n7fD6fTvscAAAAAAAAAAAAksXFy/r16zVt2rS2n7/Yd+Waa67Rc889J0l65ZVXZJqmrrzyyi+93u1265VXXtG9996rlpYW5eXl6bbbbmu3fwsAAAAAAAAAAEBnsbR4mTp1qkzT/MpzbrzxRt14441HPDZ27FitWbOmI6IBAACgm2nxB+XzBzrt/ZwOu9yO41/Z989//rN+//vfq6KiQsOGDdOvfvUrjR07tgMSAgAAAEB7nTlu6s5jJkuLFwAAAKCz+PwBvblqR6e938WnDT3uQcSCBQv0s5/9TL/5zW80duxYPfPMM/rGN76hVatWKTU1tYOSAgAAAMBhnTlu6s5jpuOvkwAAAAB0iKefflpXXXWVrrzySg0aNEi/+c1vFBkZqZdfftnqaAAAAABgua4yZqJ4AQAAAMJAa2urNm/erClTprQ9Z7PZNGXKFK1fv97CZAAAAABgva40ZqJ4AQAAAMJAdXW1AoHAl6bHp6amqqKiwqJUAAAAABAeutKYieIFAAAAAAAAAAAgRCheAAAAgDCQlJQku92uysrKds9XVlYqLS3NolQAAAAAEB660piJ4gUAAAAIAy6XS6NGjdLKlSvbngsGg1q5cqXGjx9vYTIAAAAAsF5XGjM5rA4AAAAA4LDvfe97uvnmmzVq1CiNHTtWf/jDH9TY2Ki5c+daHQ0AAAAALNdVxkwULwAAAECYmDNnjqqqqvTQQw+poqJCw4cP1yuvvBJ20+YBAAAAwApdZcxE8QIAAIAewemw6+LThnbq+52I66+/Xtdff32I0wAAAADA1+vMcVN3HjNRvAAAAKBHcDtscjvY4hAAAAAAjoZxU2jwTxAAAAAAAAAAACBEKF4AAAAAAAAAAABChOIFAAAAAAAAAAAgRCheAAAAAAAAAAAAQoTiBQAAAAAAAAAAIEQoXgAAAAAAAAAAAEKE4gUAAAAAAAAAACBEKF4AAAAAAAAAAABChOIFAAAAAAAAAAAgRBxWBwAAAAA6Q6sCag36O+39XDaHXLIf12tWr16tJ598Ups3b1Z5ebmee+45nXvuuR2UEAAAAADa68xxU3ceM1G8AAAAoEdoDfr1VtnGTnu/izLGymU7vkFEY2Ojhg0bpiuvvFLXXnttByUDAAAAgCPrzHFTdx4zUbwAAAAAYWL69OmaPn261TEAAAAAICx1lTETe7wAAAAAAAAAAACECMULAAAAAAAAAABAiFC8AAAAAAAAAAAAhAjFCwAAAAAAAAAAQIhQvAAAAAAAAAAAAISIw+oAAAAAAA7zer0qKCho+7moqEhbt25VYmKisrOzLUwGAAAAANbrKmMmihcAAAAgTGzevFkXX3xx28/33HOPJOkb3/iGHn/8catiAQAAAEBY6CpjJooXAAAA9Agum0MXZYzt1Pc7XpMnT1ZFRUUHpAEAAACAr9eZ46buPGaieAEAAECP4JJdLpvd6hgAAAAAELYYN4WGzeoAAAAAAAAAAAAA3QXFCwAAAAAAAAAAQIhQvAAAAABAGFuxYoUuuOACZWVlyTAMLViwoO2Yz+fTj3/8Y40YMULR0dHKysrS1VdfrYMHD7a7RnV1tebNm6e4uDglJCTo+uuvl9fr7eRPAgAAAPQMFC8AAADocgzDsDpCl8A/p+6hoaFBo0aN0pNPPvmlY42Njdq4caPuvvtubdy4UW+88YZ27dqlCy+8sN158+bN0/bt27Vo0SK9++67WrFihW688cbO+ggAAADoZIwFjl1H/LNyhPyKAAAAQAczDEPBYFA2G/cRHU0wGGSw1U3Mnj1bs2fPPuKx+Ph4LVq0qN1zTzzxhCZMmKCioiL17t1bO3fu1MKFC7Vu3TqNHz9ekvT444/r3HPP1cMPP6ysrKwO/wwAAADoXIyZjk1HjZv4pw4AAIAuJz09XfX19QoGg1ZHCUvBYFD19fVKT0+3OgosUFdXJ8MwlJCQIElavXq1EhIS2koXSZoxY4ZsNpvWrl1rUUoAAAB0JMZMX68jx03MeAEAAECXExkZqV69eqm8vFymaco0TasjhQ3DMGQYhnr16qXIyEir46CTNTc368c//rGuvPJKxcXFSZLKysqUlpbW7jyHw6GkpCSVlZUd8TotLS1qaWlp+9nj8XRcaAAAAIQcY6av1tHjJooXAAAAdEmRkZHq06eP1TGAsOHz+XTFFVfINE099dRTJ3WtBx54QPfdd1+IkgEAAMAKjJmsw1JjAAAAANDFfVG6FBYWatGiRW2zXSQpIyNDFRUV7c73+/2qrq5WRkbGEa83f/581dXVtT0OHDjQofkBAACA7oQZLwAAAADQhX1RuuzZs0fLli1TcnJyu+OTJk1SbW2tNmzYoHHjxkmSli5dqmAwqIkTJx7xmm63W263u8OzAwAAAN0RxQsAAAAAhDGv16v8/Py2nwsKCrRp0yYlJSUpMzNTl112mTZu3Kh3331XgUCgbd+WpKQkuVwuDRkyRLNmzdINN9ygp59+Wj6fTzfddJPmzp2rrKwsqz4WAAAA0G1RvAAAAABAGFu/fr2mTZvW9vPtt98uSbrmmmt077336u2335YkjR49ut3rli1bpqlTp0qSXnzxRd10002aPn26bDabLr30Uj322GOdkh8AAADoaSheAAAAACCMTZ06VaZpHvX4Vx37QlJSkl566aVQxgIAAABwFDYr33zFihW64IILlJWVJcMwtGDBgnbHv/3tb8swjHaPWbNmtTunurpa8+bNU1xcnBISEnT99dfL6/V24qcAAAAAAAAAAAA4zNLipaGhQaNGjdKTTz551HNmzZql0tLStsfLL7/c7vi8efO0fft2LVq0SO+++65WrFihG2+8saOjAwAAAAAAAAAAfImlS43Nnj1bs2fP/spz3G63MjIyjnhs586dWrhwodatW6fx48dLkh5//HGde+65evjhh9koEgAAAAAAAAAAdCpLZ7wciw8//FBpaWkaNGiQvv/976uqqqrt2OrVq5WQkNBWukjSjBkzZLPZtHbt2qNes6WlRR6Pp90DAAAAAAAAAADgZIV18TJr1iy98MILWrJkiR588EEtX75cs2fPViAQkCSVlZUpLS2t3WscDoeSkpJUVlZ21Os+8MADio+Pb3vk5OR06OcAAAAAAAAAAAA9g6VLjX2duXPntv33ESNGaOTIkerXr58+/PBDTZ8+/YSvO3/+fN1+++1tP3s8HsoXAAAAAAAAAABw0sJ6xst/69u3r1JSUpSfny9JysjIUEVFRbtz/H6/qqurj7ovjHR435i4uLh2DwAAAAAAAAAAgJPVpYqX4uJiVVVVKTMzU5I0adIk1dbWasOGDW3nLF26VMFgUBMnTrQqJgAAAAAAAAAA6KEsXWrM6/W2zV6RpIKCAm3atElJSUlKSkrSfffdp0svvVQZGRnau3ev7rjjDvXv318zZ86UJA0ZMkSzZs3SDTfcoKefflo+n0833XST5s6dq6ysLKs+FgAAAAAAAAAA6KEsnfGyfv16jRkzRmPGjJEk3X777RozZozuuece2e12bdmyRRdeeKEGDhyo66+/XuPGjdPKlSvldrvbrvHiiy9q8ODBmj59us4991ydfvrpeuaZZ6z6SAAAAAAAAAAAoAezdMbL1KlTZZrmUY9/8MEHX3uNpKQkvfTSS6GMBQAAAAAAAAAAcEK61B4vAAAAAAAAAAAA4YziBQAAAAAAAAAAIEQoXgAAAAAAAAAAAEKE4gUAAAAAAAAAACBEKF4AAAAAAAAAAABChOIFAAAAAAAAAAAgRCheAAAAAAAAAAAAQoTiBQAAAAAAAAAAIEQoXgAAAAAAAAAAAEKE4gUAAAAAAAAAACBEKF4AAAAAAAAAAABChOIFAAAAAAAAAAAgRCheAAAAAAAAAAAAQoTiBQAAAAAAAAAAIEQoXgAAAAAAAAAAAEKE4gUAAAAAAAAAACBEKF4AAAAAAAAAAABChOIFAAAAAAAAAAAgRCheAAAAAAAAAAAAQoTiBQAAAAAAAAAAIEQoXgAAAAAAAAAAAEKE4gUAAAAAAAAAACBEKF4AAAAAAAAAAABChOIFAAAAAAAAAAAgRCheAAAAAAAAAAAAQoTiBQAAAAAAAAAAIEQoXgAAAAAAAAAAAEKE4gUAAAAAAAAAACBEKF4AAAAAAAAAAABChOIFAAAAAAAAAAAgRCheAAAAAAAAAAAAQoTiBQAAAAAAAAAAIEQoXgAAAAAAAAAAAEKE4gUAAAAAAAAAACBEKF4AAAAAAAAAAABChOIFAAAAAAAAAAAgRCheAAAAACCMrVixQhdccIGysrJkGIYWLFjQ7rhpmrrnnnuUmZmpyMhIzZgxQ3v27Gl3TnV1tebNm6e4uDglJCTo+uuvl9fr7cRPAQAAAPQcFC8AAAAAEMYaGho0atQoPfnkk0c8/tBDD+mxxx7T008/rbVr1yo6OlozZ85Uc3Nz2znz5s3T9u3btWjRIr377rtasWKFbrzxxs76CAAAAECP4rA6AAAAAADg6GbPnq3Zs2cf8Zhpmnr00Ud111136aKLLpIkvfDCC0pPT9eCBQs0d+5c7dy5UwsXLtS6des0fvx4SdLjjz+uc889Vw8//LCysrI67bMAAAAAPQEzXgAAAACgiyooKFBZWZlmzJjR9lx8fLwmTpyo1atXS5JWr16thISEttJFkmbMmCGbzaa1a9ce8botLS3yeDztHgAAAACODcULAAAAAHRRZWVlkqT09PR2z6enp7cdKysrU1paWrvjDodDSUlJbef8twceeEDx8fFtj5ycnA5IDwAAAHRPFC8AAAAAgHbmz5+vurq6tseBAwesjgQAAAB0GRQvAAAAANBFZWRkSJLKy8vbPV9eXt52LCMjQxUVFe2O+/1+VVdXt53z39xut+Li4to9AAAAABwbihcAAAAA6KLy8vKUkZGhJUuWtD3n8Xi0du1aTZo0SZI0adIk1dbWasOGDW3nLF26VMFgUBMnTuz0zAAAAEB3Z2nxsmLFCl1wwQXKysqSYRhasGBB2zGfz6cf//jHGjFihKKjo5WVlaWrr75aBw8ebHeNPn36yDCMdo9f//rXnfxJAAAAAKBjeL1ebdq0SZs2bZIkFRQUaNOmTSoqKpJhGLr11lv1i1/8Qm+//ba2bt2qq6++WllZWZozZ44kaciQIZo1a5ZuuOEGffLJJ/r444910003ae7cucrKyrLugwEAAADdlMPKN29oaNCoUaN03XXX6ZJLLml3rLGxURs3btTdd9+tUaNGqaamRrfccosuvPBCrV+/vt25999/v2644Ya2n2NjYzslPwAAAAB0tPXr12vatGltP99+++2SpGuuuUbPPfec7rjjDjU0NOjGG29UbW2tTj/9dC1cuFARERFtr3nxxRd10003afr06bLZbLr00kv12GOPdfpnAQAAAHoCS4uX2bNna/bs2Uc8Fh8fr0WLFrV77oknntCECRNUVFSk3r17tz0fGxt71LWJAQAAAKArmzp1qkzTPOpxwzB0//336/777z/qOUlJSXrppZc6Ih4AAACA/9Kl9nipq6uTYRhKSEho9/yvf/1rJScna8yYMfrNb34jv9//lddpaWmRx+Np9wAAAAAAAAAAADhZls54OR7Nzc368Y9/rCuvvFJxcXFtz//whz/U2LFjlZSUpFWrVmn+/PkqLS3VI488ctRrPfDAA7rvvvs6IzYAAAAAAAAAAOhBukTx4vP5dMUVV8g0TT311FPtjn2xvrEkjRw5Ui6XS9/97nf1wAMPyO12H/F68+fPb/c6j8ejnJycjgkPAAAAAAAAAAB6jLAvXr4oXQoLC7V06dJ2s12OZOLEifL7/dq/f78GDRp0xHPcbvdRSxkAAAAAAAAAAIATFdbFyxely549e7Rs2TIlJyd/7Ws2bdokm82mtLS0TkgIAAAAAAAAAADwb5YWL16vV/n5+W0/FxQUaNOmTUpKSlJmZqYuu+wybdy4Ue+++64CgYDKysokSUlJSXK5XFq9erXWrl2radOmKTY2VqtXr9Ztt92mq666SomJiVZ9LAAAAAAAAAAA0ENZWrysX79e06ZNa/v5i31XrrnmGt177716++23JUmjR49u97ply5Zp6tSpcrvdeuWVV3TvvfeqpaVFeXl5uu2229rt3wIAAAAAAAAAANBZLC1epk6dKtM0j3r8q45J0tixY7VmzZpQxwIAAAAAAAAAADghNqsDAAAAAAAAAAAAdBcULwAAAAAAAAAAACFC8QIAAAAAAAAAABAiFC8AAAAAAAAAAAAhQvECAAAAAAAAAAAQIhQvAAAAAAAAAAAAIULxAgAAAAAAAAAAECIULwAAAAAAAAAAACFC8QIAAAAAAAAAABAiFC8AAAAAAAAAAAAhQvECAAAAAAAAAAAQIhQvAAAAAAAAAAAAIULxAgAAAAAAAAAAECIULwAAAAAAAAAAACFC8QIAAAAAAAAAABAiFC8AAAAAAAAAAAAhQvECAAAAAAAAAAAQIg6rAwAAAAAAAHQXldU1amn1Wx3jmLhdDqUmJVodAwCAbofiBQAAAAAAIERaWv16d32+1TGOyfnj+1sdAQCAboniBQAAAAAQ9nx+vzxNXqtjHBOfv2vMdgAAAEDHoHgBAAAAAIS9oEztaaywOsYxCcq0OgIAAAAsZLM6AAAAAAAAAAAAQHdB8QIAAAAAAAAAABAiLDUGAAAAAAhrOwrL1NjUZHUMAAAA4JhQvAAAAAAAwtpdzy7U/vIaRUY5FBfvUnyiS7FxLqtjAQAAAEdE8QIAAAAACFuNza2KcDklSU2NfjU1+lVe2qisnGhl9oq2OB0AAADwZezxAgAAAAAIW1ERLr105zz96daLlNc/TonJbknSwQMNqq1usTgdAAAA8GUULwAAAACAsBcfHaGklAj1HRCv1PRISVJBvkeNDX6LkwEAAADtUbwAAAAAALqUnNwYxcY5FQya2rurVj5f0OpIAAAAQBuKFwAAAABAl2LYDPUdGC93hF2trUEVF9ZbHQkAAABoQ/ECAAAAAOhyHA6b8vrHSZKqD7WouZklxwAAABAeKF4AAAAAAF1SdIxTcQkuSVL5wUaL0wAAAACHUbwAAAAAALqszF5RkqSqyma1tgQsTgMAAABQvAAAAAAAurCYWJdiYp0yTam8lFkvAAAAsB7FCwAAAACgS8vMjpYkVVY0yecLWpwGAAAAPR3FCwAAAACgS4uNcyoq2iEzKFUw6wUAAAAWo3gBAAAAAHRphmEos9e/Z72YQdPiRIDk8wfU2NKqxuZWNTS3qsXnl2nyv00AAHoCh9UBAAAAAAA4WfGJLjmcNvl9QXnqWhWf6LY6EnqIilqvdhSWa2dRuXYdqFRhebXKaurV4gt86Vyn3aaYSLdio9zKSIpTdkq8kuOiZBiGBckBAEBHoXgBAAAAgC4sEAjo3nvv1d/+9jeVlZUpKytL3/72t3XXXXe1/TLXNE397Gc/0x//+EfV1tZq8uTJeuqppzRgwACL04eOYRhKSnaroqxJ1VXNFC/oMPWNzVr7WVHbo7iy7ivPNz7/D9OUfIGgarxNqvE2qaiiVp9Icjsd6p+VrGF9MpQQE9kZHwEAAHQwihcAAAAA6MIefPBBPfXUU3r++ec1bNgwrV+/Xtdee63i4+P1wx/+UJL00EMP6bHHHtPzzz+vvLw83X333Zo5c6Z27NihiIgIiz9B6CQlR6iirEm11a0KBEzZ7cwiQGhU1nm1bNNefbg5X+t3FcsfDLYds9sM5WUma0jvNA3JSVOk06btBw4pJsIll/Pfv3bxB4LyNrXI29yqmvpGlRzyqLTaoxafX9sLy7W9sFy9UuI1ul+WeqXEW/ExAQBAiFC8AAAAAEAXtmrVKl100UU677zzJEl9+vTRyy+/rE8++UTS4dkujz76qO666y5ddNFFkqQXXnhB6enpWrBggebOnWtZ9lCLinHI5baptSWoupoWJaV0n1IJnc/T0Kylm/L1/rrPtH73Af3n9ix5GUk6dUiuJg7prbH9eykm8t8zrIrLKlVa2/il6znsNiXERCohJlLZKfEakZepYDCog1UebS8sV2F5jUoO1ankUJ3yMpI0aWhuu+sCAICug+IFAAAAALqw0047Tc8884x2796tgQMHavPmzfroo4/0yCOPSJIKCgpUVlamGTNmtL0mPj5eEydO1OrVq49YvLS0tKilpaXtZ4/H0/EfJAQMw1BSSoTKShpVXdVM8YLjFgya2rCnWAs+3qYln+5Rq//f+7SMyMvUWaP7a9rofuqdlhiS97PZbMpOTVB2aoLqG5u1ZV+pdhSVq6CsWkUVtRo3oJdG9suSjT1gAADoUiheAAAAAKAL+8lPfiKPx6PBgwfLbrcrEAjol7/8pebNmydJKisrkySlp6e3e116enrbsf/2wAMP6L777uvY4B3ki+KlrrZVfl9QDqfN6kjoAirrvHpn9Q4tWLWt3Z4t/bOSNXvCYM0cP0hZyR27/FdsVIQmD8/T4N5pWrV9v0qr6/XJrgM6WOXRWWP6K8Ll7ND3BwAAoUPxAgAAAABd2KuvvqoXX3xRL730koYNG6ZNmzbp1ltvVVZWlq655poTuub8+fN1++23t/3s8XiUk5MTqsgdKjLSocgoh5oa/aqpblFqOpuV48hM09SanUV6bcVmrdy6T4Hg4bXEoiNcmn3KYM2ZPFxDeqfJ6OTZJslx0Tr/1KHaXVypj7btV/GhOr2+cqvOHjtAaYmxnZoFAACcmBMqXvr27at169YpOTm53fO1tbUaO3as9u3bF5JwAAAAANAVdeaY6Uc/+pF+8pOftC0ZNmLECBUWFuqBBx7QNddco4yMDElSeXm5MjMz215XXl6u0aNHH/GabrdbbnfX3VsiKcWtkiK/qg81U7zgS1p8fr3/yWd6cclG7S2tant+dL8szZk8XGePHahIt7WzSwzD0KCcNKXGx2jRxt2qa2jW26t36Kwx/dU3M/nrLwAAACx1QnOu9+/fr0Ag8KXnW1paVFJScszXWbFihS644AJlZWXJMAwtWLCg3XHTNHXPPfcoMzNTkZGRmjFjhvbs2dPunOrqas2bN09xcXFKSEjQ9ddfL6/XeyIfCwAAAABCIlRjpmPR2Ngom6390M5utysYDEqS8vLylJGRoSVLlrQd93g8Wrt2rSZNmhTSLOEiKfnw3i7eep98rV/+94CeqcrToKffXa1z7/yT7v/bIu0trVKU26krp43WP+65Wn/5v2/owknDLC9d/lNSXJQunjxcfdITFTRNLdm4R7uLK62OBQAAvsZxzXh5++232/77Bx98oPj4f69vGggEtGTJEvXp0+eYr9fQ0KBRo0bpuuuu0yWXXPKl4w899JAee+wxPf/888rLy9Pdd9+tmTNnaseOHYqIOPxFet68eSotLdWiRYvk8/l07bXX6sYbb9RLL710PB8NAAAAAE5aqMdMx+KCCy7QL3/5S/Xu3VvDhg3Tp59+qkceeUTXXXedpMN3zt966636xS9+oQEDBrSNrbKysjRnzpyQZgkXLrddUdEONTb45alrVXIqs156suLKWj37wTq9u3anfP7DRVxGUqyunDZGcyYPV2xkeM/ucjkdmjFuoFZu2addxZX6cPNe+fwBDeuTYXU0AABwFMdVvHzxpdwwjC+tFex0OtWnTx/99re/PebrzZ49W7Nnzz7iMdM09eijj+quu+7SRRddJEl64YUXlJ6ergULFmju3LnauXOnFi5cqHXr1mn8+PGSpMcff1znnnuuHn74YWVlZR3PxwMAAACAkxLqMdOxePzxx3X33Xfrf/7nf1RRUaGsrCx997vf1T333NN2zh133KGGhgbdeOONqq2t1emnn66FCxe23dDWHcUnuNTY4FddDcVLT1VUUas/L1yr99bubNu/ZURepuZNH6OzRg+Qw35Ci4BYwmYYmjKyr5wOu7btL9PH2/fLlDSc8gUAgLB0XMXLf05VX7dunVJSUjoklCQVFBSorKxMM2bMaHsuPj5eEydO1OrVqzV37lytXr1aCQkJbaWLJM2YMUM2m01r167VxRdffMRrt7S0qKWlpe1nj8fTYZ8DAAAAQM/RmWOmL8TGxurRRx/Vo48+etRzDMPQ/fffr/vvv7/D84SLuAS3Sksa5alrlWmanb5BOqxT5WnQM/9cozc+2tpWuJw2tI9uOHeiRvXrujdoGoahSUNz5bDbtGnvQa3avl9Rbid7vgAAEIaOq3j5QkFBQahzfElZWZkkKT09vd3z6enpbcfKysqUlpbW7rjD4VBSUlLbOUfywAMP6L777gtxYgAAAAA4rDPGTPhq0TEO2R2GAn5TDfU+xcS5rI6EDtbU6tNfF23Q84vWq6nFJ0maPKyPbjzvVI3Iy7Q4XWgYhqFTBuWo1RfQjqJyLduUr0iXU5nJcVZHAwAA/+GEihdJWrJkiZYsWaKKioq2u7q+8Je//OWkg3Wk+fPn6/bbb2/72ePxKCcnx8JEAAAAALqbrjxm6g4Mw1B8vEvVVS2qq22leOnmVmzdpwdfWabS6sMrWgzLTdetl0zRuIHZFicLPcMwdNrwPmpsadX+8hp9sH6XLjxtmJJio6yOBgAAPndCxct9992n+++/X+PHj1dmZmaHTNnOyDi8Tml5ebkyM/99Z0p5eblGjx7ddk5FRUW71/n9flVXV7e9/kjcbrfc7vDePA8AAABA19UZYyZ8vbhEd1vx0qu31WnQEcpr6vXQ35dp2ea9kqSMpFjdcvEZOmfcwG79585mGDprzAD9c+0Oldd49cG6XbrkjBFyO0/4/loAABBCJ/Q38tNPP63nnntO3/rWt0Kdp01eXp4yMjK0ZMmStqLF4/Fo7dq1+v73vy9JmjRpkmpra7VhwwaNGzdOkrR06VIFg0FNnDixw7IBAAAAwFfpjDETvl58/OFZLk2NfrW2BuRy2S1OhFAxTVML1+3SA68slbepRQ6bTfNmjNWN556qSLfT6nidwmG3aeb4QXrzo22qb2rRsk35mjl+ULcunAAA6CpOqHhpbW3VaaeddtJv7vV6lZ+f3/ZzQUGBNm3apKSkJPXu3Vu33nqrfvGLX2jAgAHKy8vT3XffraysLM2ZM0eSNGTIEM2aNUs33HCDnn76afl8Pt10002aO3eusrK67oZ5AAAAALq2UI2ZcHIcTpuiYxxq8PrlqW1VSlqk1ZEQAnUNzXrg5SX614bdkqThfTJ0z1Vnq3+vFIuTdb4Il1Nnjxuot1ZtU1FFrT7NL9HYAd1veTUAALqaEypevvOd7+ill17S3XfffVJvvn79ek2bNq3t5y/2Xbnmmmv03HPP6Y477lBDQ4NuvPFG1dbW6vTTT9fChQsVERHR9poXX3xRN910k6ZPny6bzaZLL71Ujz322EnlAgAAAICTEaoxE05eXIJbDV6/6iheurTK6hq1tPqVf7BKv/r7ch3yNMpmGJp75ghdfsZw2W2missqrY4pSfL5/Z36finx0Tp9eJ6Wb9mn9buLlRofo5y0hE7NAAAA2juh4qW5uVnPPPOMFi9erJEjR8rpbD+N95FHHjmm60ydOlWmaR71uGEYuv/++3X//fcf9ZykpCS99NJLxxYcAAAAADpBqMZMOHnxCS6VFjfIU9cqM2jKsLEMU1fU0urXb99cpY+2FSgQNBUfHaFpo/srJjpK72/cZ3W8ds4eldvp7zkoJ00VtV7tLKrQ0k35umzKSEVHuDo9BwAAOOyEipctW7a07buybdu2dsdYSxQAAABAT8eYKXxERTvkcBjy+015vT7FxvHL6K7GHwjq6fc+0fIthwuW3mmJOmt0P7nYSL6d04b2UUWtV1WeRi3fvFezJwzm/28AALDICX1LWbZsWahzAAAAAEC3wZgpfBiGodh4l2qqWlRf10rx0sU0t/o1/8//bCtdxg3I1tgBvSgUjsBut+ms0QP0xkdbVHyoTtv3l2t4XobVsQAA6JFsVgcAAAAAAKAjfVG21Ht8FifB8ahvbNYPHn9Dy7fsk9Nu09ljB2rcwGxKl6+QGBupU4ccXups7WeFqq5vtDgRAAA90wnNeJk2bdpXftFZunTpCQcCAAAAgK6OMVN4iY07vMdOg9enYNCUjX1ewt6hugb9z+NvKL/kkGIi3brzG1O0v7Le6lhdwtDcdBVV1OhAZZ2WbcrXnMnDZbdx3y0AAJ3phIqXL9Yq/oLP59OmTZu0bds2XXPNNaHIBQAAAABdFmOm8OKOsMvpssnXGpS33qe4eJYbC2c13iZ9//+9rr2lVUqJi9ITN1+iKIcoXo6RYRg6c2Q//WPlFlV5GrVp70GNG5BtdSwAAHqUEypefve73x3x+XvvvVder/ekAgEAAABAV8eYKbwYhqHYOKeqD7Wo3tNK8RLG6hub9YPH3tDe0iqlxkfrT/97hXJSE1RcVml1tC4lKsKl04b10dJP8/XpnhLlZSQpKTbK6lgAAPQYJ1S8HM1VV12lCRMm6OGHHw7lZWGxQDCoDXtK9MrK7So5VKeDVR6VVdfL6bArLjpC8VFu5aQmaPygHI0fmKOs5DirIwMAAABhiTGTdWLjXIeLlzqflGN1GhxJQ3OrbnpigT47UKHEmEg9fetlyklNsDpWl9UvM1n5JVUqqqjRii37dOFpw2RjfxwAADpFSIuX1atXKyIiIpSXhIXKa+q1o7BcheU1avUHjnjOFxv1bd5XqnfX7pQk9UlP1GVTRurCScMUE+nutLwAAABAuGPMZJ3YuMOzXBoafAoEgrLb2fMinPgDQf3omXe1taBU8dEReuqWS5WXkWR1rC7NMAydPryPXlvhUUWtV9v3l2lEXqbVsQAA6BFOqHi55JJL2v1smqZKS0u1fv163X333SEJButU1zdq3a4DKiyvaXsuMSZC08cM1IBeKcpKjlNGUqwCQVOexmbVeZu180CF1u06oB2FZdpfXqOHX1uup95ZrQsnDdV1syYoOS7awk8EAAAAdC7GTOHH5bbJ5bKp9fN9XuITuEksXJimqd+8ukxrdhYqwuXQEzddrIHZqVbH6hZiIt06dUhvrdxaoHW7Dig3PVFxUZS/AAB0tBMqXuLj49v9bLPZNGjQIN1///0655xzQhIMnc/nD2jNzkLtLKqQJBmSBmSnanBOqq6dMVq5WelHfe30sQMkSd6mFi1c95leXrZJBWXVennZJr2zeoe+d8EkXXHmaDm4qwwAAAA9AGOm8HN4nxeXqg41q95D8RJOXl72qV5bsUWGIf3y2tka1ifD6kjdyuCcNOWXHFJpdb0+3rZfs04ZJIMlxwAA6FAnVLw8++yzoc4Bi1V7GrX40z2q9TZJkvIyknTKoBwlxERKkuy2YytMYiLdumzKKF16xkit2VmkJ9/+WDsKy/Xwa8u14ONtuvuqs5naDAAAgG6PMVN4io13qupQs7yeVquj4HMrt+7TI/9YIUm65eIzNG10f4sTdT+GYeiMEX31jxVbdKCyVoXlNerDMm4AAHSok9rjZcOGDdq58/C+HsOGDdOYMWNCEgqd67OiCn28vUCBoKkot1Nnje6vrJT4r3/hVzAMQ5OG5mrC4Bwt+HibnnjrY+UfrNL1D7+qmy8+XVdNH8sdNgAAAOj2GDOFl5gv9nnx+tnnJQwUV9bqp88uVNA0dfHk4frWjHFWR+q2EmIiNbJvpjbtPaiPt+9Xr5R4OR12q2MBANBtnVDxUlFRoblz5+rDDz9UQkKCJKm2tlbTpk3TK6+8otRU1mLtCkzT1IbdxdqYXyJJykmN19RR/RXpdobsPew2my49Y6SmjxmgB15ZqkUbdut3r6/Q+t0HdN/VM9tm1AAAAADdCWOm8OR22+Vy29TaEpTX41N8IsuNWaXV59eP//RPeZt+wRIyAACqCElEQVRaNKpvpn5y5VncnNfBxg7opfyDh+RtatXG/BJNHNzb6kgAAHRbJ3R7z80336z6+npt375d1dXVqq6u1rZt2+TxePTDH/4w1BnRAUzT1JqdhW2ly7gB2Zp1yuCQli7/KSEmUr++/lzdeeVZcjnsWrm1QFc/+LIKy2s65P0AAAAAKzFmCl+xn896qff4LE7Ssz3y+grtLKpQQnSEfv2d8+S0M/uioznsdk0elidJ2rKvVDX1jRYnAgCg+zqh4mXhwoX6/e9/ryFDhrQ9N3ToUD355JN6//33QxYOHcM0Ta3cVqCtBWWSpNOG9tG4gdkdfneRYRi6bMooPX/HXPVKjlPxoTpd+5tXtGVfaYe+LwAAANDZGDOFr5jYwzebeb0UL1b514ZdenX5ZknSz789S+mJsRYn6jly0xOVm54o0zT18fb9Mk3T6kgAAHRLJ1S8BINBOZ1fnhnhdDoVDAZPOhQ61pqdhfqsqEKSNGVkXw3Py+jU9x+Uk6bn7pirobnpqm1o1vce/Yc+3Ly3UzMAAAAAHYkxU/j6onhp9PoUDPJL5852sMqjX/xtsSTp2pmnaPLwPIsT9TyThubKbjN0sMqjtbuKrY4DAEC3dELFy1lnnaVbbrlFBw8ebHuupKREt912m6ZPnx6ycAi97fvL2ma6TB3VT4Nz0izJkRwXrWduvUynD89Ts8+vHz3zjv61YZclWQAAAIBQY8wUvtwRdjkchkxTamxg1ktnCgZN3f/Xf8nb3KpRfTP1/QtOszpSjxQXFaEReZmSpL/8a4NafX6LEwEA0P2cUPHyxBNPyOPxqE+fPurXr5/69eunvLw8eTwePf7446HOiBApKq/Rqu37JUmnDMrRwGxrN/SMinDpke9dqPMnDlEgaOqnf3lfizfutjQTAAAAEAqMmcKXYRj/Xm6snuKlM/1j5RZ9suuAIpwO3XfNTDnsJ/QrCYTAmP69FOV2qqzGq5eWfmp1HAAAuh3HibwoJydHGzdu1OLFi/XZZ59JkoYMGaIZM2aENBxC51BdgxZ/ukempEHZqRrdL8vqSJIkh92mn119jiTp3bU7Nf/P78mQoeljB1icDAAAADhxjJnCW3SsS7U1rRQvnehAZa0efWOFJOmHF5+u3mmJFifq2ZwOuyYM7q0PN+/Vn95fq/NOHaLU+BirYwEA0G0c1+0lS5cu1dChQ+XxeGQYhs4++2zdfPPNuvnmm3XKKado2LBhWrlyZUdlxQlq9fm1eONu+QNB9UqO0xkj8mQYhtWx2thth8uXcycMViBoav6f39NH2wqsjgUAAAAcN8ZMXcN/znhhc/GOFwyauveFf6m51a/xA3N0xZmjrY4ESQN6pWhgrxQ1tvj0xFsfWx0HAIBu5biKl0cffVQ33HCD4uLivnQsPj5e3/3ud/XII4+ELBxOnmma+mjbfnkaWxQT6dKMcQNls4XfdG67zab7rpmpWeMHyR8M6o4/vqtt+8usjgUAAAAcF8ZMXUNUtEOGIQX8plqaA1bH6fZeX7lFn+aXKMrt1L1Xny2bLXxuBOzJDMPQDbPGS5LeWb1D2xmDAwAQMsf1G/jNmzdr1qxZRz1+zjnnaMOGDScdCqGzp+SQ8g8ekmFIZ40eILfzhFaX6xRflC+nDslVc6tfP3xygYoqaqyOBQAAABwzxkxdg81mKDqGfV46Q5WnQY9/PpvipjmnKys53uJE+E+DslN03sQhkqSHXv2QGWAAAITIcRUv5eXlcjqdRz3ucDhUWVl50qEQGrXeprYlu8YNyFFGUqzFib6e02HXb248X0N6p6nW26QfPPaGqjwNVscCAAAAjgljpq7jP5cbQ8f53esr5G1q0ZDeabp8ykir4+AIbp5zuiLdTm0tKNX76z6zOg4AAN3CcRUvvXr10rZt2456fMuWLcrMzDzpUDh5waCpZZvy5Q8ElZUcp9H9s6yOdMyiI1x67AdzlJ0Sr5Iqj25/+h21+PxWxwIAAAC+FmOmroPipeOt23VA733ymQxD+uk3p8sehsteQ0pLiNF1MydIkh578yM1tfBnAgCAk3Vc33rOPfdc3X333Wpubv7SsaamJv3sZz/T+eefH7JwOHHb9peqsq5BLodd00b3l83oWmvoJsdF64mbL1ZclFtbC0r1ixcXM+UZAAAAYY8xU9cR/Xnx0tIckM8XtDhN9+PzB/TAK0slSZedMUpDczMsToSvctWMscpKjlNFrVfP/Wud1XEAAOjyjqt4ueuuu1RdXa2BAwfqoYce0ltvvaW33npLDz74oAYNGqTq6mr99Kc/7aisOEaexmat21UsSTp1SK6iI1wWJzoxvdMS9eB3zpPdZuifa3fqhUWshQ0AAIDwxpip63A4bIqItEuSGpj1EnIvLt2o/WXVSoqN0k0XnWZ1HHwNt9Oh2y6dIkl6/l/rdbDKY3EiAAC6tuPaaT09PV2rVq3S97//fc2fP79tBoJhGJo5c6aefPJJpaend0hQHBvTNLVya4ECwcNLjA3KSbU60kmZOCRX/3f5VD3492V6bMFK5WUmacqIvlbHAgAAAI6IMVPXEhPrVHNTQN56nxKS3FbHsURldY1aWkO7tHNtQ7P+9N5aSdK3zhqlOk+96jz1J3VNn5/lpzvaWaP7a/zAbK3fXazHF3ykB64/1+pIAAB0WcdVvEhSbm6u3nvvPdXU1Cg/P1+maWrAgAFKTEzsiHw4TntKDqnkUJ3sNkNnjMiT0cWWGDuSK84cpb0Hq/SPlVt011/e19/mz1PvtASrYwEAAABHxJip64iJdepQRbO89a1WR7FMS6tf767PD+k1P9paoMYWn1Lio9XoC4bk+mePyg1BMnwVwzD0v5edqW8+8KI+WL9Lc6eN1qi+XWe/WAAAwskJ72yXmJioU045RRMmTGAAESaaW/1avaNQkjRuQLbioyMtThQahmHoR9+YqtH9suRtbtX/PfOOmlpZCgAAAADhjTFT+Iv5fJ+Xxga/gkH2lAyF6vpG7Swql3R46evucDNgTzIoJ00XThomSfrta8v5cwEAwAk67hkvCF8b9xSrxedXYkykRvbNDOm1g8GgissqQ3rN43XLRafqtj+8p/ySQ/rpn/+p2+ac1vYl3u1yKDWJwSwAAACAY+dy2+Vw2uT3BdXo9SkmrmvujxlO1u4skimpT3qispLjrI6DE/A/F56mf23YrW37y/TB+l2aPWGw1ZEAAOhyKF66iVpvk7YXHr6raNLQXNlsJzyZ6Yh8gYAWbdwX0mueiNNH9NU/1+7Qh1sK5AuYGtYnQ5J0/vj+FicDAAAA0NUYhqGYWKdqq1vkrad4OVnFlbU6UFkrm2Fo4pDeVsfBCUqNj9G1M0/R799epccXfKSpo/sp0uW0OhYAAF1KaH87D8us2Vko0zTVOy1B2akJVsfpMFnJcZow6PAX+NU7CnWorsHiRAAAAAC6si+WG/PWs5zxyTBNU2s/K5IkDeuT3m2Wvu6prpo+ThlJsSqrqdeLizdaHQcAgC6H4qUbKK6sVVFFrQzD0KlDuv+GgyP7Zio3PVFB09SST/eo1R+wOhIAAACALqqtePH6ZJrsZ3Gi9pVWq8rTKKfDrjH9e1kdBycpwuXQLXPOkCT95YNPVFnrtTgRAABdC8VLFxcMmlq9o1DS4buKEmK6/11FhmHozJH9FB3hUl1Dsz7eVmB1JAAAAABdVFSUQ4ZNCvhNNTdzU9eJCAZNrd99QNLhG+UiWJaqWzhn/ECN7Jup5la/nnj7Y6vjAADQpVC8dHG7SypV422S2+nQuAHZVsfpNBEuh84a01+GpD0lh7Rss/X7zwAAAADoegyboeiYw0VBA8uNnZA9JZWqa2iW2+nQiM/34UTXZxiG/veyMyVJ767ZoZ1F5RYnAgCg66B46cICgaA27imWJI3pnyW302Fxos6VmRSnsQMPl01P/fMTFVXUWJwIAAAAQFfUttyYh+LleAUCQW34j3Gpq4eNS7u7EXmZmn3KYJmm9Nt/LGc5PgAAjhHFSxf22YEKeZtaFeV2amhuz7yraEz/XspMilWzz6+f/Ok9tfr8VkcCAAAA0MXExPx7nxccn52MS7u9m+ZMlttp18Y9JVq6Kd/qOAAAdAkUL12UPxDQxvwSSYfLB4e9Z/6rtBmGpo3ur9hItz47UKHHFnxkdSQAAAAAXUz05zNeWpoD8rUGLU7TdfgDQX36+bh07IDsHjsu7e4yk+L0rRnjJUn/742V3PAIAMAx4FtRF7WjsFxNLT7FRLo0uHea1XEsFRPp1i0XTZIkvbT0U63cyn4vAAAAAI6dw2FTZJRdErNejsdnRRVt49JBOalWx0EH+vY545USH63iQ3V65cNNVscBACDsUbx0Qa3+gDbtPShJGjcgW3Yb/xonDMrWldNGS5J+9vwHqqj1WhsIAAAA6EQlJSW66qqrlJycrMjISI0YMULr169vO26apu655x5lZmYqMjJSM2bM0J49eyxMHH6iY1ySJG99q8VJuoZAIKjN+w6PS0f368W4tJuLinDpposmS5L+9N5aVXsaLU4EAEB445tRF7R9f5maW/2Kj47QgF7cVfSFWy4+Q4Nz0lTb0Kx7X/hAwSCb/gEAAKD7q6mp0eTJk+V0OvX+++9rx44d+u1vf6vExMS2cx566CE99thjevrpp7V27VpFR0dr5syZam5utjB5eIn5fLmxhnpmvByLXcWVamhuVXSES4OyGZf2BOdPHKrBOWnyNrfq6XdXWx0HAICwRvHSxfgDAW0tKJUkje3fSzabYXGi8OFyOvTL62YrwunQmp1FennZp1ZHAgAAADrcgw8+qJycHD377LOaMGGC8vLydM4556hfv36SDs92efTRR3XXXXfpoosu0siRI/XCCy/o4MGDWrBggbXhw8gXxUtjg5+buL5GMBjU5s9XYRjVN1N29nbpEWw2Q/97+ZmSpDc+2qr8kkMWJwIAIHzx7aiL+ayoUs2tfsVGutUvK8XqOGEnLyNJt106RZL0+IKPtIcvggAAAOjm3n77bY0fP16XX3650tLSNGbMGP3xj39sO15QUKCysjLNmDGj7bn4+HhNnDhRq1dz1/oXXG6bnE6bTFNqYJ+Xr7Sn5JDqm1oU6XZqcO90q+OgE40bkK2zRvdX0DT1238sl2lSUgIAcCQUL11IIPjvNXRH9ctitstRXDZlpE4fnqdWf0A/ffZ9tfj8VkcCAAAAOsy+ffv01FNPacCAAfrggw/0/e9/Xz/84Q/1/PPPS5LKysokSenp7X9Bnp6e3nbsv7W0tMjj8bR7dHeGYSia5ca+VjBo6tP8w+PSkXmZcjDbpce59ZIz5HLYtfazIi3bvNfqOAAAhCW+IXUh+SWH1NDcqki3UwNZQ/eoDMPQz751thJjIpVfckhPvPWx1ZEAAACADhMMBjV27Fj96le/0pgxY3TjjTfqhhtu0NNPP33C13zggQcUHx/f9sjJyQlh4vD1xXJjXoqXoyooq5KnsVlup0NDc5nt0hNlpybo6rPHS5Ie+cdyNbdysyMAAP8t7IuXPn36yDCMLz1+8IMfSJKmTp36pWPf+973LE4dekHT1Ka93FV0rJLjovWzq8+RJL24ZKPW7iy0OBEAAADQMTIzMzV06NB2zw0ZMkRFRUWSpIyMDElSeXl5u3PKy8vbjv23+fPnq66uru1x4MCBDkgeftqKF6+PJZSOwPyPcenwvAw5HXaLE8Eq1848RRmJsTpY5dELi9ZbHQcAgLAT9r+9X7dunUpLS9seixYtkiRdfvnlbefccMMN7c556KGHrIrbYfaXVauuoVkuh11DuKvomEwZ0VeXnTFSknTP8x+o1ttkcSIAAAAg9CZPnqxdu3a1e2737t3Kzc2VJOXl5SkjI0NLlixpO+7xeLR27VpNmjTpiNd0u92Ki4tr9+gJoqIcMmxSwG+quTlgdZywU3KoTlWeRjnsNg1jXNqjRbqduvXSMyRJz37wiQ5Wdf/lCAEAOB5hX7ykpqYqIyOj7fHuu++qX79+OvPMM9vOiYqKandOdxsUmKapzV/cVdQnQy7uKjpmt102RX3SE1VZ16BfvrSYu9YAAADQ7dx2221as2aNfvWrXyk/P18vvfSSnnnmmbZVAgzD0K233qpf/OIXevvtt7V161ZdffXVysrK0pw5c6wNH2YMm6HoaPZ5OZovxqWDc9IU4XJanAZWO3vsQI0fmK0WX0C/e3251XEAAAgrYV+8/KfW1lb97W9/03XXXSfD+PfG8i+++KJSUlI0fPhwzZ8/X42NjV95na62UWR5Tb0q6xpktxka1ufISwHgyCJdTv3i2tly2Gxa8mm+3lmzw+pIAAAAQEidcsopevPNN/Xyyy9r+PDh+vnPf65HH31U8+bNazvnjjvu0M0336wbb7xRp5xyirxerxYuXKiIiAgLk4cn9nk5sso6r0qqPDIMaUReptVxEAYMw9CPrpgmu83Qkk/ztfazIqsjAQAQNrpU8bJgwQLV1tbq29/+dttz3/zmN/W3v/1Ny5Yt0/z58/XXv/5VV1111Vdep6ttFLllX6kkaUCvVEW6uavoeA3NTdf3Lji8hMJDf1+mA5W11gYCAAAAQuz888/X1q1b1dzcrJ07d+qGG25od9wwDN1///0qKytTc3OzFi9erIEDB1qUNrxRvBzZF7Nd+mWlKDbKbXEahIsBvVJ0+ZRRkqTfvLpMvgBL9AEAIHWx4uXPf/6zZs+eraysrLbnbrzxRs2cOVMjRozQvHnz9MILL+jNN9/U3r17j3qdrrRRpKehWfvLayRJI/KY7XKirjlnvMb076XGFp/ufm6h/IGg1ZEAAAAAhKHoz4uXluaAfD7GDZJU19CsgtJqSdLovllfczZ6mu+dP0kJMZHaV1qt15ZvtjoOAABhocsUL4WFhVq8eLG+853vfOV5EydOlCTl5+cf9ZyutFHktv1lkqSc1HglxkZZnKbrstts+vm3ZyomwqUt+0r1l4WfWB0JAAAAQBhyOGyKiDy8ryb7vBy2taBUpqSc1AQlxTEuRXtx0RG66aLJkqSn312jas9XL/8OAEBP0GWKl2effVZpaWk677zzvvK8TZs2SZIyM7v+mrMtPr8+O1AhiTV0QyErOV4/nnuWJOmP763R1oJSixMBAAAACEcsN/Zvza1+7S6ulCSN7Mu4FEd20WnDNDgnTd6mFj3+1kdWxwEAwHJdongJBoN69tlndc0118jhcLQ9v3fvXv385z/Xhg0btH//fr399tu6+uqrNWXKFI0cOdLCxKHxWVGF/IGgEmMj1Ssl3uo43cK5EwZr5vhBCgRN3fXsQjU2t1odCQAAAECYiY75vHjxUrzsLCqXPxBUclyUspLDd7UIWMtus+nHc6dJkt5atV2b9x20OBEAANbqEsXL4sWLVVRUpOuuu67d8y6XS4sXL9Y555yjwYMH63//93916aWX6p133rEoaegEg2bbMmMj8jJlGIbFiboHwzA0f+5ZykiM1YHKWv32H8utjgQAAAAgzHwx46XR61MwaFqcxjqBYFDbGZfiGI3qm6ULJg2VJD3w8lL2VgUA9Ghdong555xzZJqmBg4c2O75nJwcLV++XFVVVWpubtaePXv00EMPhfWeLceqsKJGDc2tinA51D8rxeo43UpcdITu//ZMGYb05sfbtHTT0fcDAgAAANDzuCPscjgNmabU2NBzZ73sPVilxhafotxO9ctKtjoOuoBbLz5D8dER2l1cqVc+3GR1HAAALNMlipeeaMfndxUNzkmTw86/plAbPzBHV589XpL0i78tUmWd1+JEAAAAAMKFYRiKiXVJkryenlm8mKbZti/msD4ZstsYl+LrJcZG6ZaLz5AkPfXOKpVV11ucCAAAa/DNKQzVeptUUuWRIWlI73Sr43Rb3z9/kgZlp6q2oVn3vvCvHr2EAAAAAID2vlhurL6+ZxYvB6s8qvI0ymG3MS7Fcblw0jCN6pupphafHn7tQ6vjAABgCYqXMLS9sFyS1Ds9UbFRbovTdF8up0O/vG623E67Vu8o1N+ZBg0AAADgc7Fxh4sXb71PptnzbtL6YrbLwOxURbgcFqdBV2KzGbrzmzNktxlauilfK7fuszoSAACdjuIlzPj8Ae0urpQkDcvlrqKO1jczWbdcMkWS9P/eXKm9Bw9ZnAgAAABAOIiMcshmNxQMmGpq9Fsdp1PVNTSrqKJWkjS8T4a1YdAlDeiVonnTx0qSHvz7MjW19syZYwCAnoviJczsKTkknz+g+OgI9UqJtzpOj/CNM0fptKF91OoP6M6/vK9WX88aVAEAAAD4MsMwFBPz71kvPcn2z/cczUlNUEJMpMVp0FV997xJykiK1cEqj/703lqr4wAA0KkoXsKIaZraXnj4C+7Q3HQZhmFxop7BMAzde/U5SoiJ1J6SQ3ry7VVWRwIAAAAQBmI+X26s3tNzipdWn1+7Pl+FYXges11w4iLdTv34immSpL8u2sAKEwCAHoXiJYyU19Srpr5JDrtNA7NTrY7To6TER+ueq86WJP1tyQat/azI4kQAAAAArBYT2/P2edld/O9VGLJZhQEn6cxR/XTmyL7yB4P61ctLe8yfIwAAKF7CyM6iCklSv6xkuZ1sXtjZpo7qp4tPHy7TlO569n0dqmuwOhIAAAAAC0XHOGUYkt8XVEtzwOo4He4/V2EY3ieDVRgQEj+6YpoiXA59ml+it1fvsDoOAACdguIlTNQ3tWhfaZUkaUjvdIvT9Fz/d/lU9c9KVpWnUT999n0FgkGrIwEAAACwiM1mKLoH7fNyoKJWdQ3NcjnsrMKAkMlKjtN3z5skSfrd68tV5eEmRwBA90fxEiaWbS5QIGgqOS5KqfHRVsfpsSJdTj14w/mKdDu1btcBNgAEAAAAeri25cZ6wD4v2/Yfnu0yKCdNTofd4jToTuZNH6vBOWnyNLbo4deWWx0HAIAOR/ESBkzT1Acb9kiShvROYzq3xfIyknTnldMlSc+8t0afsN8LAAAA0GPFxB0uXurrWy1O0rFq6ptUfKhOhqRhfViFAaHlsNt091UzZLcZ+mD9Lq3Yus/qSAAAdCg2EgkDm/Ye1IFDdbLbDKUnRcrT5LU60pf0tA3wzps4RBt2F2vBqm366bPv6+U7r1IKM5EAAACAHifm86XGWluCam0NyOXqnjNBtn8+2yU3PVFxUREWp0FnCQaDKi6r7JT3inXZdOGpQ/Tmqh36xd8W6Yn/uUBRbucxvdbtcig1KbGDEwIAEDoUL2HgjY+2SpISkt3a31olheWNVEOtDtDpfvSNqdq2v1T5B6t051/e11O3XCK7jUliAAAAQE9id9gUFe1QY4NfXo9PSSndr3hp8fm1u+TwL9+H98mwOA06ky8Q0KKNnTf7JDEuWrFRbh3yNOrnL3+oycPzjul154/v38HJAAAILX6LbLG6hmYt2rBbkpSaHmlxGvyn/9zvZf3uA/oj+70AAAAAPVLsF8uNecLyLrmT9llRhfyBoJJio5SZHGd1HHRjDrtdU0b0lSRtLyxXWXW9xYkAAOgYFC8W++faHWr1B9QnPUFR0UxACjd5GUn66TcP7/fyx/fWaC37vQAAAAA9TmycS5Lkqet+xUsgGNT2wsPLjA3vk8Geo+hwvVLiNSg7VZK0Yus+BQJBixMBABB6FC8WO3VIrq44c5TOmzCQL7hh6twJQ3Tx5OEyTenOP7/HHTkAAABADxMT55SMw/u8tDQHrI4TUp/sKpa3qVVup0P9e6VYHQc9xMQhuYp0O1XrbdKne0usjgMAQMhRvFisb2ayfjL3LE0deWzrmsIaP7pimgZmp6rG26QfPfOOWnx+qyMBAAAA6CR2u03R0d1zubF3P9klSRrSO00OO78iQOeIcDk0eVgfSdKm/IOqrm+0NhAAACHGtyrgGES4HPrtdy9QfHSEtheW69evLJVpmlbHAgAAANBJYuO7X/Gy60CFtu4vl2FIQ3PTrY6DHiYvI0m56YkKmqZWbNmnIGNsAEA3QvECHKNeKfF64PpzZTMMvbVqu15fucXqSAAAAAA6Sdzn+7zU1/m6zU1YLy/bJEnKy0hWTKTb2jDocQzD0ORhfeR02FVR69WOwnKrIwEAEDIUL8BxOHVIrm6aM1mS9NDfP9SG3cUWJwIAAADQGaJjnTIMyefrHvu8VHsa9f66zyRJI/IyLE6Dniom0q2Jg3MkSes+K5K3qcXiRAAAhAbFC3Ccrjl7vM4ZN1D+YFA/euYdHaistToSAAAAgA5msxmKiT283JinrusvN/b6R1vk8wc0sFey0hNjrY6DHmxI73SlJ8bKFwhq5daCbjOjDADQs1G8AMfJMAzde/VMDctNV21Ds279/Vuq564cAAAAoNuLjf98uTGPz+IkJ8fnD+i15ZslSRdMHGxxGvR0hmFoyoi+stkMHais1d7SKqsjAQBw0hxWBwC6ogiXQ49870J968GXVVBWrZ/86Z/6f/8zRw47XSYAAADQXcXFuXRQDaqva5VpmjIMw+pIJ+RfG3brkKdRqfHRmjw0Vws/3Wd1pG7FNE15mrxWxzgm4TK7JDE2UmP799L63cVatX2/slPiFeFyWh0LAIATRvECnKDUhBj97vsX6vrfvqrVOwr14N+X6s4rp3fZwRcAAACArxYV45DNbigQMNXU6FdUdNf7xbBpmnpp6UZJ0hVnjubmsQ6yp7HC6gjHaKjVAdqM6pelvaVVqqlv0pqdRZo6qp/VkQAAOGF8wwJOwpDe6frltbNlGNLrK7fqLwvXWR0JAAAAQAcxDEOxXXyfl837DmpnUYXcTrsuOWOE1XGANnabTVNG9JUk7S6uVMmhOosTAQBw4ihegJM0bXR//eiKaZKkJ9/+WO+u2WFxIgAAAAAd5Yt9Xjy1XbN4eWnpp5Kk2acMUWJMpMVpgPbSE2M1LDddkrRy6z75A0GLEwEAcGIoXoAQmDt1tK4+e5wk6f6/LtLqHYUWJwIAAADQEeITDhcv3nqfAl3sl8IHqzxa+mm+JOnKs8ZYnAY4slMG91Z0hEuexhZt2FNsdRwAAE4IxQsQIj+cc4Zmjh8kfzCo//3D29q876DVkQAAAACEWESkQ+4Iu0yz6y039uryTQqapk4ZlKMBvVKsjgMckcth1+ThfSRJW/Yd1KG6BmsDAQBwAhxWBwC6C5vN0H1Xn6O6hmat2VmoHz6xQH+8/XINzE61OhoAAACAEIpPcKmirEl1Na1KTIqwOs4xaWrx6c2PtkmSvslsF/wHT5PX6ghfkhTnUk5qnA5UevTh5nzNPWOI1ZEAADguFC9ACLmcDv32uxfofx57XZv3lep/HntDf/m/K9Q7LdHqaAAAAABCJD7BrYqyJnlqW2WapgzDsDrS13p3zQ7VN7UoOzVeZwzva3UchAvT1J7GCqtTHFFijlMHqw1V1zfpn+t265bevayOBADAMWOpMSDEIt1OPfaDORqUnarq+kZ999F/6EBlrdWxAAAAAIRITJxTNpshny+opka/1XG+VjBo6uUPN0mSrpw6RjZb+BdFgNNlV6/eMZKkV5Zv1cGqOosTAQBw7ChegA4QGxWhJ2++RHkZSSqv8erG371G+QIAAAB0Ezabodh4pySprib893lZvbNQ+8uqFR3h0gWThlodBzhmKWkRiol1qsUX0K9eWirTNK2OBADAMWGpMaCDJMVF6Q+3XqbvPvoPFZRV68bfvaZnbrtcOakJVkcDAAAAcJLiE9yqq2lVXW2LMrOjrY7zlf66aL0k6aLThikm0m1xGnQkn+FXs7NZzY5mNTta1GrzyW8LKGDzK2AEJUmGDBmm5DAdeqCoTsVxXrn9LkX6IxTpj5Aj6JCh8JgVZRiGcvvGave2Wq3asV8L1+3S7AmDrY4FAMDXYsYL0IFS4qP1h1sva5v5csMjr2lfaZXVsQAAAACcpPgElySpweuXzxe0OM3R7Swq1ye7DshuM/TNs8ZaHQchFlRQdW6PSmJLtSs5XzvSdmlfYqEOxparOrJWXneDmp3N8tn9CtqCCtqCCtgC8tsDana0aGtDsWoia1UWW6GCxCLtSN2tHSm7VRRXrJqIWvls1i+lFxHp0KWnH56p9fBrH6rW22RxIgAAvh4zXoAOlhIfrWduOzzzZV9ptb7z21f1xM0Xa2huhtXRAAAAAJwgl9uuyCiHmhr98tS2Kjk1wupIR/TCog2SpHPGD1JWcpzFaRAKpkzVu7yqjahTnbteQVvwPw/KHXApwh+hCL9broBLjqBdjqBDdtP2xSkyDVN+m1/nDO2nBbu3qdnRcnimjL1FfrtfNZF1qomsk0wppjVaCc3xSmiJk920W/KZL5w0WOv3lCr/YJV+98YK3Xf1TEtyAABwrJjxAnSC5Lho/fH2KzQsN121Dc367qOva/3uA1bHAgAAAHASvpj1UlfbYnGSIys5VKdFG3ZLkq45e7zFaXCy/IZfFVGHtDNljwoSi1QTWaegLShnwKnkxiTl1uZoWOUgDa4aoD51OcpoSFNSc4LiWmMV5Y+UO+CWO+BWRMCtSH+EYltjNCVhsNIbU5Xrydagqv4aUTFEfWtyldqQokhfhGRIXneDiuMPanvqLhXFlajR0fkzTpx2u346b4YMQ3pn9Q6t/ayo0zMAAHA8KF6ATpIYE6mnb71M4wfmqKG5VTc9/qYWb9xtdSwAAAAAJyg+8fB+KXW1rQoGw2/T7xeXbFTQNHXqkN4amJ1qdRycIJ/Np+LYUu1I3a3S2HL57D7Zg3YlNyapf3WehhwaoOz6TCW0xMlhntzCJjbZFNsaoyxvugZW99PgygHKqE+T2++WaZiqiazVnuR9yk8sUJ3bI1Od97/7UX2zdPmUUZKkX760WM2t1i+DBgDA0VC8AJ0oOsKlx2+ao6mj+qnVH9CP//RP/XXxBplm+A3SAAAAAHy16BiHnC6bggEz7Ga91HqbtGDVNknMdumq/IZfB2PKtDNlj6qiqmUapiJ8Ecqpy9LQyoHKrs9UtC9KhowOy+AOupTemKpBVf3UvypPCU3xMkxDDa5G7U84oD1J++Rx1XdaAXPTRZOVlhCj4so6PfPP1Z3yngAAnAiKF6CTuZ0O/ebG8/WNqaNlmtLvXl+hB/++TP5A+G7ICQAAAODLDMNQUvLhvV1qDoVX8fLais1qbvVrUHaqJgzubXUcHAdTpiojq7QzZY8qo6tkGqaiWiPVtyZXA6v7Kqk5UbZO/nWOIUPR/ijlerI15NAApTWkyBa0qcnZrILEIuUnFqjB0djhOWIi3Zo/9yxJ0t8Wb1R+yaEOf08AAE4ExQtgAbvNpjuumKrbL50iw5BeXb5ZP3zyTdU1NFsdDQAAAMBxSEw+vNxYbW2LAmFyM1VDc6teWvqpJOmac8bLMDpuRgRCy+ts0O7kvToYV6agLahIX4Tyanqrf02eYltjOnR2y7FyBp3K9KZryKEBSm1Ikc001OhqUn5ygYriiuWz+Tr0/c8c1U/TRvWTPxjUr15ewgoSAICwRPECWMQwDF01Y5we+s75inA5tGZnkb714EvcsQMAAAB0IVHRDrnddplBqa6m1eo4kqTXlm9WXUOzctMSdfa4gVbHwTEIGAEdiD2ovUn71exokT1oV7YnSwOq+yquNTYsCpf/5jAdyvKma/ChAUpsSpBMqSayTp8l56sysqpDlx/7vyumKsLl0Ka9B/XOmh0d9j4AAJwoihfAYtPHDtBzP5qrrOQ4FVfW6ZrfvKLFG3dbHQsAAABd1K9//WsZhqFbb7217bnm5mb94Ac/UHJysmJiYnTppZeqvLzcupDdiGEYbbNeqqusn8He1OLTC4s3SJKunz1BdhvD/nBX7/JqV/JeVUfVSJKSGxM1+FB/JTclhmXh8t+cQad6e3ppQHVfRbVGKmgL6mBcmfKTCtTk6Jg/E5lJcfrueZMkSY++sVK13qYOeR8AAE4U38CAMDAwO1V/+8k3dcqgHDW1+HTHH/+pB/++TK0+v9XRAAAA0IWsW7dOf/jDHzRy5Mh2z992221655139Nprr2n58uU6ePCgLrnkEotSHr+/71+l9w5tUnVErTyuejU6mjptM+9jkZRyeJ8XT22rAn5rlxv7x8otqvU2KTslXrNOGWxpFny1oIIqiSnVvsRC+ew+ufxO9avuo+z6LDlMh9XxjluUP1L9a/KU7cmULWhTo7NJu5P2qjy6skP+vH5z+hj1y0xWrbdJj7/1UcivDwDAyaB4AcJEQkyknrz5El078xRJ0t8/3KRrH/67DlTWWhsMAAAAXYLX69W8efP0xz/+UYmJiW3P19XV6c9//rMeeeQRnXXWWRo3bpyeffZZrVq1SmvWrLEw8bF7dt+H+mvZRzoQX6KCxCLtSd6nHSm7VRx7UPUur+UlTESkXRGRdpmmVFvTYlmOplafXli0XpJ03ewJctgZ8oerFnuL8pMKdCi6WpKU3JikgVX9FeOLtjjZyTFkKLkpSYOr+iuuOVYypLKYCuUn7leLLbRL8Tntds2/8ixJ0psfbdOWfaUhvT4AACcjrL+F3XvvvTIMo91j8OB/37HDdHl0Nw67TTfPOV2P/WCO4qMjtLOoQt/81Yt6e/V2NgwEAADAV/rBD36g8847TzNmzGj3/IYNG+Tz+do9P3jwYPXu3VurV68+4rVaWlrk8XjaPax0TuZITYofoJiWaEX6ImQL2uS3+1UVVaN9iYXak7RPXmeDZfkOLzd2eNZLdZV1xcubH21VladRmUlxOm/iEMty4KvVuuu0O2mfmpzNsgftyqvprez6TNnD+1c0x8UZdKpPXY5y6nodnv3iatTu5L2qiagN6fuMHZCtC04dKkn61ctL5A9YO+MMAIAvhP3f6sOGDVNpaWnb46OP/j19tKtPlweO5vTheXr5zqs0ul+WGppbde8L/9KPnnlXNaxbCwAAgCN45ZVXtHHjRj3wwANfOlZWViaXy6WEhIR2z6enp6usrOyI13vggQcUHx/f9sjJyemI2Mfs9iHn64c5M9Wvto8GVvfTsMpByqvpraTGBNmCNjU5m7U3ab/2xxepNcR31R+rpM/3efHUtqq6vvO/tze1+PTcB+skSdfNOkVOu73TM+CrmTJ1MKZchQnFCtqCim6N0sCqfoprjbU6WocwZCipOUGDqvopujVKQVtQRfElOhB7UEGFriC59ZIzFBfl1u7iSv39w00huy4AACcj7IsXh8OhjIyMtkdKSoqk7jFdHvgqGUmx+uPtl+umiybLYbNp6aZ8XfHzF7R0U77V0QAAABBGDhw4oFtuuUUvvviiIiIiQnLN+fPnq66uru1x4MCBkFw3VGyyKa41Vjn1vTTk0AAlNyZKplQXUa9dyXvlcdV3eqaISIdiYp2SpMWf7u309//bkg065GlUr+S4thkACB9+w6+ChCJVRh+SJKU2JKtfTR+5gk6Lk3U8V9ClfjV9lO5NlUypOqpGe5IK1GIPzeywxNgo3TzndEnSU++sUkWtNyTXBQDgZIR98bJnzx5lZWWpb9++mjdvnoqKiiSd2HT5L4TbtHngaOw2m66bNUHP/3iu8jKSVOVp1P/94R39+I/vqspj3VIKAAAACB8bNmxQRUWFxo4dK4fDIYfDoeXLl+uxxx6Tw+FQenq6WltbVVtb2+515eXlysjIOOI13W634uLi2j3ClcN0KLs+SwOr+imqNVJBW1AFCUUdtqH3V0lNj5QkLdq4Vz5/oNPet9rTqOf/dXhvl5suOl0uZ9fbmL07a7G3aE9SgerdXhmmod612cryZsiQYXW0TmPIUEZDmvrW5soRtKvZ2azdSftCVpJePHmEhvfJUGOLT7/9x/KQXBMAgJMR1sXLxIkT9dxzz2nhwoV66qmnVFBQoDPOOEP19fUnNF3+C+E2bR74OkN6p+ulO+fpulkTZLcZWrRxjy67/wW9vnKLAkHWsAUAAOjJpk+frq1bt2rTpk1tj/Hjx2vevHlt/93pdGrJkiVtr9m1a5eKioo0adIkC5OHVmQgQv1q+hye/fL5ht6F8cUhXdLo6yQmueV02lTb0Kwln+7ptPd95r01amzxaWhuus4eN7DT3hdfz+ts0J6kArU6WuUMODWguq8SW+KtjmWZ2NaYz0vSqH+XpFEnX5LabIbu/OZ02QxDizbs1pqdhSFKDADAiQnr4mX27Nm6/PLLNXLkSM2cOVPvvfeeamtr9eqrr57UdcN92jxwJG6nQzddNFl//ck3NSg7VXUNzfrlS0t09YMva8u+UqvjAQAAwCKxsbEaPnx4u0d0dLSSk5M1fPhwxcfH6/rrr9ftt9+uZcuWacOGDbr22ms1adIknXrqqVbHDymbbMquz1K2J0uGaaguwqPChAOdVr4YNkMpn8966ay9JgrLa/TGyq2SpFsuPkM2W8+ZRRHuaiJqtS+xUAFbQFG+SA2o7qtIf2iWA+zKnEGn+tXk/rskja1QUQhK0sE5afrG1FGSpIde/bBTZ50BAPDfwrp4+W8JCQkaOHCg8vPzlZGRcdzT5b/QlabNA/9tcE6a/vqTb+pHl09VTIRLO4sq9O3fvKKfvfABy48BAADgiH73u9/p/PPP16WXXqopU6YoIyNDb7zxhtWxOkxyU6LyanvLMA153N7Dm5l3UvmSmhYhu82mzftKtbOovMPf74m3PpI/GNTpw/N0yiBWcwgXFVGHVBRfItMwFd8cq37VfeQMsgTcF/5dkmbKMA3VRni0N7FQfsN/Utf93vmTlBgTqf1l1Xqlk8pPAACOpEsVL16vV3v37lVmZqbGjRvXI6bLA0fisNt05Vlj9OZ939aFk4ZJkt5ZvUMX/+w5vbhko3wB7uwBAADoyT788EM9+uijbT9HREToySefVHV1tRoaGvTGG2987Q1rXV1sa8x/lC/1Kowv7pQ9X5wuu04dki1J+vuHmzv0vdZ+VqQln+bLZhj64eebi8Napky9XL5KpbGHS7eUhmTl1uXI1rV+/dJpkpuS1LcmV/agTY2uRu1JKlCLvfWErxcbFaGbP/+z8Mw/16iyzhuqqAAAHJew/pv///7v/7R8+XLt379fq1at0sUXXyy73a4rr7yyR02XB44mOS5a9159jp6/Y66G5qbL29yq3/5jua64/69atGG3gsHO3UwUAAAACCftypeIepXElnZK+TJ7/ABJ0sJ1n6mmvrFD3qO51a9fvrRYknTZlJHq3yulQ94Hxy6ooD6ybdY7VZ9KkjLr05XlTZchln/7KjG+aPWvzpMz4FSro1X5SfvU4DjxPzcXThqmYbnpamhu1eNvfhTCpAAAHLuwnudaXFysK6+8UlVVVUpNTdXpp5+uNWvWKDU1VdLh6fI2m02XXnqpWlpaNHPmTP3+97+3ODWsEAwGVVxWaXWMo3K7HEpNSuyw64/Iy9QLd1ypt1Zt0+NvfazCihr9+E//1OCcNN00Z7ImDcmVYfBlHwAAAD1PbGuMcuuytT/+gKqiauT2u5XalNyh7zmwV7KG5qZrR2G5/vjeWt3xjWkhf49n/rlaxZV1SkuI0U0XTQ759XF8ggpque1TFdgOypChXnWZSm7uuDFgdxMRiNCA6jwVJBSpydmsvUn7lVuXrfiW418a3mYzdMc3pumah17Ru2t36tIzRmpUv6wOSA0AwNGFdfHyyiuvfOXxL6bLP/nkk52UCOHKFwho0cZ9Vsc4qvPH9+/w97DZDF18+gidPW6gXlyyUX9dvEGfHajQTY+/qfEDs3XTRadrZN/MDs8BAAAAhJv4ljhletNVGluug7FlcgdcimuN7bD3MwxDN885Xd//f6/rtRWbdfmZo5SXkRSy6+86UKG/Lt4gSfrJ3LMUE+kO2bVx/AIK6kPbBhXaymQzDd2SM0tLy4usjtXlOINO9avpo8L4YtW7vdoff0BZ9RknVJSOyMvUhZOG6e3V2/Xg35fprz+5UnZbWC/6AgDoZvhbB+hmYiLd+u75k/TOz6/TvOlj5XTYtX53sb79m1d021NvaUdhmdURAQAAgE6X2pispKYEyZAK44vVbG/u0PebOLi3pozoq0DQ1KNvrAjZdQPBoH7+4mIFgqamj+mvqaP6hezaOH4BBbTUtv7z0sWm6cFTdEpcX6tjdVl206682t5KbkyUDOlgXJlKY8plmse/RODNcyYrJtKtzw5U6M2Pt3VAWgAAjo7iBeimEmOj9L+XnakF931bF502TDbD0PIt+3TVr1/WDx5/Qxv3FFsdEQAAAOg0hgz18mQqujVKQVtQ+xOKFVSwQ9/z1kvOkMNm08qtBVq7szAk13z6ndXaUViumEh3hyxhhmPnV0CLbet0wFYuu2nTjOApyjHTrY7V5Rky1Ks+Uxn1aZKkiuhDer50pYLm8f15TY6L1vfOP7wH8O/f+lh1DR1btgIA8J/CeqkxACcvMylOP/vWObr67PH6y8JPtHDdZ1q9o1CrdxRq7IBeun7WRJ06pDd7wAAAAKDbs8mm3Noc7U7eqxZHi0riSpXj6dVh79cnI0mXnzlSLy/bpEdeX6GX7px3UssdLfl0j/688BNJ0vy5Zyk1PiZUUXGc/PJrsW2dDtoOyW7adHZwgrLMVKtjdRuGDKU3pspu2lUSW6oPqrfIty6g7+fMkN049j9Dpw3qpd6p8SqqrNNvXlmi7503oQNTH9bRe7wCALoGihegh8jLSNLPvz1L3z3vVD33r/V6Z80ObdxToo173tCw3HR9+5xTNHV0P9a9BQAAQLfmNB3KrcvW3sT9qo6sVUxrtBKbEzrs/W4491S9u2an9pQc0l8Xb9C3zznlhK6zr7RKP3v+A0nSvOljNXvC4FDGxHHwya9Ftk9UZquSw7Tr7MAEZSrF6ljdUkpTkmymTcXxB7W0erv2HarWmcGxsh/HAi4j+2apqLJO76/frchIt5Ljojswcefs8QoACH/8hhXoYbJTE3TXvBl65+fX6ZtnjVGE06HtheX60R/f1cU/e06vLPtUjc2tVscEAAAAOkyML1rpDYdnJxTHlqrF3tJh75UQE6mbLz5dkvT4go+0fPPe475GfWOzbn/6bTW2+DR+YLZuufiMUMfEMfLLr0X2w6WL03RoZuBUSpcOltScoFuyZ8pmGtpvK9VS2zr5FTjm12elxKtvZpJMSR9v339C+8UAAHC8mPECdIJgMKjiskqrY3zJ3DOGadbYflq4frf+uW63ig/V6aFXP9RT76zWZVNG6htTRystgeULAAAA0P2kN6TK62pQg6tRhfHFGlDdV4Y6ZvndS08foV0HKvT6yq2689n39Zf/vUKDctKO6bWVtV7d8vu3VFRRq4zEWD34nfPksHMPpRUCCmiJbb3KjH+XLmliSanOMCGun2YEJ2iJbZ0O2Cq0SGs1IzhBzmP8tdapQ3JVWF6rsup67T1Ypf69KMsAAB2L4gXoBL5AQIs27rM6xlHNPXOkfjBnit5Zs0MvLtmoA5W1evaDdfrr4g06Z9xAzZ02RsP7ZFgdEwAAAAgZQ4Zy67K1K3mvmpzNqoiuVHrDsZUhx/1ehqE7vjFNxZV1WvtZkW75/Vt64cdXfu1NTnsPHtLNTyxQWU29EmMi9bvvX6jE2KgOyYivFlRQy2wbVWKrlMO065zAREqXTpZtpmlm4FQtsn+iUluVPjDW6JzARLnk/NrXxkS6NaZ/ltbvLtaanYXKTU+U02HvhNQAgJ6K22QASJIi3U5dceYovXHvNXrkexdqTP9e8geCeu+Tz3T1gy/rql+/pHdWb1eLz291VAAAACAknEGnetUfvsGoLLpSjY6mjnsvu10P3XCe+mQkqaLWq2/84q9686OtCga/vOyRPxDUwnWf6dqHX1VZTb36pCfq+TvmHvMsGYRWUKZW2DapyFYmu2nTjOApSleS1bF6pAwla1ZgklymUxVGjf5lXyufjm2MOrJvlmKj3Gps8WljfkkHJwUA9HTMeAHQjt1m09RR/TR1VD9t31+mv3+4SR9s2K0dheX62Qv/0u9eX6E5k4frsikjlZUcb3VcAAAA4KQkNMerzl2vugiPDsSVaEB1X9k66B7F2KgIPfY/F+n2P7yj/JJD+vmLi7Vg1XZdfuZIxUdFKDbKrU/zS/Ta8i0qq6mXJI3ul6Xfff8ixUdHdEgmfDVTplbZtmifrUQ209BZwfHKMlOtjtWjpSpBswKnaqF9jSqMGn1gX6OZgVO/dtkxh92mSUNz9a/1u7V1X6kGZacqISayk1IDAHoaihcARzWsT4bu//Ys3XbpFL358Tb9Y+UWlVXX67l/rdfzi9Zryoi+uuLM0Zo4uLdsto5ZDxsAAADoSIYMZXsy1eBqULOzReUxlcr0pnfY+2WnJujF+d/U3z/crKffWaWtBaXaWlD6pfMSYyJ12ZSRum7WBLmdDN2tYMrUWtt27bYVyTClM4NjlWN23P82cOxS/qt8+Zd9rc4JTPza8iU3LVE5qQk6UFmr1Tv2a9Ypg2UYjGUBAKHHtzcAXysxNkrXzZqgq88er5Vb9+nV5Zu19rMiLd+yT8u37FPvtARddsZInXfqUCVyxxAAAAC6GIfpULYnS/sTDqgi6pASmuMU6e+477VOu11XTR+rc8YN1J/f/0SF5dXyNLaovrFZSXHRuvSMEZo5fhCFi4VMmdpg+0w7bAWSKZ0RHK08M8vqWPgPKUrQzMCp+sC+WuVGtRbZ1+rsrylfDMPQpKG5KllRpwOVdSqsqFGfdJaNAwCEHt/iABwzh92maaP7a9ro/iooq9ZryzfrnTU7VFRRq0deX6HH3/pYZ43ur4snD9f4gTnMggEAAECXEd8Sp/jmONVFeFQcV6r+1Xky1LHfZ9MSYjT/yrM69D1wYrYae7XFli9JOi04Qv3NHIsT4UhSPy9fFtrXqMyo1iLbJzo7OOEry5eEmEiN6JupzXsPavWOQmWnJMhhZwtkAEBo8TcLgBOSl5GkO74xTQsfuEF3XnmWBuekyecP6IP1u/S9//e65tz7rJ794BMdqmuwOioAAABwTHrVZ8gWtKnR2aSqyGqr48Aiu40irbfvlCSdEhiqwWYfawPhK6Uq8fAeL6ZDZbYqLbZ9Ir/8X/masf17KcrtVH1ji7bsO9hJSQEAPQnFC4CTEh3h0mVTRumlO+fpxfnf1GVnjFR0hEvFlXV6fMHHOvfOP+n//vCOPt6+X4Fg0Oq4AAAAwFE5g862/V1KYyrks/ksToTOVmiU6mPbZknSiGB/jTD7WZwIxyLtP8qXUluVltjWK6DAUc93Ouw6dUiuJOnT/IPyNrV0VlQAQA9B8QIgZIb0Tted35yuf/36Rt3zrbM1Ii9T/mBQSzfl6+Yn3tQFd/9Fz/xzjcpr6q2OCgAAABxRclOiolojFbQFVRJbZnUcdKJSHdKHto0yDWlAMEfjg4OtjoTjkKZEnROYKIdpV4mtUsttnyqoo9/81y8rWRlJsQoEg1qzs7ATkwIAegKKFwAhF+l2as5pw/X8HXP16l3f0pXTRisuyq2y6no9/e5qnffTP+uHTy7Qh5v3yh9gFgwAAADChyFD2fVZkinVRXjkcXHTUE9QpTottq9TwAiqdzBDk4MjO3yPH4ReupI0PXiKbKZN+22l+si2WabMI55rGIYmD+sjQ9K+0mqVHKrr3LAAgG7t6LuNAUAI9O+Voh9dMU03zzlDSzft0ZsfbdOGPcX6aFuBPtpWoJT4aF1w6lDNmTxcOakJVscFAAAAFOmPUGpjsiqjq1QcV6pBh6Jl577FbsujBn1gXyOf4VeGmaypwbGy8e877HiavMd0XqwidapjqFZHbFe+rVim39TolgFHLNKcTql/ryTtKanWR9v2aeYp/WWznVzh5vN/9f4yAICegeIFQKeIcDl07oQhOnfCEBWW1+jNj7fqndU7dKiuQc9+sE7PfrBO4wfm6JLTh2va6P5yO/m/JwAAAFgn3Zum2giPfHafymMqlOXNsDoSOkCjmrXQvkbNRquSzDjNCJwih+xWx8J/M03taaw4rpfktPZSUVyx9rpKVO9radu/6b9FZdpkLzdU19CiVQWFSs+MOqmowaPMsAEA9Cz8ZhNAp8tNT9Stl0zRDy6crBVb92nBx9u0asd+rd99QOt3H1BclFvnTRyiOZNHaECvFKvjAgAAoAeyy6ZsT6YKEotUGVWlxOZ4RfojrY6FEGqRTx/Y18prNCrWjNLMwKlyyWl1LIRIYnO8gkZAxXGlqog+JFvQpvTG1C+d53DY1CsnRkUF9SotblBSSoScTmY8AQBODsULAMs4HXZNHzNA08cMUGm1R2+v2q63Vm9XWXW9Xl62SS8v26ThfTJ08eThOmf8IEVHuKyODAAAgB4krjVW8c1xqovwqDiuVP2r845p3w+7Yai4rLITEp68nroskl8BLbZ/ohrDo0jTrZmBUxUpt9WxEGLJTUkKGkEdjC1XWWyFbKZNqU3JXzovJS1Chyqa1NjgV0mRV336xVmQFgDQnVC8AAgLmUlx+u75k/Sdcydq7WdFevOjrVq+eZ+27S/Ttv1levgfyzVz3CDNmTxcI/IyZBhsdAkAAICO16s+Q/UurxqdTaqKrFFKU9LXvsYfCGrhp/mdkO7knT0q1+oInS6ooJbZNqjcqJbLdGhm4FTFKdrqWOggqY0pChhBlcdU6mBcmeymTUnNie3OMQxDOX1itWt7jaoqm5WaHqnoGGY/AQBOHMULgLBit9l02tA+Om1oH1V7GvXu2h1a8PE27S+v0YJV27Rg1Tb1z0rWnMnDdd7EoYqPjrA6MgAAALoxZ9CpTG+aSuLKVBZTrvjmODlNhtJdlSlTH9u26ICtXHbTphmBCUoSsxu6u/SGVAWNoCqjq3Qg7qBspk0JLfHtzomJdSopJULVh5pVVFCvwcMTueEPAHDC+LYIIGwlxUXp6rPH61szxunT/BIt+HibFm/co/yDVXr4teV6fMFHmnXKYF1x5igN6X3kjRIBAACAk5XclKTqyFo1OZtVGluu3p5eVkfqcUzTlKfJe9LX2eLO1x7HARmmoYlNwxQVcMujk79uO+ytHnYMGcr0pitgBFUdVaPC+GLZam2Ka41td15272jV1rSoscGvqspmpaSxrxMA4MRQvAAIe4ZhaOyAbI0dkK0fXTFVC9ft0usfbdXu4kq9tWq73lq1XSPyMvWNqaM0Y8wAuZz8XxsAAABCx5ChXp5M5ScVqCayVklNCYrxsTRVZ9vTWHFSr6+IOqRSV7kkKduTqYbmoPbo5K55ZEM64Jo4WYYMZddnKmgEVRtZp/0JB9S3Jrfdn2Wny66s7GgVF3pVUuRVQpJbDofNwtQAgK6Kvz0AdCmxURG6/MxRevnOefrL/12hWeMHyWG3aWtBqe56dqFm3/knPfHWxyqrrrc6KgAAALqRaH+UkpoO7wtRElsqk2kNXUp1RI1KYw+XLpn16V/a4wM9gyFDvT29FNccK9MwVZBQpEZHU7tz0tIjFRFpl99vqrS4waKkAICujtvCASgYDKq4rNLqGEfldjmUmvTlzQ9H9+ul0f166fa6Bi34eJv+sXKLKmq9+svCT/TcB+t05si+umLqaE0YlMPavAAAADhpmd401UV41Oxs0aGoKqU2plgdCcegzu3RgbiDkqTUhmSl8e+tRzNkKLcuW/tshWpwNWpfYqH6V+cpIuA+fNxmKKdPrPbsrFVFWZNS0iIVGcWvzwAAx4e/OQDIFwho0cZ9Vsc4qvPH9//K4ynx0frOuRP17ZmnaPnmvfr78s1av/uAlm3eq2Wb92pArxR9a8Y4zRw/SE6HvZNSAwAAoLtxmA5l1qerOP6gyqIrldAcL2fQaXUsfAWvs0GF8cWSISU2JSjTy96QkGyyKa+2t/Ym7leTs1n7Everf3WeXEGXJCku3qWEJLdqq1tUVFCvgUMTuJkPAHBcWGoMQLfhsNs0fewAPXPbZfrHPVfr8imjFOl2ak/JId3z/Ac6/64/67kP1snT0Gx1VAAAAHRRSc0JimqNVNAWVElsmdVx8BUaHU0qSCiSaZiKa45VjidLhvjlOQ6zm3b1rcmV2++Wz+7X3sRC+Wz+tuM5uTGy2SRvvU9VlYwhAQDHh+IFQLfUNzNZ8688S+//8ju6ec5kpcRHq7KuQY8t+Eizf/on/ebVD3WwymN1TAAAAHQxX2zQLVOqi/Co3uW1OhKOoMXeooLEQgVtQUW3Rim3LpvSBV/iMB3qW5MrZ8CpVker9iUUKmAEJEkut11Z2TGSpOIir3y+oJVRAQBdDEuNAQh7J7sHzdmj8jR1eG+t2LpfC1bvVGFFrV5e9qleXb5JZ47I02WnD1N2SvwJX/9Ie9AAAACg+4r0RyqlKUmHoqpVEluqgVX9ZOO+xrDRavNpb2Kh/LaAIn0Ryqvtzb8fHJUr6FS/mlzlJ+5Xs7NZBQlF6luTK5tsSsuMVNWhZjU1+lVS6FWf/nFWxwUAdBEULwDCXij3oDln/CCVHKrT5r0HVVLl0dLN+7R08z7lZSRpTP9eSomPPu5rft0eNAAAAOh+MrxpqnV71OJoVWVUldIbU62OBEl+w699iYXy2X1y+V3Kq8mV3WSfR3w1d8CtvrW52ptYoAZXo/YnHFCf2hzZDJty82L12fYaVR1qVnJqhGLjXVbHBQB0AdzyAaBHMQxD2akJOu/UoZpz2jDlph+eqVJQVq03Ptqq9z/5TGXV9RanBAAAQLizm3Zlfb5Re3lMpVptrRYnQsAIqCChSC2OFjkDDvWryZXT5H5THJtIf4TyanNlMw3Vu706EF8iU6aiY51KTY+UJBUW1CsYNC1OCgDoCiheAPRYaYmxmjl+kC47Y6T6ZSXLkHSgslZvr96u99buVEUt63UDAADg6BKa4xXdGiXTMFUSW2Z1nB4tqKD2xx9Qo6tJ9uDhTdNdQWYm4PhE+6KUW9tbhmmoNsKj4thSmTKVlRMth9OmluaAyg42Wh0TANAFULwA6PGS4qI0fcwAXTF1tAblpMowDBUfqtOCj7dp4bpdOlTXYHVEAAAAhCFDhrI9mZIpeSLq5XExc9oKpkwdiC+R190gW9CmvJreighEWB0LXVRca4x61/WSTKk6qkZlMRVyOGzKyY2RJJWVNKi5yW9xSgBAuKN4AYDPxUdH6MyR/fSNqaM0MDtFhqSiihq98dFWLdqwW9X13NkEAACA9iICEUptTJYklcSVKqigxYl6FlOmSmJLVRvhkWEa6lOXo2h/lNWx0MUltMQruz5LklQRfUgVUYeUmOxWXLxLpikVFdTLNFlyDABwdBQvAPBf4qIiNHVUf11+5ij1yzo8iC4oq9Y/VmzRkk/3qNbbZHFCAAAAhJP0hlQ5A0612n0qj660Ok6PUhZdoaqoGsmUetf1UmxrjNWR0E0kNyUqs/7wPk6lseWqjqpR77xYGYZU7/GpuqrF4oQAgHBG8QIAR5EQE6npYwbosikjlZeRJEnae7BKry3frA8358vT2GxxQgAAAIQDu2lXVn2GJKkyukolLdUWJ+oZyqMqVRFzSJLUqz5TCS3xFidCd5PWmKK0hhRJUnFsqRrjvcrMjj788/56+X3McAMAHBnFCwB8jaTYKJ09bqAuOX2EeqclypS0u/iQXv1wsz7aVqAaZsAAAAD0ePEtsYptiZFpmPrTwQ9limWIOlJlVJXKYiskSZn16UppSrI4EbqrDG+akhsTJUM6EF+iqNyAIiLt8vtNHShkXycAwJFRvADAMUqJj9asUwZpzuThyk6JV9A0taOwXDc+tkBPvPWx6pkBAwAA0GMZMpTtyZQtaNOuplLtMgqtjtRtVUVW62BsmSQp3ZuqtMYUixOhOzNkHJ5R1Rwn0zBVmFSs9EEuSVL1oRbV1rDkGADgyyheAOA4pSXE6NyJQ3T+xCFKS4hRiy+gvyz8RBfc/Rc9/6/1am71Wx0RAAAAFnAFXcrwpkmS1tl2qlHcmBNq1RG1Ko4tlSSlNiQrvSHV4kToCQwZ6l2X3TarrTSnWMm9DpcvRfvq5fez5BgAoD2KFwA4QVkp8brotGG68xtnqm9mkjyNLfp/b67URff8Ra+v3CJfIGB1RAAAAHSylKYk9YtIk8/wa7Vtq9VxupVad50OxJVIhpTcmKRMb7oMGVbHQg9hyFCf2hxFt0YpaAvKO7JMrgibfL6gigv/f3v3HWdFdf9//DVz67a7fdml7NKLNBGkKAoqUdTYsESjRo2J0S/mqzF+1cTkqym/GDX5JiYxaqwxtmhssURFpCqggAiI0tsCy8L2duuc3x+7XFmXzrJ3d3k/87iZdmbmc4fj3XvuZ86Z2kSHJyIi7YwSLyIih8GyLMYO7ME/f3Ylv/jO6eRnpbGjqo7/99x0Lv7l07y7cCWOo/G9RURERI4WFhbf73oKlrHYaJewwdqa6JA6hUU169mYXgwWZDVk0K0mX0kXaXM2Nr0qC0mK+Il5Y3BcFQBlO4JUacgxERHZjRIvIiKtwGXbnDNuMK/dfTX/c/FEMlOT2FRayU8ef5srfvscH63YgDFKwIiIiIgcDQr9OQwzfQH4yF5GA/pB9nBstrbzQPE7YEFGQzrdq7sq6SIJ4zIuelUU4Yt6cXKDuHs1/ve9YV0N0YiGHBMRkUbuRAcgiWUwRO0oETtK1I4StWPxacyOErNiOJbhNxtfZ4ernhhO/H9gYWNhNZva2MbCgxs3bjy4GudN47wXDz68+EzTFA8+PLhwJfpSiLQKr8fNZaeO4NwTBvPs9MX84/1FfLm5lBv//Cqj+nfnxvPGM6x3QaLDFBERkU7knnvu4ZVXXuHLL78kKSmJE044gXvvvZcBAwbEywSDQX784x/zwgsvEAqFOOOMM/jrX/9Kly5dEhh553as049NVgkVVg3z7GWc6oxKdEgd0karhBn2QhxjSA8GKKzupqSLJJzHuOldUcSarA2EB1dj78giWgub1tfohjsREQGUeDlqxKwYQXeIkCtEyB0m5ArH5421/y8Fy+tqOeDvtofwHdhtdiVlGhMyfuP92rwXP158pmmKBy8efeGWdivF7+W6s8dy8YThPPnOx7w46zMWrirm6vtfYOLwPkw99wT6dM1JdJgiIiLSCcyaNYupU6dy/PHHE41G+elPf8rpp5/OihUrSElJAeBHP/oRb731Fi+99BLp6enceOONTJkyhQ8//DDB0XdeLlycFDuWN1xz2WBvY53ZSm/TNdFhdSgbrG3MsBdhLMOYQB8atvvUBpR2w+t4m5Iv64mOrIbZGVSUh5j7+Ub69uiW6PBERCTB2nXi5UDu3Jo4cSKzZs1qtt8PfvADHn744bYOt90wGBrcQeo89dR766l3Bwm7w/vaAY/jxu24cTku3I4bt+PCbRqXLWNx7jHH8MWmClyNfVpwNY1S52BwcDCYpv83xIgRJUaEGBErSpRo4zxRwkQIWWFCRBrnCWMsiFqN+9QTbIzpAL5LW8aKJ2c+XJdGjYngNR68xoMPN17H2zjdta5pmogv6rrj5eiVmZrELRdN4LJTR/C3t+bzxrwVzPxsLbOWruXs0YO4/pxxdM1OT3SYIiIi0oG98847zZafeuop8vLyWLRoESeffDJVVVU8/vjjPPfcc5x66qkAPPnkkwwaNIj58+czduzYRIR9VMghg+GmH0usVcyzl1IQyyYJX6LD6hDWW1uZaS/GWIbeTjdu7HY6v1s9O9FhiTTjj/noXVHE2swNmAH1OF+m8Ng7i5k8eij5WWmJDk9ERBKoXSdeDuTOLYDvf//7/PKXv4wvJycnJyLchDEYQq4QNb46ary11HnqceyW44p6Ym58UR++mBdfzIcv6sUX8+KNefebjBifPoCg2XQowe039ghRQk1JmJDVOA0Sji/vmg9a4fi2qBXDWIZg03JVQy14Diwel3E1JpiMC9uxm5abpsbGdlzxeZfjwjbNyxxa4uaYQ9hHOpOCrAB3XXk6V04ayUNvfMT0T9fw5oIveGfhSi4+eRjXTh5DVuDo+uwSERGRI6OqqvFhz1lZWQAsWrSISCTCpEmT4mUGDhxIYWEh8+bN22PiJRQKEQp99VyS6urqIxx15zW8acixcquaufYSJjmj1WtjP9ZaW5htf4qxDH2c7pzkHIvL0iNqpX1KjibRq7KQtX034pR4qa+Enz31Hx65+SJctuqtiMjRql0nXvZ359YuycnJ5Ofnt3V4CWUw1HrrqPLVUO2rIeKKNNtuOzYpkWRSIskkRZJIjvhxm/b3z21h4W0aNiyN5JaJmr0kbmLECNGUlLHC9CsK8PKKpcTsGFEr2ji1Y/HlqB1rTEZZjcOuxewY++gDtE+2Y7dIxjRL0nwtceMyLoqDZdTRgBcPbg41eSOdQe+CbO6/7hyWbyjhL6/N5eOVm3l+xhJe++hzrjjtOK6YNJK0JN0FKSIiIofGcRxuvvlmTjzxRIYMGQJASUkJXq+XjIyMZmW7dOlCSUnJHo9zzz338Itf/OJIh3tUcGFzcmwEb7jmsNku5QuzgWNMr0SH1W6tsYqZY3+KsaCf04MTneHYaj9JO5caSaFXdQ/WHbeF2KwMFq/ewuP/+ZjrzlaPQhGRo1X7+yV+H75+59Yuzz77LM888wz5+fmcc845/PznP99nr5eOeveWwVDnqafCX0WVv5qYHYtvs4xFSjiZtHAqaeFU/NHOPfatCxfJuEjGDwbGBgqZ1VC8z30MpjEZ05SIidkxYpZDzIrh7DYfs5vWWc5XZexY/Fk4ju3g4BAlesDx3rZuffy/NstYeHHHE05e49lt2d00VNquZ9k0PuNm17wb1yFfM2lfhvTM5+GbL2LBFxv58+sfsmLjdh59ewEvzfqMayaP5pIJw/F5OtRHtIiIiLQDU6dOZfny5cydO/ewjvOTn/yEW265Jb5cXV1Njx49Dje8o1YWAY53jmG+azmf2CvIj2WTRSDRYbU7K62NfGgvBQv6O4Wc6Azr1O1a6VwC4TSK7AI2Dt9BbHGAR96ax/EDejCir573IiJyNOowv+rt6c4tgG9/+9sUFRXRtWtXli5dyu23387KlSt55ZVX9nqsjnb3VsgVojypkgp/JRHXVz/2uxwX6aE00oMBUsMp2KgL675YWHgcNx7cENt/+a8zmL0nZqyvEjmNSZyvEjYxy8Hrs6mLhjCWwVimaWi1yK7ADpjbuPaYkPEbL0n4Gl/GH593qU60iUg0SnH59kPat1sXP/d8/1Tmfb6Zf0xbypad1fzh5dn84/2FXHrqUE4b0QuX6/D+HX0uL7npmYd1DBEREWn/brzxRt58801mz55N9+7d4+vz8/MJh8NUVlY26/Wyffv2vY4c4PP58PnUC7c1DTI92eKUstkuZaZrEefGTtaNVU0MhqXWGha5vgRgoFPEOGeoki7S4WQG05k0ug+Pli7GFPu5+W+v8e+7riU9xZ/o0EREpI11mMTL3u7cuu666+LzQ4cOpaCggNNOO421a9fSp0+fPR6rI9y9ZTBU+aopS66g1lsXX+9ybNKDATKC6aRGUvRFtA1ZWLiNG/chJG1uP2Ui05ZuJEqMMBHCRBun1m7zRAhbUcKEmw2jtus5NsYyRK0YtTRQS8MBJWx8xtMiGZNsmhI0+OPzjtnPw3hknxwMb5ctO7yDFMDZVxSyakUFn3xUys6qev7y6gKembmEUePy6N0/Hds+tP/ez8oeenixiYiISLtmjOGHP/whr776KjNnzqRXr+bDWI0cORKPx8P06dO58MILAVi5ciWbNm1i3LhxiQj5qGRhMd45ltesWVRatcy3lzPeGZ7osBLOYFhgf84Kez0Aw5y+jHQGqq0rHdY3sodiTXHzyOOLqamB6//2Is/dfCWWpTotInI06RCJl73dubUnY8aMAWDNmjV7Tby057u3YlaM8qQKdiSXf/XcFgNp4VSyGjIJhFLVs6WDsrDw0NjjJmXXygN8po3BECEaT8LsSsiECBNsmm8gRIMVooEg9TT2rglZjT1rKq3afcb2zxXv43N5Sd4tSZOMnyTji69Ljvei0V15R4ptWwwckkXfgRl8/lkZny7YQWVFiPff3kzGvFJGjMml38CMQ07AiIiISOc0depUnnvuOV5//XXS0tLiz21JT08nKSmJ9PR0rr32Wm655RaysrIIBAL88Ic/ZNy4cYwdq+cPtKUkfJzsjOBdez6r7E3kmUz6m8JEh5UwMWLMtpew3t4KwJjYYAab3gmOSuTwXTfwVLacU82bL65n5aoy7vjX69x78fmJDktERNpQu0687O/OrT1ZsmQJAAUFBUc4uta1I1zN1tQSypIqGh8CD7gdF9n1WWQ1ZOB1vAmOUBLJwoo/EyZASvMEzR6SNYbG4cwakzFBGghRv1ti5qskTYigFSaGQ70VpJ4gWFX7jGX3XjTJzXrONC2bxqSNB7fuUjtEbrfN8JG5DBqSxdLFO1m2uIzKihAz3ilm0bxSRozOpf8xGYc9BJmIiIh0Dg899BAAEydObLb+ySef5OqrrwbgD3/4A7Ztc+GFFxIKhTjjjDP461//2saRCkA3k8txzgAWu1Yyz15GVixADhmJDqvNRYjyvv0J2+yd2MbiZGcEvY2ehSGdg2VZ/OLk8ynZ/gwLZ+xk2gfrKOz2AVNPODXRoYmISBtp14mX/d25tXbtWp577jnOOusssrOzWbp0KT/60Y84+eSTGTZsWIKjPzArq7fy9LpZTC9ZjpPS+Au6L+ojtz6bzIZ09W6RQ2Jh4afxGTCZJu2rDXtI0jg4jDoml/dWrG1KvoTiCZt6gjRYofg6x3IOuBeNy9gtkjFJxodv13Np8OAzX827cClR8zVen4tR47ow7LgcPv+sjM8W7aS6KsysaVtYNL+UY4/PZeDgTNwefU6IiIgczcwBDBvr9/t58MEHefDBB9sgItmf4aYfO5xKNtvb+cC1kHNjJ+Pn6LnZroEQ77kWUGZV4TYuTnOOp5vJTXRYIq3KsiweuujbXLTtCTZ+WcvjL35KTlYK3xo4JtGhiYhIG2jXiZf93bnl9Xp5//33+eMf/0hdXR09evTgwgsv5Gc/+1kCoj00Syo2MK2k8dkQqaEUcuuzSQun6gfoTqi6Yd+JikTKcqc03mW3j540BkOYCPWEqG/qRdNAkPqmnjO7kjQNBAlbUWKWQy311FJ/QM+jcRm7KSnjwYcHj3HjbhqaraRkM9us+vhQbbteLmxsY+PChY2Fi5bzVov/mqw9zDU+p8VgcHBwMMTic3tYZzWui2FwiPFhZZBVoW3EjEPMODimaVt82TTf1rS8a/vXyzrGaXmBuoD/dLDWeQiu9lJbE2HuB1v5cO4WkvtGSe3n4PFb2JaNy7Lx2C48lguP7aaqoZb8qiySXT4CniTSvclkeJJJ96aQ4UnG5/Ls/x9IRERERFqNRWMPjzesOVRbdcywF3GGM+aouPGukhqmuT6mxqrHb7ycHhtzVPb4kaODy3bx7PXf4exfPUpVWYT7np5F4AYfZ/Y4NtGhiYjIEdauEy/7u3OrR48ezJo1q42iOTLO6TaSdTXbGePrw/MfHebDuaX9MobV9aWJjmIfjtlvCQsr3ltlf71ookRpINyUjAnuNsxZiFD8GTWRxnnCOJYhZjnU0zTcWeMJ41aVbaI9P1rmg+I2PFnvIHYRmI1+nLXJmHoXdSs81K00WD2C2H1rsFKaJ26WV23e5yGTXF4yvCnk+tLI9QfI9aWT5w+Q5w+Q6wvQNSmTXH8A2+r8PwSIiIiItBUfHk6LjeIN11y22Tv5kKWMd4Z36pvwtlilzLAXEbaipJpkzoiNIZ3URIclckQl+3z8/b+/zcW/eZpIhYef/+M/uK+x+UZBxxipRUREDk27TrwcDZLdPn4y5ALWFm9NdCgircaNmzTcpJH8VWJmL3lUgyFKjGBTEiZkhQkTJbLbq2teMmt2lDdfb0XjPVD2NDXW/ofc2Bfb2NhY2OxrauPCJjc1mUrTgMuycFlN63fNN/VAsb+27LKspnJfbds1b1v2/pvbhRA70VC8to41S2qo2hHBbEgitjGJ3J5eCo7x4s+FqInR1ZNOgxOhwYlQFw1SEw1SHW2gJhokZhwaYmEaGsJsa6jY6+nclosuvgBdfOnk+9PJ96WT78+gR1IWud4AtnXoPxD4XF5y0zMPeX8RERGRjiqTAKc4I3nf/pjV9mZSTTIjTP9Eh9XqDIYvrA0ssJdjLOhisjg1NookfIkOTaRNFOZl8YfrzuOHf3kNZ7Ofn778b9wX2ZySPyTRoYmIyBGixIuIJJSFFR86rFmiZjffyC9i2vaNB3VcJz5E2B6G7eLrpzFYuyVVrD0MULYv3+hVxPSGFQcVX2spGJrBqCGGrZvrWLJwB5s31LJjfZgd68Pk5PkZcmw2l40ew5z61S32NcYQcWIEnTANsQj10RB1Ta/62K75ILXREFETY0uwgi3BCqhqfhyXZZPhSSHTm0KmN5kMbwpZ3lRS3X6sA0jInJU9tLUuh4iIiEiH08N0YZwzjI9cS/nUtZLUWBL9TI9Eh9VqosSYZy9jtd3YC7uf04MTnKG42nOXdpEj4IRjenHrxRO5/8WZxD5P5vbUl/nNZMOkfLWHREQ6IyVeRARo38+gOZAHxn5dY68UF+16jLJWYlkW3QpT6VaYSvnOIEsX7WT1l5XsLA0y870tLJzzJn0HBzhmeDaBdG+z/bwuN16Xm8A+HvPiGIe6aIjqSAM10QaqI42vqkg9VeF6YsahLFxDWbim2X4+2022L41sb2rj1JdGuif5sHrHiIiIiHRGA00RtU49S+01zLU/w+O46Gm6Jjqsw1ZDPR+4PqHMqsYyMMo5hiGmd6ceTk1kXy6deCzrtpXx8pxlRBem8lP/S4RPinJWtxGJDk1ERFqZEi8i0imeQSONsnL8TDyjO2NPzufL5RV8/lkZNdVhlizcyWeLdlLYK42BQ7Io7JWGy3VgDV7bsknzJJHmSWqxzTEONZEgFZE6KsN1VDS9KsN1hJwoWxsq2LrbEGZuy0WuL40u/nTyml4iIiIiAiOdgdQTZI1dzAx7Mac4Fj1NQaLDOmSbrO3Mtj8lbEXwGy8TnZF0NTmJDkskoSzL4rZvncLG0goWriwmOj/A3d5XCB0f4YIeoxMdnoiItCIlXkREDpPLsjjOU5ToMJrzwAkngDPWsGFTNc/M/5TijbVsXFfDxnU1JKe46X9MJgOHZJKReehja9uWTbo3mXRvMqTkxtfHjENFuI6yUA1loRp2hmooD9cSNTG2BSvZFqyMl/2gZBkjsnozNKMHwzKL6JWah8uyD+fdi4iIiHQ4FhbjnWMxGNbaW5hhL+IUZ2SHS75EifGJvYIv7A0A5JgMTo2NIpWWN/GIHI08Lhe//8G5XPu7f7JmaxnReQF+436dUCzCpT1PTHR4IiLSSpR4ERE5TNGYwyOzPk50GHt1+6kTqOzWi8ryEF8sL2fl5xXU10VZ8skOlnyyg4JuKQwcmknvvgE83tYZms1l2eT40sjxpcXXOcZQGa6jNFTF9mAVpcFqqiL1bA1WsnXrYt7auhiAFJePYZlFjMzqzajs3vRPK8Btd/4h40RERERsLE5yRmCAdU3Jl/HO8A7zzJcKapjpWkSF1TgE7WCnN6OcgXqei8jXpCX5+MsPp3D1/S9QUl5DbH46v7ffIuREuar3hESHJyIirUCJFzlg7fkZIHt6ILuINJeR5WPcyQWMPrELG9fV8OXyCjZvqGHbljq2baljjtuiZ98A/Qdl0r0oFdtu3bG3bcsiy5dKli+VgYFuAARjEQq9mWyLVrOschMrqoqpi4WYt3MV83auAiDF7WNEZq94IqZfWj62esSIiIhIJ2VjcbJzLBaw1t7CHNcSapx6Rjj92+2zURwcllprWGKvwrEMfuPlZGcE3U1eokMTabfyMlL5y40X8N3f/ZPqCnA+Tucv1rsEY2Gu6zsJS8/GFBHp0JR4kQPT7p8BMijRAYh0GC6XTe9+6fTul05tTZiVn1ew8vNKqqvCrPmyijVfVuFPctF3QAb9BmWQl590xL70+10eRmX0ontWF6BxiLK1NSUsKl/PovJ1LC5fT200yNwdXzJ3x5cABDxJjMjsxais3ozJ6UtRSq4aJSIiItKp2Nic7IwghSSW2o0JjRrqONEZjrud9R7ZSSVzXZ9RblUD0MPpwonOMJLxJzgykfavd0E2D/zX+fzXn1+hYQc4CwM8Zs2gLhri5oFn6YYzEZEOTIkXEZGjWGqal5Fju3DcmDxKSxpY/UUla1ZWEmyIsXxJGcuXlJEW8NC7Xzq9+gXoUpB8RJMcLsumf6Ar/QNduaznicSMw6rqbSwqX8ei8nV8Wr6e6kgDs0pXMKt0BQAF/gzG5vRjbG5/js/qQ6pHjXwRERHp+CwsRjmDCJgUPrSXstbeQoVVw4TYcWSStv8DHGFBQiy2V7LS2oixwGc8jHWG0Nt0a7c9c0Tao+F9uvKH68/lpr++RqjEh7MojeetjygL1XDXsIvx2vrpTkSkI9Knt4iIYFkWXQqS6VKQzLgJBWzZVMvqLypZv6aKmuoIny3ayWeLdpKS6qZX38YkTEG3lFYZjsw4DsXl2/e6PQ03E9P7MzG9P7GeDmvrSllevZml1ZtZUbOVbcFKXi3+hFeLP8HGYkBqASMyijg2UETvlDzsw0wU+VxectMzD+sYIiIiIoeqvykkxUlilr2Ycquaf7tmM9oZzEBTlJAER4wYK61NLLZXErYiAPRyujLWGUISvjaPR6QzGD2wkN9ddw4/evjfRLf6MYst3huxjIpwHfcddwWpbt1cJiLS0SjxIiIizbhcFoW90ijslUYk0o3NG2pYt7qKjetqqKuNxnvC+JNc8XI9itLw+Q9t2IuIE+P9is8Pah+/z8/o3H6MyO5NSUMFmxvK2VJfTlWkni9qt/JF7VaeYx5+20O35Cy6J2fRLSmbZLf3oOM7K3voQe8jIiIi0pq6mVzOj01gjr2ELfYO5rmWscHZxhhnMFkE2iSGGA6rrU18Zq+mzgoCkGUCjI0NIZ/sNolBpDM7cUgvfvu9s7nj0beIFvtwOxl8MnId1y94lD+OupocX+J7uomIyIFT4kVERPbK4/nqeTCxqEPxplrWra5mw5pqgg0xVq2oZNWKSiwL8rulUNQrjcLeaWRm+drkuSse20WPlBx6pOQAUBNpoLi+nOKGMrbWVxB0Iqyt3c7a2sYeNdneVHokZ9MjJYdcX+Cwe8OIiIiItJVk/JzujGGFWc9C+wu22Tt53ZpFP1PIcc6AI/ZMlSAhVlubWWFvoM5qaIzF+DnW6Ud/U4StYcVEWs2px/bl/h98k9sefYvIVvCaLFaO3Mb35j/MA6Ouoaip3SMiIu2fEi8iInJAXG6bot4BinoHiE0ylGytY9O6Gjatr6GiPMS24jq2Fdcxf04JKakeuhWm0L0wlW6FqaSketokxjRPEoPSuzEovRuOcdgerGpMxNSXUxauoSxcS1m4liWVG/HZbronZze9skhyHXxvGBEREZG2ZGEx2PSmMJbPQvsL1ttbWWVtYo1VTC/TlUFOT3LJOOwhyBwctlllrLWKWW9tJWY5ACQZH8OdfvQ3hbg5tN7OIrJvE4b14Y83nMePH/43wW3g/ziHLaPK+P78h/nDyKsYnNEj0SGKiMgBUOJFRDqE6obaRIewdybRAeyb23JxnKeodQ/qAXo3vYAdlXUsW1vKsrWlrNxURl1tJN4bBiA/K5WBPbMZWJhD3+5ZBFK+Gv/bjh2ZRrtt2RQkZVKQlMnx2X1oiIYpbihrSsSUEXKizXrD5PoCjb1hkrPJ8aW1SY8dERERkUORRjKnOCM5xunFJ64VlFoVrLWKWWsXk2UCdDd5dHfyyCMTG3u/xzMYaqhnh1XBFmsHm6zt8ee3AGSbdAY5PeltuinhItIGxh1TxJ9vvICb/voa9aUR/PNyqTh+J9d//Bh3D7uI0/I1HLKISHunxIuItH/GsLq+NNFR7MOgRAewT9FYjEdmfdwm5/J3sRiak01tTYTq6jA1VWHq66KUlNdSUl7LzMUbAfD5XKSkeUhN8/Dfp43DpJkjnuhIcnvpl1ZAv7QCHOOwI1TD5rqdbK4voyxcy45QNTtC1SyuWI/f5aFHUjbdU7KpTe93ROMSEREROVRdyOKbsfHsoJIv7PWst7ZSblVTblWz1F6D27gIkELApBAgBbdxYWFhYxGyItQRZMH6xayxSwnZkWbH9jkeukZz6BkpIMsJYGFRT0OC3int/mYnkdY2sn93HvvxJfz3X15lZ0U9vg9zCY7eyU+WPM/3+5ZybZ9TsK39J1ZFRCQxlHgREZFWZbssAhleAhmNQ3dFow411RFqqsLU1oRpqI8RCjW+yncGufWx9/D6bHLzksjJSyK3SxI5XZJIz/AesWSMbdl08afTxZ/OqOw+1EVDFNeXsbm+jC315QRjEVbXlrC6toRZ21cwNLOQE3MGcELuAPql5as3jIiIiLQruWSQ64xgNMew2Spli7WDrdYOglaYchoTMXtVD9hgGYukiJ/kSDLpoTRSIslYWJQTopwdbfZe9q593+wkciQM7JHHk/9zKTf++VU2llbg/SiH6HHlPMp01tVu566hF+HXkMkiIu2SEi8iInJEud02mVk+MrMahxeLRh3qaiPU1kSoq4kQbnAIhWJs2VzHls118f08Xpuc3CSy8/xkZfvIzPaTmeXDn9T6f7pS3D4GBLoyINCVWNOzYTbXl1FcV0ZFpI7PKjbyWcVG/rr6PXJ9AU7I7c8JuQMYnd2XFLdv/ycQERERaQN+fPQzPehnemAwVFFLtVVPNbXUWg1EiWEwOBh8eEg2fkb36MZ7y9eSFPEf0LBkItK2uuWk88T/fItbHnqdz9Ztw5qfAUPqeN8sp7i+nN+NuIIuSRmJDlNERL5GiRcREWlTbrdNeoaP9IzGhMWtE0/i5eLP2LG9gR2lDezc3kDZjiCRsMO2LXVs21LXbP/kFHdjIifb39izJr3xlZbuxeM5/B8LXJZN16RMuiZlMia7L6NSi1gfKeejHSv5pHwtO0LVvF68kNeLF+K2XBybWcSJuY29YXqm5Ko3jIiIiLQLFhYZpJFh0oAuex2qa3xGIR9GtrVpbCJycDJTk3jk5ov4f89P5415K4guS8FX4+XLIVu5at5fuf+4KxiaUZjoMEVEZDdKvIiISEK5bJucpmHGdg0g4TiGirIQO0obqNgZpLwsSEVZiNqaCPV1Uerros16x+ySnOJuTMR8LSGTFvCQnOLBtg8+KZJjpZHnzWBMt96EC6KsqN3Cour1LK5Zz7ZQJQvL17GwfB0PrPwPed4AxwV6cVxaT4am9cBnew7z6uyfz+smNyvziJ9HREREREQSx+txc/eVp9OvWy5/fHk2oQ0efNW5lB1Xxg0fP8atg87hvO6jdCOYiEg7ocSLiIi0O7ZtkZ3rJzvX32x9OByjoixERVmQyvIQ1VXhxldlmHDYiSdlSrbWtzimZUFKqofUgIfUNA9pAS+pac3nvT5Xi/0iUYdpS9Y3W9eF7pxJd6qopdgqpdgqpcQqozRczTs7P+OdnZ/hMjb5JpsepgvdTR4BUlr3IjX55qi+R+S4IiIiIiLSvliWxRWnHUefgmzufOJtKsuDuGfnEDy2kt84r7KwfC0/GXyBhkMWEWkHlHgREZEOw+t10aUgmS4Fyc3WG2MIBWNfJWKakjHVVWFqqsPU1URwHKitaXy2zF6P77NJS/PGkzOpaV58ORspKa8hNclLst+LvdsdZOmkkm5SGWx6EyHKNquMYms7xVYptVYDW6wdbGl6GG3ApNDd5NHD5NHFZOOmZZJHRERERERkf8YdU8RzP72C2x97i2Xrt8HH6Vi9G3g3tpQvqrZwz7GX0T/QNdFhiogc1ZR4ERGRDs+yLPxJbvxJbvLyk1tsdxxDQ32U2uoINTVhaqsjTUmYMDVN86FgjHDIoSwUpGxnML7vAkp2Ow+k+L2kJvlI9ftIT/GTnuonIyWJ9BQ/he4uFJouGAyV8d4w2ymxyqm26lhhrWcF63EbFwUmh24ml64mh3RSsdCQACIiIiIicmDys9J47JaLeeDVOTz3wafE1iXh3ulj03GVfDf4MD8aeDZTeozW0GMiIgmixIuIiHR6tm2RkuohJdVDF1omZqBxGLPamkiLpIy7zkPxjmpqg2GMMdQ2hKltCAM1LY6R4veSkZpERmoS2WnJdAl0YVBaTxyXw1ZrJ8VWKZut7TRYITZb29nMdgCSjZ8Ck0PXplcKSUfycoiIiIiISCfgcbu49eKJjBtUxN3/eI+y6nqs2VkEB9by2+jrLCpfx0+HXECq27//g4mISKtS4kVERITGYcyysl1kZTdvlJyWdAzTlmzEMYaGUISa+hC1wRC19SEq64JU1TVQWRskFIlSFwxTFwyzZWdVfH8LCKT4yQ4kk5WWw4kZhXjSDaW+MrZaOym1yqm3gqy1illLMdA4LNmuJEyBycGHty0vhYiIiIiIHCKXZVFcsqNNz1mUk8ofrjuLv/x7Hh+v2oJZkYq1xc+0EStYVr6RHxaewTGp3Vvs5/O6yc3KbNNYRUSOFkq8iIiIHADbskjxe0nxe4G0FtuD4QiVtY2JmIqaBspq6imrriMYjlJVF6SqLsi6beXx8oFkH7kZOQxPL8SdGaM+vZYSTxllVFJt1VFt1fElG8FAJgHyTRb5JpsuJotkdMeaiIiIiEh7FI05vPPpmoSce3jf7iT5fcxbsZFwFcRmZbK1Xz131r/EULs3xzkDmz1r8puj+iYkThGRo4ESLyIiIq3A7/WQn+UhP6t5UqY+FKa8up6y6sZEzI6qOqrqglTXh6iuD7F2axnQmNjJSc+kf1Z3vFmGUFYdpf6dVFq1VFBNhVXNF2wAGnvE5Jts8k0WpeE8upPb1m9XRERERETaGcuyGNAjjx65Gcxdvp4N2yswq1KIFftZOqyY4rxSxseGk0dWokMVEen0lHgREZGEclsujvMUJTqMvXMM1Q21h3WIQKqbQGqAXl0DAIQjMcprGiirrqe8uoGy6gaC4SillbWUVtbCuqb9kjPoltEFb6Yhlh2kMq2aaldtvEfMKjYxe8USuqxLZ3hmEUPTCxmS0YP+gQI8tv7Ei4iIiIgkwuG2H1rDmGO60i03lcWrt9FQD878dMoKQrwxaD79fPkMDvUmEo0mOkwRkU5Lv8qIiEhCRWMxHpn1caLD2KvbJ05gdX1p6x/YD14/5Ocl0cX4CYccamsi1NaEqa2JEGyIxXvFsLVxF48nhZRAOt4Mg8kOEcqqJ+wLsT1YxXvblvLetqUAeG03/dMKGJJRyNCMHgzJ6EG+PwPLslr/fYiIiIiIyFeMOTLth0ORCgOGZbCtuI7t2xow23zESrys7FnJhr4L6F2VSs9u+WoniIgcAUq8iIiIJJhlWfj8Lnx+F9m5jc9viUYcamsj1FZHqK2JUF8XIRJxqCoLQxmw1sZ2pTG4sDe9emfiyomyM6mcFbXFVEXqWV61meVVm3lhY+M5srypDMnowaD0bgxI68rAQFdy/IHEvWkRERERETniXC6b7kVpZOcmUbyplurKMGZ9MsHNDr8vnsWc6tXcPuxcilJyEh2qiEinosSLiIhIO+T22GRk+sjI9AHgOIa62sYkTG11hNraCE7MsGx9KcvWN95R53G7OKawLxOKskjpYlOfVsOq4FZW1WyjPFzL7NIvmF36RfwcWd5UBga60j/QmIgZEOhK16RM3fEmIiIiItLJJCW76Tcwg+qqMMWbamioA+eLFOavL+fiZQ9x2fjjuLbfqQQ8SYkOVUSkU1DiRUREpAOwbYu0gJe0gBe6gTGGhvoo4wp6snlnLZ+u2cLO6no+W7eNz9ZtA8CyoE/XHM7uPYDcrn5MVpitZicrq7ewsW4n5eFaPtq5io92roqfJ83tp3+ggN6pXeid2oU+aY1TNcBERERERDq+QLqXQUOyqCgLUVUaprw6SPTTVP6xagUvD1jKdaecyKW9T8CrZ0aKiBwWfYqKiIh0QJZlkZzi4czj+9One1eMMRTvrOLTNVvir02llazZspM1W3bG98vLSGVwUR9O6TGGQK6HaCDI5ugOVlZvZW3NdmqiQRaVr2dR+fpm58vxpdEntQu94smYPHql5JHq8bf1WxcRERERkcNgWRZZOX5+feHpLFxTyt/+M4+6Oqhf7OaPKz7mqYEfc8M3TuKCnqNw265Ehysi0iEp8SIiItIJWJZFj9wMeuRmcO64wQCUVdexZM1WFjclYlYV76C0spbSylpmfLY2vm/3nHQGFvZkXMFxpGW5iaVFqHBXsaGulHW1pZQEK9kZqmFnqIYFZWuanTfLm0KPlBwKk3MoTMmhMDmbwpQcuiVn43d52vQaiIiIiIjIgfO6XVw5aSQXnTSMf81dymPvzqemJkzlErhnxVweGjCXG04fzwW9lYARETlYSryIiIh0aIbi8u173TqgZ4ABPQNcNmkQDaEI67ZVsLq4jDVbylm9pYxtZbUU76yieGdVs/28HheFeekM6DKAk7KScacZoklhqr21lMQq2dRQRkWkjvJw4+uzio3N9reAHG8a3ZKy6JWWR0FSJl2TMylIanxle1P1LBkRERERkXYgyefhytNG8q2Th/Pa/OU8/PZHVFaGqFwG96z4kAcK53LxhGH8YNQE/C5vosMVEekQlHgRERHpwIwxvF227MB3SAPvIDhmUIBjCBAKxtixvYGdOxoo3xmkfGeQirIQ4UiMNVvKWbOlvMUhklPcBDJyKAoU4E4yWEkOMX+UsDdE0NtAlVVP1MTYEa5hR7iGJVUbWxzDZ7vJT8qga1IWBUkZjYmZpF2JmQwyvSnYln04l0ZERERERA6C1+PmkpOOZcoJw3h74Qr+8tZcdu5ooH69xd/XL+fZf3/GCaN6cMupp1GYnpPocEVE2jUlXkRERI5iPr+L7kWpdC9Kja9zHEN1ZbgxEVMWpKoyTHVliKqKMMFgjPq6KPV1UdiypyP6cbmS8CW58Pgt0pN9eJNcxLwxQu4Q9XYDNXY9Qa/DBm8FGzzl4HHABbt3gHFbLnL9AfJ8AfL8AXL96eQ2zec1zef60/DooZ8iIiIiIq3K7bI5d8wQzhk9mI9Xb+Iv787m8y93EC13Mfu9rcye8XeKBqXynZOO57zBx+qGKRGRPdCvFSIiItKMbVtkZPnIyPLRm/Rm20LBGFWVIaoqw9RWR6itCVNXG6WuNkJtTYSG+iixmKG+Ngq1UEXka0d3A4EW57RscHnBeAyOO0rMYyj2RCn2lIFnB5bHgNc0Jmk8pnHZ45CZkkSXtMZkTLYvjWxfKtm+NLK8qV8te9NIcmtIBBERERGRg2FZFmP6FzGm/5XsqK7lgfdm8v6CNYRrbTYuredXS2fx2/SZjBxWwPdPPpER3QsTHbKISLuhxIuIiIgcMJ/fRV5+Mnn5yXvcHos61NVFCTZECTbEGOAqwDIeKmobqKxt+Gpa00BVfZCa+iAxx2AciAaBoAV4WhzX7CWencBOInzu3gHeUvA4TUmZ5kkar88mLdlHRkoSORkpFGQGyA8EyPEFdkvQpJLlS1UvGhERERGRr8kNpPLri77JL6Y4/OuTT3lm9kK2bKgjUmUxf04J8+e8THKexdjhPbh2/AkMyitIdMgiIgmlXxZERESk1bjcNoF0L4H0xh4mE9J6YuPaa3ljDA3hKHXBMLXBMHUNTdNgmNqGcHz9Htc1hAlHY4AFUQuiAK4WSRoDBJteOwixmhBQDrYBvwN+B8vvgC+G5XfwJ7tITfOSmeYjO5BMhjeZgDuJgDuZdFcSAXcS6U3LybYXa/cx0lqZz+Ome5e8I3Z8EREREZGD4bJtvjVmJN8aM5LSmmoenj2HDxaupbokSn0pfDBtEx9M20hyrs1xg7ryrdEjOaF37yP6nVlEpD1S4kVERESOmEjUYdqS9Ye0r8vjIeDxEEhL2WuZWMwhFI0SjsQIRaKEIrvPxwhHojREIzREwgQjEYLhKMFglGjEgGNBvQvqv0rWGKC+6VVKFKwqSKrASo5Bcgwr2YGkGFaK07jsM3iMC7fjbnrte97m4Ma/vuO0Uw7p2omIiIiIHGl5aQH+9+yz+d+zYeX2Eh6b/RHzPttMfZlD/Q7D3B1bmDt7C64UQ6/eASYO7cuFI46jS2rLoYdFRDobJV5EREQ6MLfl4jhPUaLD2DvHUN1Qe8RPY7sgyWWR5Pewp6HKvi4Wc2gIRxnTpztPLlhIJOIQDscIR2KN07BDJGjANCZnTH1jr50WQ565DNGUGFZKDFJjWClBrNTGebyGr9/YZzv2PhM0nt2WXWbvPYVERKT9a4u/f61ib+N5iogchAFd8rn/4ilwMXy5vYSn5y9g/vKNVG6NEquzWLOshjXLPuWx5xeTnG3Tt2cWJwzsxdlDh9AtkJno8EVEWp0SLyIiIh1YNBbjkVkfJzqMvbp94gRW15cmOoy9GtB9OJlr/HvcZoxpTMiEYoRCTdNgjHAoRjjkEArHIGZBtRtT3fiVavffriy3wUpxsFKimNQYpEUxKTFiqRHC3vD+gzPwgy/Wk7shQKY3hSxvKpm+FDK9qY3z3hQyvClkeJJJ96YQ8PixrYPrUSMiIkeIMe36719zgxIdgIh0MgO75POb886D82BnfQ0vLlrMjM/WsHFDNdE6i/qdhqU7y1i6sIyH+QRvFnTtmsIxRfmM79ebk3r3I8Wz5+/oIiIdhRIvIiIiIntgWRZerwuv10VqWsvtxhhCoRihhhjBYGNSJhiMEmpo7DFjohamygVVLXuuuDzgTgJXCtgpDqTEIDWKkxoh5o0Ss2NgQXWsgerahgOK18Yi4Ekiw5tCujeZdE9yPDGze4Imw5tMhqdxmur2a7xtERERETlicpLT+K+TJvBfJ00AYOmWYl7/bCkLV29mW3Ed0VqLcDlsKK9nw/J1vM06cL2HL8sit0sSvbtnMbh7AccXFdE/I59kty/B70hE5MAo8SIiIiJyCCzLwu934/e7Sf/aNscxTYmYGKFglGBDLL4cjTjEIhCLANUAdtPLAyTh8dj4/S68yRbjBhTSo1sGvnQbO8WhxqmnPFxHRaiWinAdlZE6KsP11EaDOBgqI/VURuqh7sDeg8uySfckNSZkdkvQBDzJpHmSSPP4G6fuXdMk0jxJpLp9uG0NhSYiIiLSkbksi+KSHW16ziyXj2uOO55rjjsegE3l5cxcs5bPi7dTvL2GmrIoxGxCO6B4R5Di5VuZzVYeYiGkOHgDhowsH/l5qRTmZtIvP5d+OXnkJ2WQ4w+Q4vLpxiIRaReUeBERERFpZbZtkZTsJinZDTS/Ky8WdQiFYs2SMaFglGAwRizaOLxZJOJADby1fU18P8uCnPRk8jJSyctIo39GPnkZKeRmppAdSMKXYhOyItREG6iONlAdDTbORxqoiQab1jVQE2mcDzoRYsahPFxHefgAMzW7SbK9pLp9pPtS9piYSXH7SHJ5Sf76vMtHkrtxPtnl1fBoIiIiIgkSjTm88+ma/Rc8wrLsTE4qzIRCcIxhe20Vm6vK2V5ZS1VNkFCtQyxsQZ2LcB2UbotR+nkVS6kCNoDLQHLjcxfdqYa0gJfMQBK56SnkZwbIz0wjy5/a2DPc09gzPN2bTIYnGZ9r/8+HFBE5FJ0m8fLggw9y//33U1JSwvDhw/nzn//M6NGjEx2WiIiISDMut02y2yY5pWUjLxp1dhu6LErv9GxWle2kqiJEOOywo7KeHZX1fL6XYyclu0lN85Ca5iE5xU1yipukZA/JKan0SMloWnbjctnEjEMwFiEYixCKhQk6ka+WnQjhWJSQEyXsRBqnsShhJ0rExABocMI0hMPsCNcc1vXwuzwkuxqTM8m7EjQuLz6XB5/twedyN009+Gw3PpcH/67lPWzbteyxXHhsF27bxmO5cduNyy4leuQop3aTiIi0Z7ZlUZCWQUFaBnRvXHf2yD6kpKSyvHgrn23ewsriUjaXVlFW0UB9TbTxuYs1bkyNmwhQDpQTYi2hpiXA60BSDMvvgN9pnPocvH6b1GQvqSk+0lK8ZKQkker1keL2k9J0A9Hu843fW/3xG4uS3B78thefy60bikSkmU6RePnnP//JLbfcwsMPP8yYMWP44x//yBlnnMHKlSvJy8tLdHgiIiIiB8TttnGn2aSkNSZlbjp1LB8Ev8QYQ7AhRlVliNrqCDXVEWpqwk3zjdNIxKGhPkpDfZQd2/f9XBif30Vyshtfkgufr/Hl9bvw+Tz4/H5S/Lut97nweGzcHgu3x8Z2QZQYISfKqJRC6pwwddEQdbEQtdEQ9bHG+WAsQkNTQqchFqYhFqHBCcfXOxiAeLKnPFx7xK8vgAW4LVfjy7ZxWTZuy4XHsnE3JWYat381ta3Gci7LapzHiq+zLatxylfzLsvC5qvy8fV8tY9t2fhsD2cVjSTLl9om711E7SYREfm66oa2+Q52OGJOjIrqSroFkuk2uB9nDe4X3xaJxdhZVc/2ilqKy6vYVFZJaXUdFTUNVNeGqKuPYhwgbEPYxlQ17mea9g82vXbifLXkdsBrwOtgeU3jsseA22A1TfE4TVOD5W5c53bb+Nxukv1ekjwekjwe/C4Pfpe3ado0b3uaLzfdPOSxXXhtNx7bjdd2NU13vb5a3rXda7txWbaGVpODZoyhpLKM+liImIkRcxxiOESNQ2y3V9Q48W0t1n9t2Wm2PkbMGKIm1rRsiJkYUeNgjMEABoMxTVNM8/VNMe4qMzCtK98deFqCr9rB6xSJl//7v//j+9//Ptdccw0ADz/8MG+99RZPPPEEd9xxR4KjExERETk8lrXb0GVdW243pvGZMrU1jYmYutooDXVR6usj1NdFqa9rTMjU10Xjz58JBWOHHI/L1ZiEmebbStTl4HZbuNw2LtvCdlnYtoXLZWG7bGzbj8tOItllkeqycNkWlg2WDcYyOBgc4zROaT41LeabL8do/OIea1rrmN2OZxqb0068Wf2VGBBqvHJNS7tdi4Nqt7Y89sEeo29qd8Z2VeJF2obaTSIi0owxrK4vTXQU+xWNxrh35qwDK+wBf7ZNQXYKBaRgjCEaNUTCMSJhh3DYIRKOEY44RCMxIjGn8RmMUdP4DEaAqA1RoN7V4tveXr79AV99x6zetcKKgCsMrrrG4dBcBmwDLrB2zduAtWtK47rdp03z1q5yu75n7jbddTORy268cchlW7jsr272sa3G7+DxZXu3G4qsr9bHbxBit7LY2BZYWNBU9qtTW1hN2+LzlvXV8q4wm47JbmXtxh0b1/PVMVs4iO/VB1z0EPJU8QSB+apdEl9v4qmD3RIKX0sq0DyRsPt6TGOb5avtjeudpiSGgyHmNLZ3YsY0tnlabGu+zmlaFzO72kiNCRTHGGJNZTuSHXkNSrwkQjgcZtGiRfzkJz+Jr7Ntm0mTJjFv3rw97hMKhQiFQvHlqqrGdHd1dfUey7eFmpoawg31CTv//ii+w6P4Do/iOzyK7/AovsOj+A5PTU0NDaEDf/5KSjKkJLvZ21c8YwzhYIz6hhjBuiihUIxQKEY4GCMUdggHY4TDjUmZ8K5tYYdo1BCNfPXlPAaEG6Ceg382zJEVb50mOpADtn1IOdWpuW1+3l3fe43Z188H0pkcbLtJbabDo1hbX0eJExTrkdBR4gTFeiS0RpxuG9x+SPJD43dFm69/ZzYGYjETT8REow7RqEMsZnBiBifmEHNMY5ImZojFHGIxGrc5jT+IH/7v2V/PrOxfJD7nNL1Evs4CXIkO4pDV9XWoPjkx30EPp91kmQ7e2tq6dSvdunXjo48+Yty4cfH1t912G7NmzWLBggUt9rn77rv5xS9+0ZZhioiIiIi0O5s3b6Z79+6JDkPawMG2m9RmEhERERFpdCjtpg7f4+VQ/OQnP+GWW26JLzuOQ3l5OdnZ2QkZF7G6upoePXqwefNmAoFAm5//aKXrnhi67omh654Yuu6Jo2ufGLruiXEo190YQ01NDV277mHsOhHUZpL2SfVAVAdEdUBA9UDarg4cTrupwydecnJycLlcbN++vdn67du3k5+fv8d9fD4fPp+v2bqMjIwjFeIBCwQC+rBIAF33xNB1Twxd98TQdU8cXfvE0HVPjIO97unp6UcwGmlvDrbdpDaTtGeqB6I6IKoDAqoH0jZ14FDbTR1nAOy98Hq9jBw5kunTp8fXOY7D9OnTm3WhFxEREREROVqp3SQiIiIi0nY6fI8XgFtuuYWrrrqKUaNGMXr0aP74xz9SV1fHNddck+jQRERERERE2gW1m0RERERE2kanSLx861vfYseOHfzv//4vJSUlHHvssbzzzjt06dIl0aEdEJ/Px1133dWiK78cWbruiaHrnhi67omh6544uvaJoeueGLrucqA6crtJ9VxA9UBUB0R1QBqpHkhHqAOWMcYkOggREREREREREREREZHOoMM/40VERERERERERERERKS9UOJFRERERERERERERESklSjxIiIiIiIiIiIiIiIi0kqUeBEREREREREREREREWklSry0kQcffJCePXvi9/sZM2YMH3/88T7Lv/TSSwwcOBC/38/QoUN5++232yjSzuGee+7h+OOPJy0tjby8PM4//3xWrly5z32eeuopLMtq9vL7/W0Ucedw9913t7iGAwcO3Oc+quuHr2fPni2uu2VZTJ06dY/lVdcP3ezZsznnnHPo2rUrlmXx2muvNdtujOF///d/KSgoICkpiUmTJrF69er9Hvdg/0YcbfZ13SORCLfffjtDhw4lJSWFrl278p3vfIetW7fu85iH8nl1tNlffb/66qtbXMPJkyfv97iq7/u2v+u+p897y7K4//7793pM1XfpDPTZcfQ4kLZcMBhk6tSpZGdnk5qayoUXXsj27dsTFLEcab/97W+xLIubb745vk51oPPbsmULV1xxBdnZ2SQlJTF06FAWLlwY336obS/pOGKxGD//+c/p1asXSUlJ9OnTh1/96lcYY+JlVA86l9b4zaW8vJzLL7+cQCBARkYG1157LbW1tW34Lr6ixEsb+Oc//8ktt9zCXXfdxeLFixk+fDhnnHEGpaWleyz/0Ucfcdlll3Httdfy6aefcv7553P++eezfPnyNo6845o1axZTp05l/vz5TJs2jUgkwumnn05dXd0+9wsEAmzbti3+2rhxYxtF3HkMHjy42TWcO3fuXsuqrreOTz75pNk1nzZtGgAXX3zxXvdRXT80dXV1DB8+nAcffHCP2++77z7+9Kc/8fDDD7NgwQJSUlI444wzCAaDez3mwf6NOBrt67rX19ezePFifv7zn7N48WJeeeUVVq5cybnnnrvf4x7M59XRaH/1HWDy5MnNruHzzz+/z2Oqvu/f/q777td727ZtPPHEE1iWxYUXXrjP46q+S0emz46jy4G05X70ox/xxhtv8NJLLzFr1iy2bt3KlClTEhi1HCmffPIJjzzyCMOGDWu2XnWgc6uoqODEE0/E4/Hwn//8hxUrVvD73/+ezMzMeJlDaXtJx3Lvvffy0EMP8Ze//IUvvviCe++9l/vuu48///nP8TKqB51La/zmcvnll/P5558zbdo03nzzTWbPns11113XVm+hOSNH3OjRo83UqVPjy7FYzHTt2tXcc889eyx/ySWXmLPPPrvZujFjxpgf/OAHRzTOzqy0tNQAZtasWXst8+STT5r09PS2C6oTuuuuu8zw4cMPuLzq+pFx0003mT59+hjHcfa4XXW9dQDm1VdfjS87jmPy8/PN/fffH19XWVlpfD6fef755/d6nIP9G3G0+/p135OPP/7YAGbjxo17LXOwn1dHuz1d96uuusqcd955B3Uc1feDcyD1/bzzzjOnnnrqPsuovktHp8+Oo9vX23KVlZXG4/GYl156KV7miy++MICZN29eosKUI6Cmpsb069fPTJs2zUyYMMHcdNNNxhjVgaPB7bffbsaPH7/X7Yfa9pKO5eyzzzbf/e53m62bMmWKufzyy40xqged3aH85rJixQoDmE8++SRe5j//+Y+xLMts2bKlzWLfRT1ejrBwOMyiRYuYNGlSfJ1t20yaNIl58+btcZ958+Y1Kw9wxhln7LW87F9VVRUAWVlZ+yxXW1tLUVERPXr04LzzzuPzzz9vi/A6ldWrV9O1a1d69+7N5ZdfzqZNm/ZaVnW99YXDYZ555hm++93vYlnWXsuprre+9evXU1JS0qxOp6enM2bMmL3W6UP5GyH7V1VVhWVZZGRk7LPcwXxeyZ7NnDmTvLw8BgwYwA033EBZWdley6q+t77t27fz1ltvce211+63rOq7dFT67JCvt+UWLVpEJBJpVicGDhxIYWGh6kQnM3XqVM4+++wWbUbVgc7v3//+N6NGjeLiiy8mLy+PESNG8Oijj8a3H0rbSzqeE044genTp7Nq1SoAPvvsM+bOncuZZ54JqB4cbQ7k33vevHlkZGQwatSoeJlJkyZh2zYLFixo85iVeDnCdu7cSSwWo0uXLs3Wd+nShZKSkj3uU1JSclDlZd8cx+Hmm2/mxBNPZMiQIXstN2DAAJ544glef/11nnnmGRzH4YQTTqC4uLgNo+3YxowZw1NPPcU777zDQw89xPr16znppJOoqanZY3nV9db32muvUVlZydVXX73XMqrrR8auenswdfpQ/kbIvgWDQW6//XYuu+wyAoHAXssd7OeVtDR58mSefvpppk+fzr333susWbM488wzicVieyyv+t76/v73v5OWlrbfoVVU36Uj02fH0W1PbbmSkhK8Xm+LGyxUJzqXF154gcWLF3PPPfe02KY60PmtW7eOhx56iH79+vHuu+9yww038N///d/8/e9/Bw6t7SUdzx133MGll17KwIED8Xg8jBgxgptvvpnLL78cUD042hzIv3dJSQl5eXnNtrvdbrKyshJSJ9xtfkaRNjZ16lSWL1++37HMx40bx7hx4+LLJ5xwAoMGDeKRRx7hV7/61ZEOs1PYddcBwLBhwxgzZgxFRUW8+OKLB3Q3rhy+xx9/nDPPPJOuXbvutYzqunRWkUiESy65BGMMDz300D7L6vPq8F166aXx+aFDhzJs2DD69OnDzJkzOe200xIY2dHjiSee4PLLL8fv9++znOq7iHRUB9qWk85l8+bN3HTTTUybNm2/f+Okc3Ich1GjRvGb3/wGgBEjRrB8+XIefvhhrrrqqgRHJ23lxRdf5Nlnn+W5555j8ODBLFmyhJtvvpmuXbuqHkiHoB4vR1hOTg4ul4vt27c3W799+3by8/P3uE9+fv5BlZe9u/HGG3nzzTeZMWMG3bt3P6h9d2XT16xZc4Si6/wyMjLo37//Xq+h6nrr2rhxI++//z7f+973Dmo/1fXWsaveHkydPpS/EbJnu5IuGzduZNq0afvs7bIn+/u8kv3r3bs3OTk5e72Gqu+ta86cOaxcufKgP/NB9V06Fn12HL321pbLz88nHA5TWVnZrLzqROexaNEiSktLOe6443C73bjdbmbNmsWf/vQn3G43Xbp0UR3o5AoKCjjmmGOarRs0aFB8qNRDaXtJx/M///M/8V4vQ4cO5corr+RHP/pRvCec6sHR5UD+vfPz8yktLW22PRqNUl5enpA6ocTLEeb1ehk5ciTTp0+Pr3Mch+nTpze743x348aNa1YeYNq0aXstLy0ZY7jxxht59dVX+eCDD+jVq9dBHyMWi7Fs2TIKCgqOQIRHh9raWtauXbvXa6i63rqefPJJ8vLyOPvssw9qP9X11tGrVy/y8/Ob1enq6moWLFiw1zp9KH8jpKVdSZfVq1fz/vvvk52dfdDH2N/nlexfcXExZWVle72Gqu+t6/HHH2fkyJEMHz78oPdVfZeORJ8dR5/9teVGjhyJx+NpVidWrlzJpk2bVCc6idNOO41ly5axZMmS+GvUqFFcfvnl8XnVgc7txBNPZOXKlc3WrVq1iqKiIuDQ2l7S8dTX12PbzX+6drlcOI4DqB4cbQ7k33vcuHFUVlayaNGieJkPPvgAx3EYM2ZMm8eMkSPuhRdeMD6fzzz11FNmxYoV5rrrrjMZGRmmpKTEGGPMlVdeae644454+Q8//NC43W7zu9/9znzxxRfmrrvuMh6PxyxbtixRb6HDueGGG0x6erqZOXOm2bZtW/xVX18fL/P16/6LX/zCvPvuu2bt2rVm0aJF5tJLLzV+v998/vnniXgLHdKPf/xjM3PmTLN+/Xrz4YcfmkmTJpmcnBxTWlpqjFFdP5JisZgpLCw0t99+e4ttquutp6amxnz66afm008/NYD5v//7P/Ppp5+ajRs3GmOM+e1vf2syMjLM66+/bpYuXWrOO+8806tXL9PQ0BA/xqmnnmr+/Oc/x5f39zdC9n3dw+GwOffcc0337t3NkiVLmn3mh0Kh+DG+ft3393kl+77uNTU15tZbbzXz5s0z69evN++//7457rjjTL9+/UwwGIwfQ/X94O3vc8YYY6qqqkxycrJ56KGH9ngM1XfpbPTZcXQ5kLbc9ddfbwoLC80HH3xgFi5caMaNG2fGjRuXwKjlSJswYYK56aab4suqA53bxx9/bNxut/l//+//mdWrV5tnn33WJCcnm2eeeSZe5kDaXtKxXXXVVaZbt27mzTffNOvXrzevvPKKycnJMbfddlu8jOpB59Iav7lMnjzZjBgxwixYsMDMnTvX9OvXz1x22WUJeT9KvLSRP//5z6awsNB4vV4zevRoM3/+/Pi2CRMmmKuuuqpZ+RdffNH079/feL1eM3jwYPPWW2+1ccQdG7DH15NPPhkv8/XrfvPNN8f/jbp06WLOOusss3jx4rYPvgP71re+ZQoKCozX6zXdunUz3/rWt8yaNWvi21XXj5x3333XAGblypUttqmut54ZM2bs8bNl1/V1HMf8/Oc/N126dDE+n8+cdtppLf5NioqKzF133dVs3b7+Rsi+r/v69ev3+pk/Y8aM+DG+ft3393kl+77u9fX15vTTTze5ubnG4/GYoqIi8/3vf7/Fj6Cq7wdvf58zxhjzyCOPmKSkJFNZWbnHY6i+S2ekz46jx4G05RoaGsx//dd/mczMTJOcnGwuuOACs23btsQFLUfc1xMvqgOd3xtvvGGGDBlifD6fGThwoPnb3/7WbPuBtL2kY6uurjY33XSTKSwsNH6/3/Tu3dvceeedzW6wUz3oXFrjN5eysjJz2WWXmdTUVBMIBMw111xjampqEvBujLGMMabVu9GIiIiIiIiIiIiIiIgchfSMFxERERERERERERERkVaixIuIiIiIiIiIiIiIiEgrUeJFRERERERERERERESklSjxIiIiIiIiIiIiIiIi0kqUeBEREREREREREREREWklSryIiIiIiIiIiIiIiIi0EiVeREREREREREREREREWokSLyIi7YhlWc1etm2TkZHBSSedxGOPPYYxJtEhdmobNmzAsiwmTpyY6FBERERERI46M2bM4MILL6Rbt254vV4yMzMZMGAAF198MX/5y1+oqqqKl+3ZsyeWZR3wsSdOnIhlWWzYsOGQ49t1jIN57TqfZVn07NnzkM53ODHffffdWJbFU089dcjHEBGRg+dOdAAiItLSVVddBUAsFmPt2rV8+OGHzJ07l+nTp/P8888nODoREREREZHW9ctf/pK77roLgEGDBjFmzBg8Hg8rV67klVde4V//+hejRo1i7NixCYtx8uTJLZIna9as4cMPP6RLly5Mnjy5xT6pqaltFJ2IiLQnSryIiLRDX78badq0aZx11lm88MILXH755Xzzm99MTGCdXLdu3fjiiy9ITk5OdCgiIiIiIkeNRYsWcffdd+PxeHjxxRc5//zzm20vKSnhmWeeISMj45DP8fTTT1NfX0+3bt0O+Rh33HFHi3VPPfUUH374IQMHDmz1XiWtEbOIiCSGhhoTEekAvvGNb3DllVcC8NprryU2mE7M4/EwcOBACgsLEx2KiIiIiMhR45VXXsEYwyWXXNIi6QKQn5/PrbfeysCBAw/5HIWFhQwcOBCPx3MYkbatjhiziIg0UuJFRKSDGDFiBACbN2+Or9s1TnA4HOaXv/wlAwcOxOfzNWus1NfXc8899zBixAhSU1NJTU1l7Nix/P3vf9/ruWbNmsWpp55KWloamZmZnHXWWSxcuJCnnnoKy7K4++67m5Xffezh1157jbFjx5KSkkJWVhaXXXYZxcXFLc6xbds27rvvPiZMmBAfwzk/P58pU6bwySef7DGu3cdxfuyxxxg2bBhJSUnk5+fzgx/8gMrKyj3uF4lEePjhhxk/fjwZGRkkJSXRt29frrnmGhYtWhQvt79nvCxYsICLL76YgoICvF4v3bt353vf+x6bNm1qUdYYw7PPPsv48ePp0qULfr+fHj16MGnSJB588ME9Hl9ERERE5Gi0Y8cOAHJzcw/7WMXFxRxzzDFYlsV9990XX7+356XsalPFYjHuvfde+vfvj8/no0ePHtx+++2EQqHDjml3B3OefT3jpaysjDvvvJOhQ4eSkpJCIBBg6NCh3HbbbWzbtm2/cRhjuPnmm7Esi/Hjx8fbUrs/E2bZsmWce+65ZGZmkpKSwoQJE/joo4/2eswj1V4Kh8P89a9/5fjjjyc7O5vk5GR69uzJN7/5TV544YX9vlcRkURQ4kVEpIOoqakBwOfzNVvvOA7nn38+9913H3369OG8886joKAAgNLSUsaNG8dPf/pTSkpKmDBhAieffDJffvklV199NT/84Q9bnOeVV17htNNOY8aMGQwZMoTJkyezadMmxo8fz4IFC/YZ41//+lcuuugikpKSOOuss0hNTeWFF17g1FNPpaGhoVnZ119/ndtvv53t27czbNgwLrjgArp27cqrr77KiSeeyHvvvbfX89x2221MnTqVgoICzjzzTIwx/O1vf+Pcc8/FGNOsbF1dHZMmTeKGG25gyZIljB07lvPOO4+cnByeffZZ/vGPf+zzPe3+3k444QReeeUVioqKOP/888nOzubxxx9n1KhRfPHFFy1ivOKKK1i4cCHDhw9nypQp9OvXj6VLl3L//fcf0DlFRERERI4GPXr0AODll1+mtLT0kI+zatUqxo8fz6pVq3j00Ue57bbbDnjfb3/72/z6179mwIABnH766dTU1HDfffdx7bXXHnI8R+o8X3zxBcceeyy/+c1v2LlzJ2eccQaTJk3CGMP999+/33ZbNBrlqquu4oEHHuDMM8/kvffeazGM28KFCxk7diwbNmzgjDPOoF+/fsyePZvTTjuN5cuXtzjmkWwvXX755UydOpWVK1fG23OFhYXMnTuXhx9++ICvm4hImzIiItJuAGZPH82O45hx48YZwNx5550tyvft29cUFxe32O+ss84ygLnppptMMBiMry8pKTGjRo0ygPnPf/4TX19VVWWysrIMYJ599tlmx/r5z38eP99dd93VbNuECRMMYJKTk81HH30UX19XV2dOOOEEA5jHH3+82T5Lly41y5cvbxHzO++8Y7xer+nTp49xHKfZtqKiIgOY/Px88+WXX8bX79ixw/Tt29cAZvr06c32ufbaaw1gTj75ZFNaWtpsW0lJiZk/f358ef369QYwEyZMaFZu3rx5xuVymW7dupmFCxc22/bYY48ZwIwZMya+rqGhwfh8PpOWlmbWrVvXrHwkEjGzZ89u8b5FRERERI5Wa9euNUlJSQYwaWlp5qqrrjKPPvqoWbx4sYlGo3vcZ1fbYJdFixaZ3Nxc4/P5zMsvv9yi/K42y/r165ut39XGGTRokNm2bVt8/bp160xGRoYBzJo1a/Ya+5NPPrnHNsTXHcp59hRzJBIxAwYMMIC5+eabTSgUarbP8uXLmx3nrrvuMoB58sknjTHG1NfXm29+85sGMJdddpkJh8PN9t9VHjAPPPBAs20333yzAcyVV17ZbP2RbC+tW7fOAKaoqMjs3LmzWdmGhoZm7U8RkfZEiRcRkXbk64mXaDRqVq1aZa6++moDGJ/P1+xL9K7yL730UotjffrppwYwxx9/vInFYi22L1682ADm3HPPja979NFHDWBOO+20FuUjkUi8cbO3xMvuSaFd/vWvfxnAXHXVVQdyCYwxxlx++eUGMEuXLm22ftf5H3300Rb7/O53v2sR25YtW4zL5TI+n89s2LBhv+fdW+LlvPPOM4B544039rjfueeeawCzePFiY4wx27dvN4A59thj93tOEREREREx5v333zc9evSIt3F2vTIyMswNN9xgtm7d2qz87omXmTNnmkAgYFJTU83777+/x+PvL/Eybdq0FvvceOONzZIWe3KwiZeDOc+eYv7nP/9pADN48OC9JqV2t3vipbKy0px00kkGMP/1X//V4ka33cufeOKJLbbt3LkzngTZ3ZFsLy1YsMAA5vzzz99vWRGR9kRDjYmItEOWZWFZFm63m/79+/PUU0+RlpbG888/T58+fVqUPeecc1ocY9dQXeeffz623fLjftczXz7++OP4ug8//BCAiy++uEV5t9vNhRdeuM+4Tz/99Bbr+vfvD7DHcYZDoRCvv/46d955J9dddx1XX301V199NcuWLQNg9erVh3WemTNnEovFmDx5MkVFRfuMfW8cx2H69OkkJydzxhln7LHMSSedBBC/lnl5eXTv3p0lS5Zwxx13sG7dukM6t4iIiIjI0eK0005jzZo1vPLKK1x//fUcd9xxuN1uKisreeihhzj22GNZuXJli/3+/e9/M3nyZDweD9OnT+e000476HN7PB5OOeWUFuv31ZY5FK1xnvfffx+A733ve7hcrgM+d2lpKRMnTmTOnDn87Gc/48EHH4w/P3NP9tTmys7OJisrq1mcR7q9NHDgQFJSUnjrrbe4//772bp16wG9XxGRRHMnOgAREWnpqquuAsC27fhDEqdMmUJmZmaLsnl5eS2e+wLEH8B45513cuedd+71XMFgMD6/6wv0rjGWv66wsHCfcXfv3r3FurS0NIAWD4vc9aDGPT0ocpddz7U51PNs3rwZoEWy6mDs3LmT2tpaALxe737L7vL3v/+dSy+9lHvvvZd7772XoqIiJkyYwKWXXsqZZ555yPGIiIiIiHRWXq+XCy64gAsuuACAyspKXnjhBX76059SWlrKjTfeyLRp05rtc+GFFxKNRpk5cyajR48+pPPm5+fvMYmxt7bMoWqN8xxqG+fOO+8kGo1yww038Ktf/Wq/5ffU5oLGWMvLy+PLR7q9FAgEePTRR7nuuuu47bbbuO222+jfvz+nnHIKV155JSeeeOJ+34uISCIo8SIi0g499dRTB1zW7/fvcb3jOACMHz/+sBIPB2NPPWv2xBjDJZdcwoYNG7j++uu5/vrr6d27N6mpqViWxU9/+lPuuecejDGHdZ7WsOs6pqam7rfHz+DBg+Pzp556KmvWrOHNN9/knXfeYebMmTz99NM8/fTTXHjhhfzrX/86onGLiIiIiHR0GRkZXH/99XTt2pXzzjuPGTNmUF9fT3JycrzMZZddxj/+8Q9uvfVW/vOf/5CamnrQ52mr9kVbtmO+bsqUKbz22mv84x//4Nvf/jbjx4/fZ/kDjbUt2kuXXXYZkyZN4vXXX+e9995j1qxZPPLIIzzyyCPccsst/P73vz+gWEVE2pISLyIindSuO5TOP/98fvzjHx/QPgUFBcBXd1F93d7WH6wvv/ySL7/8klGjRvHQQw+12N5aQ3Pt6rmzdu3aQz5GTk4Ofr8f27Z58skn99kd/+sCgQDf/va3+fa3vw3A/Pnzufjii3n55Zd5++23Oeussw45LhERERGRo8Wpp54KQCwWo7Kyslni5cknnyQWi/Hcc89x9tln8/bbb5OSkpKoUI+4Q23jnHnmmVx++eVcdNFFnHnmmbz77ruccMIJhx1PW7WXcnNz+d73vsf3vvc9jDG8++67fOtb3+L//u//+O53v9ssqSMi0h7oGS8iIp3UN77xDQBeffXVA95nVzftl19+ucW2WCzGK6+80iqxVVRUAHvuvl5RUdFi+IBDNXHiRFwuF+++++4hJ43cbjcTJ06kurqa6dOnH1Y8Y8eO5corrwRg+fLlh3UsEREREZHOYm893XdZs2YN0DiUVU5OTrNtLpeLp59+mksvvZTZs2fzzW9+k/r6+iMWa6JNmjQJgMcffzze2+RAnXvuubz44ouEQiEmT57M/PnzDzueRLSXLMti8uTJnH322QB8/vnnh3VeEZEjQYkXEZFOasyYMXzjG9/gww8/ZOrUqVRXV7co89lnn/HOO+/Ely+++GKysrKYNm0aL7zwQrOyv/71r1m/fn2rxNa3b19s2+aDDz5g9erV8fXBYJDrr7++2ZjBh6Nr16585zvfIRgMctVVV1FWVtZse2lpKQsWLNjvce68805s2+aaa65h5syZLbbX1tbyxBNP0NDQAMCmTZt46qmnWjT4gsEgM2bMAPb+HB0RERERkaPNz3/+c/7nf/5nj704tmzZwg9+8AOgMXGwp+eIuFwunnnmGS655BJmzpzJOeecE/9u3tlMmTKF/v37s3z5cm677TYikUiz7Z9//vk+RxA4//zzeeGFF2hoaGDy5MnxB94fjiPZXvr000955ZVXCIfDzcqWl5fH23JqW4lIe6ShxkREOrFnnnmGyZMn89e//pXnnnuOY489lq5du1JVVcXSpUvZvHkzN910E5MnTwYgPT2dRx99lEsuuYTLLruMP/3pT/Ts2ZNly5axatUqrrvuOv72t7/t96GJ+5OXl8e1117Lo48+yvDhwzn11FNJSkpizpw5xGIxrr766oN6zs2+PPDAA6xcuZIZM2ZQVFTEySefTCAQYOPGjSxevJgbbriBMWPG7PMY48eP58EHH+TGG2/klFNOYciQIfTv3x+Px8OGDRtYsmQJoVCIKVOmkJSURHl5Oddccw1Tp05l1KhRdO/enbq6Oj766CN27NjBqFGjmDJlSqu8PxERERGRjq62tpYHHniA3/3ud/Tv359jjjkGv99PcXExCxYsIBKJ0LdvX/74xz/u9Rgul4tnn32WWCzGyy+/zLnnnssbb7yx12didlRut5uXX36Zb3zjG/z+97/nueeeY9y4cRhjWL16NcuXL+fVV1+ld+/eez3GlClTeP7557nssss444wzmDZtGqNGjTrkmI5ke2njxo1ceOGFpKenM2rUKPLz86msrGT27NnU1NRwzjnnMG7cuEOOXUTkSFGPFxGRTiwvL4+PPvqIP/3pTxxzzDF8+umn/Otf/2Lp0qX07t2b+++/n1tvvbXZPlOmTOH9999n4sSJLF26lLfeeouuXbsyZ84cCgsLAcjOzj7s2B566CF+//vf06tXL6ZPn86cOXOYNGkSCxcupKio6LCPv0taWhozZszggQceYPDgwcyZM4d///vf7Nixg8svv5zvfOc7B3Sc66+/noULF3LVVVdRU1PDm2++ybvvvkttbS2XX345b775Junp6QD06dOH3//+90ycOJFNmzbxyiuvMHfuXIqKivjDH/7ArFmz8Pl8rfYeRUREREQ6sp/97Gf84x//4IorrsDn8zFnzhz+9a9/sWLFCkaPHs19993HkiVL6Nat2z6P43a7eeGFF7jgggt4//33Oe+88wgGg230LtrOkCFD+Oyzz7j11ltJS0vj7bff5oMPPsCyLG6//XbGjh2732NcdNFFPPvss9TU1HD66aezePHiw4rpSLWXxo4dy69//WtGjhzJypUreemll1i4cCHDhg3jiSee2OMw2SIi7YFl9jeQpoiISJPJkyfz7rvvMn/+/P32EhERERERERERETkaqceLiIg0s2XLFrZv395sneM4/OEPf+Ddd9+lf//+jB49OkHRiYiIiIiIiIiItG96xouIiDQzZ84crrjiCkaMGEFRURGhUIjly5ezYcMGkpOTeeyxx7AsK9FhioiIiIiIiIiItEsaakxERJpZvXo199xzD3PmzGH79u0Eg0Hy8/OZOHEid9xxB8ccc0yiQxQREREREREREWm3lHgRERERERERERERERFpJXrGi4iIiIiIiIiIiIiISCtR4kVERERERERERERERKSVKPEiIiIiIiIiIiIiIiLSSpR4ERERERERERERERERaSVKvIiIiIiIiIiIiIiIiLQSJV5ERERERERERERERERaiRIvIiIiIiIiIiIiIiIirUSJFxERERERERERERERkVaixIuIiIiIiIiIiIiIiEgr+f85sZm7toYB7gAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "fig, ax = plt.subplots(4, 2, figsize=(20, 25))\n", + "plt.style.use('ggplot')\n", + "\n", + "sns.histplot(x = df['Age'], hue = df['Outcome'], palette=\"viridis\",kde = True, ax = ax[0, 0])\n", + "ax[0,0].set_xlabel('Age', fontsize = 15)\n", + "\n", + "sns.histplot(x = df['BMI'], hue = df['Outcome'], palette=\"viridis\",kde = True, ax = ax[0, 1])\n", + "ax[0,1].set_xlabel('BMI', fontsize = 15)\n", + "\n", + "\n", + "sns.histplot(x = df['BloodPressure'], hue = df['Outcome'], palette=\"dark\",kde = True, ax = ax[1, 0])\n", + "ax[1,0].set_xlabel('BloodPressure', fontsize = 15)\n", + "\n", + "sns.histplot(x = df['DiabetesPedigreeFunction'], hue = df['Outcome'], palette=\"dark\",kde = True, ax = ax[1, 1])\n", + "ax[1,1].set_xlabel('DiabetesPedigreeFunction', fontsize = 15)\n", + "\n", + "\n", + "sns.histplot(x = df['Glucose'], hue = df['Outcome'], palette=\"flare\",kde = True, ax = ax[2, 0])\n", + "ax[2,0].set_xlabel('Glucose', fontsize = 15)\n", + "\n", + "sns.histplot(x = df['Insulin'], hue = df['Outcome'], palette=\"flare\",kde = True, ax = ax[2, 1])\n", + "ax[2,1].set_xlabel('Insulin', fontsize = 15)\n", + "\n", + "\n", + "sns.histplot(x = df['Pregnancies'], hue = df['Outcome'], palette=\"viridis\",kde = True, ax = ax[3, 0])\n", + "ax[3,0].set_xlabel('Pregnancies', fontsize = 15)\n", + "\n", + "sns.histplot(x = df['SkinThickness'], hue = df['Outcome'], palette=\"viridis\",kde = True, ax = ax[3, 1])\n", + "ax[3,1].set_xlabel('SkinThickness', fontsize = 15)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "id": "2kYatJCforF1" + }, + "outputs": [], + "source": [ + "train_x, test_x, train_y, test_y = train_test_split(X, Y, test_size = 0.2, stratify=y, random_state = 2)" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "KwdpuB3YorF1", + "outputId": "178b3792-a809-4392-bbfd-2f1fd59ef894" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "array([[87, 13],\n", + " [28, 26]])" + ] + }, + "metadata": {}, + "execution_count": 60 + } + ], + "source": [ + "cf_matrix = confusion_matrix(test_y, rf_test_pred)\n", + "cf_matrix\n", + "\n", + "# Order: TN, FP, FN, TP" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": { + "id": "uW5twhYVorF2", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "6f13b413-4555-4335-84c0-3854727f9d85" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "87 13 28 26\n" + ] + } + ], + "source": [ + "tn, fp, fn, tp = cf_matrix.ravel()\n", + "print(tn, fp, fn, tp)\n", + "\n", + "# Ravel function is used to extract the confusion matrix values" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": { + "id": "Tjq3Wy1PorF3", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 447 + }, + "outputId": "ad8dd637-720c-4675-ef09-aae1e929eda1" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": {}, + "execution_count": 62 + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf8AAAGdCAYAAAAczXrvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkrklEQVR4nO3df3xT9d338XfapkpaacDaQVsoFgyolAqTDUEuCjp1UMfquk6drirlYrbO3SK3bqJOlI4btW67Hey61SJ0yAR7UWQICgJzMtwQuJwFHKXEyrB2UGmqNkLTJvcfPozLoUojaRPPeT195PGw35yc8+Gh8OHz+f6ILRAIBAQAACwjLtoBAACA3kXyBwDAYkj+AABYDMkfAACLIfkDAGAxJH8AACyG5A8AgMWQ/AEAsBiSPwAAFpMQ7QA+5Wt2RzsEIOb0SZ8Y7RCAmNTR/m6P3j+SOcmemh2xe0VKzCR/AABihr8z2hH0KNr+AABYDJU/AABGAX+0I+hRJH8AAIz8JH8AACwlYPLKnzl/AAAshsofAAAj2v4AAFgMbX8AAGAmVP4AABiZ/JAfkj8AAEa0/QEAgJlQ+QMAYMRqfwAArIVDfgAAgKlQ+QMAYETbHwAAizF525/kDwCAkcn3+TPnDwCAxVD5AwBgRNsfAACLMfmCP9r+AABYDJU/AABGtP0BALAY2v4AAMBMqPwBADAIBMy9z5/kDwCAkcnn/Gn7AwBgMVT+AAAYmXzBH8kfAACjKLX9/X6/Vq1apVdffVUej0f9+/fXpEmT9L3vfU82m+2T0AIBrVq1Sps3b1ZbW5tGjBihkpISDRw4sNvPIfkDAGAUpS/2WbNmjTZt2qSysjJlZmbK7XZr8eLFcjgcmjp1qiTp+eef14YNG1RWVqa0tDStXLlS5eXleuyxx5SYmNit5zDnDwBAjKirq9PFF1+sMWPGKC0tTePGjdOoUaNUX18v6ZOqf/369brmmms0duxYZWVl6bbbblNLS4tef/31bj+H5A8AgFHAH7lXGFwul/bs2aPGxkZJUkNDg/bv36/Ro0dLko4cOSKPx6NRo0YFP+NwODRs2DDV1dV1+zm0/QEAMIrggj+fzyefzxcyZrfbZbfbT7r2u9/9rj7++GPdcccdiouLk9/v17XXXquJEydKkjwejyQpJSUl5HMpKSnB97qD5A8AQA+qqalRdXV1yFhhYaGKiopOuva1117Ttm3bdPvtt2vQoEFqaGjQ0qVL1a9fP+Xl5UUsJpI/AABGEVztX1BQqPz8/JCxrqp+SVq+fLmmT5+uCRMmSJIGDx6so0ePas2aNcrLy5PT6ZQktba2ql+/fsHPtba2asiQId2OiTl/AACM/P6Ivex2uxwOR8jr85L/iRMnFBcXmprj4uIUCAQkSWlpaXI6naqtrQ2+7/V6VV9fL5fL1e1fHpU/AAAx4utf/7pWr16t1NRUZWZmqqGhQevWrdPkyZMlSTabTVOnTtXq1as1cOBApaWl6dlnn1W/fv00duzYbj/HFvj0rxNR5mt2RzsEIOb0SZ8Y7RCAmNTR/m6P3v/4q7+P2L3OnHhjt6/9+OOPtXLlSu3YsUOtra3q37+/JkyYoMLCQiUkfFKvf3rIz8svvyyv16sRI0ZoxowZSk9P7/ZzSP5ADCP5A13r6eT/8Z+XRuxeff7jpojdK1KY8wcAwGKY8wcAwIgv9gEAwGKi9MU+vYXkDwCAkckrf+b8AQCwGCp/AACMaPsDAGAxtP0BAICZUPkDAGBE2x8AAIuh7Q8AAMyEyh8AACOTV/4kfwAAjEw+50/bHwAAi6HyBwDAiLY/AAAWY/K2P8kfAAAjk1f+zPkDAGAxVP4AABjR9gcAwGJo+wMAADOh8gcAwMjklT/JHwAAo0Ag2hH0KNr+AABYDJU/AABGtP0BALAYkyd/2v4AAFgMlT8AAEYc8gMAgMWYvO1P8gcAwIitfgAAwEyo/AEAMKLtDwCAxZg8+dP2BwDAYqj8AQAwYqsfAADWEvCz2h8AAJgIlT8AAEYmX/BH8gcAwIg5fwAA0BvKysp09OjRk8avuOIKlZSUqL29XVVVVdq+fbt8Pp9yc3NVUlIip9MZ1nNI/gAAGEVpwd+CBQvk/7cph0OHDmn+/Pm65JJLJEnLli3T7t27NXv2bDkcDlVWVqqiokIPPfRQWM9hwR8AAEZ+f+ReYejbt6+cTmfwtXv3bn3ta1/TBRdcIK/Xqy1btqi4uFgjR45Udna2SktLtX//ftXV1YX1HJI/AABGUUr+/66jo0OvvvqqJk+eLJvNJrfbrc7OTuXk5ASvycjIUGpqatjJn7Y/AAA9yOfzyefzhYzZ7XbZ7fYv/NyOHTvU1tamvLw8SZLH41FCQoKSkpJCrktJSZHH4wkrJpI/AABGEfxK35qaGlVXV4eMFRYWqqio6As/t3XrVl100UXq379/xGL5FMnfgjo7O7W48hmt27hFze+36JzU/vru1G9p1k3XyWazSZJGTvh2l5+dXTpDt/ywsDfDBXrNxEu/qTvvvFVjRucoPX2Arim8RWvXvhR8//77ZquoaLoGZaarvb1du3fX6r77F2rH6/8TxajRIyK4z7+goED5+fkhY6eq+o8ePao333xTc+bMCY45nU51dHSora0tpPpvbW1ltT9OrXL5c1q55gWV33unhp2bpb3/qNO95b9ScnKSbvj+dEnSn9Y+E/KZV/+6U/cv+LW+lTchGiEDvSIpyaE339ynp5c+q/9+rvKk9+sOuPXTn94r99vvqE+fM/XT22dqw/oVGn7+BDU3H4tCxPgq6E6L32jr1q1KSUnRmDFjgmPZ2dmKj49XbW2txo0bJ0lqbGxUc3OzXC5XWPcn+VvQG3ve0uSJ4zRp/DckSRkDv6b1m15R7b79wWtSzw5tM2199a/6xphRGpQxsFdjBXrTiy9t1Ysvbf3c9599dk3Iz3P+9zzNuOV6jcq5QFu2buvh6NCroni2v9/v15/+9CdNmjRJ8fHxwXGHw6EpU6aoqqpKycnJcjgcWrJkiVwuF8kfp3bRyPNVvXaDGg4d1pDBmfrHAbd2v7lXd/1kZpfXNx9r0Z+371D5vXf2cqRA7LLb7ZpZ8kN5PK36+5t7ox0OIi2KJ/zV1taqublZkydPPum94uJi2Ww2VVRUqKOjI3jIT7jCTv4ffPCBtm7dqrq6uuDqQqfTqeHDhysvL099+/YNOwj0rpIbi9Tm9erq6/9T8XFx6vT7dft/Fiv/yildXr92w8tyOPro8km0/IFpUy/XM8sXy+Hoo/fe+5eu+vZ1ev/9lmiHBRPJzc3VqlWrunwvMTFRJSUlXyrh/7uwkn99fb3Ky8t1xhlnKCcnRwMHftICbm1t1YYNG7RmzRrNnTtXQ4cO/cL7dLntIczA8eW9uOXPWrdxqxY+cJeGnZulfxxwa+Fv/p/SUvtr+tRvnXR9zbqNyr9iss44IzEK0QKxZeuf/qKvj71CqWf314wZ1+sPK/5L4y/N19Gj70c7NESSyb/SN6zk//TTT+uSSy7RzJkzg6vCPxUIBPTkk09qyZIlKi8v/8L7dLXt4ZnF/yecUHAaKhZVquSGIk29PE+S5Bp6rt5rOqKnfr/qpOS/6409evvQYT3y4M+jECkQe7zej3XwYIMOHmzQ33bs1lt7t+mWm6/Twod/G+3QEEEBvtXvMw0NDSotLT0p8UuSzWbTtGnTdNddd53yPl1te5C3KZxQcBqOHz8hW1zof8O4uDj5u9jXunrdS7pg+HkacV52b4UHfKXExdnoiuErJ6zk73Q6VV9fr4yMjC7fr6+v79Zew662Pfi84USC05E34Zt6ctmzGvi1NA07N0tv1dWrauVqFUy7IuS6j9ratHHrq5pzW9cLAQGzSUpyaNiwc4M/nztksHJzL9SxYy16//0W3fPzn+qPf9yo95r+pdSz++vWW29SRsYAVf/3uihGjR5B2/8zV199tZ544gm53W7l5OQoJSVF0idz/rW1tdq8ebNuvPHGHgkUkXPPHbfq8SerNP/RRTrW4tE5qf31/elTdevN14dct+HlVxQISFO/lRedQIFedvHXc7X55c+mJCsefUCStKxqlUrLfqbhw4fqxhueUGpqf73/fot27vq78iZfo337wjtXHV8BUVzt3xtsgUB4Zxhu375dL7zwgtxud/BrB+Pi4pSdna1p06Zp/PjxXyoQX7P7S30OMLM+6ROjHQIQkzra3+3R+7c9+MOI3Svp/mdOfVEvC3ur3/jx4zV+/Hh1dHToww8/lCSdddZZSkjgyAAAAL4KvnTGTkhIUL9+/SIZCwAAsYHV/gAAWIzJF/zFRTsAAADQu6j8AQAwMvlqf5I/AABGtP0BAICZUPkDAGDA2f4AAFgNbX8AAGAmVP4AABiZvPIn+QMAYMRWPwAALMbklT9z/gAAWAyVPwAABgGTV/4kfwAAjEye/Gn7AwBgMVT+AAAYccIfAAAWQ9sfAACYCZU/AABGJq/8Sf4AABgEAuZO/rT9AQCwGCp/AACMaPsDAGAxJH8AAKzF7Mf7MucPAIDFUPkDAGBk8sqf5A8AgJG5T/el7Q8AgNVQ+QMAYGD2BX8kfwAAjEye/Gn7AwBgMVT+AAAYRXHB37Fjx7R8+XK98cYbOnHihAYMGKDS0lINHTpU0iffO7Bq1Spt3rxZbW1tGjFihEpKSjRw4MBuP4PkDwCAQbTm/D/66CPdd999uvDCC3XPPfeob9++eu+995SUlBS85vnnn9eGDRtUVlamtLQ0rVy5UuXl5XrssceUmJjYrefQ9gcAIEY8//zzOvvss1VaWqphw4YpLS1Nubm5GjBggKRPqv7169frmmuu0dixY5WVlaXbbrtNLS0tev3117v9HCp/AACMotT237lzp3Jzc/XYY49p37596t+/v6644gpdfvnlkqQjR47I4/Fo1KhRwc84HA4NGzZMdXV1mjBhQreeQ/IHAMAgkm1/n88nn88XMma322W320+69siRI9q0aZOmTZumgoICHTx4UE8//bQSEhKUl5cnj8cjSUpJSQn5XEpKSvC97iD5AwBgFMHKv6amRtXV1SFjhYWFKioqOvmxfr+GDh2q66+/XpJ07rnn6tChQ9q0aZPy8vIiFhPJHwCAHlRQUKD8/PyQsa6qfknq16+fMjMzQ8YyMzP1t7/9TZLkdDolSa2trerXr1/wmtbWVg0ZMqTbMbHgDwAAg4A/ci+73S6HwxHy+rzkP3z4cDU2NoaMNTY26pxzzpEkpaWlyel0qra2Nvi+1+tVfX29XC5Xt399JH8AAIz8EXyFYdq0aTpw4IBWr16tpqYmbdu2TZs3b9aVV14pSbLZbJo6dapWr16tnTt36tChQ/rtb3+rfv36aezYsd1+ji0QCMTEGYa+Zne0QwBiTp/0idEOAYhJHe3v9uj93582KWL3OvuFV8K6fteuXVqxYoWampqUlpamadOmBVf7S58d8vPyyy/L6/VqxIgRmjFjhtLT07v9DJI/EMNI/kDXejr5N387csk/dUN4yb83sOAPAACjKB7v2xuY8wcAwGKo/AEAMAiYvPIn+QMAYEDyBwDAYsye/JnzBwDAYqj8AQAwCtiiHUGPIvkDAGBA2x8AAJgKlT8AAAYBP21/AAAshbY/AAAwFSp/AAAMAqz2BwDAWmj7AwAAU6HyBwDAgNX+AABYTCAQ7Qh6FskfAAADs1f+zPkDAGAxVP4AABiYvfIn+QMAYGD2OX/a/gAAWAyVPwAABrT9AQCwGLMf70vbHwAAi6HyBwDAwOxn+5P8AQAw8NP2BwAAZkLlDwCAgdkX/JH8AQAwYKsfAAAWwwl/AADAVKj8AQAwoO0PAIDFsNUPAACYCpU/AAAGbPUDAMBiWO0PAABMhcofAAADsy/4I/kDAGAQrTn/VatWqbq6OmQsPT1dv/71ryVJ7e3tqqqq0vbt2+Xz+ZSbm6uSkhI5nc6wnkPyBwAghgwaNEj33Xdf8Oe4uM9m6JctW6bdu3dr9uzZcjgcqqysVEVFhR566KGwnsGcPwAABoFA5F7hiouLk9PpDL769u0rSfJ6vdqyZYuKi4s1cuRIZWdnq7S0VPv371ddXV1Yz6DyBwDAIJJz/j6fTz6fL2TMbrfLbrd3eX1TU5NmzZolu90ul8ul66+/XqmpqXK73ers7FROTk7w2oyMDKWmpqqurk4ul6vbMcVM8r9mzO3RDgGIOZPSLox2CIAlRXLOv6am5qR5/MLCQhUVFZ107XnnnafS0lKlp6erpaVF1dXVuv/++1VRUSGPx6OEhAQlJSWFfCYlJUUejyesmGIm+QMAYEYFBQXKz88PGfu8qn/06NHBf8/Kygr+ZeC1115TYmJixGIi+QMAYBDJtv8XtfhPJSkpSenp6WpqatKoUaPU0dGhtra2kOq/tbU17NX+LPgDAMAgEMHX6Th+/LiamprkdDqVnZ2t+Ph41dbWBt9vbGxUc3NzWPP9EpU/AAAxo6qqShdffLFSU1PV0tKiVatWKS4uTpdeeqkcDoemTJmiqqoqJScny+FwaMmSJXK5XCR/AABOV7RO+Dt27Jh+85vf6MMPP1Tfvn01YsQIlZeXB7f7FRcXy2azqaKiQh0dHcFDfsJlCwRi4+sLrh6cf+qLAIvx+tujHQIQkzYf3tij9//LgMKI3WtCU/WpL+plzPkDAGAxtP0BADDwRzuAHkbyBwDAICBzf6sfbX8AACyGyh8AAAN/TCyF7zkkfwAADPwmb/uT/AEAMGDOHwAAmAqVPwAABmz1AwDAYmj7AwAAU6HyBwDAgLY/AAAWY/bkT9sfAACLofIHAMDA7Av+SP4AABj4zZ37afsDAGA1VP4AABhwtj8AABZj8i/1I/kDAGDEVj8AAGAqVP4AABj4bcz5AwBgKWaf86ftDwCAxVD5AwBgYPYFfyR/AAAMOOEPAACYCpU/AAAGnPAHAIDFsNofAACYCpU/AAAGZl/wR/IHAMCArX4AAFgMc/4AAMBUqPwBADBgzh8AAIsx+5w/bX8AACyGyh8AAAOzV/4kfwAADALM+QMAgN62Zs0arVixQlOnTtVNN90kSWpvb1dVVZW2b98un8+n3NxclZSUyOl0hnVv5vwBADDwR/D1ZdTX12vTpk3KysoKGV+2bJl27dql2bNna968eWppaVFFRUXY9yf5AwBgEM3kf/z4cT3++OOaNWuWkpKSguNer1dbtmxRcXGxRo4cqezsbJWWlmr//v2qq6sL6xkkfwAAepDP55PX6w15+Xy+z73+qaee0ujRozVq1KiQcbfbrc7OTuXk5ATHMjIylJqaGnbyZ84fAACDSB7vW1NTo+rq6pCxwsJCFRUVnXTtX/7yF7399ttasGDBSe95PB4lJCSEdAMkKSUlRR6PJ6yYSP4AABhE8oS/goIC5efnh4zZ7faTrmtubtbSpUt17733KjExMXIBdIHkDwCAQST3+dvt9i6TvZHb7VZra6vuvvvuz+Lw+/XWW2/pxRdf1Ny5c9XR0aG2traQ6r+1tTXs1f4kfwAAYkBOTo4effTRkLHf/e53Sk9P1/Tp05Wamqr4+HjV1tZq3LhxkqTGxkY1NzfL5XKF9SySPwAABtE44a9Pnz4aPHhwyNgZZ5yhs846Kzg+ZcoUVVVVKTk5WQ6HQ0uWLJHL5SL5AwBwuiK54C+SiouLZbPZVFFRoY6OjuAhP+GyBQKBmPg1Xj04/9QXARbj9bdHOwQgJm0+vLFH7//o4Bsidq85h5ZH7F6RQuUPAIBBJFf7xyKSPwAABmb/Vj9O+AMAwGKo/AEAMIiJxXA9iOQPAICB3+Tpn7Y/AAAWQ+UPAICB2Rf8kfwBADAwd9Of5A8AwEnMXvkz5w8AgMVQ+QMAYMAJfwAAWAxb/QAAgKlQ+QMAYGDuup/kDwDASVjtDwAATIXKHwAAA7Mv+CP5AwBgYO7UT9sfAADLofIHAMDA7Av+SP4AABgw5w8AgMWYO/Uz5w8AgOVQ+QMAYMCcPwAAFhMweeOftj8AABZD5Q8AgAFtfwAALMbsW/1o+wMAYDFU/gAAGJi77if5W1Jh2fc1/qpLlDE0U+3H2/WPXW9p6YKletf9bvAa5zlO3TL3Fl106Wj1Se6jdw8e1qrfrtL2DdujGDnQs64ru1aXfnuCBg8bpBPH27Vv5z498cundNh9OOS6C8acr1vuvlkjRo+Qv7NTB/e6dfcNP1f78fYoRY5IM3vbn+RvQSO/OVIvLHtBB948oLj4eP3orh/pweUPqfSyW3Xi4xOSpNm/mq2kvsl6aMZD+qClVZOm5+muxXdrdv4dcu91R/lXAPSMUZfkaO2ytfrH3+sUHx+vGT+7WQ+vWKBbJs/U8Y+PS/ok8S9Y/kv9YdGzevy+Rers6NTQC7IV8Js7WcBcbIFAICb+j716cH60Q7Csvv376pk3VuhnhXdr7469kqRVbz2n381drK2rtwave+bvK7RswVJtfHZjtEK1HK+fSjKaUvqnaPWbz+l/fe9O1f6tVpL0+NrfaNefd2vpo8uiHJ21bT7cs38OzRzy/Yjd68mG5yJ2r0hhwR+UdFaSJOlDz0fBsX/seksTr56o5JRk2Ww2Tbz6P5R4RqJqX6uNVphAr0vq++nvjQ8lSc6znbpgzPnyvO/R/13zK1X/z0o9Vv2oRo69MJphogcEIvhPLCL5W5zNZtPMB2Zq3+t7dajuneD4wtKFik9I0B9qn9Xq+hqVLSjTL2eW67133otitEDvsdlsKnvgx6rdsUcN+xskSQOzBkiSimffqBdWbNDPbrhHB2rr9cizC5VxbnoUo0Wk+SP4ikURT/7Nzc1avHjxF17j8/nk9XpDXoiOH8+/VYNdWXq47OGQ8R/eeYOS+iZp7nVzdUf+HVrz1BrdtfhuZQ3PilKkQO+6vfw2DRk+RPPLfhkcs9k++SNz3fIX9NKqjarfe1C/m/dfOuw+rKt+cFW0QgXCFvEFfx999JFeeeUVlZaWfu41NTU1qq6ujvSjEaZZD/5YYy8bq59//2d6v+n94PiArAG6+uarVXZ5qQ7VHZIkNbz1ti78xoWaVpyvxfcsilbIQK/4yfwyjbt8nO743p1qfq85OH7syDFJ0jsHDoVc/86BQ0rLSOvVGNGzYrVdHylhJ/+dO3d+4fv/+te/TnmPgoIC5eeHLvD7wYiicEPBaZj14I91yVWX6OdFP9e//hn63+yMM8+QJPn9oQ0rf6dftjhbr8UIRMNP5pfp0qsmaPb356jpn00h7zX9s0nNTc3KzM4MGc/MztTrW1/vzTDRw2K1XR8pYSf/Rx555LQfarfbZbfbT/s++HJunX+r/mP6JJWXzNfHbV45z3FKkrwfeNV+ol2HDx5W49uNKltwm5bMX6IPPR9o3BWX6KKJF+nBmx+MbvBAD7q9/Ce67LuTdd+MX8j70cfqd04/SVLbh23BPfwrf/eciu/8kdxvuVW/96CuKPyWBg8bpHmzHopm6EBYwt7qN2vWLJWUlGjs2LFdvt/Q0KC7775bK1euDCsQtvr1nj8eWtfl+K9n/0qbqzdLkgYOSddNPyvW+WMvUJ+kPnqv4T3VPLE6ZOsfeh5b/XrX520fe/iOR/TSc5uCP19b9gNNL/6OznKeJfe+g3qi/CnteX1vb4UJ9fxWvxuzronYvX7/zupuX7tx40Zt3LhRR48elSRlZmaqsLBQo0ePliS1t7erqqpK27dvl8/nU25urkpKSuR0OsOKKezkv3DhQg0ZMkQ/+MEPunyf5A9EDskf6FpPJ/8bIpj8l4eR/Hfu3Km4uDgNHDhQgUBAr7zyitauXauHH35YgwYN0pNPPqndu3errKxMDodDlZWViouL00MPhdd5Cnu1/3e+8x0NHz78c98fMGCAfvGLX4R7WwAALO/iiy/WmDFjNHDgQKWnp+u6667TmWeeqQMHDsjr9WrLli0qLi7WyJEjlZ2drdLSUu3fv191dXVhPSfsOf/zzz//C98/88wzdcEFF4R7WwAAYkYkz/b3+Xzy+XwhY91Z++b3+/Xaa6/pxIkTcrlccrvd6uzsVE5OTvCajIwMpaamqq6uTi6Xq9sxcbY/AAAGkdzq19X29sLCQhUVdb3L7dChQ5o7d658Pp/OPPNMzZkzR5mZmWpoaFBCQoKSkpJCrk9JSZHH4wkrJpI/AAA9qKvt7V9U9aenp+uRRx6R1+vVX//6Vy1atEjz5s2LaEwkfwAADCK5zz/c7e0JCQkaMOCTo6Szs7N18OBBrV+/XuPHj1dHR4fa2tpCqv/W1tawV/tztj8AAAZ+BSL2Ou1Y/H75fD5lZ2crPj5etbWffcFaY2Ojmpubw5rvl6j8AQA4SbSO912xYoUuuugipaam6vjx49q2bZv27dunuXPnyuFwaMqUKaqqqlJycrIcDoeWLFkil8tF8gcA4KuqtbVVixYtUktLixwOh7KysjR37lyNGjVKklRcXCybzaaKigp1dHQED/kJV9iH/PQUDvkBTsYhP0DXevqQn2uyvhOxe61+Z23E7hUpVP4AABjESF3cY1jwBwCAxVD5AwBgEMkT/mIRyR8AAINI7vOPRbT9AQCwGCp/AAAMorXPv7eQ/AEAMDD7nD9tfwAALIbKHwAAA7Pv8yf5AwBgYPbV/iR/AAAMzL7gjzl/AAAshsofAAADs6/2J/kDAGBg9gV/tP0BALAYKn8AAAxo+wMAYDGs9gcAAKZC5Q8AgIHf5Av+SP4AABiYO/XT9gcAwHKo/AEAMGC1PwAAFkPyBwDAYjjhDwAAmAqVPwAABrT9AQCwGE74AwAApkLlDwCAgdkX/JH8AQAwMPucP21/AAAshsofAAAD2v4AAFgMbX8AAGAqVP4AABiYfZ8/yR8AAAM/c/4AAFiL2St/5vwBALAYKn8AAAxo+wMAYDHRavvX1NRox44devfdd5WYmCiXy6UbbrhB6enpwWva29tVVVWl7du3y+fzKTc3VyUlJXI6nd1+Dm1/AABixL59+3TllVeqvLxc9957rzo7OzV//nwdP348eM2yZcu0a9cuzZ49W/PmzVNLS4sqKirCeg7JHwAAA38gELFXOObOnau8vDwNGjRIQ4YMUVlZmZqbm+V2uyVJXq9XW7ZsUXFxsUaOHKns7GyVlpZq//79qqur6/ZzaPsDAGAQyba/z+eTz+cLGbPb7bLb7af8rNfrlSQlJydLktxutzo7O5WTkxO8JiMjQ6mpqaqrq5PL5epWTCR/AAB6UE1Njaqrq0PGCgsLVVRU9IWf8/v9Wrp0qYYPH67BgwdLkjwejxISEpSUlBRybUpKijweT7djIvkDAGAQydX+BQUFys/PDxnrTtVfWVmpf/7zn3rwwQcjFsunSP4AABhEsu3f3Rb/v6usrNTu3bs1b948nX322cFxp9Opjo4OtbW1hVT/ra2trPYHAOCrKBAIqLKyUjt27ND999+vtLS0kPezs7MVHx+v2tra4FhjY6Oam5u7Pd8vUfkDAHCSQMAfledWVlZq27Ztuuuuu9SnT5/gPL7D4VBiYqIcDoemTJmiqqoqJScny+FwaMmSJXK5XCR/AABOhz9Kh/xs3LhRkvTAAw+EjJeWliovL0+SVFxcLJvNpoqKCnV0dAQP+QmHLRCIjTMMrx6cf+qLAIvx+tujHQIQkzYf3tij9x/cP+fUF3XToWO1p76olzHnDwCAxdD2BwDAIFpt/95C8gcAwCBGZsR7DG1/AAAshsofAACDSJ7wF4tI/gAAGETyhL9YRNsfAACLofIHAMDA7Av+SP4AABiYfasfbX8AACyGyh8AAAPa/gAAWAxb/QAAsBizV/7M+QMAYDFU/gAAGJh9tT/JHwAAA9r+AADAVKj8AQAwYLU/AAAWwxf7AAAAU6HyBwDAgLY/AAAWw2p/AABgKlT+AAAYmH3BH8kfAAADs7f9Sf4AABiYPfkz5w8AgMVQ+QMAYGDuul+yBcze20BYfD6fampqVFBQILvdHu1wgJjA7wuYDW1/hPD5fKqurpbP54t2KEDM4PcFzIbkDwCAxZD8AQCwGJI/AAAWQ/JHCLvdrsLCQhY1Af+G3xcwG1b7AwBgMVT+AABYDMkfAACLIfkDAGAxJH8AACyGs/0R9OKLL+qPf/yjPB6PsrKydMstt2jYsGHRDguImn379mnt2rV6++231dLSojlz5ugb3/hGtMMCThuVPyRJ27dvV1VVlQoLC7Vw4UJlZWWpvLxcra2t0Q4NiJoTJ05oyJAhmjFjRrRDASKK5A9J0rp163TZZZdp8uTJyszM1MyZM5WYmKitW7dGOzQgakaPHq1rr72Wah+mQ/KHOjo65Ha7lZOTExyLi4tTTk6O6urqohgZAKAnkPyhDz74QH6/X06nM2Tc6XTK4/FEJSYAQM8h+QMAYDEkf6hv376Ki4s7qcr3eDwndQMAAF99JH8oISFB2dnZ2rNnT3DM7/drz549crlcUYwMANAT2OcPSVJ+fr4WLVqk7OxsDRs2TOvXr9eJEyeUl5cX7dCAqDl+/LiampqCPx85ckQNDQ1KTk5WampqFCMDTg/f6oegF198UWvXrpXH49GQIUN0880367zzzot2WEDU7N27V/PmzTtpfNKkSSorK4tCREBkkPwBALAY5vwBALAYkj8AABZD8gcAwGJI/gAAWAzJHwAAiyH5AwBgMSR/AAAshuQPAIDFkPwBALAYkj8AABZD8gcAwGJI/gAAWMz/B2hOn9hSF4AQAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + } + ], + "source": [ + "sns.heatmap(cf_matrix, annot=True)\n", + "\n", + "# Annot displays labels" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": { + "id": "WLpdafmsorF3", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "6d7e59ea-c47c-4f22-f3a8-f35150d168ac" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "(0.7115942028985507, 0.6757407407407408, 0.6842210552638159, None)" + ] + }, + "metadata": {}, + "execution_count": 64 + } + ], + "source": [ + "precision_recall_fscore_support(test_y, rf_test_pred, average = 'macro')" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": { + "id": "sGgj1JjworF5", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 1000 + }, + "outputId": "012f9524-a346-46c1-edfc-0b21c0cfd0c1" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArsAAAGQCAYAAACu4KjqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB61ElEQVR4nO3dd3xUVfo/8M+90yeTZNILJQUIvaMoRRAVGxbsi7oqgu6Cq+4uX9euqNhWXdf9oWvBgh1Zwd5BmihNmkFKSICUSSF1ernn98ckI2MSSMIkkxk+75fzmrn9mWcm8eHk3HMkIYQAEREREVEUksMdABERERFRZ2GxS0RERERRi8UuEREREUUtFrtEREREFLVY7BIRERFR1GKxS0RERERRi8UuEREREUUtFrtEREREFLVY7BIRERFR1GKxS0Td1vXXXw9JklBUVBSW6z/44IOQJAnff/990HpJkjB58uSwxNQk3LlpyeTJkyFJUrjDICIKwmKXKEItWLAAkiRBkiTs3r073OG0Kjs7OxCnJEnQaDRISkrC0KFDce211+KDDz6A2+3ulGtHcvHVWqFNR1dTU4OHHnoIJ598MhISEqDT6dCrVy9cccUV+Oabb0J2ne+//x6SJOHBBx8M2TmJqHOw2CWKQEIIvPLKK4FC7uWXXw5zRMd222234YEHHsBdd92Fa6+9Fj179sSyZctwxRVXYMiQIdiwYUOzYx577DHs2rULPXr0CEPEwC233IJdu3bh5JNPDsv1jybcuemOVq9ejby8PDzwwAOwWq24+uqr8be//Q1jx47FZ599hqlTp+Laa6+Fy+UKd6hE1IXU4Q6AiNrv66+/RlFREa6//np8+eWXeOONN/Doo49Cq9WGO7RW3X777cjOzg5aV1dXh/vuuw//+c9/MHXqVPz4448YMGBAYHtGRgYyMjK6ONLfJCcnIzk5OWzXP5pw56a7yc/Px3nnnQeHw4H//Oc/mDt3blCr/qFDh3DxxRfjrbfeglarxaJFi8IYLRF1KUFEEefSSy8VAMS6devE3//+dwFAvPfee63uX1paKq6//nqRkpIi9Hq9GD58uHj99dfFypUrBQDxwAMPNDvm8OHD4s477xQDBgwQer1exMXFiSlTpoivvvqqXbFmZWUJAKKwsLDVff74xz8KAOKiiy4KWn/ddde1eOxHH30kpkyZItLT04VWqxUZGRnitNNOEwsXLhRCCFFYWCgAtPiYNGlSUGxZWVmirq5O/PWvfxVZWVlCrVYH8vHAAw8IAGLlypVB1286T0lJibjmmmsCeR01apR4++23m72/1157TQAQr732Wovvv6W4Wov/WLkRQoj3339fTJw4UcTFxQm9Xi+GDBkiHn30UeF0Opvt25QDq9Uq5s2bJ3r16iW0Wq3o06ePePzxx4WiKC3G3JJJkyYJAMLpdIp77rlHZGdnC61WK3Jzc8WDDz4oXC5XYN/q6mphMBhEbm5uq9eYNm2aACA2btx4zGufccYZAoC48847W92ntLRUJCQkBH52mjR9X6677rqjvq8mTblv6fH778p7770npkyZIhISEoROpxNZWVniqquuavaenE6neOyxx8SQIUOEwWAQsbGxYsKECeL9999vFs+R8e7bt09ceumlIjExUZhMJnHWWWeJHTt2CCGEqKioELNnzxbp6elCp9OJMWPGiBUrVrT4Hj0ej1i4cKEYO3asiI2NFQaDQYwYMUL85z//ET6fr9WcEkUCtuwSRZjy8nJ8/PHHyMvLw7hx4xAXF4enn34aL730Eq688spm+1dUVODUU0/FgQMHcNppp2HcuHGwWCyYM2cOpk6d2uI1Dhw4gMmTJ6OoqAgTJ07EOeecA5vNhk8//RTnnHMOXnzxRcyePTtk7+n+++/H4sWL8emnn6K+vh5xcXGt7vvSSy/h5ptvRnp6Oi644AIkJyejoqIC27dvx2uvvYY5c+bAbDbjgQcewOuvv44DBw7ggQceCBz/+9Zlt9uNKVOmoLq6GlOnTkVcXBxycnKOGXNNTQ3GjRsHs9mMG264AbW1tViyZAmuvvpqlJSU4P/+7/86nI/bb78dy5cvx6pVq3Ddddc1i/lo7r77bjz22GNITk7GjBkzYDKZ8MUXX+Duu+/GV199ha+//rrZXwA8Hg/OPvtslJaW4txzz4Varcby5ctx5513wul0BuWvLa644gps3LgRl112GTQaDT766CM8+OCD2LRpEz7++GNIkoSEhARcddVVeO211/Dtt9/irLPOCjrHoUOH8MUXX2D06NEYM2bMUa9XWFiI7777DjqdDnfccUer+2VkZGDWrFn45z//iRdffBHjxo1r1/tqcvHFFwMA3njjDUyaNCnoZsWmz0oIgRtuuAFvvPEGkpOTcckllyAlJQXFxcVYuXIl+vfvH3hfbrcbZ599NlatWoUBAwZg7ty5sNvtWLp0Ka688kps3boVjz76aLM4ioqKMHbsWAwcOBDXX389ioqKsGzZMkyePBnr16/HOeecg7i4OFx55ZWorq7Ge++9h3PPPRd79uxB7969A+fxeDy44IIL8NVXX6F///6YMWMG9Ho9Vq5cib/85S/46aef8Oabb3YoV0TdQrirbSJqn8cee0wAEI8++mhg3ejRo4UkSWLv3r3N9p85c6YAIO64446g9Vu3bhVarbbFlt1JkyYJSZLEu+++G7S+pqZGDB8+XOj1emGxWNoUb1tadoUQomfPngJAUMtTS62Xo0aNElqtVpSXlzc7R2VlZbP3cbRfc02xnXHGGcJqtTbbfrSWXQDi8ssvD2r12r9/v0hISBAajUYUFBQE1re3Zfdo127SUm5++OEHAUD06tVLlJWVBdZ7PJ5AK+mCBQtazMG5554r7HZ7YH15ebmIj48X8fHxwu12txjD7zXlu1+/fqK6ujqw3uFwiFNOOUUAEIsXLw6s37hxowAgLr300mbnanr/L7300jGvu3jxYgFAjBs37pj7fv311wKA6NOnT2Bde1t2hRBH/auIEEK8+OKLAoA46aSTRG1tbdA2r9crSktLA8uPPvpo4DPweDyB9eXl5YHPp6WWaADikUceCTr3Qw89JACIhIQEcfPNNwd9P5vydPvttwcd05TrW265RXi93qA4m35/LF++vMX3SRQJeIMaUQQRjTemybKMP/7xj4H1119/PYQQzW5Uc7vdePfddxEfH4977703aNvw4cODztFk27ZtWLVqFS699FJcddVVQdvMZjPmz58Pp9OJ//3vfyF8ZwjcaFVZWXnMfdVqNTQaTbP1He1f+/TTTyMmJqZdx6hUKjzxxBOQ5d9+jebk5ODWW2+Fx+MJS0vYq6++CgC49957kZ6eHlivVqvx9NNPQ5ZlvPLKKy0e+9xzz8FgMASWU1NTcdFFF6Gurq7do33cd999SEhICCzr9Xo89thjQTECwJgxYzBmzBh89NFHsFgsgfU+nw+LFi1CbGws/vCHPxzzemVlZQCAXr16HXPfpn1KS0vb9mY66D//+Q8A4MUXX0R8fHzQNpVKFdTf+tVXX4UkSXjmmWegVv/2B9fU1FTcd999ANDi55adnY0777wzaN11110HAHC5XPjnP/8Z9P2cMWMG1Go1tm7dGlinKAr+85//ID09Hf/617+gUqmC4nz66achSRLefvvt9qaAqNtgNwaiCLJixQoUFBTg7LPPDroLf8aMGfj73/+O119/HY888kigENy9ezccDgfGjBmD2NjYZuebMGFCs/+Jrl+/HoD/5rGWhlVqKkZ37doVqrcFwF/IAzjmUGFXX301/v73v2PQoEG46qqrMGnSJIwfPx4pKSkduq5er8ewYcPafVzv3r1b7O4wefJkzJ8/Hz///HOH4jkeW7ZsAQBMmTKl2ba8vDz07NkThYWFqKurCyrA4uPj0bdv32bHNBWGNTU17Ypj0qRJzdZNmDABKpWqWV7mzJmDmTNn4tVXX8Xdd98NAPj8889RXFyMP//5zzCZTO26dndgs9mwc+dOpKWlYeTIkUfdt6GhAfv27UOPHj2Cbs5s0vRZtvR9GjFiRFBxCgCZmZkA/J/373/mVSoV0tLSUFxcHFi3Z88eVFdXo1+/fnjkkUdajNFgMIT8552oK7HYJYogL730EgB/S+6REhMTccEFF+B///sfPvroI1x22WUA/AUrAKSlpbV4vpbWHz58GADwzTffHHVcUqvV2u74j6appe1YRevf/vY3JCcn4/nnn8dzzz2HZ599FpIkYdKkSfjnP/95zP6dv5eamtqhsXhby2lTi2pT7rtS0zVbG6UhIyMDBw8eRG1tbVCxazabW9y/qZXR5/O1K46WcqNWqwP9q4901VVX4e9//ztefvll3HnnnZBlOfA9v/nmm9t0vaacHzp06Jj7Nu3TVBR2htraWgBo07BwbfnMjjznkX7fYgz89pm1tK1pu8fjCSw3/bzv3bsX8+fPbzXOUP+8E3UldmMgihCVlZVYvnw5AOAPf/hD0EQNkiQFuhU0FQoAAjd6lZeXt3jOltY3/U/y3//+N4QQrT5ee+21kL23ffv2obi4GGq1GqNHjz7m/n/84x/x448/4vDhw/jss89w4403YvXq1Tj77LPb1A3iSB2ddKK1nDb9Of7IYqPpT8ler7fZ/i0VMR3VdM0juwQcqenP/a0VQqHSUm68Xi+qqqqa3XxoMBgCN1d9/fXXgRvTxo4di+HDh7fpehMmTAAAbN68+Zj5/PbbbwEA48ePD6w72ucDtP8zavrHQ0lJyTH3Dfdn1nTe6dOnH/XnvbCwsFOuT9QVWOwSRYg33ngDbrcbo0ePxo033tjiIyUlBd9++23gf0wDBgyAwWDA9u3b0dDQ0Oyca9eubbbulFNOAQCsWbOmc9/QER566CEAwAUXXNBid4vWmM1mnHfeeXj55Zdx/fXXo7q6GqtXrw5sb/oTb3tbJtvi4MGDLU7V2zTj2ZF/vm7qv9pSy+OmTZtaPH9HYm+6ZkuzrjX9gyInJ6fVltxQWbVqVbN1a9euhc/na/HP+n/+858hSRJefPFFLFq0CD6fr82tugCQm5uL008/PdBPtTXl5eWBfu033XRTYP3RPp/6+nrs2bOn2fqjfT4xMTEYMmQIysvLj9mdJTY2Fn369EFJSQn27t3bbPvKlSsBAKNGjTrqeTpqwIABMJvN+PHHH4NafImiCYtdogjR9D/p559/Hq+88kqLj5tvvjlwExsAaLVaXHnllairq2vWH2/btm1YvHhxs+uMGTMGEydOxIcffhh0M9GRduzY0ezP0R1RX1+PW2+9FW+++SbMZjMef/zxYx6zcuXKQP/eIzXFYzQaA+uSkpIA+AvTUPP5fPjHP/4BRVEC6woLC/Hcc89BrVbjmmuuCawfM2YMZFnGO++8A7vdHlhfXV3d6lBZHYl95syZAIBHHnkkqIXb5/Nh3rx5UBQFN954Y5vP11EPP/xwUD9fp9OJu+66CwBwww03NNu/X79+OOOMM/Dpp5/iv//9L8xmc7ObI4/l3//+N4xGI5544gm88MILzbaXlJRg2rRpqKmpwQ033BDUshsbG4sBAwZg3bp1yM/PD6z3+Xz429/+BofD0ex8x/p8br31VgD+rhi/79KiKEqgxRbwf25CCPzf//1fUPFcVVWFhx9+OLBPZ1Cr1fjLX/6CsrIy3HrrrS2+17KysqC8EEUa9tkligDff/899uzZg6FDhx516tobb7wRCxYswGuvvYb58+dDrVbj8ccfx4oVK/Dkk0/ip59+wrhx41BWVoYlS5bgvPPOw/Lly4Pu2AaAd955B1OmTMGNN96I5557DmPHjoXZbEZxcTG2b9+OnTt3Yv369UhNTW3ze3j22WdhNpshhEB9fT12796N1atXw2azIS8vD2+99Rby8vKOeZ7p06fDZDLhlFNOQXZ2NoQQWLNmDTZu3IjRo0fjzDPPDOx7xhln4IMPPsAll1yC8847DwaDAVlZWbj22mvbHHdrhg0bhp9++gmjR4/G1KlTA+Ps1tbW4sknn0SfPn0C+2ZkZODqq6/Gm2++iREjRuD8889HfX09Pv/8c5x22mkttv6dfvrpkGUZd911F3bu3Bloffz9qBpHGjduHO644w48+eSTGDJkCC677DLExMTgiy++wM6dOzFhwoTjGv+3rQYOHIjBgwcHjbNbUFCA888/v9Xcz5kzB99++y3Ky8vxl7/8JWhkiLYYOnQoPv30U1x22WWYM2cOFi5ciNNPPx2xsbHYt28fPvvsM9jtdlx99dUtFsP/93//hxtvvBHjx4/H5ZdfHhhn1uPxYPjw4di2bVvQ/v3790ePHj3w3nvvQaPRICsrC5Ik4dprr0VWVhZmzZqFNWvW4M0330S/fv1w0UUXISUlBaWlpVixYgVmzpwZuAF03rx5+OKLL/DRRx9h+PDhOO+882C32/HBBx+goqICd9xxR6CrRme47777sG3bNvz3v//FJ598gilTpqBHjx6oqKjA3r17sW7dOixYsACDBg3qtBiIOlVXjnNGRB0zY8YMAUD8+9//Pua+Z511lgAgPvzww8C64uJi8cc//lEkJycHzaD2wQcfCADiX//6V7Pz1NfXiwULFohRo0aJmJgYodfrRXZ2tjjvvPPEiy++2OK4tC35/WxgarVaJCQkiCFDhohrrrlGfPDBB0Ezax2ppbFkX3jhBXHxxReLnJwcYTAYREJCghgxYoR44oknRH19fdDxXq9X3HXXXSInJ0eo1epWZ1BrTVtmULv66qtFSkqK0Ol0YuTIkS3OoCaEf4asefPmiR49egiNRiP69OkjHn30UeHxeFocZ1cIId58883AuMZN+Ttabpq8++67Yvz48cJkMgmdTicGDRokHnnkEeFwOJrte7QcHGus399rbQa1nJwc8eCDD7Y4g1sTr9crkpOTBQCxc+fONl2vJVVVVeKBBx4Qo0ePFnFxcUKr1YoePXqIyy677Jiz/73yyiti0KBBQqvVirS0NHHTTTeJqqqqVsdr3rBhg5gyZYqIi4sTkiS1mKu33npLnHbaaSIuLk7odDqRnZ0tZsyYITZv3hy0n8PhEAsWLBCDBw8Wer1emEwmMX78ePHOO+80u+6xxgVu7fskROuft6IoYvHixYHZ3jQajcjMzBTjx48XCxYsEAcPHmzxfESRQBKihb8HEtEJ4Z577sGjjz6KL7/8EmeffXa4w6ET2P79+9G3b1+MHz++S/uLE1H0Y59dohNASwPo79ixA8899xwSExNbHBeVqCs99dRTEELglltuCXcoRBRl2GeX6AQwZswY9O3bF0OGDEFMTAz27t2Lzz77DIqi4MUXX4Rerw93iHQCOnjwIN555x3s3bsXr732GoYPH47LL7883GERUZRhNwaiE8D8+fOxfPlyFBUVoaGhAWazGaeccgrmzZuHyZMnhzs8OkF9//33OP3002E0GjFhwgS88MILyM3NDXdYRBRlWOwSERERUdRin10iIiIiilosdomIiIgoarHYJSIiIqKoxWKXiIiIiKIWhx47ipqaGni93uM6R0pKStAc9dQ1mPfwYN7Dg3kPD+Y9PJj38OiOeVer1YGp1I+6XxfEErG8Xi88Hk+Hj5ckKXAeDnrRdZj38GDew4N5Dw/mPTyY9/CI9LyzGwMRERERRS0Wu0REREQUtVjsEhEREVHUYrFLRERERFGLN6gRERERhYHL5YLL5Qp3GG3icDjgdru7/Lo6nQ46ne64zsFil4iIiKiL2Ww2SJKE2NjYwGgH3ZlGozmuEao6QggBh8MBm82GmJiYDp+H3RiIiIiIupjX64XRaIyIQjdcJEmC0Wg87jkPWOwSERERdTEWuW13vLlisUtEREREUYvFLhERERFFLRa7RERERBS1OBpDN+ETEjw+JawxaFQyVFLkzXlNREQUjUpKSvD000/j+++/R3V1NVJTU3HOOefg9ttvR2JiYpvOcejQIZxyyin46quvMGTIkE6OuHtisdtNeHwK/rful7DGcOn4wVCp2WGeiIgo3A4cOIALL7wQubm5WLhwIXr37o3du3fjkUcewYoVK/DJJ58gISEh3GFGBHZjICIiIupm7rnnHmg0Grzzzjs49dRT0aNHD0yZMgXvvfceLBYLnnjiCQBAjx498OWXXwYdO3DgQLz//vsAgFNOOQUAcPbZZ6NHjx647LLLAvu99957OP3005GTk4ORI0finnvuCWwrKSnBDTfcgH79+qF///6YNWsWKisrA9uffvppnHXWWXjvvfdw0kknoV+/frjrrrvg8/nw/PPPY8SIERg2bBj+/e9/B8VWV1eHefPmYejQoejfvz8uv/xy/PJL5zb2sdglIiIi6kZqamrw/fff47rrroPBYAjalpqaiksuuQSffPIJhDh218PPPvsMgL+w/fnnn/Hyyy8DAN544w3cc889uPrqq/Htt9/itddeQ3Z2NgBAURTccMMNqK2txf/+9z+8++67OHDgAP785z8HnfvAgQNYsWIF3n77bSxcuBDvvfce/vjHP6KsrAxLly7FPffcgyeffBJbtmwJHHPzzTejqqoKb731Fr744gsMHToUV155JWpqao4nZUfFbgxERERE3UhhYSGEEOjXr1+L2/v27Yva2locPnz4mOdKSkoCACQkJCA1NTWw/rnnnsNNN92EWbNmBdaNGDECALB27Vr8+uuvWL9+PXr06AEA+H//7/9h4sSJ2Lp1a2A/RVHwzDPPwGQyIS8vD+PGjUNBQQHefPNNyLKMvn37YuHChfjhhx8watQobNiwAVu3bsW2bdsCUwDff//9+Oqrr/DZZ5/hmmuuaXeu2oLFLhEREVE31JaW246oqqqCxWLBhAkTWty+d+9eZGZmBgpdAOjfvz/i4+Oxd+/eQLHbq1cvmEymwD7JycmQZRmy/FvHgZSUFFRVVQEA8vPzYbPZmt0o53Q6ceDAgVC9vWZY7BIRERF1I9nZ2ZAkCXv37sW5557bbPu+fftgNpuRlJQESZKaFcUej+eo59fr9SGJU60OLiMlSYJGo2m2TlH8o03ZbDakpqZi6dKlzc4VHx8fkphawj67RERERN1IYmIiTjvtNLzxxhtwOBxB2yoqKvDhhx/iggsugCRJSEpKQnl5eWD7/v37g45pKj6bCk4AMJlM6NWrF9auXdvi9fv164fS0lKUlJQE1u3evRt1dXXIy8vr8PsaOnQoKisroVarkZOTE/Ro61BqHcFil4iIiKibeeSRR+B2u3H11Vfjxx9/RElJCVauXIk//OEPSE9Pxz/+8Q8AwPjx4/H6669j586d2LZtG+68886g1tXk5GTo9XqsXLkSlZWVqK+vBwD87W9/w0svvYRFixZh//792LFjB1599VUAwMSJEzFgwAD85S9/wY4dO/Dzzz/jlltuwamnnorhw4d3+D1NnDgRo0ePxsyZM7Fq1SocOnQIGzduxOOPP45t27YdR7aOjsUuERERUTeTm5uLL774Ar1798af/vQnjB8/HnfccQfGjRuHjz/+ODDG7v3334/MzExMnz4dc+fOxZ/+9KegERzUajUefvhhvPXWWxg1ahRmzpwJALjiiivw4IMP4o033sCUKVNw3XXXobCwEIC/68Frr72G+Ph4XHLJJbjqqquQlZWFF1544bjekyRJePPNN3HKKafgb3/7GyZOnIg5c+agpKQEycnJx3Xuo15XdFbv5yhQWVl5zH4vRyNJEjIyMlBWVnbMTuZOr+gWk0roo2BSifbknUKHeQ8P5j08mPfwiKa819fXIy4uLtxhtJlGozmumuh4tJYrjUaDlJSUYx7Pll0iIiIiilosdomIiIgoarHYJSIiIqKoxWKXiIiIiKIWi10iIiIiilosdomIiIgoanWr6YLz8/Px8ccfo7CwEDU1NZg3bx5OPvnkwPYrrriixeOuueYaXHjhhQCAuXPnorKyMmj7jBkzcPHFF3da3ERERETUPXWrYtflciE7OxtTpkzBU0891Wz7Sy+9FLT8888/47///S/Gjh0btP6KK67AmWeeGVgO1RzQRERERBRZulWxO3LkSIwcObLV7WazOWh548aNGDx4MNLS0oLWGwyGZvsSERER0YmnWxW77VFbW4uff/4Zc+fObbZt+fLl+N///ofk5GRMmDAB559/PlQqVavn8ng8QbOCSJIUmGpPkjo+o1jTsW07h0B3mLvseN5vd9G+vFOoMO/hwbyHB/MeHsw74BMSPD6lS66lUclQSd1jprrj+cwjtthdtWoV9Hp9UJ9eADj33HORk5MDk8mE3bt3491330VNTQ2uu+66Vs+1bNkyLF26NLCck5ODJ554ok1T0LVFenr6MfcptlTCFBsbkut1lFarRUZ6aN5zd9CWvFPoMe/hwbyHB/MeHtGQd4fDAY1G0+7jXE4Plq/f1QkRNTd93CDo9b/F2NZ4Fy1ahOeffx4VFRUYPHgwHn30UYwaNarDcWi1WmRkZHT4+IgtdleuXImJEydCq9UGrZ82bVrgdVZWFtRqNV5++WXMmDGj1Q9p+vTpQcc1/euhsrISXq+3wzFKkoT09HRYLJZjzuHt9iiwNjR0+Fqh4Ha7UVZWFtYYQqE9eafQYd7Dg3kPD+Y9PKIp7263O+ivym0lhIBP6ZqWXSFEIEaNRtOmeD/66CM88MADePzxxzFy5Ei88soruPLKK7F69WokJyd3KI7W6hO1Wt2mhsmILHZ37dqF0tJS3H777cfct1+/fvD5fKisrERmZmaL+2g0mlYL4VD8MAkh2nSe7vBjG+m/PI7U1rxTaDHv4cG8hwfzHh7Me/fV1MB45ZVXAgAef/xxfPfdd3jvvfdwyy23dPi8x/N5R+Q4uytWrEBubi6ys7OPuW9RUREkSUJcXFznB0ZERER0gnK73di+fTsmTpwYWCfLMiZMmIDNmzeHLa5u1bLrdDphsVgCyxUVFSgqKoLJZAo0fdvtdvz444+49tprmx2/Z88e7N27F4MHD4bBYMCePXvwxhtvYOLEiTCZTF32PoiIiIhONNXV1fD5fM26K6SkpKCgoCBMUXWzYregoADz588PLC9evBgAMGnSpMCoCz/88AOEEJgwYUKz49VqNX744Qd88MEH8Hg8SE1Nxfnnnx/UH5eIiIiIThzdqtgdPHgwlixZctR9zjzzzKAJI46Um5uLBQsWdEZoRERERHQUiYmJUKlUqKqqClpfWVkZshGuOiIi++wSERERUfei1WoxbNgwrF27NrBOURSsXbsWo0ePDltc3apll4iIiIgi1+zZs/HXv/4Vw4YNw8iRI/Hyyy/D4XAERmcIBxa7RERERBFCo5Jx6fjBXXat9g6MetFFF6G6uhpPPfUUKisrMXjwYLz11lth7cbAYpeIiIgoQqgkAZW6q6ZL7tjYtjfccANuuOGGEMfSceyzS0RERERRi8UuEREREUUtFrtEREREFLVY7BIRERFR1GKxS0RERERRi8UuEREREUUtFrtEREREFLVY7BIRERFR1GKxS0RERERRizOoEREREUUInwrwCF+XXEsjqaDqmkt1Kha7RERERBHCI3xYVrqpS641PXMMVFC165gff/wRL7zwAnbs2IHy8nIsWrQI55xzTidF2DbsxkBEREREIWG32zFo0CAsWLAg3KEEsGWXiIiIiEJiypQpmDJlSrjDCMKWXSIiIiKKWix2iYiIiChqsdglIiIioqjFYpeIiIiIohaLXSIiIiKKWhyNgYiIiIhCwmazobCwMLB88OBB7Ny5EwkJCejRo0dYYmKxS0RERBQhNJIK0zPHdNm12mvbtm24/PLLA8vz588HAFx++eV49tlnQxVau7DYJSIiIooQKh/aPatZVxo3bhxKSkrCHUYQ9tklIiIioqjFYpeIiIiIohaLXSIiIiKKWt2qz25+fj4+/vhjFBYWoqamBvPmzcPJJ58c2L5w4UKsWrUq6Jjhw4fjnnvuCSxbrVa8+uqr2Lx5MyRJwtixY3HDDTdAr9d32fsgIiIiou6hWxW7LpcL2dnZmDJlCp566qkW9xkxYgTmzJkTWFarg9/Cc889h5qaGtx7773w+Xx4/vnn8eKLL+K2227r1NiJiIiIqPvpVsXuyJEjMXLkyKPuo1arYTabW9xWXFyMrVu34rHHHkOfPn0AADNnzsRjjz2Ga6+9FomJiaEOmYiIiKhDFEWBLLNH6dEoinLc5+hWxW5b5OfnY9asWYiJicGQIUNw1VVXITY2FgCwZ88exMTEBApdABg6dCgkScK+ffuCukQcyePxwOPxBJYlSYLBYAi87qimY9t2DoGOXyl0juf9dhftyzuFCvMeHsx7eDDv4RFNeTcajWhoaEBsbCwL3lYoioKGhgbExMQc12ceUcXuiBEjMHbsWKSmpsJiseDdd9/Fo48+igULFkCWZdTW1iIuLi7oGJVKBZPJhNra2lbPu2zZMixdujSwnJOTgyeeeAIpKSkhiTs9Pf2Y+xRbKmFqLNrDRavVIiM9NO+5O2hL3in0mPfwYN7Dg3kPj2jJu8PhQHl5OYQQEEKEO5yjcjqdXXo9SZIgSRKys7MDDZAdFVHF7vjx4wOve/fujaysLPzlL3/BL7/8gqFDh3b4vNOnT8e0adMCy03/eqisrITX6+3weSVJQnp6OiwWyzG/xG6PAmtDQ4evFQputxtlZWVhjSEU2pN3Ch3mPTyY9/Bg3sMjGvOu0+nCHcIxhTPvtbW1rTZYqtXqNjVMRlSx+3tpaWmIjY2FxWLB0KFDYTabUV9fH7SPz+eD1WpttZ8vAGg0Gmg0mha3heJDbeu/2LrDj220/PIA2p53Ci3mPTyY9/Bg3sODeQ+PSM17RHcSOXz4MKxWKxISEgAAeXl5sNls2L9/f2CfnTt3QgiBvn37hitMIiIiIgqTbtWy63Q6YbFYAssVFRUoKiqCyWSCyWTCBx98gLFjx8JsNqO8vBxvvfUW0tPTMXz4cABAz549MWLECLz44ouYPXs2vF4vXn31VYwbN44jMRARERGdgLpVsVtQUID58+cHlhcvXgwAmDRpEmbPno2DBw9i1apVsNlsSExMxLBhw3DllVcGdUG49dZbsWjRIjz00EOBSSVmzpzZ5e+FiIiIiMKvWxW7gwcPxpIlS1rdfuRMaa0xmUycQIKIiIiIAER4n10iIiIioqNhsUtEREREUYvFLhERERFFLRa7RERERBS1WOwSERERUdRisUtEREREUYvFLhERERFFLRa7RERERBS1WOwSERERUdRisUtEREREUYvFLhERERFFLRa7RERERBS1WOwSERERUdRisUtEREREUYvFLhERERFFLRa7RERERBS1WOwSERERUdRisUtEREREUYvFLhERERFFLRa7RERERBS1WOwSERERUdRisUtEREREUYvFLhERERFFLRa7RERERBS1WOwSERERUdRisUtEREREUYvFLhERERFFLRa7RERERBS11OEO4Ej5+fn4+OOPUVhYiJqaGsybNw8nn3wyAMDr9eK9997Dzz//jIqKChiNRgwdOhQzZsxAYmJi4Bxz585FZWVl0HlnzJiBiy++uCvfChERERF1A92q2HW5XMjOzsaUKVPw1FNPBW1zu90oLCzEpZdeiuzsbFitVrz++ut48skn8fjjjwfte8UVV+DMM88MLOv1+i6Jn4iIiIi6l25V7I4cORIjR45scZvRaMR9990XtG7mzJm4++67UVVVheTk5MB6g8EAs9ncmaESERERUQToVsVue9ntdkiSBKPRGLR++fLl+N///ofk5GRMmDAB559/PlQqVavn8Xg88Hg8gWVJkmAwGAKvO6rp2LadQ6DjVwqd43m/3UX78k6hwryHB/MeHsx7eDDv4RHpeY/YYtftduPtt9/G+PHjg4rdc889Fzk5OTCZTNi9ezfeffdd1NTU4Lrrrmv1XMuWLcPSpUsDyzk5OXjiiSeQkpISkljT09OPuU+xpRKm2NiQXK+jtFotMtJD8567g7bknUKPeQ8P5j08mPfwYN7DI1LzHpHFrtfrxb/+9S8AwKxZs4K2TZs2LfA6KysLarUaL7/8MmbMmAGNRtPi+aZPnx50XNO/XCorK+H1ejscpyRJSE9Ph8VigRDiqPu6PQqsDQ0dvlYouN1ulJWVhTWGUGhP3il0mPfwYN7Dg3kPD+Y9PLpr3tVqdZsaJiOu2G0qdKuqqnD//fc368Lwe/369YPP50NlZSUyMzNb3Eej0bRaCIfiQxVCtOk83eHr052+xMerrXmn0GLew4N5Dw/mPTyY9/CI1LxH1Di7TYWuxWLBfffdh9g2/Nm/qKgIkiQhLi6uCyIkIiIiou6kW7XsOp1OWCyWwHJFRQWKiopgMplgNpvxzDPPoLCwEP/4xz+gKApqa2sBACaTCWq1Gnv27MHevXsxePBgGAwG7NmzB2+88QYmTpwIk8kUpndFREREROHSrYrdgoICzJ8/P7C8ePFiAMCkSZNw+eWXY9OmTQCAO+64I+i4Bx54AIMHD4ZarcYPP/yADz74AB6PB6mpqTj//POD+uMSERER0YmjWxW7gwcPxpIlS1rdfrRtAJCbm4sFCxaEOiwiIiIiilAR1WeXiIiIiKg9WOwSERERUdRisUtEREREUYvFLhERERFFLRa7RERERBS1WOwSERERUdRisUtEREREUYvFLhERERFFLRa7RERERBS1WOwSERERUdRisUtEREREUYvFLhERERFFrQ4Xu/Pnz8eOHTta3b5z507Mnz+/o6cnIiIiIjpuHS528/PzUVdX1+r2+vp65Ofnd/T0RERERETHrdO6MVgsFhgMhs46PRERERHRManbs/P333+PVatWBZY//PBDfPfdd832s9vtOHDgAEaOHHn8ERIRERERdVC7il232436+vrAssPhgCRJQftIkgSdToezzjoLl112WWiiJCIiIiLqgHYVu1OnTsXUqVMBAHPnzsUNN9yAMWPGdEpgRERERETHq13F7pEWLlwYyjiIiIiIiEKuw8VuE4fDgcrKSthsNgghmm0fNGjQ8V6Cuogsy3B6lbDGoFHJUEnNv0dEREREHdHhYre+vh6vvvoqfvrpJyhK6wXS+++/39FLUBfz+hQs++GXsMZw6fjBUKmlY+9IRERE1AYdLnZfeuklbN68Geeeey4GDBgAk8kUyriIiIiIiI5bh4vdbdu24fzzz8c111wTyniIiIiIiEKmw8WuTqdDSkpKKGOhTmJzelBRZ0OdzQmlsTusRiUjKc6ApFgDdJrj7rpNRERE1C11uMqZOHEiNmzYgLPPPjuU8VCIeH0K9pZWY19ZDaxO91H3TYw1IC8zEV6fr4uiIyIiIuoaHS52TznlFOTn52PBggU488wzkZSUBFluPvtwbm7ucQVI7eNTFOwpqcau4iq4PP7iVYK/oE2KNUAlS4Akwen2oqrejgaHG9UNDvy4uwS7X/gcuWnx6JuZCFniTWJEREQU+Tpc7N5///2B19u3b291P47G0HVsTjfW7SrG4QYHAMCk12Jw72T0So6DRq1q8RiH24v9lhrsKa1GjdWBzVYHiirqcHJeJswx+q4Mn4iIiCjkOlzs/vnPfw5lHHScSg434MfdJXB7fdCqVRiZm4bsNPMxW2gNWjUG907BgJ5JiDUasPi7rTjc4MBXW/ZjWHYqBvRMajYlNBEREVGk6HCxO3ny5BCG4Zefn4+PP/4YhYWFqKmpwbx583DyyScHtgshsGTJEnz33Xew2WwYMGAAZs2ahYyMjMA+VqsVr776KjZv3gxJkjB27FjccMMN0Oujt5WyoKwGG/aWAgCSYg0YP7AnYvTadp1DJcs4e1RfVNVZsWlfGUoON2BrYTlqbU6cnJcJVQtdVIiIiIi6u25VwbhcLmRnZ+PGG29scftHH32EL774ArNnz8ajjz4KnU6HBQsWwO3+7Qas5557DocOHcK9996LO++8E7t27cKLL77YVW+hyx1Z6PbNSMAZw7PbXegeyajTYOKgXhjdNx0SgKKKOny3rQhOtzdEERMRERF1nQ637D7//PPH3EeSpHZ1dxg5ciRGjhzZ4jYhBD7//HNccsklOOmkkwAAt9xyC2bPno2NGzdi/PjxKC4uxtatW/HYY4+hT58+AICZM2fisccew7XXXovExMQ2xxIJ9lt+K3TzeiRiVG56SLocSJKEvMwkxBl0WLvrEA43OPDd9iJMGZYFg1Zz3OcnIiIi6iodLnZ/+aX5tLKKoqC2thaKoiAuLg46ne64gjtSRUUFamtrMWzYsMA6o9GIvn37Ys+ePRg/fjz27NmDmJiYQKELAEOHDoUkSdi3b19Ql4gjeTweeDyewLIkSTAYDIHXHdV0bNvOIdCeK1lqrNiwp7HQzUzE6FAVuke8zkgw4ewRufhuexHq7S6s2FaEM4Znd3rBe7zvo315p1Bh3sODeQ8P5j08mPfwiPS8d7jYXbhwYYvrvV4vvv32W3z22We47777OhzY79XW1gIA4uPjg9bHx8cHttXW1iIuLi5ou0qlgslkCuzTkmXLlmHp0qWB5ZycHDzxxBMhmzQjPT39mPsUWyphio1t0/nq7U6s+7UEAkBezxRMGpYbmkJXlprFYIqNxYXjTPj0x3zUO9xYueMgLjh1MAy6zil4tVotMtK7Lu8Uesx7eDDv4cG8hwfzHh6RmveQT52lVqtxzjnnoLi4GIsWLcJdd90V6kuE3PTp0zFt2rTAclPhWFlZCa+3431VJUlCeno6LBYLhBBH3dftUWBtaDjmOb0+Bd9sLYTL40VirAEjs5Nhs1o7HOORhCJajEEFYMrQLHy3vQi1Nic++ykfZw7LhloV+i7fbrcbZWVlx3WO9uSdQod5Dw/mPTyY9/Bg3sOju+ZdrVa3qWGy0+aJzcrKwurVq0N2PrPZDACoq6tDQkJCYH1dXR2ys7MD+9TX1wcd5/P5YLVaA8e3RKPRQKNpuaUyFB+qEKJN52nLlTbsLUWNzQmdRoUJA3tBluU2HddWrZ3LZNDi9KFZ+GZrIaobHFi3qxgTBvfqlMknQvWD1Na8U2gx7+HBvIcH8x4ezHt4RGreO200hu3bt4e0z25qairMZjN27NgRWGe327Fv3z7k5eUBAPLy8mCz2bB///7APjt37oQQAn379g1ZLOFyqKoeRRV1kABMGNgLMfquvVkszqjDaYN7QyVLKKluwJZ9ZRH5pSciIqITR4dbdo/s43okm82GXbt2obCwEBdddFG7zul0OmGxWALLFRUVKCoqgslkQnJyMs477zx8+OGHyMjIQGpqKt577z0kJCQERmfo2bMnRowYgRdffBGzZ8+G1+vFq6++inHjxkX8SAxOtxcbG0deGNgrGanmmLDEkRJvxKn9e2LtrkPYW1aD+Bg9+mVGdm6JiIgoenW42P3ggw9aXB8TE4O0tDTMnj0bZ5xxRrvOWVBQgPnz5weWFy9eDACYNGkS5s6di4suuggulwsvvvgi7HY7BgwYgLvvvhta7W/jyt56661YtGgRHnroocCkEjNnzuzAO+xeNheUweXxId6ow5Cs0NzA1VG9UuIw3JmGbYXl2FJgQYJJj+Q4Y1hjIiIiImpJh4vd999/P5RxAAAGDx6MJUuWtLpdkiRceeWVuPLKK1vdx2Qy4bbbbgt5bOF0sLIOByvrIQE4pX+PbjGb2cCeSahucOBQVT3W5h/C2aNyOQYvERERdTvhr5roqDw+H7YU+Lt2DOqdjMRYQ5gj8pMkCWPzMhFn1MHh9mJdfjEU9t8lIiKibua4R2PIz8/Hli1bUFlZCQBISUnBqFGjMGjQoOMOjoD8g1VwuL0w6TUY3Du83Rd+T6NWYeKgXvjq5/2orLfjlwOVGJqdGu6wiIiIiAI6XOx6vV48++yz2LhxIwD/bGaAf4SETz75BCeffDJuu+02qNWdNrpZ1GtwuPFr8WEAwMjc9G7RfeH34ow6nNQvE+t/LcYvByuRZo4J281zRERERL93XDeobdy4ERdccAGmTZsWNA7uJ598gk8++QRLly7FVVddFapYTzg/77dAEQLp5hj0SGrb7GrhkJ0aD0uNFYXltfjh12KcO7oPdBr+I4eIiIjCr8NNhWvXrsWkSZNwzTXXBE3YEB8fj2uuuQannXYa1qxZE4oYT0hlNVaUHG6ABGBUn/RuPx/16L7piDVo4XB7sWFPKcffJSIiom6hw8VubW3tUSdq6NevH2prazt6+hOaEALbCssBAP0yExEfow9zRMemUakwbmBPyJKE4sMNKCyvC3dIRERERB0vdhMTE5Gfn9/q9vz8/IifyCFciqsaUGN1Qq2Swz6mbnskmgyBeLcUlMHmdIc5IiIiIjrRdbjYnTRpEtavX4+XXnoJpaWlUBQFiqKgtLQUL7/8MtavX4/JkyeHMNQTgyIEth+oAAD075EUcX1fB/ZKRlKsAR6fgp/YnYGIiIjCrMOV1CWXXILy8nJ89913+O677yA3jhSgKAoAfzE8ffr00ER5AjlQUYd6uwtatQoDeiaFO5x2kyUJpw7ogS82F6C81oa9ZdXIy4y890FERETRocPFrizLmDt3LqZNm4aff/45aJzdkSNHIisrK2RBnigURWBnY6vuwJ5J0KpVYY6oY2INOozIScPmAgu27a9Aj8RYxOi1xz6QiIiIKMTaVey63W68/vrr6NWrF84991wAQFZWVrPC9vPPP8c333yD66+/nuPstkNheS2sTg/0GjXyekR2a2i/zEQcqKxHVb0dm/aV4bTBvbv9iBJEREQUfdrVZ/fbb7/FqlWrMGrUqKPuN2rUKKxcuRIrVqw4ruBOJD5Fwa7iKgDAgF5JUKu63wQS7SFJEk7Oy4QsSSittuJAZX24QyIiIqITULsqqvXr12Ps2LFIS0s76n7p6ek45ZRTsG7duuMK7kTy0+4SNDjc0KpV6JuREO5wQiLeqMPg3skA/KMzuDzeMEdEREREJ5p2FbsHDx7EgAED2rRv//79ceDAgQ4FdaIRQuDD9bsAAHmZidCoIrOvbksG9kpGvFEHl8eHLQWWcIdDREREJ5h2Fbter7fNfXDVajU8Hk+HgjrRbCmwoKi8FmpZRl6P6BqbWCXLODkvEwBQVFGHsmprmCMiIiKiE0m7it3ExEQcPHiwTfsePHiQk0q00Qfr/K26fTISIm5c3bZIjjMGiviNe0vh9SlhjoiIiIhOFO0qdocOHYrVq1ejru7oU8HW1dVh9erVGDp06HEFdyLIP1SJnQcroZbliBxXt62GZafCqNPA5vJge1FFuMMhIiKiE0S7it2LLroIHo8HDz30EPbu3dviPnv37sVDDz0Ej8eDCy+8MCRBRrMYnRan9O+B04dlw6jThDucTqNRqXBSvwwAwJ6Swzjc4AhzRERERHQiaNffzNPS0vDXv/4V//73v3HvvfciLS0NvXv3hl6vh9PpxKFDh2CxWKDT6XDbbbchPT29s+KOGlmp8bj3igmwuX1Y3niTWrTKTIxFVko8DlTWYdPeUpw1Mhcyx94lIiKiTtTuDqKjRo3CP//5T3z00UfYsmULNm7cGNiWkJCAM844AxdddNExhyejYCo5ssfVbauRfdJQWt2AaqsTBWU16JfJft1ERETUeTp0N1Rqaipmz54NAHA4HHA4HDAYDDAYDCENjqKPQavBsJxUbN5nwbbCcvRMjoNBG3035REREVH3cNzNiQaDAYmJiSx0qc36ZiQiwaSHx6dg636OvUtERESd58T42zl1K7Ik4aS+/pvViirqUFFrC3NEREREFK1Y7FJYJMUZA9Mib9xXBp/CsXeJiIgo9FjsUtgMz06DTqNCvd2F3SXV4Q6HiIiIohCLXQobrUaFETn+4el2HqiAzekOc0REREQUbVjsUljlpMUjJc4InyKwpYA3qxEREVFosdilsJIkCWP6ZUCSgOLDDdi8rzTcIREREVEUibgBTufOnYvKyspm66dOnYpZs2bhwQcfRH5+ftC2M888EzfddFNXhUjtZI7Ro3+PJPxafBiLvv4Zo/ukQa+JuK8mERERdUMRV1E89thjUI64c//gwYN45JFHcOqppwbWnXHGGbjyyisDy1qttktjpPYbkpWCgxV1qKiz4YO1u3Dt6UPDHRIRERFFgYjrxhAXFwez2Rx4bNmyBWlpaRg0aFBgH51OF7SP0WgMY8TUFhqVCqMax9793/pfUVxVH+aIiIiIKBpEXMvukbxeL9asWYPzzz8fkiQF1q9ZswZr1qyB2WzG6NGjcemll0Kn07V6Ho/HA4/HE1iWJCkwI9yR522vpmPbdg6Bjl8pdMIZQ6+kWIzMTcfP+y144cstWHDN5A7lv315p1Bh3sODeQ8P5j08mPfwiPS8R3Sxu2HDBthsNkyePDmwbsKECUhOTkZiYiIOHDiAt99+G6WlpZg3b16r51m2bBmWLl0aWM7JycETTzyBlJSUkMSZnp5+zH2KLZUwxcaG5HodJclS2GP488h++MsLn2JbYTm2l9TjnJMGdPhcbck7hR7zHh7Me3gw7+HBvIdHpOY9oovdlStXYsSIEUhMTAysO/PMMwOve/fujYSEBDz00EOwWCytfkjTp0/HtGnTAstN/3KprKyE1+vtcHySJCE9PR0WiwVCiKPu6/YosDY0dPhaoSAUEfYYEmN64/LxA/HW9zvxzyUr0TfZgBh9+/pctyfvFDrMe3gw7+HBvIcH8x4e3TXvarW6TQ2TEVvsVlZWYvv27UdtsQWAvn37AsBRi12NRgONRtPitlB8qEKINp2nO3x9ukMMl546ACu3H0BJdQMWr9yOP50zukPnaWveKbSY9/Bg3sODeQ8P5j08IjXvEXeDWpOVK1ciPj4eo0aNOup+RUVFAICEhIQuiIpCQaNWYc55/gL3800F2FvKqYSJiIioYyKy2FUUBd9//z0mTZoElUoVWG+xWLB06VLs378fFRUV2LRpExYuXIiBAwciKysrjBFTew3PScOkIb2hCIGFn2+C74jh5oiIiIjaKiK7MezYsQNVVVU4/fTTg9ar1Wrs2LEDn3/+OVwuF5KSkjB27FhccsklYYqUjsess0Zg094y7CurwRebCzDtpH7hDomIiIgiTEQWu8OHD8eSJUuarU9OTsb8+fPDEBF1hgSTAdeePhT//XILFq/cgfEDeyLBZAh3WERERBRBIrIbA504zh3dB/0yEmB3efDKN1vDHQ4RERFFGBa71K2pZBlzzx8DWZKwaudBbN1vCXdIREREFEFY7FK31zcjEeeN6QMAeOGLLfB4fWGOiIiIiCIFi12KCNdOHooEkx4l1Q1Y+sOv4Q6HiIiIIgSLXYoIMXotZp01EgCwZG0+SqvDO9MbERERRQYWuxQxThvcCyNy0uDxKfjvl1sichYXIiIi6losdiliSJKEP587GmqVjC0FFqzJPxTukIiIiKibY7FLEaVHUiyuGD8QAPDil1tQb3eFOSIiIiLqzljsUsS5fPxA9E6JQ53dxbF3iYiI6KhY7FLE0ahVuHXaSZAArNhehM37ysIdEhEREXVTLHYpIg3omYwLx+YBAP7f55tgd3nCHBERERF1Ryx2KWJdO3ko0swxqKyz482VO8IdDhEREXVDLHYpYum1asw9bwwA4NONe7HrUFWYIyIiIqLuhsUuRbRRfdJx5vBsCADPfbqRUwkTERFREBa7FPFuPGsEzDF6HKqqx/tr88MdDhEREXUjLHYp4sUadPjTOaMAAB+s24W9pdVhjoiIiIi6Cxa7FBXGD+yJ8QN7wqcIPL38Rzjd3nCHRERERN0Ai12KCpIkYe55Y5Bg8ndn+H8frQ13SERERNQNsNilqBFn1OHWaScBAN5Z8TO2FZaHOSIiIiIKNxa7FFVO6peJc0b1AQD866OfYHW6wxwRERERhROLXYo6s6aOQM+UeFTW2/HSVz+HOxwiIiIKIxa7FHUMWg0evu4cyJKEFduL8MOu4nCHRERERGHCYpei0vA+mbhs3AAAwP/7bCNqrI4wR0REREThwGKXotaMyUOQm2ZGvcONZz/eAEWIcIdEREREXYzFLkUtjUqFv198CrRqFTYXWLD8x93hDomIiIi6GItdimpZqfG46eyRAIA3VmzH7pLDYY6IiIiIuhKLXYp6Z4/MxYSBveBTBJ78cD2HIyMiIjqBsNilqCdJEv4ybQzSzDEor7Xh2Y83QLD/LhER0QlBHe4A2mPJkiVYunRp0LrMzEw8++yzAAC3243Fixfjhx9+gMfjwfDhwzFr1iyYzeauD5a6lRi9Fv+49FTc8foK/Li7BP9b/ysuGzcw3GERERFRJ4uoYhcAevXqhfvuuy+wLMu/NU6/8cYb2LJlC/72t7/BaDRi0aJFePrpp/Hwww+HI1TqZvIyk3DT2SPx/OebsXjFDuRlJmFYdmq4wyIiIqJOFHHdGGRZhtlsDjzi4uIAAHa7HStWrMB1112HIUOGIDc3F3PmzMHu3buxZ8+eMEdN3cW5o/pgyrBsKELgyQ9/QFW9PdwhERERUSeKuJZdi8WCm2++GRqNBnl5eZgxYwaSk5Oxf/9++Hw+DB06NLBvjx49kJycjD179iAvL6/Vc3o8Hng8nsCyJEkwGAyB1x3VdGzbziHQ8SuFTreI4ThyfuTxLZ1HkiTMPX8MCstrUVheiwUfrMMT102BThNxPwrdTvu+7xQqzHt4MO/hwbyHR6TnPaL+D9+vXz/MmTMHmZmZqKmpwdKlS3H//ffj6aefRm1tLdRqNWJiYoKOiY+PR21t7VHPu2zZsqC+wDk5OXjiiSeQkpISkrjT09OPuU+xpRKm2NiQXK+jJFkKewxarRYZ6Z2f9+duuQTXPv4O9pZW4+XvduKR68+J2B/i7qYt33cKPeY9PJj38GDewyNS8x5Rxe7IkSMDr7OysgLF7/r166HVajt83unTp2PatGmB5aaip7KyEl6vt8PnlSQJ6enpsFgsx7z73+1RYG1o6PC1QkEoIuwxuN1ulJWVHdc52pJ3GcA/Lj0V9771Pb7Y8CvSY3W4bDxvWDse7fm+U+gw7+HBvIcH8x4e3TXvarW6TQ2TEVXs/l5MTAwyMzNhsVgwbNgweL1e2Gy2oNbdurq6Y47GoNFooNFoWtwWig9VCNGm83SHr0+3iCFEP0jHyvvQrFTcfPYoPP/FZrz+3TZkJJowbkDPkFz7RNbW7zuFFvMeHsx7eDDv4RGpeY+4G9SO5HQ6YbFYYDabkZubC5VKhR07dgS2l5aWoqqq6qj9denEdt6Yvjh/TF8IAE8t+xG/FleFOyQiIiIKoYhq2V28eDHGjBmD5ORk1NTUYMmSJZBlGRMmTIDRaMSUKVOwePFimEwmGI1GvPrqq8jLy2OxS0d109kjUVFnw8a9ZXjo/bV4+oYzkZFoCndYREREFAIRVexWV1fj3//+NxoaGhAXF4cBAwZgwYIFgeHHrrvuOkiShKeffhperzcwqQTR0ahkGXdccirufGMlCiw1eODdVXjy+jNgjtGHOzQiIiI6ThFV7N5+++1H3a7VajFr1iwWuNRuBq0GD1w1EfNe+xal1Vbc//YqPPbH0xGj7/iNj0RERBR+Ed1nlyiUEmMNePjqyTDH6LC/vBbz31sDp6fjo3EQERFR+LHYJTpCj6RYPDRjEmJ0GuQfqsKjH6yD2+sLd1hERETUQSx2iX4nNz0BD/xhInQaFbYUWLBgyVoWvERERBGKxS5RCwb1SsGDfzgNOo0KmwsseIQFLxERUURisUvUiqFZqYGCd0uBBQ++uxp2lyfcYREREVE7sNilbkWWZTi94rgeDo+CYkslHB6lQ8f7hBSIZ2hWKub/4TQYtGpsL6rA3W+uRJ3NGcYMERERUXtE1NBjFP28PgXLfvjluM4hATDFxsLa0NCh6Y8vHT8YKvVvBe+QrFQ8eu3peODd1dhXVoM7Xl+Bh66ehDRzzFHOQkRERN0BW3aJ2qBfZiKevG4KUuKMKKluwN9f/Qa7OLUwERFRt8dil4J4JSWsj+6sZ3Ic/nnDGchNM6PW5sLdi1di1c4D4Q6LiIiIjoLdGOgIAr82lIY5hiFhvv7RJccZ8cT1U/DUsh/x055S/HPZjyiw1OC6KcOgkvlvRyIiou6G/3cmaieDVoO7Lx+PS04dAAD4cP1u3P3m96hucIQ3MCIiImqGxS5RB6hkGTPPHI47Lx0Hg1aNXw5W4taXv8LGveFuGSciIqIjsdglOg4TBvXCs7OmIislHrU2F+a/twYLP98Ep9sb7tCIiIgILHaJjluPpFg8c+OZuGhsHgDgi80F+MtLX2HrfkuYIyMiIiIWu0QhoNOoMXvqSDxyzWQkxxlQVmPFvW+vwtPLf0QtJ6EgIiIKG47GQBRCI3LS8PyfzsWbK3fg0417sXLHAfy0pxRXTBiIC0/Og1atCneI7eITEjy+tg4JJ1BsqYTbE9oh5DQqGSqpI9ODEBERsdglCjmjToObzxmFyUOz8Pznm1FgqcHr323HF5sLMOO0wZg8NCtihinz+BT8b13bZrQ73pnrWvP7Ge2IiIjaIzL+j0sUgfr3SMK/Zp2Fv154MhJjDSivteFfH2/An174At9uK4S3zS2mRERE1FFs2aWwEBDwqnzwyT4okgJFVqBIAt/X7sJeXTFEK22DKqGCGjLUQgW1UEElVNAINXRCA53QQEL3agGUJQlnDM/B+IG98MnGvVi2/leUVVvx7Mcb8ObKHTh/TF+cM6oP4oy6cIdKREQUlVjsUqfwF7NeuDRuuNUeuDRueFU+eFVe/0P2oaW69KUyC2Ds8EWhFRrohQZGWQ9tjBoGRYcYnx5GRQ+jooNR0UMThq+9XqvG5eMHYtpJffHZxn1Y/tMeHG5wYPHKHXhvTT7GDeiJqSNzMCQrFbLUvQp2IiKiSMZil46bgIBL44ZD64RD54RL44ZL7YaQj9FzUwAqRQVZkSELGSpFQl5SKqpqHJBF84JPSIAPPnglBT7JBy988Eo+eCQv3JIXkAC35IEbHtTDDmhbvqxO0SDWZ4RJMSDWZ0Rs43OMYoCqk3v2GLQaXDZ+IC4am4fVvxzExxv2oMBSi+93HsD3Ow8gzRyD8QN7YcKgnuiXkQiJhS8REdFxYbFL7aZAgV3nhF3v8Be4WmfLha0AtF4NdB4ttF4tNF411D411D4VND41VIqqWbeDO0aejQ9KdnQgJuEvdCUPXLIHHpUXNjhhl51wyC7YJRccshNu2QuX7IFLrkMV6prFG6Pose9gIXIMScjS+x89dAnQyKEdRUGjVuGM4TmYMiwbe0qr8c3WQqz+5SDKa234cP2v+HD9r0iOM2BETjpG5qZhRE4a4mP0IY2BiIjoRMBit5sQEuCVuu8NS26VB1aDDTa9HTado1lxKysSDG49DC49dB5dY4HbkT60Ar82HO+UuxK0Wi18bhV0MEIHI8yNW3ySArfa37XCrfH4Xzc+K7KATeXEz9YD+Nl6IHA2FWT00JmRpU9C7yOK4FRN7HG3vEqShP49ktC/RxJmTR2BzfvKsDb/EDbsLUVVvQPfbivEt9sKAQB90s0YkZOOQb2S0TczEUmxhuO6NhER0YmAxW43IUJS5B2vIUFLLrULdUYrGoxWuDWeoG1qrwoxLiMMLj0Mbj10Hm23uzmsJSohw+DRw+DRA47f1gsI+GQfXBoPzhjeB2XuahxwHMYB52HYFTcOuqpx0FUN1O0NHGOQNeit/6347a1PRG99EuLVHStC9Ro1xg/shfEDe8Hl8eKXg1XYWmjBlgILiirqUGCpRYGlFv9b798/MdaAfhkJ6JeZiD7pCeidEo+UeCP7/BIRER2BxS4F8ag8qDNaUW9sgEvr/m2DAIwuPWKcMTA5jRFT3LaVBAlqRQ21S42zEofAqPL33RVCoMpjxQHnYRx0+ovfA87DKHbVwKF4sNtuwW578LTA8SoDeukT/Q9dYmMRnIi4dhTBOo0ao/qkY1SfdMw8E6ixOrB1fzm2FVVgb2k1DlXVo7rBgZ8aHPhpT+kRx6nQMykWPZPj0DMpDr2S45CRYEJGoglGnSY0ySIiIoogLHYJCgQajFY8VLQM+zLLftsgAJPTiDh7LEwOI1Qismb/6ii1pILT+1uXkljZhCFGE4YYswLrvMKHMlctDrmqcdB1GIech3HIVY1KTz3qfA7U2Uqw01YSdN44lQE9dYmNjwSkaeORpo1DsiYWaik4t7+fNSzBZMDpw7Jx+rBsAIDD7cF+Sy32lVVjb2kN9pfXoPSwFS6PL9AC/HvmGD0yE03ITDQhIyHW/5xoQmZibKuFcPu610iod1jhkwQQwmklWrhXkYiIqM1Y7J7APCoPakz1qI2ph0/lQ6kDjS24BsTZTYhzmKBSTowC90henw/Lfshv8/4axCIXschFNrzwoUFlR53KhnqVDfWyHfUqG2wqJ+p9DuTbS5BvDy6CIQCjoodJ0SNGMcDk02NKv37oYYhDotoEs8bQrBg2aDUY3DsFg3unBNb5FAWWGhsOVdUHHqXVDSittqLe7kKtzYlamxP5h6qavQdzjA6ZibHISPAXvxmNRbE5PqYd3Wv8faXdbjdCWuxiCFocp46IiKgNWOyeYAQE7DoHqmPrYNXbAjWE2qvCxemjsXV7BTS+E/1rIR3HzYISYpUYxCoxwBHdnJuK4IbG4rdBZYdN9o8W4ZMU2FVO2FVOALUAgB0lhUecETCrjUjQxCBRHYN4tQGxaj3iVHrEqvSIVRsQq9JBJ2ugj9GgT2wcBvdJgl7WQC3JkCQJVqcbZdVWlFZbUVrdgLKaxudqK+rsLtTa/I+WCmGVWoJOJ0Ork3971qug1clQqViEEhFR9xZRVc2yZcuwYcMGlJSUQKvVIi8vD9dccw0yMzMD+zz44IPIzw9ulTvzzDNx0003dXW43YqAgNVgQ1VsDZw6V2C90WlAgjUesY4YXDJ0DH7xfR3GKLuLzr1ZUA09EqBHAhon35B98Kg9cKs9jc9epCUbUeO1ocZjhw8Karx21Hjt2I/Kdl1LhgS9rIFOVkMtqSCrJahSJchpMmRISJEkJLtl+GyAxyrB0wC4rQKuBsDdAPhcgM8rYPf6YLf5mp1f0iqQjQJyrA+qOAVqvYCU5IMk+4t0SUiQhAxZSI2vJciKDJWQA2MsqxQZsiL7h6VrYTg6IiKi4xFRxW5+fj7OPvts9OnTBz6fD++++y4eeeQRPPPMM9DrfxuD9IwzzsCVV14ZWNZqW5ld4AQgIFBvbEBVXC3cGv8NZ5IiwWyLQ4I1HjrviZub7kCCBI2ihsathtH92w1s9508FUaVDEUI1HsdqPbacNhjRbXHhnqfEw1eJxp8TjR4HWjwOWH1ueBUvHApHjgVD7zC3zKtQMCuuGFX3K2F4GdofPzWKwISAJVHAmwqCJsKsPqfhU0F2FSAS4Zwy/C5AV+t6reGbFkAsV5IZi+kRA+kRBcQ40ObBolonGhE7VNB7VND41Pj48ot6KU3I10bh3RdPGJUnFqZiIjaLqKK3XvuuSdoee7cuZg1axb279+PQYMGBdbrdDqYzeYujq57ERCoi2lAVVw1PGovAEBWZCRY45HYEA+1ElEf/QlHggSn7G9J1at0yNTpkInENh/vE0pj4esvgF0+L3xQoAgFPiGgQEARSuNz4wPBXTeEABQfsOTnrYAO/kfSb9sVr4DXCXgcAm6bv0XYbQMUrwTUaSDqNBAH/AW8rBFQxwGaeAVqswLJ7IVQK/DJChRZgVf2wdc4hbRP5YNP5YML/gL9vYofg+KKVenRU5cQGO7N/5yEWDUn3SAiouYiuuKx2+0AAJPJFLR+zZo1WLNmDcxmM0aPHo1LL70UOl3rrUEejwcez28dLCVJgsFgCLzuqKZj236O4//zrYBAg8GKyvjDgbFxVT4VEhvMSLDGt2FEhe7wJ+RQxtDRc4U3DwICH5VtDmsMAHBh8hh86ShofQcVAFPjIw3QaDSwWZ1w2P3dHuw2Lxx2HxSPBNdhwHVYBUAFWdYgxqRGTKwaplg19AaVv9CVffCqvPCq/M8elRf9eyehytMAi7sOdY0t2bvsZdhlLwsKJUkTgz6GVPQzpqGfMQ19DaknRAHc/t8zFArMe3gw7+ER6XmP2GJXURS8/vrr6N+/P3r37h1YP2HCBCQnJyMxMREHDhzA22+/jdLSUsybN6/Vcy1btgxLly4NLOfk5OCJJ55ASkpKq8e0R3p6+jH3KSguPa7uFgICVq0NZaZyODROAP4/B6fakpFsT4QMGWjDMKvdoctHqGI4nvOEOw9qSYXTEgaHNQbA3+e2vbkwxRpgiv1tWVEEHDYvrFYPrA0eNNS74fMKNNR70VDv/6uDWi0hNk6L2HgtYuONiNOrAQWAB7il1+no09PfL9/mdaHEXo391nLst5ZjX0M5ChosKHPW4rDHhsOeQmyo/+3mvp7GRAyJ742RidkYmZCNrJiUiP1lfSxt+T1Doce8hwfzHh6RmveILXYXLVqEQ4cO4aGHHgpaf+aZZwZe9+7dGwkJCXjooYdgsVha/ZCmT5+OadOmBZab/mdYWVkJr9fb4RglSUJ6ejosFguEOPpQTEIojUM2tZ9T40K5uRJ2vX9KMFmRkNiQgMQGM1RCBS/a/h46GkMohSKG34bACl8Mx8Pr8+E/36wNawwAcN/Us9qVi9byrtEBCTo1EpLUEEIPp8MHa4MXtgYvbFYvvF6BmmoXaqr9N09qdTJi4zWIi1PD4/Viv6U4cC41gDw5GXlxyUCc/x8Edp8bBx2Hsd9egX32Cuy3V8DirkOxvRrF9mp8WbYVABCnNmBATAYGmjIxMCYTvQ2JkCX5mO9LI6mg7qazebfn9wyFDvMeHsx7eHTXvKvV6jY1TEZksbto0SJs2bIF8+fPR1JS0lH37du3LwActdjVaDTQaFoZVD8EH6oQoo3nad+1vLIXlfHVqI2pByRAEoDZGo/k+oQj+uS2N/7u8CU+3hiObLnr6LmiIQ+h0tY42pZ3SQIMRhUMRhVS0nQQQsBu+634tdt8cLsUHK5w4XCFCzP/9RFSMrXI7GVAj94GGIxH/7XVS2tGL60ZLsWLGo8NVR4rKj0NOOyxot7rwIa6/dhQtx+Av4hN1piQqo1DmiYWZrWxxZbf6Zljuv2kKm3/PUOhxLyHB/MeHpGa94gqdoUQePXVV7FhwwY8+OCDSE1NPeYxRUVFAICEhIROjq7rKBCoia1FVVw1FNn/pYuzmZBalwSNj1PCUmSRJMnff9ekBjIAn0/AWu9FQ70HDXVeON1eHCry4lCRv49+YrIWPXob0Cs7BuZETavdEnSyGum6eKTr4gH4b9qr8dpQ4W5ApceKKk8DPMKHMncdytx1AACtpEKqNg6pmjikaWMRq9JHbbcHIqITRUQVu4sWLcLatWtxxx13wGAwoLa2FgBgNBqh1WphsViwdu1ajBo1CiaTCQcPHsQbb7yBgQMHIisr6+gnjwACAla9DeUJVYERFvRuHdJqkoOGrSKKZCqVhPgEDeITNBBC4JoRJ+Od7ZtQctCOw5VuVFf5Hzu21MEUq0bPLCN6ZhuRkqaDLLdemKokGcmaWCRr/B2KFSFQ67WjwtOACnc9Kj0NcAsfil01KHbVAAD0ssbf4quLweiY3kjVxnVJDoiIKHQiqtj9+mv/hAcPPvhg0Po5c+Zg8uTJUKvV2LFjBz7//HO4XC4kJSVh7NixuOSSS8IQbWi5VR6UJ1TCavC3bql9KqTUJiHeHstB+ClqSZKE3IwEDFWbMXSUGU6HDyWH7CgusqOs2Alrgxe/7qzHrzvrodPL6NnbX/hm9NBDpT56X1xZkpCoiUGiJgYDjOlQhIJqrx0V7nqUu+tR5bHCqXhwwFWNFw99DwBI08ZhmKknhsb0xFBTDyRoYjo/CUREdFwiqthdsmTJUbcnJydj/vz5XRRN11AgUB1Xg6rYGghZAAJIakhAcn0CZHHsG2uIooneoEKfvFj0yYuF16OgrMSBQ0V2lBx0wOVUULDHioI9VqjVEjJ6GdAr24gevQzQ6o7d31aWZCRrTEjWmDAoJhM+oaDKY0WFux5eSWCfrRzl7np8U52Pb6r9szT20iX6i19TTwyJyYTpBBjqjIgo0kRUsXuisenssCRUBsbLNToNSK9J4axnRADUGhm9smPQKzsGiiJQUeZE8QE7DhXZYbf5cKjQjkOFdkgSkJapR69sI3pmGWGMaduvPZUkI00bhzRtHKZnjoHw+PCLrRQ7rMXYYS1BobMSh1zVOOSqxmeHt0MCkGtIwVBTTww39cTAmEzoZfahJyIKNxa73ZBH9qIioQr1RisA/6QQabXJiLOb2GWBqAWyLCG9hwHpPQwYfWoiqqvcOFRkR/EBO+pqPLCUOGEpcWLjumokpWgDhW+cufUb3H7PoNJiTFw2xsRlAwDqvQ78YivFdmsxdliLUeyqQYGjEgWOSiyv/BlqSUY/Q1qg5be/MR0auXuP6EBEFI1Y7HYjAgI1pjpUxh/2j7IggARrPFLqErv9sEdE3YUkSUhK0SEpRYcRJyWgvs6D4iJ/i29VhQuHK904XOnG1o21iI3z3+DWI+vYN7j9XpzagFPj++DU+D4AgGqPFTusJdhuLcZ2azEqPQ2Bmd7er9gItSQj15CCPEMa8ozpyDOmIU0bx9EeiIg6GYvdbmKP3YLCtENwaf0D8utdOmTUpELvaX2aYyI6trh4DQYNj8eg4fFw2L0oPuDv51te6kBDvRe7dtRj14566HQyMnsb0DPLiIyeBmg07esTn6gxYVJCf0xK6A8hBMrd9dhhLcZ2m7/bQ63Xjj32cuyxlwOHtwMA4lUG9DOmol9j8dvHkII4NUdWISIKJRa7YVbvdeBNy3r/DS9aQPbJSK1LgtkWxy4LRCFmMKrRb2As+g2Mhcftv8GtuMiOkkMOuFwKCvfaULjXBlkG0nv4J7HomWVs93UkSQqM8XtW0mAIIWBx12OP3RIoeAudlajzObCp4QA2NRwIHJuojkG2IRk5+iRkG5KRrU9Gps4MVRtmeiMiouZY7IbZTmtJ4M7ueGssUuuSoVbYZYGos2m0MnrnxKB3jv8Gt8pyF4oP+Pv5Wuu9KD3kQOkhBzauq8b2zO9wSr8eGJuXiZw0c7u7HkiShAxdPDJ08ZiU0B8A4FF8KHRWYo+9HLvtFuxtnOK42mtDdYMNW44ogLWSCr0MSeilT0QPvRmZugT00CcgVRsLWVKhuLocbsnnn0axE2kkFVS+Tr0EEVHIsdgNs1Pj++D8pGEYHdsHH6zZEe5wiE5IsiwhLUOPtAw9Ro1NQH2tp7HwdaCqwoWC0hoUlNbg7VU7kRJnxKg+6RjdNwMjctJg1HVsxAWNrGrsu5uOaRgOAHD43DjgPIxCZxWKHFUoclbhgLMaTsWDAnsFCuwVwXFDQqxaj0SdCUZoEKvSI06lR6xaD7UU+n80T88cAxX4j3EiiiwsdsNMkiTM7nEa7D4FAItdonCTJAnxCVrEJ2gxeIQZDrsPaQ2p2PJrGbbuL0dlvR1f/bwfX/28HypZwsBeyRjTJwOj+qR3qNX3SAaVFgNiMjAgJiOwThECFncd9rgq8E3lTtR7nWjwOdDgdcIHgTqvA3VeR7NzGWUt4tT6xgLYgFi1vxDWy20fgYKIKBqw2CUiOgqDUYWz+vXBGSNz4PL4kH+gEj/vteDnfRaUVVux80Aldh6oxOsrtiPBpMeIvukYlpuKITmpSDCFZpKJREMsxhpjUWavCawTQsCmuNHgc8KlUlBpr0O9118Eu4QXdsUNu9sNC+qDzqWW5KDi198SbIBJpWO/YCKKSix2iYiOwSsUfFS6yb9gBBKGA1OGJ6OhPj7Qt7e81IkaqxMrtxZh5dYiAEB8ggbpmXqkZRqQlqmHVtvxYvKizDFBy5IkwaTSIVath8lkglVthRD+PrsuxYN6rxP1PicafE40eB2o9zlh87ngFYq/X7DXFnw+ADEqXaD4beoSEafWQ8fJMYgogrHYJSI6BrWiwsT4gc03xAPo5X/p8fqwt7gG+UVV2H3wMIor6lFX40FdjQe7f2mAJAFZafEYkJWEvF6JyM1MgF7b9l/B7blxVSdrkKLVIAWxQet9QoHV5woUv/U+Jxq8/oLYI3yw+lyw+lyAuy7oOK2kRpxaj8M+G3J1Kcg2JKG3PgkmFYdGJKLuj8UuEdExeH0KFq74oc37m3tKMKXHwtbgg7XBC2uDF26XgiJLHYosdfjyp/0AAL1BRoxJDaNJhZgYNTRHafm975ypx/0+VJKMeLUB8b8by1cIAafiCRS//hZhB+q9TtgVN9zCiyqPFd8ezg86LlljQrY+CVl6f/GbpU9CD10CZ4ojom6FxS4RUSdQq2XEJ8iIT/B3AfC4lUDha7N64XELOB0KnA43Dlf6j9FoJX/xG6OCMUYNnV5u16xuHSVJEgwqLQwqLdK0cUHbvMKHBq8L9T4H0vTxKHZU44DzMKo81sDjyHGC1ZKMHroEZOuTkWNIQrY+GdmGZJjV7R+vmIgoFFjsElG3ppZa6ULQhSRx/AWnRisjIUmLhCQtAH/xa7N5Ybf6YLN64XQo8LgFaqs9qK32+K8rAXqDCgajCiu3FaJG70a8WdMlBXATtaRCgsaIBI0R0zPHQN/YncLqc+GA8zAOOA7joPNw4zBph+FQPP71zsNYVfvbeRLUxkDhm61PQo4hGT10Cbwpjog6HYtdIurWvD5fu7oQdIb7ph5/F4Lf02hlmLVamBP8yz6fgL2x+LXbfLDbvVB8gMPug8Puwwuf+W+QU6mkQNEcn6CBOVGLHj1DM+pDe5hUOgyOycTgmMzAOiEEKj0NKHIeDowTXOSoQpm7DjVeO2qsB/Gz9WBgf42kQm99YmMrcHKgGGZfYCIKJRa7RETdgEolITZOg9g4f7cHIQTcbgUOm7/YTTPEY09pFTwegaoKF6oqXEccbYFO7+8yEW/2F8HxCf5zGYyqkLUEy5IMp3z0KdTiVDEYpo/BMHPvwDqnz4NDzsMochzGAUdVoDXYpXhR4KhEgaMS+G1UNSRrTMgyJKG3IRlZBv+0yanaOMiSxFnciKjdWOwSEXVDkiRBp1NBp1PBnAjcd85kLK/YgIY6Lw5XuVBb7UFdjRt1NR5YG7xwORVUlLlQUeYKOo8sAzGxaphiNYiNUwf6BBtiGvsGG1VQqdvWlSBoCLYOSlLFIMkUg5ExvWD1uVDrtaPW62h8tsOuuAN9gTfXB/cFjlcZMDI+C331qYEb4wwq7XHF01FeARRbKuH2KGG5PgBoVDJUnTxFNFE0YLFLRBQhJElCnFmDOLMmaJ1OZ0RpSQ1qq92Nw525UV/rgc3qhaIADXVeNNR5UdbKebU6GXqDCjq9DL3e/6zTq6DTydBoZajVEtQaGTtdFThc7wosq9USVCoJkixBktD4aFsrctM4wTGyDpmaBP8YwQJw+byocdtR53GizuNAncc/UYZHAaqEE98c3o1vlD2AACCARJUJaZp4pGrikKqORYo6FkZJB0UI+BQBn6LApwgojWMQS43XliRAgoTG//zrGmOTpab1EiRJgkqW/IWlSoZalqBWyfAJCZv2V8DpcECSJciS/zhZkiDLwc+dNWPdpeMHQ6XmbHhEx8Jil4gowmk0MpKSdUhMCm7lVBQBu80Ha4MH1vrfRoJw2Hz+/sE2H3w+AbdLgdt17BbKVag45j6SBEiyv3iUJUCSJQhF+GtTxd89QwhAtKlBUgJgbHy0rBJAJewA7AAsbTlpl5IAyLIElewvlFUqGarG5WbPqubrNSoZapUMjUrlf1bLgXVWhxuaGA1UMm/yIzoaFrtERFFKliWYYtUwxaqBzObbj+wX7HT64HIqcP3u2etV4PUIeLwKjEKPaoctsKy00HdWCED4AEDAv7njf2aXG4tmSfa/F0kCjGotXB4fJAmABAhJQJGVxocPPkmBkEVgO2QBHNH4qRIqaIQKKqGCWqigVlRQQYYsJAhIAERQId5UnCvC3zqsNLYSG7Qa2Fwe+HxKs21B+QAaW5h9cHc4Ey37eMNeAIBWrYJBq0aMXoNYgxaxBl3jc+uv44w6GLTqTmt1JupOWOwSEZ2gjuwX3BYXZY4J6rOrKAKKT0AR8LfeCv+6I5+FEP7uAPJv3RyO7PLQ7LUsBYrcFmNIOQnL1ua3uA0AFCiwyg7Uq+xoUNnRINsDr72Sv/z2ND6OpBYqmHwGmBQDYhR94LXJZ4BB6CAhOJ7p4wbj2x0HYW1oaFbOK0JANHWj8ClB3Sl8igJv47OiCHh9Tduath+xr0+BV1Hg8Srw+hR4fD54fI2vvUqgsHZ7fXB7faizu9AeOrUKCbF6JJoMSDD99nzk68RYA+KMOn/XDqIIxWKXiCgCtD7esARZJUOJU3A8rahtofGpu/2YxzJkxCkxiFNigipaAQGn5A4UvvWyDQ0qO6yyA3bZBa/kQ63ailpYm59TSIhpLHxjFD2Mih4/1etQBTsg+aAVmqBiWG6s4FUyAHXnzSZ34SkDAMUHu8sLh8sDq8sDq8ONeofL/2x3w+p0NT67UW93wep0o8Huhsvrg8vrg6XGBkuN7ajXUckSkmINSImPQWq8ESlxRqSaY/zP8TFIiTe2a+proq7GbycRUQRofbxhCVqtFm63G51d7N43dWo3GPP4bHiljo2AoIEGSb54JPnig9b7oMAmO2GTHbCpHIHXTYWwIgl/K7HKHjhme0mB//+gZkAlZBgVfaAQjvHpYVR0gWW90DZrGQ4FnUYDRVEhXqNFvKl9x7o8XtRYnai1OVFjdaDG6n+utTr9r23+1/V2F3yKQEWdHRV1dvzSyvniDFqkxBsDBXGaOQZpZhNS441ITzDBqNO0ciRR52OxS0REEUTg14bSTjy/DB2M0MGIRPhbhD0qL9xqDzxND5UXackxKLbXwiG54JOUZsVw0BmFBIOi8z+E9rfXig4GRQuD8L+W0b4bzbw+Bct+aK38bD+9RoX0hBikJ8QE1imKgNPjhd3lgc3pgc3lgd3phs3lf+3xKrC7PKh3uFHvcKPAUtviuU16bWMB3PyRGh/DlmHqVPx2ERERtUKCBK1PA61PAxzRJfa+MWfjww35cPu8cMhO2AMPV9Brh+RvGbapnLCpnEe9llbRwKBooReNRbCig05ooVM00Akt9EIDnaKFGp3XNeL3ZFmCUaeBUadBclzz7ZdPHIoGuxOV9XZU1dlRWW9DZZ0dFXU2VNTaUFlnQ4PD343CanGjwFLT/CQA4o06f6twY/EbeI6PQXK8EdpAdxDRbHxjjjdMx8Jil4iIqN0E9tormnUfkaGFCVqYENe4l79l2Nv48Kh8R7z2wqv2wqvyQUgCbtkDt+xBHY7eh1ZSJKgVFXYU7YY9xusvhBsLYq1QQ6tooBUa/+vG587oRgH4W5e/3Lw3aF2MTo2c1HjkpPq7i3i8PthcHlidbn/rcOOztfG1x6egzu5Cnd2FfWXVLV6nabQJk16LhDgTtJKAsXH56tOHw9TGmyzpxMRil4iIqJMEtQy3QkDAJyvBRXCgKPbBK3vhU/nglX0QsoCQBTyyF/sc5UBbJpATgEaooTuyAFbUQQWxRqigEWqohTrwWiNUUAs1VJCPq1jWqFUwq1Uwx+hb3O72+GB1/VYIW4MKYjd8ioDD7YXD7UVVvQNFFXVBx3+2aR+S4gz+bhHxv+siYY5BUqyBYxGf4FjsEhERhZEEf0utWlEBHl2r+wkICEnAK/sL4UtGDcWqPfvhkt1wSm64ZA/ckhduyeN/yF7/cGsS4JG88MDbsfiEdEQx3FQI+4vh6rJKFBvqA9uCHlC1uO73hbNWo0KixoBEk6H5exYCLo+/ZbipAHb5BGob7IGWYkUIVNbZUVlnx05UNjuHSpaQEm9EmtmEtHgjEmP9w6qZY/yPptccdzh6RW2x++WXX+KTTz5BbW0tsrKyMHPmTPTt2zfcYREREXWIBAmSkKD1ydD6NDgpLhfF7qP3A1agNCuA3ZIHrqZ1jcteyecviBufvfC/bpq4wy154W6hWD5YWwG03GDbKpWQWy2Kg4rmpvU6FdQx/slAUqBGrCEWHlsMVEIFlSJj6vA81NscKK+xoaLOBkutv79wea2//7BXUdo0xJpOowoqfhNMesQZdDA1TsRh0mthauw6YWpc1mlULJAjQFQWuz/88AMWL16M2bNno1+/fvjss8+wYMECPPvss4iPjz/2CYiIiLo9qU3DsKnh755gFAagHaO2CQh44QsUwr9/9kg+5PVKwrbiUnglL7ySAq/k39/XeFzgAV9gJjufpMAnKXA1m9qjHY74X/lHh9ZBK6mgk9XQJmmgS1ZDJ6uRJKuRAQ0klwqKTYbXDrhtgNch4HYIuBwKnA4fHHYfPF4FLo8P5Y1FclupVXKgCI7Ra6HXqqHXqKDXqKE74rVeq4ZOo4Ze27isUUN9xNTPapUMtXzEa1XwNlmSGsdv9o/jLEn+9nEW2m0TlcXup59+ijPOOAOnn346AGD27NnYsmULVq5ciYsvvji8wREREYVEZw/DdiwyLht1Enb9/PUxuw43dcFQJAVK0xTPv38tNy5LCoT8+/0UKHLTNgFf47qmAtotfHD7fICvlVnk9I2PxJY3q7wAXDLglCFcMuD67RkeCfDIEB4JcPtfwyMBQoLXp6DW5h+vOFya6l3/82+zEvrX+V/8Not181ErxO9XiZb2FAAkiN9Ph93CIBjnnpqDuWee3Nbwu0TUFbterxf79+8PKmplWcbQoUOxZ8+eFo/xeDzweH77F6YkSTAYDFCrjy89TV8yjUbT7AvyezpZQVZS8nFd73jptJqoiUGjUcPj6Vj/tGjKQ1fHcTx5D1UMnaG7x9AZeW9vDF2lO8TQFEfvxIQuyfvRYgh3LrokBtH4aGyVbvq+NxXQV48ZhdW7CqHABx8EfJIPSuOzTxLwwQel8dkHAeX366XG9QheL9BYnENAkVoo8nwS4AXglSC8MuBtXFYk/zaf1Pga/scR64VP+q2VXWncJgCIxvVNz500ikZnkmIkaDRdM4lIW+s0SRyrCosw1dXV+NOf/oRHHnkEeXl5gfVvvfUW8vPz8eijjzY7ZsmSJVi6dGlgefz48bjtttu6JF4iIiIi6jwciwPA9OnT8frrrwces2fPDmrp7SiHw4F//OMfcDgcIYiS2op5Dw/mPTyY9/Bg3sODeQ+PSM971HVjiIuLgyzLqK2tDVpfW1sLs9nc4jEajaZTmtyFECgsLDxmFwYKLeY9PJj38GDew4N5Dw/mPTwiPe9R17KrVquRm5uLnTt3BtYpioKdO3cGdWsgIiIiougXdS27ADBt2jQsXLgQubm56Nu3Lz7//HO4XC5Mnjw53KERERERUReKymJ33LhxqK+vx5IlS1BbW4vs7GzcfffdrXZj6CwajQaXXXZZl92VSH7Me3gw7+HBvIcH8x4ezHt4RHreo240BiIiIiKiJlHXZ5eIiIiIqAmLXSIiIiKKWix2iYiIiChqsdglIiIioqgVlaMxdLVly5Zhw4YNKCkpgVarRV5eHq655hpkZmYG9nG73Vi8eDF++OEHeDweDB8+HLNmzeryESKiyddff42vv/4alZWVAICePXvisssuw8iRIwEw511h+fLleOedd3Deeefh+uuvB8C8d5bfT2sOAJmZmXj22WcBMO+dpbq6Gm+99Ra2bt0Kl8uF9PR0zJkzB3369AHgH2x/yZIl+O6772Cz2TBgwADMmjULGRkZYY48ss2dOzfwu/1IU6dOxaxZs/h97wSKomDJkiVYs2YNamtrkZiYiEmTJuHSSy+FJEkAIvf7ztEYQmDBggUYP348+vTpA5/Ph3fffReHDh3CM888A71eDwB4+eWXsWXLFsydOxdGoxGLFi2CLMt4+OGHwxx95Nq0aRNkWUZGRgaEEFi1ahU+/vhjPPnkk+jVqxdz3sn27duHf/3rXzAajRg8eHCg2GXeO8eSJUvw008/4b777gusk2UZcXFxAJj3zmC1WvGPf/wDgwcPxtSpUxEXF4eysjKkpaUhPT0dgP8ffMuXL8fcuXORmpqK999/HwcPHsQzzzwDrVYb5ncQuerr66EoSmD54MGDeOSRR/DAAw9g8ODB/L53gg8//BCfffYZ5s6di549e2L//v14/vnncdVVV+G8884DELnfd3ZjCIF77rkHkydPRq9evZCdnY25c+eiqqoK+/fvBwDY7XasWLEC1113HYYMGYLc3FzMmTMHu3fvxp49e8IcfeQaM2YMRo0ahYyMDGRmZuIPf/gD9Ho99u7dy5x3MqfTif/85z+4+eabERMTE1jPvHcuWZZhNpsDj6ZCl3nvHB999BGSkpIwZ84c9O3bF6mpqRg+fHig0BVC4PPPP8cll1yCk046CVlZWbjllltQU1ODjRs3hjn6yBYXFxf0Xd+yZQvS0tIwaNAgft87yZ49ewL/X01NTcUpp5yCYcOGYd++fQAi+/vOYrcT2O12AIDJZAIA7N+/Hz6fD0OHDg3s06NHDyQnJ/MHM0QURcG6devgcrmQl5fHnHeyV155BSNHjsSwYcOC1jPvnctiseDmm2/GLbfcgueeew5VVVUAmPfOsmnTJuTm5uKZZ57BrFmzcMcdd+Dbb78NbK+oqEBtbW3Qz4HRaETfvn2Z9xDyer1Ys2YNTj/9dEiSxO97J8nLy8POnTtRWloKACgqKsLu3bsDXQMj+fvOPrshpigKXn/9dfTv3x+9e/cGANTW1kKtVge1gAFAfHw8amtrwxBl9Dh48CDuueceeDwe6PV6zJs3Dz179kRRURFz3knWrVuHwsJCPPbYY8228bveefr164c5c+YgMzMTNTU1WLp0Ke6//348/fTTzHsnqaiowDfffIPzzz8f06dPR0FBAV577TWo1WpMnjw5kNv4+Pig45j30NqwYQNsNhsmT54MgL9nOsvFF18Mh8OBv/71r5BlGYqi4KqrrsLEiRMBIKK/7yx2Q2zRokU4dOgQHnrooXCHckLIzMzEP//5T9jtdvz4449YuHAh5s+fH+6wolZVVRVef/113Hvvvd26f1Y0ampdAYCsrKxA8bt+/Xp+Fp1EURT06dMHM2bMAADk5OTg4MGD+OabbwKFF3W+lStXYsSIEUhMTAx3KFFt/fr1WLt2LW699Vb06tULRUVFeP3115GQkBDx33cWuyG0aNEibNmyBfPnz0dSUlJgvdlshtfrhc1mC/qXaF1dHe8cPU5qtTrQfy43NxcFBQX4/PPPMW7cOOa8E+zfvx91dXX4xz/+EVinKAp27dqFL7/8Evfccw/z3kViYmKQmZkJi8WCYcOGMe+dICEhAT179gxa17NnT/z0008AEMhtXV0dEhISAvvU1dUhOzu7q8KMapWVldi+fTvmzZsXWMf/p3aOt956CxdddBHGjx8PAOjduzcqKyuxfPlyTJ48OaK/7+yzGwJCCCxatAgbNmzA/fffj9TU1KDtubm5UKlU2LFjR2BdaWkpqqqqkJeX19XhRjVFUeDxeJjzTjJ06FA89dRTePLJJwOPPn36YMKECYHXzHvXcDqdsFgsMJvN/L53kv79+wf6LzYpLS1FSkoKACA1NRVmszko73a7Hfv27WPeQ2TlypWIj4/HqFGjAuv4fe8cLpcLshxcFsqyjKZBuyL5+86W3RBYtGgR1q5dizvuuAMGgyHQd8VoNEKr1cJoNGLKlClYvHgxTCYTjEYjXn31VeTl5XX7L0h39s4772DEiBFITk6G0+nE2rVrkZ+fj3vuuYc57yQGgyHQF72JTqdDbGxsYD3z3jkWL16MMWPGIDk5GTU1NViyZAlkWcaECRP4fe8k559/Pu677z58+OGHGDduHPbt24fvvvsON910EwBAkiScd955+PDDD5GRkYHU1FS89957SEhIwEknnRTm6COfoij4/vvvMWnSJKhUqsB6ft87x+jRo/Hhhx8iOTk5cO/Lp59+itNPPx1AZH/fOc5uCFxxxRUtrp8zZ06gn0vTANjr1q2D1+vlANgh8MILL2Dnzp2oqamB0WhEVlYWLrroosCdosx513jwwQeRnZ3dbFIJ5j20nn32WezatQsNDQ2Ii4vDgAEDcNVVVwW68TDvnWPz5s145513YLFYkJqaivPPPx9nnnlmYHvTIPvffvst7HY7BgwYgBtvvDFoUiHqmG3btmHBggV49tlnm+WT3/fQczgceP/997FhwwbU1dUhMTER48ePx2WXXQa12t82Gqnfdxa7RERERBS12GeXiIiIiKIWi10iIiIiilosdomIiIgoarHYJSIiIqKoxWKXiIiIiKIWi10iIiIiilosdomIiIgoarHYJSIiIqKoxWKXiCiC7Nu3D1dccQWuuOIKLF26NNzhEBF1eyx2iYgiyOrVqwOv16xZE8ZIiIgiA4tdIqII4fV6sW7dOgCA2WxGWVkZ9u7dG+aoiIi6Nxa7REQRYuvWrWhoaED//v0xdepUAMEtvURE1Jw63AEQEVHbNHVbmDhxIkaMGIElS5bghx9+wHXXXQe1uvmv8wMHDuDdd9/Fr7/+CkVRkJOTg0svvRQqlQrz58/HpEmTMHfu3KBjhBBYt24dvvvuOxQVFcHtdiM1NRWnnnoqLrroIuh0ui55r0REocKWXSKiCGC327Fp0yao1WqMGzcOqamp6N+/PxoaGrB169Zm++/Zswf33nsvtmzZgpSUFIwaNQputxsLFizATz/91OI1FEXBc889h+eeew4FBQXIzs7GyJEj4XQ6sXTpUsyfPx9ut7uT3ykRUWixZZeIKAL8+OOP8Hg8GDNmDEwmEwB/C+/u3buxevVqjBkzJrCvoihYuHAhXC4XrrrqKlxyySWBbStWrMB///vfFq/x6aefYt26dRg8eDBuu+02mM1mAP6+wq+88gpWrFiBDz74AFdffXXnvVEiohBjyy4RUQRo6pt72mmnBdadeuqpUKlU2Lx5M+x2e2D9zp07UVZWhoyMDFx88cVB55kyZQr69+/f7Pw+nw8fffQRdDpdUKELAGq1GjNnzoTZbMa3334LRVFC++aIiDoRi10iom6uqqoKu3btQkxMDEaPHh1YHxsbi5EjR8Lj8WD9+vWB9bt37wYAjB07FrLc/Nf8uHHjmq0rLCwM3Px2ZKHbRKvVIjc3FzabDRaLJQTvioioa7AbAxFRN7dmzRoIITB27FhoNJqgbaeddho2bdqENWvW4IwzzgAA1NTUAACSkpJaPF9ycnKzdRUVFQCA7du344orrjhqPPX19cjMzGz3+yAiCgcWu0RE3VxTF4b8/Hzcd999Qdu8Xi8AYNeuXaisrERKSkqHriGEAACkp6e32M3hSLGxsR26BhFROLDYJSLqxvbv34+SkhIAgMViabULgRACa9aswSWXXIKEhAQAwOHDh1vct6X1Ta3AmZmZzYYjIyKKZCx2iYi6saZW3QsuuADXXntti/vk5+fjwQcfDBS7TS2zGzZswB/+8AdIkhS0/5H9e5v06dMHRqMRu3btgtVqDYz4QEQU6XiDGhFRN6UoSmB64PHjx7e634ABA5CYmIiSkhLs378fQ4YMQUZGBkpLS/HRRx8F7fv9999j165dzc6h0Whw4YUXwuFw4KmnnkJ5eXmzfaqrqzljGxFFHLbsEhF1U9u2bUNdXR0yMjKQm5vb6n6yLGPcuHH49NNPsXr1auTm5mLu3Ll4+OGH8c4772DdunXo2bMnysvLUVBQgLPPPhtfffVVs1nXLr74YpSWlmL16tX461//ipycHKSkpMDr9aKsrAzFxcXo3bt30PBnRETdHVt2iYi6qaZW1KO16jZp2mfdunXw+XzIy8vDww8/jFGjRqGiogKbNm2CSqXCXXfdhby8PADNbzSTZRm33HIL7rjjDgwbNgwVFRX46aefsHv3bmg0GlxwwQX485//HOJ3SUTUuSTRdAsuERGdEF566SV8++23uP3221scc5eIKJqwZZeIKApZrdbA2LlH+uGHH7BixQrExMRg1KhRYYiMiKhrsc8uEVEUKi0txb333ousrCykpqYCAEpKSlBaWgpZljF79mzo9fowR0lE1PnYjYGIKArV1dVh6dKl2LlzJ2pqauByuRAbG4u8vDxceOGFgX67RETRjsUuEREREUUt9tklIiIioqjFYpeIiIiIohaLXSIiIiKKWix2iYiIiChqsdglIiIioqjFYpeIiIiIohaLXSIiIiKKWix2iYiIiChq/X8tsxhOmRZ7qwAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAGQCAYAAAC03EhkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOrklEQVR4nOzdd3hc1Zn48e+dqhmNeu+yLMvdxjY2xjZgTAnF4JgSSCAhEEMoyRJY9pfdJdRAEpKQhc0SNhAIEEKANTbg0E0xbtgG415kq1iyehvV6ff+/hhrsCzJVhlpRtL7eR490txy7jtHo9E7556iaJqmIYQQQgghxCigC3UAQgghhBBCBIskt0IIIYQQYtSQ5FYIIYQQQowaktwKIYQQQohRQ5JbIYQQQggxakhyK4QQQgghRg1JboUQQgghxKghya0QQgghhBg1JLkVQgghhBCjhiS3Qohh99lnn6EoCg8++GBIrl9aWoqiKPzwhz/ssv2HP/whiqJQWloakrgg9HXTkxdeeAFFUXjhhRdCHYoQQpySJLdChBFFUbp9mc1mcnNzueGGG9i/f3+3czqTIUVRGDduHL2tqN3W1kZ0dHTg2BMTuNzc3H4ldg8++GCXOHU6HdHR0eTk5HDJJZfw2GOPUVFR0d8q6JORnGz1lliLk9M0jZUrV7Js2TLS09MxmUwkJCSwaNEi/vCHP9DR0RG0a+Xm5pKbmxu08oQQw8sQ6gCEEN098MADgZ+bm5vZunUrL730Em+88QYbNmzgtNNO63aOwWCgtLSUjz76iAsvvLDb/ldffZXW1lYMBgNerzdosZ5zzjksXrwYgPb2dqqqqti4cSPvvfceDzzwAA8++CD//u//3uWcefPmsX//fhITE4MWR39kZGSwf/9+YmJiQnL9kwl13YQju93Od77zHT766CNiYmK45JJLyM3NpbGxkQ8++IB//dd/5Y9//CP//Oc/mTp1aqjDFUKEmCS3QoShnm5J//SnP+V//ud/eOKJJ3pssTz//PP59NNPefbZZ3tMbp999lnS0tLIzs5my5YtQYt18eLF3eLVNI1Vq1Zxyy238B//8R8AXRJcq9XKpEmTghZDfxmNxpBe/2RCXTfhRlVVrr76atauXcu3vvUt/v73v5OQkBDY7/V6uf/++/n1r3/NhRdeyPbt20lJSQlhxEKIUJNuCUKMEJ0Ja11dXY/7ExISuOKKK3jrrbe6HbNr1y62bt3KjTfeiMEw9J9pFUXhyiuvZOXKlQA8/PDDVFVVBfb31q+0uLiYW265hfz8fCwWC/Hx8UyfPp1bb72VhoYGwJ9M33jjjQDceOONXbpGdHap6Owy8dlnn/HKK69wxhlnYLPZAreaT9U1QFVV/vCHPzBp0iQiIiLIzMzkrrvuoqWlpcfn2tlyfaIT+/A++OCDjBs3DoAXX3yxS+ydH1hO1uf20KFD/OAHPyAjIwOTyUR6ejo/+MEPOHToULdjj6+DlStXMm/ePKxWK/Hx8Vx77bUD7jLyzjvvsGDBAiIjI4mLi+Oqq67qdv3vfve7KIrCunXreizjjTfeQFEUfvKTn5zyeq+88gpr165l/PjxrFq1qktiC/47Fr/61a+45pprqKys5Be/+EWX/YsXL0ZRlB7LPrF7S2fdHzlyhCNHjnT5/Zz4Wjlw4AA33XQTubm5mM1mkpOTOeuss3j66ae7Xefjjz/moosuIj4+HrPZTEFBAf/+7/9Oc3Nzt2M74/V4PDz88MOMHz+eiIgIJk6cyLPPPhs47n//93+ZPn06FouFzMxMHnjgAVRV7fF5btmyhauuuorU1FRMJhNZWVn8+Mc/prKyssfjhRjppOVWiBFi7dq1AJx++um9HnPzzTfzj3/8gxdffJF77rknsP3ZZ59FURR+9KMf9ZpwDIVzzz2XRYsWsWHDBlatWsUdd9zR67FVVVXMnTuXlpYWLrnkEq688kqcTiclJSX87W9/4yc/+QkJCQn88Ic/JDY2lrfeeotly5Z16aIRGxvbpczHH3+cjz76iMsuu4xzzz23x2SiJ3fddReff/453/nOd1i2bBkffPABTzzxBOvXr2fDhg1EREQMpDpYvHgxdrudJ598kpkzZ/Ltb387sK+nribH27ZtG+effz6tra1cfvnlTJkyhQMHDvDyyy/z1ltvsXbtWubOndvtvD/96U+8/fbbXH755Zxzzjls2bKF1157jZ07d7Jjxw7MZnOf41+1ahXvvfcey5cvZ/HixezYsYM33niDTz/9lE2bNjFx4kQAbrvtNl599VWeeeYZzjnnnG7l/PnPfwbg1ltvPeU1OxO6f/3Xf8VqtfZ63P33389rr73G3/72N/74xz8O6HeUm5vLAw88wBNPPAHAz372s8C+438/77zzDldffTUul4uLLrqI7373u9jtdnbu3Mlvf/tbbrvttsCxf/7zn7ntttuIjIzk6quvJjk5mc8++4zHHnuMNWvWsHHjxm6vW4Brr72WLVu2cMkll2A0Glm5ciW33HILRqORXbt28eKLL7J06VLOO+883n77bR5++GGsVis///nPu5Tz/PPPc8stt2A2m7n88svJysri0KFD/OUvf2HNmjV88cUXZGdn97uuhAhrmhAibAAaoD3wwAOBr7vuuktbtGiRpiiKtnTpUq2lpaXLOZ9++qkGaNddd52mqqqWn5+vTZw4MbC/o6NDi42N1c4//3xN0zRt4cKFGqCVlJR0KScnJ6fH7b154IEHArGezC9+8QsN0H7wgx90i/n4c//7v/9bA7QnnniiWxltbW1aR0dH4PFf//pXDdD++te/njQ2q9Wqbd++vdv+kpISDdBuuOGGLttvuOEGDdASEhK00tLSwHafz6ddccUVGqA9/PDDXc4BtHPOOafHODrLO75Oe7t2p57qRlVVbdKkSRqgvfzyy12Of/XVVzVAmzhxoubz+brVQVRUlLZr164u53z3u9/VAO21117rMYYTddY3oK1Zs6bLvieeeEIDtCVLlnTZPnXqVM1sNmv19fVdthcVFWmKomgLFiw45XU9Ho9mMpk0QCssLDzl8enp6RqgrV+/PrDtnHPO0Xr7V9fb6ygnJ0fLycnp8Zy6ujotOjpaMxqN2meffdZtf3l5eeDn0tJSzWQyaVFRUdr+/fu7HHfbbbdpgHbzzTd32d4Z7+mnn641NTUFthcVFWlGo1GLjY3VcnNztaNHjwb2NTU1aQkJCVpiYqLm8XgC2w8ePKgZjUZt/PjxXY7XNE1bu3atptPptG9/+9s9Pk8hRjLpliBEGHrooYcCX//1X//Fhg0bmDx5Mt/97neJiorq9TxFUVixYgUHDx7k888/B2DlypXY7XZuvvnm4Qq/i4yMDKD37hQnslgs3bZFRkb2uP1UbrnlFmbNmtXv8+68805ycnICj3U6Hb/73e/Q6XQ8//zz/S5vsDZt2sSBAwc488wzue6667rsu+aaa1i0aBEHDx5kw4YN3c79l3/5F6ZPn95lW+drYevWrf2KY8mSJSxdurTLtp/85CeMHz+eTz75hCNHjgS233bbbbhcrm79w5999lk0TePHP/7xKa/X2NiI2+0GICsr65THdx4zlLfbX3zxRVpaWrjtttt6bJXOzMwM/Pzyyy/jdrv5yU9+0q0f9aOPPkpUVBR/+9vfcLlc3cr5zW9+06VFNy8vj0WLFmG327nvvvsCf1fgv2Nx2WWXUV9f36W7ydNPP43H4+HJJ5/scjzAeeedx+WXX86aNWtobW3tdz0IEc4kuRUiDGmaFvhqa2tjy5YtpKSkcN1113Hvvfee9Nwf/vCHGI3GwO3cZ555hsTExC63wIeTdmxqst76PXa6/PLLsdls3HHHHVx55ZU888wz7N27t9epzfpi3rx5Azqvp6QlLy+PrKwsSktLsdvtA45pILZv3w74k8uedG7/+uuvu+3rqRtLZxLY1NTUrzh6qhe9Xs+iRYu6Xf8HP/gBNpuNZ555JrDN4/HwwgsvEBcXx3e+851+XTtcfPHFFwBcfPHFpzz2ZL+3uLg4Zs2ahdPp5MCBA9329/R7S09PB2DOnDnd9nUmr0ePHg1s27x5MwDr1q3jwQcf7PZVW1uLz+ejsLDwlM9FiJFE+twKEeYiIyOZN28eq1atIjMzk9/+9rfceuutvbZkpaSkcNlll/HGG29w++23s2HDBv71X/8Vk8k0zJH7dbaiJSUlnfS4nJwctm7dyoMPPsj777/PqlWrAH8ids899/Av//Iv/b52ampq/wOGXkfbp6amcuTIEZqbm3vsJzlUOvsKp6Wl9bi/c3tPSXdPcXYOKvT5fP2K42T1cnycAFFRUVx//fX87//+L59++innnnsub7/9NtXV1fzsZz/rU5/Y+Ph4TCYTbreb8vJyJkyYcNLjy8vLgW+SwKHQWccntoT2ZDC/t56mqev8vZ1sn8fjCWzrHIT5u9/97qRxtrW1nXS/ECONtNwKMULExsYyceJEvF5voEWoN7fccgsOhyPQOhaqLgkAn376KQBnnHHGKY+dPHkyr732Gg0NDXz55Zf85je/QVVV7rzzTp577rl+X/tUrcW9qamp6XF7dXU10DW5UBSl13mDg9XC23m9zuufqHMmiqGet7c/9QIEBlZ1DiDr/H7LLbf06XoGgyHwuukcUNmb/fv3U1lZidls7tLqqdP5/8319DsayO+n88NCX2abCPXvrbPc5ubmLneDTvzqqUVeiJFMklshRpDO28i9TfnT6YILLiAnJ4ejR49y9tlnB0axD7dPPvmEjRs3YrFYWL58eZ/PMxgMzJkzh5///Of84x//AODNN98M7Nfr9UD/Wx77qqcZJYqLiykvLyc3N7dLa2hcXFygxfB4Pp+PHTt2dNs+kNg7+w1/9tlnPe7v/AAxe/bsPpc5ED3Vi8/nC/T1PbF/84wZM1i4cCGrV69my5YtrF27lrPPPpvJkyf3+ZorVqwA4A9/+AMOh6PX4x555BEAvv/973dpFY6LiwPo8Xf05Zdf9liWXq/v9fczf/58AN57771Txn6y35vdbmfHjh1ERET0qz76ozPW9evXD0n5QoQrSW6FGCHefPNNSkpKMBqNLFiw4KTH6nQ6Vq1axerVq7v0eRwu2rFFHK6++mrAP0DuVF0Evvrqqx6n6upsLTx+GqjOuU7LysqCFXIXTz75ZJfBUaqq8m//9m+oqhqYY7fTvHnzKCsr48MPP+yy/ZFHHulSRqe4uDgURelX7AsXLmTixIls2LAhMHdwp5UrV7J+/XoKCgoCfV+HyieffMI///nPLtv+53/+h6KiIs4999wug/A63Xbbbbjdbq688ko0TevT9F/Hu+666zj33HM5fPgwV111Vbd+wj6fj/vvv59XXnmFtLQ0fvnLX3bZ39nv+vg5YsE/92znB6cTJSQkUFdX12MyfcMNNxAdHc3TTz8dGLR5vOP7vF5//fUYjUb++Mc/cvjw4S7H3XfffbS0tHD99df3azq2/vjJT36C0Wjkrrvu6rFfrdvtlsRXjErS51aIMHT8BP7t7e3s27cv0FL0q1/9qk8rMM2ePXvIW/LA3yrVGa/D4aCyspKNGzdSUlKC2Wzmscce49/+7d9OWc7f/vY3/vznP7No0SLGjx9PXFwcRUVFrFmzBrPZ3GXO0TPPPBOr1coTTzxBQ0NDIHH+6U9/GpRbvAsXLuS0007jmmuuISYmhg8++ICdO3cyZ84c/t//+39djr3nnnv44IMPWLZsGddccw3x8fFs2rSJkpISFi9e3K3VzmazccYZZ7B+/Xquu+46CgoK0Ov1XH755cyYMaPHeBRF4cUXX+SCCy7gmmuuYdmyZUyaNImDBw/y5ptvEhUVxUsvvRS4BT9ULrvsMpYvX87y5cvJz89nx44dvPfee8THx/OnP/2px3Ouvvpq7rrrLioqKkhMTOSKK67o1zX1ej1vvPEGV111Fe+++y55eXlceuml5OTkBJbfLSkpITc3lzVr1nT7EHXjjTfyu9/9jl//+tfs3LmTKVOmUFhYGJiv94033uh2zfPOO49t27Zx0UUXcfbZZ2M2m5k5cyaXXXYZiYmJvPLKK1x11VWce+65XHzxxcyYMYOWlhZ27dpFeXk5JSUlgH/e3CeeeII77riD2bNn853vfIekpCTWrVvH5s2bmTRpEo899li/6qM/Jk2axPPPP89NN93E1KlTueiiiygoKMDj8VBWVsb69etJSkrqcUCbECNaCKYfE0L0gmNziR7/pdfrtdTUVO3yyy/XPvzww27nHD/PbV8Ee57bzi9FUTSbzaZlZ2drF198sfab3/ym29yaJ8Z8/FyuX3zxhXbrrbdqM2bM0OLi4rSIiAht/Pjx2g9/+ENt9+7d3cp47733tPnz52uRkZGBGDpj74zt008/7fH6p5rntqioSPv973+vTZw4UTObzVp6erp25513as3NzT2W99Zbb2lz5szRzGazFh8fr11zzTVaaWlpj/PcapqmHTp0SFu6dKkWHx+vKYrSZa7Vnuqm04EDB7Trr79eS01N1QwGg5aamqpdd9112oEDB7ode7I6ONVcuyc6fj7YNWvWaPPnz9esVqsWExOjXXHFFdrBgwdPev7PfvYzDdDuueeePl2vJ6qqaq+99pq2dOlSLTU1VTMajVpcXJy2YMEC7fe//73W3t7e67l79uzRLr74Ys1ms2mRkZHaOeeco3322We9znPb1tam3XrrrVpGRoam1+t7rKs9e/Zo3//+97X09HTNaDRqycnJ2tlnn639+c9/7nb9Dz74QLvgggu02NhYzWQyaePHj9f+7d/+rcs8tp1ONi9vb68nTTv573vXrl3aDTfcoGVnZ2smk0mLi4vTpk6dqt1yyy3axx9/3Fu1CTFiKZo2iHl2hBBCiFNYvHgxn3/+OQcPHjzljAdCCDFY0udWCCHEkNm6dSvr1q3jW9/6liS2QohhIX1uhRBCBN3TTz9NRUUFf/3rX9HpdDz00EOhDkkIMUZItwQhhBBBl5uby9GjR8nLy+PBBx/ke9/7XqhDEkKMEZLcCiGEEEKIUUP63AohhBBCiFFDklshhBBCCDFqSHIrhBBCCCFGDUluhRBCCCHEqDFmpwJramrC6/UOy7WSkpKoq6sblmuNBVKfwSX1GVxSn8El9RlcUp/BJfUZXMfXp8FgIC4ubkDljNnk1uv14vF4hvw6iqIEricTUwye1GdwSX0Gl9RncEl9BpfUZ3BJfQZXMOtTuiUIIYQQQohRQ5JbIYQQQggxakhyK4QQQgghRg1JboUQQgghxKgxZgeUCSGEEEIMFU3TaGtrk8FmJ2E2mzGbzUEvV5JbIYQQQogga2trw2w2YzKZQh1KWNI0DYfDQXt7O5GRkUEtW7olCCGEEEIEmaZpktiehKIoWK3WIVlzQJJbIYQQQggREp3z2waTJLdCCCGEEGLUkORWCCGEEEKMGpLcCiGEEEKIUUOSWyFEyPg0BadXG9SXTwt+fy0hhBhqFRUV3H333cyePZvc3FzmzZvH/fffT2NjY5/LKC8vJyMjgz179gxhpCNP2E0F1tjYyMsvv8yOHTtwuVykpqZy++23M378eMA/+vD111/n448/pr29nUmTJrFixQrS0tJCHLkQor88PpU3Nu4dVBlXLpyK3iAJrhBi5Dhy5AiXX345eXl5PPXUU2RnZ3Pw4EEeeeQRPvnkE9asWUNcXFyowxyxwqrltq2tjfvuuw+DwcB//ud/8l//9V/84Ac/6DL/2VtvvcV7773HzTffzK9+9SvMZjOPPvoobrc7hJELIYQQQvTNvffei9Fo5JVXXuHMM88kIyODJUuW8Oqrr1JdXc1jjz0GQEZGBu+//36XcydPnsxrr70GwPz58wH41re+RUZGBldddVXguFdffZVzzz2XcePGMWvWLO69997AvoqKCm688UYmTJjAxIkT+fGPf0xdXV1g/+OPP84FF1zAq6++yty5c5kwYQL/8R//gc/n409/+hOnnXYaM2bM4Mknn+wSW3NzM/fccw/Tp09n4sSJXH311ezdO7gGjIEIq+T2rbfeIiEhgdtvv538/HySk5OZOXMmqampgL/V9t133+WKK65g7ty55OTk8JOf/ISmpia2bdsW4uiFEEIIIU6uqamJzz77jBtuuAGLxdJlX3JyMldccQVr1qzp08pm77zzDuBPZL/++mueffZZAF588UXuvfderrvuOtauXctf//pXcnNzAVBVlRtvvBG73c4bb7zBP/7xD8rKyrjtttu6lH3kyBE++eQT/v73v/PUU0/x6quv8oMf/ICqqipWrlzJvffey29/+1u2b98eOOfHP/4x9fX1vPzyy7z33ntMnz6da665hqampsFUWb+FVbeEL7/8kpkzZ/KHP/yBffv2ER8fz4UXXsj5558PQG1tLXa7nRkzZgTOsVqt5OfnU1hYyMKFC7uV6fF48Hg8gceKogReTEMxt9qJOq8xHNcaC6Q+gyv09akRjCuHy+sh9PU5ukh9BpfUZ3ANtD5LSkrQNI0JEyb0uD8/Px+73U5DQ8Mpy0pISAAgLi6O5OTkwPb//u//5pZbbmHFihWBbaeddhoAGzZs4MCBA2zevJmMjAwAnnzySc4991x27NgROE5VVf7whz9gs9koKChgwYIFFBUV8be//Q2dTkd+fj5PPfUUmzZtYvbs2WzdupUdO3awc+fOwJK6999/Px988AHvvPMO119/fa/PQ1GUoL4+wyq5ra2t5aOPPuLSSy9l+fLlFBUV8de//hWDwcDixYux2+0AxMTEdDkvJiYmsO9Eq1evZuXKlYHH48aN47HHHiMpKWmonkaPOlufRXBIfQZXqOrzaHUdtqioQZVhMplISx3ev+dTkddncEl9BpfUZ3D1Vp8OhwOj0dhtu8HgT710Ol2P+/V6fZfj9Hp9t+MMBgNGozFwTOdjgLq6Oqqrq1m8eHGP5RcXF5ORkRFoyQWYOnUqMTExFBcXM3fuXHQ6HdnZ2V36/SYnJ2MwGAKJa+e2xsZGjEYjBw4coL29nWnTpnW5ntPppLy8vMdY4Nh7+HHjpoLx+gyr5FZVVcaPH8/3vvc9wJ+IlpWV8dFHH7F48eIBlbl8+XKWLl0aeNz5iaCurm5Ilnw7kaIopKamUl1d3adbDOLkpD6DK9T16faotLW2Dq4Mt5uqqqogRTQ4oa7P0UbqM7ikPoPrVPXpdru73DnulJmZiaIoHDhwgAsvvLDb/oMHDxIbG0tMTAyKouD1eruU4/F4Ats685jjj+lMeE88r5PP50PTtF73eTweVFVFr9d3OUbTtG7bjr9Oa2srycnJXRoUO8XExPR4vc56qqqq6lafBoNhwA2RYZXcxsXFkZmZ2WVbZmYmW7ZsASA2Nhbwd1g+/tNEc3Nzl08gxzMajb1+WhjOP25N0+TNJIikPoMrlPUZjKuG22tBXp/BJfUZXFKfwdXf+oyPj+fss8/mxRdf5Oabb+7S77a2tpZVq1Zx1VVXoSgKCQkJ1NTUBPYXFxfjcDgCjzvzG1VVA9tsNhtZWVls2LChx+6aEyZMoLKykoqKikC3hMLCQpqbmykoKOj7Ez/B9OnTqaurw2AwkJWV1a9zj6+/YLw+w2pA2cSJE6msrOyyrbKyMpC5JycnExsby+7duwP7Ozo6OHz48KB+IUIIIYQQw+WRRx7B7XZz3XXX8cUXX1BRUcGnn37Kd7/7XVJTU/n5z38OwMKFC3nhhRfYs2cPO3fu5N///d+7NNglJiYSERHBp59+Sl1dHS0tLQDcfffdPPPMMzz33HMUFxeze/dunn/+eQDOOussJk2axE9/+lN2797N119/zZ133smZZ57JzJkzB/yczjrrLObMmcNNN93EunXrKC8vZ9u2bfzmN79h586dg6it/gur5PbSSy/l0KFDrFq1iurqajZs2MDHH3/Mt771LcB/C+CSSy5h1apVfPnll5SVlfE///M/xMXFMXfu3BBHL4QQQghxanl5ebz33ntkZ2dz6623snDhQv7f//t/LFiwgLfffjtwd/r+++8nPT2d5cuXc8cdd3Drrbd2aek1GAz88pe/5OWXX2b27NncdNNNAHznO9/hwQcf5MUXX2TJkiXccMMNlJSUAP5c6q9//SsxMTFcccUVXHvttWRnZ/P0008P6jkpisLf/vY35s+fz913381ZZ53F7bffTkVFBYmJiYMqu9+xaGF2b+Krr77ilVdeobq6muTkZC699NLAbAnwzSIOa9eupaOjg0mTJvGjH/2I9PT0fl2nrq6u1/4fwaQoCmlpaVRVVcltoCCQ+gyuUNen06sFZRGHiDBZxCHU9TnaSH0Gl9RncJ2qPltaWoiOjg5BZCNLZz2dWJ9Go3F09LkFmDNnDnPmzOl1v6IoXHPNNVxzzTXDGJUQQgghhBgJwqpbghBCCCGEEIMhya0QQgghhBg1JLkVQgghhBCjhiS3QgghhBBi1JDkVgghhBBCjBqS3AohhBBCiFFDklshhBBCCDFqSHIrhBBCCCFGjbBbxEEIIYQQYizyaQoenzps1zPqdeiV0bdanSS3QgghhBBhwONTB70keX9cuXAq+gEsX/7CCy/w9NNPU1dXx5QpU/jlL3/JrFmzhiDCgZFuCUIIIYQQok/eeustHnroIe6++27ef/99pkyZwnXXXUd9fX2oQwuQ5FYIIYQQQvTJs88+y/e+9z2uueYaCgoK+M1vfoPFYuHVV18NdWgBktwKIYQQQohTcrvd7Nq1i7POOiuwTafTsWjRIr766qsQRtaVJLdCCCGEEOKUGhsb8fl8JCYmdtmelJREXV1diKLqTpJbIYQQQggxakhyK4QQQgghTik+Ph69Xt9t8FhdXR1JSUkhiqo7SW6FEEIIIcQpmUwmZsyYwYYNGwLbVFVlw4YNzJkzJ4SRdSXz3AohhBBCiD65+eabueuuu5gxYwazZs3i2WefxeFwcM0114Q6tABJboUQQgghwoBRr+PKhVOH9XrQvxXKli1bRmNjI7///e+pq6tj6tSpvPzyy2HVLUGSWyGEEEKIMKBXtAGtGDZwA1t698Ybb+TGG28McizBI31uhRBCCCHEqCHJrRBCCCGEGDUkuRVCCCGEEKOGJLdCCCGEEGLUkORWCCGEEEKMGpLcCiGEEEKIUUOSWyGEEEIIMWpIciuEEEIIIUYNSW6FEEIIIcSoISuUCSHGBJ+q4vGqeFUVNIiMMKIow7kSkBBCnJxPDx7NN2zXMyp69MN3uWEjya0QYlRSNY3tRdXsKKlmf3k9h6ua8KnfLDVpNRvJSIgiJymameNSmD0+jRirOYQRCyHGOo/mY3Xll8N2veXpp6NH3+fjv/jiC55++ml2795NTU0Nzz33HBdddNEQRjgwktwKIUYVn6qyfm85r2/YR1l9S6/Hdbg8HKps5FBlI2t3lqIAk7MSOX/mOM6amoXFZBy+oIUQYgTo6OhgypQpXHvttaxYsSLU4fRKklshxKhRXt/CY29sorS2GfC3zp49NYupWUlMzkokJtKMQadD1TSqmtqoaGjlYGUTXx2u5EhtM/vK69lXXs8zH37N2VNzuGxeAWnxUae8rlGvQ69opzxuKPk0BY9PHfD54fAchBDhbcmSJSxZsiTUYZySJLdCiFFh4/5ynnh7Kw63lyiLiW+fMZFL5+ZjizD1eHxuciy5ybHMmZCJ2aBjZm4KR+qaKa5uotXh5sOvi/jw6yKyEqOZkpVIfJSl12tfuXAqekNo++96fCpvbNw74PPD4TkIIUQwSHIrhBjx/v7ZHv6x3p/YTctJ4udXnEmcrfdktCeREUamZCUyOTOB2uYODhytp7KxjfL6FsrrW8hKjGZGbjLR0i9XCCHCmiS3QogR7e0tBwOJ7RVnTuSGJTPQ6wY+y6GiKKTERpISG4m93cm+snqO1DVTXt/C0foWxqXEMi0nicheWoSFEEKEliS3QogRq7TWzuYDFQD88LwZXLVgclDLj42MYMHkTKZkJ7KrtJaKhlaKa+yU1jaTnxbH1OwkIkyDfxsdbH9ZAOktK4QQfmGV3L7++uusXLmyy7b09HSeeOIJANxuNy+99BKbNm3C4/Ewc+ZMVqxYQWxs7PAHK4QIqeqmNrYcrARg2RkFXHnmpCG7VmxkBGdPzaa+pYOdJbXUNrdTWNlIcbWdSZkJXHx6ARGGgbfkDra/LMDyBVMHdb4QQowWYZXcAmRlZXHfffcFHuuOu7344osvsn37du6++26sVivPPfccjz/+OL/85S9DEaoQIkRcHi+bD1SgahoLJmfxowtOG5YFGRKjrSyZkUONvZ2dJTU0tjnZU1bHHU+/wzWLpnDp3AlDHoMQQoRKe3s7JSUlgcdlZWXs2bOHuLg4MjIyQhhZV2GX3Op0uh5bYjs6Ovjkk0+48847mTZtGgC33347d911F4WFhRQUFAxzpEKIUPnycBVOj5doq5mfLJ2HbhhXGlMUhdQ4GymxkRytb2VnaQ2tDjd/+WgHb20p5PZli5iTEzusMQkhRgejomd5+unDer3+2LlzJ1dffXXg8UMPPQTA1VdfHbjLHg7CLrmtrq7mxz/+MUajkYKCAr73ve+RmJhIcXExPp+P6dOnB47NyMggMTHxpMmtx+PB4/EEHiuKgsViCfw81DqvIct8BofUZ3CFvj41+nvlI3XNlNW1oAALJmZgMugHGX//YwB/nWUnRZOZGEVclJXX1++lrqWDh/72IVmJ0fxgyQzOnJjRx9gGFkO3mAZ7fpj9XYX+9Tm6SH0G11DUp95Hv1YMG24LFiygoqIi6OUqihLU+gyr5HbChAncfvvtpKen09TUxMqVK7n//vt5/PHHsdvtGAwGIiMju5wTExOD3W7vtczVq1d36cc7btw4HnvsMZKSkobqafQoNTV1WK832kl9Bleo6vNodR22qFMvktCpw+nmy8PVAMyakEF2ejIGgwGfMojZEXTefsXQk4tPz+f73zqT//t8J8+/v5Xy+hYefX0DU3JSuOmieSyeMR6drvc37P7WQ08UnTKoMkwmE2mpw/u+2Ffy9x5cUp/B1Vt9OhwOjEZZ6fBUTCYTaWlpgcfBeH2GVXI7a9aswM85OTmBZHfz5s2YTAMbrLF8+XKWLl0aeNz5iaCurg6v1zu4gPtAURRSU1Oprq5G02Q882BJfQZXqOvT7VFpa23t8/GbD1bg8niJi4xgQko0ba2tuD1e3tw08MFY314wtV8x9MTtdtPUUMcF0zL49sKbeHr1OlZ/cYB9R2q4589ryEyM5qoFk1g8PQejvnurTH/roSeaqg2qDLfbTVVV1aBiCLZQvz5HG6nP4DpVfbrd7i53jkXPOt97TqxPg8Ew4IbIsEpuTxQZGUl6ejrV1dXMmDEDr9dLe3t7l9bb5ubmk86WYDQae/3kNJx/3JqmyZtJEEl9Blco67OvV7W3OympsQMwtyAdnU4XOHewkQfjmXfWX5TFzPfPnc7Sufms2XqIf247xNH6Fp54eysvf7ab5fMncuGsPCymru9LQYlhsOeH6d+U/L0Hl9RncEl9Dt7x9ReM+hz4vbxh4HQ6qa6uJjY2lry8PPR6Pbt37w7sr6yspL6+XgaTCTEG7CypASA7KZqEkyyFGy5iIyP4/rnT+eudl3HjeTOJs0VQ3+Lg2Q938MMn1/D82h3U2ttDHaYQQow6YdVy+9JLL3H66aeTmJhIU1MTr7/+OjqdjkWLFmG1WlmyZAkvvfQSNpsNq9XK888/T0FBgSS3QoxytfZ2KhvbUBSYkZsc6nD6xWo2cuWCSVw2bwKf7Crljc0HqGpsY9Xmg7z5RSFnTsrg4tML0DRNBvoIIUQQhFVy29jYyJNPPklrayvR0dFMmjSJRx99lOjoaABuuOEGFEXh8ccfx+v1BhZxEEKMXpqmseNYq21+ahxRFnOIIxoYk0HPRbPHc+GsPL48VMVbWwvZWVLDxv1H2bj/KPG2CCZmJJCVFD2o5YOFEOFDPrSenKoObmXG3oRVcvuzn/3spPtNJhMrVqyQhFaIMaSisZWGVgd6ncLUnPAczd8fOkVhXkE68wrSKa2x8/bWQj7dfYTGNiebD1awo6SGCenxTEiPx2QI3ymBhBAnZzabcTgcWK3WUIcSllRVpbW1tdssWMEQVsmtEEKc6EB5AwAFGQndBmGNdLkpsfzLZfO45pzpPPnWFxyqbMTh9rKrtJb95fVMzEhgYkYCJqMkuUKMNGazmfb2dpqbm6X1theRkZEYDMFPRSW5FUKErYZWB3UtHegUhYL0+FCHM2RirBFMzU5iUmYCZXUt7Cuvp6XDxZ6yOg5WNjA9J5kJafEnnStXCBF+hqJVUpyaJLdCiLB18Ki/1TY7KRqreXS12vZEr9MxLiWW3OQYyutb2HOkjuYOF9uLqjlU2cic8WmkxdtCHaYQQoQ1GbUghAhL7U4PZXXNAEzMTAhxNMPLv7RvDBfNGc/cCWmYjXpaHW4+23OErYWVeLy+UIcohBBhS5JbIURYKqxsQAOSYyKJt4X/vLZDQaco5KfFc9ncCYFuGUXVTby3vYj6lo4QRyeEEOFJklshRNjx+HwUVTUBMGmMtdr2xGjQMyc/jSUzcrGajbQ7PXy8s5TianuoQxNCiLAjya0QIuyU1bbg8alEWUykSx/TgJTYSC6ZM57MxChUTWNLYQVfF1ejytKfQggRIMmtECLsFNf4W23zUmNlCp0TGA16Fk3OYlq2f87fA0cb2HzgKL4hmgxdCCFGGkluhRBhpaXDRX2LAwUYlxwb6nDCkqIoTM9NZsGkTHSKQlldC39cs0VacIUQAkluhRBhprjGDkBavA3LGJj+azBykmNYOMWf4G7aX87mA0clwRVCjHmS3AohwoaqaZQcS27zUuNCG8wIkZkQzcIpmeh1OsrqWvjqcBWaJLhCiDFMklshRNioamzD6fZiNuplIFk/ZCZE87Nl8wE4XNVEYWVjiCMSQojQkeRWCBE2OgeS5SbHotfJ21N/nDExk9PGpQDwdVE1lY2tIY5ICCFCQ/57CCHCgsvjpbKhDfDPkjCS6HQ6nF4Nh0flaHUdDo+K06v1+StYnQgmZSaQlxqLBmzcf5SWDleQShZCiJHDEOoAhBAC4GhDK6qmERtpJjYyItTh9IvXp7J6014UwBYVRVtra78S1uULpgYlDkVROD0/jVaHm7rmDjYdOMoFp42TVnAhxJgi73hCiLBQVtcCQHZSTIgjGdn0Oh0LJmViMuhpanOyq7Q21CEJIcSwkuRWCBFyLo+XmiZ/l4SsxOgQRzPyWc1G5k/MAPyLPEj/WyHEWCLJrRAi5I7W+2/jx0ZGEG01hzqcUSEjIYoJ6fEAfHGwApfHG+KIhBBieEhyK4QIubK6ZgCyk6TVNphm5aUQbTXj8vj4urgm1OEIIcSwkORWCBFSTreXGns7IMltsOl1OuZNSAegpMZO9bGuH0IIMZpJciuECKmjDS1oQJwtgiiLdEkItqQYKxPS/Ku9bTtUhdenhjgiIYQYWpLcCiFC6ptZEqTVdqjMHJeCxWSgzelmT1ldqMMRQoghJcmtECJk2hxuao91SchKlCnAhorRoOf0/DQADh5toNUhizsIIUYvSW6FECGzo7gaDYi2momymEIdzqiWmRhNWpwNVdNkcJkQYlST5FYIETLbDlUA/mmrxNCbNT4VBahoaJXBZUKIUUuSWyFESHh9Kl8XVwOQKcntsIixmgNz324vrkbV+rNIsBBCjAyS3AohQmJvWR0dLg9mo574KEuowxkzpuUkYTLoaW53UVzVFOpwhBAi6CS5FUKExJZCf5eE9PgodIoS4mjGDrPRwLScJAB2l9XJ1GBCiFFHklshxLDTNI0thZWAdEkIhfy0OCLNRpxuL4WVjaEORwghgkqSWyHEsCura6HG3o5RryM1zhbqcMYcvU7HtJxkAPaX1+P2+kIckRBCBI8kt0KIYdfZJWF6bgoGvbwNhUJuSgzRVjNur4+DRxtCHY4QQgSN/FcRQgy7Lw9XATDn2MICYvjpFIUZx1pvD1Q00NzhDHFEQggRHJLcCiGGVZvDzYFjLYWzx0tyG0xeRe3XV2pSJHG2CLw+lTe/OBjq8IUQIigMoQ5ACDG27CipQdU0shKjSYqJDHU4o4jGgdbKfp8VnaKjqQ0+3H6YaxdNJsZqHoLYhBBi+EjLrRBiWG0v8ndJmD0+NcSRCICoaAMRFh0uj4+3txSGOhwhhBg0SW6FEMNG0zS2H1uVbI50SQgLiqKQnBYBwJpth2hzukMckRBCDI4kt0KIYVNW10J9iwOTQc/U7MRQhyOOiY4xkJUUTYfLw5qth0IdjhBCDErYJrdvvvkm3/nOd3jhhRcC29xuN3/5y1+46aab+P73v8/vf/977HZ7yGIUQvTPV8e6JEzPScJslC7/4UJRFK5cOAWAt7YU0uHyhDgiIYQYuLBMbg8fPsxHH31ETk5Ol+0vvvgiX331FXfffTcPPfQQTU1NPP744yGKUgjRX9uL/F0SZJaE8DN/UiaZCVG0Od28v70o1OEIIcSAhV1y63Q6+eMf/8iPf/xjIiO/GUnd0dHBJ598wg033MC0adPIy8vj9ttv5+DBgxQWyiAIIcKd0+1lT1kdAHNkMFnY0ekUrlgwCYC3txbi9akhjkgIIQYm7O4L/uUvf2HWrFnMmDGDVatWBbYXFxfj8/mYPn16YFtGRgaJiYkUFhZSUFDQY3kejweP55tbbIqiYLFYAj8Ptc5rDMe1xgKpz+AazvrcU1aH16eSEhtJZmL0sWtqBOPKgy0jaDF01qOioGjasMcw2FKWTM/lb5/upr7Fwfp95SyZkRuUqAZK/t6DS+ozuKQ+gyuY9RlWye3GjRspKSnh17/+dbd9drsdg8HQpTUXICYm5qT9blevXs3KlSsDj8eNG8djjz1GUlJS0OLui9RUaakKJqnP4BqO+jy4/gAAi6bnkZ6eDsDR6jpsUVGDKlfRKYMqY7Dn91SGzWbrZwGgGgafoptMpoGfrejIzkznuvPm8D9vbWTNl0V878L5YfGPW/7eg0vqM7ikPoMrGPUZNsltfX09L7zwAr/4xS8G9QZ9ouXLl7N06dLA48436rq6Orxeb9Cu0xtFUUhNTaW6uhqtny05ojupz+AazvrcuKcYgImp0VRV+QeWuT0qba2tgypXU7VBlTHY87uUoSjYbDba2tqgP/Wpaey1Hx1UDFcwGbd74NN4aZpKVVUViwqS+YvRQOHROt7btINZeaH7xy1/78El9RlcUp/BdWJ9GgyGATdEhk1yW1xcTHNzMz//+c8D21RVZf/+/bz//vvce++9eL1e2tvbu7TeNjc3Exsb22u5RqMRo9HY477hfDFqmiYv/iCS+gyuoa7PxlYHZXUtKPhnSjj+WsG46mDLCFYMga4ImjaAMkNfE5qmYYswccGscazZeohVmw9w2riUIMQ1OPL3HlxSn8El9RlcwajPsElup0+fzu9///su255++mnS09NZtmwZiYmJ6PV6du/ezfz58wGorKykvr6+1/62QojwsLOkBoD8tDiiLLK8a7hbNq+Ad7YdZntRNSU1dsalxIY6JCGE6LOwSW4tFgvZ2dldtpnNZqKiogLblyxZwksvvYTNZsNqtfL8889TUFAgya0QYW7HseR25jjpmzYSpMbZWDg5k/X7yln9xUHuXnZGqEMSQog+C5vkti9uuOEGFEXh8ccfx+v1MnPmTFasWBHqsIQQJ6FpWiC5PW1ccoijEX11xZmTWL+vnHV7jvCDc6eTGG0NdUhCCNEnYZ3cPvjgg10em0wmVqxYIQmtECNIRUMrDa0OjHodk7Nkyd2RYkJ6PNNykthzpI41Ww9x4/kzQx2SEEL0Sdgt4iCEGF06W22nZMuSuyPNFfP9izq8t71IluQVQowYktwKIYbUN10SQj/qXvTP6RPSyEyIosPl4YOvi0MdjhBC9Ikkt0KIIeNTVXaX1gIwU/rbjjg6RWH5mRMBeHtLIT5VluQVQoQ/SW6FEEPmcFUT7S4PkRFGxqfGhTocMQDnTs8lNtJMXUsHmw9UhDocIYQ4JUluhRBDZtexVtsZOcnodfJ2MxKZDHoumj0egDXbDoU4GiGEODX5byOEGDKB5DZXuiSMZBfPyUevU9hbVkdRVVOowxFCiJOS5FYIMSS8PpV95XUATM+R5HYkS4iysHByFiCtt0KI8CfJrRBiSByqbMTl8RFtNZOdHBPqcMQgXTZvAgDr9hyhud0Z4miEEKJ3ktwKIQbEpyk4vVqvX9s757fNSsLto8djtBA/B9F3kzISmJAWh8enyrRgQoiwJjOqCyEGxONTeWPj3l73f7Kr1H+c19vrccsXTB2K0MQQUBSFy+YV8Ie3tvDOl4e54sxJGPTSPiKECD8Dfmd66KGH2L17d6/79+zZw0MPPTTQ4oUQI5hPValv6QAgJTYyxNGIYDlrShaxkWYaWh1sPnA01OEIIUSPBpzc7tu3j+bm5l73t7S0sG/fvoEWL4QYwRpbnfhUDbNRT7TVHOpwRJAYDXounp0PyMAyIUT4GrJ7StXV1VgslqEqXggRxmrs7QAkx0SiKEqIoxHBdPGc8eh1CvvK6zlc1RjqcIQQopt+9bn97LPPWLduXeDxqlWr+Pjjj7sd19HRwZEjR5g1a9bgIxRCjDi1zf7kVrokjD7xURYWTcli3Z4y/rntED+7/IxQhySEEF30q+XW7XbT0tJCS0sLAA6HI/C486u1tRWDwcAFF1zArbfeOiRBCyHC1/H9bZNjrCGORgyFy+cVAPDZnjLsMi2YECLM9Kvl9sILL+TCCy8E4I477uDGG2/k9NNPH5LAhBAjU0OrQ/rbDgEVlY4IB20RHXSYHWiKhoKCoilYXRb2tVeg4d821CZmJFCQHk9hZSPvby/i2rNk1gshRPgYcJ/bp556ShJbIUQ3tfZvuiRIf9vB09BotNk5lF5KeVIVTVHNuExu3EYPLqMbp8lFY5SdR8re4lB6CY02O8Mxg/Blc/2LOry/vQifqg759YQQoq8GPc+tw+Ggrq6O9vZ2NK37G+qUKVMGewkhxAhSY+/skiD9bQer3dxBdVwdbqMHAINXT6QzEpvTil71t034dD7aLB34oj204aQmrh57ZAsp9kQiXUPXLWTRlCye/WgH9S0OthRWsmBS5pBdSwgh+mPAyW1LSwvPP/88W7ZsQT3Jp/bXXnttoJcQQowwPlWloVXmtx0sDY3GKDu1MQ2ggN6nJ6k5ntj26B67HUQ7ovjPOefzb5veoC6mAZfJTVlyJUn2BBJaY4ekq4LRoOfC0/JYuWk/7355WJJbIUTYGHBy+8wzz/DVV19x8cUXM2nSJGw2WzDjEkKMQA0t/v62ESYDURZTqMMZkTQ0quPqsNv8A3dj26JJtieg1/QnPU+v6IhrjyHaYaMmpoFmWwt1sQ24DW7SmpKHJMG9ZM543ti0nx0lNRytbyEzMTro1xBCiP4acHK7c+dOLr30Uq6//vpgxiOEGMFqmjvnt7VKf9sB0NA4mlBNm7UdNEixJxLXFtOvxFSv6klvSibCY6Imtp5mWyteg5fM+jR0WnCnNk+OjWTuhHS2Hqrkve1F3HyhTP8ohAi9Ab/Tmc1mkpKSghmLEGKECwwmk/62/dbZYttmbUdRFTIbUolvG3iXgvi2WLLq09CpCu0RDiria4ZkoNmlp/tXLFu7owSn2xv08oUQor8GnNyeddZZbN26NZixCCFGMP/8tg7A36In+qc+usnfFUGDjIYUohyD7+plc0aSWZ+Ooim0WdupiqsLeoI7a3wqaXE22l0e1u09EtSyhRBiIAac3M6fP5+2tjYeffRRtmzZwuHDhykuLu72JYQYG+pbHKiahkX62/bb5/YD1Mf4l7JNbUoiyhm8MQyRLgvpDSmg4e+HGx3cJXN1isLFc8YD8M62wz3OmiOEEMNpwH1u77///sDPu3bt6vU4mS1BiLGhs0tCcozMb9sfLbp23qr+GoCEljji2mOCfo1ohw1fUxLV8XU0xDRhcUcQ5Qxe6/r5M8fx8md7KK6xc7CigUmZiUErWwgh+mvAye1tt90WzDiEECNcYDBZrCy521c+fHwRuQ+35iXSYSGpOX7IrhXXHoPL6KYpqpnKhBrGVWdh8hmDUna01czZU7NYu7OUd748LMmtECKkBpzcLl68OIhhCCFGMq9PpaGzv60MJuuzXZZimg3tROstpDSmDPnSuSn2RJwmJw6zi4rEanJqMtEF6ZqXnj6BtTtLWb+vnBUXnEZMZERQyhVCiP4K7rwwQogxqaFV+tt6FRWPotHiaMOjaHgV9aRfR411HI6oAOC29PMwqINeMPKUFBQyGlLR+3Q4TS5qY+sD+wyKHqdXG/BXVnIcE9Lj8fpU3t1ePOByfJp0aRFCDM6A303/9Kc/nfIYRVGk+4IQY4D0t9U40FoJKJhMJtxuN5xkVgKfolKcWgZAfGsMM23ZvM2BYYnU6DOS3phCeVIVTVHNRDlsRLoseH0+Vm/aN6iyLzhtPIcqG3lz8wG8Ph+6AbwWrlw4Fb1hLL6GhBDBMuDkdu/evd22qaqK3W5HVVWio6Mxm82DCk4IMTJIf9v+qY9pwGvwYvQaSGpOGPbr25yRxLZFY7e1UBVfQ151dlDKXTA5i798uJ12l4eqxjYyEqKCUq4QQvTHgJPbp556qsftXq+XtWvX8s4773DfffcNODAhxMjgU6W/bX84jE4abc2Af9qvYK8a1lfJ9kTaIjrwGLzUxjQEpUyT0UBeaiwHjjZwqLJRklshREgE/V3VYDBw0UUXMXPmTJ577rlgFy+ECDMyv23faWhUx9eBAtEdNmxBnI6rv/SajrTGZACaoprZ314RlHLz0/wzPlQ1tdHqcAelTCGE6I8hazLIyclh//79Q1W8ECJMdPa3TYqxjtH+tn1nj2zBaXKhU3UkN4V+uiyby0psWzQAz1WvQ0UddJlRFhNpcf5FKA5XBXfBCCGE6IshS2537dolfW6FGANqj/W3TZEuCSflU1Tqjq1CltQcj3EYZkfoi2R7Anqfnkq3nULz0aCUOSHd33pbXG3H6xt8wiyEEP0x4HfXlStX9ri9vb2d/fv3U1JSwrJlywYcmBAi/PlUlfrO/raxktyeTENUEz69D5PHSFxb8FchGyi9pifZnkBVQi37LKVku5OxaoObozYt3kak2Ui7y0NZXQt5qbHBCVYIIfpgwMnt//3f//W4PTIykpSUFG6++WbOO++8AQcmhAh/Dcf620YYpb/tyXj0Xhqj7AAkNScM+WIN/RXTEUVMpp4Djip2WA+zoH3aoMrTKQr5aXHsLK3lcFWjJLdCiGE14OT2tddeC2YcQogRqPa4KcCkv23v6mIa0HQaFlcEUY7wa+FWULgh9Wz+o/g1Kkz1VLsaSfUObingvNQ4dh+po6HVQWOrg/goS5CiFUKIk5MVyoQQA1Zj7wBkCrCTcRpdNFtbAf/yt+HWatspOyKBfFcmADuthwc9uCzCZCAr0T9Y7XBV06DjE0KIvhr0iIZ9+/axfft26urqAEhKSmL27NlMmTKl32V9+OGHfPjhh4GyMjMzueqqq5g1axYAbrebl156iU2bNuHxeJg5cyYrVqwgNjZ2sE9DCNFPbq+PhlZ/cpsi/W17VR/dCApEdURicQ+uL+tQm+LM4YipmhZ9ByWmasa70wdVXn56HEfqmjlS28ysvBSMBn2QIhVCiN4NOLn1er088cQTbNu2DQCr1b8yUUdHB2vWrGHevHnceeedGAx9v0R8fDzf+973SEtLQ9M01q1bx29/+1t++9vfkpWVxYsvvsj27du5++67sVqtPPfcczz++OP88pe/HOjTEEIM0OHKRnyq9Lc9GafRRau1HTT/DAnhzqQZmeLMZYf1MHstJWS7kzEOog0kKdpKtNVMS4eL0trmwCwKQggxlAY1oGzbtm1cdtllLF26NNB62tzczJo1a1izZg0rV67k2muv7XOZp59+epfH3/3ud/nwww85dOgQCQkJfPLJJ9x5551Mm+Yf7HD77bdz1113UVhYSEFBQY9lejwePB5P4LGiKFgslsDPQ63zGtIfMTikPoNrMPW5t6wW8Pe31Q3i9xGM3+RgywjOq+nEUhTqov1Tf0V32DB7T9VqG/qaUIB8VzpF5gpa9Q4OWI4wwzF+wBEoxwaWbS+q5nBVIxPS4vr0WjvxdSl/78Eh9RlcUp/BFcz6HHByu2HDBs455xyuv/76LttjYmK4/vrraW5uZv369f1Kbo+nqiqbN2/G5XJRUFBAcXExPp+P6dOnB47JyMggMTHxpMnt6tWru0xbNm7cOB577DGSkpIGFNdApaamDuv1Rjupz+AaSH3uP/oZANkp8diiBrbMqqJTBnxusMoIRgwoCibTN63XJpOJDoODtmOttmmO1C77e3Kq/X0xqDKUb+rhDKazlq0UmiuYbiggCmvfiuihLqePt7CzpAZ7u4sOn0JK3Mnr2mQykZba9f1Z/t6DS+ozuKQ+gysY9Tng5NZut5Ofn9/r/gkTJrBp06Z+l1tWVsa9996Lx+MhIiKCe+65h8zMTEpLSzEYDERGdu3bFxMTg91u77W85cuXs3Tp0sDjzk8EdXV1eL3efsfXX4qikJqaSnV1NZqmDfn1Rjupz+AaaH16vD4OlPv7xseY9bS1tg7o+pqqDfjcYJURjBjQNNxu/1KzJpMJt9tNVXQNANEdUegcCm5OvhRt5/mDMagytG/qIQ4LybZYao12tvn2MK9jct+K6KUus5NiKKmxs6uogjMnZpy0DLfbTVVVFSB/78Em9RlcUp/BdWJ9GgyGATdEDji5jY+PZ9++fVx44YU97t+3bx/x8f3vX5Wens7vfvc7Ojo6+OKLL3jqqad46KGHBhomRqMRo9HY477hfDFqmiYv/iCS+gyu/tbnwYoG3F4fZqOeKKuZwfwmgvFbHGwZwXklaXTelHcaXbRZ/K22iS1xfbxC6Gvim7MVpjvy+Ni4nVJTDQXObGLUvg0a7CmC/LQ4SmrslNU1MzsvFZPx5APLTnwtyt97cEl9BpfUZ3AFoz4HPBXYOeecw+bNm3nmmWeorKxEVVVUVaWyspJnn32WzZs3s3jx4n6XazAYSE1NJS8vj+9973vk5uby7rvvEhsbi9frpb29vcvxzc3NMluCEMNs95Fj/W1jIqW/WQ8auvS1HZmD7eJ90WS4E0GBPZaSQZWVEGUhNtKMT9UoqbUHJ0AhhOjFgFtur7jiCmpqavj444/5+OOP0en8ebKq+udGPOecc1i+fPmgA1RVFY/HQ15eHnq9nt27dzN//nwAKisrqa+v77W/rRBiaOw+4u+SkBzbt76YY4lL76LF0gZAQmtciKMZnGmOcVQY66k01dPgbCbBN7Blg/0Dy+L58nAVh6uaKEiPlw9FQoghM+DkVqfTcccdd7B06VK+/vrrLvPczpo1i5ycnH6X+corr3DaaaeRmJiI0+lkw4YN7Nu3j3vvvRer1cqSJUt46aWXsNlsWK1Wnn/+eQoKCiS5FWIYeXw+DpTXA5Aiizd0U2ttAAUiHVYiPOZQhzMo0Wokue5USs3V7LaUcE7bzAEvQpGbHMOO4hpaOlzUtXTIwh9CiCHTr+TW7XbzwgsvkJWVxcUXXwxATk5Ot0T23Xff5aOPPuKHP/xhv+a5bW5u5qmnnqKpqQmr1UpOTg733nsvM2bMAOCGG25AURQef/xxvF5vYBEHIcTwOVTZiMvrI9piJto6spO3YPPovDRZ7EBnX9uRb6ojlzJTDXVGOzWGpgEvy2s06MlJjqGouonDlU2S3Aohhky/ktu1a9eybt06/vCHP5z0uNmzZ/P3v/+d7OzsXgec9eS222476X6TycSKFSskoRUihHaX+u/STMlOklvLJ2iMsqMpGhZXRNivRtZXVi2C8a4MDkUcZY+lmJTWuAG33uanxVFU3UR5fQsujxezcdCLZAohRDf9GlC2efNmzjjjDFJSUk56XGpqKvPnz2fjxo2DCk4IEX72HFu8YWr28M4VHe58iord1gxAQsvAE8BwNNmZjUHT02Ro46ixbsDlxEdZiLdFoGoaxdX24AUohBDH6VdyW1ZWxqRJk/p07MSJEzly5MiAghJChCePz8e+Y/1tp+Ykhzia8NIc2YKqUzF7Tdico+uWu1kzUeDMAvwzJ6ioAy4rP83fraGoukmmTxJCDIl+Jbder7fPfWgNBkOXZW+FECPf4comXB4f0VYzmYnRoQ4nbKiaSuOxVtvEjoRR1WrbqcCZiUk10qZ3UGqqHnA52cnRGPQ6Wh1uauztpz5BCCH6qV/JbXx8PGVlZX06tqysbECLOAghwlfn/LbTspPQSX/bgK/bjuAxetCpOuIcsaEOZ0gYMTDZmQ3APkspPnwDK0evZ1yyf0qxw1VNQYtPCCE69Su5nT59Op9//jnNzc0nPa65uZnPP/+c6dOnDyo4IUR46ZzfdnqO9Lc93nuNuwCIa4tBP/C1ccLeeFc6FtWMQ+em2Fw18HKOdU042tCCwy13+IQQwdWvd+Fly5bh8Xh4+OGHOXToUI/HHDp0iIcffhiPx8Pll18elCCFEKHn9ansK+9MbqW/bSe7vo19HRWg+ZPb0UyPnikO/9SP+yOO4B1g622cLYLEaAuahgwsE0IEXb/mYUlJSeGuu+7iySef5Be/+AUpKSlkZ2cTERGB0+mkvLyc6upqzGYzd955J6mpqUMVtxBimB2qasTl8RFlMZGdHIN7YHnNqHPIfBSAaIcNo88I+hAHNMRy3akciCijXe/ksLmCSa7sAZUzPjWe+pYKiqqamJKVKNPKCSGCpt+TDM6ePZvf/e53vPXWW2zfvp1t27YF9sXFxXHeeeexbNmyU04XJoQYWfYc65LwTX9bGenuVNyUmWoAiG+NDW0ww0SHjinOXLZFHuBARBnjXekYB7DYZXZSNNuLq2h3eahqaiM9PmoIohVCjEUDmkE7OTmZm2++GQCHw4HD4cBisWCxWIIanBAifHQOJpueK10SOhWbK1EVjfyIFIyjZNGGvshxp3AgooxWfQeFEUeZ6sztdxkGvY5xKbEUVjRyuKpJklshRNAMeuSDxWIhPj5eElshRjGvT2VfmX9+22myeAMAPlQOmysAuCh+RoijGV4KClMduQAURpTjUgY2KKxzztvKhlY6XDKwTAgRHKN3WK8QImiKqptwerzYIkzkpsSGOpywUG6qxaXzYFFNzIvOC3U4wy7Tk0SMNxKv4qPQXD6gMmKsZpJirGhAcbVMCyaECA5JboUQp7S79Nj8tjkyvy2AhhYYSJbvzMCgjPJRZD1QUJjmHAfAoYijOBX3gMrJT4sDoKjajiorlgkhgkCSWyHEKe0s9Q+akinA/OoNzdgNbeg1HePc6aEOJ2TSPAnEe6PwKSoHIvwL/HgVtV9faUk2TAY9HS4PR5ta0OSzkxBikAY0oEwIMXa4vb5Af9vTxsksKECgr22OOwWzZgxxNKGjoDDNMY7Po3ZRZK6gwdPKgdbKfpcTHa+nvtbHrrJqNDQYhcsXCyGGj7TcCiFO6sDRelxeH3G2CLKTokMdTsg5FBcVRv+0aPnOjBBHE3rJ3jgSPTGoisab9V8NqIz4RBMArS1e6ps7ghmeEGIMkuRWCHFSO0v8/W1n5CbLRPtAsbkKTYFETwwxqi3U4YTc8X1vP7Pvx63v/6wH5gg9kTZ/v+WPdxQHNT4hxNgjya0Q4qR2lPj720qXBFBRKTb7b7uPd43dvrYnSvLGkuKJw4dKfUzjgMrobL39ZGcJPlUNZnhCiDFGklshRK/anW4OVfqTlZmS3FJpbMCpc2NWjWR4ZL7f401z+Ftvm62tuAz9nzkhOtaI3qDQ1OZka2H/++0KIUQnSW6FEL3ac6QOVdNIi7eRHBMZ6nBCrujYQLJxrjT08vbZRbwvmjm2XFCgPrr/rbc6nUJ8gr/19v3tRUGOTggxlsi7sxCiVzuOTQE2M1dabVt07dQa7aBB3hie/utkrkqaB0BLZBtOo6vf58cl+mee2F5UTY29PaixCSHGDkluhRC92in9bQM6+9qmexKIVCNCHE14yolIJKrDP8iuNqah3+ebzXpmjEtBAz6Q1lshxABJciuE6FFTm4OyuhYU/DMljGVefJSaqgEY7xqt038p/V6A4cQvgOTmeNCg3dJBu7n/03qdP8u/lPGHO0rw+mRgmRCi/2QRByFEjzpnSchLjSXaag5xNKFVZqrBo/MR6YsgxRsX6nCGiDagBRi6mobJayKuLYamqGZqYxrIrbWg9GNRhtMnpBNni6CpzckXByvIyhytHyaEEENFWm6FED3qnN92rM+SoKFRdNz0X/1J1MaqxJY4dKqC0+yi1dLWr3MNeh0XzPTPvPDeV4eHIjwhxCgnya0QohtN09jZOZhsjCe3jfoW7IY2dJpCrjst1OGMCAbVQHyrv4W7Nqbx2JK6ffet2eNR8N89KKu1Bz9AIcSoJsmtEKKbqqY26po7MOh0TM0a2/O5drbaZrmTMWvGEEczciS0xqL36fEYPTTZmvt1bkpsJLPz/R8kVm/cPRThCSFGMUluhRDddPa3nZSZQIRp7HbNdyluyk3+7hn5o3Yg2dDQaTqSmuMBqI9uwqf0b3DYxbPHA/D2pr14fL6gxyeEGL0kuRVCdNM5BdhY75JQaqpGVTTivDbifFGhDmfEiW2PxuQx4tP7aIxq6te5cyekkRBloanNweYDFUMUoRBiNJLkVgjRhapp7C71t1aO5fltuw4ky5CBZAOgoJDUnABAQ5Qdr87b53P1Oh0XHpsW7N0vZWCZEKLvJLkVQnRRUm2nxeHGYjIwIT0+1OGETLWhkXa9E6NqIMs9tuf5HYwoRyQRLjOaTqMupn/L8n5rVh46RWH3kVqO1rcMUYRCiNFGklshRBed/W2n5SRh0I/dt4jOVttcdyoG9CGOZuRSUEhpTgTAHtmCy9D3ZXmTYiJZOC0XgPe/lhXLhBB9M3b/cwkhehSYAix37HZJaNc5qDL6l48d70oPcTQjn9VlwdYRCQrUxNX3a2qwq86aAcDHO0txe2VgmRDi1CS5FUIEeHw+9pbVAWN7MFmxqQoUSPbEEaVaQx3OqJBiT0TRoD3CQVtEe5/PWzA1l6QYK60ONxv3lw9hhEKI0UKSWyFEwP7yBlweHzFWMznJMaEOJyR8qJSYqwDIl1bboDH5jIGFHWri6lHp29Rgep2Obx0bWPb+9uIhi08IMXpIciuECNheVA3ArLxUdMrYnB2gwliHS+fBoppI8ySEOpxRJbElDoNPj8fgpTHK3ufzLpw1Hp2isLesjiO1/VsQQggx9khyK4QI+LrY32I5Z3xqiCMJncMR/jlV81zp6OQtMqh0mo5ku/8DQ310Ex69p0/nJURZmFfgb0WXgWVCiFORd24hBABNbU6Kqu0AzBqjya1d30aDoQVFUxjnSgt1OKNSdEcUFmcEmk6jOra+z+d1rlj2ya5SnO6+z5crhBh7wmpdzdWrV7N161YqKiowmUwUFBRw/fXXk57+Tb83t9vNSy+9xKZNm/B4PMycOZMVK1YQGxsbusCFGAW+LvZ3SRifGktsZESIowmNIrO/1TbDk4hFM4c4mtFJQSGtKYni1HLarO20trcR5bSd8rxZ41NJi7NR1dTGZ3uOcNGxZFcIIU4UVi23+/bt41vf+haPPvoov/jFL/D5fDzyyCM4nc7AMS+++CJfffUVd999Nw899BBNTU08/vjjIYxaiNHhm/62Y7PF0oOXIyb/NGgy/dfQMnvNJLTGAlAdV4+qnHpwmU5RWDo3H4C3txaiaX2fTkwIMbaEVXJ77733snjxYrKyssjNzeWOO+6gvr6e4mL/CNmOjg4++eQTbrjhBqZNm0ZeXh633347Bw8epLCwMMTRCzFyqZoWaLmdkz82uyQcMdfgU1SifFaSvLGhDmfUS2yJx+g14DV4qYvu28pl588ch8VkoKyuhZ3HlogWQogThVW3hBN1dHQAYLP5b1kVFxfj8/mYPn164JiMjAwSExMpLCykoKCgWxkejweP55tBC4qiYLFYAj8Ptc5rDMe1xgKpz+DqrMfiajvNHS4sJgOTsxL7WL8awfgthEcZWqBLQr4rHd2ASjzxnP6WEQ41MXwx6DQ9KU3JHE2qpDHKTrTDhsXd9b35xO82i5nzZo7jn9sOsWbrIWbljc0PYgMl75/BJfUZXMGsz7BNblVV5YUXXmDixIlkZ2cDYLfbMRgMREZGdjk2JiYGu93eYzmrV69m5cqVgcfjxo3jscceIykpachi70lqqrwJB5PUZ3AV1rQBMG9SNtmZmX0652h1HbaoqEFdV9EpIS9D0Sm0Rrtp0Xdg0PRMNeVjMhn7WYiCyWQKPDz+574ayDnBLmO4Y0hQTbQ72mmyNFOVUEtBw3gURUdaWteuMcf/vd90yQL+ue0QWw9V4DNYyEyKHXTMY428fwaX1GdwBaM+wza5fe655ygvL+fhhx8eVDnLly9n6dKlgcednwjq6urweod+xK2iKKSmplJdXS19xIJA6jO4Outz3U5/t56pmXFUVVX16Vy3R6WttXVQ19dULeRlaKrGbt8h0EOOKwW3w4kb56lP7FKIhtvtBvzJXefP/TGQc4JdRihiSGpMoCW1DZfBTaWlGk1TA6/Bnv7ezcCc8Wl8VVTF8+9s4uZvzRp0zGOFvH8Gl9RncJ1YnwaDYcANkWGZ3D733HNs376dhx56iISEbyZRj42Nxev10t7e3qX1trm5udfZEoxGI0Zjz60ww/li1DRNXvxBJPUZPK0OF/vL/VMyzc5L7Ve9BuM3EOoy6j2tVBj9zz/flTGIsjS63pLvb0mhronQxKBXdaQ1JnE0qZqGqCYOd9QwI6pry+2Jf++XzZvAV0VVfLijmOsWT8XS35b2MU7eP4NL6jO4glGfYTWgTNM0nnvuObZu3cr9999PcnJyl/15eXno9Xp2794d2FZZWUl9fX2P/W2FEKe2Zf8RfKpGRnwUqXGnnpJptFnbtAcUSPbEEq1GnvoEEXRRThvR7TZQ4KmKj3D4Tt76O3t8KunxNjpcHj7ZVTo8QQohRoywSm6fe+451q9fz5133onFYsFut2O32wO3uaxWK0uWLOGll15iz549FBcX86c//YmCggJJboUYoPV7SgA4fcLYmwLMh49P7PsAf6utCJ3UpiQMXgM17hb+dHQdTq+Gw6NytLoOh0fF6dUCX24fXDRnAgBvbz1Ex3H7vSg4db5Bffn0Ia4MIcSghFW3hA8//BCABx98sMv222+/ncWLFwNwww03oCgKjz/+OF6vN7CIgxCi/1RNY9PeUgDmThh7c7uWm+po8zmx+sykeRJOfYIYMnpNT0ZDCmUplaxvPoirUiHXnYotKoq21tZunR08Xh8GvY6Khlb+9M+tpMX77zosXzSFt6q/HFQsy9NPR49kuEKMVGGV3L7++uunPMZkMrFixQpJaIUIgqKqJhpaOrCYDEzNTgx1OMNKQ+Ow+SjgX7RBF143ssYkq9vClYmns7J+G9uth0jwRmOj55kwjAY9eamxFFY0UljZEEhuhRBC3s2FGMO2HaoE4LS8VIz6sdVS1ahvocnQhlHRM8499rpkhKtvJ84h0RODV/Gx0bYHD73PalOQHg9AZWMbrQ7XcIUohAhzktwKMYZ1Jrdzx2B/28PHFm04M3oCZm3w87uK4NApOs5sn0KEaqJF38E63ddovczAEGUxk36sxfZgRd9WORNCjH6S3AoxRjW1OSms9CcEc/PHVn9bp+Ki3FQHwIVx009xtBhuEZqZBW3T0GkKZbpq9kUc6fXYiRn+vtLF1U24PEM/d7kQIvxJcivEGLW9yD9R/qSsZOKjLCGOZngVm6vQFI0EbzR5luRTnyCGXYIvmtkd/llw9lpKKTfW9nhcSmwkcbYIfKrGoUppvRVCSHIrxJi17ZA/uV00bVyIIxleKipFZn93jHynTP8VzvLcaUxR/a/PrZH7qTU0dTtGURQmZ/oHQxZWNkrrrRBCklshxiKPz8f24mpg7CW3FcZ6nDo3ZtVIpmdgSzuK4TNPnUqmOwlV0dho24Nd39btmKykaCIjjLg8Pj7dWTr8QQohwookt0KMQbtL6+hweYiNjGBabmqowxlWhRH+6b/yZPqvEUGHwhntkwIzKKy37aJV19H1mONab9dsOYiqylKoQoxl8s4uxBi0pdA/U8AZBenodEqIoxk+9fpmGg0t6DSFfNc3g+i8ijqoLzG09OhZ2D6NGG8kTp2bz6J2dEtwx6XEYjbqqWvu4Ehxe4giFUKEg7BaxEEIMfQ0TWNrob/P6fyJY6vPaWFEOQA57hQiNPOxrRoHWisHWfK0QZ4vTsWkGTmnbSbrbDtpNrTzWdQOFreeRpRqBcCg11GQnsDuI7Xs/bqZ3PGRKMrY+eAmhPiGtNwKMcYUVTdR19KB2ahn5riUUIczbNp0DiqM9QAUOLNCHI0YCLNm4py2mYEW3E+jvqZR3xLYX5ARj9VspNnuoayk4yQlCSFGM0luhRhjthz0t1LOzkvFbBw7N28OmY+CAqmeeKLVyFCHIwaoM8GN9dpw6Tx8FrWDKkMDACaDnkvmTgBg93Y7miZ9b4UYiyS5FWKM+eJYf9ux1CXBrXgoMfunPpNW25HPrJlY3HoaKZ44fIrKRttuikz+1/UlcydgNCo0N3koL5XWWyHGIkluhRhDauztlNTY0SkKp08YO6uSFZkr8SkqMd5Ikr2xoQ5HBIERA4vappPjSkFTYHvkIb6yHsRs1jNxWjQgrbdCjFWS3AoxhnTOkjAlK5EYq/kUR48OPlQOm/3Pe6IrCwUZZDRa6NAxt2MS0zvGgeZfee6R0jfJmWLBYFSwN0rrrRBjkSS3QowhXxw8NgXYGOqSUG6qwalzE6GayHLLUrujjYLCJFcOi9qmY1T1HHLU8Gn7fjImmQDYua1J5r0VYoyR5FaIMaK53cmeI3UAnDlGklsNjUKzf9GGCc5MWbRhFEvzJnBe6xxyIxJxa16OZlWgN0FLs5fiwu6rmgkhRi95pxdijNh8sAJV08hPiyM1zhbqcIZFjaGJZkM7ek1Hnjst1OGIIRalWnlo3JUUWFJQjBpagT+p3flVE16vLLYhxFgxduYBEmKM27jf34K5cLJ/tgCfpuDxqhytrsPt6f8//nC60dvbKmEHjy3akOtORYdeVhMbA4w6PbOiskk1xfDFuGI6inw4O2DT11WcdXq6LOwgxBggya0QY0Crw8Wu0hoAFkzKBMDjU1m1cS+2qCjaWlv7nawuXzA1yFEOVM8rjDmNLmpjm/xZeIORA77eViGT1cVGozRzDBcnT+OTaUdo2gble12syznE/MRxROiMoQ5PCDGEpFuCEGPAlsJKfKpGbnIMGQlRoQ5nWDRENQEQ5bBh8kkyMxZF6Ix8a3oellgFPDoqd/l4v2EPlS57qEMTQgwhSW6FGAM27vffnu/skjDauQ1uWqz+/paJLXEhjkaEkl6vY8FC/ywZWkkETrvG+uZDfNlailfzhTg6IcRQkORWiFGu3enm62J/l4SFkzNDHM3wqI+ygwI2h5UIz9iYz1f0LjXdQvY4K6Bg3huPpkGRo44PG/fR6GkPdXhCiCCT5FaIUW7roUq8PpWsxGiyk2JCHc6Q8+g9NEe2AJAgrbbimFlnxKPXK3TUweTmXCw6I60+Jx837edQR42sZCbEKCLJrRCj3Od7O7skjI1W24ZjrbZWpwWr2xLqcESYsEUZmHqa/8Nd8ZdOltimkGGKRUVje1sZm1uKcKveEEcphAgGSW6FGMVaHS6+LqoG4JypOSGOZuh5dV7sx1ptpa+tONHkGdHYogx0tPvY/1UrC2PyOc3mX5K53NXE2qb9tHgdoQ5TCDFIktwKMYpt3H8Ur6oyLiWWrKToUIcz5Bqim9B0GhEuM1aXtNqKrgwGHfPOSgCgcF8rdTUuJlpTOS9uUqCbwkdN+/iquTS0gQohBkWSWyFGsXV7ygA4Z2p2iCMZel6dl6ZjrbZJLfEoyGT9oru0DAvjC/wr9G1Z34DPq5JgtHFh/FSSjDa8msrvSt5jVe1X0g9XiBFKklshRqn6lg72HKkF4OwxkNx2ttpaXGYindZQhyPC2Kz5cURY9LTYPez+uhnwz4l7TuxE8i3+acNeqt7M/1Z8hk+TVe2EGGkkuRVilFq/rxwNmJKVSHJsZKjDGVKe41ptE5sTpNVWnJTZrGfuwngA9u1sprbaCYBe0TEnKocfZCxEAT5o3Mujpf/E4XOHMFohRH9JcivEKPX5niPAWGu1jSBS+tqKPsgeF8m4/Eg0DTZ9Wofb/U0L7SVJM/j3nEswKQa2t5Zxf/FbMtBMiBFEklshRqGKhlYOVTWhUxQWTRndq5LVe1qx2zpbbaWvrei7uQsTsEUZaG/zsXVDQ5c+tmfE5PHI+OVE6c0cctRwb9FqGjxtIYxWCNFXktwKMQL5NAWnV+v1a+3OUgBm5KYQYTb3eMxoGSqzqm4bmqJhdVqk1Vb0i9GkY+G5iSgKHClqp+RQ19XKCqwp/Gr8lcQbIil3NfIfh9+gxt0SomiFEH1lCHUAQoj+8/hU3ti4t8d9mqbx7peHALCaDb0et3zB1CGLb7i06NpZ13wQgGTpaysGIDElgumzY9n1lZ2tGxqITTBC+jf7syLi+XX+lTxQ/BbV7mbuK1rNo+OvIMkUFbqghRAnJS23Qowytc0dtLs8GPU6MhJG9z/gPZYSNDRsHZFY3BGhDkeMUFNPiyEt04LPp/H5h3W0dri67E8xRfPo+OWkmWKo9bTyi+LV1LlbQxStEOJUJLkVYpQprm4CICc5BoN+9P6JN+pbqDDVo6CQ3Bwf6nDECKbTKSxcknis/62XJ1Ztxad2nQIswWjjl3nLSTFFU+Nu4b7iN6l3Sx9cIcLR6P3PJ8QY5PH6KK/39wkclxIb2mCGkIbGLksRAGfFFGD2mkMckRjpzGY9Z1+QjN6gsLOohufX7ux2TKLJxiPHEtxqdzP3F6+mUQaZCRF2pM+tEKNIeX0LPlUjymIiIWr0Dq6qNNZTZ2xGp+m4Mmke/8vmUIckgkbBq6iBn1scbfgUDfo4BNKg6DkrZvLALh0D6Rcl85d/7uCtLYWkxEZy+byCLockmaL4Zd63+UXRairdzfyi6E0eGb+ceOPonktaiJEkrJLbffv28fbbb1NSUkJTUxP33HMP8+bNC+zXNI3XX3+djz/+mPb2diZNmsSKFStIS0sLYdRChI/iGjsAeSmxKMroHFylorLLUgxAgTOTJOPo7lc89mgcaK089rOCyWTC7XbT1+TW65vGU59sGlQE3zt3Oq98uptnP/iapGgrZ07K7LI/2RTNL8cvP5bg2rm/+E0eHX8FMYbR+4FSiJEkrLoluFwucnNz+dGPftTj/rfeeov33nuPm2++mV/96leYzWYeffTRY298QoxtrQ43dc0dKEDuKO6ScNhcQZvegVk1Msk5+heoEMNv2fyJXDR7PBrwu9VfsLesrtsxKaZoHhm/nASjjaOuJh4qfps2n6t7YUKIYRdWye2sWbO49tpru7TWdtI0jXfffZcrrriCuXPnkpOTw09+8hOamprYtm1bCKIVIrwUVTUCkBpnw2o2hjiaoeFSPOyL8K+8Ns0xDmN43XwSo4SiKNx28WzmTkjD7fXx0KvrOXzs7+t4KaZoHh63jBiDhWJnHY+UrMGpekIQsRDieCPmP0NtbS12u50ZM2YEtlmtVvLz8yksLGThwoU9nufxePB4vnmzURQFi8US+HmodV5jtN4iHm5Sn520LjO6+lQ10CVhQnpc32d77axHRUHR+r+sQzB+C/0pY29ECR6dlxhvJOPcacedO9hIhuKZ9LfM4a7NcI2htzL6U+7gYzDo9fz7VQt54O/r2FNWx31/X8dvblhCbnJsl+MyLfE8lLeMe4tWc6Cjml+VvsN94y7DpAu/f6/y/hlcUp/BFcz6DL+/vl7Y7XYAYmJiumyPiYkJ7OvJ6tWrWblyZeDxuHHjeOyxx0hKShqKMHuVmpo6rNcb7cZ6fR6trsMW9U1f08MV9bg8PiIjTBRkp6PTnfrNQdEp2Gw2gMD3/lB0SpcYBqI/ZdRjp1jv74u5QJlBdFT0sUL8/TIHY7Dnn1jGQMoLdgyhOH+oyuhvmYONwaDT41MMGE0GfvG9Jdz/t7UUVjRw798+45Ebzic7KbbL8dnWNO7LW86DRW+wq+0ovyv/kCfm/RCDTj+oOIbKWH//DDapz+AKRn2OmOR2oJYvX87SpUsDjzs/EdTV1eH1eof8+oqikJqaSnV1dZd1y8XASH36uT0qba3fTCK/p8Sf9OWlxNDR3repiTRVo62tDZvNRltbG/SzPjVV6xLDQPS1DA2NjVE70RTIdicT1W6mjWPnadqg+90Ho99+ZxnfDIAKXQyhOn8oyhhIfQ42Bq/Xx8rPdwceT89OpNbejr3dyb8++x7nTs8h3tZ98Nh8wxTW23az1V7Ez7e+xF3ZF6JXwqf3n7x/BpfUZ3CdWJ8Gg2HADZEjJrmNjY0FoLm5mbi4uMD25uZmcnNzez3PaDRiNPbc/3A4X4yapsmLP4ikPr8ZO97c7qT22ECyvNS4Po4p7yxEC3wfSG0G4zfQlzJKTNU0GFowaHpmdIzv4ZzBRhKsZ6Kc8DgUMYTy/GCXMdD6HHwMx5dgMhpYMiOHz3YfobHNyce7Slk8LYfEaGuXc5K8cZzZNpXNUXtZbz9EhM7I7Rnnht1ta3n/DC6pz+AKRn2Gz0fKU0hOTiY2Npbdu7/5NN3R0cHhw4cpKCg4yZlCjG6Hq/wrkmUkRI3KgWRuxROY+muKIxeLJgs2iOFnNho4d0YuidFWPF6VT3cfodbe3u24NG8CP828AB0KHzXu469VGyTxEWKYhVXLrdPppLq6OvC4traW0tJSbDYbiYmJXHLJJaxatYq0tDSSk5N59dVXiYuLY+7cuSGM+tTqGptweNRTH3gSRr0OvSJvkKIrj89HybGBZPlpo3MJ2p2WItw6D9E+KxNcGaEOR4xhJoOexdOzWb+3nBp7O5/tOcJZU7JJi+/aZ/2MmHxuUdz8b/mnvF2/E6PewNVp3WcBOhmjokfvC2b0QowdYZXcFhUV8dBDDwUev/TSSwCcc8453HHHHSxbtgyXy8Wf//xnOjo6mDRpEv/5n/8ZlAEMQ8nl9rJq495B3Si7cuFU9IbwurUlQq+k2o7HpxJlMZEaN/pWSKoxNFFq9n/gndNegG7k3GwSo5RRr+fsqdls3F9OZWMbn+8tY+GUTDITogPHaGg0udqYbctme1sZb9R8xeH2GiZZ+77g0PL009ETngPShAh3YZXcTp06lddff73X/YqicM0113DNNdcMY1RChCdV0zhY4Z97c2JGQtj16xssLz6+sh4EYLwznURfbGgDEuIYg17HoilZbDpwlKP1rWzYW84ZEzMYd8LiKROsKXg0H7vbK9jZdhSDoiffkhyaoIUYQ6QZRIgRqrKhlTanG5NB3+2f6miwz1JKu96JRTUx3ZEX6nCE6EKv07Fwcha5yTFowBcHKzhwtKHbcVMi05ls9U9t9FXrEUqd9cMcqRBjjyS3QoxQByr8/0jHp8Vh0I+uP+VGfQsHzeUAzO4okJXIRFjSKQrzJ2YwMSMBgK+Lq9lVUtNtANn0yMxAi+3WlhKOupqGPVYhxpLR9R9RiDHicFUjdc0dKAoUpI+ugWRefGyN3A8KZLmTSfckhjokIXqlKAqz8lKYketPXveW1/Ps+9tRVa3LMbNt2eRGJKIBm5uLqHY1hyhiIUY/SW6FGIH+ubUQgOykmFE3/dduSzGtegcRqonZHRNCHY4Qp6QoClOzk5ib7x8wtvbrYjZ+UofP1zXBnRuVS6Y5DhWNDc2HqXMPbhEUIUTPJLkVYoSpbGxl037/LftJx26HjhY1hkYOR1QAMLd9IiZtdCXuYnTLT49n4eRM9DqFspIOPvugBs9x00DqFIX50XmkmWLwofJ5cyG17pYQRizE6CTJrRAjzP9t3I+qaaTF2YiP6r4E6EjlUjxsi/xmdoRU7+hK3MXYkJ0Uw39ccxYGg0J1hZOP36nG5fxmwlq9omNBTD7Jxii8msrn9kNUSRcFIYJKklshRpAaezuf7CoFYFrOwNbcDkcaGl9aD+DQubD5LMxwjA91SEIM2IxxKZx3aSoms46GOjcfrqmmo80b2G9QdJwVWxBowd3QfEgGmQkRRJLcCjGCrNy0H5+qMSM3pdu69iPZYXMFlaYGdJrCme1TMMjk9SKkFLyKOuAvgMRkMxdeloolUk+L3cMHa6posXsCVzAoOhbG5Af64G5qPsxhR22onrAQo4rMryPECFHf0sFHO0oAuGrhFPaXj45/hE36VnZaigCY6RhPrC8qxBEJoXGgtXIQ508DICbOxIWXpfHJe9W0Nnv5cE0VSy5OIT7RDPi7KJwZPZ4vW0spcdbzVesRHD4P0yLTg/AchBi7pOVWiBHi/zbux+tTmZaTxJTs0dEloc3nZHPkXjRFI8OdyHhXRqhDEiKobFEGLrwsjfhEEy6nykf/rKam0hHYrzs2i8JUqz+h3ddRydbWEtyqt7cihRCnIMmtECNAZWMr72/3t25+7+ypIY4mODQ0/qfiI9r1TiJ9EZzeMRGF0bWEsBAAERY951+aSkpaBF6Pxifv11Be2h7YrygK02wZnB6VgwKUOhv45eG3afK0916oEKJXktwKMQK89MlufKrGnPw0ZuSmhDqcoNgTUcKu9jL0mo4F7dNk2i8xqhlNOs69KJnMHCuqD9avraPoYNd5bsdbkjk7tgCjoudQRw33HP4/DnXUhChiIUYu6XMrRJg7WNHAhv3lKMCNS2aEOpygOGqs5YClDIBZHQXYVGtgII4QI51B0XNWzOQe9511pcrfP9zDpj0VfPF5A1n6JM6bM67LMWfHTOG56s+odNn5j6I3uDFtEZckTEdR5M6GEH0hya0QYUzTNJ5fuxOA82aOIzclNrQBBUGjvoWtkQcAuCR+JiXl7Rxg8IN3hAgXXp+Ppz7Z1Ot+zaiRmGyivtbN/316gHX7S0hOM3dJXh++4Er+UvkpX7QU82zl5+xtr+T2zHOx6c3D8RSEGNGkW4IQYeyLgxXsLavDZNBz/eKRn8S16xxssO3Gp6ikeuL5bvKZoQ5JiGGnKAqpGRGkpPkT1dpqF1VHnWjaN8v1WvVmfp5zMT9KPws9OjY1H+bOwn+ws7U8VGELMWJIcitEmHK6vTz74dcAfPuMghE/r60HLxtsu3HpPMR4I5nfNgW9Im9BYmxSFIXktAjSMiMAaKhzU1Hm6JLgKorCZYkz+XX+laSbYmjwtPFAyVs8U7EOh88dqtCFCHvyn0WIMPWPz/dS29xBcoyV7yyaEupwBsWHjw223bToO4hQTSxqm45RekUJQWKymcwc/zLaTQ0eyko6UFWtyzEF1hT+UHAtFydMB+Ddht38pPAVtjQXD3u8QowEktwKEYZKa+y8ueUgALdeNIcI08hNBFVUNkfuo97YjEHTc1bbdKxaRKjDEiJsxCWYyM6zoijQYvdypKgDp7vrPLcROiM/zjiHB8ddToopmgZPG78+8i6PlvyTSpc9NIELEaYkuRUizKiaxlPvfolP1ThzYgbzCkbuakUaGtusB6gyNaDTdCxqmy4rkAnRg5hYIznjrSg6aGv18uirn9Pm7N714LSobP674HtclTwHPTq2tZby04Ov8Fzletq8zhBELkT4keRWiDDzzpeH2X+0AYvJwC3fmh3qcAZMQ+NL60HKzLUomsKCtqkkeWNDHZYQYSsq2si4/Eh0ejh4tIH/fOlTmtq6J6xmnYHrU8/kiYJrmROVgw+VNfU7ueXAS7xWs40O6Y8rxjhJboUII0dqm/nrsam/frBkBkkxI3MQWWdiW2quBg3mtU8izZsQ6rCECHuRNgN5E2zEWM0U19i5569rKa9v6fHYrIh47ht3GQ+Mu5yciAQ6VDf/qNnCj48luS1eR4/nCTHaSXIrRJjweH38bvVm3F4fc8ansvT0/FCHdEpeRe325VZ8bIncT6m5GkWDuR2TSPcm9XisEKI7i1XPL3+whJS4SGrs7fzbX9eyvbwap87X49fkmAx+PfFq/iXnfNLMMbT6nPyjZgsr9r/A00c/pcLZFOqnJMSwGrmjVIQYZV76dDeltc1EW8387PJ5I2A1Io0DrV0XX1AVlYqEGtpM7aBBekMqbQ7vSRZpGPlz9woxFFLjbSy6NJ51H3qpr3Xx4EvrmH9OIuPybSc9b1H0BMpdjRzsqKbJ28EHjXv5oHEvc6NyuTx5Fqla6jA9AyFCR5JbIcLAFwcrWP2Ff3aEO5fOJc5mCXFE/edTfJQnVeEwO1FUhYyGFKKcJ/9HLIToXYRFz3mXprDp03rKSzvY9Gk97a1epp4W0+uHX52ikBORQLY5nkkxGbxfu4ttLSVsay1lW2spz1R9ztnRE1gcO5EkkwzuFKOTJLdD7LE3NqEpClUNLRgNeiLNRmIjI4iNNGM06EMdnggDJTV2fr/6CwAumzuBMyZmhDii/nPrPZQnVeE2utGpOrLq0rC6R16CLkS4MRh0nHV+Etu3NHFgdws7v7TT1upl7sIE9Pre7+4oisIUWzqzrVlUuJpYU7eTz+wHKe9o4O8dDbxS/QUzbFmcFzeZM2LyMOskHRCjh7yah9jmA0fx+HruWxgbGUF6vI30+CgSoy0j4Da0CLbmdie/fG09To+XmeNSWHHhaaEOqd/azR1UJFTj06sYvHqy6tOJ8JhDHZYQo4aiKMyZH48tysBXmxspOthGc5OHs85Pwhp56n/jGeY4bs1czA/TF7JPaWBV8Wb2tFews62cnW3lRFQYmROVw5kx45kTlYNFbxqGZyXE0JHkdghpmsZPls6l1eljy4EjuLw+2hxumtqcONxe7O1O7O1O9pXXYzUbGZcSS15KLDaLvLGMBU6Pl0f/byO1zR2kxdv49yvPRK8bOWM8NU2j0WanJrYeFIhwm8msT8Pok7cVIYbCxKnR2KIMbPq0nvpaF++trmThkiRS03u+S6JTdDh1vuM26DnNlMGUCcuocTXzeeMB1jUWUu9pZWPzYTY2H8ao6JkRlcUZsXmcHjsOq25w/4+Mih6979THCRFM8l9oCCmKwvkzx+FTDHQ4HBy/oKLT7aWqqY3KxlaqGtvocHnYW1bH3rI6MhKimJyZOGKngRKn5vb6eOS1DYEPNvd/5yyiLCOntdODl/+u+JCauHoAotttpDUlo9NGTnIuxEiUkW3louVprP+olqZGD5+8W8OUmTHMmBOLTtf17p9XU3mr8svAY0VRsNlstLW1oWkaBnQsiZ1Io7edo64mjrqaaPO5+KqllK9aSlHKIM4QSZophlRzDPGGSHT9vMO4PP109EgXPDG8JLkNkQiTgXEpsYxLicXrUzna0EpJdRPV9nYqGlqpaGglKdrK5KxE0uNlUM5o4vH6ePT/NrKjpIYIo4GHvns2WUnRoQ6rzxr0LWyJ3Ed7qxM0SLYnEN8Wi4J0qxFiOERFG7lwWRpfbmykqLCNvTuaqTrqYOG5SUTHGvtVlqIoJBhtJBhtzIjMpNnn4KiziaPuJpq9Dhq97TR629nbUYlJ0ZNiiibZGE2SKYpofYR0pxNhSZLbMGDQ68hNjiE3OYaWDhf7y+sprW2mrqWDur1lxFjNJMXYOH9mzoi6bS2663B5eGzVZr46XIXZoOfB757F5KzEUIfVJz587LWUctBcDgokGaOIPBqDxR0R6tCEGHMMBh3zz0kkPcvClg0NNNa7eWdVBdNOi2XKzJiTDjbrjaIoxBqsxNqsTCODsxIn8WL5eqrdzVS7W3BrPspdTZS7/PPmmhUDSaYoko1RJJmiiNHL2BERHiS5DTPRVjNnTMxgem4yBysaOFzVRHOHiz/+cysrN+7jO4smc+70XAx6SXJHmrrmDh5+bT0lNXZMBj33XXsW03KSQx1Wn9QZ7HxlLaRV3wFAtiuZ+wou4w/F60IcmRBjW3ZeJInJZr5YX0/VUSe7vrJTWtTO6WfGQ/rgyo432cizJJFnSULVNBo8bdR4Wqhzt9LgacOleQPdGQBMip4kYxSJpigSDJHEGSOD8AyF6D9JboeBx+vFo2jQpdftyZki9Ewfn8zEnASKKps4Ut1CVVMbT67Zxqvr/Unukhm5GPXSl2kkOFjRwKOvb6CxzUlsZAT3XbOIiRnhvxxth+Jkl7WIclMdABGqiTkdBaR7EonUj5w+wkKMZlabgXMvSuFIcTtfbW6kxe7hk/dqqD/4ORkz9cQnDv5vVacoJJn8LbREgk9TafS0U+dppc7TSr2nDbfmo8Jtp8JtB0BB4eu2MiZZU5lgTWGiNZU0U+9z9AoRLJLcDgM1sJJT35Pb4ylx8NSVl/DZjmJWbT5Ajb2dP/7zS15bv48rzpzEeTNzsZj6189KDA+fqvLa+n28un4fqqaRkxTDA9eeRXJseLdouBQ3ByPKOWyuwKeooEGeO53pjnGYNHmtCRFuFEUhd7yNtEwLu7fbObSvlV3FtewqhoxsC5NnxJCSFrwuRHpF902yC6iaSpO3g1p3Kw3eNho87ThVD8WOOoodddCwG4AovZkJ1lQmWlMosKYywZKMzSBdm0RwSXI7QkSYDFxx5iQuOT2f978q4o3NB6ht7uB/39/O3z7bzbdmjeeyuRNkhoUwUlJj54//3EZhZSMAZ03J4qdL52I1h29y6FRcHDZXcCiiAq/in78n0RPDaY584nyympEQ4c5s1nP6mQlMmhpNwz4dG3aXU1HmoKLMQUKSiakzk0jN0GM0Bbdrm07RBQamgX+qQIfqZnxUKsVttRR2VFPkqKPV52J76xG2tx4JnJtiimZcRCLjLcmMsySSZ0kiXro0iEGQ5HaEiTAa+Pb8iVw8Zzwf7Sjhra2FVDW2sWrzAd784iALJ2ey7IwCJmYkyK2fEGlodfD3z3bz0Y4SNCDSbOT2S+ZwzrScUIfWIw2NRn0rh8xHKTfVoir+OwyxXhtTnbmkeRJkJgQhRhhbtJHrrjiduEkq+3c3U3yojYY6N5+vrUCvV8jItpCZayU904I5Ivjd2xRFwao3Mz92PIujCwDwqD6OOOs52FFDYUc1BztqqHY3U+NuocbdwhctxYHz4wxWxlmSyLMkkhORQJY5nnRzLCZZSU30gbxKRiiz0cDSuRO45PR8th2q5K0thewqrWX9vnLW7ysnOymaJTNyWTwth8Roac0dDkfrW1iz7RBrd5bg8vhbPc+aksVN558Wli3qjZ42DprLKdPX0hTdGtie4I2mwJlFhidRklohRrjoWCNnnJXIzNPjKDnUTsnhdpoaXJSVdFBW0oGiQEKSmaRUM8mpEcQnmrBY9UPSOGLU6cm3ppBvTeFSZgDQ5nVS4qwPdF8odtRT4WqiydtB0wktvDoUUk3RZEbEk2mOI9UUQ4opmhRTNIkmGwZFxqAIP0luh9ir1VtxqSr1UY0ogKIpgIKigV7VodN06FU9OlXnf6zq0NH320U6ReGMggzOKMiguLqJt7ceYt2eI5TVtfDCx7t48eNdTMxMYP7EDM6YkEFmYpS06AZRu9PNFwcr+HxvGV8VVQe2T8xIYMWFpzE5M3ym+dLQsOvbqDY2UmGs5/8OfwbHcm6dppDhSWKCM5ME38iZc1eI0cqg6DkrZvLgylC/SfYiLHqmzIxh7oJ0ykobKStpp6KsA3ujh/paF/W1LvbvagHAbNYRG2+iOuUrrJFG4qMiiI+2kBBtITYqol+z9ehVA06dt/cYTUYmmNKYEJ0W2OZSPZQ5Gihx1FPmaKDC0USZq5F2n4tKdzOV7ma2UtKlHB3+AW+JRhvxhkjijFbiDJHEGyOJMUQSoZiw6szY9GYidKZ+LUZhMOjw9vgcFI421uBWfKCcfExNOKzU5tODRxtcEOHwPPpiRCa377//PmvWrMFut5OTk8NNN91Efn5+qMPq0Ru1X+HWvBDb93N0qg6DT4/ep8egGjD49LxZ9yVJxkhijVb/PITHvoy6b9688lLj+Nnl81hx4Wls3F/OxztL2Vdez4GjDRw42sALH+8i3hbB9NxkpmYnUZAeT05yjMy40A8+VaWkxs6u0lp2ltays6QGr08FQAHmTkjn2/MLmJ6THPIPES7FQ5O+lSZDK436FuoMdjzHLcWpAPHeaCYqOSS3RmOUgWJChA2vz8dTn2waVBn3XXRht22KopCQZCY+0cRpc+Noa/VSW+2krtpJXY2LFrsHl0ulpspJTVVJD6WCTgd6g4Jef+zr2M+KoqDTgU6noNMpKDpYNmMaux2l6A3Hth07RtF9c6yi8zfUKApox+WIGnB+0kzMBj2aTaPF66Da3UK1q4VadwuNnnYaPG00etvxairVdFCttB97osc/aUCngf7Yd52GUTFgwoBJM2DUDBg1PQZNjx7/d4OmC/w8Nz+TPW1l6BU9BkWHQdGhV3QYdQZiIqNwORzoNOWk7/nhsFKbR/Ox+rgV6wYiHJ5HX4y45HbTpk289NJL3HzzzUyYMIF33nmHRx99lCeeeIKYmJhQh9fNJYnTafd52VZ2BE3R0ND83xUNVdHw6XyoOhWfTkVVVFBA1am4dSoYPYFyXq/d2mP5kXozMXoLMQb/V6zB6v85y8KycTksc+ZyuKSFfYcbKCxvorHNybo9ZazbUwaAUa8jIyGKtDgbafFRpMfbSIuzkRpnIybSTIRxxL1EBk3VNFodbuxtTqrtbVQ1tvlXkKtporSmGZe368fWrMRozpqSxeLpOaTHD9+gKy8+HDoXHToXDp3z2HcXrToHLfp2XDpPt3MMmp4kTyzpngR+dNoCPttaii0qijatdYBzeQghRjJblAFblI28Cf6BYF6vSovdg73RQ5aawkf7CvG4NdxuFY9bRdNAVUF1a3j68K7xv0cHl0y9S+UpjjAA/f/f7wOcxxLdQNJr8IDejWLQwKCB3v/9q6IqMGgo+s7tBPYrxx2nNygYDAoGo4JB/00ibFB0lLmbsCpGInRGInQGzDr/z2adAZPO4G8R7UyaFR36Y4+Nig79sbu5Ghoq/pkpNPwzMWmaP6/waSpeTcWj+fCoPryaz/+z5gtsd2oe9rVV4NM01GPnqGiomorabZuGj2PbNQ0VFZ+mUeis5YHcy/pd38NtxGUu//znPznvvPM499xzAbj55pvZvn07n376Kd/+9rdDG1wPbkxfRIdP4+jODzjVVGAaGqqi4tX78Op9+HTewM/Ts1No8zlo8nZg9zpo9nbg1VTafa5jt2rsvRccCcwEbRroGo3o681gN+Gz6/C4VUprmymtbe7xVL1ewRyhwxyhJyJCj8mkw2DQYdDr/H/Eev9jo16H0aDDoFfQ6XT+T+H4P4krSuf3Yx+mOx937sd/jAagaV1qqfNTvBb4OK9gtVrpaG9H047VaOD7N2cev13TNHxeDa+q4vGq/p99Kl6viten4fWqOF0+2js8dDi8OJzeLq0HJzIZdWRm2MjKsJGTZSMh3gyKwn7K2dd43G/52HM5/hl1PtY6AwR8aHjUzjchX+DnwJfqo0N10e5zB37f7T437rjeb/V1svksxPmiiPdGkeiNIdZnC3R7iTXIaGQhRFcGg474RDPxiWaWJU1hf/vRwD5N0/D5/O+nPl/Xn1UfqKp27Au0Y9/HJyZS0dGEz+vf50+ONf/+wM/+78frbASN0BkDLaKB/x/HHaOgBN5TO/8PqMfeXzu3qaqG0+3Fp6pd/wuriv/rhLfS3t7+T5XK+wB34Al0TZDL9PW9J8h67dg/ws7vfNPy3G1bD8ecqM83DU94Ric9z3/BmmgH5Pa1/NAZUcmt1+uluLi4SxKr0+mYPn06hYWFPZ7j8XjweL5pwVIUBYvFgsEwPE9dURRMOo2chMFN2H9z7hlEnNDPqcPnps3npM3notXnpNXrDDxu87lo8zpp97lwqF6cqhu35oM4YLz/fE0DnApahwEcCjj04NShdejApff/0Z/IS+CNwHfsyxXYqfLNnqHUEYQyFDh2a0UBLApYIi3+DwKdDCpEqCgWFSwq2LwokT6wqiiKg3oc1FMHrT2VH2QKYNARabAQiSWwWa/piFBNRGhGIlQTZtWERTNj80VgVSMw6PX+p2nqXqTZZCQ5PhqrxYrVeML9wD4wm4zkJAyuT3E4lBHsGIxGAx7PqT94DGUMoTh/qMrob32Gw/MIhxgAzEYjKdbYLtssZitWX99uK5uNg4/h5gVnsM6+b8DnL06cglkb3LRlLq/GJzuLgGMJuqZ9k4hrGj5Vw6eq/mRd8zd+BLapKhlJMZS01eE71jji82l4jzWSaKqCx+3D61Xx+UBTTxHM8Y77fzpSZGlRGI1D04Wt80OM0WhE07RB5WmKpvXzP1oINTY2cuutt/LII49QUFAQ2P7yyy+zb98+fvWrX3U75/XXX2flypWBxwsXLuTOO+8clniFEEIIIcTwCu4szmFo+fLlvPDCC4Gvm2++uUtL7lBzOBz8/Oc/x+FwDNs1RzOpz+CS+gwuqc/gkvoMLqnP4JL6DK5g1ueI6pYQHR2NTqfDbrd32W6324mNje3xHKPROGRN6H2haRolJSWMoAbysCb1GVxSn8El9RlcUp/BJfUZXFKfwRXM+hxRLbcGg4G8vDz27NkT2KaqKnv27OnSTUEIIYQQQoxNI6rlFmDp0qU89dRT5OXlkZ+fz7vvvovL5WLx4sWhDk0IIYQQQoTYiEtuFyxYQEtLC6+//jp2u53c3Fz+8z//s9duCaFmNBq56qqrQto1YjSR+gwuqc/gkvoMLqnP4JL6DC6pz+AKZn2OqNkShBBCCCGEOJkR1edWCCGEEEKIk5HkVgghhBBCjBqS3AohhBBCiFFDklshhBBCCDFqjLjZEkaa999/nzVr1mC328nJyeGmm24iPz8/1GGFvX379vH2229TUlJCU1MT99xzD/PmzQvs1zSN119/nY8//pj29nYmTZrEihUrSEtLC2HU4Wn16tVs3bqViv/f3v3HRF3/cQB/cndDuKMDEs/zuhIODliEScVWAUHpaJNac4u6WH9YoS3O+svpmiH0w7WRImsy/8jrHHOYzhm6ZQ5lZnAipKaFpEYcISEdN4EIBLn7fL5/ND7fCFA5uO7D9XxsbHfv9/vYa6+9uffrjvfn/fntN4SGhiIxMRGvvvoqDAaDNObWrVuoqqrC6dOnMTY2hocffhiFhYWyPYUkkGpra1FbW4ve3l4AgNFoxIsvvoi0tDQAzOVs1dTUoLq6GqtWrcKaNWsAMKcz8c9bzgOAwWBARUUFAObSFzdu3MDevXtx4cIFjI6OQq/Xo6ioCPHx8QC4Hs2E1WqV3jv/Ljc3F4WFhXM2P3lagh+dPn0aO3fuxNq1a2E2m/HVV1/hzJkzqKioQGRkZKDDk7Xvv/8eV65cgclkwrZt2yYVtzU1NaipqYHVaoVOp8P+/fvR2dmJ8vJyhIaGBjBy+dm6dSsyMjIQHx8Pr9eLffv24dq1aygvL0dYWBgA4LPPPsP58+dhtVqhVqths9mgUCjw4YcfBjh6+Tl79iwUCgWWLFkCURRx6tQpHDlyBGVlZbj//vuZy1loa2vDjh07oFarkZKSIhW3zOndO3DgAJqamlBcXCy1KRQKaLVaAMzlTP3555/YtGkTUlJSkJubC61Wi+vXr2Px4sXQ6/UAuB7NxB9//AFBEKTnnZ2d+Oijj1BSUoKUlJS5m58i+c27774r7t69W3ru9XrFdevWiV9++WXggpqH8vPzxaamJum5IAji2rVrxcOHD0ttQ0NDYkFBgdjQ0BCIEOeVgYEBMT8/X7x06ZIoin/lzmKxiI2NjdKYrq4uMT8/X7xy5UqgwpxX1qxZI9bV1TGXs3Dz5k3xnXfeES9evCiWlJSIdrtdFEXOz5nav3+/uGHDhin7mMuZ27t3r1hcXDxtP9ej2bHb7eL69etFQRDmdH5yz62feDwetLe3IzU1VWpTKBRITU3F1atXAxjZ/OdyudDf349ly5ZJbWq1GgkJCcztXRgeHgYAREREAADa29vh9XonzNX77rsPMTExzOcdCIIAh8OB0dFRJCYmMpezsHv3bqSlpU34uwY4P33R09ODN998E+vXr8enn34Kt9sNgLn0xdmzZ2EymVBeXo7CwkJs3LgRJ06ckPq5HvnO4/Ggvr4eTz/9NEJCQuZ0fnLPrZ+Mf/X+z30iUVFR6O7uDkxQQaK/vx8AJm3tiIyMlPpoaoIgYM+ePUhKSsIDDzwA4K98qlQqaDSaCWOZz+l1dnZi8+bNGBsbQ1hYGDZs2ACj0YiOjg7m0gcOhwNOpxMff/zxpD7Oz5kxm80oKiqCwWBAX18fDh48iC1btmD79u3MpQ9cLheOHz+OvLw8rF69Gr/88gvsdjtUKhVycnK4Hs1Cc3MzhoaGkJOTA2Bu/9ZZ3BL9h9hsNly7dg0ffPBBoEOZ1wwGAz755BMMDw/jzJkzqKysxPvvvx/osOYlt9uNPXv24L333uP+xDkwfmEjACxdulQqdhsbG5lfHwiCgPj4eBQUFAAA4uLi0NnZiePHj0tFGfnm5MmTWL58Oe699945/93cluAnWq0WCoVi0qeN/v5+XpU6S+P5GxgYmNA+MDDA3N6GzWbD+fPnUVJSgoULF0rtUVFR8Hg8GBoamjCe+ZyeSqWCXq+HyWRCQUEBYmNjcfToUebSB+3t7RgYGMCmTZtgsVhgsVjQ2tqKr7/+GhaLBZGRkczpLGg0GhgMBvT09HB++iA6OhpGo3FCm9FolLZ6cD3yTW9vL3744QesWLFCapvL+cni1k9UKhVMJhNaWlqkNkEQ0NLSgsTExABGNv/pdDpERUXhxx9/lNqGh4fR1tbG3E5BFEXYbDY0Nzdjy5Yt0Ol0E/pNJhOUSuWEfHZ3d8PtdjOfd0kQBIyNjTGXPkhNTcW2bdtQVlYm/cTHxyMzM1N6zJz6bmRkRCpsOT9nLikpadJWwu7ubixatAgA1yNfnTx5EpGRkXjkkUektrmcn9yW4EfPPfccKisrYTKZkJCQgKNHj2J0dJT/yrgL42/I41wuFzo6OhAREYGYmBisWrUKhw4dwpIlS6DT6fDFF18gOjoa6enpAYxanmw2GxoaGrBx40aEh4dL/01Qq9UIDQ2FWq3GM888g6qqKkRERECtVuPzzz9HYmIi35ynUF1djeXLlyMmJgYjIyNoaGhAa2srNm/ezFz6IDw8XNr/PW7BggW45557pHbm9O5VVVXhscceQ0xMDPr6+nDgwAEoFApkZmZyfvogLy8PxcXFOHToEJ588km0tbWhrq4O69atAwCEhIRwPZohQRDwzTffIDs7G0qlUmqfy/nJc2797NixYzhy5Aj6+/sRGxuL1157DWazOdBhyd6lS5em3MOYnZ0Nq9UqHZp94sQJDA8PIzk5GW+88caEGxPQX1566aUp24uKiqQPWuMHZzscDng8Hh7sfhu7du1CS0sL+vr6oFarsXTpUrzwwgvS1dLM5eyVlpYiNjZ20k0cmNM7q6iowE8//YTBwUFotVokJyfDYrFIZ7IylzN37tw5VFdXo6enBzqdDnl5eVi5cqXUz/VoZi5evIitW7eioqJiUo7man6yuCUiIiKioME9t0REREQUNFjcEhEREVHQYHFLREREREGDxS0RERERBQ0Wt0REREQUNFjcEhEREVHQYHFLREREREGDxS0RERERBQ3efpeIKMCmuoucUqmEVquF2WzG888/j6SkpEljSktL0draCgB45ZVXsHr16il/f19fH9566y0IggAA2LlzJ3Q6ndRvtVrR29s7qZ2IaD5icUtEJBPZ2dnS45s3b+LXX39Fc3MzvvvuO7z99tvIzMyc9rUNDQ3TFrcOh0MqbImIgh2LWyIimbBarROeC4KAffv24fDhw7Db7Xj88cehUk1+246Li4PT6URHRwdiY2Mn9dfX10Oj0UCj0cDlcvkrfCIiWeCeWyIimVIoFHj55ZehVCoxODiIrq6uKceNf6NbX18/qa+rqwtOpxNPPPHElIUxEVGwYXFLRCRjKpUKarUaAOD1eqccYzabodfrp9x+8O233wIAsrKy/BsoEZFMsLglIpIxl8uFwcFBKJVK6PX6acdlZmbixo0b0gVmACCKIhwOBxYtWoTk5OR/I1wiooBjcUtEJEMjIyO4fPkyduzYAQDIzc2FRqOZdvxTTz0F4P/f1ALA5cuX0dvbi4yMDISEhPg3YCIimeAGLCIimZjqSLDw8HC8/vrrePbZZ2/7Wr1ej4SEBDQ1NaGwsBChoaHSHtzxwpeI6L+AxS0RkUz8/SiwsbExuN1u/Pzzzzh48CAWL16MtLS0274+KysLdrsd586dQ3p6OhobGxEXFwej0ejv0ImIZIPFLRGRTPzzKDAAcDqdKC0tRVlZGbZv3w6DwTDt6zMyMlBVVYX6+noolUoMDQ3xQjIi+s/hnlsiIhmLi4vDypUr4fV6UVtbe9uxWq0Wy5Ytw4ULF3Ds2DEoFApkZGT8S5ESEckDi1siIpkbvyXu9evX7zg2KysLHo8HLS0teOihhxAdHe3v8IiIZIXbEoiIZO73338HAISFhd1xbHp6OhYuXIhbt24hJyfHz5EREckPi1siIhlzOp2oq6sDgDteUAYACxYswK5du/wdFhGRbLG4JSKSicrKSumxx+OB2+3G1atXIYoiHn30UR7pRUR0F1jcEhHJxKlTp6THISEh0Gg0ePDBB5GVlYWcnBwoFLxMgojoTkJEURQDHQQRERER0Vzg1wBEREREFDRY3BIRERFR0GBxS0RERERBg8UtEREREQUNFrdEREREFDRY3BIRERFR0GBxS0RERERBg8UtEREREQUNFrdEREREFDRY3BIRERFR0GBxS0RERERBg8UtEREREQWN/wE8OtZzjpmI2AAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAGQCAYAAABS9YMgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChGElEQVR4nOzdd3xUVdrA8d+dlt57SIEQQi+hC1IEASmKYBcVUVxddC3o6lpWZe0FX+yrrgVUVEQUFawgIEV6CRAIkEAgIaT3Mu2+f4SMxARImWRmkuf7+QTNzL3nPnNm5uaZO885R1FVVUUIIYQQQggXo3F0AEIIIYQQQjSFJLJCCCGEEMIlSSIrhBBCCCFckiSyQgghhBDCJUkiK4QQQgghXJIkskIIIYQQwiVJIiuEEEIIIVySJLJCCCGEEMIlSSIrhBBCCCFckiSyol346KOPUBSFjz76yNGh2Bw9ehRFUbj55psdHYpoAR07dqRjx44OO/7o0aNRFKXWbWvWrEFRFJ588knHBHWao/umPoqiMHr0aEeHIYRoJElkhctRFKXOj5ubGx07dmTmzJkkJyc7OsQWUZP4nvmj0+kICwtj8uTJ/PDDD44OsU2pr789PDwIDQ1l6NCh3HXXXfz+++8tdnxXTqzqS6LF+aWkpHDnnXfSrVs3vL298fLyomvXrsyZM4eDBw/a7ThPPvkkiqKwZs0au7UphKPoHB2AEE31xBNP2P6/qKiILVu2sGjRIr766ivWr19Pv379HBdcC/Lz8+Pee+8FoLKykt27d7Ny5UpWrlzJq6++yt133+3YANuYM/vbbDaTn5/P7t27efvtt3nzzTcZP348ixYtIiwsrNZ+q1atckC0f1q0aBHl5eUOjeFsHN03zui1115j7ty5WK1WRo0axZQpU1AUhe3bt/Pf//6Xd999l1deeUXe30L8hSSywmXV9/XoP/7xD9544w0WLFjgVGUE9uTv71/nsX/44YfccsstPPLII8yePRtPT0/HBNcG1dffAKmpqdx66638/PPPXHLJJWzatAl3d3fb/Z07d27FKOuKiYlx6PHPxdF942wWLVrEPffcQ2BgIF9//TUjR46sdf/vv//O5Zdfzj333ENAQAA33nijgyIVwvlIaYFoU8aPHw9ATk5Og/fZvn07V1xxBaGhobi5uREbG8ucOXM4efJkvdufPHmSO++8k44dO2IwGAgJCWH69Ols37693u1LSkqYO3cuUVFRuLu7061bN1555RWsVmvjH+BZ3HzzzXh5eVFWVsa+fftstymKQmpqKq+//jp9+vTBw8Oj1tfV+fn5PPzww3Tv3h0PDw/8/PwYO3YsP//8c51jGI1GXnvtNfr3709AQACenp507NiRqVOn8uuvv9ba9vfff+fSSy8lKioKNzc3wsPDGTp0KPPmzau13bm+gj5bXXNNfWVxcTFz586lY8eO6PX6WsnmgQMHuPnmm4mOjsZgMBAWFsb1119v169n4+LiWLFiBd26dWPXrl3897//rTfOMzWkD2seN8DatWtrlTbUPMYz66tTUlK45pprCA0NRaPR2L4uPt/X+5s2beLiiy/Gz88PHx8fJkyYwLZt2+psV/M6Onr0aJ37/lpzWxPX2rVrgdplQGe+7s5WI1tVVcXzzz9P79698fT0xNfXlxEjRrBkyZI6257ZB0ePHuXaa68lODgYd3d3Bg4cyPfff3/Wx34umZmZ3HjjjYSGhuLh4cGAAQNYvHhxrW1++uknFEVh1qxZ9bZRVVVFcHAwwcHBVFVVnfN4JSUltiv+ixcvrpPEAowYMYJPP/0UgHvvvZeSkhLbfeer/6+v72vehxdddFGt5+hM5eXlvPDCCwwcOBAfHx+8vb3p3r07d999N6dOnaq1bWPOiWfG+8svvzBixAi8vb0JCQlh1qxZFBYWArBz506mTJlCQEAA3t7eXHbZZfW+BqFx5zHR9sgVWdGm1CQDAwcObND233//PVdccQWqqnLllVcSGxvL9u3befvtt1m+fDnr16+nU6dOtu3T0tK48MILyczMZMyYMVx33XUcP36cL7/8khUrVvDVV18xZcoU2/ZVVVWMHTuWrVu30rdvX2bMmEFhYSFPPfWU7Y+9vaiqClDnD9I999zD77//zuTJk5k0aRJarRaAY8eOMXr0aI4ePcqIESO45JJLKCsr4/vvv+eSSy7hnXfe4bbbbrO1c/PNN/PZZ5/Rq1cvbrrpJjw8PMjMzGT9+vX8+OOPXHzxxQD8+OOPTJ48GV9fXy677DI6dOhAfn4+ycnJvPXWW7VKQprKaDQyZswY8vPzGT9+PL6+vrbn6ccff2T69OmYTCYuvfRS4uPjOXHiBMuWLWPFihX89ttv9O/fv9kxAHh6evLAAw8we/ZsPv30U1tCcjYN6cN+/frxxBNPMG/ePGJjY2sNBvxrzeyRI0cYMmQICQkJzJgxg4qKCnx9fc8b9+bNm3nuuee4+OKLufPOOzl8+DDLli1j3bp1/Pzzz4wYMaIJvVF99fqJJ57go48+4tixY7We6/MN7jIajUyYMIG1a9fSrVs37rzzTsrLy1m6dCnXXHMNu3bt4tlnn62z37Fjxxg8eDBxcXHceOON5Ofn88UXX9g+HFx00UUNjr+goIBhw4bh7+9vS6qWLFnCjBkzyMjI4J///CdQ/YG5c+fOLFmyhAULFuDn51erna+++oq8vDzuv/9+3NzcznnMpUuXUlBQwODBg5kwYcJZt7vkkksYNGgQW7duZenSpWdNos/n3nvv5ZtvvmHt2rXMnDmz3ueloKCAiy66iN27d9O1a1duueUWDAYDR44c4cMPP2T69Om2UprGnhNrfPvtt3z//fdMmTKFO+64g40bN/LRRx9x9OhRnnvuOcaOHcuIESO49dZbSUpK4rvvviM1NZU9e/ag0fx5Da6x5zHRBqlCuBhABdQnnnjC9nPfffepF154oaooijplyhS1uLi41j4ffvihCqgffvih7baSkhI1MDBQ1Wg06rp162pt//zzz6uAOm7cuFq3jx8/XgXUp59+utbtGzZsULVarRoYGKiWlJTYbn/mmWdUQJ0+fbpqsVhst6empqoBAQEqoM6cObNBjzstLU0F1NjY2Dr3vf/++yqgenl5qeXl5aqqqurMmTNVQI2MjFRTU1Pr7DNq1ChVURT1s88+q3V7QUGB2rdvX9Xd3V3NyspSVVVVCwsLVUVR1AEDBqhms7lOW7m5ubb/nz59ugqou3btqrNdTk5OnRjOdhqq7zlTVVWNjY1VAXXs2LFqaWlprfvy8/NVf39/NSgoSN23b1+t+5KSklQvLy81MTGx3uP91bn6+0yHDx9WAVWr1aomk6lWnGfu25g+VNXq1/moUaPOGRugPvzww/VuU1/f/vbbb7b9Xn/99Vr3ffPNNyqgxsfH13qt1ryO0tLS6hyjpr0nnnjivMc+01/7RlVV9dlnn1UBdeLEibX68dSpU7bnfMOGDfX2wZNPPlmrrR9//NHWVkPVtHXVVVfV+17V6/XqkSNHbLe/9NJL9fbjmY//4MGD5z3uLbfcogLqI488ct5tH3nkERVQb731VtttZ3ufnPm4/vo6euKJJ1RA/e233+rd57rrrlMB9Y477qjVF6pafd4sLCy0/d7Yc2JNvFqtVl2zZo3tdovFol588cUqoAYEBKiffPJJrfZq+umbb76pdXtjzmOibZJEVricmj849f306NFD/fTTT+vsU9/J/pNPPlEB9brrrquzvclkUjt27KgC6rFjx1RVVdXjx4+rgBoTE6MajcY6+9xwww0qoC5cuNB2W3x8vKrRaNTDhw/X2b7mj0ljE1k/Pz9bAv/QQw+pEydOtD3+V1991bZ9TQKyYMGCOm3t2rVLBdQrr7yy3mPVJDVvvvmmqqqqWlRUpALqsGHDVKvVes44axLZhvwRb04iW1+ivGDBAhVQ33jjjXrbvPfee1WgTpJbn4YmshUVFbb+P3XqVK04z9y3MX2oqg1LZMPCwtTKysp6tzlXIvvXZPWv+5yZYLRWIhsfH68qiqImJyfX2f5///ufCqizZs2y3Xbm81PfB4OYmBg1KCjorDH8VU1yVd+Hvpr36pkJc25ururu7q726tWr1rYHDhxQAfWiiy5q0HFr3r9vv/32ebd9++236yTo9k5kT506pWo0GjUiIqLOB8W/aso5sSbeG264oc72CxcuVAF1xIgRde5bs2ZNneegsecx0TZJaYFwWerpr9IBW23ov/71L2bMmMG+fft45plnzrn/jh07ABgzZkyd+3Q6HSNHjuTo0aPs3LmTmJgYdu7cCVTXq+n1+jr7jBkzhk8++YSdO3dy0003UVJSwuHDh4mOjq53cMvo0aPr1Iw2RFFRkW0/rVZLYGAgEydO5K677mLSpEl1th88eHCd2zZt2mRrq76BTDU1xjVTmfn6+nLppZfy3Xff0a9fP6644gpGjBjBkCFD6gwsmzFjBsuWLWPIkCFcc801XHTRRQwfPpyoqKhGP9azcXd3p0+fPmd9XLt37673caWkpNgeV48ePewSy5mvw3PVpDamDxuqb9++5/3quj4jRoyo9fVsjdGjR7N27Vp27tzJqFGjmhRTU9S8Vzp06EC3bt3q3F/zHq15D56pX79+tnKZM0VHR9teDw0VExNTq5SoRs179czjBwUFcfXVV7No0SI2btzIsGHDAHj33XcBuOOOOxp1bGexdetWrFYrI0eOxMvL65zbNvaceKb6yr8iIyMBGDBgQJ37OnToAMCJEydstzX2PCbaJklkRZvg5eXF4MGDWbZsGVFRUbz44ovccccdREdHn3WfoqIiACIiIuq9v+b2msEHTd3+r9My1QgPDz/HIzq72NjYsw56aOhx8vLyAPjll1/45ZdfzrpvaWmp7f+/+OILXnjhBRYvXmyrfXR3d+fKK6/k5Zdftj3O6dOn8/333zN//nw++OAD3nnnHaD6j9Nzzz3HuHHjGhz72YSGhtabNNY8rvfee++c+5/5uJorMzMTqP5QERAQcM5tG9qHDdXU19D5XpM1r93W0tj31pn8/f3r3Uen0zV6QGVj+2XOnDksWrSId955h2HDhlFVVcXChQsJDQ1l2rRpDTpmTdvHjx8/77Y129QkfC2hpo9rEsdzac7z9te6Yqh+zs53n8lkst3WlPOYaHtk1gLRpvj7+9O1a1fMZrPtiuvZ1Jwss7Ky6r2/ZtaCmu2auv1fR/jWOFs79lZfwlcT26uvvopaXWJU78+HH35o28fDw4Mnn3ySlJQU0tPT+eSTT7jwwgv55JNPuPLKK2u1P3nyZFavXk1BQQGrVq3ivvvuY9++fUyZMoX9+/fbtqu5Kmg2m+vEWN8fv3M9pjMf1+7du8/5uGbOnHnWthvrt99+A6oT9Zo/tmfTmD5siKYuOnC+1+SZiURTn6PGaOx7q6U0pl8AhgwZQmJiIkuWLKGgoMA2yGvWrFn1XqGsz4UXXghQZ+aP+tRsM3z4cNtt9n5+aj4YZGRknHdbRz9vTTmPibZHElnR5hQUFACc92pMYmIiQL2r25jNZtuqTTUj3Gu2X79+fb1/NGoSmprtfXx8iI+PJyMjgyNHjtTZ3pGr6gwdOhSgyStTRUdHM2PGDH766Sfi4+NZv3697erImby8vBgzZgyvvPIKjzzyCEajsdYKZDVXMOu7GlXfVFDn09zH1Vjl5eXMnz8fqC6paIzz9aFGo8Fisdg13hrr16+v9/1R85qsea1D056jmq/6Gxq/j48PnTt3JiMjg0OHDtW5/6/vrZaSnp5+1mnGoHa/1JgzZw6VlZUsWrSId999F0VR+Nvf/tbgY1555ZX4+/uzZcuWc15V/OWXX9iyZQuBgYG1PvTY+/kZPHgwGo2GdevWUVZWds7YG3tOtLfWfr8L5ySJrGhTvvnmG9LS0tDr9baatbO5/PLLCQwM5LPPPuOPP/6odd+CBQtIS0vj4osvtk0sHxUVxbhx4zh69CgLFiyotf3mzZtZvHgxAQEBtb5SnDVrFlarlYceeqhW4pCWlsZrr73WzEfbdAMHDmTEiBEsW7aMDz74oN5tkpKSyM7OBqprzZKSkupsU1ZWRmlpKTqdDoPBAMC6devq/aNWc7XrzHrQmvrdv5YCrFq1is8++6zRj2vWrFn4+/szb948tmzZUud+q9Vqtw8QaWlpTJ48mQMHDpCYmMjtt99+zu0b04dQXYPZkK+bm+LQoUO89dZbtW5bvnw5a9euJT4+vtb0W2d7jpKSknj11VfrbT8oKAioTgwb6pZbbkFVVf75z3/WSrByc3N56qmnbNu0JIvFctb3qk6n44Ybbqizz/XXX4+fnx8vvvgia9euZdy4ccTFxTX4mL6+vrYPQ9dffz0bNmyos83GjRu5/vrrAfi///s/fHx8bPcNHDgQjUbD4sWLa63klp+fz4MPPljvMc/1/ISEhHDttddy8uRJHnjggTofeEpLS20lBU05J9pTY89jom2SGlnhss4s7i8rK2P//v22q33PPvvseesNvb29+eCDD7jqqqsYNWoUV111FTExMWzfvp2ff/6Z8PBwW31njf/+978MHz6cf/7zn/z8888MHDjQNmeiRqPhww8/rPVH5v777+ebb77hq6++on///kyYMME2N+XIkSP59ttv7dchjbR48WLGjBnDrbfeymuvvcaQIUPw9/fnxIkT7Nmzh71797Jp0yZCQ0PJyMggMTGR3r1706dPH6KjoykuLub7778nKyuLu+++2/a47777bjIyMhg+fLhtgvTt27ezevVqYmNjufbaa20xzJo1i5deeonnnnuO3bt306NHD1JSUvjhhx+YNm0aX331VaMeU1BQEEuXLmXatGkMHTqUsWPH0rNnTxRF4fjx42zatIm8vDwqKysb3GZhYaHttWY2mykoKGD37t1s2rQJq9XKJZdcwsKFC8876KoxfQgwduxYPv/8cy699FL69++PXq9n5MiR9U6Y31iXXHIJ999/Pz/88AN9+/a1zSPr7u7OBx98UGsg2NSpU+nSpQufffYZJ06cYMiQIaSnp7N8+XKmTp1a72IFY8eO5csvv2T69OlMmjQJDw8PYmNjz7ki1QMPPMAPP/zA8uXL6du3L5MmTaK8vJwvv/yS7OxsHnzwQdvX8C2lT58+bN68mQEDBjB+/Hjbe7WwsJAXX3yx3kGbnp6ezJw50/bB9HwfaOpzyy23UFhYyIMPPsiIESMYPXo0AwYMsC1R+9tvv6HRaFiwYEGdQVMRERHMmDGDjz/+mH79+jF58mSKi4tZuXIlI0eOrHeA3EUXXYRGo+Hhhx9m7969tqu6jz32GABvvPEGe/fu5b///S9r1qxhwoQJGAwG0tLS+Omnn/j2229tcxo39pxob405j4k2qvUmSBDCPqhn2i2tVquGh4erl112mfrzzz/X2edcU9Rs2bJFvfzyy9Xg4GBVr9er0dHR6h133KFmZGTUe/wTJ06od9xxhxoTE6Pq9Xo1KChInTp1qrply5Z6ty8qKlLvu+8+NTIyUnVzc1O7du2qvvzyy+qRI0eaNP3W+aaDqnGuaZNqFBcXq88884zav39/1cvLS3V3d1c7duyoTpo0SX3nnXds0+8UFBSo8+bNUy+66CI1MjJSNRgManh4uDpq1Ch18eLFtaaT+uKLL9Rrr71WjY+PV728vFQfHx+1Z8+e6iOPPKJmZ2fXiWHv3r3qxIkTVW9vb9XLy0sdNWqUumbNmnNOv3W+PkhLS1PvvPNONT4+XnVzc1N9fHzUrl27qjfccIP69ddfN6j/zpyntObHzc1NDQkJUYcMGaLedddd6u+//37W/f8aZ2P6UFWrp0G67rrr1NDQUFWj0dSa5qomtnO9ds41/dYTTzyhbty4UR07dqzq4+Ojent7q+PGjTvrazg9PV29+uqr1YCAANXd3V0dOHCg+tVXX511+i2z2aw+/PDDaqdOnVSdTldnCqizPYcVFRXqM888o/bs2VN1d3dXvb291eHDh6uLFy+us+35+uB8U4D9VU2MGRkZ6owZM9SQkBDVzc1NTUxMrHdKvzPVTAMVERFRaw7cxkpOTlbvuOMONSEhQfXw8FA9PDzULl26qHfccUe905LVqKysVB944AG1Q4cOql6vVzt37qw+++yzqslkOus0bh9//LFtntWa1/eZSktL1aefflrt3bu36uHhoXp7e6vdu3dX77nnnlrTzKlq486J5zoXn+31pKrnfr4beh4TbZOiqmfMHSOEEEKIRvnoo4+YNWsWjz32mK0MQgjROiSRFUIIIZrIbDbTv39/kpOTSUtLs+t8yUKI85MaWSGEEKKR1q9fz9q1a1mzZg1JSUncddddksQK4QCSyAohhBCN9OuvvzJv3jwCAwO57bbbePHFFx0dkhDtkpQWCCGEEEIIlyTzyAohhBBCCJckiawQQgghhHBJksgKIYQQQgiXJImsEEIIIYRwSe121oKCgoJ614NvCSEhIeTk5LTKsYT0tyNIn7cu6e/WJ33euqS/W5cz9rdOp7Mtn3zO7VohFqdkNpsxmUwtfhxFUWzHkwkiWp70d+uTPm9d0t+tT/q8dUl/ty5X728pLRBCCCGEEC5JElkhhBBCCOGSJJEVQgghhBAuSRJZIYQQQgjhktrtYC8hhBBCiJaiqiqlpaUuMYCqoqICo9HY6sd1c3PDzc2tWW1IIiuEEEIIYWelpaW4ublhMBgcHcp56fX6VpnJ6UyqqlJRUUFZWRleXl5NbkdKC4QQQggh7ExVVZdIYh1FURQ8PT2bPae/JLJCCCGEEMIhauaxbSpJZIUQQgghhEuSRFYIIYQQQrgkSWSFEEIIIYRLkkRWCCGEUzKZFUrLrc36MZmbV38nREvJyMhg7ty59O/fn44dOzJ48GAef/xx8vPzG9zG8ePH6dChA3v37m3BSJ2bTL8lhBDCKVUZLbzz6Y5mtXH7jP7odXLNRjiXY8eOcdlllxEXF8ebb75JTEwMBw8e5Omnn2b16tV89913BAQEODpMlyDvbiGEEEKIVvToo4+i1+tZvHgxF1xwAR06dGDMmDF8/vnnZGVl8cILLwDQoUMHfvzxx1r7du/enS+++AKAoUOHAjBhwgQ6dOjAlVdeadvu888/56KLLqJTp04kJiby6KOP2u7LyMhg1qxZdOnSha5duzJ79mxycnJs98+fP59x48bx+eefM2jQILp06cLDDz+MxWLhrbfeol+/fvTp04dXX321VmxFRUU88MAD9O7dm65du3LVVVexb98++3beX0giK4QQQgjRSgoKClizZg0zZ87Ew8Oj1n2hoaFMnz6d7777rkErgq1YsQKoTlp37tzJe++9B8DChQt59NFHmTFjBr/++isffvghHTt2BMBqtTJr1iwKCwv56quv+Oyzzzh27Bh///vfa7V97NgxVq9ezaeffsqbb77J559/zk033cTJkydZunQpjz76KC+++CI7dvz5rcntt99Obm4un3zyCT/88AO9e/fmmmuuoaCgoDlddk5SWiCEEEII0UrS0tJQVZUuXbrUe398fDyFhYXk5eWdt62goCAAAgICCA0Ntd3+2muv8be//Y3Zs2fbbuvXrx8A69ev58CBA2zatIkOHToA8MYbbzBixAh27dpl285qtfLKK6/g7e1NQkICw4YN48iRI3z88cdoNBri4+N588032bhxI/3792fLli3s2rWL3bt325adffzxx/npp59YsWIFN9xwQ6P7qiEkkRVCCGFXJrNCldHS7HZcYIl6IZqsIVdcmyI3N5esrCwuvPDCeu8/dOgQkZGRtiQWoGvXrvj5+XHo0CFbIhsdHY23t7dtm+DgYDQaDRrNn1/mh4SEkJubC8D+/fspKyujV69etY5XWVnJsWPH7PXw6pBEVgghhF3ZY5AWwOzrEu0QjRDOpWPHjiiKwqFDh5g4cWKd+w8fPoy/vz9BQUEoilIn4TWZTOds393d3S5x6nS1U0RFUdDr9XVus1qtAJSVlREaGsrSpUvrtOXn52eXmOojNbJCCCGEEK0kMDCQkSNHsnDhQioqKmrdl52dzbJly7j00ktRFIWgoCBOnTpluz81NbXWPjWJZU0yCeDt7U10dDTr16+v9/hdunQhMzOTjIwM220HDx6kqKiIhISEJj+u3r17k5OTg06no1OnTrV+AgMDm9zu+UgiK4QQQgjRip5++mmMRiMzZszgjz/+ICMjg99++43rrruO8PBwHnroIQCGDx/ORx99xN69e9m9ezf/+te/al0VDQ4Oxt3dnd9++42cnByKi4sBmDt3Lu+++y7vv/8+qampJCUl8cEHHwAwYsQIunXrxj/+8Q+SkpLYuXMnd911FxdccAF9+/Zt8mMaMWIEAwYM4JZbbmHt2rUcP36crVu38vzzz7N79+5m9Na5SSIrhBBCCNGK4uLi+OGHH4iJieGOO+5g+PDhPPjggwwbNoxvv/3WNofs448/TmRkJNOmTePOO+/kjjvuqDXTgU6n46mnnuKTTz6hf//+3HLLLQBcffXVPPnkkyxcuJAxY8Ywc+ZM0tLSgOpygA8//BA/Pz+mT5/OtddeS2xsLG+//XazHpOiKHz88ccMHTqUuXPnMmLECObMmUNGRgbBwcHNavucx1Vbqtq4ifLz8/nkk0/YtWsXVVVVhIeHM2fOHDp37gxUF0cvWbKEVatWUVZWRrdu3Zg9ezYRERGNOk5OTs5560zsQVEUIiIiOHnyZIsVdos/SX+3Punz1uUK/V1abrVbjez/PtvZrDZun9Efb8/mXbNxhT5vS9pKfxcXF+Pr6+voMBpEr9e3Sk5Un7P1k16vJyQk5Lz7O9Vgr9LSUv7973/Ts2dPHnnkEXx9fTl58iReXl62bZYvX84PP/zAnXfeSWhoKF988QXPPPMMr7zyCgaDwYHRCyGEEEKI1uRUpQXLly8nKCiIOXPmEB8fT2hoKH379iU8PByovhq7cuVKpk+fzqBBg4iNjeWuu+6ioKCArVu3Ojh6IYQQQgjRmpzqiuy2bdvo27cvr7zyCvv37ycwMJDx48dz8cUXA9Wj+QoLC+nTp49tH09PT+Lj40lJSWH48OF12jSZTLUulyuKYqsvURSlhR/Rn8dojWMJ6W9HkD5vXS7R34rtH3s11qzdm9tXLtHnbYj0d/vTnOfaqRLZ7OxsfvnlFyZPnsy0adM4cuQIH374ITqdjtGjR1NYWAjUnY/Mz8/Pdt9fff3117XmNOvUqRMvvPBCg+ou7KnmqrJoHdLfrU/6vHU5c39XpWfj4+N9/g3PQ6Nomt2OQW8gIiL0/Bs2gDP3eVvk6v1dUVFRZ95VZ+aoWA0GQ6PHOZ3JqRJZq9VK586duf7664HqpDM9PZ1ffvmF0aNHN6nNadOmMWXKFNvvNVl/Tk4OZrO52TGfj6IohIeHk5WV5dJF665C+rv1SZ+3Llfob6PJQklJabPbsarWZrdjNBk5efJks9pwhT5vS9pKfxuNRocNoGosRw72Mhrrf4/qdDrXG+wVEBBAVFRUrduioqLYvHkzAP7+/gAUFRXZpqao+b1jx471tqnX68/6KaM13yCqqrr0G9LVSH+3Punz1uXU/a3a/rFXY83a3V795NR93gZJf7cfzXmenWqwV9euXcnMzKx1W2Zmpi0jDw0Nxd/fn6SkJNv95eXlHD58uFmrUQghhBBCCNfjVIns5MmTOXToEMuWLSMrK4v169ezatUqJkyYAFR/3TBp0iSWLVvGtm3bSE9P54033iAgIIBBgwY5OHohhBBCCNGanKq0ID4+ngceeIDFixfz1VdfERoaysyZMxkxYoRtm6lTp1JVVcU777xDeXk53bp145FHHpE5ZIUQQggh2hmnSmQBBgwYwIABA856v6IoXHPNNVxzzTWtGJUQQgghRMsymRWqjJZWO56bQYte59p1yE6XyAohhBBCtEdVRotdlnduqNtn9Eeva3yV6UcffcTbb79NTk4OPXr04KmnniIxMbEFIjw/p6qRFUIIIYQQzmv58uXMmzePuXPn8uOPP9KjRw9mzJhBbm6uQ+KRRFYIIYQQQjTIe++9x/XXX88111xDQkICzz//PB4eHnz++ecOiUdKC4QQQtjYo0ZPpv4Uom0yGo3s2bOHu+66y3abRqPhwgsvZPv27Q6JSRJZIYQQNvao0Zt9nWNq5YQQLSs/Px+LxUJwcHCt20NCQjhy5IhDYpLSAiGEEEII4ZIkkRVCCCGEEOcVGBiIVqutM7ArJyfHtgpra5NEVgghRItTVZWychMns8s4lFbA4WOFnMgqJa+gAotVimqFcAUGg4E+ffqwfv16221Wq5X169efcw2AliQ1skIIIVpEldFC2vEiUtOLOHqimMqq+geR6fUaosK9ie3gS/f4QDzc5U+TEM7qtttu47777qNPnz4kJiby3nvvUVFR4bCFquRsIYQQwq5O5ZSxdvMJkg7kYjRZbbcrCnh56vHxMqCqKlVGC2XlJowmK2nHi0k7Xsz6rRn07BrMwN6hDnwEQjiGm0HL7TP6t+rxoHHfiEydOpX8/HxefvllcnJy6NmzJ5988onDSgskkRVCCGEXVUYLG7dn8tpHuzCbqxPYAD83Osf6ExftS0SoF1pt7Yo2VVXJyasgPbOEg6kFnMotZ/f+HJKSczDo9Rj01NlHiLZKr1ObtNJW0zWtrGfWrFnMmjXLzrE0jSSyQgghmkVVVQ4fK+K3jccpLTcB0CHcm0F9wugU7YuiKGfdV1EUQoM9CQ32ZEDvUI6fLGXr7iyOZZTw9ie7CA704JKRsYQGe7bWwxFCuBBJZIUQQjSZyWzl1/XpJB/OB8DP142XHx1N8qGcRrelKAoxkT7ERPqQklrAhu0nyc2vYPG3B5kwMpbu8YH2Dl8I4eLk+xohhBBNUlhcxWffHiT5cD6KAoP7hnHT9O4MHxjV7LYT4gL49v3pdI7xw2pV+WHNUbbszkKVZcOEEGeQRFYIIUSjHc8s4dNvDpCbX4Gnu44rJ3bhwkEd7FrfFxTgwWXj4hjQq3rg1/qtmazedEKSWSGEjZQWCCGEaJTU9CK+W5WKxaISEerFlLGd8PEytMixFEVh1NAofLwNrPnjBLv356DXaRg5uEOLHE8I4VokkRVCCNFgB47k8+Oao1hV6Bzjx+QxndC1wijr/r1CMeg1/Px7Otv2nMLTXcfAPmEtflwhhHOTRFYIIdoAk1mhylj/ggONca5v7Q8eyWflb0cB6NY5gAmjOqLVnH1GAnvr1TWYikozv2/NZN2WDDzcdfRMCDrnPlqthtJy6zm3OS8FNNkFzWtDCNEiJJEVQog2oMpo4Z1PdzS7ndnXJdZ7+9ETxfyw9hgAvbsFc/Hw6HNOq9VSBvUNp7zSzPakbH5dn05QgDvhIV5n3d5osvC/z3Y286gK/5g1BDd9M5sRQtidDPYSQghxTpnZZXz7aypWq0rXuACHJbE1Rg7uQOdYPyxWle9XpVFRaXZYLEIIx5IrskIIIc6qsLiKb346jNlsJbaDD5eMinVoEgvVA8AmjIzl0+UHKSqu4oc1R5k2obPD4xKiubRWE6rJ2GrHU/QGLBrX/qpBElkhhBD1MpksfPvLESqrLIQFe3LpxXFOs1ysu5uOy8Z2YvG3Bzl6opitu08xuF+4o8MSollUk5Hj33/QaseLnnILjamZ+eOPP3j77bdJSkri1KlTvP/++1xyySUtGOH5OccZSQghhFNRVZWf1h0jt6ASTw8dl42Lw6DXOjqsWkKCPBk7PAaAjTtOkpNf4eCIhGjbysvL6dGjB88884yjQ7GRK7JCCCHq2LrnFClphWg0CpeOjWuxeWKbq2eXQI4cK+TIsSJ+WnuU66Z2a9WZFIRoT8aMGcOYMWMcHUYtckVWCCFELZmnStmwLROAMRdE0SHc28ERnZ2iKIwdHoObm5bsvAq27s5ydEhCiFYkiawQQgibklIjK387iqpWzxXbp3uIo0M6L29PPWMuiAbgj51ZUmIgRDsiiawQQgigui72P69uoLjUiJ+PwVZ/6gq6dQ6gc4wfVqvK6o3HUc+1soMQos2QRFYIIQQAyYfzWbE6FUWBiaM74mZwrsFd56IoChcNi0anVcjIKuVgqqzEJUR7IImsEEIISstN/LbpBAAX9I8gMsx562LPxtfbYJuCa+3mDIym5i/ZK4RwbpLICiGE4LeNx6kyWuiZEMzgvq47H+vA3mH4+RgoKzexeZcM/BLCnsrKyti7dy979+4FID09nb1795KRkeGwmGT6LSGEaOcOHS3k0NFCNAo89cCFrN+S7uiQmkyn0zB6aBTLf0lle1I2xzKKHR2SEA2m6A3VixS04vEaY/fu3Vx11VW23+fNmwfAVVddxYIFC+wZWoNJIiuEEO1YZZWZ1RuPAzCwTxjdOge5dCILEBfjR2yUL8dOFPP6h9vp1tnf0SEJ0SAWjb5RK221tmHDhjn06mt9pLRACCHasQ3bMikrNxHg58bQxAhHh2MXiqIwclAkACt/SyU7t9zBEQkhWookskII0U5l55Wz50AuABdfGINO13b+JIQEedKtcwAA608v7iCEaHvazllLCCFEg6mqym+bTqCq0DUugOgIH0eHZHfDBkSi0yocPVHM8cwSR4cjhGgBksgKIUQ7lJJaQEZWKTqtwsjBHRwdTovw93Xj6indgOqrsrJIghBtj1MN9lqyZAlLly6tdVtkZKRtJJzRaGTRokVs3LgRk8lE3759mT17Nv7+/q0frBBCuCiTycLaLdUDNgb3C8fHu3Ejl13J7Tf0Y8mKg5zMLiPteDFxMX6ODkkIYUdOlcgCREdH8+9//9v2u0bz50XjhQsXsmPHDubOnYunpyfvv/8+8+fP56mnnnJEqEII4ZK2782mtMyEr7eBAb3DHB1OiwoJ9KRv92C2J2WzeVcWnaJ9URTF0WGJdkJVVXm9nYPVam12G05XWqDRaPD397f9+Pr6AlBeXs7q1auZOXMmvXr1Ii4ujjlz5nDw4EFSUlIcHLUQQriG8goT2/acAuDCQZHo29AAr7MZ2DsMrVbhZHYZ6VIrK1qJm5sbFRUVjg7DaVmtVkpKSvD09GxWO053RTYrK4vbb78dvV5PQkIC119/PcHBwaSmpmKxWOjdu7dt2w4dOhAcHExKSgoJCQn1tmcymTCZTLbfFUXBw8PD9v8treYY8omsdUh/tz7p89Z11v5WbP+c05bdpzCarIQGedA1LvAs+9jjubTX66H57Xh5GujTLYSd+7L5Y2cWsR0aV15Q09XyGm8dbeWc4u7uTmlpKUVFRU7/WAwGA0ajsdWP6+XlhV7fvHlznSqR7dKlC3PmzCEyMpKCggKWLl3K448/zvz58yksLESn0+Hl5VVrHz8/PwoLC8/a5tdff12r7rZTp0688MILhISEtNTDqFd4uOsu+eiKpL9bn/R56/prf1elZ+Pj433OfQqLK9mdnAPA+FHx+PrWnalAo2jO28752KMNe8cy+oI49hzIISOrlPwiM7FR/o1uS17jrUv6WzSEUyWyiYmJtv+PjY21JbabNm3CYGjaYIRp06YxZcoU2+81n4pycnIwm83NC7gBFEUhPDycrKwsGTHbCqS/W5/0ees6W38bTRZKSkrPue8v645isahER/oQEqCvd3uraj1vO+djjzbsHYsC9OwSxJ4Dufy2MZUrJtb/LV59ai6myWu8dcg5pXU5a3/rdLoGXXR0qkT2r7y8vIiMjCQrK4s+ffpgNpspKyurdVW2qKjonLMW6PX6s162bs0nTFVVp3qBtHXS361P+rx11elv1fZPvfIKKth/KA+AEYMiTydnZ9veHs+jvV4L9otlUN8wkg7mciyjhFO5ZYQFN6w2T1WV0/+V13hrkv5uXa7a305d5V9ZWUlWVhb+/v7ExcWh1WpJSkqy3Z+ZmUlubu5Z62OFEEJU27wrC4D4WD/CQ7zOs3Xb5OfjRte46tW+tiedcnA0Qgh7cKorsosWLWLgwIEEBwdTUFDAkiVL0Gg0XHjhhXh6ejJmzBgWLVqEt7c3np6efPDBByQkJEgiK4QQ55BfWMnB1AIAhvaPcHA0jjWwdxgHjhRwMLWACwd1wLcNz6ErRHvgVIlsfn4+r776KiUlJfj6+tKtWzeeeeYZ2xRcM2fORFEU5s+fj9lsti2IIIQQrspkVqgyWhq+g1I9sMtostT61v1c3whu2Z2FqkLnGD9Cg5o31Y2rCw32JCbSh/TMEnbszWb00ChHhySEaAanSmTvvffec95vMBiYPXu2JK9CiDajymjhnU93NGIPBR8f79ODoP7MXmdfl1jv1gVFlSQfzgdgSKKMAgcY0DuU9MwSkg7mMjQxHHc3p/pTKIRoBKeukRVCCNE8W3afQlWhY5Rvu62N/auOUb4EBbhjMllJOpDr6HCEEM0giawQQrRRJaVGkk/PVDBUrsbaKIrCwNNL8+7cl4PF6nojtYUQ1SSRFUKINmrHvmysKkRHeBMZ1vwFCtqSrp0D8HTXUVpu4sjRQkeHI4RoIklkhRCiDaoyWmxfmw/sE+bgaJyPTquhd/dgAHbuy3ZwNEKIppJEVggh2qA9B3IxmqwEBbjTMcrX0eE4pb7dgtEokHGqjOy8ckeHI4RoAklkhRCijbFYrOzcW32VcWDvMNvS3KI2by8DXTpVL5Cwc1+Og6MRQjSFJLJCCNHGHEwtoLTchJennq6dAxwdjlNL7Fm9lvuBI/lUVJodHI0QorEkkRVCiDZEVVW2JVVfjU3sGYJOK6f5c4kI9SI0yAOLRSXpoEzFJYSrkTOcEEK0ISeySsnNr0Cn09CnW7Cjw3F6iqKQ2DMUgD3JuajnWiJNCOF0JJEVQog2ZNfpWs8e8YGyYlUDJcQF4GbQUlxq5FhGiaPDEUI0giSyQgjRRpSUGjl8rBCAfj1CHBuMC9HrNHSPDwSqZ3sQQrgOSWSFEKKN2J2cg6pCVIQ3wYEejg7HpdSUYRw5VkhpucnB0QghGkoSWSGEaAOqjGaSDlYvR5soV2MbLTjQg8hQL1QV9qXkOTocIUQDSSIrhBBtwA+/pVFRacbHS0/nWH9Hh+OS+pxe6SvpgAz6EsJVSCIrhBBtwGffJgPQt3sIGo0sgNAUXTrJoC8hXI0kskII4eKy88pJOpCDRqPQq2uQo8NxWXqdhh5dTg/6SpaVvoRwBZLICiGEi0s6PdI+PtYPTw+9g6Nxbb1rBn2lF8mgLyFcgCSyQgjhwkwmC8mH8wFkAQQ7CA7wIDLs9KAvWelLCKcniawQQriwg6kFGE1WYjr4Eh3p4+hw2oSaDwRJB/OwWmXQlxDOTBJZIYRwYTUT+F81qSuKIoO87KFLpwDc3GoGfRU7OhwhxDlIIiuEEC4qJ6+crJxyNBqFyyd0cXQ4bYZep6GHrPQlhEuQRFYIIVxUzQII8bF+BAXISl72VFNekJpeRGmZ0cHRCCHORhJZIYRwQWaLlQNHqgd59eoqg7zsLSjAgw6nB33tPyQrfQnhrCSRFUIIF5R6rIjKKgveXnpiZJBXi+h5+gPC3pQ8WelLCCcliawQQrigvSnVtZs94gNlJa8WktDJH71OQ2FxFduTshwdjhCiHpLICiGEiykprbKNpu+ZICt5tRSDXktCJ38AvlxxwLHBCCHqJYmsEEK4mN3Jp1BViAzzIsDP3dHhtGk1HxRWrDpMeYWs9CWEs5FEVgghXIiqquzaV/01t1yNbXkdwr3x83WjrMLEitVpjg5HCPEXksgKIYQLOZlTRl5BBTqtQkKnAEeH0+YpikLPLtUfGL74/qCDoxFC/JUkskII4UKSD1VPudWlUwBuBq2Do2kfenYJQlFg4/ZMWelLCCcjiawQQrgIi8XKwdTqRLZHvJQVtBYfbwPDB0YBsOT7FAdHI4Q4kySyQgjhItJOFFfPHetpIFrmjm1VV03uDsCXK1OwWmVOWSGchSSyQgjhIpIPn17Jq1uozB3bysaP7ISfj4GMrFLWb8twdDhCiNMkkRVCCBdQWWUmNb0IgL7dwxwcTfvj7qbj8vHxgJQXCOFMJJEVQggXcCitEItFJSjAnbAQL0eH0y5dc2lXAH5Yk0ZRSZWDoxFCgCSyQgjhEmrKCrrHB6EoUlbgCH27h9A1LoDKKgvf/nLE0eEIIXDiRPabb77h6quv5qOPPrLdZjQa+d///sctt9zCjTfeyMsvv0xhYaHDYhRCiNZQXGrkRFYpAN07Bzo4mvZLURSunlJ9VfYLKS8Qwik4ZSJ7+PBhfvnlF2JjY2vdvnDhQrZv387cuXOZN28eBQUFzJ8/30FRCiFE6ziYWgBAVLg3Pt4GB0fTvl1xSTxarcLOfdkcSitwdDhCtHs6RwfwV5WVlbz++uvcfvvtLFu2zHZ7eXk5q1ev5p577qFXr14AzJkzh/vuu4+UlBQSEhLqbc9kMmEy/bk+tqIoeHh42P6/pdUcQ74KbB3S361P+ryZFNs/Z5VyOpHt2jmQmm5WFFDVv+5nr+fAHu20nVj+7HOF0GAvxgyL4Zffj/HlykM8etcQO8QnziTnlNbl6v3tdIns//73PxITE+nTp0+tRDY1NRWLxULv3r1tt3Xo0IHg4OBzJrJff/01S5cutf3eqVMnXnjhBUJCQlruQdQjPDy8VY/X3kl/tz7p86apSs/Gx8f7rPfnFZRzKrccRYHEXh3w8qy+IuvtXXsfjaI5ZzsNZY922mIs8Odr/I4bh/DL78f4+qcjvPqfy9BqnfLLTZcn55TW5ar97VSJ7IYNG0hLS+O5556rc19hYSE6nQ4vr9qjdf38/M5ZJztt2jSmTJli+73mE0dOTg5ms9k+gZ+DoiiEh4eTlZWFqsok2i1N+rv1SZ83j9FkoaSk9Kz370g6CUBMB1+sFiOlpUa8vb0pLS3lzO62qtZzttNQ9minrcVSc6Gq5jU+oKcvAX7uZJ4q4YvlW7nogphmtS9qk3NK63LW/tbpdA266Og0iWxubi4fffQRjz32GAaD/WrA9Ho9er2+3vta8wlTVdWpXiBtnfR365M+byLV9k+9apak7RoXAKi2cgK13v3s1f/2aKftxPJnn1e/xvU6DdMmdOaDJftY8n0Ko4dG2yFG8VdyTmldrtrfTpPIpqamUlRUxEMPPWS7zWq1kpyczI8//sijjz6K2WymrKys1lXZoqIi/P39HRCxEEK0rNz8CvIKKtFoFOJj/RwdjjjD1ZO78sGSffy49ihFJVX4+bg5OiQh2iWnSWR79+7Nyy+/XOu2t99+m8jISKZOnUpwcDBarZakpCSGDh0KQGZmJrm5uWetjxVCCFdWM1tBpyhf3N2c5nQtgF5dg+geH0jy4Xy+/eUIN07v4eiQhGiXnObM6OHhQUxM7TojNzc3fHx8bLePGTOGRYsW4e3tjaenJx988AEJCQmSyAoh2hxVVW2JbEJcgIOjaRwFUMym827XkHaclaIoXDU5gf+8+gdLVqRIIiuEgzhNItsQM2fORFEU5s+fj9lspm/fvsyePdvRYQkhhN1l51VQWFyFTqvQ2QXLCopSdtqhlcF2aKPlTJ8QzzNvbGbH3mwOHy0kvqO/o0MSot1x6kT2ySefrPW7wWBg9uzZkrwKIdq8g0eqB3nFxfhh0GsdHI2oT0iQJxddEM2v69P5ckUKD9/p3Im3EG2RTH4nhBBORlVVDqYVAq5XVtDeXD25urRt6Q8pWCxWB0cjRPsjiawQQjiZk9lllJQa0es1dIp2vbKC9uTiC2Px93UjK6ec37dmODocIdodSWSFEMLJ1Azyio/1R6+T07QzczNomTYhHoAl36c4OBoh2p8mnyHnzZtHUlLSWe/fu3cv8+bNa2rzQgjRLlmtKimnE9muUlbgEmrKC35aVz2nrBCi9TQ5kd2/fz9FRUVnvb+4uJj9+/c3tXkhhGiXMrJKKasw42bQEtvBx9HhiAbo3S2Ybp0DqKyy8N2vqY4OR4h2pcW+s8rKysLDw6OlmhdCiDappqygS0d/tFopK3AF1XPKdgVgyQopLxCiNTVq+q01a9awdu1a2+/Lli1j1apVdbYrLy/n2LFjJCYmNj9CIYRoJ6xWlUNHCwEpK3A10y+J59k3N7M96RSHjxUSH+vv6JCEaBca9XHfaDRSXFxMcXExABUVFbbfa35KSkrQ6XSMGzeOO+64o0WCFkKItujEyRIqKs24u2mJjpSyAlcSGuTJ6KHRAHwpV2WFaDWNuiI7fvx4xo8fD8Cdd97JrFmzGDhwYIsEJoQQ7U3K6blj4zv6o9E48wKtoj5XT05g1YZ0lq48xIO3D5TSECFaQZNX9nrzzTftGYcQQrRrVqvK4dNlBQmdpKzAFY0bUTOnbBnrt2YyamiUo0MSos1r9hK1FRUV5OTkUFZWhqqqde7v0aNHcw8hhBBtXsapUsorzbhJWYHLcjNouXx8Zz5aup8lKw5KIitEK2hyIltcXMwHH3zA5s2bsVrPvizfF1980dRDCCFEu3Gopqwg1h+tlBXYKGZT8/a3UxwNdfWUrny0dD8/rj1KcakRX29DK0cgRPvS5ET23XffZfv27UycOJFu3brh7e1tz7iEEKLdUNU/Zyvo0snfobE4m6KUnc1sYbBd4mioPt2C6RoXwMHUAr779QgzLu/eqscXor1pciK7e/duJk+ezA033GDPeIQQot3JPFVGWbkJN4OWGCkrcGmKonD15ASeen0zS1akSCIrRAtr8pBKNzc3QkJC7BmLEEK0Sylp1YsgxMX4oZOR7i5v2iVd0GgUtu05xZH0QkeHI0Sb1uQz5ogRI9iyZYs9YxFCiHbnzEUQEqSsoE0IC/Zk9OmBXjKnrBAtq8mJ7NChQyktLeWZZ55h8+bNHD58mNTU1Do/Qgghzm7PgRxKy0wY9BpiO/g6OhxhJ1dPqV6ydunKQ1gsZx8QLYRonibXyD7++OO2/9+zZ89Zt5NZC4QQ4ux+WpsGnC4r0ElZQVsx7sIY/H3dOJldxoZtmYwcIlNxCdESmpzI/v3vf7dnHEII0e6oqmpLZLvIIghtirubjqnjOrPwq/0sWZEiiawQLaTJiezo0aPtGIYQQrQ/ew7kknGqFL1OQ8coKStoa66eksDCr/bzw5o0mVNWiBYi32MJIYSDrFhdPY6gU7QveikraHP6dg8hoVMAlVUWvl8lY0aEaAlNviL71ltvnXcbRVGkBEEIIeqhqqotuUmQsoI2qWZO2aff2MyS7w9y/dRujg5JiDanyYnsvn376txmtVopLCzEarXi6+uLm5tbs4ITQoi2al9KHscySnB309IpWsoK2qrpE7vw7Ftb2LrnFKnpRcTF+Dk6JCHalCYnsm+++Wa9t5vNZn799VdWrFjBv//97yYHJoQQbdn3p8sKRg2JRq/XOjga0VLCgj0ZPSSK1ZuO8+XKFB66Y5CjQxKiTbF7UZZOp+OSSy6hb9++vP/++/ZuXgghXF51WUH1bAXjR3ZycDSipV01JQGoXhxB5pQVwr5abHRBbGwsycnJLdW8EEK4rANHCkg7XoSbQcvoC6IdHY5oYeNHxOLnY6ieU3Z7pqPDEaJNabFEds+ePVIjK4QQ9aiZrWD00Ci8PWVKprbO3U3H1PHxgCxZK4S9NblGdunSpfXeXlZWRnJyMmlpaUydOrXJgQkhRFu1YnV1WcHkMXEOjkS0lqsnJ7Doq/2s/C2NZ/4pc8oKYS9NTmS//PLLem/38vIiLCyM2267jbFjxzY5MCGEaItSUgtISStAr9MwbkSso8MRraRfjxC6dPTn0NFClv98mBun93B0SEK0CU1OZL/44gt7xiGEEO3Cit+qr8aOHBKFr7eB0nIZ/NMeKIrCdVO78Z9X/+Czbw9KIiuEnchSMkII0Ypq6mMnj5HZCtqbKyd2Qa/TsDs5h70puY4OR4g2oclXZGvs37+fHTt2kJOTA0BISAj9+/enRw/5tCmEEGc6kl5I8uF8dFqF8VJW0O4EBXgwYVRHvl+VyuffHuTpB4IdHZIQLq/JiazZbGbBggVs3boVAE9PTwDKy8v57rvvGDx4MPfccw86XbNzZSGEaBNqBnldOKgDAX7uDo5GOML1l3Xj+1WpLPvxEI/eNQQPd/kbKURzNGuw19atW7n00kuZMmUK/v7+ABQVFfHdd9/x3XffsXTpUq699lp7xSqEEC7tz7ICma2gvRoxuANREd6cOFnKD2vSmH5JF0eHJIRLa3KN7Pr16xk1ahQ33HCDLYkF8PPz44YbbmDkyJH8/vvv9ohRCCFc3tETxew9mIdWq3DJqI6ODkc4iEajcO2UrgAsXn7AwdEI4fqafEW2sLCQ+Pj4s97fpUsXNm7c2Kg2f/75Z37++WdbvW1UVBRXXnkliYmJABiNRhYtWsTGjRsxmUz07duX2bNn10qkhRDCGa38rfpq7LABkQT6S1lBe3b1pV2Z/7/tbNpxktT0IuJi/BwdkhAuq8lXZAMDA9m/f/9Z79+/fz+BgYGNbvP666/n+eef57nnnqNXr168+OKLHD9+HICFCxeyfft25s6dy7x58ygoKGD+/PlNfQhCCNFqbIsgXCSzFbR3HcK8uWho9dLEX3x30MHRCOHampzIjho1ik2bNvHuu++SmZmJ1WrFarWSmZnJe++9x6ZNmxg9enSj2hw4cCD9+/cnIiKCyMhIrrvuOtzd3Tl06BDl5eWsXr2amTNn0qtXL+Li4pgzZw4HDx4kJUWW/BNCOK8TJ0vYtT8HjUbKCkS16y/vBsCSFQcxmWUuYSGaqsmlBdOnT+fUqVOsWrWKVatWodFU58RWa/UbctSoUUybNq3JgVmtVjZt2kRVVRUJCQmkpqZisVjo3bu3bZsOHToQHBxMSkoKCQkJ9bZjMpkwmUy23xVFwcPDw/b/La3mGK1xLCH97QjS5+e38rejAAxNjCA02Kv2nYrtnwap6WZFAVX96372eg6a345ip1js007z2vizz+33Gh83IpbgQA+y8ypYvfG4fMA5g5xTWper93eTE1mNRsOdd97JlClT2LlzZ615ZBMTE4mNbdocienp6Tz66KOYTCbc3d154IEHiIqK4ujRo+h0Ory8av8R8PPzo7Cw8Kztff311yxdutT2e6dOnXjhhRcICQlpUnxNFR4e3qrHa++kv1uf9PnZ/bx+BQDXX96PiIiIWvdVpWfj4+Pd6Da9vWvvo1E0TWrnr+zVjsFN3+w27NWOTrU0rwEVLGYj4TFRzY7lTLdc058X397Asp/SmHXtBXZtuy2Qc0rrctX+blQiazQa+eijj4iOjmbixIkAxMbG1klaV65cyS+//MLNN9/c6HlkIyMjeemllygvL+ePP/7gzTffZN68eY1q40zTpk1jypQptt9rPnHk5ORgNpub3G5DKYpCeHg4WVlZqKra4sdr76S/W5/0+bllnipl0/YTKAoM6x/IyZMna91vNFkoKSltcHuKUp3ElpaWcmZ3W1Vro9o5G3u1Y6wynX+jVmqnIHl78xpQQLUOsPtr/NIxUbz4NqxcfYgduw8TEep1/p3aATmntC5n7W+dTtegi46NyjJ//fVX1q5dyyuvvHLO7fr378+nn35KTEwM48ePb8wh0Ol0tk8FcXFxHDlyhJUrVzJs2DDMZjNlZWW1rsoWFRWdc9YCvV6PXl//J/rWfMJUVXWqF0hbJ/3d+qTP67fyt+pBXoP6hBMW7Fm3j1TbPw1SU06g1rufvfq/+e2odorFHu00tw3F1uf2fY3HxfgxNDGCP3ae5IvvD3DPrP52a7stkHNK63LV/m7UYK9NmzYxZMgQwsLCzrldeHg4Q4cOZcOGDc0KDqprZU0mE3FxcWi1WpKSkmz3ZWZmkpube9b6WCGEcLQ/F0GQ2QpEXdddVj2n7GfLD2KxyKAvIRqrUVdk09PTGTFiRIO27dq1K9u3N+7rnMWLF9OvXz+Cg4OprKxk/fr17N+/n0cffRRPT0/GjBnDokWL8Pb2xtPTkw8++ICEhARJZIUQTulUbjlbdmcBMFGm3WoWjWrG15yDp6UYN2s5btZyFFRUFFQ0VGk8qdD6UK71pVQbgKpoHR1yg0weE8cT/7eJ4ydLWLv5BGOGxTg6JCFcSqMSWbPZ3OCaV51OV2u2gIYoKirizTffpKCgAE9PT2JjY3n00Ufp06cPADNnzkRRFObPn4/ZbLYtiCCEEM7oh9/SUFXo3yuUDmHNH0DVniiqhbL9G+lVsoYgYwbelnw0DSwRsKClSB9Kvj6C8pQBoFpBafJsky3Kw13HVZMTeO+zJBYt2y+JrBCN1KhENjAwkPT09AZtm56e3ugFEf7+97+f836DwcDs2bMleRVCuITvbWUFcQ6OxHX4mbKJrdhDZNVhMl41cuZ17EqNJ2Vafyo1XlRpPLEqWhTVigYL7tZyPCwleFkK0atGAk0nCTSd5MT8mYxX3Mly68wxj14U6c9dGucIN0zrznufJbFqw3EyskrpEC4feoRoqEYlsr1792bdunVMmzYNP7+zL6lXVFTEunXrGDp0aLMDFEIIV5STV87mXdVlBbKa13moKmHGNOLLthFozrLdrPUNItUYTrZbRwp1YVRqvP6c1PUcbXlZCgkwZRFsOk6sJhO38mJiK/cRW7mPQl0oaR59yHDv6jTlB/Gx/gwbEMnG7Zl8+k0yD94xyNEhCeEyGvVdy9SpUzGZTPznP//h0KFD9W5z6NAh/vOf/2AymbjsssvsEqQQQriaH9cexWpV6ds9hOhIH0eH47SCjMe5sGAJg4u+J9CchRUNJ9wS2OB/BXEvrGGP71iy3DpTqfU+fxILoCiU6QI44dGdXb7j6fzyOjb5X84Jt65Y0OBvziax5FcuyvuY6Ip9KM2dY9ZObrqiBwCffXtAVvoSohEadUU2LCyM++67j1dffZXHHnuMsLAwYmJicHd3p7KykuPHj5OVlYWbmxv33HOPy06uK4QQzbXi9LRbMltB/dwspfQqXUtk1REAzOhI8+xLmkc/qrTVUywqmubXtSpaPbmGGHINMeyzjiS6Yh+dy3fiZS2mX8kq4su3s897BNmGjg1LlFvIhJGxhJxe6evndUelHEWIBmr0yl79+/fnpZdeYvny5ezYsYOtW7fa7gsICGDs2LFMnTr1vFN0CSFEW5VXUMHG7ZkATJKygtpUldjKvXQv3YBeNWJF4ZhHbw55DrIlsC3FqPHgiNdAjnr2JbZiL/Fl2/C2FDKk6DuyDbHs9R5Fmc6/RWM4G4Ney3VTu/HahztZtCxZElkhGqhJS9SGhoZy2223AVBRUUFFRQUeHh54eHjYNTghhHBFK35Lw2JR6dMtmE7RZx9P0N4YrOX0K/6VMONRAAp0YezxGUOxvnWXDLcoelI9E0l370GX8m3Ele8k1HiMUfmfcsD7AlI9+jlkloMZU7vx+kc7Wb81gyPphXSO8W/1GIRwNc1+p3p4eBAYGChJrBBCnPbtL9Vfl08d19nBkTiPIONxRuV/RpjxKBa07PUeyfqAq1o9iT2TWeNGsvdw1gTeQI4+Gi0WepauZ3jBUrzMha0eT1SED2OHV0+/9cnXya1+fCFckXNOrCeEEC7qZHYZf+w8CcClF0sii6rSqXwXFxR+g7u1jBJtAL8HXkOaZz+nmdu1TOfPH/6Xs9tnDCZFT6A5i5EFn9Gh8kCrx3LjtOpBX0u+T6Gi0tzqxxfC1TjHWUQIIdqI71eloqowqE9Yu58PVFEt9Cn5jV6l61BQOe7ejd8Dr6VEF+zo0OpSFNI9erEm8AZy9R3QqSb6F/9Mv+Jf0KqNW9ynOS66IIqoCG8Ki6tsyxsLIc5OElkhhLCj5TVlBePb99VYrdXIkMJvia3ciwrs876QXT7jsCh6R4d2TpVaHzb5T+Og1xBUFKIrkxlWsARjbkarHF+r1TDj8u4ALFom5QVCnI8kskIIYSfpmcXs3JeNRqO061Hn5pJ8hhUuI8R0HLOiZ4vfpaR69nfo9FaNomhI8RrCJv9pVCke+JlzSXvmaor3bWqVw197aVd0WoXtSafYl5LXKscUwlVJIiuEEHby7S/VXwUPGxBJaJCng6NxDLfKPI6/dBP+5myqFHc2+l9BtptrTkGWZ4hiXeC1FOpCsZQWcvC5W8lZs7TFjxsa5MnE09O2LfxqX4sfTwhXJomsEELYyfJ2PluBW2UefXc9jelUGhUabzYEXEWRPtTRYTVLpdaHjQFX4TdkClgtHHvvMTKWLEBV1RY97s1X9gRg2Y+HKSyuatFjCeHKJJEVQgg7OJRWwP5Deei0ChNHd3R0OK3OUJlH313P4FGZgz4kmvUBV1GmC3B0WHZhVXRE3vo8kdPmAHBy+X9Je/shrObGDwIzmRVKy63n/emZEErXuEAqKs0sWpZc6z6T2UVKNIRoBU1aEEEIIURt3/5afTV21NBoAvzcHRxN6zJUFdB393N4VGZT4R5Cp7kfUvl/3zo6LLtSFIUOV92DIbgDxz54gvwN32IpL6bz3QvQGBr+fFcZLbzz6Y4GbRsT6c3B1Hz++8kuqqpMaDTVCeztM/qj18l1KCFArsgKIUSzqarabssKdKYyeu95Ac+KLCrcQ9jd71H0gRGODqvFBI++gs5z30TRu1G0cw0pL96Gpby0RY7VLT4QNzctRSVG0o4XtcgxhHB1ksgKIUQz7TuUx5FjRbi7aRk/ItbR4bQajcVIr73z8S47QZXBnz19H6bK3QnniLUz/36jSPjX+2g9vClN3krK87dgLi+x+3H0Og29E4IA2Lkvx+7tC9EWSCIrhBDNVLMk7ZhhMfh4GxwcTSuxWui+/w38ilIwaz1J6vMglR6uPbCrMXy6DSTh0YXovP0pO7KHQy/ehqXC/ldm+/YIQVEgPbOEvIIKoHqu2YbU2Z7vR2ptRVsgNbJCCNEM7bKsQFXpcngRwXk7sGj07O09lzLvGEdH1eq8OvUk4eEPOfjszZQd2sWhl26ny4PvonX3stsx/HzciIvx48ixInbtz2Hs8BiMJgv/+2xns9uWWlvRFsgrWAghmmHH3mxOnCzFy1PP2OHtI5nrcOInIjNXoaKQ3H0ORf7dHB2Sw3h27E7Cw++j9fSh9OB2Dr18B5bKcrseI7Fn9ZXu/YfyqTJa7Nq2EK5OElkhhGiG5T9XX42dMDIWD/e2/yVXUO4OOh/5FIDUzteRFzLIwRE5nlenXnQ5o2b28CtzsFRV2K396AhvggLcMZmtstKXEH8hiawQQjSRyWy1lRVc1g7KCrxK0+m+/00UVDIjLuJE1ERHh+Q0vDv3octD76Fx96Rk3x8ceeVOrEb7LGSgKAr9eoQAsGt/DlZryy7GIIQrkURWCCGaaO0fJ8gtqCAowJ3RQ6MdHY5dKIBiNtX50VcU0DPp/9Baqyjw68GRTtejWMz1btteeXdJpMuD76Fx86R470ZS37wf1Vq7FEBBrbfPzvfTo6MPbnoNhcVVrN96wkGPUAjn0/a/BxNCiBay9IcUAC4fH9+mBs0UpdQeSKSoVoYULsfDlEOZxpfN+gsxHU46RwuDWzZAJ+bTdQDxD7zNoRdmU7jtV9IXPk3MzY+jKKdnCFCtdfq3oboEa9h7UsOnX+9nUN/2M0OEEOfSds68QgjRigqLq/h53TEArpqU4OBoWlb30g2EmI5jRsdW/ymYNO1r5bLG8u0xhE5zXgJFIefXzzi5/B27tNsjwgqo/L71BPmFlXZpUwhXJ4msEEI0wferUqkyWujWOYBeXYMcHU6Liag8TOeK6iuIu3zHUaJr+wse2EPgkEuIuelRADK/XEDumq+a3aavO8QEVNfH7tib3ez2hGgLJJEVQogmWLqyuqzgyokJf35t3MZ4mgvpW/IrAIc9+3PSvYuDI3ItoeNvIPyyvwFw9P3HKdy5ptlt9o60ArD/UB4VleZmtyeEq5NEVgghGunoiWK27jmFRqMw7ZJ4R4cDnH2QVmN/amhUMwOKf0CvGsnXR3DA6wLHPTgX1uHq+wgacTlYLaS+di8VqXua1V64L/ToEoTZorInWZatFUIGewkhRCPVXI0dMagD4SH2W8WpuZo6iKi26oFaPUp/x9+cg1FxZ7vvJaiK1g5ttz+KohA7+ylMRXkU7/md46/fiafbZZTr/JvYHtx8ZS8efG4tu/bnMKBPGDqtXJMS7Ze8+oUQohGsVpWlKw8BcNXktjnIK7IyhU4V1bMS7PQdT6XWx8ERuTaNTk/nexbgGdcLS1khg4u+Q2dt+hyzl4yOw9tTT1mFmYNHCuwYqRCuRxJZIYRohK27szh+sgQvTz2XjOro6HDsznjqGH1KVgFwyHMg2W4dHRtQG6F19yJ+7pvo/EPxsRQwoPgHFNXapLb0Og2JPasXSNiedApVlQUSRPsliawQQjTC0h+qr8ZOGdMJnU5Pabm1WT/OlINoVDMn370PvWoiTx/JQa+hjg6pTTEEhBF15+tY0BFqTKdH6fomt9Un3h+9TkNuQSXHjxc2rSYaJ3rxCdFEUiMrhBANVFFp5rtfq5ekvXJSAlVGC+98uqNZbc6+LtEeodlFz9Lfqco5SJXicbouVq512JtHbA92+o5nYPFK4ip2UaoL4JhH70a3U3VsD12CNezP0vDHliP492jC1V11ICC1z8K1yVlKCCEa6Od1RykpMxEV4c3QxAhHh2NXoVVH6XhGXWyV1tvBEbVdJ93jOXD6anevkrUEGY83qZ1ekdULJJwo1FBQbscAhXAhksgKIUQD1QzyuuKSLmg0bWfuWIO1wjZfrP/YG8lxi3VwRG3fIc9BnHBLQIOVgUUr8TIXNroNX3eIDawuD9ibKX/ORfskr3whhGiA7Lxy1mw+AcAVk9rQwgCqSu+S1bhbyynRBhB8+b2Ojqh9UBR2+15MgS4Mg1rFoCbOZFCzQMLhHIUKo72DFML5SSIrhBAN8NXKQ1itKv17hdI5xt/R4dhNVOUBIquOYEXDTt8JaAzujg6p3bAqOrb6TaFC44WPpYB+Jb/S2NF/YT4Q4q1iURWST7WdbwmEaCinGuz19ddfs2XLFjIyMjAYDCQkJHDDDTcQGRlp28ZoNLJo0SI2btyIyWSib9++zJ49G39/f8cFLoRo01RVZfG3BwC49tKuDo7GfjwsJfQqXQtAitcQivShDo6o/anSerHNbzLDCpYSUXWE+PJtHPYa1OD9FaW6Vva3FC37T2roE2lBJ+O3RDviVFdk9+/fz4QJE3jmmWd47LHHsFgsPP3001RWVtq2WbhwIdu3b2fu3LnMmzePgoIC5s+f78CohRBt3R87T5KaXoSnh46p4zo7Ohz7UFX6Ff9cvQStLpzDngMcHVG7VagPZ6/PaAC6lW0ipOpYo/bvFKTi46ZSaVY4mC1XZUX74lSJ7KOPPsro0aOJjo6mY8eO3HnnneTm5pKamgpAeXk5q1evZubMmfTq1Yu4uDjmzJnDwYMHSUlJcXD0Qoi2avHy6quxl4+Px9vL4OBo7COuYifBpgzMip6dvuNlqi0HS/foxTH3nihA/+If8bQUNXhfjfJnrWxSpgZr09ZZEMIlOVVpwV+Vl1fPJ+LtXT0NTGpqKhaLhd69/5xzr0OHDgQHB5OSkkJCQt3lIk0mEyaTyfa7oih4eHjY/r+l1RyjNY4lpL8doa33eWFxFSt/SwNgxuXdaz9OxfZPMzW8jZrDKwqoau39lAa242POpVvpJgD2e4+gQhdQa8+GtnPOOO3SL04Si63PW/Yx7fMZja85lwDzKQYWrWBDwNVYFX2D2ugaCjuOq5RWKaTlaYgPaVitrTO+b9v6OcXZuHp/O20ia7Va+eijj+jatSsxMTEAFBYWotPp8PLyqrWtn58fhYWF9bbz9ddfs3TpUtvvnTp14oUXXiAkJKTFYq9PeHh4qx6vvZP+bn1ttc+X/riZyioLvbuFMnFsn1on+6r0bHx8mjffqkbRNKmNmg/4ZzK41Z/0nElRLSQW/IwWCznucWT5JWL4yx+whrRzPvZow17t2CsWe7zGDx8+fo549OwJuZyhpz7Gz5xLYtlvJAVO+vPTyxn+2oYB6ButsjlNZU+mhu4dlPMmJoqiISLCeedDbqvnFGflqv3ttIns+++/z/Hjx/nPf/7TrHamTZvGlClTbL/XvLFzcnIwm83NarshFEUhPDycrKwsWQ+7FUh/t7623OeqqvL2os0AXD25C1lZWbXuN5oslJSUNusYVtXaqDYUpTqJLS0trTPA3Vhlqn+nM3Qt3YCvKQej4s4urzEYjXXPgw1p53zs0Ya92ml2G6fzQXu8xlXVes54jLiz3XciQwuXEVGeTJ4mlKOe/epuV08bXUNgxzENeWUKR06ZiQk4fywnT55s7ENocW35nOKMnLW/dTpdgy46OmUi+/7777Njxw7mzZtHUFCQ7XZ/f3/MZjNlZWW1rsoWFRWdddYCvV6PXl//p9/WfMJUVXWqF0hbJ/3d+tpin+/Ym03y4XzcDFqmXxJf9/Gptn+aqeFt1JQTqPUcWz1POwHGTOLLtwOw22cMlVrPeo99vnYaFKdd+sU5YlFsfW6f1/j54skzdGC/9wh6la6jR+nvFOjDKNTXvlpWXxsGHXQLV0nKVNidoSE6wHL+WJz4PdsWzynOzFX726mq+1VV5f3332fLli08/vjjhIbWngomLi4OrVZLUlKS7bbMzExyc3PrrY8VQojmWPjVPgCmjI3D39fNwdE0j9ZqJLH4ZxRUjrt3I8s93tEhiXNI8+hLplu8beUvvbWiQfv1irSiUVSyihWyils4SCGcgFNdkX3//fdZv349Dz74IB4eHra6V09PTwwGA56enowZM4ZFixbh7e2Np6cnH3zwAQkJCU6dyJ7KLqCk3NLsCzduBi16net9WhLCFeUXVfLdr9Uzptx8ZU8HR9N8PUt/x8taTLnGh73eoxwdjjgfRWG3z1h8zbl4WwpJLP6ZLX6X1VsveyYvA8SHqKRkK+zJ0BDuK1MYiLbNqRLZn3/+GYAnn3yy1u1z5sxh9OjRAMycORNFUZg/fz5ms9m2IIIzq6g08c4nO2luJnv7jP7odU51EV2INmvJdwepMlro3TWYxJ6tOzjU3sKqUomt3IcK7PIdh1nj2leX2wuzxo1tfpMYkf8FYcZjDV4soU8HKynZCukFGgrKrQR4tkKwQjiIUyWyS5YsOe82BoOB2bNnO33yKoRwXVaryqJl+wG46YoeLjstDYDBWk7f4lUApHokkmeIcnBEojFKdMEk+YymX8kqupX9QYH+/CPL/T2gY6DK0fzqq7KjushVWdF2yeU9IYT4i7WbT3AsowRfbwOXj3fhlbxUlT7Fq3FTKyjWBnHA+wJHRySa4LhHT9Ldu6Og0r/4J8xFOefdp2+H6uT1cK5CaVVLRyiE40giK4QQf1EzyOuqyQl4ethnDlJHiK5MJsKYihUNO33HY1Wc6ks40Qh7fUZTrA3C3VrOyfceQFHPfZU1xAci/ayoavVVWSHaKnl1CyHEGdIzi1m14TgAN03v4eBoms7DUkTP0rUAHPQaSrHetet82zuLomeb3yTMip6KQ9voWrbpvPv0i6oel3HwlEKZsaUjFMIxJJEVQogzfPjlPqxWlVFDoojv6O/ocJpGtZJY/At61US+PoLDnv0dHZGwgzJdALt8xgLQpXw7oVVp59w+wlclzEfFoiokyVVZ0UbJK1sIIU4rLTPy2fIDAMy+tpeDo2m6zuU7CTJlYlb07PQdD4qc6tuKk+4J+F80A4DE4p/xsJx9slhFgcTo6hKE5FMK5XJVVrRBcnYTQojTlqxIoaTMRFyMH6OHRjs6nCbxMefavnbe6z2Scq2fgyMS9hZy5QMU6MIwqFUMLFqJRj37cusd/FRCvVUsVoWkTPmTL9oeeVULIQTVU269/8VeAG69phcajetNuaVRzfQv+gktVrIMnTju7ro1vuLsFJ2B7X4TMSpu+Juz6V664ezbnnlVNkuhQq7KijZGhrAKIQSwamM6R08U4+dj4KpJzrtS4Ll0LfsDX0seVYoHu33HnncVKNFwilZjlxUaVTtdP6rQ+rLTdzxDir4jrmI3+fpITrp3qXfbKH+VEG+VnFKFpJMaBsfKvLKi7ZBEVgghgPc+SwLg+qnd8PJ0vSm3ylO20bl8BwC7fcdg1MhyTvZkMll577NdNDeTve26RLvEA5Dt1olDngPoUr6dviW/UqwLoUznX2c7RYHEKCs/H9Cy/6RCn0hwd72XuBD1ktICIUS7tyc5hw3bMtFqFW6+sqejw2k0rbmcrI8eRgHS3Xtwys2FF3EQjXLQ6wLy9JHoVRMDis9eLxsdoBLkpWKWWlnRxsirWQjR7r39yW4Apo7rTFSEj4OjabzOhz/BnJdJucaXfd4jHB2OaEWqomGH7yVUKR74mXPpVbKu3u1qrsoC7M9SqDS1ZpRCtBwpLWgFFrMRxdz8CnulucVZQggATGaFKqMFgPSMYr5fXT0f58wrelNa3vD6QdUJ3pJBOduIyFoHisJO33GYNW6ODkm0skqtNzv8JjC08BtiK/eSZ4gkw71bne1iA1UCPVXyyxX2nZTrWKJtkES2FahWleKUXajNHiUwENDaJSYh2rMqo4V3Pq2uJ121IR2rVSU2ype1m4+xdvOxBrcz2471jk2hNxaRkPI+AAHjZpG/y9uh8QjHyTXEkOI5mK7lW+hTvJoiXQiluqBa29TMYLDqoJZ9JxWKSqrw8pJiWeHa5COZEKLdKq8wsTclD4BBfcIcHE0jqSpdD7yLwVRCqVcMQZf9w9ERCQdL8RpMjj4KHWYGFv2AVq1bP9AxUCXAU8VoUfjf6enmhHBlksgKIdqtnftzsFhUwoI9iY5wrauZkZm/EJS/G6ui50D3v6PRGxwdknA0RcMOv0uo1HjiY8mnd8lvdepfFAUGxlSXzyxatp/svHJHRCqE3UgiK4Rol6qMFnbtywGqr8YqLjTnqntJOnFHFgOQ2vkayrxdcxUyYX9GjSc7fC9BRSG68gDRlfvrbBMTUL3aV0WlmVc/2OGAKIWwH0lkhRDt0q592VQZLQT6u9Olk7+jw2kwxWqi4475aK0m8gN6k9FhvKNDEk4mzxDFAa+hAPQuWYOPObfW/YoCA08vivDpNwdIzyxu7RCFsBtJZIUQ7U5puZHte7MBGNIv3KWuxnZK/QLP4qMY9T4c7PY3UOQ0Luo67DmQU4ZYtFgYWLQSrbX2zDmRfirDB0RiMluZ/952B0UpRPPJGVAI0e58tjyZyioL/r5udI0LcHQ4DRaQn0T0iR8ASOn6N4xurhO7aGWKwi7f8VRovPG2FNK3ZHWdetm5swcA8NUPhziYmu+IKIVoNklkhRDtSnmFiQ+WVC9HO6RfOBqNa1yN1RlL6HrgHQByYieSF9zfwREJZ2fUeLDdbyJWNHSoSiG2IqnW/b27BjPpok6oKrz4320OilKI5pFEVgjRrnz8dTL5hZX4+RjoFh/o6HAaRlXpmvI/3IyFlHlGcqLHLEdHJFxEgT6CZO9hAPQsXYefKbvW/Q/ePhCNRuHHtUfZsTe7viaEcGqSyAoh2o3SMiNvLNwFwOB+4Whd5GpsZOavBOdux6poOdD9TlSdrN4lGi7VI5EsQxxarAwoWonOWmW7r0unAK6c2AWA59/e4qgQhWgySWSFEO3Ge5/vJb+wko5RvvTsEnT+HZyAd0kanQ9/CkBa3DWU+nR0bEDC9SgKu3wvpkzji5e1mH4lv9aql73/tgEY9Bo2bMvk960ZDgxUiMaTRFYI0S4UFFXyzqe7Abh71gCXqI3Vmsvpse91NKqZ3KD+nIia6OiQhIsyadzZ7jcRCxoiqo7QqWKX7b6oCB9unNYDgOfe3ILV2szl1IVoRZLICiHahbc/2U1JmYnu8YFMHB3n6HDOT1XpevB/eFRmU+kWfHqqLedPvoXzKtKHsd97BAA9SjdQfujPxRDunpWIt6ee3ck5fPPzYUeFKESjSSIrhGjzTuWW8/7pdeUfvGOQS1yNjcz8lZCcLVgVLft73oVZ71pL6LZFitmIYjY168fRjnr0IcMtAQ1WTrwzF2P+KQCCAz24c2Y/AJ57awsVlWYHRilEw+kcHYAQQrS0V/63ncoqC/17hTLuwhjKKpz7q9Mz62JT466jxDfewREJgOKUXag097Uz2C6xNJmisNt3LD75efgW53Hk1bvp+tjHaPQGbru2Nx8v20/mqTLe+zyJu29OdGysQjSAXJEVQrRpB1PzWbz8AACP3TXE6Vfxql0XO4CMqAmODkm0MRZFz1a/yWg8fSg7vJv0RU8D4OGu4+E51Yn2Gwt3kZNX7sgwhWgQSWSFEG3a069vxmpVmTi6I0MSIxwdzrmpKl0PvCd1saLFlev86TD7RVAUclcvIWf1EgAuHx9P3+4hlJWbeOkdWSRBOD9JZIUQbda6LSdYvfE4Oq3CI3cOcXQ45xWT/i0huVtP18X+A7Pey9EhiTbMu9eFdLjqHgDSFz5F6aFdaDQKT957AQCLvz1A0oFcR4YoxHlJIiuEaJMsFitPv74ZgJlX9CQuxs/BEZ1bYO5OOqYtBeBQl5sp8e3s4IhEexB+2e34DxqHajZx5NW7MRXmMLhfOJeP74yqwmPzN6Cqzl1TLto3SWSFEG3S598dZF9KHr7eBu69tb+jwzknj7JMuie/iYJKRuRYsiIvcnRIop1QFIVOtz+He2RnTAXZHF5wN1aTkUfvGoKHu45te07x9U8yHZdwXpLICiHanIKiSp57q3q5zftvG0Cgv7uDIzo7S3kxvfa+gs5SSaFfV47E3+jokEQ7o/XwJv6+19F6+lB2aCfH/vdvIkK9uHtW9awFT7++mdIyo4OjFKJ+ksgKIdqcl97ZRkFRFd06B3DzlT0dHc7ZqVay3n8Iz4osKt2C2N/zblSNzIooWp97ZBxxdy8AjZa89cvJ+vYd/nZdb2I7+HAqt5z/e3/HedsQwhEkkRVCtCl7U3L5+OtkAJ66fzg6nfOe5jqlfUn53nVYNHr29boXk8G563hF2+bXezgxM/8NQMaSBZTv+pX/zB0OwHufJ5F8ON+R4QlRL6c6w+/fv5/nn3+e22+/nauvvpotW7bUul9VVb744gv+9re/MWPGDJ566ilOnjzpoGiFEM7GalV57KUNWK0qU8d1ZtiASEeHdFYhpzYSk/4dACldb6PUp5ODIxICQi++ltAJ1eUtR//7Ly6ILGLS6I5YLCoPPf87VqsM/BLOxakS2aqqKjp27Mitt95a7/3Lly/nhx9+4LbbbuPZZ5/Fzc2NZ555BqNRaneEEPDZtwfYuucUnh46HvuH80635Vewn24H3gXAf9wsssOGOTgiIf4UPeMhfPuOxGqs5PD8OTx2Sxe8PPVsTzrFZ98ecHR4QtTiVIlsYmIi1157LYMH113CT1VVVq5cyfTp0xk0aBCxsbHcddddFBQUsHXrVgdEK4RwJqdyy23TbT14+yAiw7wdHFH9vEqP02vvAjSqmZzgQQRPv8/RIQlRi6LV0fmuV3CP6oKpMIfShXO5/5Y+ADz75hZy8yscHKEQf3KZUQXZ2dkUFhbSp08f222enp7Ex8eTkpLC8OHD693PZDJhMplsvyuKgoeHh+3/W5rtGAooavOP5+zLazpaTf9IP7UeZ+nzJ17ZSHGpkb7dQ7j1ml7njkex/WMHDW/HUJlH7z0vorOUU+TXleTucxim0TaqDdspRQH1L+cUxU6PyR7ttKlYlD//a5fzuDM8ppp2zvI+0Xn5kPDP/7L/31dRcSyZkb7/pWeXCew7lM9j8zfwzrPj7HL8c8Xk6HNKe+Hq/e0yiWxhYSEAfn61B0P4+fnZ7qvP119/zdKlS22/d+rUiRdeeIGQkJCWCLNehw8fx2DQN7sdRdEQEeHkS2w6ifDwcEeH0O44ss+/++Ug361KRatV+Oj/phMVde73SVV6Nj4+zb9iq1E0DW5HayolYft83IwFVHhHcXTov/E2+DSqjTN5e9fdx+DW/POMvdppk7HY4TwOzvOYzvs3JSIC3+eWsGnupZQl/c7DfWOYmRrOd7+mcvPVBUyf2KPZMZyLnMdbl6v2t8sksk01bdo0pkyZYvu95hNHTk4OZrO5xY9fczyj0QTNrJFXVasMbjsPRVEIDw8nKytLVqNpJY7u86KSKm7/17cA3H59H8ICOe/7xGiyUFJS2uxjW1Vrg9pRrCb67HkBj5JjVBn82d3rAaqqFKgqbXAbtraU6iS2tLSUv3a3scpU/06NZI922lQspy9U2eM8bpd47NRGg/6mBEQTd8+rHJ4/B5/dn3JDvztYuN2TO/71Hd06eRDgZ/85mh19TmlvnLW/dTpdgy46ukwi6+/vD0BRUREBAQG224uKiujYseNZ99Pr9ej19X9ybdUnTAXVDmdAZ3qROTNVVaWvWpmj+vzxVzZyMruMjlG+zJ09oGExqLZ/7OA87ahWuh34L/6FyZi17iT1/idV7sF/2a/hsdSUE6j1PAZ7nGPs1U5bisVWTmCv87iTtAEN+5vi13ckHf/2LGlvP8iUgvdYG3QPR/MqeHLBJhY8PtoucZwtNjmPtx5X7W+nGux1LqGhofj7+5OUlGS7rby8nMOHD5OQkODAyIQQjvLT2qN8uSIFjUZhwROj8XB3ss/mqkqXQwsJzf4Dq6Jlf897KPOJdXRUQjRa0IWXEXXDvzBoLPzd/TMUBb5ckcJPa486OjTRzjnVWb+yspKsrCzb79nZ2Rw9ehRvb2+Cg4OZNGkSy5YtIyIigtDQUD7//HMCAgIYNGiQA6MWQjhCfmElDz73OwB3zOjDoD5OVt+lqnQ+8imRmatQUTjQ7XYKAns7Oiohmix84s2Yi/Lgu/eY6reNbwoH8sCz60jsFUpokKejwxPtlFMlskeOHGHevHm23xctWgTAqFGjuPPOO5k6dSpVVVW88847lJeX061bNx555BEMBoOjQhZCOICqqjz03DpyCyroGhfA/bcNcHRItakqHdOWEnXiRwBSus4m5yxzxSqAYm5cvWNFcRGKxdLcKEU7p9HpKC23Nmofv0vvpSI/jxvWL2dXRUeOFgZz/9NrWfTKJS476l24NqdKZHv27MmSJUvOer+iKFxzzTVcc801rRiVEMLZfPJ1MivXHEWv07Dg8dG4uznRqex0EhubvhyAQ11mkhUx6py7FKXsbHDzCgoGNz3GKtNf6iTrzr8txLmYTFbe+6zhrz0b7VR6hKQz17iC+0/MYPXG43z8dTI3TW/ZWQyEqI/L1MgKIQTAwdR8nlywCYB/zRlMn+6tN5XeeakqnVK/sCWxhzvPILNDy823KYRDaLQk97gLr8gYbgxaD8C8/9vAgSP5Dg5MtEeSyAohXEZFpZk5j62issrC6KFR/O06J6o5PV0TG3P8ewAOxd9ERvREBwclRMtQNTr297ybay/0JtHzKJVGldvu/46ycvtMuyZEQ0kiK4RwGY+/spEDRwoICfRgweOj0WiaVpOnoKKYTc3/qWnQaiHh4Hu2mthDXWaSGTXePg9aCCelavREz3mVx8cUEqQtIfVkFXMfWuqSUzgJ1+VEhWVCCHF2i5cfYPHyAygKvPbkRYQ0Z5S0am1UXerZDUaxGOmR/CbBudtR0XCw62xORYy0Q9tCOD+N3o2B/1rAkxWPcc8qL77fUsK7//cVt8+90tGhiXZCrsgKIZze7uQcHnt5AwAP3jGIkUOiHBxRNUtZEX32vEhw7nasip59ve6RJFa0Oxq9gcv/8wx/S8wF4Nkl2fzywScOjkq0F5LICiGcWl5BBbf96xeqjBbGj4jlrpv6OTokADwsRRx/8Qb8iw5Ur9jV55/kBTvZNGBCtBKNTs8jb/yL0R0rMKs67v1fDjs+fE3KDESLk0RWCOG0qowWZj/0CxlZpXSM8mXBE02vi7Unf1MWI/KXYMxKpdItkF2JT1AYIFMPifZNq9Pxzgd/Jz7ESqHFi/s+LOTg249hNRsdHZpowySRFUI4JVVVeej539myOwsfLz0fvDQePx83R4dFVEUywwq+wk2twC26Gzv7z6PMO9rRYQnhFLy9DHz87vX4eyocrgrn8a8qOfDcrZhLChwdmmijJJEVQjiltz7ezZcrUtBoFP777MV0jQt0aDyKaqVHye8klvyCFgsnDXFEP7AIo1uAQ+MSwtnERPry3suT0WlhQ2lXXv/dk+QnrqEi44ijQxNtkCSyQgins/znwzz31hYAnpo7jNFDHXvF081SxtDCr+lcUT3TwUHPwWzzm4zG3cuhcQnhrIYNiGTBE2MA+LZoAF8cCCH58avI3/yjgyMTbY0kskIIp7Ju8wnumbcGVYVbr+7FzVf1dGg8QcYTjCz4jGBTBmZFzzbfiaR4DwVZV16Ic5o2IZ5//2MIAB/mjeLX7FhSX7uX44tfwmqWhROEfcg8skIIp7Frfza3PvQzJrOVyy6O48n7LnBYLIpqJaFsC13Kt6KgUqwNYpvfJMp0UkogREPdPqMPmdllvP/FXl7PuQStojJqxfuUpmwn7s6XcQtxjqn0hOuSRLaFHTpagKIqGC2g08hFHCHOJvlwPjfc+wPlFWZGDO7AgicuqjNDgcmsUGW0NPtY6nm+jPK0FJFY9BOB5iwAjrt3J8lnNBZF3+xjC+FMlGZeGVU49/RaiqLw5L0XUFlp5tPlB3g1ZxIGNwMXHNrF/ocvJ/bWeQReMLlZMYj2TRLZFnbpLd9QXGoEtCioeLlBkJdKoCdE+KmE+6hopMBDtHMHU/O55q7vKSiqol+PEP73/DjcDNo621UZLbzz6Y5mH++26xLrv0NV6Vixh+5lG9GpJkyKgT0+Y8h0T2j2MYVwRs1e4U4dCNR9r55Jo1F4/l8jMFusfPF9Ci9njOOfvSIYWvYTqW/cT8HWX4m5+d/ofR07oFO4JklkW5Cqqri76aioNGMyW1FRKK2C0iqFY/mw8wQYtCpRASpdQlQ6+Ks4wRSZQrSqQ2kFXD1nBXkFlfTuGsynr07C28vQ6nF4m/PpW7KKQNNJAPL0kez0HU+F1rfVYxGirdFoFF56ZCQWq8rSlYd4bndP7h+bwMjjb1Gw+QdKkjcTc/PjBAyegCJfXYpGkES2BSmKwq4fbqS01MRzD79HpVmlqFIhvwxyShUyChUqzQqpuQqpueDtptItzEq3MBV3+QZTtAN7U3KZcfcP5BZU0DMhiM9en4S/b+vOFauoFuLLd9ClbDNarJgVPfu9hnPMo7fUAglhR1qthv/792h8vQ18sGQf81fpqbziJS7LfZvKjEOkvnYvvn1HEnvzvyEiwtHhChchiWwrUBQFnRa8tODlphLpB6BiVSGnBFLzNBzOUSitUtiWrmX3CZUeESq9I62S0Io2a+vuLG6a+yPFpUZ6JgTx+euTCfBzb9UY/E1Z9ClZjZ+5eo34U4ZYknzGUKH1adU4hGgvNBqF/8wdRqCfOy+/t503vzrBiYvv5v4pyRT++B7Fu9ex98EpVF13L96jr0Xj5uHokIWTk+pMB9IoEOYLF3Syct0AC6PiLQR6qpisCrszNHy+XcvO4wrm5o9tEcKprN6YzrX/WEFxqZHBfcP58q0pBPq3XhJrys8ksegnRhQswc+ci1FxZ4fveLb4XSZJrBAtTFEU7ps9gBf+NQKdVmH5r2n846dogv65BJ+eF6CaqkhZ9AJJc8eTu+YrVKv8ERRnJ4msk9BpoUuoyrS+FsZ1sxDspWK2Kmw/rmXJTi2HchRU9dyjQ4VwBR8t3cfM+3+issrCmAuiWfzapFZbelZjrqRj2pccfXwKUVUHgeoZCX4LuoEM925SSiBEK7phWnc+e30yAX5u7E7O4fJ/biNrzH/ofPcCPCM6YirM4eh7j7LvX1PJ3/wjqtXq6JCFE5JE1skoCsQGqkztY+GiBAvebirlRoW1h7TcdP+PHD5W6OgQhWgSi8XKE/+3kUdf2oDVqnL15ATef2k8Hu6tUOGkWgk7uZbBWx4g9thyVFMVefpI1gVcyy7fcRg1ni0fgxCijmEDIlnx4TS6xweSk1/BjHt/4L/bA7nwvT+InvEQWi8/KjMOk/ravex/5HLyNn6PajE7OmzhRCSRdVKKAp2DVa5MtDAwxoJWo7J5VxbjZizllf9tt8tcmkK0lvzCSm6870f+9/leAP7190G88u9RGPTnnran2awWQrPWM2jLg3Q7+B5uxkIq3EOJuP3/2Oh/BUX60JY9vhDivGI7+PLd+5dz4/TuqCq8sXAXF171MXldptJ7wa9ETr8LrYc3FcdTSHvzAZLun8Cpnz7GXF7i6NCFE5DBXk5Op4F+USpxwRZO6mL5fUsG89/bzjc/H+b5h0YwbECko0MU4px27svmbw//QuapMjzcdTz74EgmXRRHWYUK55lM/a8aXF1jtRCWvYGYY8vxrDgFgEnnTXrMFDKiJtC3/2D4+p3GPRAhRB0anY7S8uZ/5e9m0PP8QyO4cGAHHnxuHduTTjJx5jLm3NSXe2bdQeiEG8j+ZTHZP32MMSeD44ueIeOLVwgcOongMVfj1bmPTNvVTkki28KyfvgIY6WZjuW7sSgaLIoOk+KOSeNGpcaLSo03qnL+C+O+7vDUU+NYtek4T7yykSPHirhqzvdcMyWBf989tNVHewtxPlarynufJ/H8W1swmqx0jPJl5OAOHM8sbPKiBrPPtpDBaYrFSFj2RmKOfYtHZTZQncAej55EZodxWHQyAloIezKZrLz3WTMXVQBun9EfvU7DlLFxDO4XzlOvb2fZD8m89uFOvvnpMI/cNYQpl/+dsEmzyFv3Ndm/LKYy4zC5a78id+1XeMR0JeSiqwkcPgWdl58dHplwFZLItrCMJQuwVlXQ6yz3W1Go1PhQrvWhXOtLudaXYl0IRboQKjXetQafKIrC1HGdGT00iufe2sLHy5L54vsUVm04zn/mXsBl4zrLJ1LhFDJPlXLvf9awYVsmABNHd+Sp+0eyePneFjmeoaqAyMxVRGSuxmAqBsCo9+FE9CQyIsdh1ckHPSFcRViwF1+9ew3vL97AYy9vJD2zhDse+ZVBfcJ46O+DuGDc9YRcfB2lKTvJ/e0L8v/4kYr0g6QvfIrjnzyPb+9hBAwej/+Asei8/R39cEQLk0S2hQVeMBljeQUHdqegUS1oVRN6tRKDtQp3aykarHhai/G0FoMpo9a+VYoHRfpQinQhFOrDsJQVgVcwfj5uPP/QCK6Y2IUHn/2dlLQC5vx7dfVqKQ9dSFSETB8kHENVVT7/7iBPvfYHRSVGPNx1PHnvBcy4vNvpUgL78i5JI+rEj4Rk/4FGra4br3QLIqPDeDIjx0oCK4QLm3RRHKOGRPHfT/fw1se72brnFFf+/XuGJkZw7639uXBgIj5d+xN94yPkrf+W3N++pOJ4CkW71lK0ay2K9gl8ug8mYMgE/PqNxhAY5uiHJFqAJLItrNPfnqGszMziR99F/Ws9oKribi3Dw1KdyHpaSvCyFOJnysbbko+bWkGo8RihxmMApMxdiUdMN3y6D8an+2ASuw/kx0XTeWvRLl77aCerNx1n9LVf8uAdA7n16l5otTKWT7Sew8cKeei5dWzaUb3Ea9/uIbz+n4voHON/egv7JLJaUxmh2X8QnrUW35JU2+1FvgmciJpAbvBA0LTwIDIhRKvw9NAzd/YArr20K68v3MXn3x7gj50nufauFXSPD2TWVT2ZfkkXwibcSNiEG6nIOELBlp8p2PITFekHKN67keK9GwFw7xCPb+/h+PYehk+3QWjdZbaStkASWUdSFCq13lRqvSmg9qAtjWrG15yLnykbP3M2gaaT+FgKqDiWTMWxZLJ/XAiKgmenXlzTbxRjnx3Mk59msXlXFvMW/ME3Px3hpUdG0jMhyEEPTrQXhcVVvPjOj7zx0RbMFise7jr+eXv1hymdzk4fplQr/oX7yXr/My7Y9jNaqwkAq6IlJ2QIGVETKPHtbJ9jNZJiNjnkuEI4C3u8B5TzfNCNDPPmuQcv5B8z+/HWx7v5/LuDJB/O58Hnfuep1/7g0os7c9WkBIb2jsZr0k1ETbqJylPp5G9bRcGO3yg7up/KjMNUZhwm+8eFKFod3vF98enSD+8u/fDu3BudZ/W3mRqdHqs9HpPegEUjy3O2NElknZRV0VGoD6dQH267be4/p2E5tpOS5C2UJG+hMjOV8tQkylOTAHjMJ5Dfh03i7Z1h7E7OYeLNy7j9+j7ce0t/vDzlzSTsq6LSzMdf7+e1D3ZSUFwFwNjhMTzzwHCiI+1Q3qKq+JSkEpKzmZDszbhX5VECaIFSryiywkeRHTYMk8GxAzuKUpo70GWwXeIQwlGa/x4A1IFUv7vPLTLMm6cfGM4DfxvIF98fZOHSfRzLKGHx8gMsXn6ADmGeXBhVzOguVvpGqeg04Js4Gu+eQ6nKOUHVqeMYs49jKS+h5OB2Sg5ut7Wt8wvCEBhB+EVXUnzsADqfABRN0z+MR0+5Bdzkb29Lk0TWhej8gvG7YBKBF0wCwFhwiuLd66vrgZI2YC3JZ3jJJ3QP8+K93DFsLO3CWx/v5qvvk3n0nuFMvyReBoOJZquoNPPJ18m89fEusvMqAOiZEMKjdw1i1JCo5jVek7xmbyYkZwvuVbm2u8xaT4IuvJTVJT0p9ekkq3AJ0Y75+7px+/V9uO3a3vyx8yRLV6bw/eo0Mk6V88UpHV9sBy+DSr8oKwNiVAbEeJAQEY9Hh3hUVcVSWoQxNwNj3kmMeSexlBVjLsrDXJRHatrpQalaHXq/IPT+oej9g9H7h6LzDUCR0iWnIomsCzMEhBE8+gqCR1+B1Wyk9OAOinavw33XOh7SfcfmsjjezxnNqQJ/7n7yN9556ycevCGOiy6/CK2bTEMkGicrp4yPlu7jk6+TKSiqvgIbFeHNPbP6c+9to8jJyW7SMspacwX+BXsJzN9DYP5u3KvybfdZNG7kBSWSEzqY/MB+3HL9EErtMNWPEKJt0GgUhg2IZNiASJ7554Ws33CEpYtX8/sRDUUVChtStWw4XUrv46aSGG2le7hK9/BAuoX5E9ipJwCWyjKMeVmY8k6iUTSUpu1FNZsw5Z/ClH/qjANq0fsGofMLROcbhN43EJ1vIBp3L7lQ5CCSyLYRGp0B355D8e05lOjrH6Qq5wQxu9Yxavs6PllfxZe5A9iXbWDmKycY+M5T3D60jIGjB+OXOAq3kGZeRRNtlsViZc0fJ/j8u4P8vO4oZkt1ohod4cM/bu7HVZMTcDPo0OkacYVCteJdmm5LXv2KDtpmHIDTyWtwIjkhQ8gP7INV62bvhyWEcDIanY6ysj/rUg8fPo6qNn6hhZEjEhiQ4I3VqnLwaDFb9uWxdW8e2/bnU1JhZt1hLesO/7l9aKA7PeL86NbJl7gO3sQletOjXzzm/CxMeRkYMw5RlZFCVcYhjJmHsFaWYSrMxlSYXTt+d28M4R3Rh3XCENYRQ1hHykor8HDzanKfiIaRRLaNcguJInTc9YSOu55njZXcumkDr360h+X7PdhW1pFtq2DgpiSuCvgf/eK98Os3Cv/EUXh16YdGZ3B0+MKBrFaV7Umn+G5VKitWp5KVU267b3DfcG67rjcTRsY2eFYMq9lE+dH95O3ZQq89q/ArSkFnKa+1TblHGPmBfckP7EuRf3esWnkNCtGemExW5v/7PQAUFAxueoxVprqz/ZzH/U/dzquvLK91Wxc36NwPckshq1ghr0wht0yhqAKy8yvJzq9kzbY/r7oqyu94G1T8PVX8PcDfIxJ/jwj83EcQ4FGEvyUHH3MePpZ8fMx5eFkKobKUyqN7qTz651zZJ6kuCfSIjMM9ohPuZ/zXEBwhJQp2IolsO6AxuNNl1FjeGDWW+44V8tJra1ixIZtt5XFsK4+jR94JJh/4naHff4jB3R3vrgPw7TUU354X4BHTrVnF7sI1FBRVsn5bJr9tTGfNHyc4lftnounv68YVE7twzZSu550FQ7VaqTp1jLLUvZSl7q0ejHgsGWtVdS1tzd5mrTtFfl0pCOxDfmBfKjzDz96oEEI0k0aBUB8I9flzaWyjBfLLILdUIb9cobCiOrmtMiuUVFX/HC+o3Y5BG4SvexC+Hiq+7uDnruLnbiZSV0iokoPv6eTWx5yHl7UYc1EuJUW5lCRvqdWOojfgHhZbK7l1j+iEe0QntJ7erdQrbYMksu1M51h//jv/clLTi3hz0S6Wrkxhf2UU+yujCMovY4x3EqNL9hK153cAtN5++HQbjHdCIt4JiXh27IlGL1fLXFmV0cKhowXsP5TPrn3ZbNmdRfLh/Frb+HjpGTcilkvHxjFqaDRuhrpXDkwlBVSeOERlxmFy8jLIS9lD+bFkLBWldbbVevnh0WUAu0vCKfTvTqlXjMz1KoRwKIMWwn0h3PfP5FZV4ea5N/H8k4sorKhObgvLobBCocyoYLQo5JZBbtmZ9bBaIAy9NhRfd/B1V/HzgKuvGkqsTymRSjYeJccwnkyj4mQaVVlHUU1GKk4couLEoTpx6f1DcI+Mwy08FrfQGNzDonELjcEtLBqthyS5fyWJbDsVF+PH/MdG8c/bB/LxsmQ++TqZ3AL4smAoXxYMpXtgGUP1SQw27idy2y8UbvsFAEWnx7NTT7zj++HVuQ8esd1wD4+Vr0icjNWqkltQwYmTpWScKiU9o5gDR/LZfyiPw0cLbbWuZ0roFMDoC6K46IJohvSLwKBTMBfnUXVsD6WnjlOVfZyq7HSqTh2nMusY5uK8eo+t6N3wjO2GV1xvPON64dWpF+6RcZRVwopPd7T0QxdCiCZTFAgO9CDCDyL8/kxwAcwWKKmCogqF4koorjz93wqFUiOYLAp5ZZB3Osnd9X9/XoX18vSnY9QoOkZdSqfBvnTwtRCqKyTQcgq/sjTUnDQqM9MwF+ViKszBVJhDyf7NdeLT+QbiFhqNW1jMGf+NwS00Cr1fcLv8BlUS2XYuPMSLf94+kLtnJfLTuqMsXXmINX8cJznfi2SG8iFD6RgEiQG59LTuoVvVAdRDuyg7tMvWhsbgjkd0Ah6x3fCM6Vb9FUl4R/QBoS71pjKZFaqMlvNveA56nQazqfETaVutKmaLFYtFxWKxomg0KIqK2aJiNlupqDRTXmmivMJ8+v/NlJYZKSyqoqC4koKiKgqLKikoruJkdhkns8vO+Vh8vHR0jfIkIUJL7wgTvfwL8TXtx1y4BvO32SQvysFcnAsW8znjdgvugEeHOLyju2AIi8UjugsekXFodH+ZO9FUgULzl4tVkAUIhBCOodNCgCcEeNYkt2ckuVYoOSO5LapQCIyK4nhGESdOlVFWbmJfSh77Uuq7ABBFSGA8HUK9iAw3EO5lIkRfir+aj7cpB6+yTDyLU3ErP4W5OB9zcT5lh3fXaUXR6tEHhmEICscQFPHnT2A4Gv9IVJ9QNJ6+dWdXUKAqPRujyXLeBRjdDFr0OvsvN94cLpnI/vjjj3z33XcUFhYSGxvLLbfcQnx8vKPDcmluBi2XXdyZyy7uTE5eOStWp/HTuqNs3J7J0TyVo3nBfM0YYAyxwVq6BZQQq8kgtPwwEcYswg7vpezInlptagzuuIXH4h4Wi1t4LIbAcPSB4RiCwjAEhqPzCXRoomu1qtVJYYWJsgozuQVVfLZ8HyaztfrHVPNfS63bzBYrVquKxary/+3deXRU5fnA8e+9syWZJJOEQEFSSAIEBCJSFRREInU7ElnEqEW0yuLPowVPXbBaQLAgBQtWXFp7ZJFSpRSBICIVPLayWMIWMIAJIQlbwCxksiez3Pv7I8yFMQFiCAmDz+ecOTN573vvvO8DJ3ny5pn3aj94tIu2cyTnJLoOmg6aVvfs1Tnb1sBrnebftkVVdNoEuYlUy2lrLqeTtZAu5hPEWguINlegeIHjdQ8NcDZwDR0FS+TPUE0mTPZwzPZwTKEOzHYHprBIVLMFBYWQsFAqSgqpLimAfVsbHE/EPU81y7yaZfN1uQmBEKIZmdX6Se7kP9yN899/xeWB/FKFYyUKx51nn78vg5NlCjVuhcLTNRSeriHd76ohQOczj1swmxSiwi1EhuhEWN2Eq5UEecux1pZgrXUSrNYSfNpFcE4ZwWoxwepubIobs6JhVryYFQ1FNeENcqDZwtBtoWjWMDw2BybHzyjXgnBZw3FZwnFbHehq/RTx/x75BZbmumNjMwm4RHbbtm0sXbqUCRMm0K1bNz777DNmzZrFn//8ZxyO1r3Dz9WibZsQHk/pxeMpvSgtr2XLjhNs3ZnPlp0nOHyklCNFXo4UhQDdzjzApEKHcI2OQeU4tBJC3UWEq5U4iqoJP3iIMNM+bIoHi+LBqniwqR5sFgVLeBSm0AhMoZGYQyNQ7Q7UEAdqUAhYQ1AswbjVIGqx4lZsuLBQq1uo9Zqo9ejUunWqXTq1Lo0at061S0NRbRQVl1FZ5aKqxkNVdV2yWl3jprLq7MpmTe2lrb425MiJcmjGpNSMF1XRsCkeglQ3NsWNTXVjUzwEq27CTNWEqTV1z6YaQtUa2pgriDaX08ZcgVlpePsar2rFY7bjtoThskVQa4085zkSlzWCWlskbks4/zfmBpwb/tpscxJCiJ8Sqxli2+jEtqm/kqnrUFoD35cpnCxT+L5M4dSZBLe4UqFCcVDkrKW03IXHq1NQ4qLA+ACa/czj0j8sa8aLSanBpFRhIh9V0VHRUVUdVVFQFVBUhf1bd7JoSfMsSjSXgEtk161bxy9/+Utuv/12ACZMmMDu3bv56quvGDFiROsO7irkCLMxdEg8Q4fEA3C6tIa9BwpJ31/AoTwnOUdLyTlWSmWVm+NOleM4AAcQe4nvrAEVZx6XX5Diwqa6CVLcBJ15tqm+154zx1wEqW6sisf4DdeEhlnRMCl1z3XfDBo+ZqLuN2JV0TBT166e00dFrztP0VGp+/rcvwApZguqxYYaFIIaFILJFoJq872OqGu3BWMKsp9pD8ZjDmPTzqIzSWsoHrMdj9ku21sJIcQVQFE4s8WXTvef1U90f548DM1mp9bl5bSzhuKSaopKqik6XU2xs4bKKjcVlW4qqlx1r6vc57S5qXV5cLs1XG6Nqmo3mqbhbWB9w4MJj26qX1rwg/We6FPOZpt7cwmoRNbj8ZCTk+OXsKqqSmJiIllZWQ2e43a7cZ9Ts6goCsHBwZjNLTN1RVGw2RQ6xXW45GvZbFYsltb9J/tZtIW7bgvjrtvi/dqLnTWcOFnOie8rKC2r++3RWV5rvK6odFHr8uJy1z3cnsbX2JhVL1ZFx6rWreia8WDBgxUPFtWLWfFiUbxYFA82xYNVrTtmO9Pf1+ZbETb6KL42r5EwaoqKrpgAFU01oSsmdEUFTGiqBV0JQldUdMV85vnsa001E9Mxipys42iKCQ0VTTHXXRP1bBt11/Uoda815WxbXfqqMvKxewkOC6lLXs1WlCb+f62q0QiqyWzSuT42mxV7247n76CALTgYLTj8gvVVNpuVju0jLnEsFjrHXXNJ17jSrtOUa5gtZjxu//rlQJ9TIIyleb6PX1lzulLH0tD/8ZYaT/PN6SLfOxvBbLWhWyxYLBZC7UF06hjRpOtU1Wh8sr7uZ4GOXlfepulomoaug9UaRFVVFV5fvZunFtVTjeqpQfHUoHpqUTy1XJd4LRaL5SLv1jwam6cpelPuKdlKTp8+zVNPPcXMmTNJSEgw2pctW8aBAwd4/fXX652zYsUKVq5caXw9cOBAnn322RYZrxBCCCGEuHyurIrdy2DkyJEsWbLEeEyYMMFvhfZyq66u5qWXXqK6urrF3vOnTOLd8iTmLUvi3fIk5i1L4t2yAj3eAVVaEB4ejqqqOJ1Ov3an00lERESD51jOLMm3Fl3Xyc3NJYAWvgOaxLvlScxblsS75UnMW5bEu2UFerwDakXWbDYTHx9PRsbZexlrmkZGRoZfqYEQQgghhLj6BdSKLEBycjLvvvsu8fHxdO3alfXr11NbW0tSUlJrD00IIYQQQrSggEtkBwwYQFlZGStWrMDpdBIbG8srr7xy3tKC1maxWHjggQdatbzhp0Ti3fIk5i1L4t3yJOYtS+LdsgI93gG1a4EQQgghhBA+AVUjK4QQQgghhI8kskIIIYQQIiBJIiuEEEIIIQKSJLJCCCGEECIgBdyuBYFmw4YNfPrppzidTjp37szYsWPp2rVraw8r4K1evZq0tDROnDiB1WolISGBMWPGcM01Z++P7XK5WLp0Kdu2bcPtdtOnTx/Gjx9/xe5wEUjWrFnDRx99xL333svjjz8OSLyb2+nTp1m2bBnp6enU1tbSvn17nn76abp06QLUbWK+YsUKvvzySyorK+nRowfjx4+nQ4cOrTzywKRpGitWrGDz5s04nU6ioqIYPHgwo0aNQlEUQGJ+KQ4cOMDatWvJzc2lpKSEF154gX79+hnHGxPbiooKFi1axK5du1AUhf79+/PEE08QFBTUGlO64l0o5h6Ph+XLl7Nnzx4KCgoICQkhMTGR0aNHExUVZVwjEGIuK7KX0bZt21i6dCkPPPAAc+bMoXPnzsyaNYvS0tLWHlrAO3DgAHfffTezZs1iypQpeL1eZs6cSU1NjdHnww8/ZNeuXTz33HPMmDGDkpIS5s2b14qjvjpkZ2ezceNGOnfu7Ncu8W4+FRUVTJ06FbPZzCuvvMKbb77JY489ht1uN/qkpqby+eefM2HCBF5//XVsNhuzZs3C5XK14sgD15o1a9i4cSPjxo3jzTff5JFHHmHt2rV8/vnnRh+JedPV1tYSGxvLuHHjGjzemNguWLCAY8eOMWXKFH73u99x8OBB3n///ZaaQsC5UMxdLhe5ubmMGjWKOXPm8Pzzz5Ofn8/cuXP9+gVEzHVx2bz88sv6Bx98YHzt9Xr1J598Ul+9enXrDeoqVVpaqqekpOj79+/XdV3XKysr9Ycfflj/5ptvjD7Hjx/XU1JS9MzMzNYaZsCrrq7WJ02apO/du1d/9dVX9cWLF+u6LvFubsuWLdOnTp163uOapukTJkzQU1NTjbbKykp99OjR+pYtW1piiFed2bNn6++9955f2xtvvKG/9dZbuq5LzJtTSkqKvn37duPrxsT22LFjekpKip6dnW302bNnj/7ggw/qxcXFLTf4APXDmDfk0KFDekpKil5YWKjreuDEXFZkLxOPx0NOTg6JiYlGm6qqJCYmkpWV1YojuzpVVVUBEBoaCkBOTg5er9cv/h07diQ6Olrifwk++OAD+vbty3XXXefXLvFuXjt37iQ+Pp758+czfvx4Jk+ezKZNm4zjBQUFOJ1Ov3+HkJAQunbtKvFuooSEBDIyMsjPzwcgLy+PzMxM+vbtC0jML6fGxDYrKwu73W6U1gAkJiaiKArZ2dktPuarUVVVFYqiEBISAgROzKVG9jIpKytD07R69YERERHGN0rRPDRNY8mSJXTv3p1OnToB4HQ6MZvNfn+KBXA4HDidzlYYZeDbunUrubm5zJ49u94xiXfzKigoYOPGjQwdOpSRI0dy+PBhFi9ejNlsJikpyYipw+HwO0/i3XQjRoygurqa3/72t6iqiqZpPPzwwwwaNAhAYn4ZNSa2TqeT8PBwv+Mmk4nQ0FCJfzNwuVz84x//YODAgUYiGygxl0RWBLyFCxdy7NgxXnvttdYeylWrqKiIJUuWMGXKFKxWa2sP56qnaRpdunRh9OjRAMTFxXH06FE2btxIUlJS6w7uKvXNN9+wZcsWJk2axM9//nPy8vJYsmQJkZGREnNxVfN4PLz55psAjB8/vpVH8+NJInuZhIeHo6pqvd9anE6nfIq7GS1cuJDdu3czY8YM2rRpY7RHRETg8XiorKz0WyUsLS2V+DdBTk4OpaWlvPTSS0abpmkcPHiQDRs28Pvf/17i3YwiIyOJiYnxa4uJiWH79u0ARkxLS0uJjIw0+pSWlhIbG9tSw7yqLFu2jOHDhzNw4EAAOnXqRGFhIWvWrCEpKUlifhk1JrYRERGUlZX5nef1eqmoqJDvMZfAl8QWFRUxbdo0YzUWAifmUiN7mZjNZuLj48nIyDDaNE0jIyODhISEVhzZ1UHXdRYuXEhaWhrTpk2jXbt2fsfj4+MxmUx8++23Rlt+fj5FRUUS/yZITEzkT3/6E3PnzjUeXbp04dZbbzVeS7ybT/fu3euVIOXn59O2bVsA2rVrR0REhF+8q6qqyM7Olng3UW1tLarq/yNRVVV0XQck5pdTY2KbkJBAZWUlOTk5Rp+MjAx0XZctLZvIl8SeOnWKqVOnEhYW5nc8UGIuK7KXUXJyMu+++y7x8fF07dqV9evXU1tbK3+magYLFy5ky5YtTJ48meDgYGPlOyQkBKvVSkhICEOGDGHp0qWEhoYSEhLCokWLSEhIkB86TRAcHGzUH/vYbDbCwsKMdol38xk6dChTp05l1apVDBgwgOzsbL788kuefPJJABRF4d5772XVqlV06NCBdu3asXz5ciIjI7nppptaefSB6YYbbmDVqlVER0cTExNDXl4e69at4/bbbwck5peqpqaGU6dOGV8XFBSQl5dHaGgo0dHRF41tTEwM119/Pe+//z4TJkzA4/GwaNEiBgwY4LfvqTjrQjGPiIhg/vz55Obm8tJLL6FpmvFzNDQ0FLPZHDAxV3Tfr5vistiwYQNr167F6XQSGxvLE088Qbdu3Vp7WAHvwQcfbLD96aefNn5R8G3Qv3XrVjwej2zQ38ymT59ObGxsvRsiSLybx65du/joo484deoU7dq1Y+jQodxxxx3Gcf3MBvKbNm2iqqqKHj16MG7cOL+bgojGq66u5p///CdpaWmUlpYSFRXFwIEDeeCBBzCb69Z8JOZNt3//fmbMmFGvffDgwTzzzDONim1FRQULFy7025x/7NixV9Tm/FeSC8U8JSWF3/zmNw2e9+qrr9KrVy8gMGIuiawQQgghhAhIUiMrhBBCCCECkiSyQgghhBAiIEkiK4QQQgghApIkskIIIYQQIiBJIiuEEEIIIQKSJLJCCCGEECIgSSIrhBBCCCECkiSyQgghhBAiIMktaoUQAaGhu7mZTCbCw8Pp1q0b9913H927d6/XZ/r06Rw4cIB33nmHdu3atcRQG+2ZZ56hsLCQFStWGG0FBQX17rijKAqhoaHExcVxxx13cPPNN7f0UIUQ4ookiawQIqAMHjzYeF1dXc2RI0dIS0tjx44dTJw4kVtvvbUVR9d8bDabkbB6vV5OnDjBvn372LdvH8OHD+eRRx5p5REKIUTrk0RWCBFQnnnmGb+vNU3j448/JjU1lcWLF3PzzTdjNgf+t7bw8PB6c/3Pf/7De++9x9q1axk0aBCdOnVqpdEJIcSVQWpkhRABTVVVHnroIUwmE+Xl5Rw/fry1h3TZJCUl0atXL3RdZ8eOHa09HCGEaHWBv2whhPjJM5vNhISEUF5ejtfrbfR5x48fZ9WqVWRkZFBeXk54eDiJiYncf//9XHPNNQ2es3v3bj777DNycnJwuVxER0fTr18/RowYgd1ur9ff5XLxySefsGXLFpxOJ1FRUQwaNIj777+/SXONi4tj//79FBcXA2dranv27MnkyZP517/+RVpaGqdPn+buu+/m8ccfB6CiooK1a9eyY8cOCgoKMJvNxMfHk5yczA033FDvfY4ePcqaNWvIysqipKSEoKAgoqKi6NWrF8OHDycyMtLom5mZSWpqKnl5eTidTux2O9HR0fTu3ZtRo0YRFBQEwIoVK1i5ciVPP/00SUlJ9d6zoZrh/fv3M2PGDAYPHswjjzzC8uXLSU9Px+l08uijjzJ06FAAioqKSE1NJT09ndOnT2O1WunevTsjR45ssHZaCHF1kERWCBHwCgoKKC8vx2Qy0b59+0ad8+233zJnzhxcLhdxcXH07NmT/Px8vv76a9LS0nj55Ze59tpr/c5ZvXo1H3/8MSaTiZ49exIWFmYkcWlpacyYMYOIiAijv8fjYdasWRw8eBC73U7fvn3xeDysXbuW3NxcdF3/0XOtrq4GqFc+4XK5mD59OoWFhfTs2ZO4uDgjsc7Pz+cPf/gDxcXFtG3blj59+lBTU8OhQ4eYM2cOY8aMYdiwYca1cnJymDp1Km63m86dO9OlSxdqa2spKChg/fr13HTTTUYiu3PnTt544w0AunbtSkJCAlVVVZw8eZLU1FTuvPNOI5G9FGVlZbz88st4vV569OiBy+XCZrMBkJWVxezZs6msrOSaa66hb9++lJeXs3fvXtLT05k0aRIDBgy45DEIIa48ksgKIQJWTU0NeXl5fPjhhwDcddddDa6KNnTeggULcLlcjB07lnvuucc4tm7dOpYuXcqCBQt46623sFqtAGRnZ7N8+XKCgoKYOnUq3bp1A8DtdvP222/zv//9j4ULF/L888/7XevgwYPExcUxZcoUwsLCADh16hSvvvoqJSUlP2q+LpeLffv2AdC5c2e/Y9nZ2SQkJPDOO+/4xUDTNObPn09xcTFjxowhOTkZVVWNccycOZOPPvqI66+/3qi5Xb9+PW63m0cffZT77rvP731OnDhBSEiI8fWnn36Krus899xz9XZTyM7ONuZ8qfbs2UO/fv2YNGmS8W8CUFVVxbx586iurmbixIkMGjTIOHb48GFmzpzJX//6V3r37k14eHizjEUIceWQGlkhREB58MEHjcdjjz3GtGnTyM/PZ+zYscaf0S/mm2++obS0lISEBL8kFiA5OZn4+HiKi4vZvn270b5hwwZ0Xeeee+4xklgAi8XCuHHjsFqtpKWlUVRUZBz74osvAHj00Uf9Err27dszatSoRs/Z4/Fw9OhR5s+fT2FhIWFhYdxyyy31+j3xxBP1EvmdO3dy9OhR+vfvz7Bhw4wk1jeOxx57DE3T+PLLL4328vJyABITE+u9R8eOHf3KCsrKygC47rrr6vXt2rUrwcHBjZ7nhVgsFsaOHeuXxAJ89dVXlJSUcO+99/olsQBdunRh1KhR1NTU8PXXXzfLOIQQVxZJZIUQAWXw4MHGY8CAASQkJFBTU8PKlStJT09v1DUOHjwIcN6tunwJka8fwHfffed37FwOh4PrrrsOXdfJzMwE6mo2i4qKcDgc9O7du945F9smrLCw0EjYR48ezQsvvMDu3btxOBy8+OKLfquiAJGRkXTp0qXedXwruP3792/wfXr06AHUrZ76xMXFAbBw4UL2799/wbrj+Ph4AN5++22ys7PRNO2C82qquLg4oqKi6rVfbH6+8pBz5yeEuHpIaYEQIqD8cEsqgNzcXKZPn87cuXOZN2/eeT+o5eP7k/75bpDQtm1bAE6fPl3vHN+xH/Jdy3eO7zk6OrrB/iEhIdjtdiorKxs8fu4+sqqqYrfbiYuLo1+/fkZt6LnO9z6FhYUALFiwgAULFjTYB86uwgIMGzaMzMxM44NWQUFBJCQk8Itf/IKkpCS/JPpXv/oVR48eZdeuXezatQu73U6PHj248cYbGTRoUL0V1KY63/wKCgoAmDp16gXPP3d+QoirhySyQoiA57vj1aeffsoXX3zR6BKD81EUpXkGdgka2kf2QiwWS4PtvhXS66+/HofDcd7zzy19CAkJYdq0aWRmZrJz504OHDhARkYG+/btY/Xq1bz22mt06NABqEsw//jHP5KRkcGuXbs4ePCgkdSuXbuWmTNnNrpO9kKrueebn+8DczfffHODCb5Px44dGzUGIURgkURWCHFV8K2Injx58qJ9fTWevtXKH/K1n/un7MjISAoKCigqKiImJuai5/je49ya2XNVVVWddzW2ObVp0waAIUOG/Khb2yqKQo8ePYzSg9LSUpYsWcLWrVv5+OOPee6554y+JpOJPn360KdPH6AuFn/5y1/IyMggNTWVMWPGAGd3Wqipqan3fpqm4XQ6mzS//Px8RowYYZQ5CCF+OqRGVghxVfj+++8BGrXVk69ucuvWrQ0e37x5s18/OFtLumXLlnr9y8rK2Lt3L4qiGHuWtm3bljZt2lBaWsqBAwfqnbNt27aLjrM5+D6ElZaWdknXcTgcpKSkAHDs2LEL9m3bti3Dhw+v19eX3Ofn59c7JyMj40ftAezj+0Dapc5PCBGYJJEVQgS83Nxc41P3ffv2vWj/W265BYfDwXfffcemTZv8jq1fv57Dhw8TFRXl9wGie+65B0VR+Pzzzzl8+LDR7vF4WLRoES6Xi379+vnVct51110ALF26lIqKCqP9+++/Z+XKlU2b7I/Uv39/YmJi2LJlCytXrsTtdvsd13Wd7777zvgwG9TttuCrPT3Xnj17AP961XXr1jW4kurr61sRhrO/GGzevNnv+gUFBSxevLgJs4M777wTh8NBamoqmzZtqlee4PV6SU9P5+jRo026vhDiyialBUKIgPLuu+8arz0eD0VFRWRlZaHrOjfccAO33XbbRa8RFBTEpEmTmDNnDn/729/YtGkTHTp0ID8/n9zcXIKCgnj22Wf9PqjUtWtXHnroIZYvX86UKVP8bohQXFxMhw4dGDdunN/73HfffezevZvMzEwmTpxI7969cbvdZGRk0Lt3b1RVPW/pQXMxmUy8+OKLzJo1ixUrVvDvf/+bTp064XA4KC8vJy8vj9LSUn79618bq84bN27kgw8+ICYmho4dO2IymThx4gRHjhzBYrH4bR22cuVK/v73vxMbG0v79u3RdZ0jR45w8uRJQkND/fahbd++Pbfddhtff/01kydP5tprr8XlcpGVlUXfvn1xuVznLfc4H7vdzosvvmj8W37yySd06tQJu92O0+kkNzeXyspKXnjhBWOfXCHE1UMSWSFEQPnvf/9rvFYUBbvdTs+ePRk0aBBJSUl++6ReSGJiIrNnzzZuUXvkyBHCw8MZNGgQo0aNanDng/vvv5/Y2Fg+++wzDh8+bNyidtiwYYwYMYLQ0FC//mazmSlTphi3qN21axeRkZEMHTqUlJQUnn322UsLRiN16NCBuXPnsmHDBrZv386hQ4fwer1EREQQGxvLjTfe6Lcv7UMPPcSOHTvIzs4mIyMDj8dDVFQUQ4YMYdiwYX6xGTt2LOnp6eTk5Bjbn7Vp04bk5GSSk5PrbZn11FNPERUVxebNm9m7dy9t2rRh5MiRjBgxgokTJzZpfgkJCcybN49169axZ88eo5QjIiKCa6+9ln79+jW4z60QIvApelPukSiEEEIIIUQrkxpZIYQQQggRkCSRFUIIIYQQAUkSWSGEEEIIEZAkkRVCCCGEEAFJElkhhBBCCBGQJJEVQgghhBABSRJZIYQQQggRkCSRFUIIIYQQAUkSWSGEEEIIEZAkkRVCCCGEEAFJElkhhBBCCBGQJJEVQgghhBAB6f8BB5BrovbXTJkAAAAASUVORK5CYII=\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr0AAAGQCAYAAACj/titAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXkklEQVR4nOzdd3hU1dbA4d+ZnknvgZAQIAmhVxFBBAFBAQUUxXpVLliwe+0V7H7qvfaOYkdEFBEQEAFB6R0ChJJQQwrpber5/ggZCUkgCRMmmaz3eSbJnLLPmrOnrOzZZ29FVVUVIYQQQgghvJjG0wEIIYQQQgjR0CTpFUIIIYQQXk+SXiGEEEII4fUk6RVCCCGEEF5Pkl4hhBBCCOH1JOkVQgghhBBeT5JeIYQQQgjh9STpFUIIIYQQXk+SXiGEEEII4fUk6RVVDBo0CEVRzrqcuLg44uLizj4gUWvVnfPp06ejKArTp0/3SEzi7Hhb/aWlpaEoCrfccovHYlAUhUGDBlVaNmXKFBRFYdmyZR6JCRrHuTnVsmXLUBSFKVOmeDoUIc6aJL1eSlGUSjej0Uh4eDg9e/Zk4sSJLFiwAIfD4ekwz5q7EnR3uuWWW6qcf19fXzp37sxjjz1Gbm6up0P0Sqee81NvjTVpbIpJRUUifvLNz8+PVq1aMXToUJ555hn27NnTIMduiufrZNUl3OLMfv/9d8aPH09sbCwmk4mgoCDOO+88pk6d6tb31Mb4mSLcR+fpAETDevbZZwFwOBzk5eWxY8cOvvrqK6ZNm0bv3r355ptvSExMrLTPl19+SUlJiSfC9SqjR4+me/fuABw7doy5c+fy6quvMmvWLNauXUtISMg5iWPs2LH07duXFi1anJPjeVrFc/5UFXXR1DTm+uvWrRtjxowBoLS0lMzMTNasWcPzzz/Piy++yD333MPrr7+OTvfPR010dDQ7d+4kMDDQQ1HDzp07MZvNHjt+TRrDuWlsLBYLEydO5Ouvv8bHx4fLLruMxMREioqK+OOPP5gyZQrvvvsuP/74IxdddJGnwxWNnCS9Xq661pCMjAzuuecefvjhB4YOHcr69euJiIhwrY+NjT2HEXqvMWPGVPqa8vXXX+f8888nOTmZd955p8bkzN0CAwOb1YdoU20BrEljrr/u3btXe76XLl3KLbfcwltvvUVZWRkffviha51erycpKekcRlmVp49fk8ZwbhqbO++8k6+//pqePXvy888/ExMT41qnqirvvfce9913HyNHjmTt2rV06NDBg9GKxk66NzRDkZGRzJgxg0GDBnHo0CFeeumlSuur+3rHarXy7rvvMmLECFq3bo3RaCQkJIShQ4eyYMGC0x4vPz+fu+++m+joaEwmEx07duTtt99GVdVqt1+zZg3jxo0jKioKg8FATEwMt99+O0ePHnVtU9H3bfny5UDlr7ZP/erw8OHD3H333bRt2xaj0UhoaChXXHEF69atq3LswsJCnn/+eTp37kxAQAD+/v60a9eO8ePHs2HDhtM+zjPx8/Pj5ptvBmDt2rWu5Xa7nffff5++ffsSEBCA2WymR48evPvuuzidzirlqKrKu+++S6dOnTCZTERHR3P33XeTn59f7XFP1yd04cKF9O/fH19fX0JCQhgzZgy7du1yddFIS0tzbXtyf8OUlBTGjx9PREQEGo2mUj/IhQsXMmLECMLCwjAajbRr146HH36YvLy8auOrS/24w+n6mtfUr7PieZWdnc1tt91GixYtMBqNdOrUic8//7zGYy1atIjLL7+ciIgIjEYjMTExjB49mt9//x0o7wpz8cUXAzB16tRKz+OKGE5Xfxs2bOCqq65yld+6dWsmT55Menp6lW1PrtOPPvqILl26YDKZiIyM5Lbbbqvx+VMfF198MQsXLsRgMPDxxx+zadMm17qa+q1mZGTw0EMP0b59e3x9fQkKCqJ9+/bccsst7N+/3/UY6nK+fvvtNwYNGkRgYGCl97QzdTH44osv6NGjBz4+PkRERDBhwgSOHTtWZbu6PJcq4gJYvnx5pdgr/nE4XZ/e9PR07rrrLuLi4jAYDISHh3PllVdW+7508jlYunQpgwYNwt/fn4CAAEaOHMnOnTtrfOyns2rVKoYOHUpgYCD+/v4MHz6c9evXV9rm8ccfR1EUvvjii2rL2LBhA4qiMGrUqDMeb+XKlXz++ecEBwfz66+/Vkp4obwe7777bh5++GGKioq49957K62v7n2swqndZOr6mXLvvfeSkJCAj48PISEh9OnTh+eff77ax1vX12hqairvvvsuHTt2xGQyERcXx0svveT6zPzhhx/o06cPvr6+REREcPfdd1NaWlrtOax4P4+JicFgMBAZGcn111/P7t27q93e20lLbzOl0Wh46qmnWLZsGd999x3/+9//TtuPKScnh/vuu49+/fpxySWXEB4eTnp6OnPnzmXEiBF88sknTJw4scp+VquVoUOHkpeXx7XXXovVauXHH3/kvvvuY/fu3bz33nuVtv/ss8+47bbbMBqNXHHFFcTExLBnzx4+/fRT5s6dy+rVq4mNjSUoKIhnn32W6dOnc+DAgUqtpid/CG3cuJFhw4aRk5PD8OHDufLKK8nOzubnn3/mwgsv5KeffmLEiBFAeTJ56aWX8vfff3PBBRcwceJEdDodhw8fZunSpQwYMIBevXqd1XmveNOqONc2m43LL7+chQsX0r59e66//npMJhNLly7lnnvuYc2aNXz11VeVyrj//vt5++23adGiBbfddht6vZ45c+awZs0arFYrBoOhVrHMmDHDdbxrrrmGFi1auB57t27datxv3759nH/++SQmJnLDDTdQWlpKQEAAUJ6ITJkyhZCQEEaNGkVERARbt27l9ddfZ/78+axatcq1LdStfjwtLy+P/v37YzAYGDduHBaLhR9++IEJEyag0Whc/9BUePbZZ3nuuefw8/NjzJgxxMTEcPToUf7++2++/vprhg4d6uoa8MUXXzBw4MBKH65nugj0119/5aqrrkJVVcaNG0fr1q3ZsGEDH3zwAXPmzGHlypW0adOmyn6PPPIICxcu5PLLL2fYsGEsXbqUTz75hL179/LHH3+c7WlySUpK4pprruHrr7/m22+/pUePHjVuW1JSQv/+/dm3bx+XXHIJl19+OaqqcuDAAebMmcO4ceNo27Ztnc7XrFmz+O2337jsssu44447OHDgQK3i/t///seiRYsYP348l156qSvxWrZsGWvWrCE8PLyupwIobxV/9tlnmTp1Kq1bt66U2J6pj29qaioXXnghR48eZfDgwVx33XUcOnSIH374gXnz5vHjjz9Wm0T++uuvzJkzx3UOkpOTmT9/PuvWrSM5OZmwsLBax79mzRpefvllhg4dyl133cXevXuZPXs2f/75J4sWLWLAgAEA3H777fzf//0fH3/8cZXXBMBHH30EwB133HHGY37yyScATJo06bTdex599FHefPNNfv/9d1JTU6t93p9JbT9T1q9fz/Dhw8nJyeGiiy7iyiuvpKSkhOTkZKZMmcLTTz/t2ra+r9GHHnqIZcuWuV6jv/zyC08++SRWq5WQkBAee+wxxowZw4ABA1i8eDHvvfceDoeDDz74oFI5v/32G1deeaXrcyY+Pp7Dhw8ze/Zs5s2bx9KlS+nZs2edz1WTpgqvBKhnqt6ysjJVp9OpgLp//37X8oEDB1bZt6ysTD106FCVMvLy8tROnTqpwcHBaklJSaV1rVu3VgG1f//+allZmWv58ePH1bZt26qAunz5ctfy3bt3q3q9Xm3Xrp16+PDhSmX9/vvvqkajUceMGVNpeXWxVrDZbGq7du1Uo9GoLlu2rNK6I0eOqC1btlSjoqJcsW3dulUFqhxDVVXV4XCoOTk51R7nVDfffLMKqJ9//nml5YWFhWqHDh1UQH3uuedUVVXVZ599VgXUu+++W7Xb7a5t7Xa7OmHCBBVQf/75Z9fyv/76SwXUdu3aqcePH3ctLy0tVfv27asCauvWrSsd9/PPP68ST0FBgRoUFKQaDAZ18+bNlbZ/9NFHXc+f1NRU1/LU1FTX8scff7zK4/7jjz9UQL3gggvU3NzcamO4//77XcvqWj9nUhHbs88+W+V28mNv3bp1lXNUoaI+li5dWm3Z//73vyvV044dO1StVqt26NCh0vYLFy5UAbVNmzZVnsuqqlZ6LS1dutQVd3Wqq7/CwkI1JCRE1Wg06p9//llp+1deeUUF1EsuuaTS8ornZUxMjHrgwAHXcpvNpg4YMEAF1DVr1lQbQ00x3Xzzzafd7tNPP1UB9aKLLnItq3genbzvL7/8UuX5UcFisagFBQWu+7U9X4qiqAsWLKh2G0AdOHBgpWUVda/X69WNGzdWWnf//fergDphwoRKy+v7XDr12BWqOzeqqqrDhg1TAfWFF16otPyvv/5StVqtGhISohYWFrqWV5wDrVar/v7775X2eeyxx1RAffXVV6uN4VQV5xtQ33nnnUrrfv75ZxVQ4+PjVYfD4Vo+cuRIFVC3bdtWafuCggLVz89PjYmJqfQ6qknF58SiRYvOuG2/fv1UQP3qq69cyyqe8ye/j536uE59Hp3uM8VisahxcXEqoH7zzTdV1p/8uj6b12jr1q0rvW/k5uaqoaGhqtlsVsPCwtTk5GTXurKyMrVDhw6qwWBQMzIyXMtzcnLUoKAgNTQ0VN2xY0el42zbtk319fVVe/ToUe3j9GbSvaEZq/gqGSArK+uM27Zq1arK8sDAQCZMmEBubm6NX0e//PLLGI1G1/2QkBDXf8MnfzX8wQcfYLPZeOutt4iOjq5UxpAhQ7jiiiuYO3cuhYWFtXp88+bNY9++fdxzzz0MHDiw0rqWLVvyyCOPcOzYMZYsWVJpnY+PT5WyNBoNwcHBtTpuhZ9//pkpU6YwZcoU7rzzTtq3b8/OnTtp164dd999N06nk3feeYeoqCj+97//odVqXftqtVreeOMNFEXhm2++cS2vOF9PPvlkpQvhTCYTL7/8cq1jmzNnDnl5edxwww1VWnWfeuopgoKCatw3MjKy2v7Ib7/9NlDeOnPq/rfccgvdu3ev9FjqWz9nMnXq1Co3d4zcYDab+e9//1upnjp27Ej//v3ZuXMnRUVFruXvvPMOAG+88UaV5zJQ7WupLubMmUNOTg7jx493tbBV+M9//kNcXByLFy/m4MGDVfZ95plnKvXb1+l03HrrrUDlbjfuUPHYz/T+UqG6157BYMDf37/Oxx49ejSXXnppnfe76aabqrRKT5kyhcDAQL799lssFkudyzwbhw8fZtGiRcTGxvLII49UWtevXz+uu+46cnJymD17dpV9r732WoYMGVJp2W233QbUva7j4+OZPHlypWWjR49m4MCB7N27lxUrVriW33nnncA/rboVvv32W4qKipg4cWKl11FNKroAnNqtoToV25zcDc7d5s6dS1paGldccQXXX399lfUnv67P5jX69NNPV3rfCAoK4oorrqCkpIQ777yzUr9lo9HI+PHjsVqtlbqtfPnll+Tl5TF16lQ6duxYqfzOnTszadIkNm3aRHJyct1PRBMm3RuaOfWUr9tPZ8eOHbz22mv8+eefpKenU1ZWVmn9kSNHquyj0+no169fleUVX+ed3Ndv1apVQHl/t+oS6MzMTBwOBykpKbXqZlBR3oEDB6q92KZiSKWdO3cyYsQIOnbsSPfu3fnuu+84cOAAo0eP5sILL6R379617jJwsjlz5jBnzhyg/MM8Li6OG264gccee4zg4GB27dpFTk4OCQkJvPDCC9WW4ePjU+mNbOPGjQBVkkSACy+8sFYfJPDPeb/wwgurrPPz86N79+41jlfarVu3Sv/EVFi1ahV6vZ4ffviBH374ocp6q9VKVlYWx48fJzQ0tM71U1sVz2l3S0hIqNQ1o0LFh21ubi5+fn4ArF69GkVR6pV01UbF82Dw4MFV1ul0Oi666CLS0tLYtGlTlQtTe/fuXWWfkx+DO9X2/WXgwIFER0fzyiuvsHHjRkaMGEH//v3p3r17rZ/Tp+rTp0+99qvutRUYGEj37t1Zvnw5O3fuPKcjgVS8VgcMGIBer6+yfvDgwXz99dds2rSJf/3rX5XWubOuBwwYgEZTtZ1s0KBBLF++nE2bNrnO3WWXXUabNm346quvePXVV10jZXz88cfodLpqu8I1BatXrwbKH9+ZuPs12rJlS4BqP/sqEuTDhw+7llW8v27ZsqXa99eUlBSg/P311KTYm0nS24yVlZWRk5MDcMZ+aqtXr2bw4MHY7XZXq2tAQAAajYbNmzczZ86caltAwsLCqv3QioqKAqh08czx48cBeO21104by8ktaqdTUV51CVh15Wm1Wv744w+ee+45Zs2axaOPPgqAv78/N998My+//LIrqamNzz///LSDzFfEt2fPHqZOnXrG+OCf8xUZGVllO51OV+s+eqcr53TL4Z+6O9Xx48ex2+2nfSxQ/nhCQ0PrXD+eVlPrd8VwXCePe52Xl0dwcHC1LZfuUFF/NfVzrFhe3cWD1T2O6h6DO1S0up3p/SUgIIDVq1fz7LPP8ssvv7Bw4UKg/P1j8uTJPPXUU9UmfKdT0/P0TGp67lf3nnUuNJa6rst50Wg03H777Tz22GN8//333HrrrWzYsIGNGzcyZswYVwJ3JlFRUaSmpnLo0KEzjmpx6NAhgFqXXR8V57i6b29OdTb1Vt1oLRX1drp1NpvNtazi/bWiX3RNGsv767ki3RuasZUrV2K324mMjDzjRTMvvPACpaWlLFq0iAULFvDmm2/y3HPPMWXKFM4///wa98vOzq72zbXiSuiTX8AVf+fn56Oqao236lpiqlNR3pw5c05b3slf1QcHB/O///2PQ4cOuS6gS0pK4t1333V9ZecuFfGNHTv2tPGlpqZW2ScjI6NKeXa7nezs7Fodu6LFsrpyTrccam61CwwMJDg4+LSPRVVVWrduXemx1KV+3EGj0WC326tdV9MIE3UVFBREbm5ujVdUn62Kc1fdiALwz9fCnh7qbOnSpQCnfY+o0KpVK6ZNm0ZmZibbt2/n7bffJjQ0lOeee47nnnuuzseu7wQDNT33q3vPOhfPpcZS13U5LwATJkzAaDS6ujhU/L799ttrfcyKb6IqRjupSW5urmsUi/79+7uWV7RMV1dH9amfin8iqvtW81SerreKcrds2XLa99fqLjb0ZpL0NlNOp5MXX3wRoNq+Safau3cvISEh1V5lXDHES3Xsdjt///13leUVX52f3Heub9++AJX6hp1JRStydYl1fco7WXx8PP/+979Zvnw5fn5+rq4K7pKUlERQUBCrV6+u9B/66VRcaVvdOV+5cmWtW28qzvvKlSurrCsqKmLz5s21Kudkffv2JTc3lx07dtR6e6h//dRXcHAwGRkZ1Z7zU4dfqq++ffuiqiq//fbbGbc93XO4JhX1V10XFLvd7jqnnrwye9euXfzwww8oilKr95gKiqLQqVMn7rnnHhYvXgyU94+vUJ/zVRfVvbby8/PZvHkzJpOpUn/K+jyXNBpNveq6opHiVBX/WDR0Xa9cubLaIRSrey+H8tb9cePGsWbNGv766y++++472rRpw7Bhw2p9zIpuEJ9++ulp/xF//fXXsVgsDB06tNJoCBXXYVS0Ap+spvqpzWfKmYbpBM+/Rj31/trYSdLbDGVmZnLttdeybNkyYmNjeeKJJ864T1xcHDk5OWzdurXS8mnTprm+iqzJ448/XqnrQ05OjqsPa8UFNAB33303er2eBx54wNXf6GRWq7XKC7jiQrzqLgYYPXo07dq147333mP+/PnVxrZq1SrX7HOpqamu8UBPlpubi8VicftX1TqdjnvuuYf09HTuvffealsF09PTK11oUNFd4sUXX3R1TYHyriqPP/54rY89evRoAgMD+eabb9iyZUuldS+88EK9WkEeeOABoHx4oeouJikuLnb1iauIoS714y59+vTBbrdXGV93+vTp/PXXX245xj333AOUX7BSXavQyctO9xyuyZgxYwgJCeG7776rdE4B3nzzTVJTUxk6dKjHJppZvnw5l156KVarlTvvvPO0Q+BB+fUC1SU1FctOnj2tPuerLr766qtK1xpA+YVs+fn5XHfddZX6s9fnuRQaGlptElaTVq1acckll5CWlsabb75Zad2aNWv49ttvCQ4OZuzYsbUusz727NnD+++/X2nZnDlzWL58OfHx8VUu1oJ/LmgbP348RUVFTJo0qdp+wTW56KKLuOmmm8jJyWHUqFGV+qxW+PDDD3n11Vfx8/PjrbfeqrSuol/3qV/xb9u2rcq2FU73/Lr88suJi4vjl19+4bvvvquy/uT4PP0avfXWWwkKCmLq1KnVXrTodDprvG7Dm0mfXi9X0YHd6XS6piFeuXIlVquVPn368M0339SqH+j999/PwoULufDCC7nmmmsIDAxk/fr1rFy5knHjxjFr1qxq92vRogUWi4XOnTtzxRVXYLPZmDVrFunp6UyePLnStJFJSUl89tlnTJgwgU6dOnHppZeSmJiIzWbj4MGDrFixgvDwcHbt2uXaZ8iQIfzwww9ceeWVjBgxAh8fH1q3bs1NN92EXq9n9uzZDB8+nJEjR9KvXz+6d++O2Wzm0KFDrFu3jv3795Oeno7ZbGbLli1ceeWVnHfeeXTo0IGWLVuSlZXFnDlzsNlsrj6+7vT000+zZcsWPvzwQ+bOncvgwYOJjo4mMzOTPXv28Ndff/Hiiy+6LjTo378/99xzD++88w6dO3dm3LhxrnF6g4ODaz1VbUBAAO+99x433XQT/fr1qzRO75YtWxg4cCDLly+v0wfUkCFDeOWVV3j88cdJSEhgxIgRtGnThqKiIg4cOMDy5cu58MILXa2fda0fd7nnnnv4/PPPufPOO1myZAkxMTFs3ryZVatWMWrUKH799dezPsawYcN46qmneOGFF+jQoYNrnN6MjAxWrlxJ3759XSNKtG/fnujoaGbMmIFer6d169YoisJNN93k6gpyKj8/Pz777DOuvvpqBg4cyNVXX01sbCwbNmxg0aJFREVFVblyviFs3rzZ9R5jsVjIyMhgzZo1JCcno9FoePDBB/m///u/M5azePFiHn74YS644AISExOJiIjg8OHDzJkzB41Gw8MPP+zatj7nqy4uu+wy+vfv73pNrFy5kpUrVxIXF8crr7xSadv6PJeGDBnCjBkzuPzyy+nZsyd6vZ6LLrrotFPofvjhh/Tv35+HH36YRYsW0bt3b9c4vRqNhs8//7xeI1zUxaWXXsp//vMfFixYQLdu3Vzj9JpMJj777LNq3yv69+9Pt27d2LJlC3q9ngkTJtT5uB9//DF2u53vvvuO9u3bc9lll5GQkEBxcTFLly5l+/bthIaG8uOPP1a5IGv06NEkJCTw3XffcfjwYc4//3wOHjzInDlzGD16NDNnzqxyvNN9phgMBn744QeGDRvG9ddfz0cffUTfvn0pKytj586dLFmyxNUa7+nXaGhoKLNmzXJNYz5kyBA6deqEoigcOnSIVatWcfz48SoXpHu9BhgGTTQCnBhXseJmMBjU0NBQtWfPnurEiRPVBQsWVBpX8WQ1jVM4d+5c9fzzz1f9/PzUwMBA9ZJLLlGXL19e7TiiqvrPGJZ5eXnq5MmT1ZYtW6oGg0FNSkpS33rrLdXpdFZ7/K1bt6o333yzGhsbqxoMBjU4OFjt1KmTetttt6lLliyptK3dblcff/xxtU2bNq4xh08dAzMjI0N99NFH1U6dOqk+Pj6qr6+vGh8fr1511VXqV199pdpsNlVVy8dYfPzxx9V+/fqpkZGRqsFgUKOjo9VLL71UnT9/fi3PfM3j9NbE6XSqX375pTp48GA1ODhY1ev1asuWLdX+/furL774onrw4MEq27/zzjtqUlKSajAY1BYtWqiTJ09W8/Lyqh03tKb6UVVVnT9/vnrBBReoPj4+alBQkHrFFVeoO3fudI2zefJ4uzWNIXqqFStWqFdffbXaokULVa/Xq2FhYWq3bt3UBx54QF23bl2V7WtbP2dS8VyvjRUrVqgDBgxQfXx8VH9/f3XEiBHqli1b6jW26unGAp03b546fPhwNTg4WDUYDGqrVq3UMWPGVHker127Vh08eLAaEBCgKopSKYbT1d/atWvVMWPGqGFhYaper1djYmLUO+64Qz1y5Eid4jzT2Lenqojp5JvZbFajo6PVIUOGqM8884y6Z8+eavet7nmUnJysPvDAA2qvXr3UsLAw1WAwqK1bt1avuuoq9a+//qr2cdfnfFWorj5PrvvPP/9c7datm2oymdSwsDD1lltuUY8ePVptWXV9LmVkZKjXXXedGhERoWo0mkrn/XSvscOHD6t33HGHGhsbq+r1ejU0NFQdPXq0unbt2irbnukcnO75fKqTnxt///23OmTIENXf31/18/NTL7nkkmqPf7I333xTBdRx48bV6ng1WbhwoTpu3Dg1OjpaNRgMakBAgNqzZ0/12WefrTRm+akOHjyoXnPNNWpwcLBqMpnU3r17qz/++GONz/nafKYcOHBAvfPOO9W4uDhVr9erISEhap8+fdQXX3yxyvHd9Rqt6fmkqqev79TUVPWuu+5S4+PjVaPRqPr7+6vt27dXb7zxRvWnn36q8bx5K0VVG2h8HyFEk+RwOGjbti1Wq7XaqTKFEKK2brnlFr744gt+//33KmMGC3GuSZ9eIZqpvLy8Kv1lVVXlhRde4ODBgw3eR1AI4d0OHTrEjBkz6NChQ7Xj1QpxrkmfXiGaqdWrVzN+/HiGDRtGXFwcRUVFrF69ms2bNxMTE1PtgOZCCHEm3377LSkpKcyYMQOLxcLzzz9f7yHkhHAn6d4gRDOVmprKU089xV9//UVWVhZ2u51WrVoxatQonnjiidNOUCGEEDUZNGgQf/75JzExMTzwwAPcf//9ng5JCECSXiGEEEII0QxIn14hhBBCCOH1JOkVQgghhBBeT5JeIYQQQgjh9STpFUIIIYQQXk+GLDuN3Nxc15SC1QkPDycrK+scRiTOJalf7yd17N2kfr2b1K/3O1Md63Q6goODa12eJL2nYbfbsdls1a6rGHPQbrcjA2B4H6lf7yd17N2kfr2b1K/3a4g6lu4NQgghhBDC60nSK4QQQgghvJ4kvUIIIYQQwutJ0iuEEEIIIbyeXMgmhBBCCOEBFosFi8Xi6TAarbKyMgCMRqNbymtUSW9ycjK//PILqamp5Obm8tBDD9GnTx/XelVVmTlzJkuWLKG4uJikpCQmTpxIixYtXNsUFRXx2WefsWHDBhRF4fzzz+fWW2/FZDJ54iEJIYQQQlRRXFyMoij4+/u7RioQlel0OgoKCiguLsbX1/esy2tU3RssFgtxcXH8+9//rnb9nDlzWLBgAZMmTeKll17CaDTy4osvYrVaXdu8/fbbHDp0iKeeeorHHnuMnTt38tFHH52rhyCEEEIIcUZ2ux2z2SwJ72koioLZbD7tnAl10ahaenv06EGPHj2qXaeqKvPnz+fKK6/kvPPOA+Duu+9m0qRJrFu3jv79+3P48GE2b97Myy+/TLt27QCYMGECL7/8MjfddBMhISHVlm2z2SqNx6soCj4+Pq6/q1OxXJ6s3knq1/tJHXs3qV/v5g3125RjP9cURXHL+WpUSe/pZGZmkpeXR9euXV3LzGYz8fHxpKSk0L9/f1JSUvD19XUlvABdunRBURT27t1bqavEyX766SdmzZrlut+mTRteffVVwsPDzxhXVFTUWTwq0dhJ/Xo/qWPvJvXr3Zpy/ZaWlqLX6z0dRqOn1+sxGAyVurLWV5NJevPy8gAIDAystDwwMNC1Li8vj4CAgErrtVotfn5+rm2qM3bsWEaNGuW6X/HfRFZWVo1N6oqiEBUVxbFjx2Q2GC8k9ev9pI69m9Svd/OG+rVarTXO+irK6fV6bDYbVquV9PT0Kut1Ol2tGihd27szuKZKr9fX+N/WmV5Mqqo22RecODOpX+8ndezdpH69m9Rv8+GOem5UF7KdTlBQEAD5+fmVlufn57vWBQUFUVBQUGm9w+GgqKjItY2oO5tdoajE6ZabzS59mIQQQojaOHLkCA8++CA9e/YkLi6OPn368Mwzz5CTk1PrMg4dOkR0dDTbt29vwEibhibT0hsREUFQUBDbtm0jLi4OgJKSEvbu3cuwYcMASExMpLi4mP3799O2bVsAtm/fjqqqxMfHeyr0Js9idfDRNxvdUtbtN/REr2sy/2sJIYQQHnHgwAGuuOIK2rZty3vvvUdsbCy7d+/mhRde4I8//mDu3LkEBwd7OswmpVFlH2VlZaSlpZGWlgaUX7yWlpZGdnY2iqIwYsQIZs+ezfr16zl48CDvvvsuwcHBrtEcWrVqRffu3fnoo4/Yu3cvu3bt4rPPPqNfv341jtwghBBCCNHYPPnkk+j1er799lsuuOACoqOjGTx4MDNmzODYsWO8+uqrAERHR/Pbb79V2rdDhw58//33APTt2xeA4cOHEx0dzbhx41zbzZgxg4svvpg2bdrQo0cPnnzySde6I0eOcOutt5KQkED79u25/fbbycrKcq1/4403uOSSS5gxYwbnnXceCQkJPP744zgcDt5//326d+9O165deeuttyrFlp+fz0MPPUSXLl1o3749V199NTt27HDvyatBo2rp3bdvH1OnTnXd//LLLwEYOHAgd911F6NHj8ZisfDRRx9RUlJCUlISTzzxBAaDwbXPvffey7Rp03juuedck1NMmDDhnD8WIYQQQoj6yM3NZdmyZTz66KOuIVQrREREcOWVVzJ37lxefvnlM5Y1b948Ro4cyYwZM2jfvr3rGqYvvviC5557jscff5yLL76YwsJC1q1bB4DT6eTWW2/F19eXH3/8EbvdzpNPPsmdd95ZabSrAwcO8Mcff/DNN9+QlpbG7bffzsGDB2nbti2zZs1iw4YNPPjggwwYMICePXsCcPvtt2Mymfj666/x9/fn66+/Zvz48axYsaLBW64bVdLbqVMnZs6cWeN6RVEYP34848ePr3EbPz8/7rvvvoYITwghhBCiwaWmpqKqKgkJCdWuj4+PJy8vj+PHj5+xrNDQUACCg4OJiIhwLX/77be57bbbmDhxomtZ9+7dAVi5ciW7du1i1apVREdHA/DWW29x8cUXs3nzZtd2TqeT//73v/j5+ZGYmEi/fv3Yt28fX331FRqNhvj4eN577z3+/vtvevbsydq1a9m8eTNbtmxxTS38zDPPsHDhQubNm8eNN95Y53NVF40q6RVCCCGEEOUaamSK7Oxsjh07xoUXXljt+j179tCyZUtXwgvl100FBgayZ88eV9IbExODn5+fa5uwsDA0Gg0azT+9Z8PDw8nOzgYgOTmZ4uJiOnfuXOl4ZWVlHDhwwF0Pr0aS9AohhBBCNCJxcXEoisKePXu47LLLqqzfu3cvQUFBhIaGoihKleT4TOP/mkwmt8Sp01VOIxVFqTIErKIoOJ1OAIqLi4mIiKjURaLCqfMwNIRGdSGbEEIIIURzFxISwkUXXcQXX3xBaWlppXWZmZnMnj2byy+/HEVRCA0NJSMjw7V+//79lfapSEIrEk8o7woaExPDypUrqz1+QkICR48e5ciRI65lKSkp5Ofnk5iYWO/H1aVLF7KystDpdLRp06bS7VwMOCBJrxBCCCFEI/PCCy9gtVq54YYbWL16NUeOHGHp0qVcd911REVF8eijjwLQv39/pk+fzvbt29myZQuPPfZYpdbWsLAwTCYTS5cuJSsryzWfwYMPPsjHH3/MtGnT2L9/P9u2beOzzz4DYMCAASQlJXHPPfewbds2Nm3axH333ccFF1xAt27d6v2YBgwYQK9evZgwYQLLly/n0KFDrFu3jldeeYUtW7acxdmqHUl6hRBCCCEambZt27JgwQJiY2O544476N+/P4888gj9+vXjl19+cY108Mwzz9CyZUvGjh3LXXfdxR133FFpxAedTsfzzz/P119/Tc+ePV0jWl1zzTVMmTKFL774gsGDB3PzzTeTmpoKlHdJ+PzzzwkMDOTKK6/k2muvJTY2lg8++OCsHpOiKHz11Vf07dvXNarD5MmTOXLkCGFhYWdVdq2Or8r8fTXKysqqsV+Moii0aNGC9PR0r58CsajE6dbJKfzMjf9/reZUv82V1LF3k/r1bt5QvwUFBQQEBHg6jEZNr9djs9lqPFd6vZ7w8PBal9f4sw8hhBBCCCHOkiS9QgghhBDC60nSK4QQQgghvJ4kvUIIIYQQwutJ0iuEEEIIIbyeJL1CCCGEEMLrSdIrhBBCCCG8niS9QgghhBDC60nSK4QQQgghvJ7O0wEIIYQQQojasdkVLFbHOTmW0aBFr2uaM95VR5JeIYQQQogmwmJ18NE3G8/JsW6/oSd6Xd07BUyfPp0PPviArKwsOnbsyPPPP0+PHj0aIMK6ke4NQgghhBDCLebMmcPUqVN58MEH+e233+jYsSM33HAD2dnZng5Nkl4hhBBCCOEen3zyCddffz3jx48nMTGRV155BR8fH2bMmOHp0KR7gzdyd38f1Xu68wghhBCigVitVrZu3crdd9/tWqbRaLjwwgvZsGGDByMrJ0mvF3J3f5+J13m+H44QQgghGrecnBwcDgdhYWGVloeHh7Nv3z4PRfUP6d4ghBBCCCG8niS9QgghhBDirIWEhKDVaqtctJaVlUV4eLiHovqHJL1CCCGEEOKsGQwGunbtysqVK13LnE4nK1eupFevXh6MrJz06RVCCCGEEG4xadIkHnjgAbp27UqPHj345JNPKC0tZfz48Z4OTZJeIYQQQoimwmjQcvsNPc/ZsaBuQziNHj2anJwcXn/9dbKysujUqRNff/11o+jeIEmvEEIIIUQTodep9ZolrX7qN2bprbfeyq233urmWM6e9OkVQgghhBBeT5JeIYQQQgjh9STpFUIIIYQQXk+SXiGEEEII4fUk6RVCCCGEEF5Pkl4hhBBCCOH1JOkVQgghhBBeT5JeIYQQQgjh9STpFUIIIYQQXk9mZBNCCCGEaCK0ThuqzXpOjqXoDTg0+nNyrHNBkl4hhBBCiCZCtVk59Otn5+RYMaMmgLFuSe/q1av54IMP2LZtGxkZGUybNo1LL720gSKsG+neIIQQQggh3KKkpISOHTvy4osvejqUKqSlVwghhBBCuMXgwYMZPHiwp8OolrT0CiGEEEIIrydJrxBCCCGE8HqS9AohhBBCCK8nSa8QQgghhPB6kvQKIYQQQgivJ6M3CCGEEEIItyguLiY1NdV1/+DBg2zfvp3g4GCio6M9GJkkvUIIIYQQTYaiN5RPGnGOjlVXW7Zs4eqrr3bdnzp1KgBXX301b775prtCqxdJeoUQQgghmgiHRl/nWdLOpX79+nHkyBFPh1GtJpX0Op1OZs6cyYoVK8jLyyMkJISBAwdy1VVXoSgKAKqqMnPmTJYsWUJxcTFJSUlMnDiRFi1aeDh6IYQQQgjhKU3qQraff/6ZxYsX8+9//5v//e9/3HDDDfzyyy8sWLDAtc2cOXNYsGABkyZN4qWXXsJoNPLiiy9itVo9GLkQQgghhPCkJpX0pqSk0Lt3b3r27ElERAR9+/ala9eu7N27Fyhv5Z0/fz5XXnkl5513Hq1bt+buu+8mNzeXdevWeTh6IYQQQgjhKU2qe0NiYiJLlizh6NGjtGzZkrS0NHbv3s2//vUvADIzM8nLy6Nr166ufcxmM/Hx8aSkpNC/f/9qy7XZbNhsNtd9RVHw8fFx/V2diuU1rfcoxfXDLSxWO04naDRuKFNppOfsFI26foVbSB17N6lf7yb12/y4o66bVNI7ZswYSktLeeCBB9BoNDidTq699loGDBgAQF5eHgCBgYGV9gsMDHStq85PP/3ErFmzXPfbtGnDq6++Snh4+BljioqKqvsDaWCWg5n4+/uddTnZOSUs+SuV/366AQCjQUuAv5GB57emY2J4vZ6ABr2BFi0izjq2c6Ux1q9wL6lj7yb1692acv2WlZWh1zfeC9IaC71ej9FodMu1WU0q6V21ahUrV67k3nvvJSYmhrS0NKZPn05wcDCDBg2qd7ljx45l1KhRrvsVyVxWVhZ2u73afRRFISoqimPHjqGqar2P3RCsNgeFhUVntf/y1YfZnpLNyQ/NYnWQdbyEWfN3Erf1CEP6xxLob6xj2VbS09PrHdu50pjrV7iH1LF3k/r1bt5QvxaLBb1ej0bTpHqanlN6vR6LxYLFYqk2d9DpdLVqoHRt787gGtrXX3/N6NGjXd0UYmNjycrK4ueff2bQoEEEBQUBkJ+fT3BwsGu//Px84uLiaixXr9fX+N/WmV5Mqqo2vhec6vpRZ06nyq9L9pN2uACAdrGBvP7UYBYu34vF6mDXvlzWbj5G2uECvpydzNUjEogK961TbI3ufJ1Go6xf4VZSx95N6te7NeX6NZvNFBYW4u/vL4lvDZxOJ4WFhfj6+rqlnptU0muxWKo8MTQajetEREREEBQUxLZt21xJbklJCXv37mXYsGHnOtwmR1VVlq46RNrhAnRahdHD2tE6OoD27UJYsVaP2UfPBT1b0L5tMAv/PEB6ZjE/LdzHdVe0Jyigbi2+QgghRHOm0+nw9fWlqKj+38x6O5PJhK+vLzqde9LVJpX09urVi9mzZxMWFkarVq1IS0vj119/5eKLLwbKv+4YMWIEs2fPpkWLFkRERDBjxgyCg4M577zzPBx947dxeyZbdmYDcNnFbWgdHVDtdiFBJq66NJ6Z81LIPF7K7N/2ct0V7fExNamnkxBCCOFROp2OgIDqP2ubO0VRaNGiBenp6W5rzW9SWcqECRP4/vvv+fTTT8nPzyckJIRLLrmEcePGubYZPXo0FouFjz76iJKSEpKSknjiiScwGOo+lV5zkp5ZzPI15TOoXNQnmoS4oNNubzBoGTM8nhm/7CavwMKcxfu4ZmSie0Z4EEIIIYRwsyaV9Pr4+HDLLbdwyy231LiNoiiMHz+e8ePHn7vAmjhVVVm++jAASe2C6dWldqMr+Jn1jB3ejhlzUziaUcymHZn06hLZkKEKIYQQQtSL9JwW7EnL42hmMTqdhgF9ous0FFlosA8X9YkG4K8N6eQXWhoqTCGEEEKIepOkt5mzO5ysWFveraF3lwj8feveDaRz+1Cio/yw250s+etQk72SVgghhBDeS5LeZm5Lchb5hVZ8fXT07lq/rgmKonDJhbFoNQpphwvYvT/XzVEKIYQQQpwdSXqbMavNwerNxwDo17slBr223mWFBJk4v0f5zDjL1xzBZne6JUYhhBBCCHeQpLcZ27k3B4vFQVCAkU4JoWddXu+ukQT4GSgusbF1Z5YbIhRCCCGEcA9JepspVVXZklyemHbvGO6WocZ0Wo2rtXftlgysNsdZlymEEEII4Q6S9DZTRzKKyc4tQ6dV6JgQ4rZyOyaEEhRgpLTMzuYd0torhBBCiMZBkt5mqqKVNyk+BJPRfcM1azUKF/RsAcC6rRmUWexuK1sIIYQQor4k6W2Gikts7EnLA6B7h3C3l9++bTChQSYsVgcbt2e6vXwhhBBCiLqSpLcZ2rY7G6dTpUWELxFhZreXr9Eo9D3R2rs5OUtGchBCCCGEx0nS28yoqsr23ccB6NYhrMGOkxAXRKC/gTKLg+Q9xxvsOEIIIYQQtSFJbzOTnlVCQZEVvV5DQpvgBjuORqPQo1MEABu3Z8osbUIIIYTwKEl6m5k9J2ZLaxcbiF7XsNXfuX0oRoOW3HwL+w/mN+ixhBBCCCFOR5LeZkRVVVJSy5PexLYN18pbwaDX0iWpvAvFhm1yQZsQQgghPEeS3mYkPbOYwmIbBr2GuOiAc3LMHp3C0Shw+FgRGdkl5+SYQgghhBCnkqS3GUlJzQOgbWwgugbu2lDB39fgalXetENae4UQQgjhGZL0NhMnd21ofw66Npys+4kL2nbvzyWvoOycHlsIIYQQAiTpbTbSM4spOtG1ofU56tpQoUW4mfBQHxwOlZ9+23NOjy2EEEIIAZL0Nhu7K0ZtaB10zro2VFAUhW4nZn6bMXenDF8mhBBCiHNOkt5mQFVV15BhCW2CPBJDUrtgDHoNaYcLWLn+qEdiEEIIIUTzJUlvM5BXYCG/0IpWoxDb0t8jMRj0WjrEhwDw5Y/JHolBCCGEEM2XJL3NQOqhAgCio/ww6LUei6Oii8PCP9M4llXssTiEEEII0fxI0tsMpB0uT3rjWp3bC9hOFRbiQ68ukTgcKjPnpXg0FiGEEEI0L5L0ejmb3cmh9EIA4mI8m/QCXD2iPQDfz90tF7QJIYQQ4pyRpNfLHU4vxOFQ8ffVExpk8nQ4DB/YBl+znrTDBazZfMzT4QghhBCimZCk18tV9OeNiwlEURQPRwNmHz2jL2kHwIy5uz0cjRBCCCGaC0l6vVxFf942Hu7Pe7Lxl5d3cfh1yX4Ki6wejkYIIYQQzYEkvV4sN7+MvAILGgWPDVVWnV6dI0iIC6K0zM4vv+/zdDhCCCGEaAYk6fViFa28LaP8MBg8N1TZqRRF4doTrb3SxUEIIYQQ54IkvV7s4NETozY0oq4NFa66LAGtVmHj9kxSTkyRLIQQQgjRUCTp9VKqqnL4WBEAMS0aT9eGCuGhZob2jwXg+1+ltVcIIYQQDUuSXi+VlVOKxeJAr9cQGWb2dDjVqujiMGv+Hmx2p4ejEUIIIYQ3k6TXSx1OL2/ljY70Q6Px/FBl1RncL5aIUB+yc0tZ8tdBT4cjhBBCCC8mSa+XqpiFLaaFn4cjqZlOp2HciEQAZszd5eFohBBCCOHNJOn1Qg6H09XS26oR9uc92fhR5V0c/vj7EBnZJR6ORgghhBDeSpJeL7R7fw4WqwNDI+7PWyE+LojeXSNxOFR+XJDi6XCEEEII4aUk6fVCazenAxAd1Xj7856s4oK2737ZjaqqHo5GCCGEEN5Ikl4vtPpE0tvYuzZUuHxIW8w+OvYfzGf91gxPhyOEEEIILyRJr5dxOJys33IMaNwXsZ3Mz9fA5UPaAjJDmxBCCCEahiS9XiZ5Tw6FxVYMeg0RoY27P+/Jrr08CYBfft9HcYnNw9EIIYQQwttI0utlVm06CjSd/rwVzusWSZuYQEpK7fy6ZL+nwxFCCCGEl5Gk18tU9ImNjmwaXRsqKIriuqBNujgIIYQQwt0k6fUiqqq6kt4Wkb4ejqbuxo1IQKNRWLvlGPsO5nk6HCGEEEJ4EUl6vcjh9CIyskvQaRWiwpte0hsV7svFF8QAMHOujNkrhBBCCPeRpNeLrNtaPmpDx4Qw9LqmWbUVXRx+mJ+C3e70cDRCCCGE8BZNMzMS1aro2tCjc6SHI6m/oRfGEhJkIiO7hGWrD3s6HCGEEEJ4CUl6vci6E0lvzyac9Br0Wq66LAGA7+fu8nA0QgghhPAWkvR6icIiK7v25QDQo1OEh6M5OxVdHBatOMDx3FIPRyOEEEIIb6DzdAB1lZOTw9dff83mzZuxWCxERUUxefJk2rVrB5SPYDBz5kyWLFlCcXExSUlJTJw4kRYtWng48oa1aUcmTqdKTAt/IsOa3kVsJ0tqF0L3juFsTs7ix9/2cNt1XT0dkhBCCCGauCbV0ltUVMTTTz+NTqfjiSee4H//+x//+te/8PX9J8mbM2cOCxYsYNKkSbz00ksYjUZefPFFrFarByNveBUXsfXu2nS7NpxsfMWYvb/sRlVVD0cjhBBCiKauSSW9c+bMITQ0lMmTJxMfH09ERATdunUjKioKKG/lnT9/PldeeSXnnXcerVu35u677yY3N5d169Z5OPqGVXERm7ckvaMvaYfJqGX3/ly27MzydDhCCCGEaOKaVPeG9evX061bN/773/+SnJxMSEgIw4YNY+jQoQBkZmaSl5dH167/fB1uNpuJj48nJSWF/v37V1uuzWbDZrO57iuKgo+Pj+vv6lQsr2n9ueRwONm4IxOAPt1agAInfriRm8pTanfOggJMjLi4DbN/28t3v+ymR6dzm8w3pvoVDUPq2LtJ/Xo3qV/v1xB13KSS3szMTBYvXszIkSMZO3Ys+/bt4/PPP0en0zFo0CDy8vIACAwMrLRfYGCga111fvrpJ2bNmuW636ZNG1599VXCw8PPGFNFK7MnbUk+RlGxDT9fAxdf2JFDR7Lx93ffNMQaReO28gx6Ay1a1O5Cu7tv7c/s3/by86J9fPDyGPx8jW6JoS4aQ/2KhiV17N2kfr2b1K/3c2cdN6mk1+l00q5dO66//nqgPDk9ePAgixcvZtCgQfUud+zYsYwaNcp1v+K/iqysLOx2e7X7KIpCVFQUx44d83if00XLkgHo3jGczMwMrDYHhYVFbivfqTrdVp7VZiU9Pb1W27aPM9I2JpD9h/L58Mu/uGFMB7fEUBuNqX5Fw5A69m5Sv95N6tf71aaOdTpdrRooXdvXN5ipU6dy5ZVX0qVLl2rXb9++nR9//JFnn322voeoIjg4mFatWlVa1qpVK9asWQNAUFAQAPn5+QQHB7u2yc/PJy4ursZy9Xo9er2+2nVnejGpqurxF9zG7eVdG7p3DC+PRYUTP9zITeWpZz6nJ7thTBLPv7OGr3/ayfWjk9wTQx00hvoVDUvq2LtJ/Xo3qV/v5846rveFbMnJyeTn59e4vqCggOTk5PoWX6327dtz9OjRSsuOHj3qyvIjIiIICgpi27ZtrvUlJSXs3buXxMREt8bSmGw60Z+3ZxMfn7c6V49MxKDXsGVnFtt2ZXs6HCGEEEI0UQ02esOxY8dcF4O5y8iRI9mzZw+zZ8/m2LFjrFy5kiVLljB8+HCgvCl8xIgRzJ49m/Xr13Pw4EHeffddgoODOe+889waS2NRWGQlJTUXgB6dvS/pDQ324bJBbQD4+uedHo5GCCGEEE1Vnbo3LFu2jOXLl7vuz549myVLllTZrqSkhAMHDtCjR4+zj/Ak8fHxPPTQQ3z77bf8+OOPREREcPPNNzNgwADXNqNHj8ZisfDRRx9RUlJCUlISTzzxBAaDwa2xNBZbdmWhqhAd5UdEqNnT4TSIG8Z0YM7iffy0cC/P3NsXX3P1XVGEEEIIIWpSp6TXarVSUFDgul9aWlplKAlFUTAajVxyySWMGzfOPVGepFevXvTq1avG9YqiMH78eMaPH+/2YzdGm3eUj2Hb1KcePp1+vVrQNjaQ/Qfz+WnhXm4ce+4uaBNCCCGEd6hT0jts2DCGDRsGwF133cWtt95K7969GyQwUTsV/Xm9OelVFIUbx3bgubdW88WPydwwJknGZhRCCCFEndS7T+97770nCa+Hqarq1RexneyakYmYjFqS9xxn3ZYMT4cjhBBCiCbmrMfpLS0tJSsri+Li4mqHlOjYsePZHkLU4GhmMRnZJWi1Cl2SwjwdToMKDjQxdng83/2ym+mzdtCnuwxILoQQQojaq3fSW1BQwGeffcaaNWtwOp01bvf999/X9xDiDDadGJ83qV0IPqYmNc9IvdwyrhPf/bKbeX/sJyP7AiLDvPPCPSGEEEK4X70zpY8//pgNGzZw2WWXkZSUhJ+f+6a9FbWzOdn7+/OerHP7MM7rGsm6rRl88/NOHpxY8wWNQgghhBAnq3fSu2XLFkaOHMmNN97oznhEHWw6MXKDt/fnPdkt4zqxbmsGX/+0k3tu6YFe12BDTQshhBDCi9Q7YzAajXWa71i4l93uZMtO7x+u7FQjBrchPMSHjOwS5v+x39PhCCGEEKKJqHfSO2DAANauXevOWEQd7D2QR2mZHV+znvi4IE+Hc84Y9Fr+dVX5xZEff7dN5lwXQgghRK3UO+nt27cvRUVFvPjii6xZs4a9e/eyf//+KjfRMCpaebsmhaHRNK8xa/91ZUeMBi2bk7NYv1WGLxNCCCHEmdW7T+8zzzzj+nvr1q01biejNzSMra6kt/l1MQkL8eGqyxL4ds4uPv52K+d1k+HLhBBCCHF69U5677zzTnfGIepoy85soLyltzmaeG1nvp2ziwXL00g7XEBcqwBPhySEEEKIRqzeSe+gQYPcGIaoC5vdyc69xwHo2qH5tfQCtG8bwsUXxLB01SE++347z/2nn6dDEkIIIUQjJuM9NUEp+3MpszgI8DM06xbO267rAsB3c3eRV2DxcDRCCCGEaMzq3dL7/vvvn3EbRVGkG0QD2LqrvD9v5/bN7yK2kw3oE02H+BB27s3hix93cN+tPT0dkhBCCCEaqXonvTt27KiyzOl0kpeXh9PpJCAgAKPReFbBiept3VXen7dbh+bZn7eCoijc/a/u3PXMH3w6YzuTru2C2Ufv6bCEEEII0QjVO+l97733ql1ut9v5/fffmTdvHk8//XS9AxM1c43c0Ez7855s1JC2/N9H6zhwpJBv5+xi4rVdPB2SEEIIIRoht/fp1el0XHrppXTr1o1p06a5u/hmz2pzkLyn/CK2bpL0otNpmHxTdwA+/GYrVpvDswEJIYQQolFqsAvZWrduzc6dOxuq+GZr975crDYnQQFGYlv6ezqcRuHqkYlEhplJzyxm9oI9ng5HCCGEEI1QgyW9W7dulT69DaDiIrYuSWEoSvO9iO1kRoOW267vCsC7X27B4XB6OCIhhBBCNDb17tM7a9asapcXFxezc+dOUlNTGT16dL0DE9WrmH64WzOcie10bhrbgXembyL1UD4/LdzLuBGJng5JCCGEEI1IvZPeH374odrlvr6+REZGMmnSJIYMGVLvwJobm13BYj1zf9TNO8qT3sS2oRSVVN+iqapuDc2ttFpNjXHXh9GgRa9T8TXrmXxTN156by3/m7aRMcPi0elkGGohhBBClKt30vv999+7M45mz2J18NE3G0+7jd3hZOe+HAC27DxG2uHcarebeF0Pt8fnLlabg0+/2+S28m6/oSf6E8ntLeM68dG3W0k7XMCs+Slce0WS244jhBBCiKZNmsKakOycUpxOFZNRS4CfwdPhNDrlrb3dAXjzs00ykoMQQgghXOrd0lshOTmZjRs3kpVV/rV7eHg4PXv2pGPHjmcdnKgsI7sEgMhwX7mIrQY3X9WRj77ZwqH0Qr6fu5ubrpTnoRBCCCHOIum12+28+eabrFu3DgCz2QxASUkJc+fOpU+fPtx3333odGedV4sTMrLKk96oMLOHI2m8fEw67r65B8/892/e/GwT40Yk4mOS56AQQgjR3J3VhWzr1q3j8ssvZ9SoUQQFBQGQn5/P3LlzmTt3LrNmzeLaa691V6zNXsbx8qQ3QpLe07phTBIffbuVI8eK+HTGNu65pfH2cRZCCCHEuVHvPr0rV65k4MCB3Hjjja6EFyAwMJAbb7yRiy66iBUrVrgjRgHY7E6O55QC0tJ7JiajjkfvOA+Ad7/YzPHcUg9HJIQQQghPq3fSm5eXR3x8fI3rExISyMvLq2/x4hTZOaU4VTCbdPj56j0dTqM3dng8nduHUlRi463P3DdahBBCCCGapnonvSEhISQnJ9e4Pjk5mZCQkPoWL05RcRFbRJhZLmKrBY1G4al7+gLwxY87SD2U7+GIhBBCCOFJ9U56Bw4cyKpVq/j44485evQoTqcTp9PJ0aNH+eSTT1i1ahWDBg1yY6jN2z8jN0jXhtoacF40F18Qg92h8tK7azwdjhBCCCE8qN4Xsl155ZVkZGSwZMkSlixZgkZTnj87neWzbQ0cOJCxY8e6J0pBRlYxIP156+qpe87nz7WHmb8sjRXrjjDgvGhPhySEEEIID6h30qvRaLjrrrsYNWoUmzZtqjROb48ePWjdurXbgmzubHYnx/PKAIiUpLdOktqFcPNVHfls5g6eeeNvFn19lWsGNyGEEEI0H3VKeq1WK9OnTycmJobLLrsMgNatW1dJcOfPn8/ixYu55ZZbZJxeN8g6XoKqgq+PDj9fmYmtrv4zqTc/L9pHSmou03/YwaTrung6JCGEEEKcY3Vq8vr9999Zvnw5PXv2PO12PXv2ZOnSpfzxxx9nFZwo5+rPK6289RIUYOSxO8uHMHvjk/VknRjvWAghhBDNR52S3lWrVnH++ecTGRl52u2ioqLo27cvf/3111kFJ8qdPP2wqJ9rL29P16QwCottPPf2ak+HI4QQQohzrE5J78GDB0lKSqrVtu3bt+fAgQP1CkpUVjH9sLT01p9Wq+GlRy5EUWD2b3v5c81hT4ckhBBCiHOoTkmv3W6vdR9dnU6HzWarV1DiH1abg5x8uYjNHXp0imDC1Z0BeOzVFZSW2T0ckRBCCCHOlTolvSEhIRw8eLBW2x48eFAmp3CDrOOlqCr4mfX4mmUmtrP1yB29aRHhy4Ejhfxv2gZPhyOEEEKIc6ROSW+XLl34888/yc8//exW+fn5/Pnnn3TpIlfJny2ZlMK9/HwNvPTIhQB8+M1Wtu/O9nBEQgghhDgX6pT0jh49GpvNxnPPPceePXuq3WbPnj0899xz2Gw2rrjiCrcE2ZzJyA3uN2xAa0YNaYvDoXL/c8uwWB2eDkkIIYQQDaxOg+hGRkbywAMP8NZbb/HUU08RGRlJbGwsJpOJsrIyDh06xLFjxzAajdx3331ERUU1VNzNRsVMbJL0utdLD/dn1caj7Nybw38/3cDjk/t4OiQhhBBCNKA6T03Vs2dPXnvtNYYOHYrNZmPdunWsWLGCdevWYbFYGDJkCK+99hq9e/duiHibFYvVQU6+BZCk191Cg334v8cvAuD9r7awYVuGhyMSQgghREOq13RpERERTJo0CYDS0lJKS0vx8fHBx8fHrcE1d5knJlHw9zNg9pGL2Nzt0oFxXHVZAj8u2MP9zy1j4ZdXynkWQgghvNRZzxEsyW7Dyazozxsq57cmWq2GohJnvfd/9M6+rFx3hP0H83n6jVW88dRFboxOCCGEEI3FWSe9ouEck5nYzshqc/Dpd5vOqowBfaKZNX8PM+bu4qLzoxl9STs3RSeEEEKIxqLOfXrFuSMzsZ0bsS39Ob97+UWXj778JwePFng4IiGEEEK4myS9jZTF6iCvQC5iO1cu6NmCHp0iKCy2MfmpP7DaZBgzIYQQwptI0ttIVYzPG+BnwMckvVAamkaj8PpTFxPob2DTjkymvrnK0yEJIYQQwo2adNL7888/c8011zB9+nTXMqvVyqeffsqECRO46aabeP3118nLy/NYjPUlM7Gde62i/HlrysUAfP7DDr75aauHIxJCCCGEuzTZpHfv3r0sXryY1q1bV1r+xRdfsGHDBh588EGmTp1Kbm4ub7zxhoeirD+ZlMIzLrmwNfdP6AnApEd+IXnPcQ9HJIQQQgh3aJJJb1lZGe+88w633347vr7/jGxQUlLCH3/8wc0330znzp1p27YtkydPZvfu3aSkpHgw4ro7duIitigZueGce3BiTwb1bUVpmZ1/P7KInPwyT4ckhBBCiLPUJDuLfvrpp/To0YOuXbsye/Zs1/L9+/fjcDjo0qWLa1l0dDRhYWGkpKSQmJhYbXk2mw2bzea6ryiKa+xhRVGq3adieU3r60xx/aCk1EZBkRWAyDBf1/J6FOhG7iyvkcamlNenTqflveeHMurfP5N6MI/bHlvMd++MxKDXuuc4olFw+2tYNCpSv95N6tf7NUQdN7mk96+//iI1NZWXX365yrq8vDx0Ol2l1l+AwMDA0/br/emnn5g1a5brfps2bXj11VcJDw8/YzxRUVG1D/40LAcz8ff3A+BYdvlX6qHBPoSFBta5LI2icZXlDgqgU90zmoECbo3NnY9Vr9NhsZV/+WE2m/nwxUu56vYfWbUxncde/ZuXHhlY6xefj0lPZESwW+ISDctdr2HROEn9ejepX+/nzjpuUklvdnY206dP56mnnsJgMLit3LFjxzJq1CjX/YrEJisrC7vdXu0+iqIQFRXFsWPHUFX1rGOw2hwUFhYBkHqwPOmNCPVxLasLp+qs136nk7tzg5tK6uXW2Nz5WMssNj79bjMAigJ+fn5cMqA1Py3cy4xfkknPKKBXl8halXX7jT1wOqRbRGPm7tewaFykfr2b1K/3q00d63S6WjVQurZ3V3Dnwv79+8nPz+fRRx91LXM6nezcuZPffvuNJ598ErvdTnFxcaXW3vz8fIKCgmosV6/Xo9frq113pheTqqruecGprh+nXMRW37Ld+yagurU8d79BuT82VS3/x6dNTCAX9Ynmz7VHWL7mMP6+ehLb1qIFVz3zc0c0Dm57DYtGSerXu0n9ej931nGTSnq7dOnC66+/XmnZBx98QMuWLRk9ejRhYWFotVq2bdtG3759ATh69CjZ2dk19udtbFRVdU0/HCXDlTUKvbpEkF9oYcvObBYsS8Pso6NVC39PhyWEEEKIOmhSSa+Pjw+xsbGVlhmNRvz9/V3LBw8ezJdffomfnx9ms5nPPvuMxMTEJpP0FhbbKCm1o1EgPFSS3sZAURQuviCGohIb+w7kM2fxfsZfnkhYsI+nQxNCCCFELTWppLc2br75ZhRF4Y033sBut9OtWzcmTpzo6bBq7diJrg2hIT7odU1yRDmvpNEojLi4DbPm7yE9s5gfF+xl/KhEggKMng5NCCGEELXQ5JPeKVOmVLpvMBiYOHFik0p0T5ZRMT6vTErR6Oh1GsYMa8fMeSkczy3jxwV7GD8qET9f911UKYQQQoiGIU2Jjcwx1/TDMilFY+Rj0nHVZQkEBhjJL7Ty44K9lJTazryjEEIIITxKkt5GRFVV18gNchFb4+Vn1jPusnj8zHqO55Xxw/w9FJdI4iuEEEI0ZpL0NiK5+RasNidarUKoXCTVqAX6Gxk3IgFfs57juWX8MC+FIkl8hRBCiEZLkt5GpOIitohQM1qNTK3Y2IUEmbhmZAJ+vnpy8i3M/DWFwmKrp8MSQgghRDUk6W1EMmR83iYnONDENSMT8fczkFdQnvgWFEniK4QQQjQ2kvQ2IscqRm6Qi9ialKAAI+NHJhDobyC/0MrMX1M4fKzQ02EJIYQQ4iSS9DYSNruTzOPS0ttUBfgbuWZk+bi9BUVWbrj3V1L253o6LCGEEEKcIElvI7EnNQeHQ8Vo0MqEB02Uv5+Bq0cmEBJo5FhWMWNv/4V1W495OiwhhBBCIElvo7FtVzYAkWFmFEUuYmuq/H0NjL+8Pd06hJNXYOHau+exaMUBT4clhBBCNHuS9DYS23ZnARApXRuaPB+TjulvjGBwvxjKLA4mPrqI737Z5emwhBBCiGZNkt5GYtuu8qRXph/2DmYfPZ+9NpxrRibicKg89OKfvPX5RlRV9XRoQgghRLMkSW8jUFpmZ09q+UVPMnKD99DrNPz36YHcfXN3AP7vw/U88dpf2O1OzwYmhBBCNEOS9DYC21OycThVzD46/Hz1ng5HuJGiKDw+uQ/PPdgPRYEvf0zm348uoqRUZm8TQgghziVJehuBLcn/dG2Qi9i807/Hd+ajl4ZiMmr5feVBrrpjrmuIOiGEEEI0PEl6G4EtOysuYmseXRsUu819N08/mDoYObgt3783ipAgE1t3ZXP5v392dWsRQgghRMPSeToAAZsrWnqbycgN+Smb3FhaHzeW1fB6d4nkl09Hc+P9C0g7XMDoSXP49NVh9OvV0tOhCSGEEF5NWno9LL/Qwv6D+YBcxNZctIkJZO60MfTuGkl+oZXr753P7N/2eDosIYQQwqtJ0uthW09MShEd5YePSRrem4uQIBMz3hnJyMFtsNmd3PPsUhnSTAghhGhAkvR6WMf4EN59bjB339zT06GIc8zHpOPDF4dyxw1dgfIhzR55eQU2GdJMCCGEcDtJej0sNNiHscPjufLSRE+HIjxAo1F4+t6+vPhQfzQahW/n7OKW//xGUbHV06EJIYQQXkWSXiEagVuu7sS0Vy/BZNSybPVhxt4+l/TMYk+HJYQQQngNSXpFw5H+qXUy7KI4fvzwcsKCfUjec5zL//0zO/fmeDosIYQQwivIlVPirOicFsKthwi0Z+Bvz8HPkYvBWYpWtaPFgV3RY1VMWDU+FOpCyF1sJNR6iFx9C5yKPP1O1b1jBHM/G81ND/zG3rQ8xt42h49fuYSL+rTydGhCCCFEkyZZhxdSKJ8AoqFoVRvRZbtpWZZCqO0oGmq+8Eqn2tCpNszOQoLsmWTN2kU/wIGObEM0mYY4jpoSsGq8a4xirVZDUUn9LkgLCfLjm7dGcffTv7Nu6zFuun8BLz82kCuGxrslNqNBi14nrfBCCCGaF0l6vVRDTABhchTRpnQzsaU7MKgW19oibTDZhlYUakMo1IVg0ZhxKHocig6d04pBLcPkLMbfnk3vRH+yt6zC5Cwm0nqASOsBOhWtINMQyyFTRzKMbVGVpt/rxmpz8Ol3Z1cHF/SKoqDYwu59uTz84jLmLdlLz84RZx3b7Tf0RK9r+udYCCGEqAtJesUZOcuKSSxaTXzJRrTYASjWBHDApwvHjO0o1gXVuK9VY6bkxN/HjO244o7b+e6pD/F3HCfCcoCWlj0E2TOJsqYRZU2jRONPmk9XDvp0wqYxNfyDa8R0Wg0jBsXh56Nnw/ZMlq0+jNXm4PzuUShKU5qAWQghhPA8SXrFaUWV7SX1mZG0LymfKjlH34I95t5kGlpDfVtkFYVCXRiFujD2+fbCz55Dq7JdxJZux+wspGPxXySUrCXNpxv7zT2wanzc+IiaFkVRuOj8aC7o1Yp3v9jI3xvSsVgdXNQnWhJfIYQQog4k6RXV0jktdC76k5iynTgob9nd6Xch6cZ24OZkq0gXwi6/fqT49iG6LIW2JZsIcBwnoWQ9bUq3sN+nO3vNvXBoDG49blOhKAqT/9WD7bvLW3s3bMvEanMypF8MGo0kvkIIIURtSNIrqgi0ZdA7fz5mZyEqCqGXTmTeBn2Dj7bgVHQc8unIIVMHoqz7SSxeS6A9i8SSdbQu3c5u3/M56NPZK/r81kfPzhHo9RoWrzjItl3ZWG0OLh0Yh1YSXyGEEOKMmmf2IGoUXbaL/rmzMDsLKdYE8FfQVYSNvf/cDi+mKBwztuPP4GtZFziSIm0QRrWUrkXLGJjzDZGW/c12DOAu7cMYObgNGgV278tl/h+pOJzN81wIIYQQdSEtvaKcqpJU/DcJJRsAOGaIY1PAcOwao+diOpH8ZhjiaF26ncTiNfg7cumT/yvZ+mh2+A3wXGwe1L5tMHqdhrm/72dPWh4LlqYy4uI20tVBCCGEOA1p6RUoqpPuhYtdCe8ec2/WBY7ybMJ7ElXRkmbuxh+hN7PH3AsHWsJsR7godwYZX09Bby3wdIjnXNvYQC4f2haNRiElNY8Fy9JwSouvEEIIUSNJeps5jWqnV8ECYsp24URhk/8l7PLrV/+RGRqQXWNkl19//gj9F4eNiShA/oofOG/tQ0QfXojitHs6xHOqbWwglw8pb+HdvT+X35ZL4iuEEELUpPFlNuKc0ah2zsv/lRaWfTjQsD5wBId9Ong6rDMq0/qzKfBS/gq6CmNMEnp7CfF7v6LX+icJytnu6fDOqXatgxh1oo/vrn25LFpxQBJfIYQQohqS9DZTiuqgV/4CIqwHsaNjbdAVZBjbeTqsOskxRBP7xExSEidg0/nhW3KEbltfodP2/2EqzfR0eOdMfFwQIwa3QVEgeU8Oi1ceRG2mF/oJIYQQNZGktzlSnfQoWESUNRUHWtYGXUG2IdbTUdWLotGS3nIwa89/g8PRw1DREJa9gfPWPkrc/h/QOMo8HeI5kdgmmBEXlye+O1KOs3TVYUl8hRBCiJNI0tvcqCpdC5cSbdmDEw3rA0dy3NDK01GdNbvel30J/2L9eS+RG9wZjWqj9cE59FnzMBEZfzeLIc7atw3m0oFxAGxOzmLVxnTPBiSEEEI0IpL0NjMJJetoXbYDFYWNAcPJNMZ5OiS3KvFtxdauj7K90/2UmsIxWnPpsPN9um96Hr/CVE+H1+A6xIcwuF8MAKs3HWPj9ubTzUMIIYQ4HUl6m5Hosl0kFa8GYJvfQNJNCR6OqIEoCsfDe7PuvFdJbXM1Do2RwIIUem54hoTd09Bb8jwdYYPq3jGcfr1aALBs9WG2pxz3cERCCCGE50nS20yEWg/TveB3APaae3LA3NXDETU8VWvgYOvRrO3zf2RE9ENBpWX6Us5f8x/a7P8ena3Y0yE2mPO7R9GrcwQAi1ccYE9qrocjEkIIITxLkt5mwMeRT+/8+WhwctQYz07f/p4O6ZyymkLZ1XEym7o/TYF/O7ROC7EH59JnzQPEHPjFKy92UxSFi86PplNiKKoK85emceBI85vEQwghhKggSa+X0zqtnJc/D4NaRp4ugk0Bw0BpntPVFgS1Z1PPKWzv/ADF5lbo7SW0TZ3J+av/Q8vDi3BavSv5VRSFSy6MJSEuCIdT5ZfF+0nP9N7WbSGEEOJ0JOn1ZqpK98LfCbRnU6Yxsy5wJE5F5+moPEtROB7Wi/XnvcTOpDsoNYVjsOWTsPdL0p64hNgDc7yq24NGo3DZxXHEtvTHZnfy08K97DsgXR2EEEI0P5L0erH4kg20tOwtH5osYARlWn9Ph9R4KBoyoy5kXZ/XSEm4lVJTOI7CHNqk/sD5q++j7d5v0Jd6xwVgOq2GKy5pS1S4mTKLgwkP/8aRY0WeDksIIYQ4pyTp9VKh1sMkFa8CYJv/IHINLT0cUeOkanSkRw9hbZ/Xifz3qxT5xqBzlBFzeD6dltxG+50fEJCf0uTH+TXotYwdHk9IkIljWcVcd+88jueWejosIYQQ4pyRpNcL2fOz6FnwGwoqB00dOGjq5OmQGj+NloA+o9jQ+yW2dXmYvMAkNKqdqIyV9Nj0HL3WP0HLI4vR2ks8HWm9+Zh0XHVZPC0j/dh3IJ8b719AUbHV02EJIYQQ54Qkvd7G6SD94/9gcpZQoA1lu/+gZnvhWr0oCjmh3djS42l2Xfga6VEDcWgM+BUfImHPF1zw9z0k7v6UgLzdoDo9HW2d+fsamPZ/lxISZGLrrmwmPLKIMovd02EJIYQQDU6SXi8Td2A2pXs3YFP0rA8cgUPRezqkJkMBFLvtxM3KcW0ke+JvYU2f/7K37fUUm1uidVpokb6MHpuf5/zVD9Bm77f45e1DsVlP2tdGY/43o21sEF+/eRm+Zj1/rT/KPc/8gcPR9BJ4IYQQoi6a+aX83iUwbxexB34BYKv/EIp1wR6OqOnJT9kEgIKCwajHarGhonKcMHb6XkWI4SixZclEWfZishwn9vB8Yg/Pp1AbwhFTIunGdhRpQ4A+nn0gZ9CtQzifvTaMm+5fwPxlaTz26kr+7/EBKPKtgBBCCC/VpJLen376ibVr13LkyBEMBgOJiYnceOONtGz5z0VaVquVL7/8kr///hubzUa3bt2YOHEiQUFBngv8HNDaikna+QEKKgEXjObovtaeDsn7KAo5hmhyDNFo1IuJtKQRbdlNhCUVf0cOScWrSSpeTbE2kKxZhQTkxVAQmABK4/xC5cLe0bz3/BBuf+J3vp2zi5BAE4/f1biTdSGEEKK+mlTSm5yczPDhw2nXrh0Oh4PvvvuOF154gf/+97+YTCYAvvjiCzZu3MiDDz6I2Wxm2rRpvPHGGzz//PMejr4BqSqJez7HZDlOqSmC+GufhBe/9nRU54xit53zYzoVHemmeNJN8eicFlpY9tLCso8w6yF8HfnkLp5OD8CqDyAnpBs5IV3JDemMXV+/YeMqul64g8I/I1GMuLgN//f4AB568U/e/XIzwUEm7rjB+6eoFkII0fw0qaT3ySefrHT/rrvuYuLEiezfv5+OHTtSUlLCH3/8wX333Ufnzp0BmDx5Mg888AApKSkkJiZWW67NZsNm+yehUBQFHx8f19/VqVjutq+DFdePOovIWElE5mpUNOzseBfdTL4obu5V6s7y3B1bQcpmN5XU55/YKkJUQFFPH69DY+KwT2cO+3RG67QSYT3AoA5acjYswWArICpjBVEZK1BRKAxoR05IV3JCulHo37ZOrcBue5xqb5STJim5fnQHcvIsvPTeGp5/ezUhQSbGj2rvnmM1Ym5/DYtGRerXu0n9er+GqOMmlfSeqqSkfPgoPz8/APbv34/D4aBLly6ubaKjowkLCztt0vvTTz8xa9Ys1/02bdrw6quvEh4efsYYoqKizuYhuFgOZuLv71fn/QzFx0jc+wUA6e2vg+ju5cuN7r2AzZ3lNaXYDIa6lq3nuE9HWky4leVhu/DLSSYwcyMBmRvxKTxAQMFeAgr2Epc2G7ven4KIHhSEl9/sptP3wXbX41QUDS1atKi07IVHo7Datbz+0d889OJy2sRGMXp4kluO19i56zUsGiepX+8m9ev93FnHTTbpdTqdTJ8+nfbt2xMbGwtAXl4eOp0OX1/fStsGBgaSl5dXY1ljx45l1KhRrvsV/1VkZWVht1c/nJOiKERFRXHs2DFUN0xcYLU5KCys4yxZTgc9Nr+G1l5KfmB79kRdCifKsFrc+5W/O8trErEp5Qmv1WqDelZvYXEZhca2pMe0hZhxGMqOE5K7jZCcLQTnbEdnKyTkyJ+EHPmzfHu/OHJPtAIXBMSjaiq/PN31OFXVSXp6epXlD0zozKGjx/l+7m7GT/6Bz18bzqALYtxyzMbI3a9h0bhI/Xo3qV/vV5s61ul0tWqgdG3vruDOtWnTpnHo0CGee+65sy5Lr9ej11ffinamF5Oqqu55wamuH7XW+sBPBBTsxa41s7PDnSfG41VPFOfeNwF3ltcUYnN1aVDPpvzK+1lNIRxrMZBjLQaC00FA4T5Cjm8hJGcr/kWp+Bel4V+URuzBX7BrfcgN7szx0B7khHavFJs71PSc/b/HBlBQaGHBsjRufXghn782nIF9W7ntuI2R217DolGS+vVuUr/ez5113CST3mnTprFx40amTp1KaGioa3lQUBB2u53i4uJKrb35+fleN3pDQH4KrQ/8DEBK4q1YTGGeDUjUjUZLQWAiBYGJpLW9Gr01n+CcbYTkbCUkZyt6exHh2esIz16HisLBY92IL/Yhw9iGQm1og004otNpeP+FIdzxxO8s/PMAEx4pT3wvOt+7E18hhBDer0klvaqq8tlnn7F27VqmTJlCREREpfVt27ZFq9Wybds2+vbtC8DRo0fJzs6usT9vU6S1l9Ah+X0UVI5FXkhW5AWeDkmcJZshkMyoC8mMuhBUJ/6FqYQc30zo8Y34Fx2gbP9mOgAdildRovEnw9iGDEMbsg2tUBWtW2Mx6LV8+NJQbn/8dxatOFDe4vv6cC7qI4mvEEKIpqtJJb3Tpk1j5cqVPPLII/j4+Lj66ZrNZgwGA2azmcGDB/Pll1/i5+eH2Wzms88+IzEx0auS3oSU6Zgs2ZSaItib8C9PhyPcTdFQGNCOwoB2HGhzFYay44xul8O2H74gzHoIs7OQNqVbaVO6Fati5JixLenGBLIMMW5LgA16LR+9PJTbHl/M4hUHufUhSXyFEEI0bU0q6V20aBEAU6ZMqbR88uTJDBo0CICbb74ZRVF44403sNvtrskpvEVExl9EZv6NioZdHe7EoTN7OiTRwKymUIIuGsraxbloVRth1kNEWlKJtKZicpYQW7aT2LKdWBUjGca2HDUmkGWIRT3LSTEMei0fvXQJtz2+mN9XSuIrhBCiaWtSSe/MmTPPuI3BYGDixIlelehWMJVmkpDyOQAH4saWz/YlmhWHoifD2JYMY1tQnYTajp6YGGMvJmcJMWU7iSnbSZnGzFFjIodMSRTowuvdB9ho0PLxy5cw6bHFLPnrILf8ZyEfvDCE4QPj3PvAhBBCiAbWOOdHFVU5HSTt/ACdo4z8gEQOxF7h6YiEpykajhtasd1/EItDJ/B30JWk+nTFopgwOUtoW7qZgbkzGJjzDe2K12N01HFIvBOMBi2fvHIJlw6Mw2J1MOnxxcycl+LmByOEEEI0rCbV0tuctT44h8CCPdi1PuXDk2nce/GScL9zOj3yiQT4uKEVO/wGEG49SKuyXURZ9hPgyKFj8d8kFa8i09CGwq3tMZ8/CKUOzyGjQctHLw3l4Zf+ZOa8FB54bhk5uaXcfkNXmRFJCCFEkyBJbxMQkJ9C67SfANiTeCsWn9oPxCw8Jz9lkxtL61PrLVVFS6axDZnGNuicFlpa9tCqbBehtqNEWfdz+N27yPyuBWEDryJs0FUYQlucuVDKhzN746mBBAYY+eS7bTz/zhoOHyti6gMXoNXKl0ZCCCEaN0l6GzmtvYSknR+goJIR2Z/MyH6eDkk0IXaNkYM+nTno0xk/ew6xpdtJ1KRiPZ7O0dnvcvSn9wnqNYTIS2/CL+m8M7baajQKz97Xl6hwX55/ezWf/7CDw8cKef/5IZh93Du9tBBCCOFOkvQ2EgpqtV+HJ+z+HJ+yLEqN4extc8O5/cpceJUiXQjJ/hcx6vnp5K9bTN6KHyjZvZa89YvJW78YY6v2BA+9iYA+I9Hojact68axnQkL8eXhF5exeMVBRk/6hc9fG0arFv7n6NEIIYQQdSNJb2OhOqt8HR5dtpvIglU4UdhgHkTu/l21LKz2X4WL5seBnu/2toAW92IOOEz04UVEZqzEcng3x6Y/xcFv/o/0lhdztOVQrMbg05Z15aXtWLzyIMl7jnPZLT/xySuX0LdH7bpLCCGEEOeSdMRrpHwcBXQpXArAHt8+5OolkRDuV+Lbij3tJ7D6grfZ3/ZayoyhGGwFtD4wh/NX309S8nv4F+yrcf+WkX7M+mAMXdqHkZNXxvi7fuXj77a6bZ50IYQQwl0k6W2EFNVBz/zf0KtWcvQt2GM+z9MhCS+j2G2Vbg7FyOGWw1nb+1WSkyaTH5CARnUQmbmKnhufpdumFwjJ2ohis1bZNzrSl58+voIxw9phd6hMfXM1tz22mIIiq6cfphBCCOEi3RsaofbFawixH8OmGNgYMPysZ9YS4lSnG1kiHx37TJcRqO1Fm9LNRJelEJS/i6D8XeTrwthr7kW6MeGf56XaGx+TnnefG8x5XaOY8uYq5i9LY8eeH3nr2Ys5r1vUOXpUQgghRM0km2pkwqyHiC9ZD8AW/yGUagM8HJForvL1EWwOGMYfoTez36c7dnQE2rPpVbCQi49/SVzJFrTqPxdWKorCLVd34udPriCmhT8HjhRy5R1zefm9tVisDg8+EiGEEEKS3kbF4CyhR8FCFOCAqTPpJplmWHheqdafHf4X8XvYrezyPR+LYsLXWUCXouUMyZ7O8QWfkJ+VS1GJk6ISJ/FxYfz08VjGDk/A6VR598vNXHbzT6zfluXapqabzS4TXQghhGgY0r2hkVCdTroXLMbkLKFAG8IO/wGeDkmISmwaH/b4ns9+c09iSpNpV7IJs7OAzJ/e5ugvH5PecjCHW13mGvGhTYw/Vwxty+KVB9m9P4ext/1Mv14t6N0lEo2m+uT29ht6otfJ/+JCCCHcT5LeRiLn96+ItB7AgZaNgZfhUGSgf9E4ORQ9aeZuHPDpQkvLHvoGpMLhFGIOzSf68CKORQ3gUOwoynwiiY8LomWkL4tXHmTfgXxWrjvKnrQ8hvaPJTLM7OmHIoQQohmRJpVGoHj/NjJ/ehOAHf4XUagL9WxAQtSCqmg4YmpP66dms73j/SdGfLDTMn0pfdY8RIft7+CXtw9fPYweFMOlF7bCoNeQkVXCt3N28cfKA1hLyiqPBoEMdSaEEKJhSEuvhzlKitj/7n/AYeeosR0HTJ09HZIQdaIoCqnZTlJNlxGi6Up8yXoirQeIyF5DRPYaMgxx7DX3ppWhJeO6wZo0DfuyNWzedZzd+7LpG+ekbZiKogBqb0Dr6YckhBDCC0nS62F5m5ZiyTiIPrQlW5UhlH/yC9E05RiiWWuIJsCWRXzJelpa9hJpTSPSmsZxfUv2mntjTmhNYoTK3/s15JcpLN2jZXemkwvaOD0dvhBCCC8mSa+Hhfa/HK2PLzadP7bP13k6HCHcokAfzsbAy9htz6NdyQZale0k1HaU0PxfToz125uobvFsPapl8xENR/M1zN6soP/f3zx253mEh0p/XyGEEO4lfXobgaCegzG36+7pMIRwu2JdEFsDhvBH6C3s8+mBXdGfGOv3Ny7J+4rRYdu4upuVuBAnKgoz5u7mwnHf8870TZSW2T0dvhBCCC8iSa8QosGVaf1I9h/A76HlY/1aFRO+jny6Ff7B2OLp3Ba7nis6ltG5fRhFJTZe+WAdA8fP5KeFe3E65eI2IYQQZ0+6NwghzhmbxuQa6ze2dDvtSjbi4yymU9FKEpR1tBj1b/4aOYA3v07myLEi7n7mDz76dhuPTT6f3l3qPp2x0aBFr5OkWQghhCS9QggPcCh6Us09SPPpSquyXcSXbMDPkcfxue+ToPmUxxIu4qeofvy1s4Rtu7K44d5fiW8dSP/eLQkN9qn1cWSyCyGEEBUk6RVCeIyqaDnk04lDpg60sOyjf9ABLAeTicv4nQf4nTGdevFN3iDWH1DZeyCffQfz6ZgQygU9WxDgZ/B0+EIIIZoQaQIRQnieoiHdlEDsEzPZ3O0JssN6oaLQpmgDT+ne4P/if6VzpAVVhR0px/l85g6WrT5MSanN05ELIYRoIqSlVwjRaCiKQn5wR/KDO2IqzaTlkcW0SF9GoiOFF/1TSDbG8VnBcPbk+bJxeybbdmfTq3MEvbpEYjTIpBZCCCFqJkmvEKJRKvOJYH/8DRyIu5LIYyuIPrKIjqTxWuhHbDa35vO8oRwoCWT1pmNs2ZlNn26RdOsQjk768AohhKiGJL1CiEZFsVfusuBER3rUxaRHDiQ4dxvR6UvonrudN32msao4ga9yBpBeFsTyNUfYsC2D87qE0zUhBJ1Og4KM3CCEEKKcJL1CiEYlP2VTzeuANP3F+IT2IrY0mZ7aHfT1/ZwlBZ34Prcv2SUBLF2TztqNR+jaSuWWa7vja679aA9CCCG8l3wPKIRockq1Aez268uS0FvZEDSSruHFfNB6OneE/06orpBim4ZVqVqGXPM1n369QWZ3E0IIIS29QoimS1U0ZBjbkmFsi8FZQox/Cq8E/8qG3HB+yD2fzAJ/nn1nA//9aDXXX+THpNuGENm6lafDFkII4QGS9AohvIJVYybV3J1Uc3fMQXk8GLWNo8VmfjjYhkxrIB/8buGzJXMYEXOMCZe3osOgQaiRkZ4OWwghxDkiSa8QwuuU6IJI9e/Dw29O5J7jqcz6Zimf/1HMvkJ/fjoYw5z3nPT74iMub/k4fXvHEtCpLwGdzscYFYeiKJ4OXwghRAOQpFcI4bUURcGvdXtufaI9tzyusmTJdt6btpa1+2FlURIrU5KIScvm0kU/c7H/SwSFBeMX3w1zu674tuuCb5tOaH38PP0whBBCuIEkvUKIZkFRFIYO7cLQoV3YvjubL2Zt5+eF+zhkCeOT7MF8eXwAFx3fxcVHd9Bh7SI0CqAomFq2wxzXEZ/otphatsMU3Q5jRAwand7TD0kIIUQdSNIrhGh2OrcP4/WnLub9l6/kvekr+PLHZHbvz2VxQRcWF3Qh3MfGgMB99NNtIP7wXsqO7K20v6LVY4yMxRgZgyG0JYawFhhCW2AMa4khtAW6gFA0eoOHHp0QQojqSNIrhGi2AgNM3Hp1Z26+qiNrNx9jxtzd/LY8jawimF2axGySiAnTMzjBSu+AI8Tbk7Ef24/TUkLZ0X2UHd1XY9laHz90ASHoAkLQ+4eg9Q9C6+OP1scXvcmMxmhCa/JF6+N34uZbfjOV3xRN7UeU1Oj0OE+Z1KO+FL0Bh0ZasYUQ3keSXiFEs6coCuf3aMH5PVrwitXBslWH+HnRXhatOMChbBtfZCt8QSv8fdtw4XnRDOjiz/mtSgl1ZmHJPoo1Ox3r8aNYj6djy8lAddhxlBbhKC3CknGwfjHp9Ch6IxrXbwOKvvym0RtQdCd+6w1E9BtFzra/0Rh90Bp9UM6i60XMqAlglKRXCOF9JOkVQoiTGA1ahg+MY/jAOIpLbCxecYDf/zrIstWHyM23sGBZGguWlW8b1yqAPt16cF63y+gzIor2rQMBcJQUYM8/jq0wF3vBcewFOdiL8l2JsLMoj6K0nah2K06b9Z/fNiuoTgBUuw3VbsNZi5jzN/xR6b6i06Mx+py4mdGazGjN/pVuGpOvjFQhhGhWJOkVQoga+Jr1jBkez5jh8TgcTrbuymbZqkMsXX2YTTsySTtcQNrhAmbOSwEgONBI766RdEsKp3NSGF3aJxHV3rdKuRpLMYd+/azKclVVwemokgirNitOuxXVZsFpt6HaLCcts6Lz8aUs4xAOSyk4Hah2Gw67DUdxQc0PTqMp71ZhDkBr9kfnF4jOP5jSYwcwtEpE0crHgxDCu8i7mhBC1IJWq6FHpwh6dIrggYm9yCuwsGFbBuu2HmPdlgw2J2eSm29h8YqDLF7xT5eGiFAfOrcPo0v7MLoklf+OCa6+hVVRFNDq0Gp1gLnWscWMuIVD86ejqmp567ClBKelFKelFEdZCc6yYhwlRThKCnCUFOIoLQKnE0dxQZXEOHf1AhSdHmNUHD4t22KKboepZVt8ouMxRbdFo5ML9IQQTZMkvUIIUQ9BAUaG9I9lSP9YAKw2B9t3H2fDtgy27c5m++5s9qTlkXm8lD/+PsQffx9y7RscYKBdkJ72kU7aR6gkRqq0DlHR1v7atWopiuLq84tfUI3bqU4njrIiHMWF5UlwSQH2wjzshbk4SwtxWi2UHd5D2eE9lcvX6fFplYBP6yTMsUmY4zpijk1Ca5axjIUQjZ8kvUIIr6XR6SgurnlUg717D6Gqtek1Czq9Hrvt9CMktG8TTPs2wa77pWV2du/PYXvKcZL3HGfHnuPsSc0lt8DK+gIN6w/+k+WaDBoSYgNIalN+69AmkIRYf0xG7Rljs2h8avUYKigaDTpzADpzQJV1MaP+jSXrMKXpqZQeTaUsPZXS9DRKj+zDUVpESVoyJWnJHD9pH2N4NObYJHxbJ2GOS8K3dQf0/uXnQUaDEEI0FpL0CiG8ls3m5I2nP6l2nYKCwajHarGhop6xrP88f3uNZdVGENA/AvqGwcibr+Kt12dzvFghu1ghpxjKrE627c1j2968k2JUCfKBEF+VUF+VMD8IMauYTskhH3l+Ur3jqsLpIHPNQtddXXgr/MNb4delP46SQux52djys7DlZ2PLy8ZZWoQl6wiWrCPkblji2k9r9kcfFE7YBZfhE98D3zad0PkHV3dEIYQ4JyTpFUKIc0irgU6JYbSPVOFEsu1UobAMsosVjhcrHC+G40UKZXaF3FLILVXYl/1PGX7G8iS4/AZHM4rwUaEhB2NQFAWdbwA63wBM0W1dy52WsvIEOD8LW24WtrwsHEV5J7pNFHL4x/dc2xrCo/GN64S5bWfMbTqVJ8Kn6YYhhBDuJEmvEEJ4mEaBQB8I9FFpF1aeCKsqlNjKk9/jxZxIhhUKLQpFJ24Hcsr3X3z9DwSYDMSHqyREOEkIV0mIUGkbpmJs4Hd5jdGEMaIVxohWrmVOmwVbXja23EwMvgEUpSVjyTiINesI1qwj5K5b5NrWGBZd3iUiriO+rTvgG9cBnW/VbhfQvLpK2OwKFqvDLWUZDVr0ujN/myGEt5OkVwghGiFFAV8D+IaoxIZARauwxQ45JyXB2cUKhRYNBWWw8ZDCxkP/9BPWKiqxISrx4eUXysWFlv+ODVbxacBBGDR6I8bwaIzh0a6RJZxWy4nW4ExseeWtwo7ifCzZR7BkHyF3/UldI3wD0AeFow+OKP8dFI7GYGpWE2dYrA4++majW8q6/Yae6HVneZWkEF5Akl4hhGhCjDpoEQgtAv/pHnH/0zezecanpGQp7MlU2JOpYU+WQn6pQupxhdTjVcuJ9FdpFaQSFagS5a8SGaDSIlCl7EAB1jLwM5a3QLuLxmDEGN4KY/hJLcJWS3kCnJd5omtEpmsYNUdxAWVH/pnmWesbgOVQCub47pjbdMIc17HGFmEhhKiOJL1CCNHEmcxGul0+lm4nLVNVlcwcC7sPFLD3YCFpR4tIO1pM6pEi8gptZBQqZBQqcOiUwmbOA4xoFLW8y4VJJdAMAcbyrhIGXXnibdSVX1CnUcpTb1U9+dhgd5bfdLs3UVoUj93uxGZXsTvKf9vsTuwOJ3ZHXPnfFeusdmxWKzarDZvVUb6NE+yqFvsWDWBDp2zAoKxFr1Ux6jUYDToMJgMmswmj2YyP2YjZpMPXbMRk0uBj1GH20eNj0uFj0mE2lf8d4G8gwPfEOh8dZlP532YfHXqdptoZ61RVxWpzYrM5sNqcWG2OEzcnVquDMouDkjIbpWV2SkrtlJXZKSmzUVJqdy07eX1pWcVyGyUn/rbbnThVKCmxlv9bc+LcarUKWq0GnU6D7sTfep0Gk1GL0ajDZNRiMmgxGXWYfXT4mvX4mfU4ndK1QQiQpFcIIZo8m93JW/+dc9ptQoHQEOgVAmU2yCvlRN/gf34XWxSsioHiEhtOVSG3BHJLFMg5i+A27KrnjpoTt6qsqgarqgcnYANKABxA8Ymb+ygKaDQKmhMJsM1euyHuGpNPZ2wnPNRMVLiZyDBfIsPMRISZaRHhW34LL//t5ysTjwjv5rVJ72+//cbcuXPJy8ujdevWTJgwgfj4eE+HJYQQHmfSQ5QeXE2IJw3Z9sjzN5I570PySyG/TCGvBPJKy5Niix0sdgWrveLv8pEnoDw5PLldVKcFnQb82/dm1dINaBT+uWn++Vt7yn2NolbZpuI2+dEb+WbODhwOJ1iKMBQdQ1echbYkG11pLprSXFRrGRZVR5lTj0XVV/pdpuopVX0oUcyUYkIx+pavs2sotUGpxYndUblVVFXB4VBx1DCsnVarYNBrMeg16HVaTCYtZlN5a7GrZflEK3N5S/JJrc0+/6w3u7bVodNpKC1T+XH+zn9OLuBwOHE4VOwnWskdDhWr3YnFYqfM4qDMYqfsRGtzaamNopLyFma7QyU9s5j0zGIgq8bnhb+vnqgTCXD5zY+ocDMtIvxcy4IDjdW2gAvRFHhl0vv333/z5ZdfMmnSJBISEpg3bx4vvvgib775JoGBgZ4OTwghGjWDDsL9Idy/alJcV0HDe1C6Z71b4ooI88XPfOJCNn8jhIW61jlP3LT2EoJLjmIuPkqQPRtNwRFMZYfwKc1Cby864zFsqgabPgD8w9D4haL1C0Ux+6OY/FBMfhj9/DH5l/82+gdi8AtAY/LF5GvG4GNEYzChaM7+orGiEifhobWfiromDqfKuBEdOJZZRObxEtctI6uEzOxijmUVcyy7mKJiG4XFNgqL89iTlldjeQa9hhbhPkSFmogMMRLiryfIX0eQn55gPy1BfloCfbUE+2kJ9NXga1DQoKI6HaCW/1adTnA6yieG0WhxopSvd6rly1S1fFtVBdUJqvPE3xXLnSiAPTCAvJzcE/s4QeWk/Z3lXW5q2L/6Y5zY3uksP4bDhuqwu+7jdJbHrlb/Wz1p3yq/UcqnCXc9dvWfc1DdPtVs53Sq2BwqNrsGm0PF6lDKn69OLTa02Jwa7OiwOTXYVK3rZle12Jzak17F//yHqignZnJERVFAr1HQaUHvuinodaDXKeU3jYJBr6DTajDoFYx6BZNeg9GgoNNq0RgMBHS/mKBeg8/6udsQvDLp/fXXXxkyZAgXX3wxAJMmTWLjxo0sXbqUMWPGeDY4IYQQDcahM1MYEE9hQAIl/n4UFhZRkbRr7SWYyrIxlWVhKs2id2vYs3U3BmseBms+BmseeqcVvT0PcvMgd2+V8m0nboWniaF8KmgTGsOJJNhgQtFoUTQaFK0ONJoT97VwYjkaLYr2xDLAbnfS6VBueW5Sno2hoJ70N+UJGqBU/KY8mVNU54llThRVpWivAVteCSGqk1DVSQf+2UYxOyHWSZldR47Nhxy7Dzk2X47bzeTY/Thu8+W4w4/jdj/yHb5YbU4OHC3mwNHadyMxKjZMGismxYZJY/vnt8aGUbGjUxxoFSc6HOgUZ/nfigMtTnQVfytOdDhRlBPnAdBUnIcTCdvJyyvOUXmjtHpiWfk2J+1VflNxrXWevE51nfXK+6iVlzkp79juRMGharCjxa5qcKgnfqPBrmqwq1rX3xXr7GhxqJrKCeqpCeuJ33bOPDujJ2lwolcc/OuCnUyRpPfcsNvt7N+/v1Jyq9Fo6NKlCykpKdXuY7PZsJ00vaiiKPj4+KDT1Xx6Kr7e0ev15f+JnSWjUaF1m5ZnXU55WXq3leXu8ppSbDq9DrvN7vG43F2exPaPutRxU36cdSvLgG94tFvKqijPnectOiqoVtsqCpjNPgT6aU+6yC4I+CeWmEsTWf/byZ8LKlqHBZ2tCL29sPy3rRCtowytvQydo6z8b0cpWkcZOnv53xqnFY1alzF1VXDay29V1wCgBdqFVHlUVO5EUvskyMfX94zbxFS6V3ri9k93CLuqId/hQ77DTJ7dTIHDhxLVSLHDeOK3gRLVRInDQJHTiE09fYphPXFr7rQnbqY67lfeFUhFC2g0KtoTXYO0J7oJaTUqGij/raj/TF5zSsoS2TIMR34WKmB3Ktid4Dhx++e+gl1VTvwGu0PBpirYnVW/1WjbIwS9/uyHFqxNnnW6PK3aMlV3ZGyNSE5ODnfccQcvvPACiYmJruVff/01ycnJvPTSS1X2mTlzJrNmzXLd79+/P/fdd985iVcIIYQQQjQ8Ga0aGDt2LNOnT3fdJk2aVKnltzqlpaU8+uijlJaWnqMoxbkk9ev9pI69m9Svd5P69X4NUcde170hICAAjUZDXl5epeV5eXkEBQVVu49er69zU7yqqqSmprqla4NofKR+vZ/UsXeT+vVuUr/eryHq2OtaenU6HW3btmX79u2uZU6nk+3bt1fq7iCEEEIIIZoPr2vpBRg1ahTvvfcebdu2JT4+nvnz52OxWBg0aJCnQxNCCCGEEB7glUlvv379KCgoYObMmeTl5REXF8cTTzxRY/eG+tDr9YwbN84tVyiKxkfq1/tJHXs3qV/vJvXr/Rqijr1u9AYhhBBCCCFO5XV9eoUQQgghhDiVJL1CCCGEEMLrSdIrhBBCCCG8niS9QgghhBDC63nl6A3u8ttvvzF37lzy8vJo3bo1EyZMID4+vsbtV61axffff09WVhZRUVHccMMN9OzZ8xxGLOqiLvW7bNky3n///UrL9Ho933zzzbkIVdRRcnIyv/zyC6mpqeTm5vLQQw/Rp0+f0+6zY8cOvvzySw4dOkRoaChXXXWVDHPYiNW1jnfs2MHUqVOrLP/444/dOrKPOHs//fQTa9eu5ciRIxgMBhITE7nxxhtp2bLlafeTz+Cmoz517I7PYUl6a/D333/z5ZdfMmnSJBISEpg3bx4vvvgib775JoGBgVW23717N2+99RbXX389PXv2ZOXKlbz22mu8+uqrxMbGeuARiNOpa/0C+Pj48NZbb53jSEV9WCwW4uLiGDx4MK+//voZt8/MzOSVV17hkksu4Z577mH79u18+OGHBAUF0b1794YPWNRZXeu4wptvvonZbHbdDwgIaIjwxFlITk5m+PDhtGvXDofDwXfffccLL7zAf//7X0wmU7X7yGdw01KfOoaz/xyWpLcGv/76K0OGDOHiiy8GYNKkSWzcuJGlS5cyZsyYKtvPnz+f7t27c8UVVwBw7bXXsm3bNn777Tduu+22cxm6qIW61i+AoijSItRE9OjRgx49etR6+0WLFhEREcG//vUvAFq1asWuXbuYN2+eJL2NVF3ruEJgYCC+vr4NEJFwlyeffLLS/bvuuouJEyeyf/9+OnbsWO0+8hnctNSnjuHsP4cl6a2G3W5n//79lZIfjUZDly5dSElJqXaflJQURo0aVWlZt27dWLduXUOGKuqhPvULUFZWxuTJk1FVlTZt2nDdddcRExNzDiIWDW3Pnj106dKl0rJu3boxffp0zwQkGswjjzyCzWYjJiaGq6++mqSkJE+HJM6gpKQEAD8/vxq3kc/gpq02dQxn/zksF7JVo6CgAKfTWeW/iaCgIPLy8qrdJy8vr8rX4oGBgTVuLzynPvXbsmVL7rzzTh555BHuuecenE4nTz31FMePH2/4gEWDq+n1W1paitVq9VBUwp2Cg4OZNGkS//nPf/jPf/5DaGgoU6dOZf/+/Z4OTZyG0+lk+vTptG/f/rTdFOQzuOmqbR2743NYWnqFqIXExEQSExMr3X/ggQdYvHgx1157rQcjE0LURsuWLStdJNO+fXsyMjKYN28e99xzjwcjE6czbdo0Dh06xHPPPefpUEQDqW0du+NzWFp6qxEQEIBGo6nyH2JeXl6NfUmCgoLIz8+vtCw/P1/6gDZC9anfU+l0Otq0acOxY8fcH6A452p6/fr4+GAwGDwUlWho8fHx8hpuxKZNm8bGjRt59tlnCQ0NPe228hncNNWljk9Vn89hSXqrodPpaNu2Ldu3b3ctczqdbN++vdJ/GSdLTExk27ZtlZZt3bqVhISEBo1V1F196vdUTqeTgwcPEhwc3FBhinMoISGh2tdvbZ8PomlKS0uT13AjpKoq06ZNY+3atTzzzDNERESccR/5DG5a6lPHp6rP57AkvTUYNWoUS5YsYdmyZRw+fJhPP/0Ui8XiGrfz3Xff5dtvv3VtP2LECLZs2cLcuXM5cuQIM2fOZN++fVx66aUeegTidOpav7NmzWLLli1kZGSwf/9+3n77bbKyshgyZIiHHoE4nbKyMtLS0khLSwPKhyRLS0sjOzsbgG+//ZZ3333Xtf2wYcPIzMzk66+/5siRIyxcuJBVq1YxcuRIT4QvaqGudTxv3jzWrVvHsWPHOHjwINOnT2f79u0MHz7cE+GL05g2bRorVqzgvvvuw8fHh7y8PPLy8ir1r5fP4KatPnXsjs9h6dNbg379+lFQUMDMmTPJy8sjLi6OJ554wvVVSXZ2NoqiuLZv37499957LzNmzOC7776jRYsWPPzwwzI+YCNV1/otKirio48+Ii8vD19fX9q2bcsLL7xAq1atPPQIxOns27ev0kQEX375JQADBw7krrvuIjc315UcAURERPDYY4/xxRdfMH/+fEJDQ7njjjtkuLJGrK51bLfb+fLLL8nJycFoNNK6dWuefvppOnfufM5jF6e3aNEiAKZMmVJp+eTJk10NE/IZ3LTVp47d8TmsqKqqnnX0QgghhBBCNGLSvUEIIYQQQng9SXqFEEIIIYTXk6RXCCGEEEJ4PUl6hRBCCCGE15OkVwghhBBCeD1JeoUQQgghhNeTpFcIIYQQQng9SXqFEEIIIYTXkxnZhPBC11xzTaX7Wq0Ws9lMUFAQbdu2pVevXpx33nlotdoa9w8PD+e99947qzhmzpzJrFmzKs2y442WLVvG+++/X2mZVqslMDCQpKQkrrjiCtq2bdtgx9+xYwdTp051zUZWwRvPf8VjOp1nn32WTp06naOI3G/KlCkkJyfz7rvvEhER4elwhPAakvQK4cUGDhwIgKqqlJSUkJ6ezp9//sny5cuJiori3nvvJT4+3sNRnr2KpHPcuHFVEv5zKTIykqSkJADKysr+v707j4rqPB84/h0GASGAjGBmGNkFJiQgJirGLS4VaRvTFGM8sTVppe1pNI1JTUtt01NNjvUYY614rGkWm+pJaNRGbcBCFFJMDAOiISyyDZsgiwQRRgSGZX5/cOb+GGeGLS4JvJ9z/Ofe933ve9+Zwee+97nvpaKigs8//5ysrCw2bdrEzJkz71rfxho/Pz/8/f2t7jO9Tvyb6lZdVAqCMDIi6BWEMWzgrJ9JQ0MDiYmJZGZmsnXrVl599VWL4GH37t02Z4EF2zQajdmY9/T08Pbbb5Oens5bb71FZGQk9vZ37s9uTEwM8+bNw8PD444d806ZNWvWXb3AuZ2ee+45urq6UCgUd7srgjCmiJxeQRhnlEolL774IkuWLKGrq4v9+/dblFGr1SiVyrvQu7HF3t6en/zkJzg5OdHS0oJOp7ujx3dzc0OtVuPs7HxHjyt8PZ6enqjV6jt6gSQI44H4RQnCOPX0009z9uxZKisrKS4ulm7Lg/Xbr0ajkbNnz5KTk0NlZSVXr15FJpOhVqtZtGgRy5Ytw87O9nV0WVkZhw8fpqysDKPRyLRp01i9ejUhISFWy9fW1nLixAkKCgpobW3FxcWF+++/n5UrV+Lj4yOVM+U/Ahw9etQs3/PmXNbhtmly4cIFkpOTqa2tRa/X4+rqypQpU4iIiGDVqlVDDzLg5OSESqWisrKSr776Stre29tLWloaGRkZ1NbW0tPTg7e3N4sWLSImJsbqTHtNTQ2JiYkUFRXR29uLv78/sbGxTJgwweqxB8vpvXLlComJieTl5WEwGFCr1axYsYLg4GCee+45wsLC2LJli9W2pk6dytGjRyktLeX69eu89tpr0t2CsrIyPvroI4qLi9Hr9bi7uxMZGckTTzyBp6en1X7m5uby3//+F51OR0dHBwqFglmzZhEbG4urq+uwxtmaDRs20NTUxOHDhy322cqD3rdvHxkZGfzpT39CJpNx5MgRysvLkclkaDQa1q5dy9SpU22eR2pqKjqdjvb2dtzd3fHz82PRokXMmTPHLPe7qanJbKZ64HgPltNbW1vLhx9+SEFBAXq9Hjc3N8LDw4mNjcXb29vmOT7zzDMkJiZy7tw5rl+/jkql4vvf/z5LliwZ1dgKwreRCHoFYZxydnZmxowZaLVaCgoKzIJea7q7u0lISMDV1ZWpU6cSEBCAXq+ntLSUd955B51OZzWdAqCkpIQ333wTpVJJZGQkjY2N5OfnU1RURHx8PNOnTzcrn52dzZ49e+ju7sbf35/g4GCam5vJzMzk/PnzbN68mbCwMAAiIyPp7e2lpKTEIs9z4Gz1SNoESElJ4cCBA9jZ2REaGkpYWBh6vZ7Lly9z5MiRYQe90J/fC0jBqcFgYPv27RQWFnLPPfcQHBzMhAkT0Ol0/POf/6SwsJCXXnrJ7CKivLycrVu30tnZiY+PDz4+PjQ0NLB9+3aWLVs27L5Af4rLyy+/TFtbG0qlkvDwcFpaWkhISOC73/3uoHUvXrzI3//+d7y9vYmIiKClpQWZTAZAamoqBw4cAGDatGloNBrq6+tJT08nJyeHLVu2WASM7733HidOnMDe3p6goCA8PDyorq4mOTmZnJwcXn311buSo3v+/HlOnjxJUFAQM2bMoKqqii+++AKdTseuXbss+nTw4EGSkpKQyWSEhITg6elJS0sLJSUlNDc3M2fOHJRKJY888ggZGRk4OjoyZ84cqb5arR6yT/n5+ezYsQODwUBAQABhYWHU1dVx5swZsrOz2bx5M/fdd59Fvfb2dv7whz/Q2dmJRqNBr9dTVFTEG2+8gdFoZOnSpV97vATh20AEvYIwjvn7+6PVarl8+fKQZeVyOS+99BIPPvig2W3XtrY2tm/fTkZGBosXLzYLHE3S0tKIjY1l9erVUoD08ccf8/bbb/O3v/2NvXv34uDgAPTPQO7duxe5XE58fDwRERFSO7m5uezYsYO9e/eyd+9e7O3tefzxx5k0aRIlJSU28zxH2ibAf/7zH2QyGdu2bSMoKEgqbzQapZnl4aitraWxsRHof/gK+gOkwsJC5s6dyy9+8Qsp/aCjo4O//vWv5OTkcPr0aaKjo6Vj7tu3j87OTouH9VJTU3nnnXeG3R+At956i7a2NpYtW0ZcXJwUXJvGYjD/+9//+NGPfsQPfvADs+2lpaX84x//wMPDg9/+9rdmq1Wkp6fzxhtvsH//frZt2yZtz8zM5MSJE/j4+PCb3/xGukgxGo0cOXKEo0eP8u677/LCCy+M6PxuheTkZDZt2sTs2bMB6OvrY/fu3WRlZZGamsrq1aulsmfOnCEpKQkPDw82b95sduFlMBgoLi4G+nO+NRoNGRkZuLm52bxItKazs5OEhAQMBgPr1q0jJiZG2peUlMTBgwdJSEhgz5490m/JJCcnh7lz57Jhwwbpwis7O5vXX3+df//73yLoFcYNkdMrCOOY6dZxe3v7kGXlcjmzZ8+2yDN0c3PjqaeeAvr/c7XGy8uLVatWSQEvQHR0NMHBwbS0tKDVaqXtJ0+epKurizVr1pgFp9A/qxsdHU1zczMXLlwY3kmOss22tjacnZ3NAl4AmUw2rOWwOjs7yc/P5/XXX6evr4/w8HCUSiWtra2kpaUxefJk1q9fb5ZvO3HiRJ599lns7e05deqUtL2wsJDa2lruvfdennjiCbPjLF++nODg4GGPRUNDA/n5+bi4uLB27Vqz2eTIyEgefvjhQev7+vry2GOPWWw/fvw4fX19/PznP7dYnm3JkiXMnDmTsrIyKisrpe0ffvghABs3bjSblZfJZKxatUq6KGtra7M43tGjR3nyySct/t2qFRHmzZsnBbwAdnZ2/PCHPwSgqKjIrOyxY8cAeOaZZyweCnVwcLD4zo1GZmYmra2thISEmAW8AI8++iiBgYE0NzeTlZVlUXfixInExcWZpcHMnj0bHx8fvvrqK65cufK1+ycI3wZiplcQxjGj0QhgFowOpaqqii+//JKmpiYMBgNGo5GOjg4A6uvrrdaJioqymqM6b948ysrKKC4uZuHChQB8+eWXAGYBx0D33XeflP9pq8zNRtNmYGAgxcXF7N+/n0cffdRqzu/NMjIyyMjIsNgeFBTEr371K6A/gO3t7SUyMtJiRg76l9tSqVRcunQJg8GAg4ODNFMYFRVlNW/aNI7DYWpr+vTpODk5WeyfO3cun332mc36Dz74oMX3pa+vj4KCAhwdHS1SVUw0Gg05OTnodDoCAgJobW2luroalUqFr6+vRXmZTEZoaChVVVVUVFQQGRlptt/WkmVDpekMl7XzUKlUALS0tEjbrl69yuXLl3FxcRnyguHrMAXa8+fPt7p/wYIFVFRUUFRUxIIFC8z2BQYGWs2NVqlU1NTUcO3aNbEesDAuiKBXEMYxvV4PgIuLy5Ble3p62LdvH2fPnrVZxpS7ejNbDzB5eXkB/YGDSVNTEwC//OUvB+2Ptdk/W0bTZlxcHDt37uSTTz7hk08+wd3dnbCwMKKiopgzZ47V4HPgOr1yuZxJkyah0WiIiIiQypv6kpaWRlpa2qD9uX79OgqFQhof03jdzNZ2a65duwbY/kxsbR9sv16vlz77NWvWDFrf9J0zjUN9ff2QS4+Z6gx0u5csmzx5ssW2iRMnAv2/BZPm5mYApkyZMqKLx5EyBdq2glNrvyUTa+cC/38+3d3dt6KLgvCNJ4JeQRjHTLeabT2NPlBSUhJnz57F19eXH//4xwQEBODi4oK9vT11dXW88MIL0szx12Fqw/RiDVtGckt/NG36+fnxl7/8hdzcXL744gsuXrxIZmYmmZmZhISEsGXLFotUj5vX6R2sL/7+/lKOry3fxCWrrM1Om87JycmJqKioQeubvmt9fX1A/8y2rdlhk5EE9cM11Hf1dgawt8Ng/f22nYsg3C7fvL+ogiDcETdu3JBu+z/wwANDls/Ozgb68y9vvtU/VE7gwKW6BjLN9g1chF+hUNDY2MjTTz/9tZarGmi0bTo4ODB79mwp5aGmpoaEhARKS0tJS0tj+fLlo+oL9AfI69atG1Yd08slTON1M1vbrTGtOmDrMzHNXI6Eq6srEyZMQCaTsX79+mEFWabZR1dX1xE90DUSpouGzs5Oi1QOW+c/UqbzuHLlCkaj8bYFmMP9DogXWgiCbeJBNkEYpw4ePEhXVxdBQUE218odyPSwm7VbpZ9//vmgdbOysqSZPWv1BuZhmh76MQXZw2EKbqwdY7RtWuPj4yMFujU1NaNq44EHHsDOzo7z58+b3SYfjGkZqqHGcThCQ0OB/jxna+komZmZw27LRC6Xc//999PR0UF+fv6w6kyePBm1Wk1tbS11dXUjPuZwmAJ8a+3n5eXdkmMoFArUajXt7e3DHju5XE5vb++IjmP6DthKL/r000/NygmCYEkEvYIwzjQ2NrJ7927S09NxdHTk2WefHVY900M8H3/8sdl2rVbLmTNnBq3b1NTEkSNHzLadPn2a0tJS3N3dzW6Jr1ixAgcHBw4dOmT1SfTu7m60Wq3ZjKRpFsxW8DTSNru6ujh58qTFqhZ9fX3k5uYCtvMkh6JQKFi8eDFNTU3s2bNHyrEdqKGhwWxFi7CwMNRqNY2NjdKKByanTp2itLR02MdXqVSEh4fT3t7Oe++9ZxZE5+XlDZqzPZjY2FhkMhn79++nsLDQYn9nZyfp6ekYDAZp28qVKzEajezatYuqqiqLOnq9ntOnT4+qP4C0fJ5pZQmTzz77bNTnac3jjz8O9F9IVldXm+0zGAwWAbZCoaC1tXVYq6aYPPzww7i7u1NcXGwxJidPnqS8vByFQjFkeokgjGcivUEQxjDT8k1Go5EbN25QX19PXV0dRqMRlUrF888/b/XJeWsee+wxcnNzef/999FqtahUKhoaGigvL2fFihV89NFHNusuXbqU48ePk52dja+vr1RPLpezYcMGHB0dpbJKpZKNGzeSkJDArl27UCqVqNVqHB0daWlpoaKigq6uLl577TUp8AwODsbd3R2tVsuWLVuYMmUKdnZ2LF68mNDQ0BG32dPTw7vvvsuhQ4cIDAzEy8uLnp4eysvLaW5uxsvLi+985zuj/lx++tOf0tTURFZWFrm5ufj7++Pp6UlXVxe1tbU0NDQwc+ZM6eUFdnZ2rF+/nldeeYXDhw+j1Wqll1NUVFQQHR1tcTEymJ/97Gf88Y9/JDU1lby8PAIDA2lpaaGoqIjly5eTkpIy4nxijUZDXFwcBw4cYOvWrfj4+KBSqbC3t6epqYmqqiq6u7uJioqS8oLnz59PTU0Nx44dIz4+Hn9/f+69916g/+KsuroaJyenUY/18uXLOXXqFFqtlhdffBE/Pz/q6+upqanhe9/7HsnJyaNq92aPPPII5eXlpKSkEB8fT0hICJMnT+batWtUVVXh6enJzp07pfIPPfSQWVkHBwe8vb2tLgVn4uTkxPPPP8+OHTt48803OX36NCqVirq6OiorK3FycmLjxo1Wc64FQegngl5BGMNMy2fJ5XImTpyIh4cHCxcuZNasWcycOXPQ1wbfLCwsjFdeeYV//etfVFZWUl9fj6+vL5s2bSIgIGDQoDc0NJTFixfzwQcfcOHCBYxGI+Hh4Tz55JPS7faBZs2axc6dO0lKSiI/P5+8vDzs7e3x8PDgoYceIioqyuzhOwcHB373u9+RmJiITqejqKgIo9GIRqOR2h9Jm05OTsTFxZGfn091dTWXLl3C3t4eT09Pli5dSkxMDPfcc8+wx+5mDg4O/P73v+fTTz8lIyODqqoqdDodbm5ueHl5sXDhQubOnWtWJzg4mG3btkmvIW5sbMTPz4/4+HgcHR1HFPSqVCr+/Oc/S68hPnfuHGq1mg0bNjBlyhRSUlJGdX7R0dGEhISQnJzMxYsXuXDhAo6OjigUCubPn09UVJTZusQATz31FNOnTyclJYWSkhIuXbqEs7MzCoWC6Ohos7eWjdSkSZPYunUrhw4doqioiKtXrxIYGMjLL7+MTCa7ZUEvwLp164iIiCA1NZXy8nJ0Oh3u7u6EhoZavOrXtMLFuXPnyMzMpLe3l7CwsEGDXoDw8HC2b98uvYa4uroaNzc3FixYwMqVKy1eQywIgjmZ8VY8bi0IgiCMCcePH+f9999nzZo10m17QRCEsUDk9AqCIIwzBoOB2tpai+0FBQUcO3YMuVzOvHnz7kLPBEEQbh+R3iAIgjDO3Lhxg1//+td4e3ujVCpxcHCgvr5eeghr7dq1t2VtXEEQhLtJpDcIgiCMMwaDgQ8++IC8vDyam5vp6OjA2dmZadOmERMTw4wZM+52FwVBEG45EfQKgiAIgiAIY57I6RUEQRAEQRDGPBH0CoIgCIIgCGOeCHoFQRAEQRCEMU8EvYIgCIIgCMKYJ4JeQRAEQRAEYcwTQa8gCIIgCIIw5omgVxAEQRAEQRjzRNArCIIgCIIgjHn/B5Yux2av2J9GAAAAAElFTkSuQmCC\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAGQCAYAAABS9YMgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACZKElEQVR4nOzdd3yb1b348c95tCxZ3tuO49hxnD1JWAEyWGW0EEovFGgDNJRb6ORHe9vSwWxLe9NL20tb2rICl1KghL3DJgECgQwynMSZ3nvK1njO7w/ZSkysxFuy/X2/Xn5ZevSMr76W5K/Oc55zlNZaI4QQQgghxAhjRDoAIYQQQggh+kMKWSGEEEIIMSJJISuEEEIIIUYkKWSFEEIIIcSIJIWsEEIIIYQYkaSQFUIIIYQQI5IUskIIIYQQYkSSQlYIIYQQQoxIUsgKIYQQQogRSQpZISLgyiuvRCnF3r17Ix3KqBLpvN58880opXjzzTe7LVdKsXjx4ojE1CXSuenJ4sWLUUpFOgwhxAgmhawQA1RcXMwNN9zAvHnzSE5OxmazkZyczAknnMCNN97Ixx9/HOkQR5QJEyaglAr92Gw2UlJSmDlzJl/72td4/PHH8Xq9Q3LskVxYhSuixdHV19dz6623cvzxx5OUlITD4SA3N5f/+I//4NVXXx2047z55psopbj55psHbZ9CCLBGOgAhRiqtNbfeeiu33norpmkyb948LrnkEpKTk2lubmbTpk386U9/YuXKlfzv//4v119/faRDHlG+973vkZiYiGmaNDU1sWPHDlavXs3DDz/MpEmTePjhhzn++OO7bfPrX/+aH//4x+Tk5EQk5m9/+9tceumljB8/PiLHP5pI5yYavf3223z5y1+mpqaGqVOncvnllxMXF8fOnTt5/vnnefzxx7niiiv4xz/+gcPhiHS4QogeSCErRD/deuut3HzzzeTm5vLPf/6ThQsXHrFOVVUVd911F42NjRGIcGT7/ve/z4QJE7ota2xs5Oc//zl/+tOfOOuss3j//feZMmVK6PGsrCyysrKGOdJDUlNTSU1NjdjxjybSuYk2W7du5dxzz8Xj8fCnP/2J66+/vltr/IEDB7jwwgt5+OGHsdvt3HvvvRGMVggRlhZC9Nnu3bu11WrVdrtdb9my5Zjr+3y+bveXL1+uAb1nz57QsjfeeEMD+pe//GWP+8jLy9N5eXk9Pvboo4/qpUuX6qSkJO1wOHReXp6+9NJL9fr167ut197ern/961/rGTNmaKfTqePi4vQpp5yi//Wvf/W436efflovXbpUZ2ZmarvdrrOysvRpp52m77777iPWra2t1T/+8Y/1lClTdExMjI6Pj9dLly7VL7/8cvjEhHmen8/N533961/XgL7gggu6Le8pr715Hnv27NFAjz+LFi3qFlteXp5ubGzUP/jBD3ReXp62Wq2hv9kvf/lLDeg33nij2/G79lNaWqqvuOIKnZaWpmNiYvS8efP0//3f/x3x/O6//34N6Pvvv7/H599TXOHiP1ZutNb6X//6lz711FN1fHy8jomJ0TNmzNC/+tWvdHt7+xHrduWgpaVF33jjjTo3N1fb7XY9ceJE/Zvf/EabptljzD1ZtGiRBnR7e7u+6aab9IQJE7TdbtcFBQX65ptv1h0dHaF16+rqtNPp1AUFBWGPcf7552vgiNd9T04//XQN6B//+Mdh1ykrK9NJSUka0O+9915oedfrZfny5Ud9Xl26ct/Tz+dfK0PxXj483l27dukvf/nLOjk5Wbvdbn3mmWfqzZs3a621rqqq0tdcc43OzMzUDodDz58/X7/++us9Pkefz6fvvvtufcIJJ+i4uDjtdDr1nDlz9J/+9CcdCATC5lSIwSYtskL0w/3334/f7+eyyy5j+vTpx1zfah2at5rWmquuuooHH3yQ1NRULrroItLS0jh48CBvvPEGkydPZv78+QB4vV7OPvts3nrrLaZMmcL1119PW1sbTzzxBJdccgmffvopv/rVr0L7/tvf/sa1115LZmYmX/ziF0lNTaWqqopNmzZx//33c91114XW3bdvH4sXL2bv3r2ceuqpfOELX6C1tZXnnnuOL3zhC9xzzz1cc801g/a8f/GLX7Bq1Sqee+45mpqaiI+PD7tub55HYmIiv/zlL3nggQfYt28fv/zlL0Pbf75V2Ov1snTpUurq6jjrrLOIj48nPz//mDHX19dz8sknk5iYyFVXXUVDQwOPPfYYl19+OaWlpfzwhz/sdz6+//3v89RTT/HWW2+xfPnyI2I+mp/+9Kf8+te/JjU1lcsuuwy3282LL77IT3/6U15++WVeeeUV7HZ7t218Ph9nn302ZWVlnHPOOVitVp566il+/OMf097e3i1/vfEf//EfrF+/nosvvhibzcbTTz/NzTffzEcffcQzzzyDUoqkpCQuvfRS7r//fl577TXOPPPMbvs4cOAAL774Iscdd1zoNR/Onj17WLNmDQ6Hgx/96Edh18vKymLFihX87ne/45577uHkk0/u0/PqcuGFFwLw4IMPsmjRom4X/nX9rYbyvdxl7969nHDCCUydOpUrr7ySvXv3snr1ahYvXsy6dev4whe+QHx8PJdccgl1dXU8+uijnHPOORQXF3frLuPz+fjiF7/Iyy+/zOTJk7nsssuIiYnhjTfe4Dvf+Q4ffPABDz30UL9yJUSfRbqSFmIkWrJkiQb0P/7xj35tP1gtsvfcc48G9IIFC3RDQ0O3x/x+vy4rKwvd/9WvfqUBfc4553RrIa6srAy16B3e6jRv3jxtt9t1ZWXlEbFUV1d3u79o0SKtlNL//Oc/uy2vr6/Xs2fP1jExMbqioqLH59XT8/x8bnoybtw4DXRrMeopr319Hkf7WOyK7fTTT9ctLS1HPH60FllAf+UrX+nWWlVSUqKTkpK0zWbTu3fvDi3va4vs0Y7dpafcrF27VgM6NzdXl5eXh5b7fL5Q6+Ydd9zRYw7OOecc3dbWFlpeWVmpExISdEJCgvZ6vT3G8Hld+Z40aZKuq6sLLfd4PPrEE0/UgF61alVo+fr16zWgv/zlLx+xr67n/7e//e2Yx121apUG9Mknn3zMdV955RUN6IkTJ4aW9bVFVutjv7+H8r18+BmH22+/vdu+b731Vg3opKQkfe2113Z7fXbl6fvf/363bbpy/e1vf1v7/f5ucV599dUa0E899VSPz1OIwSajFgjRDxUVFQA9Xjizd+9ebr755m4/d91115DE8ac//QmAe+65h4SEhG6PWSyWbn0i77vvPpRS/P73v+/WQpyens7Pf/5zAP7xj39024fVasVmsx1x3MP7gW7cuJG33nqLL3/5y1x66aXd1ktMTOSWW26hvb2df//73/18lj3ryn11dfUx1+3N8+iLlStXEhsb26dtLBYLd955J4Zx6GM3Pz+f7373u/h8voi0YN13330A/OxnPyMzMzO03Gq1snLlSgzDOOI10eWPf/wjTqczdD89PZ0LLriAxsZGduzY0ac4fv7zn5OUlBS6HxMTw69//etuMQLMnz+f+fPn8/TTT4fegwCBQIB7772XuLg4vvrVrx7zeOXl5QDk5uYec92udcrKynr3ZPppqN/LEGz9/fGPf9xt2fLlywHo6Ojgd7/7XbfX52WXXYbVauXTTz8NLTNNkz/96U9kZmbyP//zP1gslm5xrly5EqUU//d//9fXFAjRL9K1QIhBtnfvXm655ZZuy/Ly8vj+978/qMdpbW1ly5YtZGRkMHfu3KOu29zczK5du8jJyel2cVSXpUuXAvDJJ5+Ell1++eX8v//3/5g2bRqXXnopixYtYuHChaSlpXXbdt26dUDwQqyehhbqKjS3bdvWp+d3LFprgGMOl9Xb59FbMTExzJo1q8/bjR8/vscuCIsXL+aWW27plvvhsmHDBuDQ3/9wRUVFjBs3jj179tDY2NituEpISKCwsPCIbbqKvvr6+j7FsWjRoiOWnXLKKVgsliPyct1113H11Vdz33338dOf/hSAF154gYMHD/Ktb30Lt9vdp2NHg6F+L3eZM2dOt8ITIDs7Gwj+vePi4ro9ZrFYyMjI4ODBg6FlxcXF1NXVMWnSJG6//fYeY3Q6nYP+fhciHClkheiHzMxMtm3b1mMrzeLFi0NFlt/v77ElcDA0NDQAPbcKf17XqAnhrlrvWt61T4AbbriB1NRU/vznP/PHP/6Ru+66C6UUixYt4ne/+12ov15tbS0Ar7766lHH3WxpaTlmnH3RlftjFaS9fR69lZ6e3q+xZjMyMnpc3tUSGomRLXrzuti/fz8NDQ3dCtnExMQe1+9qHQwEAn2Ko6fcWK3WUH/mw1166aX8v//3//j73//Oj3/8YwzD4G9/+xsA1157ba+O15XzAwcOHHPdrnW6Cr6hMNTv5S6fb+mFQ3+znh7retzn84Xud73fd+7cecQX9sMN9vtdiHCka4EQ/dA11NaaNWsGbZ9dp/T8fn+Pj3/+H1NXMVFaWnrMfXf9kzr8dOzhuk61fv6f2de//nXef/99amtref755/nGN77B22+/zdlnnx1qae3a5g9/+ANa67A/999//zHj7K1du3Zx8OBBrFYrxx133DHX783z6K3+TphQWVnZ4/Kuv8nhuT/aa6GnAqW/+vu6GGw95cbv91NTU3PEhXxOpzN0odIrr7wSusjrhBNOYPbs2b063imnnALAxx9/fMx8vvbaawDdhtfr63v1WIbjvTxYuva7bNmyo77f9+zZMyTHF+LzpJAVoh+uvPJKrFYrTzzxxKCdQuvqI9hTK9GuXbuOaLGLjY1lxowZVFZWHvO0dFxcHBMnTqS0tJSdO3ce8fgbb7wBwLx583rcPjExkXPPPZe///3vXHnlldTV1fH2228DcOKJJwLwzjvvHOMZDp5bb70VgC9+8YtHnA49mqM9DyB02rWvLYq9sX///h6nh+2aievwU8pHey189NFHPe6/P7F3HbOn2cC6vizk5+eHbYEdLG+99dYRy959910CgUCPp9q/9a1voZTinnvu4d577yUQCPS6NRagoKCAJUuWhPqFhlNZWcnf//53AL75zW+Glh/t79PU1ERxcfERy4/29xnO9/JATZkyhcTERN5///1uLbVCRIoUskL0w8SJE/nZz36G1+vlnHPOYe3atT2u15eWmSlTphAfH8/TTz/d7XSqx+Phu9/9bo/bdC2/9tprjyh0TdMMtc4AXH311Wit+eEPf9jtn2lNTQ233XZbaJ0ub7zxRqiLxOG6YnO5XEDwApxTTz2VJ598stuFOYfbvHnzEaeI+6OpqYnvfve7PPTQQyQmJvKb3/zmmNv09nkApKSkAMGic7AFAgH+67/+C9M0Q8v27NnDH//4R6xWK1dccUVo+fz58zEMg0ceeYS2trbQ8rq6urDDRfUn9q6/9+23396tZToQCHDjjTdimibf+MY3er2//rrtttu69attb2/nJz/5CQBXXXXVEetPmjSJ008/neeee46//vWvJCYmHnGh4bH84Q9/wOVyceedd/KXv/zliMdLS0s5//zzqa+v56qrrurWIhsXF8eUKVN477332Lp1a2h5IBDghhtuwOPxHLG/Y/19hvK9PJisVivf+c53KC8v57vf/W6Pz7W8vLxbXoQYStJHVoh++sUvfoHWmttuu42FCxdy3HHHcfzxx5OcnExDQwN79+4NnZY87bTTjrk/m83G9773PW677Tbmzp3LsmXL8Pv9vPrqq2RnZ/fYR2/FihW88847PPTQQ0yaNIkLLriAtLQ0ysrKeP3117n66qtDF2DdeOONvPjiizz99NPMnj2bc889l7a2Nh5//HGqqqr40Y9+FDrlCsFTh263mxNPPJEJEyagteadd95h/fr1HHfccZxxxhmhdR955BGWLl3KN77xDf74xz9ywgknkJiYyMGDB9m0aRNbtmxh3bp1pKen9zq/d911F4mJiWitQ1PUvv3227S2tlJUVMTDDz9MUVHRMffTl+dx+umn8/jjj3PRRRdx7rnn4nQ6ycvL42tf+1qv4w5n1qxZfPDBBxx33HGcddZZoXFkGxoa+O1vf8vEiRND62ZlZXH55Zfz0EMPMWfOHM477zyampp44YUXOO2003pstVuyZAmGYfCTn/yELVu2hFoNf/azn4WN6eSTT+ZHP/oRv/3tb5kxYwYXX3wxsbGxvPjii2zZsoVTTjllQOPb9tbUqVOZPn16t3Fkd+/ezXnnnRc299dddx2vvfYalZWVfOc73+k2gkJvzJw5k+eee46LL76Y6667jrvvvpslS5YQFxfHrl27eP7552lra+Pyyy/vsdD94Q9/yDe+8Q0WLlzIV77yldA4qj6fj9mzZ7Nx48Zu60+ePJmcnBweffRRbDYbeXl5KKX42te+Rl5e3pC+lwfbz3/+czZu3Mhf//pXnn32WZYuXUpOTg5VVVXs3LmT9957jzvuuINp06YNWQxChAzfSF9CjE7bt2/X3//+9/Xs2bN1QkKCtlqtOikpSc+fP19///vf1x9//PER24SbZck0Tf3rX/9aFxQUaJvNpnNzc/UPf/hD3draetSZvR5++GF92mmn6fj4eO1wOPSECRP0ZZdddsSxPR6PvuOOO/T06dN1TEyMdrvdeuHChfqRRx45Yp9/+ctf9IUXXqjz8/O10+nUSUlJes6cOfrOO+/UTU1NR6zf1NSk77jjDj1v3jwdGxurY2Ji9IQJE/S5556r77nnnh7HXe3J52ep6srnjBkz9BVXXKEff/zxbjM+HSuvfXkefr9f/+QnP9H5+fnaarWGndkrnN7M7HX55ZfrtLQ07XA49Ny5c3uc2Uvr4MxNN954o87JydE2m01PnDhR/+pXv9I+n6/HcWS11vqhhx4Kjdvblb+j5abLP//5T71w4ULtdru1w+HQ06ZN07fffrv2eDxHrHu0HBxrLNvPCzezV35+vr755pt7nFmsi9/v16mpqRro1ex64dTU1Ohf/vKX+rjjjtPx8fHabrfrnJwcffHFFx9zVrp//OMfetq0adput+uMjAz9zW9+U9fU1IQdj/jDDz/US5cu1fHx8Vop1WOuhuK9fKxxb8O9nrQO//c2TVOvWrUqNAuZzWbT2dnZeuHChfqOO+7Q+/fv73F/Qgw2pXUP59yEEEKIKFZSUkJhYSELFy4c1v7ZQojoIn1khRBCjDj//d//jdaab3/725EORQgRQdIiK4QQYkTYv38/jzzyCDt37uT+++9n1qxZbNiwodtsVEKIsUUKWSGEECPCm2++yZIlS3C5XJxyyin85S9/oaCgINJhCSEiSApZIYQQQggxIsn5GCGEEEIIMSJJISuEEEIIIUakqJoQwTRNHnvsMd555x0aGhpITk5m0aJFfPnLXw7Nb6615rHHHmPNmjW0trYyZcoUVqxYQVZWVoSjF0IIIYQQwymqWmSfeuopXn31Vb7xjW/wP//zP1x++eU888wzvPjii6F1nn76aV588UWuueYafvWrX+FwOLjjjjvwer0RjFwIIYQQQgy3qGqRLS4uZv78+cybNw+A9PR03n33XXbt2gUEW2NfeOEFLrroIhYsWADAt7/9ba655hrWr1/fbS7sY6mvr8fv9w/+k+hBWlpat3nMxSGSm/AkN+FJbnomeQlPchOe5CY8yU14Q50bq9Uammr7qOsNWQT9UFRUxJo1aygrKyM7O5u9e/eyY8cOvv71rwNQVVVFQ0MDs2bNCm3jcrkoLCykuLi4x0LW5/Ph8/lC95VSOJ1O/H7/sBSyXV0iAoEAMkBEd5Kb8CQ34UlueiZ5CU9yE57kJjzJTXjRlJuoKmQvvPBCPB4PP/jBDzAMA9M0ufTSSzn11FMBaGhoACAhIaHbdgkJCaHHPm/16tU88cQTofv5+fnceeedpKWlDclzCCczM3NYjzeSSG7Ck9yEJ7npmeQlPMlNeJKb8CQ34UVDbqKqkF23bh3vvvsu3/3ud8nNzWXv3r088MADJCUlsXjx4n7tc9myZZx//vmh+13fIqqrq4etRTYzM5OKioqIf2uJNpKb8CQ34UlueiZ5CU9yE57kJjzJTXjDkRur1dqrRseoKmQffvhhLrjgglAXgfHjx1NdXc1TTz3F4sWLSUxMBKCxsbFbv4nGxkYmTJjQ4z5tNhs2m63Hx4bzham1ljdCGJKb8CQ34UlueiZ5CU9yE57kJjzJTXjRkJuoGrWgo6PjiDmzDcMIJSk9PZ3ExEQ2b94cerytrY1du3ZRVFQ0rLEKIYQQQojIiqoW2eOOO44nn3yS1NRUxo0bx969e3nuuedYsmQJEGzKPvfcc3nyySfJysoiPT2dRx99lKSkpNAoBkIIIYQQkaa1pqWlJeItlkPF4/EMeOhTh8OBw+EY0D6iqpC9+uqr+de//sU//vEPGhsbSU5O5swzz+Tiiy8OrXPBBRfQ0dHBPffcQ1tbG1OmTOGnP/0pdrs9gpELIYQQQhzS0tKCw+EYtfWJzWbrNipUX2mt8Xg8tLa2Ehsb2+/9RFUh63Q6ufLKK7nyyivDrqOU4pJLLuGSSy4ZvsCEEEIIIfpAaz1qi9jBoJTC5XLR2Ng4oP1EVR9ZIYQQQggxdnSNJtVfUsgKIYQQQogRSQpZIYQQQggxIkkhK4QQQgghRiQpZIUQYgyyaY3N5xvan1E67JAQg6G0tJQbbriBefPmMWHCBI4//nh+8YtfUFdX1+t9HDhwgJycHLZs2TKEkUa3qBq1QAghxDDx+/G8+eaQHsK5eDGEmVlRiLFs3759fOlLX6KgoIC7776b8ePHs2PHDm6//XZef/11nn322W4zmIrwpEVWCCGEEGIY3XTTTdhsNh555BFOOukkcnJyWLp0KY8++igVFRXceeedAOTk5PDSSy9123bq1Kn861//AuDEE08E4OyzzyYnJ6fbuPuPPvooS5YsIT8/n7lz53LTTTeFHistLeWqq65i0qRJTJ48mWuvvZbq6urQ4ytXruTMM8/k0UcfZcGCBUyaNImf/OQnBAIB/vznPzNnzhymTZvGH/7wh26xNTY2cuONNzJz5kwmT57MV77yFT777LPBTd7nSCErhBBCCDFM6uvrefPNN1m+fDlOp7PbY+np6Vx00UU8++yzvZoR7PnnnweCResnn3zC3//+dwAefPBBbrrpJi6//HJee+017r//fiZMmACAaZpcddVVNDQ08O9//5t//vOf7N+/n29961vd9r1v3z5ef/11/u///o+7776bRx99lK9//euUl5fzxBNP8POf/5zf/va3bNiwIbTNtddeS01NDQ8//DAvvvgiM2fO5JJLLqG+vn4gKTsq6VoghBBCCDFM9uzZg9aaSZMm9fh4YWEhDQ0N1NbWHnNfKSkpACQlJZGenh5a/sc//pFvfvObrFixIrRszpw5ALz77rts376ddevWkZOTA8Af/vAHlixZwqeffhpazzRNfv/73+N2uykqKuLkk09m9+7dPPTQQxiGwdSpU/njH//I2rVrmTdvHh9++CGffvopGzduDE07+4tf/IKXX36Z559/niuuuKLPueoNKWSFEEIIIYZZb1pc+6OmpoaKigpOOeWUHh/fuXMn2dnZoSIWoKioiISEBHbu3BkqZHNzc3G73aF1UlNTMQwDwzh0Mj8tLY2amhoAtm7dSmtrKzNmzOh2vPb2dvbt2zdYT+8IUsgKIYQQQgyTCRMmoJRi586dnHPOOUc8vmvXLhITE0lJSUEpdUTB6/P5jrr/mJiYQYnTau1eIiqlsH3u4k2lFKZpAtDa2kp6ejpPPPHEEftKSEgYlJh6In1khRBCCCGGSXJyMqeddhoPPvggHo+n22NVVVU8+eSTfPGLX0QpRUpKCpWVlaHHS0pKum3TVVh2FZMAbreb3Nxc3n333R6PP2nSJMrKyigtLQ0tKy4uprGxkaKion4/r5kzZ1JdXY3VaiU/P7/bT3Jycr/3eyxSyAohhBBCDKPbb78dr9fL5Zdfzvvvv09paSlvvPEGX/3qV8nMzOS//uu/AFi4cCEPPPAAW7ZsYePGjfz4xz/u1iqamppKTEwMb7zxBtXV1TQ1NQFwww038Le//Y17772XkpISNm/ezH333QfAqaeeypQpU/jOd77D5s2b+eSTT/je977HSSedxOzZs/v9nE499VSOO+44rr76at566y0OHDjA+vXr+c1vfsPGjRsHkK2jk0JWCCGEEGIYFRQU8OKLLzJ+/Hj+8z//k4ULF/KjH/2Ik08+mWeeeSY0huwvfvELsrOzWbZsGddffz3/+Z//2W2kA6vVym233cbDDz/MvHnzuPrqqwH4j//4D26++WYefPBBli5dyvLly9mzZw8Q7A5w//33k5CQwEUXXcSll17K+PHj+ctf/jKg56SU4qGHHuLEE0/khhtu4NRTT+W6666jtLSU1NTUAe37qMfVQ9XbOMpVV1cfs5/JYFBKkZWVRXl5+ZB17B6pJDfhSW7Ck9z0rK95sfl8wzIhgi8KJkSQ10x4kpvwBpqbpqYm4uPjhyCy6GCz2QaljgqXJ5vNRlpa2jG3lxZZIYQQQggxIkkhK4QQQgghRiQpZIUQQgghxIgkhawQQgghhBiRpJAVQgghhBAjkszsJYQQUcimNfj9fdqmsbwco7oK/7btmJUV0N6Obm8HuwNLZgZGZhaWvDyUy4UaoriFEGI4SSErhBDRyO/v9fBYWmt0eRmesnICjQ09rhPY+lnwhmGgMjJwfumCwYlTCCEiSApZIYQYwXRdLebOndDSQqBrYUIiKjkJbDawWsHng+YWdFMjtLWhy8tpu+evkJqKMXkKapDmZhdCiOEmhawQQoxA2jTRO3agyzrnS7daiZk8BW9KMspm73kbraGxEV16EF1dDTU1mPXrUBMnosblopR0OBBCjCxSyAohxAijOzowN2+CxkaAYBFakE9Mcgq+lmYIMwmRUgoSE1GJiTimTaVt1apgYVtcjK6rw5g+A2WVfwtCREp/+sYPiNWKb4R/gZVPLCGEGEF0Swvmp59ARwdYrRgzZqBSUunr1VuWtHSM4+ajS0vRO4uDrbMff4QxazbqsLnchRDDqA994weDc/HiYBekPnrggQf461//SlVVFdOmTeO2225j7ty5gx9gL8jwW0IIMULotjbMTzYEi1hXLMaC44NFbD8ppTDGjcOYdxzY7dDSgrl+Pbq5eRCjFkKMJk8//TS33HILN954Iy+99BLTpk3j8ssvp6amJiLxRFWL7PXXX091dfURy8866yxWrFiB1+tl1apVrF27Fp/Px+zZs1mxYgWJiYnDH6wQQgwj7fFgbvgYvF5wuzHmHYfqR0tKT1RCAsaC4zE3fhosZj/ZENy/2z0o+xdCjB5///vfueyyy/jqV7+Kz+fjN7/5DWvWrOHRRx/l29/+9rDHE1WF7K9//WtM0wzd379/P7fffjsnnXQSAA8++CAbNmzghhtuwOVyce+997Jy5Upuu+22SIUshBBDTvu8h7XEujDmzB20IraLionBmHcc5iefQHPToWI2NnZQjyOEGLm8Xi+bNm3qVrAahsEpp5zCxx9/HJGYoqprQXx8PImJiaGfDRs2kJGRwbRp02hra+P1119n+fLlzJgxg4KCAq677jp27NhBcXFxpEMXQoghobXG3LIFPB6IicGYOw/lcAzJsZTNhjF3Lrjd4PVibvgY7fEMybGEECNPXV0dgUCA1NTuXZrS0tJ6PKM+HKKqRfZwfr+fd955h/POOw+lFCUlJQQCAWbOnBlaJycnh9TUVIqLiykqKupxPz6fD5/PF7qvlMLZeSHDcAw103UMGdbmSJKb8CQ34Y2p3CjQJSVQVweGgTF7NsrZ85ivqvNqL4VCqzDDFvSw/yMW2W0Y8+ZhfvwxtLZibtqIMX9+v0cziIa/05h6zfSR5CY8yc3wGUiOo7aQ/fDDD2ltbWXx4sUANDQ0YLVaif3caa6EhAQaGhrC7mf16tU88cQTofv5+fnceeedpKWlDUXYYWVmZg7r8UYSyU14kpvwIpmb5tpaTK93SI8RMAxiWlpp3bMHANfcudizso+5nbuX/Vq1UsS548I+bi48hea33kS3tGBs20bsCSeijL6dxDPsdtKysvq0zVCS91N4kpvw+psbj8eDrY9dgJTfj2EZvpPlSqk+xZiRkYHFYqG+vh4gtG1tbS0ZGRl9fr4AdrudrAF8TkRtIfvGG28wZ84ckpOTB7SfZcuWcf7554fud1X91dXV+IdhrDalFJmZmVRUVAQHIxchkpvwJDfhRUNurF4vnrfeHNJjxMyZS+tH6wFQ48bRkZRER0v40QQUCrfbTUtLCzrcQLKHcWlN21H2B6Bmz0Z/9BH+ykqaNnyMMWVKn56D0+ulvLy8T9sMhWh4zUQryU14A82N1+vtdka4N2xaYwbMY684SLTWfYpRKcWsWbN46623OPfcc/H5fJimydtvv81VV13V5+cLwTz19DlhtVp71egYlYVsdXU1mzZt4sYbbwwtS0xMxO/309ra2q1VtrGx8aijFthstrDfEIbzTau1lg+JMCQ34Uluwot4bobw0Fpr2p99JjgwelwcalLRMY/X1Z1Ao3sf2zHWU3HxGNNnYG7ehD54EDM+HqMXrcLdDhFFr9+Iv2aimOQmPMlNd9dccw0/+MEPmDt3LrNmzeLvf/87Ho+HSy65pN/7HEh+o7KQfeONN0hISGDevHmhZQUFBVgsFjZv3syJJ54IQFlZGTU1NWH7xwohxEikKyswd+wApTCmTe/zKf3BpNLTUfkF6D0l6O3b0XHxMiyXEEPFag1OUjCMx+urCy64gLq6On77299SVVXF9OnTefjhh4e9y2aXqCtkTdPkzTffZNGiRVgsltByl8vF0qVLWbVqFW63G5fLxX333UdRUZEUskKIUUN3dKB37ABA5RdERdGo8vPRjQ1QV4e5eVNwIgaZylaIQedTql8zbQ23q666im9+85v96kow2KLuk2jz5s3U1NSwZMmSIx5bvnw5SilWrlyJ3+8PTYgghBCjhbljO/j9wVP4eXmRDgfonAFs+gzMDz+Atjb0tm0wY4ZczS2EiLioK2Rnz57NY4891uNjdrudFStWSPEqhBiVdG0tVFeDUsQsW0ZHZ8tsNFB2O8bMWZgff4SuqoSKFFQf+8sKIcRgi6oJEYQQYqzSponZObmLGjcOSxQOh6QSElAFBQDoHTvQbW0RjkgIMdZJISuEEFFAlx6Etlaw2VD5BZEOJyyVNwESEyEQwPxsC9ocvqGChBDi86SQFUKICNNeb3AGL0AVTERF8cUeXf1lsVqhqQm9d0+kQxJCjGFSyAohRITpkpLgmLFuNyonJ9LhHJOKiUFNDk6OoPfuRTc3RTgiIcRYJYWsEEJEkPa0octKATCKikbMSABGZiakp4PWmFu3ShcDIURESCErhBARpEtKQGtITkYlDWxK7uFmTJ4SHPOypQW9d2+kwxFCjEFSyAohRITolhZ0RQUAxsSJEY6m75Tdjpo8GQC9dw+6uTnCEQkhxpqoG0dWCCHGCrPzAi/S0lDxCZENpp9UegY6rRKqqzG3fhac9SuCU+oKMZIZATB9geE7ns2CaTn2etFMClkhhIgA3dQE1VUAGAUjrzW2i1IKY/IUzPqGYBeDfXujevgwIaKZ6QtQ/NT7w3a8ogtPBEvvK9n333+fv/zlL2zevJnKykruvfdevvCFLwxhhMcmX5uFECICzM5hq1RGJsrtjnA0A6McjkNdDPZIFwMhRqu2tjamTZvGHXfcEelQQqRFVgghhpluaQlORQuo/PwIRzM4VEZGcOra6mrMbVsx5i+IdEhCiEG2dOlSli5dGukwupEWWSGEGGZ6377gjbQ0VGxsZIMZJF1dDLBaobkZvX9/pEMSQowBUsgKIcQw0h4PurJzpIIJEyIbzCBTDgeqqAgAvacEs7Y2whEJIUY7KWSFEGIY6f37guPGJiWP2JEKjkZlZkFyMpgmHc88jdY60iEJIUYxKWSFEGKYaK8XXVYGjL7W2C5KKYwpU8AwCJSUYH78UaRDEkKMYlLICiHEMNEHD4BpQnw8JCVFOpwho5wuVEFwCC7/88/LKAZCiCEjhawQQgwDbZrog6UAqPHjUUpFOKKhpXLHY2RlgceD/7lnIx2OEGIQtLa2smXLFrZs2QLA/v372bJlC6WlpRGLSYbfEkKIYaArK8DnBYcDlZYe6XCGnDIM7BdciOeev2Ju3Ehg7jwsU6ZEOiwhopphswQnKRjG45l9WH/jxo185StfCd2/5ZZbAPjKV77CXXfdNbjB9ZIUskIIMcS01qHhqNS43DEzhaslJwfLKacQeOcd/E+txvjBDSiHI9JhCRG1TAt9mmlrwMfr4/onn3xyqPXVZrPh8/kGP6g+GhufpkIIEUkNDdDSAoaBysmOdDTDynLmWcH+wA0NBF55OdLhCCFGGSlkhRBiiJkHOltjM7NQNnuEoxleym7HtuwiAAJr12IeOBDhiIQQo4kUskIIMYS0x3NoOtrc3AhHExlGURHG3LmgNf5//xsdCEQ6JCHEKCGFrBBCDCFd1nk1b1Iyyu2ObDARZD3vfHC50BXlBN55O9LhCCFGCSlkhRBiiGjTPDQBwricCEcTWcrtDhazQOC119A1NRGOSAgxGkghK4QQQ6W6GrxesNshNS3S0UScMW8eatIk8PvxrX5Spq8Vo568xo/ONPs6bsKRpJAVQoghYnYOU6Oyc8bMkFtHo5TCduEysNnQu3fL9LViVHM4HHg8nkiHEbVM06S5uRmXyzWg/cg4skIIMQR0WyvU1wGgssfWkFtHo1JSsJxxJoEXX8D//PMYk6eg4uIiHZYQg87hcNDa2kpjY+OonMnPbrfj9XoHtI/Y2Fis1oGVolFXyNbV1fHwww/z6aef0tHRQWZmJtdddx0TJ04Egs30jz32GGvWrKG1tZUpU6awYsUKsrKyIhy5EEIcorumbExJRTmdkQ0mylhOOQVz46fosjL8zz2L7auXRTokIYZEbGxspEMYEkopsrKyKC8vj3j3iag619XS0sLPf/5zrFYrP/3pT/mf//kfvv71r3d7ITz99NO8+OKLXHPNNfzqV7/C4XBwxx13DPhbgRBCDBZtmujyckAu8uqJsliwXvRlUCo4fe327ZEOSQgxQkVVIfv000+TkpLCddddR2FhIenp6cyePZvMzEwg2Br7wgsvcNFFF7FgwQLy8vL49re/TX19PevXr49w9EIIEaSrq8HnA4cDUlIjHU5UMsaNw3LKKQD4n1qN7uiIcERCiJEoqroWfPTRR8yePZvf//73bN26leTkZM466yzOOOMMAKqqqmhoaGDWrFmhbVwuF4WFhRQXF7Nw4cIj9unz+brNBayUwtl5mm84+qx0HWM09o8ZKMlNeJKb8KImN0c5vC4PDrmlsrJQxgDi7MOmqnNlhUKrXp7qG4YUHu3vZD3rbMwtW9D19QRefQXbF780pDFE/DUThSQ34Uluwoum3ERVIVtVVcWrr77Keeedx7Jly9i9ezf3338/VquVxYsX09DQAEBCQkK37RISEkKPfd7q1at54oknQvfz8/O58847SUsb3qFwulqVxZEkN+FJbsKLZG4ay8uxunu+QMn0eGiqrQXAXTgJSz8nQdBKERfmGEfj7uXx+rv/vjDsdtKOcf1C24prqPzdbwm89x4ZZ5yJo6BgyOKR91N4kpvwJDfhRUNuoqqQNU2TiRMnctllwY7/+fn57N+/n1dffZXFixf3a5/Lli3j/PPPD93v+vZQXV2N3+8fcMzHopQiMzOTioqKiHeIjjaSm/AkN+FFQ26sXi+eluYeHzP37AneSEykDQ1h1jsWl9a09WFbhcLtdtPS0oLm2Hnp6/77w+n1Ut7ZVzis1FSMufMwP9lA+T1/xf6d76IslkGNIxpeM9FKchOe5Ca84ciN1WrtVaNjVBWySUlJjBs3rtuycePG8cEHHwCQmJgIQGNjI0lJSaF1GhsbmTBhQo/7tNls2Gy2Hh8bzhem1lreCGFIbsKT3IQX8dz0cGitdWgmL5Wd3eM6Az1G2FU7uxNodO+3G4b09eZvZD3vPLw7tqPLy/G//RbWxUuGLBZ5P/VMchOe5Ca8aMhNVF3sNXnyZMo6/wl0KSsrC1Xk6enpJCYmsnnz5tDjbW1t7Nq1i6KiomGNVQghjtDQAB4PWCyo9IxIRzNiKLcb6/lfBDqnr+3smiGEEMcSVYXseeedx86dO3nyySepqKjg3XffZc2aNZx99tlAsCn73HPP5cknn+Sjjz5i//79/O///i9JSUksWLAgwtELIca60EVeGRmDfnp8tDPmzkUVFganr31qdcRbeYQQI0NUdS0oLCzkxhtv5JFHHuHf//436enpLF++nFNPPTW0zgUXXEBHRwf33HMPbW1tTJkyhZ/+9KfY7fYIRi6EGOt0IICuqgJAZclMXn2llMJ64TJ8d/0PeudOzI0bscyZE+mwhBBRLqoKWYDjjjuO4447LuzjSikuueQSLrnkkmGMSgghjk5XV0EgAE4nfG5kFdE7RmoqlqWnE3jlZfzPPYtRVIQa4DzsQojRLaq6FgghxEilKyoAUJmZUTG24khlOe00VHo6tLTgf/GFSIcjhIhyUsgKIcQA6Y4O6LxASWUefdxUcXTKasV60UUAmOvXHxrOTAgheiCFrBBCDJCurAzeiE+QU+GDwJiQj3H88QD4Vz+JHoYxv4UQI5MUskIIMUC6Ijjov4qCWW5GC+sXzgG3G11VReCtNyMdjhAiSkkhK4QQA6BbWqC5GZRCZcjYsYNFuVxYv9g5tuwbb6BraiIckRAiGkkhK4QQA9B1kRcpKSgZBnBQGbNmoyZNAr8f/7PPyNiyQogjSCErhBD9pLVGVx4arUAMLqUU1gsuBIsFc8cOzK1bIx2SECLKSCErhBD91dQE7e3BKWlT0yIdzahkpKZiOW0RQLBV1uuNcERCiGgihawQQvRTqDU2NU2mpB1CliVLIDERGhoIvPFGpMMRQkQRKWSFEKIfgt0KgsNuqUy5yGsoKbsd6xe/BEDg7bcwq6sjHJEQIlpIISuEEP3RUA9eL1itkJwS6WhGPWPaNIzJkyEQwP/M03LhlxACkEJWCCH6JdQam56OMuSjdKgppYKtshYLeudOzM8+i3RIQogoIJ++QgjRRzoQQFdVAaAyZLSC4aJSU7EsWgzIhV9CiCApZIUQoo8Cu3eDzwd2OyQlRTqcMcWyeHEw542NBF5fE+lwhBARJoWsEEL0kX/LZqCzW4FSEY5mbOl24dc776Dr6iIckRAikqSQFUKIPtCBAP7t2wFQ6TJaQSQYU6eiCguDF3699GKkwxFCRJA10gEIIcRIonfvBo8HbPbg2KYiLGUY2Hy+Idm35ayz8ezejblpE8YJJ2IZP/6o6zeWl2PtT59aqxWftLoLEbWkkBVCiD4IhLoVpEm3gmMJBPC89daQ7d42dx6+DR/j+de/MObPD//3UGB1x+FpaYY+jtrlXLwYbLYBxyqEGBrStUAIIXpJm2Zo2CeVnh7haIT99NPBYoGmxtAoEkKIsUUKWSGE6CW9Zw+0toLTCYkyWkGkGXFxqPF5AOhdu9CBQIQjEkIMNylkhRCil7q6FVinTpVJEKKEyssDhwPaPeiDByIdjhBimMknsRBC9II2TcwtWwCwTp8e4WhEF2WxoCZOBEDv3SuTJAgxxkghK4QQvaD374fmZoiJwVIwMdLhiMOozCyIiwO/H72nJNLhCCGGkRSyQgjRC2ZntwJj6lSUVQZ8iSZKKYzCSQDo0lJ0a2uEIxJCDBcpZIUQ4hi01gQ6uxUYM2ZGOBrRE5WcDKmpoDVmye5IhyOEGCZSyAohxDHogwehoQHsdoyiokiHI8IwJhYGb1RVoZubIhuMEGJYSCErhBDHEOpWMGUKSgbHj1rK7UZlZgJg7pa+skKMBVHV0euxxx7jiSee6LYsOzubu+66CwCv18uqVatYu3YtPp+P2bNns2LFChJlmkghxBDp3q1gRoSjEcei8gvQlZVQW4NubEAlJEY6JCHEEIqqQhYgNzeXn//856H7xmFjNT744INs2LCBG264AZfLxb333svKlSu57bbbIhGqEGIM0OXlUFsLVivG5CmRDkccg3K5UFlZ6LIyzN0lWObNi3RIQoghFHVdCwzDIDExMfQTHx8PQFtbG6+//jrLly9nxowZFBQUcN1117Fjxw6Ki4sjHLUQYrQKdSsomoxyOCIcjegNNSEflIL6OnRdXaTDEUIMoahrka2oqODaa6/FZrNRVFTEZZddRmpqKiUlJQQCAWbOPHTFcE5ODqmpqRQXF1MU5gIMn8+Hz+cL3VdK4XQ6Q7eHWtcxhuNYI43kJjzJTXjDnRtzc7BbgWXWzO7HHI7D9+EYqnNlhUIrPej777ehPkYP+1cuJyonB33wIGbJbizJyZ2r9iE3h+9vFL8P5bMmPMlNeNGUm6gqZCdNmsR1111HdnY29fX1PPHEE/ziF79g5cqVNDQ0YLVaiY2N7bZNQkICDQ0NYfe5evXqbv1u8/PzufPOO0lLSxuqp9GjzM4LEMSRJDfhSW7CG47ceEtLKa2uAouF7MVLMFwuABrLy7G644b02Fop4vpxDLfbPaT774uhPsbR9m9On0FTWRk0NhLT1gZxcb3OzeEMu520rKyBhhr15LMmPMlNeNGQm6gqZOfOnRu6nZeXFyps161bh91u79c+ly1bxvnnnx+63/Xtobq6Gr/fP7CAe0EpRWZmJhUVFWjd95aA0UxyE57kJrzhzI3/rbeA4LBOlY2N0NgIgNXrxdPSPKTHdmlNWx+OoVC43W5aWlrQHDsvfd1/fwz1MY61fzVuHHr/flq3bCYhPZ3W1tZe5eZwTq+X8vLygYYateSzJjzJTXjDkRur1dqrRseoKmQ/LzY2luzsbCoqKpg1axZ+v5/W1tZurbKNjY1HHbXAZrNhCzNcznC+MLXW8kYIQ3ITnuQmvOHITWDrZwAY06Ydeazh+LP04Rhdp8w1uvfbRdlzGOz9q7wJ6NJSaG7GV16Ojo/rVzxj4T0onzXhSW7Ci4bcRN3FXodrb2+noqKCxMRECgoKsFgsbN68OfR4WVkZNTU1YfvHCiFEf+nmZvSBAwAYU2W0gpFI2e2o3FwA2rdvi/g/XCHE4IuqFtlVq1Yxf/58UlNTqa+v57HHHsMwDE455RRcLhdLly5l1apVuN1uXC4X9913H0VFRVLICiEGnbl9O2iNysmRsUhHMDU+L3jRV1MTRlUVpGdEOiQhxCCKqkK2rq6OP/zhDzQ3NxMfH8+UKVO44447QkNwLV++HKUUK1euxO/3hyZEEEKIwWZu3QqAMXVahCMRA6FsNlRuLnrPHsw9ezDS0qPiSmshxOCIqkL2+9///lEft9vtrFixQopXIcSQ0l4v5q6dQLB/rBjZVG4uev9+aGkJTm6RmhrpkIQQgySq+8gKIUQkmLt2gc8HiYmoMTD00min7HYc+QUAmHv2SF9ZIUYRKWSFEOJzzG2HuhXIaejRwVFYCIYBTY1QXx/pcIQQg0QKWSGEOIw2Tcxt2wCwTJsa4WjEYDFiYlDZ2QCYe/dEOBohxGCRQlYIIQ6jDx4M9qV0OFCdp6PF6KAmTACloL4e3dgQ6XCEEINAClkhhDhMqFvB5Mkoa1RdDysGSMXEoDKDfZ7NPXsjG4wQYlBIISuEEIcxtwa7FciwW6OTmjAheKO2Bt3cFNFYhBADJ4WsEEJ00rW16MoKMAyMyZMjHY4YAsrlQmUEJ0Uw9+6NbDBCiAGTQlYIIToFOrsVqAkTUC5XhKMRQ0VNyA/eqKpCt7ZGNhghxID0u5C95ZZb2Lx5c9jHt2zZwi233NLf3QshxLALdSuQSRBGNeV2Q1oaAFpGMBBiROt3Ibt161YaGxvDPt7U1MTWzikehRAi2um2tlBRY5H+saOe0dkqqysr0R5PhKMRQvTXkHUtqKiowOl0DtXuhRBiUJnFO8A0URkZqJSUSIcjhpiKj4fkZNA6OH2tEGJE6tPYMm+++SZvvfVW6P6TTz7JmjVrjlivra2Nffv2MXfu3IFHKIQQw8Dcemg2LzE2GHkTMOvq0GWl6Px8lN0e6ZCEEH3Up0LW6/XS1HRouBKPx3PE9I1KKRwOB2eeeSYXX3zx4EQphBBDSPv9mDt2AGDIbF5jR1ISxMVDcxP6wAHUxImRjkgI0Ud9KmTPOusszjrrLACuv/56rrrqKubPnz8kgQkhxHDRe0qgowPcbtS43EiHI4aJUgpjQh7m5s3ogwfQeXkyCYYQI0y/37F33333YMYhhBARE+garWDKVJQhoxKOKWnp4HJBWxu6rBQ1Pi/SEQkh+mDAXz09Hg/V1dW0traitT7i8WkyjI0QIopprQ9NSyufV2OOUgqVl4fetg29fz96XK58mRFiBOl3IdvU1MR9993HBx98gGmaYdf717/+1d9DCCFEv9i0Br+/V+sGysuhoQFsNhx5eSif75jbqGOuIUYSlZmFLgl2L9EVFajs7EiHJITopX4Xsn/729/4+OOPOeecc5gyZQput3sw4xJCiP7z+/G8+WavVjX3lARvJCTQvnZtr7ZxLVrUz8BENFKGgcodj961E71vLzor64gLmYUQ0anfhezGjRs577zzuOKKKwYzHiGEGFa6ugYA1TnTkxibVE5OcEKMtjaorob09EiHJITohX53BHI4HKTJB78QYgTT7e3QHBxSUKWkRjgaEUnKakWNGweAuW9vj9d8CCGiT78L2VNPPZUPP/xwMGMRQohhpWuCrbHEJ6AcjsgGIyJO5Y4Hw4CmJqivj3Q4Qohe6HfXghNPPJGtW7dyxx13cMYZZ5CSkoLRw5WeBQUFAwpQCCGGiq6pBkClSWusAGW3o7Kz0QcPYu7biyU5OdIhCSGOod+F7C9+8YvQ7U2bNoVdT0YtEEJEI+33Q10dACpVukmJIDU+D11aCnV16OamY28ghIiofhey3/rWtwYzDiGEGF51daA1OJ0QGxvpaESUUE4nKiMDXVGB3rsv0uEIIY6h34Xs4sWLBzEMIYQYXqFuBalpMtSS6EaNzwsWslWVmLW1kJkZ6ZCEEGHI9CVCiDFHax260Ev6x4rPU3FxkJICgPe9dyMcjRDiaPrdIvvnP//5mOsopaQLghAi+jQ2gs8HViskJEY6GhGFjLwJmLW1+DdswDjzLFR8fKRDEkL0oN+F7GeffXbEMtM0aWhowDRN4uPjcQxgOJunnnqKRx55hHPPPZcrr7wSAK/Xy6pVq1i7di0+n4/Zs2ezYsUKEhMT+30cIcTYo6u7uhWkonoYbUUIEhMhIQEaGwm89x7Wc86JdERCiB70u5C9++67e1zu9/t57bXXeP755/n5z3/er33v2rWLV199lby8vG7LH3zwQTZs2MANN9yAy+Xi3nvvZeXKldx22239Oo4QYmzq6h+LjFYgwlBKBVtlN20k8P46LEsWo2KckQ5LCPE5g94UYbVa+cIXvsDs2bO59957+7x9e3s7f/rTn7j22muJPexK4ra2Nl5//XWWL1/OjBkzKCgo4LrrrmPHjh0UFxcP5lMQQoxiurU1OA2pUqjOfpBC9Cg1FSM9HTo6CLz/QaSjEUL0oN8tsseSl5fH22+/3eft/vGPfzB37lxmzZrFk08+GVpeUlJCIBBg5syZoWU5OTmkpqZSXFxMUVFRj/vz+Xz4fL7QfaUUTqczdHuodR1Droo+kuQmPMlNeL3OTZiHQ62xSUko2wA+AofjT9OHY6jOlRUKrXo5vWqUPYeh2n+/ckPwNWY99VQ6/v1vAu++g/WUU1A2W38jjUryWROe5Ca8aMrNkBWymzZt6nMf2ffee489e/bw61//+ojHGhoasFqt3VppARISEmhoaAi7z9WrV/PEE0+E7ufn53PnnXeSlja8pxQzZfiWsCQ34UluwjtabhrLy7G643p8rLm+ngDgHJeLI8w6x6KVIq6f2w71Mdxu95Duvy+G+hh93X9vc3M4ddx8/G++SaC2FveuXcQvXdrnfYwE8lkTnuQmvGjITb8L2cOLw8O1traybds29uzZwwUXXNDr/dXU1PDAAw/ws5/9DLvd3t+wjrBs2TLOP//80P2ubw/V1dX4/f5BO044SikyMzOpqKhA6963BIwFkpvwJDfh9SY3Vq8XT0vzEcu11xscFxToiI/D28M6veHSmrZ+bjtUx1Ao3G43LS0taI79monG5zBU++9rbg7nDARQC0+BZ56m7pmnaSkqQlks/Q056shnTXiSm/CGIzdWq7VXjY79LmQff/zxHpfHxsaSkZHBNddcw+mnn97r/ZWUlNDY2Mh//dd/hZaZpsm2bdt46aWXuOmmm/D7/bS2tnZrlW1sbDzqqAU2mw1bmFNBw/nC1FrLGyEMyU14kpvwjpmbHh7qGjsWtxvliOlxnd4HMIBth+AYXafMNbr320XZcxiq/fcrN4cx5s+HNa+h6+oIbNyIZe7cvu8kyslnTXiSm/CiITf9LmT/9a9/DWYczJw5k//+7//utuwvf/kL2dnZXHDBBaSmpmKxWNi8eTMnnngiAGVlZdTU1ITtHyuEEIcLDbs1zF2LxMim7HYsp5xK4OWXCLy+BmP2bBm2TYgoMWR9ZPvK6XQyfvz4bsscDgdxcXGh5UuXLmXVqlW43W5cLhf33XcfRUVFUsgKIY5JBwJQVwcEp6UVoi8sJ59M4J230dXVmJs2Ypkz+lplhRiJBlzIbt26lQ0bNlDd2dKRlpbGvHnzmDZt2oCD+7zly5ejlGLlypX4/f7QhAhCCHFM9fUQCIDDAXFDe5GTGH2UwxFslX3lZQJr1mDMklZZIaJBvwtZv9/PXXfdxfr16wFwuVxAcLzXZ599luOPP57vfe97WK39r5VvvvnmbvftdjsrVqyQ4lUI0Wddw26p1NSoGDJGjDzdWmU3b8Iye06kQxJizBvQxV7r16/ni1/8Iueff37ogqvGxkaeffZZnn32WZ544gkuvfTSwYpVCCH6RWsdutBLuhWI/lIxMcFW2VdfCbbKzpwlrbJCRFi/34HvvvsuixYt4oorrug2akBCQgJXXHEFp512Gu+8885gxCiEEAPT3AwdHWCxQHJypKMRI5hl4ckQ40RXVWFu3hzpcIQY8/pdyDY0NFBYWBj28UmTJh11ogIhhBguXaMVkJwiLWhiQFSME8sppwAQeH0N2jQjHJEQY1u/P9GTk5PZunVr2Me3bt1KsrR8CCGiQKh/bFpqhCMRo4Fl4UKIiUFXVmJu2RLpcIQY0/pdyC5atIh169bxt7/9jbKyMkzTxDRNysrK+Pvf/866detYvHjxIIYqhBB9pz0eaGkBQKVIISsGTjmdWBZ2tsqueU1aZYWIoH5f7HXRRRdRWVnJmjVrWLNmDUbn6Tqz8w29aNEili1bNjhRCiFEP4Vm80pMRA3i9NdibLOccgqB994Ntsp+tgXLzFmRDkmIManfhaxhGFx//fWcf/75fPLJJ93GkZ07dy55eXmDFqQQQvTXoWG3ZLQCMXiCrbILCaxZQ+C11zCmz5D+10JEQJ8KWa/XywMPPEBubi7nnHMOAHl5eUcUrS+88AKvvvoqV1555YDGkRVCiIHQfn9wIgSkf6wYfJaFpxB4b22wVfbTT7HMmxfpkIQYc/r09fG1117jrbfeYt4x3qzz5s3jjTfe4PXXXx9QcEIIMRC6tga0BpcL5YqNdDhilFEuF5bFiwDwv/pK8IuTEGJY9amQXbduHSeccAIZGRlHXS8zM5MTTzyR9957b0DBCSHEgFR3ToKQJt0KxNCwnLwwOOVxfT3mhx9GOhwhxpw+FbL79+9nypQpvVp38uTJ7Nu3r19BCSHEQGnTDLbIIv1jxdBRdjvW008HwP/6GnRHR4QjEmJs6VMh6/f7e93n1Wq14vP5+hWUEEIMWEMD+P1gs0FCQqSjEaOYseB4SEmBlhYC774b6XCEGFP6VMgmJyezf//+Xq27f/9+mRBBCBExXbN5qdQ0lFIRjkaMZspiwXrmWQAE3noT3dwc4YiEGDv6VMjOnDmTt99+m8bGxqOu19jYyNtvv83MmTMHFJwQQvSH1hpdXQVI/1gxPIxZs1DjxoHXi//VVyIdjhBjRp8K2QsuuACfz8ett97Kzp07e1xn586d3Hrrrfh8Pr70pS8NSpBCCNEXZlkZdHSAxQJyZkgMA2UYWM87HwBz/XrMiooIRyTE2NCnQV4zMjL4wQ9+wB/+8Ad+9rOfkZGRwfjx44mJiaG9vZ0DBw5QUVGBw+Hge9/7HpmZmUMVtxBChOXfti14IzkFZbFENhgxZhj5+RjTp2N+9hn+F57HfvU3Ih2SEKNen2crmDdvHr/73e94+umn2bBhA+vXrw89lpSUxOmnn84FF1xwzCG6hBBiqAS2bQWkW4EYfpZzzsXctg1dXIxZvAOjaHKkQxJiVOvXtFvp6elcc801AHg8HjweD06nE6fTOajBCSFEX5k1NZhVVaAUKlVm8xLDy0hNxXLSyQTeexf/s89i+95ElMxwKcSQGfDE0E6nk+TkZClihRBRwdz6WfBGYhLKZotsMGJMspxxBsTGoqurCaxdG+lwhBjVBlzICiFENDE/Cxay0q1ARIpyOrF+4RwAAmteQzc1RTgiIUYvKWSFEKOGbm5Gd451LYWsiCTjuONQubnQ0YH/pRcjHY4Qo5YUskKIUcPcthW0xsjJQcXERDocMYYpw8D6pQsAMDdswNy7N7IBCTFKSSErhBg1uroVWKdOjXAkQoCRm4uxYAEA/tWr0YFAhCMSYvSRQlYIMSro9nbMXbsAsE6dFuFohAiynnNu8MKvygoC77wd6XCEGHWkkBVCjApm8Q4IBFCpqdI/VkQN5XJhPT8441fgtdfQtbURjkiI0UUKWSHEqNDVrcCYPh2lVISjEeIQY85cVGEh+P34nlqN1jrSIQkxakghK4QY8bTfj7l9OwDGtOkRjkaI7pRSWC9cBlYreudOzA0bIh2SEKOGFLJCiBFPl+yGjg6IiwsOeSRElDFSU4MTJQD+Z5+VsWWFGCRRNW/eK6+8wiuvvEJ1dTUA48aN4+KLL2bu3LkAeL1eVq1axdq1a/H5fMyePZsVK1aQmJgYwaiFEJEW6OpWMG0ayjBArg4fO/xmr1Zra2qBQO/WHSqWU0/D3LIFffAg/tWrsX7969INRogBiqpCNjk5mcsuu4ysrCy01rz11lv89re/5be//S25ubk8+OCDbNiwgRtuuAGXy8W9997LypUrue222yIduhAiQrRpYm7dCoBFuhWMObXbD/ZqPYfDQUdHR5/3P25pnzcJS1ksWC/+Cr4//RFz21bMjZ9imTN38A4gxBgUVYXs/Pnzu93/6le/yiuvvMLOnTtJSUnh9ddf53vf+x4zZswA4LrrruMHP/gBxcXFFBUV9bhPn8+Hz+cL3VdK4XQ6Q7eHWtcx5Fv3kSQ34Uluwvt8bvS+vdDcDE4nRmHhoZwNdeqG40/Th2OozpUVCq16eTFRlD2HIQvhsNdMfy60Gsz3oSUrC730dPyvvoL/mWewFExEJSQM2v77Sj5rwpPchBdNuYmqQvZwpmmybt06Ojo6KCoqoqSkhEAgwMyZM0Pr5OTkkJqaetRCdvXq1TzxxBOh+/n5+dx5552kDfPwPJmZmcN6vJFEchOe5Ca8rtzUvPoKXsA9fz5pnf1jG8vLsbrjhuzYWinihnD/AzmG2+0e0v33xVAfI0CwpbW37HZ7n4+hDEVWVlaftzsa/dWvUrZzJ969ezAffxz31VcHu8QMEcNuJy4l5ajryGdNeJKb8KIhN1FXyO7fv5+bbroJn89HTEwMN954I+PGjWPv3r1YrVZiY2O7rZ+QkEBDQ0PY/S1btozzO8fwg0PfHqqrq/H7/UPyHA6nlCIzM5OKigoZcuVzJDfhSW7COzw3ZiBAxwcfANBRWEh5eTkAVq8XT0vzkMXg0pq2Idx/f46hULjdblpaWtAc+zUTjc+hz/uHXnUXUEpht9vxer19fj9pU4deV4Pq4i/DH/6Ab2cxDffdi5GXN/jH6ORctJgWr7fHx+SzJjzJTXjDkRur1dqrRseoK2Szs7P53e9+R1tbG++//z533303t9xyS7/3Z7PZsNlsPT42nC9MrbW8EcKQ3IQnuQlPa425Z0+wW0GMEzWxsHuuhjptw/Fn6cMxuroTaHTvt4uy5zBkIXS+Lvr7XhqK96BKTcN6/hfxr34SvWsXOikZFTeEZxGO8RzksyY8yU140ZCbqBt+y2q1kpmZSUFBAZdddhkTJkzghRdeIDExEb/fT2tra7f1GxsbZdQCIcaowOZNQOdoBdao+14uxFEZxx+PZcpU0Do4moGMtiFEn0VdIft5pmni8/koKCjAYrGwefPm0GNlZWXU1NSE7R8rhBi9tGlibtkCgDFrVoSjEaLvlFLEXHgh2O3Q1oretTPSIQkx4kRVE8YjjzzCnDlzSE1Npb29nXfffZetW7dy00034XK5WLp0KatWrcLtduNyubjvvvsoKiqSQlaIMUjv3RvqVmAUFkY6HCH6RcXGYkybjvnpJ+iDB9EpKajU4b0YWYiRLKoK2cbGRu6++27q6+txuVzk5eVx0003MauztWX58uUopVi5ciV+vz80IYIQYuwJbJJuBWJ0UCkpqNxc9IEDmFu3YpxwIqoPozEIMZZF1af/t771raM+brfbWbFihRSvQoxx2jQJbAl2MzJmzTzG2kJEPzWxEF1fDy0tmFs/w5gzNyrG6BQi2kVVISuEEL3RXlzc2a0gBqNwUqTDEaOYshrYDptUZ9D33/XbYsGYPgNz/YdQV4feswdVUDBkxxVitJBCVggx4rR9+CEAxrTp0q1ADK1AAM9bbw3Z7l2LFoVuK7cbNWUKeutW9J4SdGICKvnoExkIMdZF/agFQghxOG2atK7vLGSlW4EYZYysbFR2NkBwSK729ghHJER0k0JWCDGi6L17CTQ2SrcCMWqposngdoPPh7llM9o0Ix2SEFFLClkhxIgSmgRhunQrEKOE3+z2o7TCmDYDLBZobETv3HXEOn36EWIUk/8CQogRQ5smgc5JUSwzZRIE0TOtNT6vpr0tQEe7ibcjQMDvoaPdj9+vCfg12tSYZtfUmgqlwLAoLBawWA3sdoXNYRB4fQtGaRMxcXaccXYs1sFv/6ndfrDH5TZ3OrGN5eiD+2ls9uOPcfdr/+OWDiQ6IaKbFLJCiBGjaxIEw+XCmCTdCkSQt8OkpclPa5Of1mY/nrYAAX9f5n///LqHpootv2fNocUKYhMcxKU4iUt1EpcSQ1yqE0esbUiGyvLFxNHu8xDT1kBsUwXN1vGYVvugH0eIkUwKWSHEiNHVrcA1dx5+qxWt+1KsiNHC7wtQe6CZxp2vU7a+gQ5Pz6fPHU4DR4wFR4yBM9aOUgGsNgOLRWEYwRZYAK2DP2ZAEwgEW2y9HSbeDhNLZiat+ytpb/Hi95q0NnTQ2tBBxe6GQ8eJtZGUFUtStpukrFjcyTGDVti2u9Ow+tqx+tqJbSyjOWk8GNIrUIguUsgKIUYEHQhgds7mFXvSSTRGOB4xvHwdfip3N1K1p5Hag82Yge5fYlxuC7FxVmLjrLjcFmJcFgzjUDHpcDjo6Ojo83Fzr7+Qts7htzrafDTXeGiu9dBc005TjYe2hnY6Wn1U7GqgYlcDAFaHhaSsWFJy40gbH48rYQCzdClFa0I2cXX7sPi9uJoqaEvIApksQQhAClkhxAhh7toJra0QG4tz+nQaq6oiHZIYYqapqdnXROn2Oqr3NaHNQ8WrM95O1slTMQ7sxp1gxToEfVc/z+Gy4RhvI3V8fGhZwGfSWNVKfXkr9WUtNFS04e8IUL23ieq9TWynFFeCndTx8aTmxpGcE4fF1rdYtcVKa0I27voD2DtaCLTV0xGbPNhPT4gRSQpZIcSIYH76KQCW2bNRFktkgxFDqqPNR+m2Og58VkN7y6FZtdzJMWQWJpKen4A7OYbYxYs5cPeBCEYKFptBck6wQIVg94SmmjbqSluo2d9MQ0ULbY1e9m+uYf/mGgyLIiU3joz8BNImJODq5XECdieeuHRczVXEtNQQsDrwO2KH7okJMUJIISuEiHra68X87DMALHPmRjiaUSSKhmbSWtNY2cb+zTVU7G4Itb7aYizkTEkmuyiZuFRnZILrQ54MIDHFSWKKk4JZafi9AerKWqg+0EzNgWbaW3yh1lrUAVI/qMfZ3k5iqg1HzNG/oHldiVj8HTg8jbgay2lJlou/hJBCVggR9cxtW8HrheRk1PjxkQ5n1Ag37NNgcZ1+7HW01tSVtrBrfQUN5a2h5QnpLnJnpJJZmDgkQ171xUDzZAEy0yAj1Y2nNUBDrY+GWi9tLQFqtpYCcKAEnLEWklLtJKbYcMZaerxgzBOXhsXfIRd/CdFJClkhRNQzP/kUAMucOUMyzJEYfj0VsIZFkTkpifEzUklI7+1J95FDKYXLbcXltpKd56SjPQBTZ7P3qbU0N/rxtAbwtHoo2+fBEWMEi9pUO7FxhxW1ypCLv4Q4jBSyQoiopltbMYt3AGDMmRPZYMSgqD3YfEQBO25aCvnzMoiJtUU4uuHjiLGQe+5cHHu24POZNHa21DbW+ehoN6k42E7FwXZsdoOkVBtJqXbcCVaQi7+ECJFCVggR1czNm8A0UdnZGOkZkQ5H9NVh/UtbGzrY8X4Z1fubgc4Cdmoy+bPTDxWwUdRvdzjZbAapmQ5SMx0EAprGOh/1NV4a67z4vCZVZR1UlXVgtSkSU+wkpdow3OnEtsjFX2Jsk0JWCBHVAh9/DIAxd16EIxH9Ubv9IH6/Sfn+dqpK29E6eBY8LctBZq4Tu0PTeqCS1mPv6gi96YM7ElksiuQ0O8lpdkxT01QfLGoban34fZqaig5qKjooscDMXBepjja5+EuMWVLICiGillldjT5wAAwDi3QrGHG0aVJd3k7pXg9+X3AUgoRkG7kFLmJcMoRabxhGsAU2MSVY1LY0+juLWi8+r2bjPifH5XpJdPqxVR6k3JpFQkoMFqv0mRVjgxSyQoioZXa1xhZNRsXFRTga0RdtLX7evOlfNJS0ARDjNMid6CIhWVoM+8swFPFJNuKTbIwvdNHS5Kehxsf2GpibVY/T6sfdXMmnxXHEJdhISLaTkDx2+hyLsUkKWSFEVNKmSeCTDQAYx0m3gpHCNDXl+z1UHGhH6yYsFkV2npO0bEe3KWPFwCiliEuwEZdgQ2snjY0OUtvLSI/zUuBtY3dNLE0Nfg6UwJ7v3U/a/ImkzSsgZfo4LI7BLW6NAJi+wKDu84hj2CyY0ogveiCFrBAiKundu6GxEWKcGFOmRjoc0QutzX727mjF0xYsarIWTCTNqMXukHFOh5JSCnuiG48nk9imCvJTPNgTXBystdHS6Ke1spHW5zew9/kNGHYrqTPHkzYvn5SZecTlpgz4+KYvQPFT7w/CMwmv6MITQWb0Ez2QQlYIEZUCGzq7FcyejbLJ6dFoZgY0pfs8VB5sB8BqU4wvdDHr/53HwT8/HOHoxg6fM552fwcxbfVkW+uIn5qLV8VhO2kh5Zv2U72hhPbaFqo+LqHq4xIAHEmxjFswmdhJaaTMGI8zI0HGahYjihSyQoioozs6MLdsAcAi3QqimqfVT8m2Q62wyel2cie6sNkMKYgioN2disXvxeZtJbahDDN5PNkLCkk7ZSpaa5r3VVP1cQk1G/dRv72UjvpWdr+yAV4Jbh+T4iaxKJukKTkkTckmIT8DwyYtoSJ6SSErhIg65sZPwedDpaWhcmVK2miktaamvIP9JW1oM9gKO6EolsQUuZgropSiNSGTuLoDWAJeYhvL0D4fOGwopYifkE78hHQKv3wiAa+fhuJyOvbUsXfdZzQUl9Ne20LFumIq1hUDwb6pCRMzSJiYSXxBBgkF6bjHpWBYh7e4NSwGZvvQ9cOVPrgjlxSyQoioE1i/HgBj/gJp1YtCfp/Jvp2t1Nf4AIhPspE/ORabXfrCRgXDQmtiNu66/Vh97XQ89wzGJZcc8V6ydPaXzTrrBHK+NAefp4PGXZXU7yilfkcZ9dvL8DV7qN8evB3avc1CXF4a8RPScI9LwZ2RhK+1A6vLPmTvV9MfoPjpD4Zk3yB9cEcyKWSFEFHFLC8/NHbsPOlWEG2aG33s2d6Kt8NEKcjJd5KREyNfOKKMabXTlpBNbMNB/J9+giU7G+tppx11G2uMnZQZuaTMyAWCre5t5Q3UF5fRVFJJY0kVTXsq8bd5adxVQeOuim7bK6uBPc6JLc6JzR2DLdaBLTYGm9uB1elAyagVYghIISuEiCpmV2vstGkydmwU0VpTWdrBwc5xYR0xBgVT3cTGyb+RaOV3uPDEpeFqribw4guojHQsk6f0enulFLHZScRmJ8Hi6QBoU9NW2UBTSRXN+6tpPlBLy/5aWsrr0H6TjvpWOup7mKfNUNhcDmyxDqyxwSLX6nJgc9mxxjqwOu0oQ1r0Rd9F1SfQ6tWr+fDDDyktLcVut1NUVMQVV1xBdnZ2aB2v18uqVatYu3YtPp+P2bNns2LFChITEyMXuBBiUGifLzR2rGXB8RGORnQJBDT7ilupq/YCwQu68gpjZfaoEcDrTCS+KA//xx/hf+QR1PXfxkhP7/f+lKGIzUoiNiuJrIWTgwvbA+x4ci2+lna8TR58Le3Bn9aO4O+2DjB1aDk09rhvq9OO1eXA6rKHCt1gsevA19KO1lpa/sURoqqQ3bp1K2effTYTJ04kEAjwz3/+k9tvv53f//73xMTEAPDggw+yYcMGbrjhBlwuF/feey8rV67ktttui3D0QoiBMj/bAh4PJCSgJk2KdDgC6PAE2LW1BU9rAKUgt8BFWrZDCoqRQikc555PoLYGvXcv/lUPYrvuepTLNbiHMQzs8S7s8UfuV5sav8eLrzVYyPpbO/C1deBv68Df5sXf1hFax+/xQu2R+9//ykaU1cDmOqzAjQ0WvV3FrtVpR1mkVXesiapC9qabbup2//rrr2fFihWUlJQwbdo02traeP311/ne977HjBkzALjuuuv4wQ9+QHFxMUVFRZEIWwgxSAIfBrsVWOYvkNOMUaCx3kfJthYCfo3Vppg41U1coozpO9IoqxXbFV/D+79/QtfU4PvnI9iuvAo1TBc3KUN19pd1QHrCEY9rrQm0+/C3dRW43s8Vux0EOvxov4m3yYO3yRP2WBanPdhd4bDWXGusA3u8E1tsjPTTHYWiqpD9vLa2YF8st9sNQElJCYFAgJkzZ4bWycnJITU1NWwh6/P58Pl8oftKKZxOZ+j2UOs6hrReHElyE95YzI1ZXY0u2Q1KYV0QfrSCXudmqFM3HH+aPhxDda6sUGilB3TYYH/Ydg6WBAsGV5yFwmlxI3aGrsNfM1oPLDcjlREXh335lXj/fDd6504CL76A7YtfGpTPmoFmVCkV7FbgtBOT0nO/+IlfmMe2x987ojXX19aBv7Uj1Kob8HgJeLxQ23LkcSwG9ngn9gQXjgQX9gQXMcnu0JS9n8/BWPwc7q1oyk3UFrKmafLAAw8wefJkxo8PjiPZ0NCA1WolNja227oJCQk0NDT0uJ/Vq1fzxBNPhO7n5+dz5513kpaWNmSx9yQzM3NYjzeSSG7CG0u5qX19DV7AOXs2mdOmHXP9o+Wmsbwcq3voLhTTShE3hPsfyDG6vvgfSwBwOBxHLDdNTcn2JipLg0VseraTiVMSMCz9+4fV0zEGU1/2b7f3b4zbaHoO/aEMRVZWFmRl0fqf36LqT38k8O67JE4qIn7JEmBgnzU1ByuJG+ILM60xdlKyw/ft1Vrjb/fibWnH29KOr9UTut3R3EZ7Qys6cOhitObDtnXEu/CUNZA7v4i06XmkFOVgdRw68zCWPof7KhpyE7WF7L333suBAwe49dZbB7SfZcuWcf7554fud317qK6uxu/3D2jfvaGUIjMzk4qKijHbEhCO5Ca8sZYb7fXS8dZbAPjnzqO8vDzsur3JjdXrxdPS3ONjg8GlNW1DuP/+HEOhcLvdtLS0oHvRRuYCOjo6ui3z+01KtrXQVB/8bMyd6CI924HP74V+flx+/hiDrTf7V0pht9vxer39ej9Fw3MYCG3qQ++pceOwnnU2/ldepvbBB2i22cg55ZQBfdZor5/m5qF9P2ite3eMGANrjAtrqgvn4dubGl9rO97GNryNbXQ0ttFR34qvpZ2OpjYOvrOVg+9sBcCwW0mekkPqrDwmL5mHP8kmXRI+Zzj+R1mt1l41OkZlIXvvvfeyYcMGbrnlFlJSUkLLExMT8fv9tLa2dmuVbWxsDDtqgc1mwxZmnvbhLBC01mOiIOkPyU14YyU3gU8+gfZ2SE5GTZrUq+d8zNwMddqG48/Sh2N0dSfQ6H7F1tEeYNeWFjxtAQwDCqa6R80sXV2vk7HwXgrn8OduLFmCUVWF+ekneB9ahXfiRDSjOz/KUNjjnNjjnDDuUF0R8Pppr2vBnZ5Iw95KGorL8Ta2UbNpHzWb9rH94bexOu0kT88lfX4BGQsKiUnu3VmPsSAa/kdFVSGrtea+++7jww8/5Oabbyb9c0OEFBQUYLFY2Lx5MyeeeCIAZWVl1NTUyIVeQoxQWmsC69YBYDnxRLnIKwJam/3s+qwZn1djsysKp8fJ+LCjmFIK65e/jK++Dr1vH5W/X4nl2v+EQR7JYCSw2K3EZiYy+csnYwZMtNa0lNVR+9kBarbsp27rAXytHVR9tJuqj3az5Z5XSSzMInN+IZkLConNSur1sWQa3KERVZ9U9957L++++y4/+tGPcDqdoX6vLpcLu92Oy+Vi6dKlrFq1Crfbjcvl4r777qOoqEgKWSFGKL1/P7q8DKxWLMfNj3Q4Y05DrZeSbS2YJjhjLRROd+OIkf+2o52y2bB97ev47v5f/JWVBB5+CNvV30BZo6osGDY9TYEbX5BO9swCag5U0FbRQGtpHe11LTTsLKdhZznb//kO9gQX8RPSiMtLw+o8+hkMmQZ3aETVK/aVV14B4Oabb+62/LrrrmPx4sUALF++HKUUK1euxO/3hyZEEEKMTIH3g62xxuzZqM9dyCmGVk1FB3uLg7MwxSdZmTg1TiY5GEOU243tyqvw/eXP6JIS/E+txvrli6PiSvRooQxFTLKbmGQ3ydPG4W/roKWsntaDtbRVNQW7IWwMdkNwZSYRn59GbHYyhoxnO2yiqpB97LHHjrmO3W5nxYoVUrwKMQropibMTZsAsJx4UoSjGVt2PvtxqIhNSbeTVxSLIRe0jDlGZibp3/4OlSv/G/OjjwikpWNdtCjSYUUtq8tBYmEmiYWZBLx+Wg7U0rSnivbaZtrK62krr8ewW4mfkEbipCxs7phIhzzqRVUhK4QY/WxaQ+eIIR3vvQuBAMb48TgyM+GwMZ+PprG8HKvXG/ZxKcfC01pTvK6cvZ9WAZAxLoZx+U5phRvDXLNmYf3Sl/A//TSBl15EpaZimT490mFFPYvdSsLEDBImZuBt8tC0t4qmvdUEPF4aioPdD9zjUkgsysaZOrTDk41lUsgKIYaX34/nzTfRgQDm2rXBZQkJeN58s3fbK7C644LDa4W5WNYlLUo9Mk3NZ28eoGx7HQDj8p1k5jqPsZUYC6wnL8SsqsJctw7/o/9E/ee3MHJyIh3WiGGPd5I6K4+UGeNpq2igobiMtspGWg7U0nKglpiUOOKyksk8ZbJMozvIJJtCiIjQFeXBFtiYGEgLP9C5GBwBv8mnL+2hbHsdSsG8/zxDiljRjfX8L6ImTQKfD9+DD6AbGyMd0oijDEVsdhI5i6cz/uzZxOenowxFe20zG+56jre//wDla3egzdE71Nlwk0JWCDHstNbo/fsBULnj5bT2EPP7Amx4voTqvU0YFsWcL+STt0ROHYvulMWC7fLLUenp0NQULGaHeLKG0cyRGEvG8YVMOP84kqeNwxbroOVgLRt+9wzv/nAVVR+XRHwM1tFAClkhxPCrrYW2NrBYUNnZkY5mVPN7A3z8XAl1pS1YbAbHnT+R9PyESIclopSKcWK78ipwu9FlZfgf+T90IBDpsEY0q9NOyszxnH73N5l00YlYYmw0lVSx/vZ/s+7Hj1C7YS+0Bwb8Y4zRP5P0kRVCDDtz/z4AVHbOmB23cjj42v18/FwJjVVtWO3BIjYxU4Y4E0enkpOxLb8S39/uwdyxA//TT2FddpGcORkgi90KNoO8L8yhblspjbsqqC8u4/3bHid2XDJpcyZgi+3/KAdjdZxaaZEVQgyrwIEDUF8PSqFycyMdzqjl9fhZ/8xuGqvasMVYWHBBoRSxoteM3FysX70MlML88EMCvb0YUxyTxWEjbc4EJpw3j4TCTFDQerCOfS9+Su1nBzD9Y7RptZ+kkBVCDCvv228DoDIzUU652GgodLT6+PCpXTTXeLA7rSy4oJD4tLE3/agYGMu0aVi/9CUAAi+/ROCTTyIc0ehiddpJP66A8WfNxpkejw6Y1G05wL6XPqWltE76z/aSnNMTQgwbs6KCwPZtAKi8CZENZpTyNHv56OndtDV24Ii1seBLE4lNkkHZxzRFsB9lDzRQc7AS7fX3+Lhl7gno6joCa9/B//jjqJhYjPyJR+5E9JsjMZacxdNpOVBLzad78bd2UP7udlxZSWTML8DqckQ6xKgmhawQYtiETk+mp8t0tEOgtaGd9at34Wn24oyzM/9LE3ElyD/BMU9rip96P+zDcXFxNDc3H2X7RFITs4ltKKPjoQepmHQKPmd86OGiC04YzGjHJKUUceNTic1Kom7bQep3lNFWXs++lz4ldc6E4DBe0ke5R9K1QAgxLHRtLeamjQAY0ho76Fob2nnz/zbiafbiSrCz4MJCKWLF4FCKmvFzaY9NxjD9pJd8gMXXHumoRiXDZiF1Vh55Z8/GkezG9AWoWr+bsre34WuTodB6IoWsEGJY+N98A0wTS+EkVHz8sTcQvdZc6+HDJ3fhafESmxTD8RdOwhlnj3RYYjQxLFTnH4/PEYvV5yGt5ANUoOfuCGLg7PEuck+fSersPJShaKtoYP9Ln9JYUil9Zz9HuhYIIYacrq3F/PhjAOxLluAtKYlwRKNHU3UbHz27G197gIT0WOadn489Rj7axSHKaqFg0dSwj1ssFtJ6OVasPm485mMP4/A0Mr55O8b5F2GzSZvYUFCGImlKDrHZSVR+sIv2uhaq1u+mtbSOjOMLsThskQ4xKsinnRBiyPnXvAamiSoqwjJ+PEghOygaKlv5+LkS/B0B4tNdLPrqTDr87XLxjeguEKD20dVhH3Y4HHT0YQYvizMFt8eD2luC5x9/w/njGwcjShGGPd7FuNNn0lBcRu3m/bSW1bP/5Y1knDgJV7pMbiJfo4QQQ8qsqsLsHLbHetbZEY5m9Kgva+GjZ3bj7wiQmBXLggsmYo+RFhox9AI2J62JWWjA0d6E99VXIh3SqNfVOpt7xixscU78Hi+lb35G7Zb9aHNsf3OVQlYIMaQCr70KWmNMm4YxblykwxkVag828/FzJQR8Jsk5bo47vwCrfezN6CMix+9w44nPAMD33rvEVe2OcERjgyMplvFnzSI+Px001H12kINvfjamLwSTQlYIMWTM8nLMzZsBsJx5VoSjGR2q9zWx4fkSAn6T1PFxzDuvAKtNilgx/LzOBDzuVACSyz4jtu5AhCMaGwyrhYzjC8k8cRKG1UJ7dRP7X95I1ad7Ih1aREghK4QYMv4XXwi2xs6ahZGVFelwRryK3Q188uIezIAmPT+BuefkY7HKx7iInA5XEraTTgYgZf+nxDRVRjiisSMuL43cs2fjSIrF9PpZ/9vV7Hx83ZjraiCfgEKIIWEW70AXF4PFgvXsL0Q6nBGvbEcdG1/ZizY1mYWJzD5rAoZFPsJFhCmF/ayzaUkah0KTtucj7K11kY5qzLC7Yxh3+kziJ2aAhuJH3uXjO5/C1zp2uhrIp6AQYtBp08T/wgsAWE46CZWSEuGIRrYDW2vZvGY/aMiZksysM/IwLDLLj4gOyjCoHT8HT1w6hg6QXvIBNk9jpMMaMwyLQcb8icz+z7MxbBYqP9zFez98iOZdVcGpiQfxx+jdKG3DSobfEkIMOvPjj9AVFeB0Yll6eqTDGdH2baxm+3ulAOTOSGXqqTkyVaWIPsqgesJ80kveJ6a1jozd66goXIg/Ji7SkY0Z406bRt2uMsrX7qC1vJ53fvIQGccXEpebOmjHKLrwRLBEV598aZEVQgwq3dGB/5XgcDyWpaejXK4IRzRylXxcGSpiJ8xJlyJWRDVtsVJVcAIdzgQsfi8Zu9dh7WiNdFhjSkxKHLlnzsaZnoD2m1SsLab2swOjejYwKWSFEIMqsOY1aG6G5GQsJ50U6XBGJK01W/+1jp0flAMwcUEmRSdlSRErop622KiaeCLemDisvnbSd6/D4vVEOqwxxRpjI2fRNBKLghfY1m05QOX7OzEDZoQjGxpSyAohBo1ZWUHg3XcBsH7pSyir9F7qK601O9aWsePJDwEoOj6TwrnpqIAGvxn+x2fS1tQCvqOsc/iPEEPEtDqomngSPrsLm7eNjN3rMHxj5+KjaKAMRdrcfNLnTwSlaN5fQ+kbW/C3eyMd2qCT/zJCiEGhtcb/1FNgmhjTpmGZEn5ud9EzbWq2vn2Qg1trARg/0UV8jJfa7Qd7tX1fphp1SddlMYQCthgqC08mc+d72DpayNi9jsrCkzGt9kiHNqYkTMzA5o6hfO0O2mtbOPDqJrJPnYojMTbSoQ0aaZEVQgwK89NP0Hv2gM2G9YtfinQ4I44ZMNn46r5QETv32tNJz4mJcFRC9F/A7qJy4kkErA7s7U2k716H4R99LYLRzpWRQO4ZM7HFxeBv83JgzWZaSkfPEGlSyAohBky3teF//nmg8wKvpKQIRzSy+L0BNjxfQuXuBpShmH1WHhOWzoh0WEIMmD/G3VnM2nF4GsnYvVaK2QiwxznJPWNW6CKw8ne3U7+jbFRcBBZVXQu2bt3KM888w549e6ivr+fGG2/k+OOPDz2uteaxxx5jzZo1tLa2MmXKFFasWEGWzBgkRET5n3kGWlpQ6elYTj010uGMKF6Pn4+fL6Gpqg2L1WDuOfmk5MqQRWL08DnjqZx4Mhm712L3NJGxay2VhSdhWh2RDm1Msdit5CyaStXHe2gqqaTm0714m9pIn1eAGsGTq0RV5B0dHUyYMIFvfOMbPT7+9NNP8+KLL3LNNdfwq1/9CofDwR133IHXK9/uhIiUwGefYX76CSiF9eKvyAVefeBp9vLh6p00VbVhi7Gw4IJCKWLFqORzxlNZuDDUzSBj11oMv1wANtyUYZA+v4DUORNAQVNJFaVvbyPg9Uc6tH6LqkJ27ty5XHrppd1aYbtorXnhhRe46KKLWLBgAXl5eXz729+mvr6e9evXRyBaIYRua8P/1GoALKedhjF+fIQjGjla6jx8+OROWhs6iHHbOH7ZJBIyZMxdMXr5YuKoKDwZv9WBvb05WMzKaAbDTilF0uRssk+ZgrIaeKoaObhmM77W9kiH1i8jpumkqqqKhoYGZs2aFVrmcrkoLCykuLiYhQsX9ridz+fD5/OF7iulcDqdodtDresYMv7jkSQ34Y2U3PiefQaam1Fp6VjPPKv38Q7gaanOjRUKrY7Sv2uoUzeA/dceaObTl/bg95rEJjmY/6WJxLgHdjX34a+Z0dDvbTBJbsIb7tz4Y+KoLFwY7GbQ3kzGrveomngSAbtzyI/dV6P9dRObncy4pTMoe2c73iYPB17bTPapU4lJdh91O6VUVP2PGjGFbENDAwAJCQndlickJIQe68nq1at54oknQvfz8/O58847SUtLG4oww8rMzBzW440kkpvwojk3ze++S80nwS4Fmd/6FjG9bI1tLC/H6h746XO3O/yHrVaKuEE4xlDsf+/mSj5+qQRtalLGxXPyRdNwOG1HrBcgOJxWX9ntvS+I+7P/vhrqY/Rl/33JTX+PEY37780x+pubIEVcXB/eD3FxtLjPJH7Ta9g7Wsja/R7NM5ZiuhLCbqJUH4/RR0fb/9E+awbrGJHaf1xcHAkXJrH75Y/x1LVQ+sZnTFgyi8S89B7Xt9vtpGZlhO5Hw/+oEVPI9teyZcs4//zzQ/e7vj1UV1fj9w99nxClFJmZmVRUVIzKb3QDIbkJL9pzY1ZX433gfgCsZ5xJfWwslJf3alur14unpbnfx1Yo3G43LS0taHrOjUtr2gZwjGPpz/611uz6sIKSjyoByJyUyIyl4/EG2vG2HHlKzwW9HhMWgq8Zu92O1+vt9WumL/vvr6E+Rm/235/c9PUYAxHJv8NAcxOkaW7u6/tN0VK4kIzd67B1tBL36StUFZyAN7bnEU+07s8xeq+n/St12GfNIHwOR+I59FbW4mlUrC2mraKBklc/IXXuBJKKso9Yz+v1Ul5ePiz/o6xWa68aHUdMIZuYmAhAY2MjSYcN7dPY2MiECRPCbmez2bDZjmztAIa1QNBaR2VBEg0kN+FFY26034/vkf8DrxdVUICxZEnfYxzAU+rqTqDRR9/PUKetD/s3AyZb3jhAeXE9AAXzMig8ITP4xXqQ4uz6G0Tb6yUaSG7Ci2RuAnYXFZNOIb3kAxxtDWTsXkv1hAW0x/fcGjjcxtLrxmKzkn3qVKo2lNC0u5KaT/bib+kgdc4ElNG9+8Dh+YiG/1FRdbHX0aSnp5OYmMjmzZtDy9ra2ti1axdFRUURjEyIscX//PPosjJwubBdcinKGDEfIxHh9fj56NndlBfXoxRMX5zLpBOzoqJvmRCRZlodVE48GU9cGoYZIL3kA1z1vZvJTgwuZSjSjysgdXYeAA07yyl/bzumPxDhyI4uqlpk29vbqaioCN2vqqpi7969uN1uUlNTOffcc3nyySfJysoiPT2dRx99lKSkJBYsWBDBqIUYOwIfrcdctxYA61f+A/W5Puuiu6bqNj55aQ/tzT6sdoPZZ+eTKsNrCdGNtlipyj+B1P2fENtQStq+DdT5OmhOKwD5wjeslFIkTcnBGuug8v2dtJbVc/D1LWSfOhWrMzqnF46qQnb37t3ccsstofurVq0CYNGiRVx//fVccMEFdHR0cM8999DW1saUKVP46U9/OsBO6kKI3jD378O/unOorTPOwDJ1aoQjim7lO+vZ8sZ+TL/GlWBn7jn5uJOj78psIaKCYVCTN4+A1U58zR6Syz7D1tFC3biZoOSsz3CLy03F6rRT/u52OupbOfDaJrJPmxbpsHoUVYXs9OnTeeyxx8I+rpTikksu4ZJLLhnGqIQQuqkJ30MPQSCAMW06lqWnRzqkqGWamp3ryti7sRqA1PFxzDojD1tMVH3cChF9lKI+ZwZ+u5Oksq3E1e7D2tFKzYT5kY5sTHKmxjPujFmUvb0VX3M7B9dsJmveRFIXFEQ6tG7kk1UIcVS63YPv/vuC48VmZGC95BLpFwvgN49Y5G33s2nNfmpLWwDIn5PGpPmZwYslelhfiNFAWS0ULBrMMzTT0CVTMV96BmdLDbkH3seolWthIsHujiH39JmUvbeD9uomPv3zSyz56zVYY6LnTLgUskKIsLTfj2/VQ+jycnC7sX19OWoYxrwcCWq3d78gpaXJR8m2VrwdJoYBEya7SY4PUFdc2q/9u6TRW4wUgQC1j64e9N0acdnENpRiaWzAc89fcGXPpC1p3KAfRxydxWEjZ9E0qj8uYfrXl2Bx9DwSVKRIISuE6JE2TfyP/QtdshscDmxXXY1KSYl0WFFHa03FgXZK93oAcMQYTJzuxhUrH69CDIRpc9CSkoersRybt420fRtobqmlPmcG2rBEOrwxxbAYZBxfSPKUnEiHcgQ5PyiEOII2TfxP/htz0yawWLBd8TWMnOj7AIs0n9ekeHNzqIhNTrMzbV6CFLFCDBJtWGhNzMF22iIA4mr3kVn8NjZPU4QjE9FCPm2FEN1YAwE6/v0E5oYNoBSOL1+MbcIE8PkGZf+jZTCdxjove3a04vdpDAPGF8aSkmGX8WGFGGxK4Tj9DA6WdpC67xPs7c1kFr9NQ9ZUGaJLSCErhDhEmyYd/34C/4YNAKhp0/HX1uJ/881BO4Zr0aJB21ck+H0BNj3wFru3BC/ocsZaKJjqxumSU51CDKX2uHTKJi8idf+nOJurSC77DFdjObXj5+B3uCMdnogQKWSFEABonw//o49ifrYFADV9BkZmZoSjii51pS1seWM/niYvAGlZDnILXBgWaRESYjiYthiqCk7AXbuPpLLPiGmtI2v7mzRmFNGUPhGk7+yYI4WsEALd1oZv1Sr03j1gsWBMnYbKyIh0WFHD7wtQvK6cA1tqAHCmuBmXBQnJ0TMEjRBjhlK0pE7AE5dOyoFPcbbUkFSxHXf9AepyZtIenx7pCMUwkou9hBjjdE0Nvr/+JVjEOhzELF8uRexhag82s/bRHaEidty0FE7/7yukiBUiwgIOF1UTT6I6bx4BqwNbRysZJe+TvnsdtrbGSIcnhom0yAoxhpnFO/A98k9o90B8PLarrsaamopv3/5IhxZx7a0+iteWUb6zHoCYOBszFo8nJTcOm0vG0hUiKihFW9I4PPEZJFbsIK5mD87mapzNb9GamE1jxiR8zoRIRymGkBSyQoxB2jQJvPUWgVdeBq1R48dju+JrqPj4QRudYKQyAyb7NlWz+6NKAr7gbFy501MoOikbq1363wkRjbTFRn3ODJpT80ms2E5sfSmxDWXENpTRFp9BU9pEOtwpMsLBKCSFrBBjjG5qwvevR9G7dwNgLFiA9YILUVb5OKjZ38S2d0tpa+gAIDHDxZRTx5GQ7opwZEKI3vA7YqnJO47G9EISKnfhaijF1VSJq6kSr8NNS+oEWpPGYVqla9BoIf+5hBhDAlu24H/y39DWBjYb1i9dgDF//pgf+7S5xsPOD8qp3hccZN3utFJ0UjbZk5PGfG6EiAbKaqFg0dQ+bnUiur4O/clH6O1bsHe0kFy6heTyrZBXgJo8FTVhIsrhwGaTS4ZGKilkhRgDdHMz/qefwtzSObRWdjbWr16GkZYW4cgiq7Whg13ry6nY2QAEzzqOn5XGxPmZ2BzSjUCIqBEIUPvo6v5vnzgee3szdk8jVn8H7NmF3rMLE/DbnViWLMLW5sHnjJfuByOMFLJCjGLaNDE//BD/yy+BxwOGgWXRIiynnzGmuxK0t3jZ/VElpdtq0Tq4LLMwkcIFmcQmxUQ2OCHE4DMseF2JeF2JGP4O7O3N2NpbsAS82LwevC+/RDYQsNjwupLwOuPxOhMwLNmgkeI2io3d/2RCjHLmnj34n3kaXV4OgMrJwfrlizGysyMc2TDxm0csam3sYN+makqL6zEDwQo2bXwchfMziU91ht1OCDF6mFYH7W4H7e5UDL8XW0cr7pxkAnv2YPF6cTZX4WyuCq6872MSrTZITUUlJkN8PMQloBISIT4B3HEoS+/O3gx19wWbzehH94s+HsOqiLbLgaWQFWKUMSvKCbz8Mua2bcEFMU6sZ56JceKJvf7AHQ1qtx8M3W5p8lN50EN9zaGPYHeClZwJTuISbPhqaqmt6f2+XacPZqRCiEgxrXY6rHbSL7+CA/+7Cou/A4uvPfi780f5fVBRjq4oD22nD9+HMtCGBW1YMQ1L521L520rWlnQhoFj+VdQAT/asAxNC2/AP7DuF70w7rqvgzW6+hNLISvEKGFWVBB44w3MTRtBazAMjAXHYz3rLFRsbKTDG3ZaaxrrfFQcbKel0R9anpBsI2NcDHEJVrmQSwhxiFIEbDEEbIe6FznsdnxtLVj8HRgB3+d+/Cg0hjYhYELg6G2Vbf+zkvGARmFabZgWO4HO36bFhmkN/g5Y7KHHzcMft9iki0MPpJAVYgTTWqP37yPw5luY27aGlhuzZmE586wxeTFXe4uX/f/+gN0fNuLtCHYTUAqS0+1kjovBGSsfe0KIXlIqWGD2NFyX1igdQJkBDDP4O3jbf9jtzuU6gKGAQACFxuL3YvF7sXX0PhQNnQWt/chC2GrH94kFq7cN07COqaJXPtGHQXNtLVavd2gPYrXiGyMv2rHMpjX4/WifD/+WLfjfX4dZVhZ8UCks06ZhP20Rlq5+sP2Y3GAkvoq0qak50MyBz2qCQ2h1nvezWBWpmQ4ycmKwO6LrdJgQYoRTCq2swS4FvVg951tXsO3J9zH8PoyAN/TbEvBh+L2HWnr9n1/mDRbEgCXgwxLwQQ8lRcdTO3B33tYQ7N5gsROwBn+6bmvDOqqKXClkh4Hp9eJ5683unWoGmXPxYrDZhu4AIioEDhyg/Zln0BUV4O8sUg0DlZGJysuD2Fi8xcVQXNzvY7gWLRqkaIeW1prGijbKd9VTuauBjrZD3QdSpmQTrxtJSrNjGKPnA1sIMXIppdCGlYDdSgBn3zY2AxidRWyowO38bQl4MXwdJCbZ8O7dH+ryEGwR9mD1ebrtSiuDgNWB3+YgYA12pRjJLbhSyAoRxbTWmGVlmFu2YG7ZjK6qOvSgw4Eal4vKzkbZx8YsNVprmms87P2ohv1bq/A0H2qWsDksZE9JZtzUFNKXnc2Bux+KYKRCCDGIOi8eM23hhwfMWraA2j8/FOzyYAYwTB+G34fF78UIdHT+9qG0idXXvcDVysBvdRCwO/Hbgj8YI+MslhSyQkQZbZroslLq3n4b7/vr0LW1hx60WFApqajsbEhOHhMXKwX8JnUHm6ne10T1vibaWw51l7BYDdLzE8iclEhqbhyGZWR88AohxJBRCm2xErBYCdic3YfL0jrYncHXjtXXgcXfjsXXgdImNp8HW2dxq4HA5wpbbYnOkjE6oxpl/D4/+GRsStEzrTW6qgq9ezfm7l2YJSXg8RzqAmW1YhRNxpg5A8fEQto/+CCS4Q45rTWt9e3UlbZQva+ZutLm0JivAIZFkTUxmdT8ONLGx2ORqSWFECNA/6bZ7cP+e9OwoRSm1YFpdeDr6t2gNYbfG2qltXg9WEw/Vn8HVn8HDhqA4GQRHS88h7Fs2ZA9h/6QQnaI+V58gYA/QOsnn6GVAozgb6UwVed4c5bg2HOo/v9DHrd08GIWQ0u3e9ClZZgHD6JLD2Lu2QPNzd1XcjiInT0Hb2EhavJklMMBgOrHxVvRTmtNS207dWUt1JW1UF/Wgq890G2dGLeNtLx4UvPiSRkXR2JSAs0tzUPa71wIIQbVQKfZPQbX9V/r34ZKYdoceG0OvCQGFwV8wcLWGyxuuy5AM6uqiLamAylkh1jgvfcI+Hz0ZtJLrVRo2IzP/wQsNjDGzmD2o4EOBNB1dcHW1qoqdGUF+uBBdE0PI+9bragJEzAmFmJMnIgxbhzp48ZRXl6O1qOnWtNa01LRQOXOepqq2misbqOp2kPgc2csDKsiMTOWlHFxpOXF406OOdTaMPp7UwghRERpiw2fxYYvJh4AZQaw+Dyknnpa1LUfSCE7xCynnYbR3kHLhs3BDtjozrHnTJRpHhpvDo3S+tDQGj0wlXHkoMkWG6bVNqqKnZFEe73o+np0fR3UBX/rujp0dXWwb2sg0POGiUkY43JQ48Zh5I5HjR+POmzUiZHe91VrTUerj5a6dlrq22mpa6e1voOWOg9+78Yj1rfYDBIzY0nOdpOU7SYh3Sn9XYUQIkpow4Lf4cY6sVCmqB0ML730Es8++ywNDQ3k5eVx9dVXU1hYGOmwerTuxXJMrx9/fQydPQpABRuVlFKdtzUWCzisJg6rSYwlgMMSwGHxYzcC2JUfqzIxtInh7wD/kSMot/7qNkhJwUhNDV4MlJLS+ZMMcfGoEXL1YbTQPh+0tqCbmtHNzdDUhO76aW4K3aet7eg7stkw0tIwUtOCv3OysWTn9DzT1ue6DTSWlx8x/nC0lLdaa7wePx1tPtpbfHgavbQ1d+Bp8oZ+Av6e+4UbNgtxyQ7i01wkpDuJT3MRmxQjw2QJIYTosxFXyK5du5ZVq1ZxzTXXMGnSJJ5//nnuuOMO7rrrLhISEiId3hFaSuswvf5jrxiiCP5ZrIAjtNRimDhtJk5bAJctgNNudv4OEGM1UV4vlJdjlpcfsUcN+JQNv+HAb4shYHdiOpzoGBe4nChXLMTFYbjdWOJcWGLsWGPsWGJsWGJswdsOG2qEFRra74eODmhvR7e3d/tNezva44G2VnRrG7qtFdra0K2t0Nrat4kEYmJQScmopCQsiQn4a2pQLhe4YoOPKRW8AhQIlJbhKy079j4VWN1xeD7XD3Swx3jVWqNNjd9nEvAG8HUEaNm0n5Zd9fjag/d97X58HQG87X462vx0tPrwenzoY1y/qAxwJThwJ8UQmxyDOyn4k3bBmbS/9+6gPg8hhBBj04grZJ977jlOP/10lixZAsA111zDhg0beOONN7jwwgsjG1wPTrzlPzDavVQ9+TLBs/8aHexdAHQWEhq0CaapMQMas+u2qYPLD1vWbmra/BqzAwKd62Oa2C3BAtdl7yx27QGctgAxNhNDgV37sAd8EGiB9qPH7DchYCq8psJvKgJdP8qCVhawWMBiBPvsGgZaGd3uK8MI/rYolDJQFiNYBBvB38oINk0rpaiLceDt6ABMVGd+FLqz5THY3SJYBnbePmwawK4fzAAq0Hk70NlVo+v+AGhlYMYEi37T4cKM6fzp/BJgOlyYThfadtgXjkAA78GOYI7r2vl8srteA3S9BrQmtEjrrocAjcPeRHt7x6HlGmwNH+EtqQytb5oaHeh6rQRfDzr0Ojr8tonpM/H7TQI+E9NvEui8fWSvlN5PpmB3Wolx23DG2XHG23HGO3DG23F13u+pe4Bhlb7eQgghBseIKmT9fj8lJSXdClbDMJg5cybFYWYy8v3/9u4+Kqo6DeD4d4YZlGHEAWdBAQERiEIRdJXSVHzpRbPOZrvZUTaLtO2IHs+WJ8/ZMtdE29wyT6XlCx5lLY3tbLumaK5vnMpaNSkD8u3wqogwwihvwrztH8rNERAyBxx4PufMkbn3d2d+9+Fx7jOX3/1diwXLdWfXVCoVXl5eaDQds+sBsQPwsFhQnw5x6ThW/yceoVGlwtZowd5gxdZ49WGvb8BSUws1NTjqalHV16Kqr0dtaUBluXZ3ELsFD7sV9bWb7P36qfWbzj+2QyM//738F53w9bj2aJvNATabGqvjakFut4P1WpFutauv/mu79rMNrHY1FpsKm0MF9SpwuimKHai99nAlFT8H57rAVBbRrv1WX3tc92ptRUytBk0PDZ4+3qjtDWi0GjQ91Gi0ajQ9NGg81Xj21KDtqcHTywNtT80tnaX38PRE28fvF2/XRIUKD50OT09PHK1cduDh6YlXUN9bfo+2uPr1b+U9VCoVWo0WD6ulXZ81d+I+uOr1f2lsbuU9blVn/x5+TWza8/q3S2f8Hm5HbNp6j9upI34PGk9P0GqU6zi0Wtddo9PeOk3lcKOrhCorK3nhhRdITU0lKipKWb5lyxby8vJYvnx5s20yMjL49NNPleejRo1i/vz5HdJfIYQQQgjhOl3+CqDHH3+cTZs2KY/Zs2c7naF1tfr6ehYuXEh9fX3bjbsZiU3rJDatk9i0TOLSOolN6yQ2rZPYtO5Oio1bDS3w8fFBrVZjNpudlpvNZgwGQ4vbaLVatNdNa9TRHA4HBQUFMj1WCyQ2rZPYtE5i0zKJS+skNq2T2LROYtO6Oyk2bnVGVqPREB4eTk5OjrLMbreTk5PjNNRACCGEEEJ0fW51RhZgypQprF69mvDwcCIiIsjMzKShoYHExMTO7poQQgghhOhAblfIjhw5ksuXL5ORkYHZbCYsLIy//OUvrQ4t6GxarZbf//73nTq84U4lsWmdxKZ1EpuWSVxaJ7FpncSmdRKb1t1JsXGrWQuEEEIIIYRo4lZjZIUQQgghhGgihawQQgghhHBLUsgKIYQQQgi3JIWsEEIIIYRwS243a4G72b17N59//jlms5nQ0FCSk5OJiIjo7G51mM8++4zDhw9z7tw5PD09iYqKIikpicDAQKXNX//6V/Ly8py2mzhxIs8//3xHd7dD3Xj7ZIDAwEBWrVoFQGNjI+np6Rw6dAiLxcKQIUOYNWvWHTtDx+2UkpJCRUVFs+UPPvggs2bN6lY5k5eXx/bt2ykoKKCqqooFCxYwYsQIZb3D4SAjI4N9+/ZRW1tLdHQ0s2bNol+/fkqbmpoaNm7cyHfffYdKpSIhIYFnn32Wnj17dsYu3TY3i43VamXbtm1kZ2dTXl6OTqdj8ODBTJ8+HT8/P+U1Wsq16dOn87vf/a4jd+W2aitnVq9eTVZWltM2Q4YM4ZVXXlGed8ecAXjyySdb3C4pKYnHHnsM6Jo5055jdXuOSSaTifXr15Obm0vPnj0ZO3Ys06dPx8PDw2V9l0LWhQ4dOkR6ejqzZ88mMjKSnTt3smzZMlatWkXv3r07u3sdIi8vj4ceeoiBAwdis9nYunUrqamprFy50ukDccKECUybNk157unp2Rnd7XD9+/dn0aJFynO1+uc/kmzevJljx47x4osvotPpSEtL4+2332bp0qWd0dUO9cYbb2C325XnxcXFpKamct999ynLukvONDQ0EBYWxvjx43nrrbearf/Pf/7Drl27SElJwd/fn08++YRly5axcuVKJSbvvvsuVVVVvPrqq9hsNtasWcPatWuZP39+R+/ObXWz2DQ2NlJQUMATTzxBWFgYNTU1bNq0iRUrVvC3v/3Nqe2TTz7JxIkTlefuXqy1lTMAcXFxzJkzR3mu0TiXA90xZwDWrVvn9Dw7O5sPP/yQhIQEp+VdLWfac6xu65hkt9t54403MBgMpKamUlVVxfvvv4+HhwfTp093Wd9laIEL7dixgwkTJjBu3DiCg4OZPXs2np6eHDhwoLO71mFeeeUVEhMT6d+/P2FhYaSkpGAymcjPz3dq16NHDwwGg/LQ6XSd1OOOpVarnfbbx8cHgLq6Ovbv38/MmTMZNGgQ4eHhzJkzh5MnT3Lq1KlO7rXr+fj4OMXl2LFjBAQEcM899yhtukvOxMfH89RTTzmdNWricDjIzMxk6tSpDB8+nNDQUObOnUtVVRVHjhwB4OzZs3z//fe88MILREZGEh0dTXJyMocOHaKysrKjd+e2ullsdDodixYtYuTIkQQGBhIVFUVycjL5+fmYTCantl5eXk655O5Fyc3i0kSj0Tjts16vV9Z115wBnGJiMBg4cuQIMTExBAQEOLXrajnT1rG6PcekH374gbNnzzJv3jzCwsKIj49n2rRpfPHFF1itVpf1XQpZF7FareTn5zN48GBlmVqtZvDgwd2iEGlNXV0dgNOHJsCXX37Jc889x0svvcTHH39MQ0NDZ3Svw5WVlfGnP/2JuXPn8u677yoH2Pz8fGw2m1P+BAUFYTQau13+WK1WvvzyS8aNG4dKpVKWd9ecuV55eTlms5nY2FhlmU6nIyIiQsmTU6dO4e3tzcCBA5U2gwcPRqVScebMmQ7vc2eqq6tDpVI1+9Lz73//m+TkZF5++WW2b9+OzWbrpB52nLy8PGbNmsX8+fNZv3491dXVyjrJmavMZjPZ2dmMHz++2bqunjM3Hqvbc0w6deoUISEhTkMN4uLiqK+vp6SkxGV9laEFLnL58mXsdnuz8YwGg4HS0tLO6VQns9vtbNq0ibvuuouQkBBl+f3334/RaMTPz4+ioiI++ugjSktLWbBgQSf21vUiIyOZM2cOgYGBVFVV8emnn/Laa6/x9ttvYzab0Wg0eHt7O23Tu3dvzGZz53S4kxw+fJja2lqn21B315y5UVMu3DhU6fo8MZvNypn+Jh4eHuj1+m6VS42NjXz00UeMGjXKqZCdNGkSAwYMQK/Xc/LkSbZu3UpVVRUzZ87sxN66VlxcHAkJCfj7+1NWVsbWrVtZvnw5y5YtQ61WS85ck5WVRc+ePZudve3qOdPSsbo9xySz2dys5mn6bHJl3kghKzpMWloaJSUlvP76607Lrx9nFBISgq+vL6+//jplZWX07du3o7vZYeLj45WfQ0NDlcL2m2++6bLjPW/FgQMHiIuLc7pAp7vmjLg1VquVd955B4BZs2Y5rZsyZYryc2hoKBqNhvXr1zN9+vQ74vabrjBq1Cjl55CQEEJDQ5k3bx65ublOZ9y6uwMHDjB69Ohmn8ddPWdaO1bfqWRogYv4+Pgo32yv19I3lu4gLS2NY8eOsXjxYvr06XPTtk2zOpSVlXVE1+4Y3t7eBAYGUlZWhsFgwGq1Ultb69Tm0qVL3Sp/KioqOH78OBMmTLhpu+6aM025cOnSJafl1+eJwWDg8uXLTuttNhs1NTXdIpeailiTycSrr77a5ljqyMhIbDZbi7NmdFUBAQH06tVL+f/T3XMG4KeffqK0tLTFYQU36ko509qxuj3HJIPB0KzmafpscmXeSCHrIhqNhvDwcHJycpRldrudnJwcoqKiOrFnHcvhcJCWlsbhw4d57bXX8Pf3b3ObwsJCAHx9fV3cuzvLlStXlCI2PDwcDw8PfvzxR2V9aWkpJpOpW+XPgQMH6N27N0OHDr1pu+6aM/7+/hgMBqc8qaur48yZM0qeREVFUVtb63SBZU5ODg6Ho8tPBdhUxJaVlbFo0SJ69erV5jaFhYWoVKpmf1rvyi5evEhNTY3y/6c750yT/fv3Ex4eTlhYWJttu0LOtHWsbs8xKSoqiuLiYqcv1sePH8fLy4vg4GCX9V2GFrjQlClTWL16NeHh4URERJCZmUlDQ4PTWL+uLi0tja+++oqXX34ZLy8v5duaTqfD09OTsrIyvvrqK4YOHYper6e4uJjNmzdz9913Exoa2rmdd7H09HR++9vfYjQaqaqqIiMjA7Vazf33349Op2P8+PGkp6ej1+vR6XRs3LiRqKioblPI2u12Dh48yNixY53mIOxuOdP0BadJeXk5hYWF6PV6jEYjkydP5l//+hf9+vXD39+fbdu24evry/DhwwEIDg4mLi6OtWvXMnv2bKxWKxs3bmTkyJFOwzXc0c1iYzAYWLlyJQUFBSxcuBC73a58/uj1ejQaDadOneL06dPExMTg5eXFqVOn2Lx5M6NHj252Qao7uVlc9Ho9//znP0lISMBgMHDhwgW2bNlC3759GTJkCNB9c8ZoNAJXvwx+++23/PGPf2y2fVfNmbaO1e05Jg0ZMoTg4GDef/99ZsyYgdlsZtu2bTz00EMuHXKhcjgcDpe9umD37t1s374ds9lMWFgYzz77LJGRkZ3drQ7T2uTSc+bMITExEZPJxHvvvUdJSQkNDQ306dOHESNGMHXq1C47nVKTVatW8dNPP1FdXY2Pjw/R0dE89dRTyhjPpsmnv/76a6xWa7e6IQJcncqlad7l6yfl7m45k5uby5IlS5otHzt2LCkpKcoNEfbu3UtdXR3R0dE899xzTjGrqakhLS3NaXL75ORkt58y6Gax+cMf/sDcuXNb3G7x4sXExMSQn59PWloa586dw2Kx4O/vz5gxY5gyZYpbj3W8WVxmz57N3//+dwoKCqitrcXPz4/Y2FimTZvm9NnSHXMmJSUFgL1797Jp0ybWrVvX7DOlq+ZMW8dqaN8xqaKigg0bNpCbm0uPHj0YO3YsM2bMcOkNEaSQFUIIIYQQbknGyAohhBBCCLckhawQQgghhHBLUsgKIYQQQgi3JIWsEEIIIYRwS1LICiGEEEIItySFrBBCCCGEcEtSyAohhBBCCLckhawQQgghhHBLcotaIYT4BRoaGti3bx/Hjh2juLiYmpoaNBoNffr0ISIigoSEBIYOHYpa/fN5gpSUFCoqKsjIyOjEngshRNcjhawQQrTTiRMneOedd6iqqkKr1RIREYGvry8Wi4ULFy6QlZVFVlYWwcHBrFy5srO7K4QQXZ4UskII0Q75+fksXboUi8XCY489xtSpU5vdh91kMrFjxw7++9//dlIvhRCie5FCVggh2mC323nvvfewWCxMmzaNJ554osV2RqORZ555hjFjxnRwD4UQonuSQlYIIdqQnZ3NuXPnMBqNPP744222Dw8Pb7NNbm4uS5YsYezYsaSkpDRbv3r1arKysli8eDExMTFO66qrq9mxYwdHjx6lvLwctVqN0WgkPj6eRx55BF9fX6WtzWZjz549HDx4kNLSUgCCg4MZN24cEydOdBrLC3DlyhV27drFoUOHKC8vx263YzAYGDBgAOPHjycuLs6pfUNDA5mZmXzzzTecP38egJCQEB544AESExPbjIMQQvwaUsgKIUQbsrOzAbj33nubFX4d7ezZsyxbtoyLFy9iMBgYMmQIAOfPn2f79u1ERUUxYsQI4OqZ5BUrVpCdnY2XlxexsbE4HA5yc3PZsGEDx48f58UXX1T2yW63s3TpUk6fPk2vXr2IiYlBq9VSWVlJdnY2PXr0cCpkL126RGpqKkVFRRgMBu655x4ATp48yZo1a8jPzyc5ObljAySE6FakkBVCiDYUFRUBMGDAgE7th81m46233uLixYtMnjyZpKQkNJqfP8ZLSkrQarXK8507d5KdnU3//v1ZtGgRBoMBgKqqKpYsWcLhw4fZs2cPDz/8MAB5eXmcPn2agQMHsmTJEjw9PZXXqquro6yszKk/a9asoaioiMmTJzNjxgzlvc1mM2+++Sa7d+9m6NChzc7iCiHE7SKFrBBCtKGmpgaAXr16tbj+gw8+wG63Oy2bMGEC0dHRt7Uf//vf/ygtLaV///48/fTTzc4O9+/f3+n5rl27AHj66aeVIhbA19eXpKQkVqxYQWZmplLIXr58GYC77rrLqYgF0Ol0TkMmCgsLyc7OZuDAgc36YjAYeP7551m4cCF79uyRQlYI4TJSyAohxK+UlZXVrJCNiYm57YXsjz/+CMD48ePbHOJgMpkwmUz4+Pgoww+uN2zYMLy9vSkrK8NsNmMwGAgLC0OlUnHw4EGCg4NJSEhotXj/4YcfABg+fHiLfRkwYAA9e/bkzJkzv3Q3hRCi3aSQFUKINuj1euDqRVYt2bZtm/LzunXr2Lt3r0v6cfHiRQACAgLabFtZWQnAb37zmxbXq1QqjEYjtbW1VFZWYjAYCAwMJCkpiY8//ph169axfv16QkJCGDRoEImJiYSGhirbV1RUAFf3/fr9v5HFYmn3/gkhxC8lhawQQrQhNDSUkydPUlBQwOjRozvkPR0Oh8vfQ6VSNVv26KOPct9993HkyBGOHz/OiRMn2LlzJ5mZmcycOZPJkycDKGego6Oj21VYCyGEK0ghK4QQbYiPj2fPnj18++23JCUl3ZaZC5ou0rpy5UqL65vOvl6vT58+AFy4cKHN1/fz8wN+PnPakqZ1TW2bGI1GJk2axKRJk7DZbHz99dd88MEHbNmyhTFjxqDX65W+DB8+nEcffbTN/gghhCt07jwyQgjhBuLj4wkKCsJkMvHZZ5/dltdsmuu1ae7V69XU1JCfn99s+eDBgwHYv39/szG5NzIajRiNRi5fvqyMrb3esWPHqK2tpW/fvk4Xgt3Iw8ODMWPGMHDgQKxWqzJzQWxsLACHDx++aT+EEMKVpJAVQog2qNVq5s2bh1ar5ZNPPmHLli3U1dU1a1ddXd1iYdoSf39/jEYjxcXFHDlyRFl+5coV1q5dS319fbNtEhIS6NevHyUlJWzZsgWr1eq0vqSkxOlsbdNsBOnp6cqMBHB1eqx//OMfAMpQAYCcnByOHz/erEguLy/n3LlzqFQq5extZGQksbGxnDx5kg0bNrQYj8LCQr7//vt2xUMIIW6FytERA7GEEKILOHHiBCtXrsRsNqPVaomIiMDX1xeLxUJlZSWFhYXYbDaCgoL485//TEhICAApKSlUVFSQkZHh9Hr79+/nww8/RK1Wc/fddytX+et0OoKCgjh69GizO3sVFxeTmpqK2WzG19eXyMhI4OqZ3ZKSEhYsWOB0Q4Q333yT7OxsdDodgwYNwuFwkJOTQ319PcOHD+ell15Shkrs3LmTzZs34+PjQ3h4OHq9nurqavLy8rBYLDz88MNONzi4dOkSy5cvp6CgAG9vb8LCwvD19aWuro6ioiJlvttnnnnGlb8WIUQ3JoWsEEL8Ag0NDezbt4/vvvuO4uJiampq0Gq1+Pn5ER4ezr333suwYcPw8PBQtmmtkAU4ePAgn3/+OefPn8fb25thw4YxY8YM0tPTW71F7aVLl9i+fTtHjx7FZDKh1WqdblF7/VABm83GF198QVZWltMtahMTE3nggQecxvuWlZVx8OBBcnNzKS8vp7q6Gh8fH4KCgnjwwQcZMWJEswvEGhsb2bdvH4cOHaKkpITGxkZ69+5NQEAAQ4cOZdSoUcp4WiGEuN2kkBVCCCGEEG5JxsgKIYQQQgi3JIWsEEIIIYRwS1LICiGEEEIItySFrBBCCCGEcEtSyAohhBBCCLckhawQQgghhHBLUsgKIYQQQgi3JIWsEEIIIYRwS1LICiGEEEIItySFrBBCCCGEcEtSyAohhBBCCLckhawQQgghhHBL/wcfHadoTn7kHAAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArsAAAGQCAYAAACu4KjqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhXUlEQVR4nO3dd3gVZf7//+fMKemVJIQOIQRE6YoKKAju4q5YsPIFK4Lrwq6u/lx3XXtbZFdd9QN2EBEboth7F0FBUaQJ0gMkkEASSHKSnHNmfn+EHDkktLSTnLwe13WunDMzZ+Y9c+4kr9y5Z8awbdtGRERERCQMmaEuQERERESkoSjsioiIiEjYUtgVERERkbClsCsiIiIiYUthV0RERETClsKuiIiIiIQthV0RERERCVsKuyIiIiISthR2RURERCRsKeyKyEF98cUXGIbBnXfeGTR92LBhGIYRmqKOQKjru+KKKzAMg02bNgWmbdq0CcMwuOKKK0JWF4T+2NSkc+fOdO7cOdRliEiYUtgVCRHDMJpc6GhKqo5P1SMiIoLU1FT69+/PhAkTeP/99/H7/Q2y7eYcvmoK2nJ427Zt46abbqJPnz7Ex8cTFRVFRkYGV1xxBUuWLKm37cyaNQvDMJg1a1a9rVNEDs0Z6gJEpPmZPXs2paWljbKtO+64AwC/309hYSErV67k+eefZ8aMGRx//PG88MILZGVlhay+mkyZMoV//vOftGvXLmQ1HEyoj01TNG/ePC6//HJKS0s54YQTuOqqq3C73axcuZIXX3yR5557jptuuon7779ff6CKNEMKuyJy1Dp27Nho2zpwCAXAjh07+Otf/8qrr77K6aefzvfff09aWlpI6qtJmzZtaNOmTUhrOJhQH5um5rPPPmPMmDG4XC5effVVLrjggqD5K1euZNSoUfznP/8hNjaW2267LUSVikhtaRiDSBOy/7jOTZs2MWbMGFJSUoiMjOT444/nnXfeqfaeiooKHn30Ufr3709SUhLR0dF07tyZc845h08++aTGddfkaMZy1rTs/uN7f/rpJ84880wSExOJjo5m6NChLFy48MgPxGG0bt2al19+mWHDhpGdnc2///3vw9Zn2zbPPfccgwYNIjU1lcjISDp06MDIkSN55ZVXgvZh8+bNbN68OWgYxf7HzTAMhg0bRm5uLhMmTKBdu3Y4HI7Av6YPN5Tgl19+4dxzzyU5OZmYmBiGDBnCRx99VG25O++8E8Mw+OKLL6rNq+nzNAyD5557DoAuXboEat9/SMbBPmfLsnjiiSc44YQTiI2NJSYmhhNOOIHHH38cy7KqLV91DPLz87n66qtp06YNERERHHvssTz77LM17vfhFBUV8Ze//IV27doRGRlJz549efTRR7FtO7DML7/8gmEYnHbaaQddT69evXC5XOTk5Bxye5Zl8ec//xm/38/DDz9cLegCHHvssbz11lu4XC7uvvtuNm/eHJh3sDHtVQ4cDjNs2DCuvPJKAK688sqg9rV/W/H7/TzxxBMMHjyYhIQEoqKiyMzMZMKECfz6669B2ygqKuLmm2+me/fuREZGkpSUxMiRI4O+92uq9/vvv+eMM84gISGBpKQkzj//fLKzswHYsGEDY8aMITU1laioKE477TSWLVtW4z6WlpYyZcoU+vbtS0xMDLGxsZx88sm89NJLNS4vEgrq2RVpgjZv3szAgQPJyMjg0ksvZffu3bzyyiuBALv/L/orrriCl156ieOOO47LLruMqKgotm/fzoIFC/jggw84/fTTG7X277//nv/85z+cfPLJTJgwgS1btvDaa68xYsQIfvrpJ7p3714v2zFNk1tvvZUvvviCl156if/973+HDOu33HILU6ZMoUuXLlx00UUkJCSQk5PDkiVLePXVV7n44ovp3Lkzd9xxBw8//DAAf/vb3wLv79u3b9D6du/ezUknnURsbCznnXcepmnSunXrw9a9ceNGTj75ZHr16sWf/vQncnJyeOWVV/jDH/7Aiy++yMUXX1ybwwFUDvl44403WLZsGddddx2JiYkAga+Hcumll/Liiy/SoUMHJkyYgGEYzJ8/n0mTJrFgwQJeeOGFau8pLCxk8ODBuN1uLrjgAsrLy3n11VcZP348pmly+eWXH3HtFRUVnH766RQWFjJmzBgqKip47bXXuO6661izZg3Tp08HoEePHpx22ml8/vnnrF27ttoQloULF7JixQrOP//8w/auf/nll6xdu5a2bdsyYcKEgy7Xq1cvzj33XF599VVmzpzJXXfddcT7tb8rrriCxMRE3nzzTc4555ygNlX1GVVUVDBq1Cg+/vhjOnTowNixY4mPj2fTpk3Mnz+fIUOG0K1bN+C3479q1SpOOOEE/va3v5Gfn8/cuXP5/e9/z+OPP86f/vSnanUsWbKEqVOnMnToUCZOnMjy5ct5/fXXWbFiBW+++SZDhgyhR48eXHbZZWzevJnXX3+d3/3ud2zYsIHY2NjAegoLCxk+fDg//vgj/fv3Z/z48ViWxYcffsjYsWNZuXIl9957b62OlUi9skUkJAD7wG/BjRs3BqbfeeedQfM++OADG7D/8Ic/BKYVFhbahmHYAwYMsH0+X7Vt5OfnV1v35ZdfXmM9Q4cOrVbP559/bgP2HXfcccTLAvazzz4bNO+JJ56wAfvPf/5zjduuSU3H50BlZWW20+m0AXvDhg2HrC85Odlu166dXVJSUm09eXl5Qa87depkd+rU6bC1XXrppbbX6602//LLL7cBe+PGjYFp+3+2N954Y9DyS5YssZ1Op52YmGgXFRUFpt9xxx02YH/++efVtnGwz7Ombe+vpmPz4osv2oDdr18/e+/evYHpxcXF9oABA2zAfuGFF2o8BldddVVQ21u5cqXtcDjsY445psbt16RTp042YA8ePNguKysLTN+1a5edkZFhA/aXX34ZmP7qq6/agP3//X//X7V1Ve3/Rx99dNjt3n333TZgjx079rDLPvXUUzZgjxgxIjDtYN8f++/Xge3o2WefrfF7pMrNN99sA/ZZZ50VdCxsu7K979y5M/D66quvtgH76quvti3LCkxfu3atHR8fb7vd7qB2sP/36Jw5c4LWPX78eBuwk5KS7HvvvTdoXtVxevjhh4OmVx3rqVOnBk33eDz2yJEjbcMw7B9//LHG/RRpTBrGINIEderUiVtvvTVo2siRI+nYsSOLFy8OTDMMA9u2iYiIwDSrfzu3atWqwWs90ODBg6sNlRg/fjxOpzOo9voQERER2Me8vLzDLu9yuXA4HNWmp6SkHPW23W43DzzwAE7n0f2DLCEhgdtvvz1o2vHHH8+4ceMoLCxk/vz5R11LXc2cOROA+++/P6jnLiYmhqlTpwLwzDPPVHtfdHQ0Dz30UNAx7dmzJ4MHD2b16tUUFxcfVR1TpkwhIiIi8Do5OTkwRnb/oRHnnnsubdq0YdasWZSXlwemFxYWMnfuXLp27XpE/9GoGubQoUOHwy5btcz27duPbGdqwe/389hjjxEVFcUTTzwRdCyAwBVJoLIHeM6cOcTGxjJlypSg/2p069aNa6+9loqKCmbPnl1tO0OGDGHcuHFB06p64RMSEvjnP/8ZNO+yyy4D4KeffgpM27VrF3PmzOH444/npptuClo+MjKSqVOnYts2L7744lEeBZH6p7Ar0gT17du3xlDWoUMHCgoKAq/j4+M566yzWLhwIX379uXuu+/m888/D+nZ9scff3y1aS6Xi9atWwfVXl/sfeM5DzfeeNy4cWzatImePXty880388EHH1BUVFTr7Xbu3DnopLgj1b9/f+Li4qpNHzZsGAA//vhjrWuqraVLl2KaZqCG/Q0dOhSHw1FjXd26dSM+Pr7a9KpgeDSft9PpZNCgQdWm13RcnE4nEydOZNeuXbz22muB6c8//zwej4err766WV414ZdffqGoqIjevXvTtm3bQy67Zs0aSktL6dOnD8nJydXmDx8+HKi5PdX0PVq1vZp+9lRdVWTr1q2BaUuWLMHv9wfGAB/4mDt3LgCrV68+5H6INAaN2RVpgg42xtLpdFY7WeiVV15h6tSpvPjii4HLdEVGRnLBBRfwwAMPHNE40vp0qNrr+7q4ZWVl7N69GyDQ43Uw//vf/8jIyODZZ5/l/vvv5/7778fpdPLHP/6RBx98kMzMzKPadnp6eq1qPtjnUbW+ugTw2ioqKiI5ORm3211tntPpJCUlhZ07d1abd6jPGjiqzzslJaXGP/AOdlyuvvpq7rvvPp588knGjh0LwFNPPYXb7Q6cBHY4VeuuOjHrUKqWOVwIrYvCwkKAI7pkXdXxONi45KrpVevcX0JCQrVpVZ/ZoeZ5vd7AtF27dgGVofdQ1yE+2t59kYagnl2RZi4qKoo777yTtWvXsmXLFubMmcOQIUOYM2dO0NnlVcMcfD5fjeup6ZdiU7dgwQJ8Ph+tW7c+7E0gHA4Hf/vb31i2bBk7duzgtddeY/To0bz11lucccYZQf8OPxK17TncsWNHjdNzc3OB4LBxqM+sPj+vhIQEdu/eHRRmqvh8PvLz82vswa1P+fn5NYbjmo4LVAbCs88+m6+++opffvklcGLa6NGjD/uHT5UhQ4YAlVcpOFwwr7q6weDBgwPT6vt7quqPh23bth122arjUXV8DlQ1RKOm8FofqtZ7/fXXY9v2QR+ff/55g2xf5Ggo7IqEkQ4dOjBu3Dg+/PBDMjMzWbBgQaAHJikpCai5F2vPnj2sXbu2UWutK8uyuO+++wACPXtHKi0tjfPOO4+5c+cyfPhw1q9fz4oVKwLzHQ5Hg92dbenSpezdu7fa9KrLi/Xr1y8w7VCf2ffff1/j+qt6R4+m/n79+mFZFl999VW1eV999RV+v5/+/fsf8fpqw+fz1Xh5upqOS5VJkyYB8OSTT/LUU08B1Hj1gYMZOnQomZmZbN++PTBuuSYrV65k/vz5OJ1Oxo8fH5h+qM9n3bp1NfbSH+rz6dGjB4mJifz888+HHRvcvXt3oqOjWbZsWY2huipkNtTnNnDgQEzT5Ouvv26Q9YvUJ4VdkWYsLy+P5cuXV5teUlJCcXExTqcz8K/puLg4evTowTfffMOqVasCy/r9fm644QY8Hk+j1V1XO3fuZMyYMXzxxRd07NiRf/3rX4dcvry8nG+++abadK/XGxgGER0dHZjeqlUr8vLyGuSYFBUVcffddwdN+/7773nhhRdISEhg9OjRgekDBw4EKk/O2r/3MDs7u9o69q8dYMuWLUdcU1WAu/nmm4PGe5eWlgZOVrrqqquOeH21dfPNNwf1sO/evTtw6aqahiaMGDGCrKwsnnvuOebOnUv37t0Pef3dAzkcDh577DFM0+S6666r8eTA1atXc/bZZ+P1erntttvo1KlTYF6PHj2Ij4/nzTffDBrm4fF4uPbaa2vc5qE+H4fDwaRJk/B4PFxzzTXV/ttQUVEROBHT7XYzbtw49u7dW+1GF+vXr+fRRx/F5XJx6aWXHuHRODppaWmMGzeO77//nnvuuafG8L5+/Xo2btzYINsXORoasyvSjG3bto1+/frRq1cvevfuTYcOHdizZw/vvPMOubm5XHvttUEnQ/3973/nqquuYvDgwVx44YVERkby+eef4/V66dOnz0EvHB9KVRfstywrcLvgBQsWUFFRwcCBA3nhhRcOezUFj8fDkCFDyMzMZMCAAXTq1ImysjI+/vjjQJg55phjAsuPGDGCJUuWcMYZZ3DqqacSERFBnz59OOuss+q8P6eeeirPPPMM3333HYMHDw5cZ9eyLJ588smg4QInnngip556Kl999RUDBw5k+PDh7Nixg7fffpuRI0fW2KM4YsQI/vvf/zJx4kTOP/984uLiSExM5C9/+ctBaxo7dixvvvkmc+fO5dhjj+Xcc8/FMAzeeOMNNm7cyMUXX1zt7P361qZNG8rLyznuuOMC4XLevHnk5OQwadIkTj311GrvMQyDa665hhtuuAGoHMd7tH73u9/xwgsvMH78eM477zwGDhwYuHbwypUr+fDDD/F6vfz973+vFipdLhfXXXcd99xzD/369WP06NH4fD4+/vhj2rZtW+P43pNPPpno6Ggefvhhdu3aFRg3/Ne//pWEhATuuOMOvvvuO95++22ysrIYNWoUcXFxZGdn89FHH/Hf//43cLWT+++/n6+//ppp06axZMkSTjvttMB1dvfu3cu0adPo0qXLUR+TIzVt2jR+/fVXbr/9dp5//nmGDBlC69at2b59O6tXr2bJkiW89NJLDVqDyBEJ1TXPRFo6DnGd3SO9Fm5BQYF911132aeddprdtm1b2+122+np6fbQoUPtF198Mejam1WeeeYZu2fPnrbb7bZbt25tX3311XZ+fn69XWf3aK45eihVx6fq4Xa77VatWtn9+/e3J0yYYL///vu23++v8b0H1ldRUWFPnTrVPuOMM+wOHTrYERERdkpKin3iiSfajz/+uF1eXh70/uLiYvuaa66x27VrZzscjmqfCWAPHTr0oLUf6jq7l19+ub1q1Sr77LPPthMTE+2oqCh70KBB9gcffFDjugoKCuwJEybYqampttvtto899lj7ySefPGRbefDBB+0ePXrYbrfbBoKOe02fnW3btt/vt6dPn24PGDDAjoqKsqOiouz+/fvb06ZNq/E4H+oYHO5avweqahuFhYX2pEmTAm25R48e9iOPPFJjO66ye/du2zRNOzIyMui60kcrOzvbvvHGG+3jjjvOjo2NtSMiIuxOnTrZl112mf3dd98d9H2WZdlTpkyxMzIybJfLZXfo0MH++9//bpeUlBy0zb///vv2SSedZMfExATa9/7Hyuv12v/3f/9nn3DCCXZMTIwdHR1tZ2Zm2hMnTrR//fXXoHUVFBTYN910k52ZmWm73W47ISHBPv300+0PP/yw2nYP9T16uJ89B/u8y8vL7f/7v/+zTz755MC1fTt06GAPHz7c/t///lenz0Skvhi2vd99GEVERJqRL774gtNOO41LLrmE559/PtTliEgTpDG7IiLSbP3nP/8BOOQwDRFp2TRmV0REmpXly5fzzjvv8MMPP/D+++8zatQoTjzxxFCXJSJNlMKuiIg0Kz/88AP/+te/iI+P58ILL+Sxxx4LdUki0oRpzK6IiIiIhC2N2RURERGRsKWwKyIiIiJhS2FXRERERMKWwq6IiIiIhC1djeEQCgoKgu5H35BSU1MD9zwXAbUJqU5tQmqidiEHailtwul0kpSUdPjlGqGWZsvn8+H1eht8O4ZhBLani2MIqE1IdWoTUhO1CzmQ2kR1TSrszp8/n8WLF7Nt2zbcbjdZWVlccskltG3bNrDMnXfeyapVq4Led/rpp3P11VcHXufn5/P000+zcuVKIiMjGTp0KGPHjsXhcDTavoiIiIhI6DWpsLtq1SpGjhxJ165d8fv9vPTSS9x777089NBDREZGBpYbMWIEF198ceC12+0OPLcsiylTppCYmMi9995LQUEB06ZNw+FwMHbs2EbdHxEREREJrSZ1gtott9zCsGHD6NChA507d2by5Mnk5+ezYcOGoOUiIiJITEwMPKKjowPzli1bxtatW/nrX/9K586d6devHxdffDEffvhho42/FREREZGmoUn17B6otLQUgNjY2KDpX3/9NV9//TWJiYkMGDCA888/n4iICADWrl1Lx44dSUxMDCzft29fnnnmGbKzs+nSpUu17Xi93qCxuYZhEBUVFXje0Kq20RjbkuZBbUIOpDYhNVG7kAOpTVTXZMOuZVnMmjWL7t2707Fjx8D0IUOGkJKSQnJyMps3b+aFF15g+/bt3HjjjQAUFhYGBV2AhISEwLyazJ8/n3nz5gVed+nShalTp5Kamlq/O3UY6enpjbo9afrUJuRAahNSE7WL5qmwsJCCgoJ6P5HswP+IN1eGYZCUlFQt1x2tJht2Z8yYQXZ2NnfffXfQ9NNPPz3wvGPHjiQlJXH33XeTm5tb62/20aNHM2rUqMDrqr+G8vLyGmXog2EYpKenk5ubqzMnBVCbkOrUJqQmahfNV3FxceA/yfXdC+tyuRrlalINzbZt8vPzycvLq/Zffqi89NiRdEw2ybA7Y8YMli5dyl133UWrVq0OuWxmZiZAIOwmJiaybt26oGWKiooADvqXgcvlwuVy1TivMX942LatH1YSRG1CDqQ2ITVRu2h+fD5f4D/PUjPDMIiOjqaoqKhO7btJnaBm2zYzZsxg8eLF3H777aSlpR32PZs2bQIIXFQ4KyuLLVu2BAIuwM8//0xUVBTt27dvkLpFREREjobG1B65uh6rJtWzO2PGDBYsWMBNN91EVFRUYIxtdHQ0breb3NxcFixYQP/+/YmNjWXLli0899xzHHPMMXTq1AmAPn360L59e6ZNm8a4ceMoLCzk5ZdfZuTIkQftvRURERGR8NSkwu5HH30EVN44Yn+TJk1i2LBhOJ1Oli9fznvvvUd5eTmtWrXixBNP5Lzzzgssa5om//znP3nmmWe49dZbiYiIYOjQoUHX5RURERGRlsGwNcjnoPLy8hrtdsFt2rQhJydHY64EUJuQ6tQmpCZqF83Xnj17iI+Pb5B1h8sJalUOdqxcLtcRnaDWpMbstmR7d+3CWVGBy+ut20M/7ERERMLCtm3buOGGG+jfvz+dO3dm4MCB3H777ezevfuI15GdnU27du1YsWJFA1batDWpYQwtmVVRgefLL6COWTVq2DDQ2GQREZFmbfPmzZx99tlkZGQwffp0OnbsyJo1a7j33nv57LPPePvttwMn58uhqWdXREREpIm55ZZbcLlcvPjii5x88sm0a9eO4cOH8/LLL5Obm8vUqVMBaNeuHR988EHQezMzM3nllVcAOOmkkwAYOXIk7dq144ILLggs9/LLL3PaaafRpUsX+vXrxy233BKYt23bNq688kq6detG9+7d+dOf/kReXl5g/oMPPsjvfvc7Xn75ZU444QS6devGzTffjN/v57HHHqNv37707t2bRx55JKi2oqIibrzxRnr16kX37t258MILWblyZf0evAMo7IqIiIg0IQUFBXzxxRdcfvnlREVFBc1LS0vjvPPO4+233z6icdrvvvsuUBlsf/zxR55++mkAnnvuOW655RbGjRvHJ598wrPPPkvnzp2ByrvYXnnllRQWFvLaa6/x0ksvsWXLFv785z8HrXvz5s189tlnvPDCC0yfPp2XX36Zyy67jJycHObNm8ctt9zCf/7zH5YuXRp4z5/+9Cfy8/OZM2cO77//Pr169eLiiy+moKCgLofskDSMQURERKQJ2bhxI7Zt061btxrnZ2ZmUlhYyK5duw67rqqbcyUlJQXdv+DRRx/l6quvZsKECYFpffv2BWDBggX88ssvLFq0iHbt2gHwyCOPcNppp/HTTz8FlrMsi4ceeojY2FiysrIYNGgQ69ev5/nnn8c0TTIzM5k+fToLFy6kf//+LF68mJ9++olly5YREREBwO23386HH37Iu+++yyWXXHLUx+pIKOyKiIiINEENdYWN/Px8cnNzGTJkSI3zf/31V9q2bRsIulB5066EhAR+/fXXQNjt0KFD0G18U1JSME0T0/xt4EBqair5+fkArFq1ipKSEo477rig7ZWVlbF58+b62r1qFHZFREREmpDOnTtjGAa//vorf/jDH6rNX7duHYmJibRq1QrDMKqFYp/Pd8j1R0ZG1kudTmdwjDQMo9oNvAzDwLIsAEpKSkhLS2PevHnV1tWQt07WmF0RERGRJiQ5OZlTTz2V5557Do/HEzRv586dvP7665x11lkYhkGrVq3YsWNHYP6GDRsoLS0NvK4Kn1WBEyA2NpYOHTqwYMGCGrffrVs3tm/fzrZt2wLT1q5dS1FREVlZWbXer169epGXl4fT6aRLly5Bj+Tk5Fqv93AUdkVERESamHvvvZeKigrGjRvHt99+y7Zt2/j888/5f//v/5Gens4//vEPAAYPHsysWbNYsWIFy5Yt45///GdQ72pKSgqRkZF8/vnn5OXlsWfPHgBuuOEGnnrqKWbMmMGGDRtYvnw5M2fOBOCUU06hR48e/PWvf2X58uX8+OOPXHfddZx88sn06dOn1vt0yimnMGDAAMaPH8+XX35JdnY2S5Ys4f7772fZsmV1OFqHprArIiIi0sRkZGTw/vvv07FjR6655hoGDx7MTTfdxKBBg3jrrbcC19i9/fbbadu2LaNHj2by5Mlcc801QVdwcDqd3HPPPcyZM4f+/fszfvx4AC666CLuvPNOnnvuOYYPH87ll1/Oxo0bgcqhB88++ywJCQmcd955jBkzho4dO/L444/XaZ8Mw+D555/npJNO4oYbbuCUU05h0qRJbNu2jZSUlDqt+5Db1e2CD64xbxccDRR9/FG93FTCq5tKNHu6BagcSG1CaqJ20XzpdsFHTrcLFhERERE5CIVdEREREQlbCrsiIiIiErYUdkVEREQkbCnsioiIiEjYUtgVERERkbClsCsiIiIiYUthV0RERETClsKuiIiIiIQtZ6gLEBEREZEj47Jt8PkOuYzh81UuV1dOJ17DqPt6QkxhV0RERKS58PnwfPHFIRcxHSaW36rzpqKGDQOX66jfN2vWLB5//HHy8vLo2bMn99xzD/369atzPbWlYQwiIiIiUi/efPNN7rrrLm644QY++OADevbsybhx48jPzw9ZTQq7IiIiIlIvnn76acaOHcvFF19MVlYW999/P1FRUbz88sshq0lhV0RERETqrKKigp9//plTTjklMM00TYYMGcIPP/wQsroUdkVERESkznbv3o3f7yclJSVoempqKnl5eSGqSmFXRERERMKYwq6IiIiI1FlycjIOh6PayWh5eXmkpqaGqCqFXRERERGpB263m969e7NgwYLANMuyWLBgAQMGDAhZXbrOroiIiIjUi4kTJ3L99dfTu3dv+vXrx9NPP43H4+Hiiy8OWU0KuyIiIiLNhdNZebOHQzAMA7ue7qB2tM455xx2797NAw88QF5eHsceeyxz5swJ6TAGhV0RERGRZsJrGIe9q5nL5cLr9TZSRdVdeeWVXHnllSHb/oE0ZldEREREwpbCroiIiIiELYVdEREREQlbCrsiIiIiErYUdkVEREQkbCnsioiIiEjYUtgVERERkbClsCsiIiIiYUthV0RERETClu6gJiIiItJMmH6wvP5DLuMrt6AebhdsuhxYjjqvJuQUdkVERESaCcvrZ+0b3x5yGdM0sSyrztvKOvckcBxd2v322295/PHHWb58OTt27GDGjBmcccYZda6lLjSMQURERETqRWlpKT179uS+++4LdSkB6tkVERERkXoxfPhwhg8fHuoygqhnV0RERETClsKuiIiIiIQthV0RERERCVsKuyIiIiIStprUCWrz589n8eLFbNu2DbfbTVZWFpdccglt27YNLFNRUcHs2bNZuHAhXq+XPn36MGHCBBITEwPL5Ofn8/TTT7Ny5UoiIyMZOnQoY8eOxXGUl88QERERkeatSfXsrlq1ipEjR3Lfffdx66234vf7uffeeykrKwss89xzz/HDDz9www03cNddd1FQUMCDDz4YmG9ZFlOmTMHn83HvvfcyefJkvvjiC1555ZVQ7JKIiIhIi1FSUsKKFStYsWIFAFu2bGHFihVs27YtZDU1qZ7dW265Jej15MmTmTBhAhs2bKBnz56Ulpby2Wefcd1113HccccBMGnSJK6//nrWrl1LVlYWy5YtY+vWrdx2220kJibSuXNnLr74Yl544QUuuuginM4mtcsiIiIiR8x0OSpv9nAIhmFg19cd1I7yPcuWLePCCy8MvL7rrrsAuPDCC3n44YfrXFNtNOnkV1paCkBsbCwAGzZswO/306tXr8Ay7dq1IyUlJRB2165dS8eOHYOGNfTt25dnnnmG7OxsunTpUm07Xq8Xr9cbeG0YBlFRUYHnDc0wDLBtDAxso+6NszFqloZV9Rnqs5QqahNSE7WLlsdycNi7mjldrqBcU+tt1eI9gwYNapBe3Lq08SYbdi3LYtasWXTv3p2OHTsCUFhYiNPpJCYmJmjZhIQECgsLA8vsH3Sr5lfNq8n8+fOZN29e4HWXLl2YOnUqqamp9bMzR6AoJycQ6uvCdLtJbdOmHiqSpiA9PT3UJUgTozYhNVG7aH48Hg8ul6vB1t+Q625sbrebNnXINk027M6YMYPs7GzuvvvuBt/W6NGjGTVqVOB11V8PeXl5+Hy+Bt++YRhEAcXFxdjUrWc3qqKCnJyc+ilMQsYwDNLT08nNza2Xf0VJ86c2ITVRu2i+Kioq6qX3tSaueurZbSoqDpJtnE7nEXVMNsmwO2PGDJYuXcpdd91Fq1atAtMTExPx+XyUlJQE9e4WFRUFenMTExNZt25d0PqKiooC82ricrkO+hdQY/7wsLGpY9atXI9+4IUN27b1eUoQtQmpidqFhLu6tO8mdTUG27aZMWMGixcv5vbbbyctLS1ofkZGBg6Hg+XLlwembd++nfz8fLKysgDIyspiy5YtgYAL8PPPPxMVFUX79u0bZ0dEREREpEloUj27M2bMYMGCBdx0001ERUUFxthGR0fjdruJjo5m+PDhzJ49m9jYWKKjo5k5cyZZWVmBsNunTx/at2/PtGnTGDduHIWFhbz88suMHDkyrMaviIiIiMjhNamw+9FHHwFw5513Bk2fNGkSw4YNA+Dyyy/HMAwefPBBfD5f4KYSVUzT5J///CfPPPMMt956KxEREQwdOpSLL764sXZDRERE5LAsy8I0m9Q/2Zscy6rNNSGCGbYG+RxUXl5eowzwNgyDaKDo44/qPGY3atgwvOrBbvYMw6BNmzbk5ORoHJ4AahNSM7WL5qvqHKS4uLh6D7zhcoKaZVns3buXmJiYGu+T4HK5mu8JaiIiIiLhrOpSqsXFxfW+brfbTUVFRb2vNxQOFnSPhsKuiIiISAg4nU7i4+PrdZ3q7a9OA0VEREREJGwp7IqIiIhI2FLYFREREZGwpbArIiIiImFLYVdEREREwpbCroiIiIiELYVdEREREQlbCrsiIiIiErYUdkVEREQkbCnsioiIiEjYUtgVERERkbClsCsiIiIiYUthV0RERETClsKuiIiIiIQthV0RERERCVsKuyIiIiISthR2RURERCRsKeyKiIiISNhS2BURERGRsKWwKyIiIiJhS2FXRERERMKWwq6IiIiIhC2FXREREREJWwq7IiIiIhK2FHZFREREJGwp7IqIiIhI2FLYFREREZGwpbArIiIiImFLYVdEREREwpbCroiIiIiELYVdEREREQlbCrsiIiIiErYUdkVEREQkbCnsioiIiEjYUtgVERERkbClsCsiIiIiYUthV0RERETClsKuiIiIiIQthV0RERERCVsKuyIiIiISthR2RURERCRsKeyKiIiISNhS2BURERGRsKWwKyIiIiJhS2FXRERERMKWwq6IiIiIhC2FXREREREJWwq7IiIiIhK2nKEuYH+rVq3irbfeYuPGjRQUFHDjjTcycODAwPzp06fz5ZdfBr2nT58+3HLLLYHXxcXFzJw5kx9++AHDMDjxxBO58soriYyMbLT9EBEREZGmoUmF3fLycjp37szw4cN54IEHalymb9++TJo0KfDa6QzehUcffZSCggJuvfVW/H4/jz32GE8++STXXXddg9YuIiIiIk1Pkwq7/fr1o1+/fodcxul0kpiYWOO8rVu38tNPPzFlyhS6du0KwPjx45kyZQqXXnopycnJNb7P6/Xi9XoDrw3DICoqKvC8oRmGAbaNgYFt2PWzPmnWqj5DfZZSRW1CaqJ2IQdSm6iuSYXdI7Fq1SomTJhATEwMxx13HGPGjCEuLg6AtWvXEhMTEwi6AL169cIwDNatWxc0JGJ/8+fPZ968eYHXXbp0YerUqaSmpjbszuynKCeH2NjYOq/HdLtJbdOmHiqSpiA9PT3UJUgTozYhNVG7kAOpTfymWYXdvn37cuKJJ5KWlkZubi4vvfQS//73v7nvvvswTZPCwkLi4+OD3uNwOIiNjaWwsPCg6x09ejSjRo0KvK76aygvLw+fz9cg+7I/wzCIonK8sU3denajKirIycmpn8IkZAzDID09ndzcXGy77r390vypTUhN1C7kQC2pTTidziPqmGxWYXfw4MGB5x07dqRTp0789a9/ZeXKlfTq1avW63W5XLhcrhrnNWZDsbGpY9atXE+YN+6WxLZtfZ4SRG1CaqJ2IQdSm/hNs770WOvWrYmLiyM3NxeAxMRE9uzZE7SM3++nuLj4oON8RURERCR8Neuwu2vXLoqLi0lKSgIgKyuLkpISNmzYEFhmxYoV2LZNZmZmqMoUERERkRCpddi96667WL58+UHnr1ixgrvuuuuo1llWVsamTZvYtGkTADt37mTTpk3k5+dTVlbG888/z9q1a9m5cyfLly/nP//5D+np6fTp0weA9u3b07dvX5588knWrVvHL7/8wsyZMxk0aNBBr8QgIiIiIuGr1mN2V61axYgRIw46f8+ePaxateqo1rl+/fqggDx79mwAhg4dysSJE9myZQtffvklJSUlJCcn07t3by6++OKg8bbXXnstM2bM4O677w7cVGL8+PFHuXciIiIiEg4a7AS13NzcwLVqj9Sxxx7L3LlzDzp//zulHUxsbKxuICEiIiIiwFGG3S+++CLodr2vv/46n376abXlSktL2bx582FvECEiIiIi0pCOKuxWVFQEXe3A4/FUu0OHYRhERETwu9/9jgsuuKB+qhQRERERqYWjCru///3v+f3vfw/A5MmTufLKKzn++OMbpDARERERkbqq9Zjd6dOn12cdIiIiIiL1rs4nqHk8HvLy8igpKanxTh09e/as6yZERERERGql1mF3z549zJw5k++++w7Lsg663CuvvFLbTYiIiIiI1Emtw+5TTz3FDz/8wB/+8Ad69OhBbGxsfdbV4vi8PvAe/I8GERERETl6tQ67y5Yt48wzz+SSSy6pz3paLNu22fXL1jqvp/3weihGREREJEzU+nbBERERpKam1mctIiIiIiL1qtZh95RTTmHx4sX1WYuIiIiISL2q9TCGk046iVWrVnHfffdx+umn06pVK0yzenbOyMioU4EiIiIiIrVV67B7++23B57//PPPB11OV2MQERERkVCpddj985//XJ91iIiIiIjUu1qH3WHDhtVjGSIiIiIi9a/WJ6iJiIiIiDR1te7Zfeyxxw67jGEYGu4gIiIiIiFT67C7cuXKatMsy6KwsBDLsoiPjyciIqJOxYmIiIiI1EWtw+706dNrnO7z+fjkk0949913ue2222pdmIiIiIhIXdX7mF2n08kZZ5xBnz59mDFjRn2vXkRERETkiDXYCWqdOnVi9erVDbV6EREREZHDarCw+/PPP2vMroiIiIiEVK3H7M6bN6/G6SUlJaxevZqNGzdyzjnn1LowEREREZG6qnXYffXVV2ucHhMTQ+vWrZk4cSIjRoyodWEiIiIiInVV67D7yiuv1GcdIiIiIiL1TndQExEREZGwVeue3SqrVq1i6dKl5OXlAZCamkr//v3p2bNnnYsTEREREamLWoddn8/Hww8/zJIlSwCIjo4GoLS0lLfffpuBAwdy3XXX4XTWOU+LiIiIiNRKnU5QW7JkCWeddRajRo0iMTERgKKiIt5++23efvtt5s2bx5gxY+qrVhERERGRo1LrMbsLFixg6NChXHLJJYGgC5CQkMAll1zCqaeeytdff10fNYqIiIiI1Eqtw25hYSGZmZkHnd+tWzcKCwtru3oRERERkTqrddhNTk5m1apVB52/atUqkpOTa7t6EREREZE6q3XYHTp0KIsWLeKpp55i+/btWJaFZVls376dp59+mkWLFjFs2LB6LFVERERE5OjU+gS18847jx07dvDpp5/y6aefYpqVudmyLKAyDI8ePbp+qhQRERERqYVah13TNJk8eTKjRo3ixx9/DLrObr9+/ejUqVO9FSkiIiIiUhtHFXYrKiqYNWsWHTp04A9/+AMAnTp1qhZs33vvPT7++GOuuOIKXWdXRERERELmqMbsfvLJJ3z55Zf079//kMv179+fzz//nM8++6xOxYmIiIiI1MVRhd1FixZx4okn0rp160Mul56ezkknncQ333xTp+JEREREROriqMLuli1b6NGjxxEt2717dzZv3lyrokRERERE6sNRhV2fz3fEY3CdTider7dWRYmIiIiI1IejCrvJycls2bLliJbdsmWLbiohIiIiIiF1VGG3V69efPXVVxQVFR1yuaKiIr766it69epVp+JEREREROriqMLuOeecg9fr5e677+bXX3+tcZlff/2Vu+++G6/Xy9lnn10vRYqIiIiI1MZRXQS3devWXH/99TzyyCPceuuttG7dmo4dOxIZGUlZWRnZ2dnk5uYSERHBddddR3p6ekPVLSIiIiJyWEd9x4f+/fvz3//+lzfffJOlS5eyZMmSwLykpCRGjBjBOeecc9jLk4mIiIiINLRa3d4sLS2NiRMnAuDxePB4PERFRREVFVWvxYmIiIiI1EWd7+WrkCsiIiIiTdVRnaAmIiIiItKcKOyKiIiISNhS2BURERGRsFXnMbv1adWqVbz11lts3LiRgoICbrzxRgYOHBiYb9s2c+fO5dNPP6WkpIQePXowYcIE2rRpE1imuLiYmTNn8sMPP2AYBieeeCJXXnklkZGRodglEREREQmhJtWzW15eTufOnbnqqqtqnP/mm2/y/vvvM3HiRP79738TERHBfffdR0VFRWCZRx99lOzsbG699Vb++c9/snr1ap588snG2gURERERaUKaVNjt168fY8aMCerNrWLbNu+99x7nnXceJ5xwAp06deIvf/kLBQUFgWv9bt26lZ9++olrrrmGbt260aNHD8aPH8/ChQvZvXt3Y++OiIiIiIRYkxrGcCg7d+6ksLCQ3r17B6ZFR0eTmZnJ2rVrGTx4MGvXriUmJoauXbsGlunVqxeGYbBu3boaQzSA1+vF6/UGXhuGEbicmmEYDbRHv6nahmEY2LZdb+uT5mv/NiECahNSM7ULOZDaRHXNJuwWFhYCkJCQEDQ9ISEhMK+wsJD4+Pig+Q6Hg9jY2MAyNZk/fz7z5s0LvO7SpQtTp04lNTW1Xmo/HNvrZcdnnxGzZweO8mIsVyT+mCT8UfFgHl3nu2EaQWOYpXnTLbflQGoTUhO1CzmQ2sRvmk3YbUijR49m1KhRgddVfw3l5eXh8/kadNv+NWvwvvgClJUFPgyHvxhHWTG2YVIa3xpvZNwRr8+2bHJychqmWGk0hmGQnp5Obm5uvfT2S/OnNiE1UbuQA7WkNuF0Oo+oY7LZhN3ExEQAioqKSEpKCkwvKiqic+fOgWX27NkT9D6/309xcXHg/TVxuVy4XK4a5zV0QzHS0qCsDCMujjK/A687BqfXg9uzB9PyEV2UQykcXeAN88bdkti2rc9TgqhNSE3ULuRAahO/aVInqB1KWloaiYmJLF++PDCttLSUdevWkZWVBUBWVhYlJSVs2LAhsMyKFSuwbZvMzMxGr/lIGImJuK+9jpgbb8ITl4YvIoay2BT2pHShPDIeA4guysFVtjfUpYqIiIg0O02qZ7esrIzc3NzA6507d7Jp0yZiY2NJSUnhj3/8I6+//jpt2rQhLS2Nl19+maSkJE444QQA2rdvT9++fXnyySeZOHEiPp+PmTNnMmjQIJKTk0O1W4dltmuHUeENnmgYeOJbY2DjLttLdFEOxaYDvzs6NEWKiIiINENNKuyuX7+eu+66K/B69uzZAAwdOpTJkydzzjnnUF5ezpNPPklpaSk9evTgX//6F263O/Cea6+9lhkzZnD33XcHbioxfvz4Rt+XemEYlMang23jLi8mes8O9rbqBEaz6ZAXERERCSnD1oCOg8rLywu6JFlDMQwDV4WX7GnP1byA5Sd+12ZMy0dZdBJlcQcfjN1+0mV4I2oefyzNh2FUXlUjJydHY64EUJuQmqldyIFaUptwuVxHdIKaugibA9NBaXwaABGlBTi8nhAXJCIiItI8KOw2E76IWCoi4/adsLYDwvyvNREREZH6oLDbjHji0rAMBw5/BW5PUajLEREREWnyFHabEdt0UBbbCoDIkl1gWyGuSERERKRpU9htZiqiEvCbTkzLT0RpYajLEREREWnSFHabG8OgLDYFgIiS3WD5Q1yQiIiISNOlsNsMeSPj8DvcmLZFZGlBqMsRERERabIUdpsjwwiM3Y0oLcBQ766IiIhIjRR2mylvRCx+pxvDtnF7CkNdjoiIiEiTpLDbXBkGZdHJAJUnqunKDCIiIiLVKOw2Y97IOKx9V2Zwe/aEuhwRERGRJkdhtzkzDMqjk4DKsbu6q5qIiIhIMIXdZq48KgHLMHH4vbjKi0NdjoiIiEiTorDb3JkmFdGJQGXvrq3eXREREZEAhd0wUB6ViI2B01uGtWVzqMsRERERaTIUdsOA7XBSERUPQMU3C0JcjYiIiEjTobAbJsqjk7AB/5pfsHbuCHU5IiIiIk2Cwm6YsJxuvBGxAPi/+irE1YiIiIg0DQq7YaTqMmTWjz9i79F1d0VEREQUdsOI3x2F2bET+P34NXZXRERERGE33LiHnAKA/9tvscs8Ia5GREREJLQUdsOMo1sWRloalJfj/+67UJcjIiIiElIKu2HGME0cpw4FwL9gAbbPF+KKREREREJHYTcMmX37Qnw87N2L9ePSUJcjIiIiEjIKu2HIcDpxVI3d/eorbMsKcUUiIiIioaGwG6YcJ54IkZHYeXlYq1aFuhwRERGRkFDYDVNGRASOk08GwP/Zp9i2HeKKRERERBqfwm4Ycww5Bdxu7O3bsVavDnU5IiIiIo1OYTeMGTExOAYNAsD/ycfq3RUREZEWR2E3zDlOOVW9uyIiItJiKeyGuaDe3U8/Ue+uiIiItCgKuy1AoHd32zaslStDXY6IiIhIo1HYbQGMmBgcg4cA4P/gfd1VTURERFoMhd0WwjFsGMTGYufn4/92UajLEREREWkUCrsthBERgfP3vwfA/+mn2KWlIa5IREREpOEp7LYg5vEnYKSng8eD/9NPQl2OiIiISINT2G1BDNPEeeYoAPyLFmHl5oa4IhEREZGGpbDbwpjdumH27AmWhW/eq9h+f6hLEhEREWkwCrstkPPc0RAZhb11K/6vvwp1OSIiIiINRmG3BTLi43GedRYA/o8/xtqxI8QViYiIiDQMhd0WyuzfH7N7D/D78b06V9feFRERkbCksNtCGYaB87zzAsMZfG+9GeqSREREROqdwm4LZiQk4BwzBgwDa/Fi/N9+G+qSREREROqVwm4L5+jRA8fIkQD43noTa+PGEFckIiIiUn8UdgXH0GGYvXuDZeF97jmsrVtDXZKIiIhIvVDYlcrxuxdciNGpE5R58D7zNNaWLaEuS0RERKTOFHYFAMPtxjX+KozOXaCsDO+MZ7A2bAh1WSIiIiJ1orArAUZEBK7x4zEyukJ5Od5nnsb31VfYth3q0kRERERqRWFXghhuN64rrsDs2xcsC/977+Kb8zx2aWmoSxMRERE5as5QF3A05s6dy7x584KmtW3blocffhiAiooKZs+ezcKFC/F6vfTp04cJEyaQmJjY+MU2Y4bbTdRFF+Pr0JHy997FWrmSio0biTj9dzgHDMAwj+JvJKcTr2E0XLEiIiIih9Cswi5Ahw4duO222wKvzf2C13PPPcfSpUu54YYbiI6OZsaMGTz44IPcc889oSi1WTP8fnylpZj9B2CtXgXFxZS/9Sbln3+GmZEBrVIwjiDERg0bBi5XwxcsIiIiUoNmN4zBNE0SExMDj/j4eABKS0v57LPPuPzyyznuuOPIyMhg0qRJrFmzhrVr14a46ubLiI/HPGEgRlYWOBywdy/WsmVYi7/Dys3B9vtDXaKIiIjIQTW7nt3c3Fz+9Kc/4XK5yMrKYuzYsaSkpLBhwwb8fj+9evUKLNuuXTtSUlJYu3YtWVlZB12n1+vF6/UGXhuGQVRUVOB5Q6vahmEY9XIyWL3VvG81hsPE6NgROz0de/Nm7K1bobgYe+VKbOcajPR0jLZtMfb94dFg9bQg+7cJEVCbkJqpXciB1Caqa1Zht1u3bkyaNIm2bdtSUFDAvHnzuP3223nwwQcpLCzE6XQSExMT9J6EhAQKCwsPud758+cHjQXu0qULU6dOJTU1tSF2o0b5m7fgdrvrvB7DNGjTpk2d11OUk4MzNq76jORWWMceR8XGDZRv2oTt8WBv3Yq9dSuOhATcnTrhat8Bc9++mG43qfVQT0uVnp4e6hKkiVGbkJqoXciB1CZ+06zCbr9+/QLPO3XqFAi/ixYtqlNQHD16NKNGjQq8rvprKC8vD5/PV/uCj5BhGDipPMGurj27tmWTk5NT55qcFRV4ivcefIF27Sp7c3fvxt6+HXvnTvxFRXh+/hnP8uUYaWkYbdsSPWAAeZs317meyqKc+I7m5LhmzDAM0tPTyc3N1aXfBFCbkJqpXciBWlKbcDqdR9Qx2azC7oFiYmJo27Ytubm59O7dG5/PR0lJSVDvblFR0WGvxuByuXAd5CSqxmwo9bWteqv5MKsxMCC5FUZyK2xvBXZuLvb27ZVDHHbswN6xg5L16yuXadMGIzq6TuVEDRuG3cJOdrNtO+x/WMnRUZuQmqhdyIHUJn7TrLvJysrKyM3NJTExkYyMDBwOB8uXLw/M3759O/n5+Yccryv1w3C5MTt0xHHiSZgDB2K0bw9OJ/aePdibNmItWoj/px+xd+3SN5+IiIg0mmbVszt79myOP/54UlJSKCgoYO7cuZimyZAhQ4iOjmb48OHMnj2b2NhYoqOjmTlzJllZWQq7jcyIi8foHo+d2Q13aipln34Ku3fBrl1Yu3ZBdAxG504YrdOP7pq9IiIiIkepWYXd3bt388gjj7B3717i4+Pp0aMH9913X+DyY5dffjmGYfDggw/i8/kCN5WQ0DAcDly9euHdvRu7tBR7a3blMIfSEuxVq7A3bKwMvW3aKvSKiIhIg2hWYfdvf/vbIee73W4mTJiggNsEGdHRGFndsTO6Ym/bir15C5R5sH/5BXvzFoyuXStPatOlUkRERKQeNauwK82f4XRidOqM3b4D9rZt2Js2gqcUe8Vy7Ph4zO49Dnq9XhEREZGjpf8dS0gYDgdmx46YgwZjdMmovDvbnj1YSxZj/fIL9n43+RARERGpLYVdCSnD6cTMyMA8eRDGvgtg29u2Yi1aiLV9u67cICIiInWisCtNghERgXnscZj9+kN0DHi92KtXYf3wPXZxcajLExERkWZKYVeaFCM5GfPEEzEyMyuHNhQVYS3+DmvTRmy/P9TliYiISDOjsCtNjmGamJ06Y550MqSkgG1jr1+P5+mnsHbuCHV5IiIi0owo7EqTZURGYvbug9GzJzidWNu24X30UXxffoltWaEuT0RERJoBhV1p0gzDwGzTFvPEk3B0ywKfD//77+F94nGs/PxQlyciIiJNnMKuNAtGZCSRl16K8/wLICICe8sWvI88jP+7b3XFBhERETko3VQixGy/hbfMi7+0jPIyP7YNDoeB02XU6m5ihtPEVQ/XqG2K9zEzDAPHCSdgdsvEO/dV7A3r8c2fj7lqNc4LLsCIiwt1iSIiItLEKOyGWOGvOSy8+cUa57ncBpHRDmJinUTHOYlPdOJ0HaYz3u/H8+WXda4reujQOq+joRiJSbgmTMD/zTf4P/wAa80vVPzvIZznnY/juONCXZ6IiIg0IQq7IWa6fvsIDAMME6x9V9jyVth4K3zsLfQFlomNd5LYykVyWgTuiJY7CsUwTZynnIKZ1Q3fy69g52zHN+d5rP4DcJ59FkZkVKhLFBERkSZAYTfE4ruk8cd5/x9uv5+t02cDYFk2Pq+Nt8KitNhHabGf4iIfnlI/xXt8FO/xsXWjh4RkF6ltIkhIdtVqyEM4MFun45o8Gf8nn+D/8guspT9QsWEDrosuwszICHV5IiIiEmIKuyFmmAaGYWLsdykt0zRwRxi4I0xi4n77iMrL/BTt9rJ7ZwXFe3wU7fZStNtLZJRJ6/aRtGodEYpdCDnD6cR5xhmYPXrgnfsK7N6N9+mncJxyCo7fj8RwqpmLiIi0VEoBzUhEpIO0tg7S2kZSVuonL7ec/NxyyjwWm38tZfvmMqxPlpNq2piO8OvpNczDnHzXrh3uSZMpf/89fD/8gP+rr7DXrCHiggtxpKf/tpzTibeF9oSLiIi0NAq7zVRktIMOGdG07RhFXm45O7Z68FZY/PT0Z0TFu8k6qQ2tuyaG1/CGIz35LjEJs3cfrNWrsHbswPPYdIyMDIyOnTBMk6hhw8DlavByRUREJPQUdps5h9MgvX0kaW0jyMspZ2e+jafIw7KPNpPUNp8eQ9oRnxId6jIbnZGaiplwMtbqVZCfj71+PfaOHZjHHBPq0kRERKQRtdzT+cOMaRq0bhfJ7x+9kq4npGM6DQq2l7Do1bWs/CKbCo/v8CsJM4bbve92w8dW9uQWF2MtWUL5++9jV1SEujwRERFpBAq7YcYZ6SLzhHSG/L9jSM9MBBu2rtrF1y+uZvOyPCyrZd1trPJ2w20wTzoZo3XluF3vwm+o+N9DWGvXhrg6ERERaWgKu2EqKs5Nn993ZuC5mcSlROEr9/PLN9tYNHcNBTnFoS6v0RluN+Zxx2H26YuRkAAFBXhnzsD7/PPYu3aFujwRERFpIAq7YS6pbSwnX5BFz6HtcUU4KN5dxuL561j+6WbKS+t+W+HmxkhJIfqv1+IYNBgMA2vlCioeehDf++9jl5WFujwRERGpZwq7LYBhGnQ4NoUh446hfc9WAGxfU8CCF1ezZXkedksb2hARgfPss3Fd9zeMzEzw+/F/+QUVD/wX/5LF2Ptd81hERESaN4XdFsQd6eTYYR048fxuxKdG4auwWP31NhbNW0thbkmoy2t0Zno6rqsm4Lz8CoyUFCguxvfaa3gffQT/8p8VekVERMKAwm4LlNg6hpPOz+KYU9vjjHCwN9/Dd6//yorPt7S4qzYYhoHjmGNw/e16HGeOgshI7NxcfC+8gPfh/+Ff9pNCr4iISDOm6+y2UIZp0PG4FFpnJLD22xy2/7Kbbat3s2N9IRkDWtPj5BYWep1OnKecgmPAAPzfLMD/zTfYO3fie+kljE8+wTF8eOVlzByOUJcqIiIiR0Fht4WLiHbRa3hH2h+TzOqvt7E338PaRTlkr32Orn2SaZuVhGE2obuw+Rq2l9WIjsb5u9/jGHIK/oXf4F+wADsvD98rr8AHH+A48SQcAwdixMY2aB0iIiJSPxR2BYCkNrGcfGEWOWsL+PW7HDy7ilnxWTGblu2k+8ltadUhrkncenjXL1vrvI72ww+/jBEVhXPE6TgGD8G/aBH+BV9DURH+jz7E/+knmL174zh5EEaHDk3iuIiIiEjNFHYlwDAM2nZPpnXXRHJK4lnz6kKKd5XxwzsbSGwTQ8aA1qQ0kdDbWIzISJynnYZjyBCs5cvxL1qInZ2N9eOPWD/+iNGmHY5+/TGP64MRXbvbMpsuB5ZGR4iIiDQIhV2pxuE0yTp7AGkRhWz4YQdbludTmFPC0nc2EJ8aRac+qaR3TcR0tJzzGw2XC0f//jj698fKzsa/aBHWsmXYOdvw5WzDfv8dPPGtKU7ugCeuNZhHfmyyzj0JNBZYRESkQSjsykG5I530GNyOzn3T2PTTTrau3MWePA/LP9nCmoXb6dCzFe16JBMVHxHqUo+K4TRxeetwQ430dBg9GvsPf6D060XYq1dg5O0guiiX6KJciIzCyDoGI+sYaNvusD3hLqdBy7u9h4iISONQ2JXDioxx0WNwOzL6tyZ7ZT7ZK3dRXuJl/fc7WP/9DpLaxtI2K4m0Lgm4o5pBk/L78Xz5ZZ1XEz10KAVrssFMwEyOxF22B3fZHswyD/bPS7F/XoplOqmIjMMbGYffGQE1BN/2ky4DZ8vpJRcREWlMzSCZSFPhjnLS9fh0uvRrzY4NhWxbvYtdW4sp2F75WPllNkltYkjtFE9y2zjiU6NCXXKjsVwRlLlSKYtNwVlRirtsL67yYkzLR2RpAZGlBfgdLryRcVRExmE5m1dvuIiISHOlsCtHzXQYtOmWRJtuSXj2VpCztoAdGwrZk+ehYHsJBdtLgBycbpPkhQXEOMuIT40mNimC6ISIBh3ra1k2fr+N37fvUcPzvS8vpHzDNvx+G8tvYfns4Fsm79f5ajoMHC4HDqeJw7nvucvEHekgrlU2nhIfTpeJ02VUDlcwDHwRMfgiYsC2cJWX4toXfB1+L46S3USW7MbvdFMRUdnjKyIiIg1HYVfqJCrOTcaA1mQMaI1nbwU7Nxaxe9tedm8rxldhsfPnLdXeExnnIjLGTUSME3ekszJIukxMp7kvVFaGYcuqDKG2ZWNZNo6d31KwvnRfaLWCw+y+r0d0s7PNS+pn5z/aHPTS6TJwR5i/PSJN3BFuIiJTiWyVRqSvBHfZXpzlpTh8FUT5dhFVsovSJx/H6NsXR+/eGImJ9VObiIiIAAq7Uo+i4tx06p1Kp96p2JbN3l0ePAntyV+4jD15pZQUluP3WpTt9VK2tzanZOUc8ZKmSWVPrMOo/FrVM+swiO/bg9IVazBMME0DwzRqGkoLNli2jeWvDNGWv/K532/j89oQG0dZXmHlc8DntfF5/ZQW+2usyeU2iIyKIzoqnpSYchJdHiJtD9b2bbB9G/733sXo3BlHnz44evWGNm1qcYxERERkfwq70iAM0yA+NZr0ob1o7d4NgG3bVHh8lBZVUF7qpbzEi7fMt2+YgYXlsyp7bL0WGJXrqAqjpmngat8Wzy/rcDgNnA4Dc78w69zvuemoXP5gOlw5jOzp2XXexw6TLyV7+vPYdmX49VZYVJTve5RVfi0vtyj3+PfNt/FW+NhbBDswgRhcjijaptqkJ3qJtYth0yZ8mzbhe+stcnr2xNfjGMxjj631NXxFRERaOoVdaTSGYRAR7SIi2lWr90cPHUr29O31XFXdGYaBy23gcptEH+Quwj6vRZmnMviWefyUlfrxlPgp88DmXNic6yDC6SItroL0uHISonyUrVwJK1div/4aVnoH3P37EdmvN0bEQU5uczrxtqAbfoiIiBwJhV2RRuB0mcS6TGLjg7/l/H6bhDNHkv/xN+zdVcbeXR5+2unB6a8gLa6c9Lhy4iL9OHK24H93C3veeZO9VgzlMck409OIS4shMtaFYRhEDRsGrtr9ISEiIhKuFHZFQsjhMEjq2pqIra0C06qGe3iLYWf2bnLyC4n0FNAqwkOM20+iowTKSvBt2EreMjf5ZVH4YhJI2mISm9mG+Iw0YtsmY7SgO9yJiIgcjMKuNDzfkVwiQaoYhkFEjIuU1nHEtnaB3RoAb5mPvdt3QW4uEZ4C3KaPNgnltEkox+svYueSXDZ/FkFBqQvT7SK+cyrxXdJIyGhNfJc04jql4nDrW15ERFoW/eaTBrfrl631sp7oEfWymmbLFekkMaM1ZLTGtm3YU4SVk4u1YwcuvLRLLKddYjkVfpNdxS7yc0rIWbeNLVZlD69hGsS2b0V8l7TKR0ZrErqk4YqNDPGeiYiINByFXZGmoIbe79I9xeCvuVfcAIiJx5EZj9m1GxQWYrod+Fatwl1aGujxtYFSI4a8PQ7ydhvsyc5j75Z8tn25KrCuqLSEfT3AacR3aU1CRhoRybGVN8kQERFp5hR2RZqAmnq/IyIiKC8vP+J1tJ98GRV/OAc7ezPWr2uxfl0LO3OJsUuIiYPOcWCbJhWRCezxRZK/y2LnDi+enUV4dhax47tfA+tyxUYS0y6Z2HbJxLRNJqZtErHtkoluk4jDpR8bIiLSfOi3lki4sG1+fbvq7nCJ0HYgjhQPUXt2ELV3JxElu3H4KogoLSAVSI2DY+LAZ7rwEElJhZO9JVC0x6LUY1G4xkPhmgMu9WYaRKfGE9M2mej0RKLS4olunUB0WiLRrRNwxkSoR1hERJoUhV2RMOZ3R1Gc0pnilM5g2zgrSogo2U1ESQERJbsrb19seYnDS5wT0hOAhMr32oaJ3xVBhe3CU25QWuyjrNzGV+bB++tO9q4x2O038VkGXr+BzzJwRkcQnZZAVOsEolLiiWwVS2RyHBHJsUQmxxLZKhZnpDuUh0RERFoYhV2RlsIw8EXE4ouIpSS5Y+Ukvw9X+V5cZXtxlRXjKttLtFkBRYUYtoWzwoMTD9EmtIo/9OptG3yWgc/KxbfDwLfd2PfapMwy2LUvEFtOF2ZUFGZcDGZcLK6keFzJ8TiTE3C3SsCdFIs7Php3bKQunyYiInWmsCvSgtkOJxXRSVREJwWmZZ17ErYL2LsXu6go8KCoCLu0BDwebI8HPGXYnlLweMDrxTDA5bBxOewj2HIReIHd+x7rf5vjs6DMb7LXb+A3nFgOF5YrAiIjISoKIzYGMy4OR0IcruQEHMmJuFMScSbFaTyxiIhUo98McnC6Pm6zYjgdZAw9ps7rcbsNbL8fYmIqH23bHvY9ts+HXVZWGYTLyyufl5VBeTkFnyzAsP1gW+C3Ktft92PYFoZlYWJhGhaOfUN9nSY4TYtIF4AfKAe7GDxUPnbXXEOFDT7LxIdjX0h2Y7vc2BGREBmFER2NGReLmRiHMyEOR3IirpREXMkJmArJIiJhSz/h5aDq4/q4Lf3auI3K72fXy/PrvJroyZfi+fTzeigIokecRvmilUe2sG3vC8B+bL8f2+vD8vnB5yeqS3v2bsrF9FXgsHw4bC8O24/T8OMyLUwDTAPcDgs3FuAF2wMVVD72HnyzFTb4bAOf7cQynfgdLmynG8sdARH7epOjo/f1KMfiSIjHkRiHKykBZ0IMzkg3hqmT8g5k+sHy+uu+HpcDy1EPBYlIixW2YfeDDz7g7bffprCwkE6dOjF+/HgyMzNDXVbjUI+s1FFIbgRiGNiGA9t0VP5kioCqEbtpV15M7M6iGt9m2zZ2RTm+gr34ivbg31OMf28JdkkxVqmncphFRTmGtxzT8uHweysDs+HHadqVwy8MGxdewAvWfiG5+NAley0o9Zv4bBPLdIBZWb/tcILDCU4nuJzgdGG4XRhOJ4bLiena9zXChelyYka4MSNcGC4nhtOx72vlcjgdGKYJDgdle/ZgFRRgOxzgMMF0YFQ9dzhh33JVD8Os/Zhn27axLRvb58fyW9g+C8vvxw48t7B8/t+m75tm+/1YPgvb42XbojXYlg1V67KsyhuiWFWv7X2vrQNeVz4HSOiUim1D4CIf+1/tw6D61T8MA8M0MZ3mb18dZuXdA12Vz03Hvq9OB0bQcwPTUTnNdDkC802no3I9TkfldMe+5/umVy0nIk1TWIbdhQsXMnv2bCZOnEi3bt149913ue+++3j44YdJSEgIdXkNTj2yEnbq0msdGQGREdhA28mXUvrll7+t1uvHV1KGr7Qcv6ccv6cCu6IC2+sFrxd8Pgy/D9PyYdp+HFiVIdmoDMkOExymBViAb7969z0qaleyve9x4J+tOUe7HhtsjH3rM7AwsG0jMH1fDsWqmmbb+76Cta8I2973fpvAeqqWqXpeVTP7LYMNMfvex37T7AOWpWp9B9RcNd9fkB20LZv96uWA+g5Yzj7ocsH7tO82LXVjsC/8OvYF4X0h2Gn+Nt3x23PTZVYGa3NfwD4gOJv7hWnDWT1g779MYdwWvKYVCPemy/HbsoH3BQd4w2HqMoHSYoRl2H3nnXcYMWIEp512GgATJ05k6dKlfP7555x77rmhLU5EmgyHy4EjMYaIxJijel/kkFNZPe8bDG8FRnkZRnlZZUD2VQVkP4bfD5YPw6ocmmFY/n0p0goM2XA4zcr37Utqxr7oZRo2BpWdmIYBBnbQc9MAw6j6CuZ+8/dXtXylfV+Vb6oJ+qOghsAcWCYwjRpDNFQP0rZtgB9sX01/LEBQ2D9w24DvgPC/f43YB7w+wG9T7BpnmKYJplEZiM3KHnHDYWDu+2qYBqZp7Ju332Nfj3pVG2Xfo7K97XsYBhh25XSMQNusbMtG5ZEwKqcY2IGajKoDib3f88DBCfzpVnXAjKoPJ2j+fh8I9n7Pf/tPgF1Z2L7NGthBh6+Gb6R9/14IPpIHHvPKFdZ8iu7+263aWQM7cACpfG4Y+/bKCBxc26iqMfDvjcD7Am0osDOVz3dHRlBWXh5oJ1XTbaPqUO178tuhDRwnu6oxVhb123RsqlYQWH6/tlv1IrZfD9J+N7DGoxAqYRd2fT4fGzZsCAq1pmnSq1cv1q5dW+N7vF4vXq838NowDKKionA6G+fwGIaBA4hu36byX3h14HC7iWqXXueamtp66nNdzWE9hmHgcrpw+LxH3Caa2n7V57rqcz2uhKTDL3gYrpgoss46qc7riUyKoey7JcETLRvL/u3f/JZlY1mAbYFt4vP7sP379cJS2YkccUyPyrHOlkXVyYDYVmW4tqrCs1UZSGyL/X7Fgl057hmoHH9sWb/9ajZ++5Vu2Fbl8pa9b932vl+AVdOqgkXl69K1G/b/TRgksO3Al/0CyW/dvrjTU/DsKt4Xaqz9gs2+eLr/V7tymWqBaL9lpDHV9JeVUcO8gz1viar+pKkjL7+NA2tke3fvxOVyNcq2jjSnGXZd01UTs3v3bq655hruvfdesrKyAtPnzJnDqlWr+Pe//13tPXPnzmXevHmB14MHD+a6665rlHpFREREpOFoRD0wevRoZs2aFXhMnDgxqKe3oXk8Hv7xj3/g8XgabZvStKlNyIHUJqQmahdyILWJ6sJuGEN8fDymaVJYWBg0vbCwkMTExBrf43K5Gq3LvSa2bbNx48Y6D2GQ8KE2IQdSm5CaqF3IgdQmqgu7nl2n00lGRgYrVqwITLMsixUrVgQNaxARERGR8Bd2PbsAo0aNYvr06WRkZJCZmcl7771HeXk5w4YNC3VpIiIiItKIwjLsDho0iD179jB37lwKCwvp3Lkz//rXvw46jCHUXC4XF1xwQUiHUkjTojYhB1KbkJqoXciB1CaqC7urMYiIiIiIVAm7MbsiIiIiIlUUdkVEREQkbCnsioiIiEjYUtgVERERkbAVlldjaE4++OAD3n77bQoLC+nUqRPjx48nMzMz1GVJA5g/fz6LFy9m27ZtuN1usrKyuOSSS2jbtm1gmYqKCmbPns3ChQvxer306dOHCRMmBF1JJD8/n6effpqVK1cSGRnJ0KFDGTt2LA6HIwR7JfXpjTfe4MUXX+SPf/wjV1xxBaA20RLt3r2bOXPm8NNPP1FeXk56ejqTJk2ia9euQOVNA+bOncunn35KSUkJPXr0YMKECbRp0yawjuLiYmbOnMkPP/yAYRiceOKJXHnllURGRoZqt6QOLMti7ty5fP311xQWFpKcnMzQoUM5//zzMQwDULs4FF2NIYQWLlzItGnTmDhxIt26dePdd9/l22+/5eGHHyYhISHU5Uk9u++++xg8eDBdu3bF7/fz0ksvkZ2dzUMPPRT4QfP000+zdOlSJk+eTHR0NDNmzMA0Te655x6g8gfe3//+dxITE7n00kspKChg2rRpjBgxgrFjx4Zy96SO1q1bx//+9z+io6M59thjA2FXbaJlKS4u5h//+AfHHnssv//974mPjycnJ4fWrVuTnp4OVP5R9MYbbzB58mTS0tJ45ZVX2LJlCw899BButxuAf//73xQUFHD11Vfj9/t57LHH6Nq1K9ddd10od09q6fXXX+fdd99l8uTJtG/fng0bNvDYY48xZswY/vjHPwJqF4dkS8jcfPPN9jPPPBN47ff77auvvtqeP39+6IqSRlNUVGRfeOGF9sqVK23btu2SkhJ7zJgx9qJFiwLLbN261b7wwgvtNWvW2LZt20uXLrUvuugiu6CgILDMhx9+aF922WW21+tt1Pql/ng8Hvvaa6+1ly1bZt9xxx32s88+a9u22kRLNGfOHPu222476HzLsuyJEyfab775ZmBaSUmJPXbsWHvBggW2bdt2dna2feGFF9rr1q0LLPPjjz/aF110kb1r166GK14azJQpU+zHHnssaNp///tf+5FHHrFtW+3icDRmN0R8Ph8bNmygV69egWmmadKrVy/Wrl0bwsqksZSWlgIQGxsLwIYNG/D7/UFtol27dqSkpATaxNq1a+nYsWPQv7D79u2Lx+MhOzu78YqXevXMM8/Qr18/evfuHTRdbaLl+f7778nIyOChhx5iwoQJ3HTTTXzyySeB+Tt37qSwsDCorURHR5OZmRnUJmJiYgLDHgB69eqFYRisW7eu8XZG6k1WVhYrVqxg+/btAGzatIk1a9bQr18/QO3icDRmN0T27NmDZVnV7uqWmJgYaMwSvizLYtasWXTv3p2OHTsCUFhYiNPpJCYmJmjZhIQECgsLA8sc2GaqhrxULSPNyzfffMPGjRuZMmVKtXlqEy3Pzp07+fjjjznzzDMZPXo069ev59lnn8XpdDJs2LDAZ3rgULcD20R8fHzQfIfDQWxsrNpEM3Xuuefi8Xi4/vrrMU0Ty7IYM2YMp5xyCoDaxWEo7IqEwIwZM8jOzubuu+8OdSkSQvn5+cyaNYtbb701MKZOWjbLsujatWtgvHWXLl3YsmULH3/8McOGDQttcRIyixYtYsGCBVx77bV06NCBTZs2MWvWLJKSktQujoDCbojEx8djmma1v6Zq6qWR8DJjxgyWLl3KXXfdRatWrQLTExMT8fl8lJSUBPXkFRUVBdpEYmJitX83FRUVBeZJ87JhwwaKior4xz/+EZhmWRarV6/mgw8+4JZbblGbaGGSkpJo37590LT27dvz3XffAb99pkVFRSQlJQWWKSoqonPnzoFl9uzZE7QOv99PcXGx2kQzNWfOHM455xwGDx4MQMeOHcnLy+ONN95g2LBhaheHoTG7IeJ0OsnIyGDFihWBaZZlsWLFCrKyskJYmTQU27aZMWMGixcv5vbbbyctLS1ofkZGBg6Hg+XLlwembd++nfz8/ECbyMrKYsuWLYEwA/Dzzz8TFRVV7RekNH29evXigQce4D//+U/g0bVrV4YMGRJ4rjbRsnTv3r3aULbt27eTmpoKQFpaGomJiUFtorS0lHXr1gW1iZKSEjZs2BBYZsWKFdi2rUtbNlPl5eWYZnBkM00Te98FtdQuDk09uyE0atQopk+fTkZGBpmZmbz33nuUl5frXxJhasaMGSxYsICbbrqJqKioQK9+dHQ0breb6Ohohg8fzuzZs4mNjSU6OpqZM2eSlZUV+GHVp08f2rdvz7Rp0xg3bhyFhYW8/PLLjBw5EpfLFcK9k9qIiooKjNmuEhERQVxcXGC62kTLcuaZZ3Lbbbfx+uuvM2jQINatW8enn37K1VdfDYBhGPzxj3/k9ddfp02bNqSlpfHyyy+TlJTECSecAFT2BPft25cnn3ySiRMn4vP5mDlzJoMGDSI5OTmUuye1NGDAAF5//XVSUlJo3749mzZt4p133uG0004D1C4OR9fZDbEPPviAt956i8LCQjp37syVV15Jt27dQl2WNICLLrqoxumTJk0K/IFTdQOBb775Bp/PV+MNBPLy8njmmWdYuXIlERERDB06lHHjxukGAmHizjvvpHPnztVuKqE20XL88MMPvPjii+Tm5pKWlsaZZ57J6aefHphv77t5wCeffEJpaSk9evTgqquuCrpBTXFxMTNmzAi6ecD48ePD/uYB4crj8fDKK6+wePFiioqKSE5OZvDgwVxwwQU4nZX9lmoXB6ewKyIiIiJhS2N2RURERCRsKeyKiIiISNhS2BURERGRsKWwKyIiIiJhS2FXRERERMKWwq6IiIiIhC2FXREREREJWwq7IiIiIhK2FHZFRBrJRRdddNA76TU1kydPrrHWiy66iMmTJ4egIhGR2lHYFREREZGw5Qx1ASIi0nz873//w+FwhLoMEZEjprArIiJHrF27dqEuQUTkqCjsioiE0M6dO/nLX/5Cz549+de//sWrr77KN998Q2FhIa1atWLEiBGcc845GIYR9L68vDzeeOMNVqxYwa5du3C5XCQlJdGjRw9GjRpF27ZtAVi5ciV33XUXQ4cOrXGs7fTp0/nyyy+54447OPbYYw9b70UXXURqairTp08PTNt/G5dffjkvvfQSS5Ysobi4mDZt2nDmmWcyfPjwOh4pEZHaUdgVEWkCfD4f9957L1u3bqVnz56Ul5ezatUqXnzxRcrKyhgzZkxg2fz8fP7xj38EwmS/fv2wLIv8/Hw+/fRTsrKyAmG3MZWUlHDLLbdQVlZGjx492Lt3L6tXr+aJJ57Atm1GjBjR6DWJiCjsiog0AWvXrqVnz55MmzaN6OhoANavX88tt9zCu+++y7nnnktkZCQAn332GcXFxZxxxhmMHz8+aD35+fn4fL5Grx/g+++/Z9CgQUyePBmXywXA4sWLeeCBB3jttdcUdkUkJHQ1BhGRJsAwDK6++upA0AXo2rUrffv2pby8nPXr1wem79mzB4BevXpVW09KSgrp6ekNX3ANoqKiuOqqqwJBF2DgwIF06NCB/Px8du7cGZK6RKRlU9gVEWkCUlNTaxx6UDWtoKAgMC0jIwOAl156iR9++IGKiorGKfIwMjIyiIuLqza9TZs2ABQWFjZyRSIiGsYgItIktGrVqsbpVUMX9h+aMGzYMJYtW8aiRYuYOnUqLpeLzMxM+vTpw/Dhw0lMTGyMkqs52D5ERUUB4PV6G7McERFAYVdEpEk48GoLh2KaJtdffz3nnnsuS5YsYeXKlfz666+sXr2aN998k3/961907979iNZl23ZtS67maPZBRKSxKOyKiDRTXbp0oUuXLgCUlpby6quv8u677zJr1iymTJkCgNNZ+WO+rKysxnXs2rWrcYoVEQkRjdkVEQkD0dHRjB07FsMwyM7ODkxPSkoCICcnp9p7iouL2bBhQ6PVKCISCgq7IiLNzFdffcWWLVuqTf/xxx+xbTto7GxaWhopKSls2bKFJUuWBKaXlZXx5JNP4vF4GqVmEZFQ0TAGEZFm5ttvv2XatGm0bt2ajh074na72blzJ+vWrcMwjKAbUABccMEFPPHEEzz44IMcc8wxREZGsm7dOqKjozn++OP5/vvvQ7QnIiINT2FXRKSZGTVqFK1atWLNmjX88ssvlJWVkZyczMknn8xZZ51F165dg5YfPnw4pmny9ttvs2bNGmJiYhgwYADjxo1j9uzZIdoLEZHGYdj1eSquiIiIiEgTojG7IiIiIhK2FHZFREREJGwp7IqIiIhI2FLYFREREZGwpbArIiIiImFLYVdEREREwpbCroiIiIiELYVdEREREQlbCrsiIiIiErYUdkVEREQkbCnsioiIiEjYUtgVERERkbD1/wNL9am1QcZAwgAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAr8AAAGQCAYAAACnCwiQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACFOUlEQVR4nOzdd3xUZdrG8d+ZnkkPCQk1hN6rigIKYu+9rGVdWdFdsa2v69pFBZW1u6uuuliwIeKiYm+AKCggSgsSSugJBEhv0877R8jIkAIJk0aur58xc/p97jkZ7jzzzHMM0zRNRERERERaAUtTByAiIiIi0lhU/IqIiIhIq6HiV0RERERaDRW/IiIiItJqqPgVERERkVZDxa+IiIiItBoqfkVERESk1VDxKyIiIiKthopfEREREWk1VPyKSJP505/+hGEYbNy4salDOSRNfR4TJ07EMAzmzp0bMt8wDMaMGdMkMVVq6txUZ8yYMRiG0dRhiEgTUfErspdhGCEPq9VKYmIiY8eO5e23327q8KSBdenSJeT1t9vttGnThgEDBnDllVfy3nvv4fF4GuTYLbkYq6nwltrl5uby4IMPctRRRxEfH4/T6aRTp05cfPHFfPXVV2E7zty5czEMg4kTJ4ZtnyItna2pAxBpbu6//34AvF4vv/32Gx9++CFz5sxhyZIlPPnkk00c3eHlkUce4Y477qBDhw5NHUrQzTffTFxcHIFAgIKCAtasWcOsWbN488036dGjB2+++SZHHXVUyDZNfR433HADl156KZ07d26S49emqXPTHH333XdccMEF7Nq1iz59+nD55ZcTHR3N2rVr+eSTT3jvvfe44oor+O9//4vT6WzqcEUOOyp+RfazfwvJN998w0knncTTTz/NTTfdRJcuXZokrsNRu3btaNeuXVOHEeKWW26p8hrn5+dz77338q9//YuTTz6ZH3/8kd69eweXN/V5JCYmkpiY2GTHr01T56a5SU9P5/TTT6e0tJR//etfTJgwIaTVf8uWLZx77rm8+eabOBwOpk6d2oTRihymTBExTdM0AbOmX4k+ffqYgDljxgzTNE3z/vvvNwFzzpw55ltvvWUeddRRZmRkpJmamhrcpri42Hz44YfNQYMGmW6324yMjDSPPvpo8+233672GGVlZeb9999vpqWlmQ6Hw+zSpYt59913m2VlZSZgjh49OmT9fWN47733zCOPPNKMiIgw4+PjzUsuucTcunVrlWMsWbLEvOmmm8yBAwea8fHxptPpNLt3727eeuut5p49e6qs/+qrr5qA+eqrr5rffvutOXr0aDMqKsqMjo42Tz/9dDM9Pb3acykuLjYfffRRc9iwYWZUVJQZGRlp9u7d27zxxhvN7Ozs4HpXXXWVCZiZmZlV9vHjjz+aF1xwgZmcnGza7XazY8eO5rXXXmtu27atyrrr1683x48fb3br1s10uVxmfHy82b9/f/O6664zd+3aVW2M+0tNTa0xlkp//OMfTcA855xzQubXdB4ffvihOXbsWDMlJcV0OBxmu3btzOOOO8587rnnTNM0zczMzOB1t/9j39c7NTXVTE1NNfPz882//e1vZmpqqmmz2cz777/fNM3Qa2FflfvZtm2becUVV5hJSUmmy+Uyhw4dar711ltVzm/f17s61cVVU/wHyo1pmua7775rHnvssWZMTIzpcrnM/v37mw8//LBZVlZWZd3KHBQVFZm33Xab2alTJ9PhcJjdunUzH330UTMQCFQbc3VGjx5tAmZZWZl59913m126dDEdDofZtWtXc+LEiWZ5eXlw3T179pgRERFm165dazzGmWeeaQLm4sWLD3jsE044wQTMO+64o8Z1tm/fbsbHx5uA+cMPPwTnV14vV111Va3nVaky99U99r9Wpk+fbo4dOzb4vpCammpeeumlVc6prKzMfOSRR8z+/fubERERZnR0tDlq1Cjz3XffrRLPvvGuW7fOvOCCC8yEhAQzKirKPOmkk8wVK1aYpmmaO3fuNMePH2+mpKSYTqfTPOKII8xvv/222nP0er3mc889Zw4fPtyMjo42IyIizMGDB5v/+te/TL/fX2NORfalll+Rg2CaJkCVfplPPPEEX331FWeddRbHH388+fn5AOTl5TF27Fh++eUXhg4dyrhx4wgEAnzxxRdcdtllrFq1ikmTJoXs/4ILLuCTTz6hR48e3HDDDXi9Xl577TVWrVpVa2zPP/88H330EWeffTajR4/mp59+4t1332XZsmX8+uuvIR+bvvzyy8yaNYvRo0dz4oknEggE+Pnnn3nyySf57LPP+Omnn4iOjq5yjI8//pgPP/yQ0047jb/85S+kp6fz6aefsnjxYtLT00NaHXNzczn++ONZtmwZvXr1Yty4cTgcDtavX8+rr77K+eefT3Jycq3n9Morr3DttdfidDo5++yz6dSpE2vXruW///0vs2fP5scffwx+xJ+VlcWRRx5JQUEBp59+OhdccAFlZWVkZmbyxhtvcMMNN9CmTZtaj3ew7rvvPqZNm8bHH39MQUEBMTExNa770ksvcd1115GSksJZZ51FYmIiO3fuZPny5bz66qtcf/31xMXFcf/99/Paa6+xadOmYJcboErrs8fjYezYsezZs4eTTz6ZmJgY0tLSDhhzbm4uI0aMIC4ujquvvpq8vDxmzJjB5ZdfzrZt2/j73/9e73zccsstfPDBB8ybN4+rrrqqTp+K3HXXXTzyyCMkJiZy2WWXERUVxWeffcZdd93FF198wZdffonD4QjZxuv1csopp7B9+3ZOO+00bDYbH3zwAXfccQdlZWUh+TsYF198MYsXL+bCCy/Ebrfz4YcfMnHiRJYsWcJHH32EYRjEx8dz6aWX8uqrr/L1119z0kknhexjy5YtfPbZZwwbNowjjjii1uNlZmbyzTff4HQ6uf3222tcr127dlxzzTU89thjvPjii4wYMaJO51Xp3HPPBeD1119n9OjRIV9+rHytTNPk6quv5vXXXycxMZHzzz+fpKQktm7dypw5c+jVq1fwvDweD6eccgrz5s2jd+/eTJgwgZKSEmbOnMkll1zCr7/+ysMPP1wljo0bNzJ8+HD69OnDn/70JzZu3MisWbMYM2YMCxcu5NRTTyUmJoZLLrmEPXv2MH36dE477TQyMjJCuvJ4vV7OOussvvjiC3r16sVll12Gy+Vizpw53Hjjjfz000+88cYb9cqVtDJNXHyLNBvU0PL71VdfmYZhmIZhmBs3bjRN8/eWNrfbbS5durTKNpUtLlOmTAmZX1paap5yyimmYRjmL7/8Epw/bdo0EzCPPfbYkFan3Nxcs1evXrW2/EZHR5vLly8PWfaHP/zBBKq0xmzcuNH0+XxV4v3vf/9rAuajjz4aMr+yJdBqtZpff/11yLI77rij2nOsPPZf/vKXKi0xhYWFZl5eXpU87dsquGbNGtNut5vdunWr0nr99ddfmxaLxTz33HOD85599lkTMJ9++ukq51VUVGSWlJRUmV+dg2n5NU3T7NixowmEtExVdx5Dhw41HQ6HuWPHjir7yMnJCZnev8WupthOOOEEs6ioqMry2lp+AfOiiy4KeS02bNhgxsfHm3a73Vy/fn1wfl1bfms7dqXqcrNgwQITMDt16mRmZWUF53u93mAr6uTJk6vNwWmnnRbymu7YscOMjY01Y2NjTY/HU20M+6vMd48ePUI+8SgtLTWPPvpoEzCnTZsWnL948WITMC+44IIq+6o8/5deeumAx638PR8xYsQB1/3yyy9NwOzWrVtwXl1bfk3TNOfMmWMCwU8J9vfiiy+agHnkkUeG/G6apmn6fD5z+/btwemHH344+Bp4vd7g/B07dgRfn+paqgFz0qRJIft+8MEHTcCMj483r7vuupDrszJPt9xyS8g2lbm+4YYbQt7HfD6fOW7cOBMwP/jgg2rPU2RfGu1BZD8TJ05k4sSJ3H333Vx44YWceuqpmKbJLbfcQmpqasi61157LUOGDAmZt3v3bt58802OOOKIKq07LpeLKVOmYJpmyAgSr7/+OgCTJk0Kae2Ki4vj3nvvrTXem266iQEDBoTMGz9+PACLFi0KmZ+amorVaq2yj3HjxhETE8MXX3xR7TEuvfRSTjjhhJB51157bZVj7Ny5k3fffZd27drx+OOPY7GEvsVERUURGxtb6/m88MILeL1ennnmmSpfkjrhhBM4++yzmT17NoWFhSHLIiIiquwrMjKy2vmHojKmnJycA65rs9mw2+1V5te3f+4TTzxBZGRknbaxWq1MmTIl5LVIS0vjpptuwuv1NklL2SuvvALAPffcQ0pKSnC+zWbjiSeewGKx8N///rfabZ999tmQ17Rt27acc8455Ofns2bNmjrFce+99xIfHx+cdrlcPPLIIyExAhxxxBEcccQRfPjhh2RnZwfn+/1+pk6dSnR0NH/4wx8OeLysrCwAOnXqdMB1K9fZvn37wZ1MPf3rX/8C4MUXX6zyu2m1WkP6a7/yyisYhsGTTz6Jzfb7B8dt27YNvk9V97p16dKFO+64I2TeVVddBUB5eTmPPfZYyPV52WWXYbPZ+PXXX4PzAoEA//rXv0hJSeGpp54KeR+zWq088cQTGIbBW2+9VdcUSCukbg8i+3nggQeAii4OcXFxHHvssfz5z3/miiuuqLLu/t/6B1i8eDF+v7/G4YW8Xi8Aq1evDs775ZdfsFgs1X68OWrUqFrjre6j1sp/OHNzc6sc+8UXX2T69Omkp6eTn59PIBAILt+2bdshHWPx4sUEAgGOO+64OhdplRYuXAjAvHnzWLx4cZXlO3fuxO/3k5GRwbBhwzj77LO56667mDBhAl988QWnnHIKI0eOpG/fvg0yfJhZQxeY/V1++eX83//9H3379uXSSy9l9OjRjBw5kqSkpHod1+VyMXDgwDpv17lz52q7R4wZM4YHHniAX375pV7xHIqlS5cCMHbs2CrLevbsSceOHcnMzCQ/Pz+kIIuNjaV79+5Vtqnpej+Q0aNHV5k3atQorFZrlbxcf/31jBs3jldeeYW77roLgE8//ZStW7fy17/+laioqDoduzkoLi5m5cqVJCcnV/kjfn+FhYWsW7eODh06hHzZs1Lla1nd9TR48OAqf3S3b98eqHi99+9qZbVaSU5OZuvWrcF5GRkZ7Nmzhx49eoR0GdtXREREyPuqSE1U/Irsp7K4ORj7tlpV2r17N1BRCFZXvFUqKioKPs/PzychISGkNaXSgfrHxsXFVZlXuR+/3x8y/5JLLmHWrFl07dqVc845h5SUlGCf4Keffpry8vJDOkZeXh7AIQ1rVZm/xx57rNb1KvOXmprKokWLmDhxIp9//jn/+9//gIqC6LbbbuOmm26qdyzVqWyJO1ARe+utt5KYmMjzzz/Ps88+y9NPP41hGIwePZrHHnvsgP1D99e2bdt6FfM1XT+V125lP/XGVHnMmkaBaNeuHZs3byYvLy+k+K3uOoSar/cDqS43Npst2D97X5deein/93//x8svv8wdd9yBxWLhpZdeAuC66647qONV5nzLli0HXLdyncoisSHU5ff1YF6zffe5r+o+7al8zWr6JMhmswUbCuD394W1a9cGGyiqs+/7qkhN1O1B5BBUV4xUvpn/7W9/wzTNGh9z5swJbhMTE8OePXvw+XxV9rdjx46wxLpkyRJmzZrFiSeeyJo1a3j11Vd55JFHmDhxIvfdd19YbuBQWZzU1IJ8MCrzl5+fX2v+9m2169OnD++++y67d+9myZIlPProowQCAW6++eawDhW1bt06tm7dis1mY9iwYQdc/49//CM//vgju3fv5pNPPuHPf/4z3333HaeccspBdZvYV31bsWu6fio/vt+3+Kj86Lm667C6oqa+Ko+5bxeCfVV2DzhQF5lDVV1ufD4fu3btqvJlxoiIiOCXtb788svgF92GDx/OoEGDDup4lZ/i/PzzzwfM59dffw3AyJEjg/Nqe32g7q9RXX5fm/o1q9zveeedV+v7QmZmZoMcXw4vKn5Fwuyoo47CYrEwf/78g95myJAhBAIBFixYUGXZ999/H5a41q1bB8DZZ59dpYV50aJFlJaWHvIxKs/9u+++o7i4uF77OProowHqlL9KlUXpP/7xD9555x0APvjgg3rFUZ0HH3wQgLPOOqvaUTFqEhcXx+mnn87LL7/Mn/70J/bs2cN3330XXF75kXBdWy4PxubNm6u9tXDlHdn2/bi7sv9rdS2TS5YsqXb/9Ym98pjV3RWu8g+MtLS0Glt6w2XevHlV5n3//ff4/f5quwH89a9/xTAMXnzxRaZOnYrf7z/oVl+Arl27cvzxxwf7udZkx44dvPzyy8Dvfeuh9tenoKCAjIyMKvNre30iIyPp378/O3bsOGD3l+joaLp168a2bdtYu3ZtleWVf8wPHTq01v3UV+/evYmLi+PHH38MaREWqQ8VvyJh1rZtWy6//HKWLFnCQw89VO0/OuvXrw9pofjjH/8IVHwBaN8W2Pz8fB566KGwxFU5tNH+BcfOnTuZMGFCWI6RlJTEpZdeSlZWFrfddltIf2Ko+EjyQB+z33DDDdjtdv72t79V+4+5x+MJKYx//vnnavdZ2arndrvrcyohCgoKuOmmm3jjjTeIi4vj0UcfPeA2c+bMqbYLTeXH6fvGVTkU2+bNmw851v35/X7+8Y9/hLwWmZmZPPvss9hstpC+7EcccQQWi4W3336bkpKS4Pw9e/bUODRXfWIfN24cUPEFz31bwP1+f/C6+fOf/3zQ+6uvhx56KKSfcFlZGXfeeScAV199dZX1e/TowQknnMDHH3/Mf/7zH+Li4rj00kvrdMxnnnkGt9vNlClTeOGFF6os37ZtG2eeeSa5ublcffXVIS2/0dHR9O7dmx9++IH09PTgfL/fz6233lrtH7AHen0quwVdd911VX6PAoFAsEUXKl430zT5+9//HvK+tmvXruD7VOVrG242m40bb7yRrKwsbrrppmrPNSsrKyQvIjVRn1+RBvDvf/+btWvXct999/HGG28watQokpOT2b59O6tXr2bx4sW88847wS8i/fGPf2T69Ol8/vnn9O/fn7PPPhuv18v777/PkUceyZo1a6qMnFBXRx55JCNHjuR///sfI0aMYNSoUezYsYPPPvuMXr16ha1v4b///W9WrlzJf/7zH+bOncspp5yCw+EgMzOTL774go8++ihkvNH99e7dm1deeYVx48bRr18/Tj31VHr27InX62Xz5s3Mnz+fpKQkfvvtNwDeeOMNXnzxRUaNGkW3bt2Ij49n/fr1zJ49G6fTyS233FKn+J9++mni4uIwTTN4e+PKluyePXvy5ptv0rNnzwPu57zzziMqKoqjjz6aLl26YJom8+fPZ/HixQwbNowTTzwxuO4JJ5zAe++9x/nnn8/pp59OREQEqampXHnllXWKvToDBw7kp59+YtiwYZx88snBcX7z8vL45z//Sbdu3YLrtmvXjssvv5w33niDwYMHc8YZZ1BQUMCnn37KcccdV23r4PHHH4/FYuHOO+9k5cqVwdbJe+65p8aYRowYwe23384///lP+vfvz4UXXkhkZCSfffYZK1euZNSoUYc0/vDB6tOnD/369QsZ53f9+vWcccYZNeb++uuv5+uvv2bHjh3ceOONdR5NZMCAAXz88cdceOGFXH/99Tz33HMcf/zxREdHs27dOj755BNKSkq4/PLLqy2O//73v/PnP/+ZkSNHctFFFwXHufV6vQwaNIhly5aFrN+rVy86dOjA9OnTsdvtpKamYhgGV155JampqVxzzTXMnz+fN954gx49enDOOeeQlJTE9u3b+fbbbxk3blzwi7u33XYbn332GR9++CGDBg3i9NNPp6SkhPfee4+dO3dy++23H/ALuofi3nvvZdmyZfznP/9h9uzZjB07lg4dOrBz507Wrl3LDz/8wOTJk+nbt2+DxSCHiUYZUE2kBaCWO7zt70Bjm5qmaZaXl5v/+te/zGOOOcaMiYkxHQ6H2alTJ3Ps2LHmU089VeXOY6Wlpea9994bvNtUamqqedddd5lbt26t9q5itcVQ03igu3fvNv/617+aqampptPpNLt27WreeeedZnFxcfAOWvuqz7ivplkxvu6kSZPMAQMGmBEREWZUVJTZp08f8+abbw4Z97a2u38tX77cvOqqq8zOnTubDofDjI+PN/v162dee+215jfffBNc78cffzT/8pe/BO9a53K5zG7dupl/+tOfgneQOhj7363MZrMF7xR3xRVXmO+9917IGMz7qu48XnjhBfPcc88109LSgnfeGzx4sDllyhSzoKAgZHufz2feeeedZlpammmz2Wq8w1tNDuYOb5dffrmZlJRkOp1Oc8iQIdXe4c00K+7gddttt5kdOnQIjrf88MMPm16vt8bX+4033jAHDRpkulyuOt3h7Z133jFHjhxpRkVFmU6n0+zbt685adIks7S0tMq6teXgYH4f91XTHd7S0tLMiRMnVnuHuUo+n89MTEw0AXPlypUHdbzq7Nq1y7z//vvNYcOGBd8fOnToYF544YXmF198Ueu2//3vf82+ffuaDofDTE5ONq+99lpz165dNY4XvWjRInPs2LFmTEyMaRhGtbl68803zeOOO86MiYkxnU6n2aVLF/Oyyy4zf/7555D1SktLzcmTJ5v9+vUzXS6XGRUVZY4cObLaO1ceaFzimq4n06z59Q4EAua0adOCd6Oz2+1m+/btzZEjR5qTJ082N2/eXO3+RPZlmGYdvtouIo3uq6++4uSTT+aOO+4IjkEqIk1jw4YNdO/enZEjR9arX7qIND31+RVpJqobzH737t3BweHPO++8xg5JRPbz+OOPY5omN9xwQ1OHIiL1pJZfkWbi0ksvZdmyZYwYMYKkpCS2bt3KZ599xp49e7juuuv4z3/+09QhirRKmzdv5u2332bt2rW8+uqrDBw4kKVLlx5yP3wRaRr6wptIM3H++eezY8cOZs+eTV5eHi6Xi379+vHnP/+5Ub75LiLV27BhA3feeSdut5uTTjqJF154QYWvSAumll8RERERaTX0p6uIiIiItBoqfkVERESk1VDxKyIiIiKthopfEREREWk1NNpDLXJzc/H5fI1yrKSkpJB73Ev9KZfho1yGh/IYPspl+CiX4aNchk9dcmmz2YK3VK8LFb+18Pl8eL3eBj+OYRjB42nwjUOjXIaPchkeymP4KJfho1yGj3IZPo2VS3V7EBEREZFWQ8WviIiIiLQaKn5FREREpNVQ8SsiIiIirYa+8CYiIiLSBMrLyykvL2/qMJqV0tJSPB5PcNrpdOJ0OsN6DBW/IiIiIo2suLgYwzCIjo4OjnIgYLfbgyNtmaZJaWkpxcXFREZGhu0Y6vYgIiIi0sh8Ph9ut1uFby0Mw8Dtdof9ngsqfkVEREQamYregxfuXKn4FREREZFWQ8WviIiIiLQaKn5FREREpNXQaA/NRM6eXEq9gaYOAwC71YLV0P3JRUREmtK2bdt44oknmDt3Lnv27KFt27aceuqp3HLLLSQkJBzUPrZs2cLRRx/NF198Qf/+/Rs44pZBxW8zUe7x8b8fVtEcSs4LRvbDalNHfBERkaayadMmzj77bLp27cpzzz1H586dWbNmDZMmTeLbb79l9uzZxMfHN3WYLZK6PYiIiIg0M3fffTd2u523336bY445hg4dOjB27FimT59OdnY2U6ZMAaBDhw58/vnnIdv26dOHd999F4Cjjz4agFNOOYUOHTpw4YUXBtebPn06xx9/PGlpaQwZMoS77747uGzbtm1cffXV9OjRg169enHdddeRk5MTXP7EE09w0kknMX36dI488kh69OjBnXfeid/v5/nnn2fw4MEMHDiQZ555JiS2/Px8brvtNgYMGECvXr246KKLWLVqVXiTdwDNquU3PT2djz76iMzMTHJzc7nttts46qijgssvvvjiare74oorOPvsswGYMGFCyIsDcNlll3Huuec2WNwiIiIi4ZKbm8vcuXP5xz/+QURERMiytm3bcv755zN79mweeeSRA+7rk08+4YwzzmD69On06tULu90OwOuvv86DDz7InXfeyfHHH09hYSGLFy8GIBAIcPXVVxMZGcn777+Pz+fj7rvv5q9//SszZ84M7nvTpk18++23vPXWW2zcuJHrrruOzZs307VrV2bOnMnPP//MrbfeyrHHHsvQoUMBuO6663C5XLz55ptER0fz5ptvcskllzB//vxGa8luVsVveXk5Xbp0YezYsTz++ONVlr/00ksh07/88gv/+c9/GD58eMj8iy++mBNPPDE47XK5GiZgERERkTDLzMzENE169OhR7fLu3buTl5fH7t27D7ivNm3aABAfH0/btm2D85999lmuvfZarrnmmuC8wYMHA/D999/z22+/sXDhQjp06ADAM888w/HHH8+vv/4aXC8QCPDkk08SFRVFz549GTFiBOvXr+eNN97AYrHQvXt3nnvuORYsWMDQoUNZtGgRv/76K8uWLQvesvi+++7jiy++4JNPPuGKK66oc67qo1kVv0OGDGHIkCE1Lo+LiwuZXrx4Mf369SM5OTlkfkRERJV1RURERFoS02yYbwLt2rWL7OxsRo0aVe3ytWvX0r59+2DhC9CzZ09iY2NZu3ZtsPjt1KkTUVFRwXUSExOxWCxYLL/3qk1KSmLXrl1AxSf8xcXFVb54V1ZWxqZNm8J1egfUrIrfusjLy+OXX35hwoQJVZZ98MEHvP/++yQmJjJq1CjOOOMMrFZrjfvyer3B+0hDxZ1EKj9maIw7sASPYRgYDXSh11VLvfNMZdwtNf7mRLkMD+UxfJTL8FEuw6chctmlSxcMw2Dt2rWcdtppVZavW7eOuLg42rRpg2EYVYrkfWua6oTrE3GbLbSMNAwj2K1i33mBQMVoVsXFxbRt2zak60Sl2NjYWo8Vzvy22OJ33rx5uFyukD7BAKeddhppaWlERUWxZs0a3nnnHXJzc7nqqqtq3NesWbNCXoi0tDSmTJlCUlJSg8W/v63ZOSF/PTUlh8NBu5TGO/eGkJKS0tQhHDaUy/BQHsNHuQwf5TJ86prL0tLSKoVipeTkZEaPHs20adO4/vrrQ/r97tixg1mzZnHRRRfhcDho06YNu3btCu5rw4YNlJaWYrPZsNvtuN1uACwWS3Cd+Ph4OnfuzMKFCxkzZkyV4/fu3Zvt27ezc+fOYOvvmjVryM/Pp2/fvtjtdiwWS5Vit7p5hmFgtVqx2+0MHjyYnJwcXC4XnTt3rjE3++fF4XDQrl272tJZJy22+J0zZw7HHnssDocjZP6ZZ54ZfJ6amorNZuPll1/msssuq/EiO++880K2q/zrIicnB5/P1wDRh6o4npWioiJoBi2/Ho+HrKyspg6jXgzDICUlhezs7Ab7uKi1UC7DQ3kMH+UyfJTL8KlvLj0eT60ttA899BDnnHMOF198MbfffjudOnUiIyODSZMmkZyczN///ne8Xi8jR45k6tSpDBkyBL/fz+TJk7Hb7fh8PrxeL7GxsbhcLr766iuSkpJwOp3ExMTwt7/9jTvvvJP4+HiOP/54iouLWbx4MePGjWPEiBH07t2bv/zlLzzwwAP4fD7uuusujjnmGPr164fX6yUQCGCaZsg5VDfPNE38fj9er5cRI0YwbNgw/vjHP3LPPffQtWtXsrOz+eabbzjttNMYNGgQdru9Sl5qqktsNlu9GipbZPG7evVqtm/fzi233HLAdXv06IHf7ycnJ4f27dtXu47dbq+xMG60NwUDMM1mMc4vNOJ5NxDTNFv8OTQXymV4KI/ho1yGj3IZPuHOZdeuXfnss894/PHH+ctf/kJeXh5JSUmceuqp/O1vfwuOjHDfffdx6623ct5555GcnMyDDz7IihUrgvux2Ww89NBDPPXUUzz++OMMHz6cmTNncvHFF1NeXs7LL7/MQw89REJCAmeccQZQUdC/+uqr3HPPPZx//vlYLBbGjBnDpEmTDumcDMPgjTfeYMqUKdx6663s3r2bpKQkjj76aBITE2vdNpy5NcxmetVffPHFVYY6q/Tcc8+xZcsWHn300QPuZ/78+fz73/9m6tSpde5WkJOTc8B+M+FgGAZ+w8b0Ob80i+L3gpH9cLXQm1wYhkG7du3IysrSG/ohUi7DQ3kMH+UyfJTL8KlvLgsKCoiJiWnAyFqm6lp+a8qV3W5v+S2/ZWVlZGdnB6d37tzJxo0biYqKCv5FUFJSwo8//siVV15ZZfuMjAzWrl1Lv379iIiIICMjg9dff51jjz222fSnFREREZGm06yK3/Xr1/PAAw8Ep6dNmwbA6NGjg6M6LFiwANM0qx2ew2azsWDBAt577z28Xi9t27bljDPOCOnPKyIiIiKtV7Mqfvv168eMGTNqXefEE08MuYHFvrp27crkyZMbIjQREREROQxYDryKiIiIiMjhQcWviIiIiLQaKn5FREREpNVQ8SsiIiIirYaKXxERERFpNVT8ioiIiEir0ayGOhMRERGRmvlNA68/0CjHslstWI3D7w6AKn5FREREWgivP8D7P6xqlGNdMLIfVptR5+1ee+01XnjhBXJycujbty8PPfQQQ4YMaYAI60fdHkREREQkLD788EMeeOABbr31Vj7//HP69u3L5Zdfzq5du5o6tCAVvyIiIiISFi+//DKXXXYZl1xyCT179uTRRx8lIiKC6dOnN3VoQSp+RUREROSQeTweli9fzrHHHhucZ7FYGDVqFD///HMTRhZKxa+IiIiIHLI9e/bg9/tJTEwMmZ+UlEROTk4TRVWVil8RERERaTVU/IqIiIjIIUtISMBqtVb5cltOTg5JSUlNFFVVKn5FRERE5JA5HA4GDhzI999/H5wXCAT4/vvvGTZsWBNGFkrj/IqIiIhIWIwfP56//e1vDBw4kCFDhvDyyy9TWlrKJZdc0tShBan4FREREWkh7FYLF4zs12jHgrrd4e2cc85hz549PP744+Tk5NCvXz/efPPNZtXtQcWviIiISAthNcx63XWtfup3a+Orr76aq6++OsyxhI/6/IqIiIhIq6HiV0RERERaDRW/IiIiItJqqPgVERERkVZDxa+IiIiItBoqfkVERESk1VDxKyIiIiKthopfEREREWk1VPyKiIiISKuhO7yJiIiItBB+K3hNf6Mcy25YsTbOoRqVil8RERGRFsJr+pm1fUmjHOu89kdgxVqnbX788UdeeOEFVqxYwY4dO5g6dSqnnnpqA0VYP+r2ICIiIiJhUVJSQt++fZk8eXJTh1KjZtXym56ezkcffURmZia5ubncdtttHHXUUcHlzz33HPPmzQvZZtCgQdx9993B6aKiIl555RV+/vlnDMNg+PDhXH311bhcrkY7DxEREZHWaOzYsYwdO7apw6hVsyp+y8vL6dKlC2PHjuXxxx+vdp3Bgwdz/fXXB6dtttBTePbZZ8nNzeWee+7B7/fz/PPP8+KLL3LzzTc3aOwiIiIi0vw1q+J3yJAhDBkypNZ1bDYbcXFx1S7bunUrv/76K4888gjdunUDYNy4cTzyyCNceeWVJCQkhDtkEREREWlBmlXxezDS09O55ppriIyMpH///lx66aVER0cDkJGRQWRkZLDwBRgwYACGYbBu3bqQLhT78nq9eL3e4LRhGERERASfN7TgMQwDwzQb/HgHozHOuyFUxt1S429OlMvwUB7DR7kMH+UyfJTLxhHO/Lao4nfw4MEMHz6ctm3bkp2dzTvvvMPDDz/M5MmTsVgs5OXlERMTE7KN1WolKiqKvLy8Gvc7a9YsZs6cGZxOS0tjypQpJCUlNdSpVLE1O4eoqKhGO15tHA4H7VIa79wbQkpKSlOHcNhQLsNDeQwf5TJ8lMvwqWsuS0tLsdvtdT5OeSCA1Vq3ERjqyzCMesW4L6vVWud97L++w+GgXbt2hxTHvlpU8Tty5Mjg886dO5OamsqNN97IqlWrGDBgQL33e95553HmmWcGpyv/usjJycHn89U/4INUcTwrRUVF0Axafj0eD1lZWU0dRr0YhkFKSgrZ2dmYzSCXLZlyGR7KY/gol+GjXIZPfXPp8XhCPnU+WKbFxO9vnMF3TdOsV4z78vv9ddqH3W6vsn5NdYnNZqtXQ2WLKn73l5ycTHR0NNnZ2QwYMIC4uDgKCgpC1vH7/RQVFdXYTxgqEl3TXyWN9qZgAKZJc3kLaulvhqZptvhzaC6Uy/BQHsNHuQwf5TJ8lMsKxcXFZGZmBqc3b97MypUriY+Pp0OHDvXebzhz26KL3927d1NUVER8fDwAPXv2pLi4mA0bNtC1a1cAVq5ciWmadO/evSlDFRERETlkdsPKee2PaLRj1dWyZcu46KKLgtMPPPAAABdddBFPP/10uEI7JM2q+C0rKyM7Ozs4vXPnTjZu3EhUVBRRUVG89957DB8+nLi4OHbs2MGbb75JSkoKgwYNAqBjx44MHjyYF198kfHjx+Pz+XjllVcYMWKERnoQERGRFs/qp853XWtMI0aMYNu2bU0dRq2aVfG7fv364F8IANOmTQNg9OjRjB8/ns2bNzNv3jyKi4tJSEhg4MCBXHLJJSFdFm666SamTp3Kgw8+GLzJxbhx4xr9XERERESk+WlWxW+/fv2YMWNGjcv3vZNbTaKionRDCxERERGplqWpAxARERERaSwqfkVERESk1VDxKyIiIiKthopfERERkSYQCASaOoRmryFypOJXREREpJG53W4KCwtVANciEAhQWFiI2+0O636b1WgPIiIiIq2BzWYjMjKSoqKipg6lWXE4HHg8nuB0ZGQkNlt4y1UVvyIiIiJNwGazERMT09RhNBuGYdCuXTuysrIa9FbR6vYgIiIiIq2Gil8RERERaTVU/IqIiIhIq6HiV0RERERaDRW/IiIiItJqqPgVERERkVZDxa+IiIiItBoqfkVERESk1VDxKyIiIiKthopfEREREWk1VPyKiIiISKuh4ldEREREWg0VvyIiIiLSaqj4FREREZFWQ8WviIiIiLQaKn5FREREpNVQ8SsiIiIirYaKXxERERFpNVT8ioiIiEiroeJXRERERFoNFb8iIiIi0mqo+BURERGRVkPFr4iIiIi0GramDmBf6enpfPTRR2RmZpKbm8ttt93GUUcdBYDP52P69On88ssv7Ny5E7fbzYABA7jssstISEgI7mPChAnk5OSE7Peyyy7j3HPPbcxTEREREZFmqFkVv+Xl5XTp0oWxY8fy+OOPhyzzeDxkZmZywQUX0KVLF4qKinjttdf45z//yaOPPhqy7sUXX8yJJ54YnHa5XI0Sv4iIiIg0b82q+B0yZAhDhgypdpnb7ebee+8NmTdu3Djuuusudu3aRWJiYnB+REQEcXFxDRmqiIiIiLRAzar4rauSkhIMw8DtdofM/+CDD3j//fdJTExk1KhRnHHGGVit1hr34/V68Xq9wWnDMIiIiAg+b2jBYxgGhmk2+PEORmOcd0OojLulxt+cKJfhoTyGj3IZPspl+CiX4dNYuWyxxa/H4+Gtt95i5MiRIcXvaaedRlpaGlFRUaxZs4Z33nmH3Nxcrrrqqhr3NWvWLGbOnBmcTktLY8qUKSQlJTXoOexra3YOUVFRjXa82jgcDtqlNN65N4SUlJSmDuGwoVyGh/IYPspl+CiX4aNchk9D57JFFr8+n4+nnnoKgGuuuSZk2Zlnnhl8npqais1m4+WXX+ayyy7DbrdXu7/zzjsvZLvKvzhycnLw+XzhDr+KiuNZKSoqgmbQ8uvxeMjKymrqMOrFMAxSUlLIzs7GbAa5bMmUy/BQHsNHuQwf5TJ8lMvwqWsubTZbvRoqW1zxW1n47tq1i/vuu69Kl4f99ejRA7/fT05ODu3bt692HbvdXmNh3GgXsgGYJs3l16al/wKbptniz6G5UC7DQ3kMH+UyfJTL8FEuw6ehc9mixvmtLHyzs7O59957iY6OPuA2GzduxDAMYmJiGiFCEREREWnOmlXLb1lZGdnZ2cHpnTt3snHjRqKiooiLi+PJJ58kMzOTf/zjHwQCAfLy8gCIiorCZrORkZHB2rVr6devHxEREWRkZPD6669z7LHHNpv+tCIiIiLSdJpV8bt+/XoeeOCB4PS0adMAGD16NBdddBFLliwB4Pbbbw/Z7v7776dfv37YbDYWLFjAe++9h9frpW3btpxxxhkh/XlFREREpPVqVsVvv379mDFjRo3La1sG0LVrVyZPnhzusERERETkMNGi+vyKiIiIiBwKFb8iIiIi0mqo+BURERGRVkPFr4iIiIi0Gip+RURERKTVUPErIiIiIq2Gil8RERERaTVU/IqIiIhIq6HiV0RERERaDRW/IiIiItJqqPgVERERkVZDxa+IiIiItBoqfkVERESk1VDxKyIiIiKthopfEREREWk1VPyKiIiISKuh4ldEREREWg0VvyIiIiLSaqj4FREREZFWQ8WviIiIiLQaKn5FREREpNVQ8SsiIiIirUa9i98HHniAFStW1Lh85cqVPPDAA/XdvYiIiIhI2NW7+E1PTyc/P7/G5QUFBaSnp9d39yIiIiIiYddg3R6ys7OJiIhoqN2LiIiIiNSZrS4rz507l3nz5gWn//e///HNN99UWa+kpIRNmzYxZMiQQ49QRERERCRM6lT8ejweCgoKgtOlpaUYhhGyjmEYOJ1OTjrpJC688MLwRCkiIiIiEgZ1Kn5PPvlkTj75ZAAmTJjA1VdfzRFHHNEggYmIiIiIhFudit99Pffcc+GMQ0RERESkwdW7+K1UWlpKTk4OxcXFmKZZZXnfvn0P9RAiIiIiImFR7+K3oKCAV155hZ9++olAIFDjeu++++5B7zM9PZ2PPvqIzMxMcnNzue222zjqqKOCy03TZMaMGXzzzTcUFxfTu3dvrrnmGtq1axdcp6ioiFdeeYWff/4ZwzAYPnw4V199NS6Xq34nKiIiIiKHjXoXvy+99BI///wzp512Gr179yYqKuqQgykvL6dLly6MHTuWxx9/vMryDz/8kM8++4wJEybQtm1b3n33XSZPnsyTTz6Jw+EA4NlnnyU3N5d77rkHv9/P888/z4svvsjNN998yPGJiIiISMtW7+J32bJlnHHGGVxxxRVhC2bIkCE1Do9mmiaffvop559/PkceeSQAN9xwA+PHj2fx4sWMHDmSrVu38uuvv/LII4/QrVs3AMaNG8cjjzzClVdeSUJCQthiFREREZGWp97Fr9PpJCkpKZyx1Grnzp3k5eUxcODA4Dy320337t3JyMhg5MiRZGRkEBkZGSx8AQYMGIBhGKxbty6kC8W+vF4vXq83OG0YRvAGHfsP5dYQgscwDIxq+k03hcY474ZQGXdLjb85US7DQ3kMH+UyfJTL8FEuw6exclnv4vfYY49l0aJFnHLKKeGMp0Z5eXkAxMbGhsyPjY0NLsvLyyMmJiZkudVqJSoqKrhOdWbNmsXMmTOD02lpaUyZMqVRi/ut2Tlh6ToSDg6Hg3YpjXfuDSElJaWpQzhsKJfhoTyGj3IZPspl+CiX4dPQuax38Xv00UeTnp7O5MmTOfHEE2nTpg0WS9W7JXft2vWQAmwM5513HmeeeWZwuvIvjpycHHw+X4Mfv+J4VoqKiqAZtPx6PB6ysrKaOox6MQyDlJQUsrOzqx19RA6echkeymP4KJfho1yGj3IZPnXNpc1mq1dDZb2L3/vuuy/4fPny5TWuV5fRHmoTFxcHQH5+PvHx8cH5+fn5dOnSJbjOvnegA/D7/RQVFQW3r47dbsdut1e7rNEuZAMwTZrLr01L/wU2TbPFn0NzoVyGh/IYPspl+CiX4aNchk9D57Lexe9f//rXcMZxQG3btiUuLo4VK1YEi92SkhLWrVsXvOtcz549KS4uZsOGDcEW55UrV2KaJt27d2/UeEVERESk+al38TtmzJgwhlGhrKyM7Ozs4PTOnTvZuHEjUVFRJCYmcvrpp/O///2Pdu3a0bZtW6ZPn058fHxw9IeOHTsyePBgXnzxRcaPH4/P5+OVV15hxIgRGulBRERERA79Dm/htH79eh544IHg9LRp0wAYPXo0EyZM4JxzzqG8vJwXX3yRkpISevfuzV133RUc4xfgpptuYurUqTz44IPBm1yMGzeu0c9FRERERJqfehe/zz///AHXMQyjTt0j+vXrx4wZM2rd3yWXXMIll1xS4zpRUVG6oYWIiIiIVKvexe+qVauqzAsEAuTl5REIBIiJicHpdB5ScCIiIiIi4VTv4ve5556rdr7P5+Prr7/mk08+4d577613YCIiIiIi4Rb2Pr82m41TTz2VrVu3MnXqVO68885wH0IakNfnZ1HGNtZszWFnXjG7C0vJLynHZbcR6bIT43bSLSWeXh3a0KtDApEux4F3KiIiItJMNNgX3lJTU/nuu+8aavcSRgHTZNvuQjK27SEnv/iAYw3/uGYbADaLhSO6t+P4gakc2aM9Dpu14YMVEREROQQNVvwuX75cfX6buYBpsj4rl9Vbd1Fc5g3ObxcfxdBuKXROiiEhKoLYSCcer5/ici+7CkrJ2L6bNdt2k51bzI8Z2/gxYxtxkU7OP6Y3pw/rjsvRrAYREREREQmqd5Uyc+bMaucXFxezevVqMjMzOeecc+odmDSs3YWlLF67ndyiMgAcNis92sXTNSWeq04cgstmHHAfm3bmM2fFJuau3MiuglJe+XoZ7y/4jUuP7cvpR3THWs3trkVERESaUr2L3/fee6/a+ZGRkSQnJzN+/HhOOOGEegcmDSMQMFm2cQdrtu7GBOxWCwO6tKVbSjw2a92K1dS2sfzphIFcMaY/c1Zs5N3v08nOLebFL37hm+UbueGMI+jeTjcXERERkeaj3sXvu+++G844pBGUeXz8sHoLO/NLAEhNimVItxQiDrGbgs1q4aTBXTl+QBe+/HUDr3+znHVZudw69WsuHNGby8f0VyuwiIiINAvqnNlK7CkqZf6qLZSUe7FZLRzdqwOdEmPCegyb1cLpw7pzTK8OvPzlr3y3ajMzfljNik07+fv5x9A2NjKsxxMRERGpq0MuftPT01m6dCk5OTkAJCUlMXToUPr27XvIwUl47CooYe6KTXj9AaIjHBzbrzOx7ob7MmJ8VAS3n38MI3p35NmPF7N6625ueulL/n7e0Qzr3q7BjisiIiJyIPUufn0+H08//TSLFy8GwO12A1BSUsLs2bM56qijuPnmm7HZ1LjclHbmFTNv5WZ8gQBJsW6O69e50YYkG9W3E93bxTPlfwtZu30PD0yfz/hThnDWkT0a5fgiIiIi+zukL7wtXryYs846izPPPJO4uDgA8vPzmT17NrNnz2bmzJlceuml4YpV6mhnXjFzV27CHzBJjovkuH6d6/yltkOVEh/FP/80luc+WcLXyzby4udL2bqrgGtPGaJ+wCIiItLo6l19fP/994wePZorrrgiWPgCxMbGcsUVV3Dccccxf/78cMQo9ZBfXMZ3qzbjD5i0i49qksK3kt1q5eazjuJPYwcC8MmSdUx5fyFen79J4hEREZHWq97VUF5eHt27d69xeY8ePcjLy6vv7uUQlJR7mbtyM15/gMQYN8f269RkhW8lwzC4cGQf7rxwBDarhQW/beXBd+dT6vEeeGMRERGRMKl3RZSQkEB6enqNy9PT00lI0Bivjc3r9/Pdqs2UlHuJjnBwXL9Ozap7wcg+nZj4h+Nw2W38smEH97w5j+IyT1OHJSIiIq1Evaui0aNHs3DhQl566SW2b99OIBAgEAiwfft2Xn75ZRYuXMiYMWPCGKociGmaLMqouGub025lTP9UnPbm94XDwWnJTL5yDFEuB2u27ea+t7+jpFwtwCIiItLw6l0ZnX/++ezYsYNvvvmGb775Bsve1sVAIABUFMfnnXdeeKKUg7IuK5fNOQUYBhzbtzNREY6mDqlGvTq04eErx3D3m3P3FsDzePCy0bid9qYOTURERA5j9S5+LRYLEyZM4Mwzz+SXX34JGed3yJAhpKamhi1IObDdhaUsXZ8NVLSsJsW6mziiA+uaEs+kyysK4N+27mbiO9/x4OWjcTXD1moRERE5PNSpyvB4PLz22mt06tSJ0047DYDU1NQqhe6nn37KV199xZ/+9CeN89sIPD4/P6RvIWCadGwTTa8ObZo6pIPWrV08k64Yzd1vziV9yy6mvL+Quy8a2eRf0BMREZHDU50qjK+//pp58+YxdOjQWtcbOnQoc+bM4dtvvz2k4OTg/Lwui+JyL1EuO8N7dcAwjEPan8ViocxnNtqjY1I8d1w4CofNyuK123lm9mJKvQHKfCZ+89DORURERGRfdWqWXbhwIcOHDyc5ObnW9VJSUjj66KP54YcfOPnkkw8pQKnd1l0FbNyZjwEc3atjWO7e5vMHmLVg1aEHV0dH9+rA/FWbmbNiI9m5hQzumsIFI/thtakAFhERkfCoU8vv5s2b6d2790Gt26tXLzZt2lSvoOTglHl8LFq7HYDenRJbRD/f2nRoE81RPdsDsHrrbn7buquJIxIREZHDTZ2KX5/Pd9B9eG02G16vhq9qSEvWZVHu9RPrdjIgNampwwmLrinxDOrSFoBfNuzgu5X6A0pERETCp07Fb0JCAps3bz6odTdv3qybXDSgrbsK2LKrYlizo3t3aFY3sjhUfTol0qtDxbXz3CeL+HldVhNHJCIiIoeLOlVMAwYM4LvvviM/P7/W9fLz8/nuu+8YMGDAIQUn1fP6/fy8d1izPh0TSYiKaOKIwsswDIZ0TSG1bSz+gMmj7y9g4468pg5LREREDgN1Kn7POeccvF4vDz74IGvXrq12nbVr1/Lggw/i9Xo5++yzwxKkhFq5KYeSci+RLjv9Oh8e3R32ZxgGw3u2p1/nJEo9Ph54dz65RWVNHZaIiIi0cHUa7SE5OZm//e1vPPPMM9xzzz0kJyfTuXNnXC4XZWVlbNmyhezsbJxOJzfffDMpKSkNFXerlVtUxpqtuwE4onu7w3o8XKvFwm3nj+Duad+wfU8Rk2bM5+Erj2+Wt2wWERGRlqHOldPQoUN57LHHOPHEE/F6vSxevJj58+ezePFiysvLOeGEE3jsscc44ogjGiLeVs00TZasy8IEOiXG0D4huqlDanDREU7uv/Q4olwO1mzbw9MfLcI0zaYOS0RERFqoejWhtW3blvHjxwNQWlpKaWkpERERREQcXn1Pm5vNOQXsKijBajEY2q31tKp3aBPNXReN4N635jE/fQsd28Rw+Zj+TR2WiIiItECH/Jl5REQECQkJKnwbmM8f4NfMHQD07ZSE22lv4oga18AuyUw4o+LThHfmr2LOio1NG5CIiIi0SC2u8+SECRPIycmpMv/kk0/mmmuuYeLEiaSnp4csO/HEE7n22msbK8QGsWbbbkrKvbiddnp3bNPU4TSJkwd3ZduuQt5f+BvPzF5MclwkfTsdnl/4ExERkYbR4orfRx55hEAgEJzevHkzkyZN4phjjgnOO+GEE7jkkkuC0w6Ho1FjDLeSci/pmyvudjYoLfmw/pLbgVx1wkC27SnkxzXbmDzjB54YdyIp8VFNHZaIiIi0EC2uioqJiSEuLi74WLp0KcnJyfTt2ze4jtPpDFnH7W7Zt/1dsXEnvkCANtERpCbFNHU4TcpiGNx27tF0S4knv6ScB6fPp7jM09RhiYiISAvR4lp+9+Xz+Zg/fz5nnHEGhmEE58+fP5/58+cTFxfHsGHDuOCCC3A6nTXux+v1htyK2TCMYB/mfffbUILHMAyM/UYyyC8uI3PvDR6GdkvB0gjxADTOUQ7O/q9BhNPOfZcey61Tv2LzrgKmvL+QiZcdh9ViCa7bGK/b4U65DA/lMXyUy/BRLsNHuQyfxspliy5+Fy1aRHFxMWPGjAnOGzVqFImJiSQkJLBp0ybeeusttm/fzm233VbjfmbNmsXMmTOD02lpaUyZMoWkpMbrT7o1O4eoqKof3y/IqBjarEtyPGkdkhslFsNiEBXdPIZRczgctEup+jq0awfP3hDFn5+YwdIN2bzx3RruuPT44C+MxpgOH+UyPJTH8FEuw0e5DB/lMnwaOpctuvidM2cOgwcPJiEhITjvxBNPDD7v3Lkz8fHxPPjgg2RnZ9eYzPPOO48zzzwzOF1ZQOXk5ODz+Roo+t9VHM9KUVER7NPyu6ughI3ZezCAvh0TKCosbPBYAMyA2WjHOhCPx0NWVla1y+LscNu5RzN5xve8990yEtxWzhnei5SUFLKzszUe8CEyDEO5DAPlMXyUy/BRLsNHuQyfuubSZrPVq6GyxRa/OTk5LF++vNYWXYDu3bsD1Fr82u127Pbqhw5rtAvZAEyTfY+2bONOALokxxEb6aIxf6Wa069vba/B0b06cNUJA3ntm+W8/MUvtIuP4uyUFEzT1JtQmCiX4aE8ho9yGT7KZfgol+HT0LlscV94qzRnzhxiY2MZOnRorett3LgRgPj4+EaIKnyyc4vYkVeMxTAYkKrhvGpzwTG9OWlwGgHTZMr7C1i7bVdThyQiIiLNVIssfgOBAHPnzmX06NFYrdbg/OzsbGbOnMmGDRvYuXMnS5Ys4bnnnqNPnz6kpqY2YcR1Y5omy/e2+nZvH0+kq2UP1dbQDMPg+tOHMSC1LaUeHzc//wG5RWVNHZaIiIg0Qy2y28OKFSvYtWsXxx9/fMh8m83GihUr+PTTTykvL6dNmzYMHz6c888/v4kirZ/s3GJ2F5ZitRj07ZTY1OG0CHarlbsuGsH/vfIN2/cU8tC783n4yjE47S3yEhcREZEG0iIrg0GDBjFjxowq8xMTE3nggQeaIKLwMU2TFZv2tvq2SyDC0bpuY3wooiOcTPzDsdz26jes2babpz9axO3nH6PhZ0RERCSoRXZ7OJxl5RYFW337dGqdtzE+FB3axPDYtWdhtRjMT9/C2/NWNXVIIiIi0oyo+G1GTNNk5aYcQK2+h+LIXp244YwjAXhn/irmrNjYtAGJiIhIs6HitxkJbfVVX99DcfKQrlxwTG8Anpm9mPQtOU0ckYiIiDQHKn6bkVWbK4boqmj1bZHdsZuVq04YyNG9OuDzB3jo3e/ZsqugqUMSERGRJqbit5lYtWknOQUlWAyD3h3V1zccLIbBbeceTc/2CRSWerjv7XnsLixt6rBERESkCan4bSZmzF8BQNeUONxO9fUNF5fDxv1/OI4OCdHk5Jdw/9vzKCrzNHVYIiIi0kRU/DYDa7fv4Zf1WRhAj04J+IxAkz4ON7FuJw9cdhzxUS427sxn8owf8Pr8TR2WiIiINAF1LG0G3vshHYDYBDtbfbugsIkDon9TBxB2KfFRPPCH4/jH69+yYtNOnvjgJ26/4BgsGgNYRESkVVHLbxPbklPAgtVbAUhKdjVxNIe3rinx3HPxKGwWC9+v3sLLX/yCaZpNHZaIiIg0IhW/TSy/tJz2baI5qlcHXBHWpg7nsDcoLZlbzx0OwOzFa3UTDBERkVZGxW8T6985iRf+ehp/Of3Ipg6l1TiuX2euO2UIUHETjHfnpzdxRCIiItJYVPw2A1aLhWi3s6nDaFXOOqonV58wCIA35q7g/QW/NXFEIiIi0hhU/EqrdcGI3lwxpuLLfa9+s4wPf8po4ohERESkoan4lVbt0mP7cemxfQF4+ctf+HTJuiaOSERERBqSil9p9S4f3Z8LR/QG4PnPfuaLX9Y3cUQiIiLSUFT8SqtnGAZXjR3IOcN7AvCvj5fw8eK1TRyViIiINAQVvyJUFMDXnDSYs4/qAcB/Pl/KjO81CoSIiMjhRsWvyF6GYTD+5CHBPsDT5qzgtW+W6UYYIiIihxEVvyL7MAyDK8YMCA6DNnPBbzz10SJ8/kATRyYiIiLhoOJXpBoXjOjNTWcdicUw+Hb5Rh6YPp+Scm9ThyUiIiKHSMWvSA1OHtyVey8ZhdNu5ZcN2fzj9W/ZmV/c1GGJiIjIIVDxK1KLI3u05+Erjycu0kXmjjxunfoVq7fuauqwREREpJ5U/IocQK8ObXjyzyeSlhxHXnE5d02bw9fLMps6LBEREakHFb8iB6FtbCT//NNYju7ZAa8/wNMfLeLfnyzB6/M3dWgiIiJSByp+RQ5ShMPOXReP5PLR/TGAz5eu5x+vf8uOPPUDFhERaSlU/IrUgcUw+MNx/Zj4h+OIcjnI2L6Hm176gu9WbW7q0EREROQgqPgVqYdh3dvxzPiT6d2xDcXlXv75v4U8M3uRhkMTERFp5lT8itRTclwkj/5xLJeM6osBfPVrJje8+DnLN+5o6tBERESkBip+RQ6BzWrhyuMH8PAfjyc5LpKd+SXc9cZcXvjsZ4rLPE0dnoiIiOxHxa9IGAxIbcu/rj2FU4d2A+CTJeu47vnPmLN8I6ZpNnF0IiIiUsnW1AHUxYwZM5g5c2bIvPbt2/P0008D4PF4mDZtGgsWLMDr9TJo0CCuueYa4uLiGj9YaXXcTjs3nHEEo/p24j+f/czW3YU88eFPfPHrBv566jBS28Y2dYgiIiKtXosqfgE6derEvffeG5y2WH5vvH799ddZunQpt956K263m6lTp/LEE0/w0EMPNUWo0koNTkvmX9eewqwf1/Du/HRWbsrhppe/4Jzhvbj02L64nfamDlFERKTVanHdHiwWC3FxccFHTEwMACUlJXz77bdcddVV9O/fn65du3L99dezZs0aMjIymjhqaW3sNisXj+rL8389jaN7dsAfMPnfwt8Y/+9P+PCnDN0cQ0REpIm0uJbf7OxsrrvuOux2Oz179uSyyy4jMTGRDRs24Pf7GTBgQHDdDh06kJiYSEZGBj179qxxn16vF6/39yGqDMMgIiIi+LyhVRyjsl9owx/vYDSPKCrU5TWoXLcxXreDkRIfxb2XHsuijG28/OUvbN9TxMtf/sIHP63h8tH9GTuwC1ZL8/wbtLnlsqVSHsNHuQwf5TJ8lMvwaaxctqjit0ePHlx//fW0b9+e3NxcZs6cyX333ccTTzxBXl4eNpuNyMjIkG1iY2PJy8urdb+zZs0K6UuclpbGlClTSEpKaojTqNb6rdtxOByNdrxaGQZR0dFNHQUADoeDdil1fx1SUlIaIJr6O6ddO04fNYSPFqzipU9+JCe/mKc/WsSHi9Zx/dkjOH5QdyyW5vnG2dxy2VIpj+GjXIaPchk+ymX4NHQuW1TxO2TIkODz1NTUYDG8cOHCQyoczzvvPM4888zgdOVfHDk5Ofh8vvoHfJAqj+fxNJOhsUyTosLCpo4CqMhJVlbWQa9vGAYpKSlkZ2c3y1EWRnRPYtj1p/Hx4rW898NqMrP38PeXPqZzUgwXjOjD6P6dsVutTR0m0Pxz2VIoj+GjXIaPchk+ymX41DWXNputXg2VLar43V9kZCTt27cnOzubgQMH4vP5KC4uDmn9zc/PP+BoD3a7Hbu9+i8hNf6F3Dx+cZpHFBXq8xqYptls34QcNivnH9ObU4Z05X8L1zB78Vo25xTw1Ic/8eacFZx7dE9OHtKVCEfz+GJcc85lS6I8ho9yGT7KZfgol+HT0Lls0cVvWVkZ2dnZHHvssXTt2hWr1cqKFSs4+uijAdi+fTu7du2qtb+vNG8Wi4UyX6AOW5hszc7B463LNgfPbrVgNcLzCxnpcnDl8QM4/5hefPbzej5clEFOQQkvf/kr0+enc/qw7pw2rBuJMe6wHE9ERERaWPE7bdo0jjjiCBITE8nNzWXGjBlYLBZGjRqF2+1m7NixTJs2jaioKNxuN6+88go9e/ZU8duC+fwBZi1YddDrG0BUdDRFhYUN0np9wch+WG3h7Zsb6XJw4cg+nD28J98u38j7C34jK7eId79P570fVnNM7w6ceWQP+ndO0hcqREREDlGLKn737NnDM888Q2FhITExMfTu3ZvJkycHhzu76qqrMAyDJ554Ap/PF7zJhUhL4LBZOXVoN04anMbC37bx8eK1rNycww+rt/LD6q2kJsVy5pHdGd0/VWMFi4iI1FOLKn5vueWWWpc7HA6uueYaFbzSolktFkb17cSovp3I3JHHJ0vWMmfFJjbl5PPcpz8z9atljOrbiRMHp9GvU6Jag0VEROqgRRW/Iq1NWnIcN5xxJH86YRDfLMvk0yXr2bankK+XZfL1skzaJ0Rx4qA0xg7sor7BIiIiB0HFr0gd1P0LeOFhs9k5ZVhPTh7agzXbdvPtskwW/LaF7XuKmDZnBW/OXcmQbimcNCiN4T3bY7c1j+HSREREmhsVvyJ1UNcv4DWU5Dg3L994Fj+v3cZXv2ayanMOP6/L4ud1WURHOBjZpxNj+nemb+ckLOoWISIiEqTiV6SFinDYOXFQGicOSmPb7oquEN8s38iewlI+X7qez5euJzEmguP6dWZ0v1S6psSpf7CIiLR6Kn5FDgMd2kRz1diBXDGmPys25TBv5SYWrN7KroJS/rdwDf9buIaObaIZ3T+V0f070z6hedy+WkREpLGp+BU5jFgtFganJTM4LZm/njaMJeuymLdyE4sytrN1dyFvzVvJW/NW0r1dPCP7dGJkn44qhEVEpFVR8StymHLYrIzo3ZERvTtSXObhxzXbmLtyM8syd7AuK5d1Wbm8/u1yuibHBQvhjokxTR22iIhIg1LxK9IKRLocnDAojRMGpZFfXMbCNdv4YfUWlmXuZMOOPDbsyOONuSvo0jY2WAinto1r6rBFRETCTsWvSCsTG+ni1KHdOHVoNwpKyvlxbyH8a+YONu7MZ+POfN6at5JOiTGcelQfBneKp3NSjL4sJyIihwUVvyKtWIzbyclDunLykK4UlXr4KWMb36/ewi/rd7BlVwEvf/oTAB3bRAdbhNOSNWqEiIi0XCp+RQSAqIjfu0YUl3lYtDaLnzNz+GFlJlt3F/Lu9+m8+3067RKiGNm7E6P6dqRbSrwKYRERaVFU/IpIFZEuB2MHduHyU45h/cbNLMrYxvfpW/h5fTZZe4qYuWA1MxesJiU+cm8h3Inu7VQIi4hI86fiV0Rq5Xba944PnEqpx8vitVn8sHoLS9ZmkZ1bzPsLf+P9hb+RHBfJyD4dGdmnEz3bJ6gQFhGRZknFr4gctAiHneP6dea4fp0p8/hYsi6L79O3sHjddnbkFQdvqJEU62Zkn46M6tOJXh3aqBAWEZFmQ8WviNSLy2FjVN+KLg9lXh8/VxbCa7PIyS/hgx8z+ODHDJJi3Izs25Hj+3fRLZZFRKTJqfgVkUPmstv2jgZRUQgvXZfND6u3sGjtdnIKfi+EOyfFcPyALozu35m2sZFNHbaIiLRCKn5FWiiLxUKZL9CARzDZmp2Dx3vgY9itFqyGCVQUwiP6dGREn46Ue338vD47eIvlzTkFvP7tcl7/djkDUtty/IBURvbpSKTL0YDnISIi8jsVvyItlM8fYNaCVQ22fwOIio6mqLAQ8wDrXjCyH1Zb1e4MTrsteIvlojIPP6zewpwVm1i5KYcVm3ayYtNOXvjsZ4b37MBJg9MY3DUZq8XSIOcjIiICKn5FpJFEuRycMqQbpwzpxs78Yuat3Myc5RvZvKuA71dv4fvVW0iKdXPy4K6cNDiNxBh3U4csIiKHIRW/InLI6toFIybSzVnDe3PmUb3YuDOPOcs38t3KTeTkl/DWvJW8890qBndN4cTBXRnWvV2dWoP37YIhIiKyPxW/InLIDrULRqzbwWnDurF1VwHrsnPJyS9h6foslq7PIsJhIy05jm7t4ok6iL7BNXXBEBERARW/ItJM2KwWuiTH0SU5joKSctZn55K5I49Sj4/0LbtI37KLDm2i6dk+geS4SA2ZJiIi9aLiV0SanRi3kyFdUxjYpS3bdheyLiuXHXnFbNtdyLbdhcS6nfRsn0CX5DhsVn1BTkREDp6KXxFptqwWC52TYumcFEt+STlrt+0mc0c++SXlLF6Xxa8bd9AtJZ4e7RKIitBwaSIicmAqfkWkRYh1OzmiR3sGpiWzITuPtdt3U1Tm5betu/lt6246tImmV4c2mKZJxUBtIiIiVan4FZEWxWGz0rtjG3p1SGD7niIytu8mO/f3LhEbduRx3vCeHNevM3abtanDFRGRZkbFr4i0SIZh0KFNNB3aRFNQUs6abbvJ3JHHxh15PPXRIl79ZjlnHNGd04Z1Iy7S1dThiohIM6HiV0RavBi3kyN7tGdgl7ZEOB18/vM6dheW8ta8lcz4Pp3jB6Ry9vCedGkb19ShiohIE1PxKyKHDafdxnnH9OGiEb35YfUWPvgpg7Xb9/Dlr5l8+Wsmg9OSOWd4T4Z1b4dFQ6WJiLRKKn5bkYARwGv14bV58Vn9+C1+/EaAgCVQ8dwSwDQC3LfxfXZHFxPAJGAECGBiBP8Dw6x4ZsGCzbRgM61YsWIzKx+/z7ObNhymDUfAtve5Hbtpw4pl795Ews9mtTC6fyrH9evMb1t388FPa1j42zZ+zdzBr5k76NgmmrOP6snYgV1wOfQ2KCLSmrSod/1Zs2axaNEitm3bhsPhoGfPnlxxxRW0b98+uM7EiRNJT08P2e7EE0/k2muvbexwm4SJidfmpczuodxeTrndg9fmw2v14rce3O1n15WWNfiVYZgGDtMWLI73LYwdgd/n/VTgZLt9N/a90xUPKxZqGtvVoKC0CL9hArrFbWtnGAZ9OiXSp1MiO/KK+XjxWr74ZQNbdxfy/Gc/M23OCk4d2o0zj+xOYoy7qcMVEZFG0KKK3/T0dE455RS6deuG3+/nnXfeYdKkSTz55JO4XL9/oeWEE07gkksuCU47HIfv+J8+i48SZyklzjLKHOWU28sJWGou+iwBC3afDZvfhjVgwRqwYg1YsFT+NC1cMngIi1ZvxYIFCwYW08AETMPExCTA3p9GAJ8RwIcfv+HHt/fhJxB87jV8eAzfPj+9mEbFvsoNL+V4az2/n7dlQFTV+YZpYAlYsAQsWM2KnxbTgjVgwWbYwTRD5oU8r9zWtARbsQ9e/zqsK81Jclwkfz5pMH84rh9fL8vko0UZZOcWM3PBamb9+Buj+nTinKN70rN9m6YOVUREGlCLKn7vvvvukOkJEyZwzTXXsGHDBvr27Ruc73Q6iYuLa+ToGofP4qPYVbq34C3FY69aPBqmgdPrwOlx4PQ6cfjs2P027D4bVvPAQz8dEZ3GFl9pQ4SPiYmPvUWxxbdfceytUizHxDrYmL/7924Zewt70zDxW/34rf4DlM8HDAhLsHj+vSgOLap/nz83bzVb7TuxmTZsphW7acWGFdsBW6SluXA77Zx9VE/OOKI7i9dm8cFPa1i5KYd5qzYzb9Vm+nRswznDe3FM7w5YLXo9RUQONy2q+N1fSUkJAFFRoU2D8+fPZ/78+cTFxTFs2DAuuOACnE5njfvxer14vb+XUIZhEBEREXze0CqOUdlaW/V4HpuHwohiCiOKKHWUha5igtPrwF3uJsLjwuVx4PA5Drk/bUOdtYGBg4puDZH+A69/7qC+PPTlV8Hpyhbnin7KgeDzgLF32hLAsBl4TO/vyyyBvX2b/XvnVeyjogMzwfUOxktZc6ptia5kMY29RfHe4hgr9kBFlw6Huc/PwH7Te7t8WOqY+Qa9OiuvfcPAMA/chaQ59eA+mN9bm9XKMb07ckzvjqzL2sOHP2Xw3crNrN66m9VbF9A21s1ZR/XklCFdiXTV/9Ojylga473kcKdcho9yGT7KZfg0Vi5bbPEbCAR47bXX6NWrF507dw7OHzVqFImJiSQkJLBp0ybeeusttm/fzm233VbjvmbNmsXMmTOD02lpaUyZMoWkpKQGPYd9rd+6PaR7Rpm1jFxXPvmuQspt5SHrRnhdRHkiifS6ifREYtu3NdcCHGovD8MgKjr6EHcSJoZx4G4rlXVrZTFdXtOKvwsW0Xsf/n1/7i2Sf5/nDxbQXRLjyC4swosv5OE3KoIIGCYew4cHX71O12HacbL3YTpw4sCFA6e59ycOXHuX7fEX44p2Y6Nhb+Sw/x+X1TEszeeaMSwW/M66tdimdUnkli6J/PG0IXz6UwafL1rHzvwSpn71K2/PW8mJw7py5jG9aNembufotDpIio0HICUlpU7bSs2Uy/BRLsNHuQyfhs5liy1+p06dypYtW3jwwQdD5p944onB5507dyY+Pp4HH3yQ7OzsGpN53nnnceaZZwanK//iyMnJweerXxFTF5XHK/GVUuAuJD+ygDLHPhWcCZHlbqJKI4kujcTutwcXBfDj4SCaUOvCNCkqLAzvPuvLNPF4PHXaxOFw1GkbA2NvAXngIvIfQ07igwXpVeYH9vZz9lLZ99mHd2+/Z8/eLh0ew4fH4g2dNrx4LD58RsVr6DG8ePBSWBFYrT7M+A5sYDMtOAJ2nKa9ong27aHTAds+zyt+HlTBbBhERUVRVFQEB2j5NQPN55rxm35mbfqp3ts7esLpXVPIXFfMbyvyyc/1MnthBrMXZtAx1U3v/jEkt3cdVMvEue2OwF9aTkpKCtnZ2XtvvSz1ZRiGchkmymX4KJfhU9dc2my2ejVUtsjid+rUqSxdupQHHniANm1q/3JK9+7dAWotfu12O3a7vdplDX0h+0w/vxZt4cvdq1nbfsPvBY8JUaWRxJRGEVXq3q+vbsP/cjWvX9+6RLNfn5AGUN1eDSzYTQt27PU6bIBAjUVyueGl3OINPvdYKn56LT4CmBVfOrSWU3IwTd57WU1LSDFcUTBXFMn7Fs9xFT20cXDggrk5XTOH+ntrtRp07xVFt56RZG8r47eVBWzfUsrWTSVs3VRCVLSNbr2i6NozCndkbW+jZjAW0zT1D2OYKJfho1yGj3IZPg2dyxZV/JqmySuvvMKiRYuYOHEibdu2PeA2GzduBCA+Pr6Bo6ufhfnreWLzlxUTBjg9TuKKo4kpicYWaNiPs6U+DHzGwfUPrisbNmymDbfJ7105anHh0f15b+FyyvcWw54aiuTf5/soN7wVXxY0ApQa5ZRaDqJgjqv4YTEtIUVy5bjOVqwU7chloys3ZLxnq7l3tBAqRtXYd/QQCxVfJNyXWaUh1dzn/wRHGgkYgZDnFT8r5gQw+XK3nzUl2QTMvSOT7P0ZMPeui0nA3DtiiVnTdOD3Yt4NHAUJvQ1K19so22yjqNDHsiV5LFuSi7NdgKi0AO52YLMaFedoWLAYBkXbPMRYnKSUJ+EvLsdtseO2OnFbHERaHbitTqKsTqyGvlgnItJYWlTxO3XqVL7//ntuv/12IiIiyMvLA8DtduNwOMjOzub7779n6NChREVFsXnzZl5//XX69OlDampq0wZfg6Ni0mjviGNwdBdWr9qDy3v4Dst2eDD5rXB7UwcBgGH0x44Ne8BGFBEHtU3laBsHUyR7LBVdMsrxEDAqCs2aCubMPVkcZAgN7ufsjIbZsRsYAJY+YG53EtgUAXvslGdZKc+ystvpx+hUjiW1DCOqohvL+tKcim131LxbCwaxtgjibZHE2d3E29zE293E2dzE2yJpY4+krSOGeJtbX6gREQmDFlX8fvllRQvpxIkTQ+Zff/31jBkzBpvNxooVK/j0008pLy+nTZs2DB8+nPPPP78Joj04Toud53tfQWkAHvz1C5rXh8dyuDEwggXzgapVA4iKjqawsAAv/v2KZB++vf2b/Yafrh3jSd+2A78RCBnv2dyvdTaw37yaYqxp/r6txjW1KndMjCO7PBeLsXe+UTGWs9WovDOhsXeZgbHPOpXT1r0/ax0Bug2YA6A430fW2nJ2bPDhLbNirnPjX+fG3cYgvovBoD7JBBw+ykwfRd4yiv3llAY8lPgrHmUBLwFMcn0l5PpKoKzm18Nh2EhyRNPWGUOyI4a2e5+3dcSQ4ozFYTnw27ndsGIN81cERERamhZV/M6YMaPW5YmJiTzwwAONFE34hA51JnKwGq4LRuX+K+6WV9Gn2Wk6cZp7hwzcr4C6qO0AZq1b1YCxHLzzhvTlw5zFjXOwttCzLQSOMdm2qYR1a4rI2lpKyW6Tkt0mWUuzSenoone/NnRLicEWEVpOB0yT8oCPskBFIVwa8Ib8LAt4KfF7KA148Jg+tpXnsq08t0oYBhBpdRJjjSDWFkGMzUWsNYJoWwS2fbpUnNf+CKwNPDqIiEhz16KKXxHZV0N3wTD2GTnjQH+cte4731ksBp3SIumUFklpiY9NG0rYuK6I3Tketm8pZfuWrVitBu06RtA5zU2HVDcOR0WLc4TVToS1+i/cVgqYAUr8HooC5RT7yynyh/70mH6K9k5v9+SFbBtldRJrjSDO7qZzfiJ9XMnE2yLVhUJEWi0VvyJyWLEZVo6N7dN0AcQC7YCR4CsxeOmnBWxaX0J+nic4WoTFAikdIujUxU3HVDeuiNpbYy2GhSibiyhcVZaZpkm56SPfV0qBr5R8/96fvtKQonibJ49VmRV/LMXZ3HSNSKJbRBJd9z7a2qNVEItIq6DiV0QOKz6/n+e+XdDUYQBw76knM3BYPMcc15Gtm/ewaUMxWzJLyM/z7m0RLuWn+btpk+SgQ2c37TtFkJDoqFMRahgGLsOOy2En2RETnL9vUZznKyHPV4KPANvL8sjzlbC0cBNLCzcF14+1RtArMoVe7opHd3dbXJbaW6RFRFoiFb9SjYbuSyrSuhiGQXwbJ3EJDgYdEU9+rofNmSVs2VhC7m4Pu3MqHst/zsMVYaV9pwg6dI6gXYcI7I76DYNWXVF8XvsjMHwBNpbuZn1pDhtKc1hfupPNZXvI95eyqCCTRQWZQMUoFF0iEunt/r0gTnbEqHVYRFo8Fb9SjeYznFdr70sqh6fYeAcD4h0MGBpHSbEv2Aqcta2UslI/GzKK2JBRhGFA2xQXye1dJLdz0aatE6u1/sWnxbAQsEFqdBKp0UmM3TvfE/CRWbqLtcXZZBTvYG3JDnK9xWzYWyB/untFRdy2CHq4k+kZmUKfqHakuZOwGfX7Ap1GnhCRpqLiV0SkCbkjbXTvHU333tH4/SY52WVs21zK9i0lFOT72JFVxo6sijHQrFaDpBQnye0qCuKExLoVwz4zwIfbl9S6TpqzDV0cCZQEPOz2FrHLW8xubxF5vhLyfaUsKdjIkoKNFfFgIdEeRZIjmiR7FAn2qJDRJWqjkSdEpKmo+BURaSasVoOUDhGkdIhg2DEJFOZ7ydpWyo6sMnZmlVFWGiB7WxnZ2/YWwzaDtslOklJcJLZ10qatE0c9u0nsyzAMIq1OIq1OOrsqbiHvNwPk+orZ5S1ml6eQHG8hHtPPDm8BO7wFQEVXiQR7JEn2aJLs0STao7BbVOCKSPOi4ldEpJmKjrUTHWunZ98YTNOkIM9L9vaKQnhHVhnlZQGytpWRte33u2PExtmDhXBCooO4BMchdZWoZDUsJNqjSbRHgzsF0zTJ95eS4ykix1tRDJcFvOzyFrHLW8RqsjCAeFskSXtbhxPt0TgP4mYcIiINSe9CIhIG+pJkdWyGlVExfbBYLQRiAhzyzWzigC4VTwOmSdauIjK27GFDVi6Z2/PYlV9Kfp6X/Dwv6zOKgIoxiNu1iaJT2xg+77CeHY4yYuPsBxxe7UAMwyDOVnEb5h60xTRNivzlwUI4x1NIccDDHl8xe3zFrCmtuMdzrC2CJHs07fLiGRTRgXh75CHFISJSVyp+RSQM9CXJ6lQOu3bwNwuppwho181BktdGSbGfkmI/pSUVD7/fZFtOIdtyCvlx1bbgJk6Xhdg4O7HxDmLj7ETH2oiKsRMZZatXS7FhGETbXETbXHSNSAKg2F9OjreInL3dJAr9ZeTvHYP46Y0Vt6tv74ilb2QH+kW1p29ke403LCINTsWviMhhwma3EBNnISauYnxe0zTxek3K9hbCnaPb8Fv2TooKfZSXBdiZXc7O7PIq+3FHWYmOthMVbSMqxlbxM9pGRKSNCLcVi+XgitPKfsNd9vYbLgt4g4WwlwCbSnex3ZPPdk8+X+emA9DGHkW/yIpCuF9kezo641UMi0hYqfgVETlMGYaBw2HgcFQUxLefOpIPcxbj8wYoyPeSn1vRRSI/10NhgY+iQh9+n0lJkZ+SIj87sqrfryvCgntvIRzhtv7+PHLvtNuG02WpUrS6LHY6uRLo5ErggpThFJaXsaYki99Kslhdsp0NpTvZ7S3iu7wMvsvLACDa6qK3uz293e3o426PBwt+b3i72NitFqxGA7XKi0izo+JXRKSVsdktJCQ6SUh0hsw3TZOy0gBFhV6KCn0U7S2Iiwq8FBX5KCvxEwhAWWmAslJPrccwDHC5rUREWHFHWnFFWIlw24LPM3y7WZi+GZfDhtOIYTAx9KcHe2wF5Njy2WXLY7etgEJ/GYsLN7C4cAMAdtNGG180ib44En2xxPuisR3ikGkXjOyH1abWZZHWQsWviIgAFS3Fla25SclVl5umSXlZgJISH6XBvsW+kD7GpSU+ykoDmCaUFvspLfazZ1fVfc3j64pjAk6HjYi9j0innciIKLq6EhjgsuGNLCfXVcguWx67bPl4LT6y7blk23MrtjcN4vyRtPHF0sYXQxt/DO6ACwMVsyJSPRW/IiJyUAzDwBVR0XJLm5rXCwRMykr3LYgriuJ9p80yC3lFZZhAmcdHmcdHbg37c9qtRLmiSHLFExnnoNxVTGlsCQWxBZTbPOTaisi1FbGOii/0OQP2kGI4wRetG2qISJCKXxERCSuLxcAdacMdWfM/MeckHcn781dR7vVRWu6j1OOj1OOluMxLUZmHojIvRaUePD4/5V4/5d5SdheWQk7lHgwMI5aoCDuOKAMj2o8ntpSS2GLKor1sd+xiu6OiybmydTjeH028L5p4fzSx/kgsHPoNQUSk5VHxKyIiTcJiGEQ47EQ47DWu4/H5Kd5bDBeXeij1mezKLySvuByfP0BhiRdKgJ0ADsCBxWLgijawxPnxxJfiiy9jT1RF6zDOim/xWUyD2L0FcWyuSe/ItqS6EnVHOpFWQMWviEgrYTOsHBvbp6nDACpaYw/mxigWu0G03Ul0tBMwsFot+P2JmGaA0nIfBSXl5BeXU1BcTn5JxU9/wKQ434R8Aza5ATcWC9ijDSyxPrzxZfjjy9kTXVEQb8iqKIhthoXOzjZ0cyfRxZVIqqsNqa42RNtcDZsMEWlUKn5FRFqJyptuNAf3nnxyPW6MYlS9YYgdiIPoOIjGiWk6KC8PBPsWV45xHAhAWb4J+VbYHAlEggG2KJPYZBul0cWUx5SyPjqHDWU5IUdNsEXS2ZUQLIZTXW3o6ErQrZpFWij95oqIyGHDMAxcLisul5X4hIp5pmni2acgLi3xU1rqJ+AHX6HB7kI/4AJcWCwGMfE27PEm5dGlFEUVsTu24hbNvxZt+f04QFtHDB2c8XR0xtHBGb/3eTyxtgjdmEOkGVPxKyIihzXDMHC6rDhdVuL2L4hL/QxN6cym7DzWZ+dSWOohd7cXdkNFs3I8FgPi4p24Eyz4ozwUuAspjSwl2yxgh6eApYWbQo4XaXXSwRlHO0csyY5Ykh0xpDhiSHbEkmCPxKLCWKRJqfgVEZFWZ9+C+PLjB+K2WjBNk535JazPymV9di7rsvawLiuX/JJydu8pZ/eeyq0r+hE77Bbi4py4YsGM9lHiLqHAVUhRRDkZ/h1klOyoclybYSHZEbP38Xth3NYRQxt7FDFWl1qNRRqYil8REWnVDAzKLH4AYhNcDE1ox9B+7YCKFuI9haVsyMpjY3YeW3IK2JpTwPZdhXi8AXbm7Dv8mh1IwACiouy4o63YokwCEX7KHGUU2krwunxsdeWz1ZFHdTWu3bCSYI8k0R5Foj2KNvs8Eu2RtLFHEWtzq/VY5BCo+BURkVbNxOSD7UtqXykabNGQ1sNGGgkEAvEUFfjIz/WQl+slP89Lfq6HogIfPp9JYZGXwiLvPjuwATHBKcMAWwRYXCam00/A6cdv8xOwB8hyeMiy7wZ7DobdBEcA7CbYTAwLWLEQa4sgzu4mzuYm3uYmzhZBrM1N/N55lY8oq1MtySL7UfErIiJSRxaLQUycnZg4O53Sfp9feQvoogIvhYU+igt9FBXuvbtdsY/SUn/w9s/eEqDEoOKf4op/js0DHdhq4rMF2Gk32WnzYtjzwJYL9gDYTLCbGHt/YgtgdRhEOR3EulzER7iIi3AT73QRa3fTyZdCoLicaKuLGKuLaJuLaKsLq6Gbf8jhTcWviIhImOx7C+jE5OrXCQTMiiHY9t4CuqTYR3lZAE95gHa2eEpLfBSVeSgs9ey9252Hcm9Ftwz8BvitUF4xWV2xvO+8AJC797GRMqCsYg2bCfY1+xTMv7cuOxwWXA4r7gg70W4HcVFOEiLdJEW7SXC5ibZFELO3UI62uYiyOrEZujmItBwqfkVERBqRxWLgjrLhjqr6T/AFKcMJ+KqWtF6fnxKPl9JyHyXlXkrKvZR6vJSUeSnx7J3eZ1nlo6i8nOJyL6XlXso9fkwTwACfAb7f97/vEcv3PvIxyQpOFVQstAbAZYIzgOEMQIQfIyKAI7LiltYx0U5i3Q6i7S4irRWFcZTVtffh3G+eE1sd7qjnsFqxHbhtXOSAVPyKiEir1pzufOf3mcxYsKJe29qdBrFOB7E4ql1umib+gInX58fnN/GbJuUeH16fH68/gMfnp9zvpdzvp9zno9znw25Y2VVQgt8DBAzwW6AYKLYGy1ATgm3KewCMcnCVgruiMMYVwIjwgzuA4fZDRKCiLzNgCRhYAlasAQvWkJ9V50045lgSHRFEW126DbUcEhW/IiLSqrX8O9/Vx9675QU8FV0f9nIADgyisQN27j35ZB768ktM0yQQAJ83gM9n4vOaeL0BvJ4AHm/Fw+cJ4PMApgGlVigNLZBD2AMVRbDbX9F67A7sLZa94PaDw6wyGsbt66cHnzsNG1GVXS+sTqL2dr+I3tvKXNF/2blPi7OTKKsTl8WuLwCKil8RERGpnWEYWK1gtVpx1rKeaZp4vSZeT0VhvO9zjyeA12Pi95vgtYDXgllQwxf9LCYWl4kl4vci2R4DHlc5pttPmctHubeI3d6iOp2HBQO31YHb4sBtdRJpdRC596fb4sRdOW2p+Om27rPe3uUO3da6xTtsX8HPP/+c2bNnk5eXR2pqKuPGjaN79+5NHZaIiMhhyzAMHA4Dh6PmESP8fnOfYriiIPbsUyD7vCYEDAIlBoGS3/dTMXBcBLB3tI1oBzHRDtxRNuwRBlaXieEMEHD68Tl9eOzllFjKKfaXU+L34CdAAJMifzlF/nLwFtbrHO2GFZfFjstiJ8Jix2m1E7slEsNn4rLYgstqflSs47DYcFhs2A0LdsOGw2LFZlg12kYjOCyL3wULFjBt2jTGjx9Pjx49+OSTT5g8eTJPP/00sbGxTR2eiIhIq2W1Glj3johRnUCgskvF3qK4vKIwbh8dx6Y9uZQU+wgETHLzy8nNL6/1WBaLA1dEBG6XFYfTwOY0sDkMrE6w2MFwmBiOAKbdxLQGCNj8+C1+/FY/Pqsfrxn6ACqe+/0U+st+P1BJ2NKDzbBgN6wVD4sNh2HFbrHiMGx751n3zrNhw4LV+P1hMyxYDEuV+VbDwGZYsBpWrBih61augwWLYWAJ/jQqfhoWrJXPqZgOLtt/XSx7W8ur73feXByWxe/HH3/MCSecwPHHHw/A+PHjWbp0KXPmzOHcc89t2uBERESkRhaLgdNpxblf/4p7Tx3DhzmLK4aKK/VTXFQxjnJxkZ+y0oqh4yqHkCsr9eMpDxAIQEmxn5Jifx0isO59gM1mYLMb2OwWHFYDwwIWKyS4orBYwLBSMc9mYBoBTMPEtFQ8KlqaA/jw4zcD+Pc+9+HHT6BinhHAZwbAMMEADPBg4jGomIeXyjbvKurSdbnWdffrdHKIXaJPTe3N9X2OO7SdNLDDrvj1+Xxs2LAhpMi1WCwMGDCAjIyMarfxer14vb9fXIZhEBERgc3WOOkxDAOHxSS1TZtGOd6BOB12UtskNnUYQP1isdtteL2+A6/YSPE0lMaI5WBz2drycrAqYmnToNdk3eNpTrmpeywNkcvDIS/1cTC5bFa5sdtJdsdVTEQBSbWv7/ebeMoDlJf58XgCeDwmPq8fT3lly7Ifr6fiucdj4vcFKh5+9g4JVwsT8O99UDGecqW9NSyVnRdq6yN9OLLEurHb7fXatvLLiHa7HfOALwL1rtMM82D23oLs2bOHv/zlL0yaNImePXsG57/55pukp6fz8MMPV9lmxowZzJw5Mzg9cuRIbr755kaJV0REREQaj3pVA+eddx6vvfZa8DF+/PiQluCGVlpayj/+8Q9KS0sb7ZiHK+UyfJTL8FAew0e5DB/lMnyUy/BprFwedt0eYmJisFgs5OXlhczPy8sjLi6u2m3sdnu9m+jDwTRNMjMzD6qJX2qnXIaPchkeymP4KJfho1yGj3IZPo2Vy8Ou5ddms9G1a1dWrlwZnBcIBFi5cmVINwgRERERaX0Ou5ZfgDPPPJPnnnuOrl270r17dz799FPKy8sZM2ZMU4cmIiIiIk3osCx+R4wYQUFBATNmzCAvL48uXbpw11131djtoanZ7XYuvPDCJu16cbhQLsNHuQwP5TF8lMvwUS7DR7kMn8bK5WE32oOIiIiISE0Ouz6/IiIiIiI1UfErIiIiIq2Gil8RERERaTVU/IqIiIhIq3FYjvbQHH3++efMnj2bvLw8UlNTGTduHN27d69x/YULF/Luu++Sk5NDSkoKl19+OUOHDm3EiJufWbNmsWjRIrZt24bD4aBnz55cccUVtG/fvsZt5s6dy/PPPx8yz26389ZbbzV0uM3a/rf0Bmjfvj1PP/10jdvomqzehAkTyMnJqTL/5JNP5pprrqkyX9fk79LT0/noo4/IzMwkNzeX2267jaOOOiq43DRNZsyYwTfffENxcTG9e/fmmmuuoV27drXut67vty1dbXn0+XxMnz6dX375hZ07d+J2uxkwYACXXXYZCQkJNe6zPu8Rh4MDXZPPPfcc8+bNC9lm0KBB3H333bXut7Vdk3DgXF588cXVbnfFFVdw9tlnV7ssXNelit9GsGDBAqZNm8b48ePp0aMHn3zyCZMnT+bpp58mNja2yvpr1qzhmWee4bLLLmPo0KF8//33PPbYY0yZMoXOnTs3wRk0D+np6Zxyyil069YNv9/PO++8w6RJk3jyySdxuVw1bhcREcEzzzzTiJG2DJ06deLee+8NTlssNX8QpGuyZo888giBQCA4vXnzZiZNmsQxxxxT4za6JiuUl5fTpUsXxo4dy+OPP15l+Ycffshnn33GhAkTaNu2Le+++y6TJ0/mySefxOFwVLvPur7fHg5qy6PH4yEzM5MLLriALl26UFRUxGuvvcY///lPHn300Vr3W5f3iMPFga5JgMGDB3P99dcHp2222kup1nhNwoFz+dJLL4VM//LLL/znP/9h+PDhte43HNelit9G8PHHH3PCCSdw/PHHAzB+/HiWLl3KnDlzOPfcc6us/+mnnzJ48ODgXz6XXnopK1as4PPPP+faa69tzNCblf3/sp4wYQLXXHMNGzZsoG/fvjVuZxhGsx3juSlZLJaDzouuyZrFxMSETH/wwQckJyfrmjwIQ4YMYciQIdUuM02TTz/9lPPPP58jjzwSgBtuuIHx48ezePFiRo4cWe12dX2/PRzUlke32x1SKACMGzeOu+66i127dpGYmFjjfuvyHnG4qC2XlWw2W53y0hqvSThwLvfP4eLFi+nXrx/Jycm17jcc16WK3wbm8/nYsGFDyAVusVgYMGAAGRkZ1W6TkZHBmWeeGTJv0KBBLF68uCFDbXFKSkoAiIqKqnW9srIyrr/+ekzTJC0tjT/84Q906tSpMUJs1rKzs7nuuuuw2+307NmTyy67rMZ/CHVNHhyfz8f8+fM544wzMAyjxvV0TR7Yzp07ycvLY+DAgcF5breb7t27k5GRUW3xW5/329aopKQEwzBwu921rleX94jWJD09nWuuuYbIyEj69+/PpZdeSnR0dLXr6po8OHl5efzyyy9MmDDhgOuG47pU8dvACgoKCAQCVf5KiYuLY/v27dVuk5eXV+WjkNjYWPLy8hooypYnEAjw2muv0atXr1o/dm/fvj1//etfSU1NpaSkhI8++oh77rmHJ598kjZt2jRixM1Ljx49uP7662nfvj25ubnMnDmT++67jyeeeIKIiIgq6+uaPDiLFi2iuLi41lup65o8OJXXVl2uu/q837Y2Ho+Ht956i5EjR9Za/Nb1PaK1GDx4MMOHD6dt27ZkZ2fzzjvv8PDDDzN58uRqP37XNXlw5s2bh8vlCukTXJ1wXZcqfqVFmjp1Klu2bOHBBx+sdb2ePXvSs2fPkOm//e1vfPXVV1x66aUNHWazte9HUampqcE3lIULFzJ27NgmjKxlmzNnDoMHD671i0S6JqWp+Hw+nnrqKYBqv4y5L71HVG/fTxw6d+5MamoqN954I6tWrWLAgAFNGFnLNmfOHI499tga+/JXCtd1efj3Xm9iMTExWCyWKi0VeXl5NfZZiYuLIz8/P2Refn5+q+t7VZOpU6eydOlS7r///jq3lNlsNtLS0sjOzm6g6FqmyMhI2rdvX2NedE0eWE5ODsuXL+eEE06o03a6JqtXeW3V5bqrz/tta1FZ+O7atYt77rnngF0e9neg94jWKjk5mejo6BrzomvywFavXs327dvr9UdVfa9LFb8NzGaz0bVrV1auXBmcFwgEWLlyZUjrz7569uzJihUrQuYtX76cHj16NGiszZ1pmkydOpVFixZx33330bZt2zrvIxAIsHnzZuLj4xsgwparrKyM7OzsGt+MdU0e2Jw5c4iNja3z8G+6JqvXtm1b4uLiQq67kpIS1q1bV+N7Z33eb1uDysI3Ozube++9t8b+qbU50HtEa7V7926Kiopq/P3VNXlg3377LV27dqVLly513ra+16WK30Zw5pln8s033zB37ly2bt3Kf//7X8rLy4P9Av/973/z9ttvB9c//fTTWbZsGbNnz2bbtm3MmDGD9evXc+qppzbRGTQPU6dOZf78+dx8881ERESQl5dHXl4eHo8nuM7+uZw5cybLli1jx44dbNiwgWeffZacnJw6t84dbqZNm0Z6ejo7d+5kzZo1PPbYY1gsFkaNGgXomqyrQCDA3LlzGT16NFarNWSZrsmalZWVsXHjRjZu3AhUfMlt48aN7Nq1C8MwOP300/nf//7HkiVL2Lx5M//+97+Jj48Pjv4A8OCDD/L5558Hpw/0fns4qi2PPp+PJ598kg0bNnDjjTcSCASC750+ny+4j/3zeKD3iMNVbbksKyvjjTfeICMjg507d7JixQr++c9/kpKSwqBBg4L70DVZobZcViopKeHHH3+ssdW3oa5L9fltBCNGjKCgoIAZM2aQl5dHly5duOuuu4J/qVS+0Vfq1asXN910E9OnT+edd96hXbt2/P3vf2/146l++eWXAEycODFk/vXXXx98E9k/l0VFRbz44ovk5eURGRlJ165dmTRpEh07dmyssJulPXv28Mwzz1BYWEhMTAy9e/dm8uTJwWG7dE3WzYoVK9i1a1dwKKN96Zqs2fr163nggQeC09OmTQNg9OjRTJgwgXPOOYfy8nJefPFFSkpK6N27N3fddVdIv8AdO3ZQUFAQnD7Q++3hqLY8XnTRRSxZsgSA22+/PWS7+++/n379+gFV83ig94jDVW25HD9+PJs3b2bevHkUFxeTkJDAwIEDueSSS7Db7cFtdE1WONDvN1SMgWyaZo3Fa0Ndl4ZpmmZdT0hEREREpCVStwcRERERaTVU/IqIiIhIq6HiV0RERERaDRW/IiIiItJqqPgVERERkVZDxa+IiIiItBoqfkVERESk1VDxKyIiIiKthu7wJiKtzsUXXxwybRgGERERdO7cmdGjRzN27NiQu7JJeO3cuZMbbriBvn37Vrljo4hIQ1PxKyKt1ujRowEIBALs2LGDNWvW8Ntvv7FixQpuueWWpg1OREQahG5vLCKtTmXL74wZM0LmL1++nEceeQS/388//vEPhg0b1hThHfZ8Ph87duzA6XSSmJjY1OGISCujPr8iInsNHDiQY489FoDFixc3cTSHL5vNRocOHVT4ikiTULcHEZF9pKWlMXfuXHbv3h2cd/HFF5OUlMQzzzzDBx98wPfff8/OnTsZPHgwt99+OwDl5eV8+umnLFy4kKysLAA6d+7MSSedxJgxY6o9Vnp6Ou+99x7r16/HarXSs2dPLr74YrZs2cLzzz/PhRdeGNI/eeLEiaSnp/Pvf/+bjRs38uGHH7J582ZsNhuDBg3iyiuvpE2bNiHHyM3N5bvvvmPp0qVkZ2dTUFBAVFQUvXr14txzz6V79+5V4powYQI5OTnMmDGDb775hs8++4ysrCzcbjdHHnkkl19+OZGRkVW28/l8fPvtt8yfP58tW7bg9XpJSEigT58+nHrqqXTt2hU4cJ/ftWvXMnv2bH777TcKCwuJjY1l8ODBXHjhhVUKZtM0+f777/nyyy/Jzs6mpKSEmJgY2rdvz5FHHsmpp55abe5FpPVS8Ssiso/S0lKgonVyX4FAgMcee4z09HT69u1L586diY6OBiA/P59JkyaxadMm4uLi6Nu3LwBr1qzh+eefZ8OGDYwbNy5kfz/99BNPPfUUgUCAHj16kJSUxJYtW7jvvvtqLJYrffnll3z88cf06dOHIUOGsHbtWhYsWEBmZiaPPfYYDocjuO7ixYt56623aN++PampqURERJCdnc2iRYv4+eefueOOOxg0aFC1x3nzzTf59NNP6devHykpKaxZs4avv/6abdu2MXHixJAvBZaVlfHII4+wevVqnE4nvXv3JjIykpycHObPn4/b7Q4Wv7X54osveOWVVwDo3r07vXv3Jisri2+//ZYlS5YwceJEOnbsGBLj7Nmzsdvt9OnTh+joaPLy8ti0aRPZ2dkqfkWkChW/IiJ7mabJ0qVLAUhNTQ1Ztnv3bux2O8888wwJCQkhy55//nk2bdrE6aefzuWXX47dbgcgLy+PKVOm8PnnnzN06FAGDx4MQElJCS+++CKBQICbbrqJUaNGBff17rvv8v7779ca5xdffMGDDz5Iz549gYpW50mTJrFmzRq+//57xo4dG1y3d+/ePPHEE3Tq1ClkH7/++iv//Oc/+e9//8uzzz5b7egW3333HY8//jjt27cHoKCggHvuuYfVq1ezatUq+vfvH1z3tddeY/Xq1fTp04f/+7//IyYmJrgsLy+PnJycWs8JICMjg1dffZX4+Hhuv/32kGL522+/5T//+Q8vvPACkydPBsDj8fD5558TERHBY489Rtu2bYPr+/1+MjIyDnhMEWl91OdXRFq9QCBAVlYWL7zwAhkZGdjt9mpbXy+77LIqhe/GjRv55Zdf6NatG3/84x+DhS9AXFwc1157LVDRWltp4cKFFBUVMWDAgJDCF+DCCy8kKSmp1njPOOOMYOEL4HQ6OeOMMwBYvXp1yLqdO3euUvgCDB48mKOPPpodO3awZcuWao9zySWXBAtfgJiYGE466SSgostGpT179jB37lzsdjs33HBDSOELFXno0aNHrecE8MEHHxAIBBg/fnyVVuKxY8dyxBFHsHbtWjIzM4GKVnqv10tycnJI4QtgtVrp06fPAY8pIq2PWn5FpNXaf7xfgIiICCZMmEBKSkrIfMMwqh39YdmyZQAceeSRWCxV2xPS0tJwuVysW7cuOG/NmjUAHH300VXWt1qtDB8+nI8//rjGuAcOHFhlXmWRmpeXV2WZ1+vl119/Zd26dRQUFODz+QCCRW9WVhadO3eusl113SHatWtX5Tjp6ekEAgGGDh16wMK9JoFAgJUrV+J0OmvshtG7d2+WLFnCunXrSEtLIzY2ljZt2rBx40beeustTjzxRJKTk+t1fBFpPVT8ikirVTnOr2EYuN1uOnfuzFFHHUVUVFSVdWNiYkJadStVfpw/ffp0pk+fXuOxvF5v8Hlubi5AlS+nVTrQKAjVbedyuaocB2Dz5s1MmTKl1m4Hlf2c97d/KzdU/HGw/3F27doFUOUPhrooLCykrKwMqGhhP9C6lSZMmMDTTz/Nhx9+yIcffkhSUhJ9+vRh5MiRDBkypN7xiMjhS8WviLRaEyZMOOh19/0S2b4CgQBQ0SrZWK2OB3v3OdM0eeqpp8jJyeGkk07ipJNOIjk5GZfLhWEYvP3223zwwQc1bl9dS3ZDqRxy3uVyMXz48FrX3fcLb/379+fZZ59l6dKl/Prrr6xatYrvvvuO7777juHDh/N///d/DRq3iLQ8Kn5FRA5BZSvskUceyVlnnXVQ28THxwOEDKe2r8qW1EO1bds2tm3bRrdu3Rg/fnyV5Tt37gzLcSpbqrOzs+u9j+joaOx2O4ZhcP3119fp9tJut5tRo0YF+09nZGTw1FNP8dNPP7F06VKGDh1a77hE5PCjL7yJiByCyv63ixYtOuhtevXqBVQMd7a/QCBQp33Vpri4GKi++0JRURHLly8Py3H69u2LxWJh2bJl9S7crVYr/fr1o7S0lBUrVhxSPD179gzerKSmL/OJSOul4ldE5BD06NGDgQMHsmbNGv773/9SUlJSZZ2NGzfy66+/BqePOeYYoqKiWL58OT/88EPIuu+//37YWmRTUlIwDIOVK1cGb7wBFUOEvfzyyxQVFYXlOAkJCRx33HF4vV6ee+65kD65UDEO8tq1aw+4n/PPPx/DMHjhhRdYtWpVleVlZWV8++23eDweoKKFfO7cuZSXl4es5/F4gtvX1K9aRFovdXsQETlEN954Iw8//DBffvklP/zwA126dCE+Pp6SkhI2bdrE7t27Of3004Pj/Lrdbq677jqeeuopnnnmGT777DOSkpLYvHkzWVlZnHjiiXz99ddVbrRRV7GxsYwdO5ZvvvmGv//97/Tv3x+Hw8Hq1asJBAKMGTOGuXPnHnoCgKuvvpqsrCxWrVrF9ddfT9++fYmIiCAnJ4fMzExOPvnkAw531rt3b/785z/zyiuv8MADD9CpUyfatWuHzWYjJyeHjRs34vV6GT58OA6Hg6KiIp5//nmmTp1K165dadOmDWVlZWRkZFBQUEC3bt0O2H9YRFofFb8iIocoNjaWhx56iG+++SZ4p7U1a9YQGxtLcnIyp512GiNHjgzZZvjw4dx77738f3t3qKJAGEVx/GwanaQiipgEmSJmy2ASs0aLTdCnMM0T+BqCRYtBi1kYBtQwbQSDIFgV3E0Ky26YxQWX/f6/B7h88YTz3TsejxWGoaIokuM4GgwGjzrC/YLcM3q9norFohaLhYIgkG3bqlar6nQ6Wi6XT8+/SyaTGg6Hms/nWq1Wj4CdTqfluq7q9XqsOc1mU47jaDababPZaL1ey7IsZTIZua6rWq0m27YlSfl8Xt1uV0EQaL/fKwxDJRIJ5XI5tdttNRqNbzd0ADDb2/v9iy0A4E/wPE++78vzvFjHIQAA8dH5BYAXOJ1OXw5S3G43TadT+b6vQqGgcrn8mscBwD9G7QEAXmC73Wo0GqlUKimbzep6vSqKIh2PR1mWpX6//6N1XwCAeKg9AMALHA4HTSYT7XY7nc9nXS4XpVIpVSoVtVqtT4ccAAC/h/ALAAAAY9D5BQAAgDEIvwAAADAG4RcAAADGIPwCAADAGIRfAAAAGIPwCwAAAGMQfgEAAGAMwi8AAACM8QGjpbYjQpqssQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArsAAAGQCAYAAACu4KjqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOQElEQVR4nOzdd3zU9f3A8df3Zu6yJ9kJIQSUDTJk4x4oxYVV66DgrlZrq3XjT2tp1TqqFlsQkSpaBBE3KiIIsvcKkITsnUtyWbe+vz9CTiIBkpDkLpf300ck953vu8/d5X2fe38/H0VVVRUhhBBCCCF8kMbTAQghhBBCCNFZJNkVQgghhBA+S5JdIYQQQgjhsyTZFUIIIYQQPkuSXSGEEEII4bMk2RVCCCGEED5Lkl0hhBBCCOGzJNkVQgghhBA+S5JdIYQQQgjhsyTZFT3ewoULURSFhQsXtmr7yZMnoyhK5wbVRu2JSVEUJk+e3O5zPv300yiKwvfff9/uY/RU33//PYqi8PTTT3vk/FlZWSiKwq233tps+a233oqiKGRlZXkkLvD8Y9OStr5HCCG8iyS7wuc4nU7+/e9/M2nSJMLCwtDr9URFRTF48GBmzZrFJ5984ukQT0pRlDb9yB9fz2lK9pt+NBoNQUFBJCUlcdlllzF37lzy8vI65dzdOfk6WaItTk1VVZYuXcq0adOIjY3FYDAQHh7O+PHjeemll6itre2wcyUnJ5OcnNxhxxPC03SeDkCIjuR0Opk6dSpffvklISEhXH755cTHx2Oz2di7dy/vvfceBw4c4Morr2z3ORYtWtShf1iO99RTT52w7OWXX6ayspL777+fkJCQZuuGDh3a7nPt378fs9nc7v1Fo0mTJrl7yGtqaigoKODHH3/kiy++4KmnnuLpp5/mkUceabbPqFGj2L9/PxERER6IGOLi4ti/fz/BwcEeOf+pePqx8UYWi4XrrruOVatWERwczGWXXUZycjLl5eV89dVX/OEPf+C1117j008/ZcCAAZ4OVwivI8mu8Cnvv/8+X375JUOGDGHNmjUn/DGvra1l48aNZ3SOxMTEM9r/VFr66nbhwoVUVlby+9//vkN7W/r3799hx+rJJk+efEK7qarKsmXLuP322/nzn/8M0CzhNZvNHn389Xq917a/px8bb+Nyubj22mv55ptvuPjii/nvf/9LeHi4e73D4eDJJ5/k+eef56KLLmLbtm306tXLgxEL4X2kjEH4lPXr1wONtYct9VqZzWamTJnSqmNVVFQwceJENBoNzz//vHt5S/Wxx9cZ7tixg8svv5yQkBDMZjOTJk1yx9XZHA4Hf/nLX+jbty9Go5GEhAQefvhhbDbbCduerGbX6XTyr3/9i3HjxhEcHIzJZCI1NZVZs2Zx6NCh08aQnZ3NgAEDMBgMvPvuu+7lTV+N1tTU8Mc//pHExESMRiOpqanMnTsXVVVbPN7GjRu55ppriI6OxmAwkJCQwB133EF+fv4J22ZkZHD77beTmpqKyWQiLCyMQYMGceedd1JWVubezmaz8eqrrzJ8+HBCQ0Mxm80kJyczbdo0vvnmm9Pex9NRFIWrr76apUuXAvDMM89QUFDgXn+yutTWxD958mRuu+02AG677bZmpRRNtbbH11O/9957jB49moCAAPeHpdOVErhcLl566SX69++Pn58f8fHxPPDAA1RVVbV4X09W+/3LGuCnn36a3r17A/DOO++0WJJzqprdQ4cOcfPNNxMXF4fBYCA2Npabb765xefl8Y/B0qVLGTVqFGazmbCwMK6//vp2l5h89tlnjB07Fn9/f0JDQ7nmmmtOOP+vf/1rFEVhzZo1LR7jo48+QlEU7r333tOe77333uObb76hT58+LFu2rFmiC6DT6fjLX/7CjBkzyM/P5/HHH2+2/lT1/L8sh2l67I8ePcrRo0ebtc8vnysHDhxg5syZJCcnYzQaiYqKYsKECbz55psnnOfbb7/lkksuISwsDKPRSFpaGo888giVlZUnbNsUr91u55lnnqFPnz74+fnRr18//v3vf7u3+9e//sWgQYMwmUzEx8fz1FNP4XK5WryfbXkPEb5JenaFT2n6Q5Cenn5Gx8nOzuaSSy7h8OHDLFq0iJtuuqlV+23ZsoW//e1vnHvuucyaNYvs7Gw++ugjzj//fHbs2EG/fv3OKK7TueGGG1i7di2XXnopQUFBfP755/ztb3+juLiYt99++7T722w2pk6dyqpVq0hISOCGG24gKCiIrKwsli9fzvjx4+nbt+9J99+5cyeXXXYZ1dXVfP7551xwwQXN1tvtdi6++GLy8/O59NJL0el0fPzxxzzyyCPU19efUMaxYMECbr/9doxGI1deeSUJCQkcOnSI//znP6xcuZKffvrJ3dNeUFDAyJEjqaqq4rLLLuPqq6+mvr6ezMxM3n33Xe6991738+PWW2/l/fffZ+DAgdx8882YTCby8/NZt24dX3755Qlxt9eUKVMYP34869atY9myZdxzzz0n3ba18d96662EhISwYsUKpk2b1qyU5ZdlLi+++CKrVq3iiiuuYMqUKS0mFy154IEH+OGHH7juuuuYNm0aX331FS+//DJr165l3bp1+Pn5tefhYPLkyVgsFl555RWGDBnCr371K/e605XkbN68mQsuuIDq6mquvPJKzj77bA4cOMDixYtZsWIF33zzDSNHjjxhvzfeeINPPvmEK6+8kkmTJrFx40Y++OADdu7cyY4dOzAaja2Of9myZXzxxRdMnz6dyZMns2PHDj766CNWr17N+vXr3a/vu+66iyVLlvDWW28xadKkE44zb948AO68887TnrMpwfvDH/5wyrKjJ598kg8++IB3332X1157rV1tlJyczFNPPcXLL78MwO9//3v3uuPb57PPPuPaa6+loaGBSy65hF//+tdYLBZ27tzJ3/72N+666y73tvPmzeOuu+7C39+fa6+9lqioKL7//nvmzp3LypUr+fHHH0943gJcf/31bNy4kcsuuwy9Xs/SpUu5/fbb0ev17Nq1i3feeYepU6dy/vnn88knn/DMM89gNpt5+OGHmx2nLe8hwoepQviQbdu2qXq9XlUURb3pppvUjz76SM3KyjrlPm+//bYKqG+//baqqqq6Y8cONSYmRg0KClJXrVp1wvaTJk1Sf/nSWb16tQo0O06Tf/3rXyqg3nXXXe26T0lJSSqgZmZmnnSbppiGDx+ulpWVuZdbrVa1T58+qkajUQsKCprtA6iTJk1qtuzPf/6zCqhXXHGFWl9f32xdfX29Wlxc7L791FNPqYC6evVqVVVVddWqVWpQUJAaExOj7tix46T349JLL1Vra2vdy4uKitTg4GA1ODhYtdls7uUHDx5U9Xq92qdPHzU3N7fZsb755htVo9Gov/rVr9zLXn31VRVQX3755RPObbVa3ee0WCyqoijqiBEjVIfDccK2paWlJyxrSdP9f+qpp0653eOPP64C6s033+xe1vR8OX7f1savqic+Z08Wm9lsVrdt23bC+szMTBVQb7nllmbLb7nlFhVQw8PDm71unE6netVVV6mA+swzzzTbp6Xn0S+Pd/xz92TnbtLSY+NyudT+/furgLp48eJm2y9ZskQF1H79+qlOp/OExyAwMFDdtWtXs31+/etfq4D6wQcftBjDLzU93oC6cuXKZutefvllFVDPO++8ZssHDBigGo3GE55PR44cURVFUceOHXva89rtdtVgMKiAmp6eftrtY2NjVUBdu3ate1lL71e/vF+/fB4lJSWpSUlJLe5TUlKiBgUFqXq9Xv3+++9PWJ+Tk+P+PSsrSzUYDGpgYKC6f//+ZtvdddddKqDOnj272fKmeM855xy1oqLCvfzIkSOqXq9XQ0JC1OTk5GbvCRUVFWp4eLgaERGh2u129/K2vocI3yVlDMKnDBs2jMWLF9OrVy8WL17M1VdfTXJyMuHh4UyfPp2VK1eecv9Vq1YxYcIEFEXhhx9+aHMP37hx4074um/mzJnodDo2bdrU1rvTZnPnziUsLMx929/fnxtvvBGXy8WWLVtOua/T6eSNN97AZDLxr3/964QeL6PRSGRkZIv7Ll68mMsuu4y4uDh++uknhgwZctLzvPrqq5hMJvftqKgopk2bRmVlJQcPHnQvf/PNN7Hb7bzyyivExcU1O8b555/PlVdeycqVK6murm627vhjN/H393cvVxQFVVUxGo1oNCe+Bf7ya+Iz1RR7SUlJq7Y/XfxtcfvttzNs2LA273f//feTlJTkvq3RaPj73/+ORqNhwYIFbT7emVq/fj0HDhzg3HPP5cYbb2y2bsaMGYwfP56DBw+ybt26E/a97777GDRoULNls2fPBmjza/K8885j6tSpzZbde++99OnTh++++46jR4+6l9911100NDScMGLGv//9b1RV5Y477jjt+crLy90lSAkJCafdvmmbzvx6/p133qGqqoq77rqrxV7r+Ph49++LFy/GZrNx7733nlCH/dxzzxEYGMi7775LQ0PDCcf561//2qzHNyUlhfHjx2OxWHjiiSeavSeEhIRwxRVXUFpa2qw8pb3vIcL3SBmD8DnXXXcd06dPZ/Xq1axbt47t27ezbt06Pv74Yz7++GNuvvlmd63a8ZYuXcrXX39N3759+eKLL9r11dY555xzwjK9Xk+vXr2oqKho9306k/M3/QE83fkPHDhAZWUlo0ePJjY2ttXnfOWVV1ixYgXjxo3jk08+ITQ09KTbBgcHk5qa2qoYN2zYAMCaNWvYvHnzCfsUFxfjdDpJT09nxIgRXHnllTz66KPcc889fPXVV1x88cWMGzeOs88+u1lbBwUFccUVV7By5UqGDh3K1VdfzYQJExg9enSnjE6hHqtFPt04yK2Nvy1GjRrVrv1aSmJSUlJISEggKysLi8XS4lfPnWXbtm1AY7LZkvPOO8/9Wp84cWKzdWfymvillh4XrVbL+PHjOXLkCNu3b3d/SLj55pt55JFHeOutt/jDH/4ANJbxLFy4kNDQUK677ro2ndtb/PTTTwBceumlp932VO0WGhrKsGHD+OGHHzhw4MAJH5Bbarem96URI0acsK4pmc3NzXW3QVvfQ4TvkmRX+CS9Xs9FF13ERRddBDT2Wn700UfMnDmTRYsWMX369Gb1gtD4xmi32xk9enSrelFacrIEQKfT4XQ623XMMz2/Ttf4Mj/d+S0WC8AJPSCn88MPP6CqKueff/4pE92TxXeyGJsuyPr73/9+ymNarVYAkpKS2LRpE08//TRffvkly5YtAxoTm4ceeoj77rvPvc8HH3zA3Llzee+999x1wn5+flxzzTW88MILHXo1e1Mv28l6xZu0Jf7Wio6ObnvAcNL7Hx0dzdGjR6msrOzSZLep1jgmJqbF9U3Lm57DxzuT18QvnepxOT5OgMDAQG666Sb+9a9/sXr1aqZMmcInn3xCYWEhv//971tVUxsWFobBYMBms5GTk3PKenmAnJwcgDZ9WG2rtrxPnEm7tXSBcVO7nWqd3W53L2vre4jwXVLGIHoErVbLddddxwMPPADAd999d8I2f/nLX7jyyit5++23mTlz5kmv7PVVTUlBW69Snz9/PqNHj2bOnDk8+eSTHRZP0x+0yspKVFU96c/xvW1nnXUWH3zwAWVlZWzZsoW//vWvuFwu7r//fubPn+/ezmQy8fTTT5Oenk52djaLFy9m/PjxLF68mGuuuabD7gPA6tWrARg9evRpt21t/K3V3h7hoqKiFpcXFhYCzZMNRVFwOBwtbt9SEtMeTedrOv8vNY100dnjBrflcQHcF2o1XZDW9O/tt9/eqvPpdDr38+Z0o4Ts37+f/Px8jEZjs17RplKdltqoPe3TlvcJT7dbe95DhG+SZFf0KIGBgQAtDnNlNBpZunQp1157LQsXLuSmm2466R9xX9S/f39CQkLYtWtXm2r+QkJC3LXO//d//8ef/vSnDolnzJgxAKxdu7bN++p0OkaMGMHDDz/M+++/D8DHH3/c4rYJCQnceOONfPXVV6SmprJu3bpmw5Sdie+++44ff/wRk8nE9OnTW73f6eLXarVA23smW6ulIbMyMjLIyckhOTm5WW9paGiou0fxeE6nkx07dpywvD2xN9Udn2xq6qYPFMOHD2/1MdujpcfF6XS6a4V/WR89ePBgxo0bx/Lly9m4cSPffPMNEydO5Kyzzmr1OWfNmgXASy+9RF1d3Um3e/bZZwH4zW9+06zXuOnblpba6GR1/Fqt9qTt0/S6/OKLL04b+6nazWKxsGPHDvz8/Nr0eLTFmbyHCN8iya7wKe+//z6rVq1qsVe2sLDQPYzPL+v6muj1et5//31uuukm3n//fWbMmNHsazFfptVqufvuu6mrq+POO+884aIRm8120ousAgMD+fLLLzn//PP5+9//zv3333/G8dx7773o9XoeeOCBFoeSs9lszf6Ibd26tcWhtZp645rqcUtKSti9e/cJ29XU1GC1WtHpdBgMhjOKXT02qcS1114LwJw5c05bUtDa+OHni+iys7PPKM6TeeWVV5pdbOVyufjjH/+Iy+Vyj/HbZNSoUWRnZ/P11183W/7ss882O0aT0NBQFEVpU+zjxo2jX79+rFu3zj12cZOlS5eydu1a0tLSGD9+fKuP2R7fffcdn376abNl//znPzly5AhTpkxpdlFfk7vuugubzcbVV1+NqqqtGm7seDfeeCNTpkzh8OHDXHPNNSfUGTudTp588knee+89YmJi+L//+79m65vqto8foxYax75t+iD1S+Hh4ZSUlLSYXN9yyy0EBQXx5ptv8sMPP5ywPjc31/37TTfdhF6v57XXXuPw4cPNtnviiSeoqqripptuatPwb23R1vcQ4bukZlf4lI0bN/LKK68QHR3N+PHj3QPYZ2Zm8tlnn1FXV8e0adNO+VW1VqvlnXfewc/Pj//85z9cddVVLF26tNPekL3JU089xcaNG1m5ciVpaWlMnTqVwMBAcnJy+Prrr/n73/9+0okIzGYzn376KVdffTWvvvoq9fX1/Otf/2r3V+n9+/dnwYIFzJw5kwEDBnDJJZeQlpaG3W4nOzubtWvXEhkZyYEDBwB49913mTdvHuPHj6dPnz6EhoZy5MgRVq5cidFodI8ZmpeXx7Bhwxg0aBCDBw8mISGBqqoqPv30UwoLC7nvvvvc3wC0xvfff++eAKGuro78/Hx+/PFHMjMzMRqNzJ07lz/+8Y+nPU5r4wc499xzMZvNvPzyy5SVlbkT6d/97ncd8pXwuHHjGDp0KDNmzCA4OJivvvqKnTt3MmLEiBN67h966CG++uorpk2bxowZMwgLC2P9+vVkZmYyefLkE3r1AgICGD16NGvXruXGG28kLS0NrVbLlVdeyeDBg1uMR1EU3nnnHS688EJmzJjBtGnT6N+/PwcPHuTjjz8mMDCQRYsWtTi6Rke64oormD59OtOnTyc1NZUdO3bwxRdfEBYWxhtvvNHiPtdeey0PPPAAeXl5REREcNVVV7XpnFqtlo8++ohrrrmGzz//nJSUFC6//HKSkpLc0wVnZmaSnJzMypUrT/hQddttt/H3v/+d559/np07d3L22WeTnp7uHi/4o48+OuGc559/Pps3b+aSSy5h4sSJGI1GhgwZwhVXXEFERATvvfce11xzDVOmTOHSSy9l8ODBVFVVsWvXLnJycsjMzAQax+19+eWXueeeexg+fDjXXXcdkZGRrFmzhg0bNtC/f3/mzp3bpsejLdr6HiJ8WJcOdCZEJ8vOzlb/+c9/qr/61a/UtLQ0NTAwUNXr9Wp0dLR66aWXqu+++26zsThV9eRjTbpcLvXee+9VAfWiiy5yj3N6qnF2Tzbm6qnGrTydtoyz25KT3T9OMj6q3W5XX3vtNXXkyJGqv7+/ajab1dTUVHX27NnqoUOH3Nv9cpzdJg0NDer06dPdY6k2Pd6negxOdixVVdVdu3apt9xyi5qYmKgaDAY1NDRUHTBggHr77ber3377rXu7n376Sb3zzjvVwYMHq6Ghoaqfn5/ap08f9dZbb1V3797t3q6iokKdM2eOOmXKFDU2NlY1GAxqdHS0OmnSJPW9995TXS5XizGeLOamH0VR1ICAADUxMVG99NJL1b/+9a8njO3ZpKXnS2vjb/LFF1+oY8aMUf39/d0xND1HTvV4qurpx9k9cuSI+sILL6j9+vVTjUajGhsbq95///1qZWVli8dbsWKFOmLECNVoNKphYWHqjBkz1KysrBbH2VVVVT106JA6depUNSwsTFUUpdnz81SvpQMHDqg33XSTGh0drep0OjU6Olq98cYb1QMHDpyw7akeg9ON9ftLx7+GVq5cqY4ZM0Y1m81qcHCwetVVV6kHDx485f6///3vVUB96KGHWnW+lrhcLvWDDz5Qp06dqkZHR6t6vV4NDQ1Vx44dq77wwgtqTU3NSffds2ePeumll6oBAQGqv7+/OmnSJPX7778/6XuD1WpV77zzTjUuLk7VarUtPlZ79uxRf/Ob36ixsbGqXq9Xo6Ki1IkTJ6rz5s074fxfffWVeuGFF6ohISGqwWBQ+/Tpo/7xj39sNo5uk1O9l53s+aSqHfMeInyXoqonmaNTCCGEEGds8uTJ/PDDDxw8ePC0IyoIITqe1OwKIYQQnWTTpk2sWbOGiy++WBJdITxEanaFEEKIDvbmm2+Sl5fH22+/jUajYc6cOZ4OSYgeS8oYhBBCiA6WnJxMbm4uKSkpPP3009xwww2eDkmIHkuSXSGEEEII4bOkZlcIIYQQQvgsSXaFEEIIIYTPkmRXCCGEEEL4LEl2hRBCCCGEz5Khx06hoqICh8PRJeeKjIykpKSkS84lOo+0o2+Qduz+pA19g7Sjb+isdtTpdISGhp5+uw4/sw9xOBzY7fZOP4+iKO7zyeAY3Ze0o2+Qduz+pA19g7Sjb/CGdpQyBiGEEEII4bMk2RVCCCGEED5Lkl0hhBBCCOGzJNkVQgghhBA+Sy5QE0IIIYTwgIaGBhoaGjwdRqerq6vDZrO1a1+j0YjRaDyj83tVsrtv3z4++eQTMjMzqaio4KGHHmLUqFEtbvvWW2/xzTffcMstt3D55Ze7l1utVhYsWMDWrVtRFIXRo0dz22234efn11V3QwghhBDilGpqalAUhcDAQPeIBb5Kr9e3a3QrVVWpq6ujpqYGf3//dp/fq8oYGhoaSE5O5re//e0pt9u0aROHDh1qcWy1V199lZycHB5//HEeeeQR9u/fz7x58zorZCGEEEKINnM4HJjNZp9PdM+EoiiYzeYznvPAq5LdYcOGcf3115+0NxegvLycBQsWcN9996HTNe+Yzs3NZceOHdx555307duX/v37M3PmTNavX095eXlnhy+EEEII0SqS5LbemT5WXlXGcDoul4vXXnuNK6+8koSEhBPWp6en4+/vT58+fdzLBg0ahKIoHD58+KRJtN1ub9a9rigKJpPJ/XtnazqHPPG7N2lH3yDt2P1JG/oGaUdxvDN5HnSrZHfFihVotVouvfTSFtdbLBaCgoKaLdNqtQQEBGCxWE563OXLl7N06VL37d69ezN37lwiIyM7JO7Wio6O7tLzic4h7egbpB27P2lD3+Cr7VhXV4der/d0GF3mTO6rwWAgJiam3ft3m2Q3IyODzz//nLlz53b4p7zp06czdepU9+2m45eUlJxxnUhrKIpCdHQ0hYWFMiViNybt6BukHbs/aUPf4OvtaLPZ2nXRVnfU3gvUmthsNgoKCk5YrtPpWtUx2W2S3f3791NVVcXdd9/tXuZyuVi0aBGff/45r7/+OiEhIVRVVTXbz+l0YrVaCQkJOemx9Xr9ST9xdNULrKS8glqbs0vO1Vp6rQat4ntvMJ1NVVWffGPuaaQduz9pQ9/Qk9sxLy+PF198ke+//57y8nKioqK45JJL+P3vf09YWFirjpGTk8OYMWP46quvGDhwYCdH3HnO5DnQbZLdiRMnMmjQoGbLnnvuOSZOnMiUKVMASEtLo6amhoyMDFJSUgDYs2cPqqqSmpra5TG3RYPNwbIf9+JNL+erxw1Aq5NaKSGEEKKrHT16lCuvvJKUlBRef/11EhMTOXjwIM8++yzfffcdK1eubHFUKnEirxqNob6+nqysLLKysgAoLi4mKyuL0tJSAgMDSUxMbPaj0+kICQkhNjYWgPj4eIYOHcq8efM4fPgwBw4cYMGCBYwdO7bVn4CEEEIIITztscceQ6/X895773HuuecSFxfHeeedx5IlSygsLGTu3LkAxMXF8eWXXzbb96yzzuKDDz4AYMyYMQBcfPHFxMXFcc0117i3W7JkCVOmTKF3794MGzaMxx57zL0uLy+P2267jb59+9KvXz/uuOMOSkpK3OtffPFFLrzwQpYsWcLIkSPp27cvf/7zn3E6nbzxxhsMHTqUwYMH88orrzSLrbKykoceeohBgwbRr18/rr32Wvbu3duxD94veFXP7pEjR5gzZ4779qJFiwCYNGkS99xzT6uOcd999zF//nyeeeYZ96QSM2fO7JR4hRBCCCE6WkVFBd9//z0PP/ywe3SoJlFRUVx11VWsXLmS559//rTH+uyzz7j88stZsmQJ/fr1c5dtvvPOOzzzzDP8+c9/ZsqUKVRXV7N582agsUz0tttuw9/fn48++giHw8Fjjz3GXXfd1eyC/qNHj/Ldd9/x3//+l6ysLO644w6ys7NJSUlh6dKlbN26lQcffJApU6YwePBgAO644w78/PxYvHgxgYGBLF68mBkzZrB27dpO66n2qmR3wIABfPjhh63e/vXXXz9hWUBAAPfff39HhiWEEEII0WUyMzNRVZW+ffu2uD41NRWLxUJZWdlpjxUeHg5AaGgoUVFR7uWvvvoqt99+O7NmzXIvGzp0KADr1q3jwIEDbNiwgbi4OABeeeUVpkyZwo4dO9zbuVwuXnrpJQICAkhLS2Ps2LEcOXKEd999F41GQ2pqKq+//jo//vgjgwcPZtOmTezYsYOdO3e6pwB+8skn+eqrr/jss8+46aab2vxYtYZXJbtCCCGEEKJRZ12YV1paSmFhIePHj29x/aFDh4iNjXUnutB4XVRwcDCHDh1yJ7sJCQkEBAS4t4mIiECj0aDR/FwlGxkZ6S5/2LdvHzU1NSdcKFdfX8/Ro0c76u6dQJJdIYQQQggvkpycjKIoHDp0qMW5BQ4fPkxISAjh4eEoinJCUny6Yb78/Pw6JM5fzmSrKMoJo1sdH19NTQ1RUVHNSiGaBAcHd0hMLfGqC9SEEEIIIXq6sLAwJk6cyDvvvENdXV2zdcXFxSxbtowrrrgCRVEIDw+nqKjIvT4jI6PZPk3Jp8vlci8LCAggISGBdevWtXj+vn37kp+fT15enntZeno6lZWVpKWltft+DRo0iJKSEnQ6Hb17927205kDCUiyK4QQQgjhZZ599llsNhs33ngjP/30E3l5eaxevZpf//rXREdH8/DDDwMwbtw4Fi5cyJ49e9i5cyePPPJIs97ViIgI/Pz8WL16NSUlJe75CB588EHeeust5s+fT0ZGBrt372bBggUATJgwgf79+/O73/2O3bt3s337du6//37OPfdchgwZ0u77NGHCBEaMGMHMmTNZs2YNOTk5bN68mb/+9a/s3LnzDB6tU5NkVwghhBDCy6SkpPDFF1+QmJjInXfeybhx4/jTn/7E2LFj+eSTT9wjFzz55JPExsYyffp07rnnHu68885mIzjodDr+7//+j8WLFzN8+HD3CFXXXXcdTz/9NO+88w7nnXcet9xyC5mZmUBj6cHbb79NcHAwV111Fddffz2JiYm8+eabZ3SfFEXh3XffZcyYMTz44INMmDCBu+++m7y8PCIiIs7o2Kc8r9pTpyVphZKSki6Zyk9RFJyKjiWrt3vdpBJ+MqlEqymKQkxMDAUFBT12th9fIO3Y/Ukb+gZfb8eqqiqCgoI8HUaXONPpgk/2WOn1+lZNFyw9u0IIIYQQwmdJsiuEEEIIIXyWJLtCCCGEEMJnSbIrhBBCCCF8liS7QgghhBDCZ0myK4QQQgghfJYku0IIIYQQwmdJsiuEEEIIIXyWJLtCCCGEEMJn6TwdgBBCCCGEaB2nqmB3urrkXHqtBq3S/Wevk2RXCCGEEKKbsDtdfPTj3i4519XjBqDVKW3eb+HChbz55puUlJRw9tln8/zzzzNo0KBOiLB1pIxBCCGEEEJ0iBUrVjBnzhwefPBBvvzyS84++2xmzJhBaWmpx2KSZFcIIYQQQnSIf//739xwww3MmDGDtLQ0/vrXv2IymViyZInHYpJkVwghhBBCnDGbzcauXbuYMGGCe5lGo2HixIls3brVY3FJsiuEEEIIIc5YeXk5TqeTiIiIZssjIyMpKSnxUFSS7AohhBBCCB8mya4QQgghhDhjYWFhaLXaEy5GKykpITIy0kNRSbIrhBBCCCE6gMFgYPDgwaxbt869zOVysXbtWkaMGOGxuGScXSGEEEII0SFmz57NAw88wODBgxk2bBj//ve/qa2tZcaMGR6LSZJdIYQQQohuQq/VcPW4AV12LmjbDGrTpk2jvLycF154gZKSEgYMGMCSJUs8WsYgya4QQgghRDehVdR2zWrWPu2bKvi2227jtttuc9/W6/XY7faOCqrNpGZXCCGEEEL4LEl2hRBCCCGEz5JkVwghhBBC+CxJdoUQQgghhM+SZFcIIYQQQvgsrxqNYd++fXzyySdkZmZSUVHBQw89xKhRowBwOBwsWbKE7du3U1xcjNlsZtCgQdxwww2EhYW5j2G1WlmwYAFbt25FURRGjx7Nbbfdhp+fn6fulhBCCCGE8BCv6tltaGggOTmZ3/72tyess9lsZGZmcvXVVzN37lz+8Ic/kJ+fz9/+9rdm27366qvk5OTw+OOP88gjj7B//37mzZvXVXdBCCGEEEJ4Ea/q2R02bBjDhg1rcZ3ZbOaJJ55otmzmzJk8+uijlJaWEhERQW5uLjt27OD555+nT58+7m2ef/55fvOb3zTrAT6e3W5vNv6boiiYTCb3753NfQ5FQVHbN6ZdZ+mK++8rmh4recy6N2nH7k/a0DdIO4rjncnzwKuS3baqra1FURTMZjMA6enp+Pv7uxNdgEGDBqEoCocPH3aXRPzS8uXLWbp0qft27969mTt3bpfO9pFbWEJAQECXna81DAYDMdGem/Gku4qOjvZ0CKIDSDt2f9KGvsFX27Gurg69Xu/pMLrMmdxXg8FATExMu/fvtsmuzWbjv//9L+PGjXMnuxaLhaCgoGbbabVaAgICsFgsJz3W9OnTmTp1qvt206eHkpISHA5Hxwf/C43n02K1WsGLenZtNhsFBQWeDqPbUBSF6OhoCgsLUb2oHUXbSDt2f9KGvsHX29Fms7VrVjGnFuyqsxMiOpFe0aLtgFOd6QxqJ8tHdDpdqzomu2Wy63A4+Mc//gHArFmzzvh4er3+pJ84uuwFpgCq2s6J+TqPL77BdDZVVeVx8wHSjt2ftKFvkHZszq46WZ6/pUvONT32HLRo27TPTz/9xJtvvsnu3bspKipi/vz5XHHFFWccy5k8B7zqArXWaEp0S0tLefzxx929ugAhISFUVVU1297pdGK1WgkJCeniSIUQQgghepba2lrOPvtsnnvuOU+H4tatenabEt3CwkKeeuopAgMDm61PS0ujpqaGjIwMUlJSANizZw+qqpKamuqJkIUQQggheozzzjuP8847z9NhNONVyW59fT2FhYXu28XFxWRlZREQEEBISAgvvfQSmZmZPPzww7hcLncdbkBAADqdjvj4eIYOHcq8efOYPXs2DoeDBQsWMHbs2JOOxCCEEEIIIXyXVyW7R44cYc6cOe7bixYtAmDSpElce+21bNnSWKPypz/9qdl+Tz31FAMGDADgvvvuY/78+TzzzDPuSSVmzpzZRfdACCGEEEJ4E69KdgcMGMCHH3540vWnWtckICCA+++/vyPDEkIIIYQQ3VS3u0BNCCGEEEKI1pJkVwghhBBC+CyvKmMQQgghhBDdV01NDZmZme7b2dnZ7N69m8DAQOLi4jwSkyS7QgghhBDdhF7RMj32nC47V1vt3LmTa6+91n27aeCBa6+9lpdffrmjQmsTSXaFEEIIIboJrZM2z2rWlcaOHUteXl6zZWc6XfCZkppdIYQQQgjhsyTZFUIIIYQQPkuSXSGEEEII4bMk2RVCCCGEED5Lkl0hhBBCCOGzJNkVQgghhPAAl8vl6RC8Xkc8RpLsCiGEEEJ0MbPZTHV1tSS8p+ByuaiursZsNp/RcWScXSGEEEKILqbT6fD398dqtXo6lE5nMBiw2Wzt2tff3x+d7szSVUl2hRBCCCE8QKfTERQU5OkwOpWiKMTExFBQUICqqh6JQcoYhBBCCCGEz5JkVwghhBBC+CxJdoUQQgghhM+SZFcIIYQQQvgsSXaFEEIIIYTPkmRXCCGEEEL4LEl2hRBCCCGEz5JkVwghhBBC+CxJdoUQQgghhM+SZFcIIYQQQvgsSXaFEEIIIYTPkmRXCCGEEEL4LEl2hRBCCCGEz5JkVwghhBBC+CxJdoUQQgghhM+SZFcIIYQQQvgsSXaFEEIIIYTP0nk6gOPt27ePTz75hMzMTCoqKnjooYcYNWqUe72qqnz44Yd8++231NTU0L9/f2bNmkVMTIx7G6vVyoIFC9i6dSuKojB69Ghuu+02/Pz8PHGXhBBCCCGEB3lVz25DQwPJycn89re/bXH9ihUr+OKLL5g9ezZ/+ctfMBqNPPfcc9hsNvc2r776Kjk5OTz++OM88sgj7N+/n3nz5nXVXRBCCCGEEF7Eq5LdYcOGcf311zfrzW2iqiqff/45V111FSNHjiQpKYl7772XiooKNm/eDEBubi47duzgzjvvpG/fvvTv35+ZM2eyfv16ysvLu/ruCCGEEEIID/OqMoZTKS4uxmKxMHjwYPcys9lMamoq6enpjBs3jvT0dPz9/enTp497m0GDBqEoCocPH24xiQaw2+3Y7Xb3bUVRMJlM7t87m/scioKiqp1+vrboivvvK5oeK3nMujdpx+5P2tA3SDv6Bm9ox26T7FosFgCCg4ObLQ8ODnavs1gsBAUFNVuv1WoJCAhwb9OS5cuXs3TpUvft3r17M3fuXCIjIzsk9tbILSwhICCgy87XGgaDgZjornsMfEV0dLSnQxAdQNqx+5M29A3Sjr7Bk+3YbZLdzjR9+nSmTp3qvt306aOkpASHw9Hp5288nxar1Qpe1LNrs9koKCjwdBjdhqIoREdHU1hYiOpF7SjaRtqx+5M29A3Sjr6hM9tRp9O1qmOy2yS7ISEhAFRWVhIaGupeXllZSXJysnubqqqqZvs5nU6sVqt7/5bo9Xr0en2L67rsBaYAqoq3vZzlDabtVFWVx80HSDt2f9KGvkHa0Td4sh296gK1U4mKiiIkJITdu3e7l9XW1nL48GHS0tIASEtLo6amhoyMDPc2e/bsQVVVUlNTuzxmIYQQQgjhWV7Vs1tfX09hYaH7dnFxMVlZWQQEBBAREcFll13GsmXLiImJISoqiiVLlhAaGsrIkSMBiI+PZ+jQocybN4/Zs2fjcDhYsGABY8eOJSwszFN3SwghhBBCeIhXJbtHjhxhzpw57tuLFi0CYNKkSdxzzz1MmzaNhoYG5s2bR21tLf379+fRRx/FYDC497nvvvuYP38+zzzzjHtSiZkzZ3b5fRFCCCGEEJ7nVcnugAED+PDDD0+6XlEUZsyYwYwZM066TUBAAPfff39nhCeEEEIIIbqZblOzK4QQQgghRFtJsiuEEEIIIXyWJLtCCCGEEMJnSbIrhBBCCCF8liS7QgghhBDCZ0myK4QQQgghfJYku0IIIYQQwmdJsiuEEEIIIXyWJLtCCCGEEMJnSbIrhBBCCCF8liS7QgghhBDCZ0myK4QQQgghfJYku0IIIYQQwmdJsiuEEEIIIXyWJLtCCCGEEMJnSbIrhBBCCCF8ls7TAQghOo9TVbA7XZ4O4wR6rQatono6DCGEED2AJLtC+DC708VHP+71dBgnuHrcALQ6xdNhCCGE6AEk2fUSdocDu6IC3tPbpUouIoQQQohuTpJdL+FC5UB1Pl6V7DIQkIxXCCGEEN2XXKDmBSw19Z4OQQghhBDCJ0nProeVVNZy26sr6RXiT4PGhtlfS0ioQeoZhRBCCCE6gCS7HpZVbEEBiiw1AFjK7ZQV2+id5o9eLx3vQgghhBBnQrIpDxvZN5YP/nQVj10/kahoIzq9QkODi8xDNdjt3jdklBBCCCFEdyLJrhfw9zMwtE8MvWJNpKT5Nya89Y0Jr0MSXiGEEEKIdpNk18sYjVpS+v6c8ObnyMVrQgghhBDtJcmuFzL6aUnu4w9ApcVOjdXh4YiEEEIIIbonSXa9lMmsJSzCAEB+Th2q6j3j7wohhBBCdBftTnbnzJnD7t27T7p+z549zJkzp72HF0CvGCMaDdTXuagos3s6HCGEEEKIbqfdye6+ffuorKw86fqqqir27dvX3sMLQKfXEBXjB0BRfj1Op/TuCiGEEEK0RaeNs1tYWIjJZOqsw/cY4ZEGyktt2BpclJfYiIw2ejok0U3U2ezklddSZKmh3ubA6fp5ZA+jXoefQYfZqMNPr0NRZBITIYQQvqlNye7333/PmjVr3LeXLVvGt99+e8J2tbW1HD16lGHDhp15hMdxuVx8+OGHrF27FovFQlhYGJMmTeLqq692/7FWVZUPP/yQb7/9lpqaGvr378+sWbOIiYnp0Fi6ikajENnLSF52HWWlDUT0MkhiIk5gqannYG4Z+3PLyCyqILu0ipLK2lbtazLoCA8yERlkJiEiCH8/QydHK4QQQnSdNiW7NpuNqqoq9+26uroTEi9FUTAajVx44YVcc801HRPlMR9//DGrVq3innvuIT4+noyMDN544w3MZjOXXXYZACtWrOCLL77gnnvuISoqig8++IDnnnuOl156CYOhe/4RDwnTU5hXj92mUl3pIChE7+mQhIc12B3syS5h25FCth8pJLu0qsXt/P30aDUa/PRatBoNigKq2rh/nc1Bva3x39zSanJLq9meUURksJnevUJIjgpGq5FrWIUQQnRvbUp2L7roIi666CIA7rnnHm677TbOOeecTgmsJenp6ZxzzjkMHz4cgKioKNatW8fhw4eBxl7dzz//nKuuuoqRI0cCcO+99zJ79mw2b97MuHHjuizWjqTRKISG6ykttlFWYpNkt4cqstTw08Fcth4pZM/REmwOp3udAiREBtE/Lpy+sWEkRQWTEBGEXm/gox/3nvSYDqeL8uo6SqtrKSi3UlxZS8mxnz1HSzg7IYKU6BBJeoUQQnRb7a7Zff311zsyjlZJS0vj22+/JT8/n9jYWLKysjh48CA333wzAMXFxVgsFgYPHuzex2w2k5qaSnp6+kmTXbvdjt3+82gHiqK46427omSg8RxNF5+1fL7wSCOlxTas1Q4a6l0Y/bSdHtfPsYnWaHqsOvIxyy+vZt2+HH7cn8Phgopm6yKCTAzvE8PwPtEM7d2LQNOJ9dx1dtdJnlGN9FoNvUL86RXiz4CESGrq7RwtsXAwr5zaBjtbDhdwILeUUX1jiQ4N6LD7Bd773OqMdhRdS9rQN0g7+gZvaMczvkCtrq6OkpISampqWhwL9uyzzz7TU7j96le/oq6ujgceeACNRoPL5eL6669nwoQJAFgsFgCCg4Ob7RccHOxe15Lly5ezdOlS9+3evXszd+5cIiMjOyz20zmSm3/KMguDAYJDGqi02LCUO0hI7vyL/xRF021rnT0pOjr6jPYvKK/i840HWLUtnfTcEvdyjaIwvG8cEwelMHZAMr2jw0775pFbWEJAYGCrzx0QCL0iwxjeL5kDOcXsOJyHtd7Od7uPkhYfyblnJ2HUn/l1rQaDgZjornt9tceZtqPwPGlD3yDt6Bs82Y7t/qtVVVXFggUL2LhxI67jrvL+pQ8++KC9pzjBhg0bWLduHffddx8JCQlkZWWxcOFCQkNDmTx5cruPO336dKZOneq+3ZRAlJSU4HB0/uxlTeez2Wyn3C40Qk+lxUZpcR0RvQxotZ37KUlVXRQUFHTqOXyJoihER0dTWFjY5klA6mx2ftyfy3c7M9mVVezu59coCkN792Lc2QmM6RdHiL/fsTU2CgsLT3tcm92Ftbq6bXfkmORwf+KC+7Ajq5hD+eWk55aQV2JhwoAEwgLO7MOWzWbz2ufWmbSj8A7Shr5B2tE3dGY76nS6VnVMtjvZfeutt9i6dSuXXnop/fv3JyCgY7/ibMnixYuZNm2auxwhMTGRkpISPv74YyZPnkxISAgAlZWVhIaGuverrKwkOTn5pMfV6/Xo9S3XwXb9C+zk5wsI1GIwarA1uKiqtBEa1vkX3MkbTNupqtqqx01VVfbnlvLltgzW78+l3v7zB6vByVFMHpjEmH5xBJmNzfZpczxt3uNnOp2Wc1JjSIoM5qeDeVjrbazakcnIvrH07hVyBkf2/udWa9tReC9pQ98g7egbPNmO7U52d+7cyeWXX85NN93UkfGcUkNDA5pfXCij0WjcD15UVBQhISHs3r3bndzW1tZy+PBh94V13ZmiKISE6ikubKCy3N4lya7oeHank3V7c/hkUzqHjqvDjQ0L4PzBvZkyKImoEH8PRniiyGAzFw9PYcOBXPLLrfx0MI/K2gaGJEdJPZ0QQgiv1u5k12g0dmlNK8CIESNYtmwZERERxMfHk5WVxaeffsqUKVOAxmTwsssuY9myZcTExBAVFcWSJUsIDQ11j87Q3QUfS3at1Q4cDhc6nVwl311U1tTzxbYjfLblMBXWegAMOi2TByZy4bAU+seFe3XiaNBpmTggkd1HS9ibXcL+nFJsdifn9I1B48VxCyGE6NnanexOmDCBTZs2cfHFF3dkPKc0c+ZMPvjgA/7zn/9QWVlJWFjYCeP5Tps2jYaGBubNm0dtbS39+/fn0Ucf7bZj7P6Sn0mLn0lDfZ2LKouDsAjfuF++rMJaz9L1+/l8y2Hszsb69rBAE1PPSeXi4X0INnefWfEURWFwchT+Rj2bD+VzpLACu9PJmH5xMjyZEEIIr9TuZHfMmDHs27eP5557jgsuuIDw8PATSgwAUlJSzijA45lMJm699VZuvfXWk26jKAozZsxgxowZHXZebxMcqqe+roHKCrsku16spt7G/348wMrN6TTYG8fE7RsbxrRRaYw7Ox69tmuGj+sMfWJC0es0bDiQR3ZJ44QW5/aPlx5eIYQQXqfdye6TTz7p/n3Xrl0n3a4jR2MQjUJCDRTlN5Yy2O0u9HrpUfMmLlVl1Y4MFn23C0tNAwBpsWH8Zsoghvbu5dWlCm2RGBmMTqth7d4cskuq0GsLGNk3xmfunxBCCN/Q7mT3rrvu6sg4RBsYjBpMZi11tU4qK+xERHWfr8F9mUOF9bsO8fLH6zlcUA5AbFggvzlvMOekxqIoCg1OOLPxEdqms88UGxbIuf3jWL8/lyOFFRh0GoamyJiYQgghvEe7k90zGddWnLmQUL0ku17E6XKxZN1+Pli7F5dLRa/VMCApkrTYMLKLLWQXWzwS1/SxAzr9HImRwdgdLjYdymd/bhkmo55+ceGdfl4hhBCiNc58KiThEcGhegry6qmtcWK3udAbpJTBU4otNfz1o/Wk5zf15gYwsm8sZmPLYzf7oj4xoTQ4HOzMLGb7kUICTQZiw1o/c5sQQgjRWdqd7L7xxhun3UZRFCl36CR6w8+lDNVVMiqDp2xKz+elFRux1tvw99Mzsl8iMUFG6IF1q2fFR1BVayOzyML6/blcOLQ3we4Z34QQQgjPaHeyu3fv3hOWuVwuLBYLLpeLoKAgjEb5er0zBQXrqKt1UmWRURm6mqqq/HfNHpas3Qc0jrLwwLRz2ZFdhrW6ugurcr2HoiiM7BuDtd5GSWUta/Zmc/GwFIx6+QJJCCGE57T7r9Drr7/e4nKHw8E333zDZ599xhNPPNHuwMTpBYXoKSpoHJXB5VLRaHpeb6In2B1OXl65iTV7sgG4YmRfZl44BKeqgewyD0fnWVqNhglnJ/D19gys9XY2HMhj0sBEGaFBCCGEx3R4oadOp+OSSy5hyJAhzJ8/v6MPL45j9NOgNyioKlirHJ4Op0ew1tl44r01rNmTjVajcN8VI7njkuHdeszcjmbU6xh/diJajUJBhZU92SWeDkkIIUQP1mlXNSUlJbF///7OOryg8WvjoODGi6CqKu0ejsb3VdU28Oi7q9lztASTQcdT10/koqEdN2mKLwkN8GNk31gA9hwtIb+82sMRCSGE6Kk6LdndtWuX1Ox2gcDgxkqU6koHqtoTK0W7RmVNPY++u5qMIgsh/kb+duv5DO8j48meSu9eIaTGhAKw4UAetQ3ygUwIIUTXa3fN7tKlS1tcXlNTw/79+8nMzGTatGntDky0jn+ADo0GHA6VulonZn+5GKijNSa633O0pJLQAD/+ctMUEiKDPB1WtzC8TzRl1XVUWOv56WAeUwYlSf2uEEKILtXuzOh///tfi8v9/f3p1asXs2fP5vzzz293YKJ1NBqFwCA9lRY7VZUOSXY7WJ3NztNL1nK0pJKwQBN/uWky8RGS6LaWVqNhbP94vtx2hCJLDQdyyzgrIcLTYQkhhOhB2p0ZffDBBx0ZhzgDgcE6Ki12qivtRMfKuKYdxeF08fzS9RzKLyfIZJBEt52CzEaG94lm86ECdmUV0yvU39MhCSGE6EFk2i0f0FS3W1/nwm5zeTga36CqKq+s3MS2I4UY9Vqe+vVESXTPQJ/oUOLDA3GpKhv259Jgl9FDhBBCdI0z/s573759bNu2jZKSxuGFIiMjGT58OGefffYZBydaR6f7eTY1a7WD0HCZYOJMfbBuH6t3H0WrUfjzNePoFxfu6ZC6NUVRGJUWS9nWI1TV2Vj47Q7unzrS02EJIYToAdqd7DocDl5++WU2b94MgNlsBqC2tpaVK1cyatQo7r//fnQ6qSHtCgFBOvfUwZLsnpmN6Xks/n4PAHddOoJzUmM8HJFvMOp1jOkXx+rdR1m1PYPRfWMZ0y/O02EJIYTwcWd0gdrmzZu54oormDp1KiEhIQBUVlaycuVKVq5cydKlS7n++us7KlZxCoFBOkoKG2dTU1VVrnhvp5ySKl5Y/hMAl5+TyiXD+3g4It8SHRpA//hwDuSW8erKTfSNvYTwQJOnwxJCCOHD2l2zu27dOiZNmsRNN93kTnQBgoODuemmm5g4cSJr167tiBhFK5j9tWg04Dw2BJlou9oGO89+uI46m4OBiZHMvmiYp0PySYOTo0iJDqWqzsbLn2yS8aGFEEJ0qnYnuxaLhdTU1JOu79u3LxaLpb2HF22kKAoBgY0d9TJ1cNupqsobn28lr7yaiCATj1wzFp1Wrt/sDFqNhvuvHI1Bp2V7RiFfbD3i6ZCEEEL4sHb/NQ8LC2Pfvn0nXb9v3z7CwsLae3jRDgFBx2ZTq5Zkt62+25XF93uOolEU/nTVuYT4yxBunSkuPIhbzx8MwPxvdsh0wkIIITpNu5PdSZMmsWHDBt566y3y8/NxuVy4XC7y8/P597//zYYNG5g8eXIHhipOJzBID0Ct1YnTKV8Nt1ZuaRVvfrENgBsnDeTshEgPR9QzTB3Zl8HJUTTYnby0YiNOlwybJ4QQouO1+wK1q666iqKiIr799lu+/fZbNJrGvNl17A/WpEmTmD59esdEKVrFYNRgMGqwNbioqXYQFKL3dEhez+F08fflG6i3OxicHMU14/p7OqQeQ6Mo/P7KUdw77ysO5JaxbMNBrh13lqfDEkII4WPanexqNBruuecepk6dyvbt25uNszts2DCSkpI6LEjRegFBOspLbFRX+W6y61QV7M6O6QX8YO1ejhRaCPAzcO/U0dhdCnZX+3rFpS+97aKC/bnj4mH845NN/Pf7PYzoE01KdKinwxJCCOFD2pTs2mw2Fi5cSEJCApdeeikASUlJJyS2n3/+OatWreLWW2+VcXa7WGBgY7Lryxep2Z0uPvpx7xkfp7y6jq93ZACNIwSs3pVxRsebPnbAGcfUE503OJkNB/P46WAeL63YyD9+eyF6ndbTYQkhhPARbarZ/eabb1izZg3Dhw8/5XbDhw9n9erVfPfdd2cUnGg7/0AdigI2m4uGehmC7GScLhc/peehqpAQEURipEwF7CmKonDv5ecQbDaSVVzJf9fs8XRIQgghfEibkt0NGzYwevRoevXqdcrtoqOjGTNmDD/++OMZBSfaTqtVMPs39opZZVSGk9qbXUJlTQNGvZZzUmNkEg4PC/H343fHpg/+aP0B9maXeDgiIYQQvqJNyW52djb9+7fuAp5+/fpx9OjRdgUlzox7CDIfLmU4E5U19ezLKQXgnNQY/AxSauMNxvSL44IhyajAPz7ZSJ3N7umQhBBC+IA2JbsOh6PVNbg6nQ67Xf5YeULTEGQ11Q5c7bzYylepqsrmQwWoKsSFB5IYGezpkMRxZl80jMhgM4UVNSz4ZqenwxFCCOED2pTshoWFkZ2d3apts7OzZVIJD/EzadDqFFwuqK2Rut3jZRRaKKmqRafRMKJPtKfDEb/g72fggStHAfDF1iNsOVzg4YiEEEJ0d21KdgcNGsQPP/xAZWXlKberrKzkhx9+YNCgQWcUnGgfRVEIlKmDT1Bvc7AjswiAQcmR+PsZPByRaMng5F5cOaovAK+u3ER1XYOHIxJCCNGdtSnZnTZtGna7nWeeeYZDhw61uM2hQ4d45plnsNvtXHnllR0SpGi7n+t2pZSkyY7MImwOJyH+fqTFhXs6HHEKt5w3mPjwQMqt9e7Z7YQQQoj2aNOVOb169eKBBx7glVde4fHHH6dXr14kJibi5+dHfX09OTk5FBYWYjQauf/++4mO7vivicvLy1m8eDE7duygoaGB6Oho7r77bvr06QM01mR++OGHfPvtt9TU1NC/f39mzZpFTExMh8fizZqS3fo6Fw67C52+3TND+4TSqloyiywAjOwbg0ZGX/BqRr2OB381mocWfMsPe7MZnRbHpIGJng5LCCFEN9Tmy9CHDx/O3//+d1asWMG2bdvYvHmze11oaCjnn38+06ZNO+3wZO1htVp54oknGDBgAI8++ihBQUEUFBTg7+/v3mbFihV88cUX3HPPPURFRfHBBx/w3HPP8dJLL2Ew9JyvrfV6DX4mDfV1LqzVDkLCes59/yVVVdl2pBCA3r1CiAgyezgi0RppseHMmHA27/+wlze/2MrApEjCA02eDksIIUQ3064xl6Kiopg9ezYAdXV11NXVYTKZMJk69w/RihUrCA8P5+67724WSxNVVfn888+56qqrGDmycczOe++9l9mzZ7N582bGjRvXqfF5m4AgHfV1jVMH9+RkN7PIQll1HTqthiHJUaffQXiNGePPZvOhfA4XVPDqp5t5+voJMiayEEKINjnjAUa7IsltsmXLFoYMGcJLL73Evn37CAsL46KLLuKCCy4AoLi4GIvFwuDBg937mM1mUlNTSU9PP2mya7fbmw2TpiiK+z51xR/WxnM0DRHWcecLDNJTWtQ4dbCqtu++eGdiobb6UbI5nOzMLAZgYGIkZqO+88JqoigoqvcM+eaNLQite27pdVr+8Ksx3PfWV2w9XMBX2zO4dERql8Tlnc990RrShr5B2tE3eEM7dqvR9IuLi1m1ahWXX34506dP58iRI7z99tvodDomT56MxWIBIDi4+dipwcHB7nUtWb58OUuXLnXf7t27N3PnziUyMrIz7kaLjuTmd3iZRUioHkVTg8Oh4nJqMZnb1tyKovHKWufcwhICAgNbte3GA9nU2x0E+/sxon8SWk3n1S4rmsYXckBAQKedo60UjdLqx6orGQwGYqJb9/qKiYnhd9NreWnpGuZ/s5MLRw8iITKkcwOETrnmQHQtaUPfIO3oGzzZjt0q2XW5XPTp04cbbrgBaExKs7OzWbVqFZMnT273cadPn87UqVPdt5s+fZSUlOBwdP7QXU3ns9lsHX5s/wAd1ioH5WW1ROr82rSvqrooKPC+cU5tdhfW6urTbldTb2N3RmP8Q5KjqKup6dS41GMTeFitVvCSnl3VpbbqsepqNputTc+tKWdFsyopkt1HS/jzv1fy11vO67QPLoqiEB0dTWFhIaqXtKNoG2lD3yDt6Bs6sx11Ol2rOia7VbIbGhpKfHx8s2Xx8fFs3LgRgJCQEKBxnN/Q0FD3NpWVlSQnJ5/0uHq9Hr2+5a+3u/4F1rHnCwxqTHatVQ4ie7X92N76BtOaqHZkFeNSVaKC/YkNC+jgR/YUVLXrztUK3hTL8dry3FKA3185mnvnfcm+nFKWbTjANWPP6rzgaIzPW5//onWkDX2DtKNv8GQ7dqvxqPr160d+fn6zZfn5+e6sPioqipCQEHbv3u1eX1tby+HDh0lLS+vSWL1FwLHJJWqsPWvq4LLqOo4WN05+Miyll9R8+YBeIf7MvngYAIu/30PWsaHkhBBCiFPpVsnu5ZdfzqFDh1i2bBmFhYWsW7eOb7/9losvvhho7Cq/7LLLWLZsGVu2bCE7O5t//vOfhIaGukdn6GmMfhr0egVVbUx4ewJVVdmR0TjUWHJUMGEyXJXPuHBIb0b1jcXhdPHiio3YnTIdthBCiFPrVmUMqampPPTQQ7z33nt89NFHREVFccsttzBhwgT3NtOmTaOhoYF58+ZRW1tL//79efTRR3vUGLvHUxSFgCAdFWV2rFUOAoO6YDQCD8svt1JcWYtWozA4uePHexaeoygKv5s6knvmfUlmkYX31+zl5vMGn35HIYQQPVa3SnYBRowYwYgRI066XlEUZsyYwYwZM7owKu/WlOxWVznwvrEVOpaqquzKahxqLC02DH8/30/ue5rQAD/uuWwEzy9dz9L1BxjZN5azEiI8HZYQQggv1a3KGET7NNXtNtS7sNtcHo6mc+WUVmGpqUev1UgC5MPGnZXAlEFJuFSVFz7+CWt9x49kIoQQwjdIstsD6HQaTGYtANZq363bdR3Xq9s/Phyjvtt9cSHa4M5LhtMrxJ8iSw3//HSLXK0thBCiRZLs9hCBQY2JX3Wl7ya7WUUWqutsGHRa+sWFezoc0cn8/Qz86apz0WoU1u3P4cttRzwdkhBCCC8kyW4PERh8LNmttvtkD5jT5WLP0RIAzk6IQK/Tejgi0RX6xYVzy7EL1P799Q4ZjkwIIcQJJNntIUxmLVqtgssJtTW+N1zTkcIKahrsmAw6+saGeToc0YV+NaYfI1JjsDmczF22gXqb7357IYQQou0k2e0hmoYgA98rZXA4XezNLgVgQGIkOq08rXsSjaLw4JWjCAvwI6e0ire+2ubpkIQQQngRyQp6EHfdbpXdw5F0rPT8cuptDvyNelKiQzwdjvCAYH8/Hpo+BgX4ekcma/Yc9XRIQgghvIQkuz1IU7JbX+fCbveNIchsDif7cxp7dQcmRaHVyFO6pxqc3IvrJwwA4J+fbSGvrNrDEQkhhPAGkhn0IDr9z0OQVVf5RinDwdwybA4nQSYDyb2CPR2O8LDrJ57NwMRI6mwO5n60HpvD9+rThRBCtI0kuz3Mz0OQdf9Shga7gwN5ZQAMSo5Coygejkh4mlaj4aHpYwg2G8kosvDWV9s9HZIQQggPk2S3h2kagsxa7ej2Q5DtyynF4XQRGuBHQkSQp8MRbaDRaKh3qJ3yE2A2cd+Vo1GAL7cdYdXOrFbt51Tlw5IQQvgimWKqhzGZtWh1Ck6HSo3V6Z5KuLupbbBzKL8cgMHJUSjSq9utOJwulq/f26nnODsxkr3ZJbz+6WYO55cRZDaecvurxw1Aq5PnkRBC+Brp2e1hFEVxlzJUdeNShn3ZJThdKhFBJmJCAzwdjvBCA5MiiQr2x+FysW5fDg6nb1yUKYQQom0k2e2BgkL0AFRZuudsakUWK4cLKwAYktxLenVFizSKwtiz4vDT66isbWDL4QJPhySEEMIDJNntgQIDdSgK2G0qDfXdr7frf+v2oaoQHeJPVIi/p8MRXsxk0DP2rHgUILPIQsaxD0lCCCF6Dkl2eyCN9ufZ1Cot3auUIaekih+OTRgwODnKw9GI7qBXiD8DkxqfK1sOF2CpqfdwREIIIbqSJLs9VFBwYylDd5s6+L9r9uBSVeLCAwkPMns6HNFNDEiMIDrUH6dL5cd9OdidMv6uEEL0FJLs9lBNQ5DV1Tqx2bpHKcORggrW7c9BQXp1RdsoisK5/eIxGXRU1dnYfKigW9arCyGEaDtJdnsovV6D2f/YbGrdZFSGd7/fDcC4sxMJ8ffzcDTdh0Nxed2PJ/gZdIw7Vr97tLiSI1K/K4QQPUL3HGRVdIigED21NU6qLA7CI089Bqmn7c8pZcvhAjSKwowJA1i/P9vTIXUTKgeq8z0dRAsGeuSskcH+DO4dxc7MYrYeLiQ80ERogMkjsQghhOga0rPbgwUdN5uaw+G9pQyqqrLwu10AXDC0NzFhgR6OSHRnZ8VHEBsWgEtVWbcvF7tD6neFEMKXSbLbgxn9tPiZGp8CVRbvvVBty+EC9maXYNBpuWHiAE+HI7o5RVEY0y8Os1GPtd7GxvR8qd8VQggfJsluDxcc2jgqg6Xc5uFIWuZ0uVj4bWOv7hUj+xIhIzCIDmDUH6vfVSCntIpDBeWeDkkIIUQnkWS3hwsJNQBQY3Vi98JRGb7ffZSjJZX4++m5dtxZng5HdBjF4xfJhQT7MTilcVSP7UeKOFwoCa8QQvgiuUCthzMYG0dlqK1xUmmxExHlPReq2RxOFq/ZA8C1484iwGTwcESi43jHhXNqkEpQsI6qSgcvLd/Aq7MvItDkPa8BIYQQZ056dsVxpQzeNQTZ51sOU1JZS3igiStG9vV0OKIVVFTsWjs1xloqzVWUB1goCSqnOKiMkqAySoLKKQ+wsK4yHauxFpvWjorn6mUVRSE+yYzeoFBsqeGVTzZJ/a4QQvgY6dkVBIfqKcitp67WSUODE6NR6+mQqKm38cG6fQDcOGkgRr08Vb2RXeOg1q+WOkMDdcZ6GvQ2VOX0yeIb+d/AsXlBFFXBYNdjsvlhavDDbPND79CjoHRy9I20OoXE3maOHq5jw8E8VmxM567psV1ybiGEEJ1PMgiBXq8hIFCHtdpBZbmdqBjPJ7sfrT9AdZ2NhIggzh+S7OlwxHHq9Q1UmaxYTTU0GFq4sFEFg0OP3qlD49KidWlQ1MbEVVVUXIqLhMhgDlWWYNfZURWVBoONBoMNS0AVAHq7noB6M4F1/pgbTJ2e+Jr9ddx8/hAWfL2dBd/sYNyQfkTK8LtCCOETJNkVAASH6bFWO7CU24mMNqIoXdOr1pLy6jpWbEwH4OYpg9BqpNrG05waJxb/KirN1c0TXBX87EbMDY29sn42P/RO3WmT08fOuYj/+/rrY2UPDhoMDdQZ6qk11FNnrMeut1Ohr6QisBKdQ0tQbSDBtYH42TuvnvbiEX1Izyll3f4cHpn/Gf+YeQGBUicuhBDdniS7AoDgED0FOXU0NLiosToJCPTcU+O9H/bS4HDSPz6cMf3iPBaHaOzFrQiopNJcjao5Vp6gQkCdP0F1AfjXm9G52v9NgIKCwanHUKcnsC4AAKfiosavFqtfDdWmGhw6J+VBFsqDLJjr/Qi1hhBY59/hvb2KonDfFSPJKKogv7yal1Zs5IkZ49F48IOfEEKIMyddZgIArVZxX6hWXuq5MXdzSqv4ensGALeeP8SjPcw9Wb2+gdzwAjKjc7AEVKFqVIw2A9HlkaTl9yahLIbg2sAzSnRPRqtqCKoLILaiF33zexNfGk1grT+oUOtXT15EIUdijlIeUImLjh0uz2zU88g14zDotGw+lM+yDQc69PhCCCG6XrdOdj/++GOuu+46Fi5c6F5ms9n4z3/+w8yZM/nNb37DCy+8gMVi8ViM3Ul4ZONXxFUWO3Z714+5q6oqb321HZeqMqpvLAMTI7s8hp7OprO5k9xqcw2oEFjrT1JRHL2LEgitCUbbCQnuyWhQCKwLIL4shtSCZMIrQ9E6tdh1DopCSzgce5TyAAuuDhzRoU90KH+8bjIAi77bzd7skg47thBCiK7XbZPdw4cPs2rVKpKSkpotf+edd9i6dSsPPvggc+bMoaKighdffNFDUXYvJrMWk1mLqkJFWdf37m5Mz2d7RiE6rYZZFw3t8vP3ZE6Nk6KQEo5EZ7uT3KCaAFIKE4gvi8Fs6/yLxE5H79QRVRVOakESvSoi0Dl0OLVOikJLyYg52lhq0UFJ71XjBzF5YBIuVWXusg1U1tR3yHGFEEJ0vW6Z7NbX1/Paa69xxx134O/v715eW1vLd999xy233MLAgQNJSUnh7rvv5uDBg6Snp3sw4pPLa6jgvoPv8XTGR2RH5JEXVkhZQAX1+gaPjD8aHtl4QU55qQ2Xq+vOb3M4+ffX2wGYPqYfsWGBXXbunkxFxWKu4kj0UcoDK0EB/zozvYsSiCuPxujwvgkWNKqGMGsIqQVJRJdHojvW05sfXkRWVC51hjNPTBVF4d6p5xAfHkh5dR0vfLwRl4y/K4QQ3VK3vEDtP//5D8OGDWPw4MEsW7bMvTwjIwOn08mgQYPcy+Li4oiIiCA9PZ20tLQWj2e327Hbf55QQVEUTCaT+/fOVO1s4Gh9WeONY0MdVflbgTJ0Di0hNcGEWUO67Kvj4FADBbn12G0qOzIKmdA/vkvOu3zDQYosNYQHmpgx4ezTPO6qh/sYT0NRULwqMWr50WrQ2SgMLabWrw4Ag91Ar4oIAhr8W9y+q+Jq/d4KoTUhBNcGUR5goSyognpjA1m9cgmuCSTKEtnmmmJFUdzPPbPRwJ+vHceD/1nF9oxC/rduP9dPHHBGMYuu0dSGUvPfvUk7+gZvaMdul+z++OOPZGZm8vzzz5+wzmKxoNPpmvX2AgQHB5+ybnf58uUsXbrUfbt3797MnTuXyMjOrxkNsIfwz5CZHC7KZ+meXTg0DmoMtVgNjVehlwaXUx5oIbwulF41kWjVzk96wyP9KC6s4/PNh7huyshOP19uiYX//bgfgIeunUJKUuKpty8sISDQ+3p+FU3jCzkgIMDDkRxHUTAYmg+fpaJSai6jIKAYVVFRVIVoayQRteFo0EAXjbb1y7jORGxDNJFl4RQEFFNhslDpX02NqZa4qhiCG4JaVYKhKBpiYmLct6Ojo4mOjuaRX7uY8+7X/HfNHsYP7cfIfgkdFrfoXNHR0Z4OQXQAaUff4Ml27FbJbmlpKQsXLuTxxx/v0D+U06dPZ+rUqe7bTZ8+SkpKcDgcHXaek0lUAggPTuWrqiMAhBKMCxdWUw2lQeU0GGyU+JdRYawkpiKKgPrO7XkLDddRXAi7Mov4dtNuzk6I6LRzqarKE++upt7uYHByFIPiAikoKDjlPja7C2t1dafF1F7qsbIPq9UK3tKzq6rYbD/XX9u0dvLDC6kzNn7V719vJro8CoNTj4POf64f7/i4Okp0fSTBhkAKQotoMNg4GpJLQK0/0RVR6F2nfrtTVRcFBQUoikJ0dDSFhYWoqsqo3mFcMKQ33+zM5JH/fMqrt19MWIDMOOHNftmGonuSdvQNndmOOp2uVR2T3SrZzcjIoLKykocffti9zOVysX//fr788ksee+wxHA4HNTU1zXp3KysrCQkJOelx9Xo9er2+xXVd/wJrPJ8GhaC6AALr/LH61VIUUopdbycnMp9gaxDRlgg0aueUXBuMGkLD9VSU2fnv97t59qbJnXIegC+3HWFnVjFGnZbfXd7Yi9yax9yr3/ZUT1Rbn0pjNFUmKwVhxbg0LjQuhShLBCE1Tb2enoi4c85pshnpXZRAaVAFpUHlWM01ZPgdpZclguCawFP28h7/3FNV1X37zkuHk55fRnZJFX9ftoFnb5os4+92A8e3oei+pB19gyfbsVslu4MGDeKFF15otuzNN98kNjaWadOmERERgVarZffu3YwZMwaA/Px8SktLT1qv6+0UFALr/fEvMlEcXNY4wH9AFQ36BuJLY07bW9VeUdF+VFU42JFZxJ7skk4ZBqy0qpYF3+wE4DdTBhET5kVf//sQFy6KQ8qoCKwEwNTgR2xZLwzOlj/g+QIFhciqMALr/CkIK6be0EBBWDFVJiux5VHo2vi68dPr+PPV4/j9/K/ZlVXMxz8d5Kpz+3dS9EIIITpStxqNwWQykZiY2OzHaDQSGBhIYmIiZrOZ8847j0WLFrFnzx4yMjJ44403SEtL67bJbhONqiHaEkliSSxap8Z9IU69vqFTzmcwapgypDcA763Z0+HHd6kq//xsC7UNdvrFhXHFqL4dfg4BBQ0WsnrluhPd8KoQkorjfDrRPZ6f3UhyUTxRlnAUVaHGVEtGdA5WY22bj5UQGcTsi4YBjePvZhRWdHS4QgghOkG3SnZb45ZbbmH48OG8+OKLPPXUU4SEhPDQQw95OqwO499gJrk4HoNdj0Pn4GhULrWGuk4511Vjz0Kn1bArq5hdWUUdeuzlGw6y5XABOq2G+6aOQqvxuaeix2Xri3gs6380GGxonRoSSmKIqozw+Hi5XU1BIbw6lN6F8RjtBpxaJzlR+RQHl7Z5eL+Lh6UwJi0Oh8vF35f/RIO9a+uchRBCtF23KmNoydNPP93stsFgYNasWcyaNcszAXUBg8NAclE8uRGF1PrVkROZT0JJLGZbx140ExFs5uJhKXy25TBvfL6VV2ZfhFF/5k+ZvdklvPPdLgDuuHgYSVHBZ3xM8TMXLnabMkj3ywUXmOv9iC2L7rSSl+7C6Gjs5S0KKcUSUEVZkIUaYx1xZdGt7ulWFIXfXTGSg/PKyCmtYuG3u7jjkuGdHLkQQogzId1p3ZRW1ZJQGoO53oRLo5ITmd8pPby/mTyIsAA/csuqWfz9mZczWGrqmbtsAy5VZdLARC4Z3qcDohRNbIqddQG7GxNdYFr4cBJL4np8ottEo2qIqYgirjQajauxHCgzOocqk7XVxwg2G/n9FaMAWLn5EFsPn3r0ECGEEJ4lyW43plE1v0h4Czq8hjfAZOB3UxtHSfj4p4PszS5p97HqbQ7+8r8fKa+uIyEiiHsvP0cGC+9A1Zpavg3cRpG+Aq2qYYz1bGZEjelxZQutEVTXOBWyqcEPl8ZFXkQhS4o24FRdrdp/RGoMV4xsrDN/eeUmmU5YCCG8mCS73VxTwmuqb/yjnRORj11rP/2ObTCybywXDOmNCrz8ySbqbG0/vs3h5Ln/rWNfTin+Rj1/vmYsJkPPuEiqKxToyvgmaCtWbR0ml5Ep1cNIsEd5OiyvpnfqSSqOI6wqBIBPSrczJ2MlJfW15BaWUGd3Ue9QT/pz/aRBxEcEUWGt5+WVm0+7fXt/nKp8WBFCiDMh3236AI2qIaEshqyoXGx6OzmRBSQVxXXobGuzLxrKjsxCCiqszFmylqeun9DqZNXhdDH3o/VszyjCT6/j6RsmkhgpdbodQUXlkDGXnaYjoECEPZhzawbgp3bRNGjdnIJCr8oI/OxGSiPK2FWTw/37/ssF6iiM1ZrTXr42MDGC/LJqNh/K5+8f/UifmNAOj/HqcQPQ6iThFUKI9pKeXR+hdWlJLIlF59DSoLeRG1HY5ivNT8Xfz8CfrxmH2ahnz9ESnn5/LbUNp+/hLa2q5fH/fs/G9HwMOi1PXj+Bs+I7b0a2nkRFZYfpMDvNjYlu74YYJlmHSKLbDsG1gcxJvgp/px812no+1a7jqP70I5CEBpgYnNzYg771SAHVdZ0zFKAQQoj2k2TXh+idehJKY1FcCrV+dRSFlHbo8fvFhfN/N07CbNSzN7uEJ/77/SnHGt14MI/fvfUVe46WYDLoePTace7EQJwZB07W++/hsF8eqDCktg8jatPQyEu63ZL8IrigegTR9lCciouNAfvZ7Zdx2g+N/ePDiQr2x+lS2XAgD5dLZnoSQghvImUMPsbPbiS2vBd5EYVUBFbiZzMSUhvUYcfvFxfOszdN4onFaziYV859//6acWfFc+HQFAJNBvRaDTsyi1i9+yiZRRYAUmNC+dNV5xIbFthhcfRk9YqNdQG7qdBVo1EVRtecRbzU53YIg6pnvHUw6cF57NIc5oApm2ptLaNqzkJHy2VBiqIwpl8cX2w7TFl1HXuyS+RDnRBCeBFJdn1QUF0ADZWhlAZXUBhWjNFhwGTz67Djp8WG89JvL+S/a/awdm82P+7P5cf9uSdsp9NouHJ0X34zZRB6bcfVD/dkVZoa1gbsplZbj8GlY5x1EBFOqX/uSBoUznGdhV+dji3mg+QZSlmt2c546yBMqrHFffz99IzqG8uP+3PZl11CTGgAkcHmLo5cCCFESyTZ9VERVWHU621YzTXkhRfSuzChQy9YiwsP5E9Xnct1489i6Y8HyCq2UGdzUNdgJz4iiCmDkhh/dgKBppaTA9F2pdpK1gXsxq5x4O/0Y4J1MIEuSag6S7ItGn+niR8D9mDRWfkmaCvjrYMIdbb8DUViZDB5ZdVkFVey4WAulw7vg14nH/KEEMLTJNn1UQoKseVRZBpysOsc5IcVE18W3eFjriZHhfDQ9DEdekxxonx9KRv89+FSXIQ5ghhvHYhRLkTrdBHOYC6oHs66gN1UaWtZHbidUTVnEW+PbHH7c1JjKKmspabeztYjhYzpF9fFEQshhPgluZrFh2lVLXGl0SgqWM01VARUejok0Q5ZhkLW++/BpbiIsYUxqXqIJLpdyN9l4ryq4UTbw3AqLjb47yXdmNPitnqdlnP7x6MAmUUWskvkNSeEEJ4mya6PM9n9iLI0DvVVFFJKnUFmeupODhqz2ex/AFWBpIZejK0ZeNILpUTn0aNjnHUgfepjQYGd5iPsMB1ucaSGyGAzZyc2vuY2Hypo1RB9QgghOo8kuz1AqDWYwFp/UCAvvBCn4vR0SOI0VFR2mo6wy5wBQFp9AiNr+8vQYp1KwaG4sCsqVXVW7IqKQ3G5f1wKDKrvw4C63gAc8stlg/9eGhRHs+0ciov+SRGEBvphczjZcDAXO84Ttmntj0ygJoQQZ0ZqdnsABYWY8ijqj9XvFoQVE9cJ9buiY7hwscV8kKPGxkkNBtem0K8h0cNR9QQqB6rzAQWDwYDNZoOWxtit1hJr7kV+WBF5hlLK1S0klMagdTXvcY9M0GE5AMWWWtYdySKyV/su1lQZCPJaFUKIdpNkt4doqt/N6pVLtbmGioZKwqwhp9xHp2ipd7i6JsA28OUh+x04+cl/HwWGMhQVzqntR7ItxtNhiV8Irg1E59SSG1FInbGerKhcEkpiMTh/nkLb6KclNt5EXnYdRfn1BATqMJmlBEUIIbqaJLs9iMnuRy9LBEWhpRSFlGJq8MNkP/n4uw6nk+Xr93VhhK0zfewAT4fQKWyKnXUBuynTVaFRNZxbczaxdpla2Vv5N5hJKo4jJ6IAm95OVq9cEkpimr2mQsP1VFfaqap0kJNVS2r/ADQa6aUVQoiuJAWAPUyoNZiAY/W7+eFFuBTv67ntieqUBlYH7qBMV4XepWNS9WBJdLsBP7uR5OJ4jDYDTq2To1F5WP1q3OsVRSEu0YROp9BQ76IwTy4QFUKIribJbg+joBBbEYXOocOmt1MYUuLpkHxKSxc2ne6nQmvlu6BtVGlr8HMZmGAdQogrqN0XNB3/Izqf3qkjqTgOc70JVaOSE1GAxb/KvV6n1xCfZAKgrMRGdZWMziCEEF1Jyhh6IK1LS2x5L7Ij86gMqMa/3kxwXcuzQom2UDlUW3zyC5taUKevJycyH6fGhcGuJ64khgJnJQV01PisAzvoOOJUtKqWxJJY8sOKqfKvpiCsGIfGQXh1KAoKgcF6wiMNlJXYyM2qo+9ZWnR66WsQQoiuIO+2PZR/g4mIqlAACsNKsGmlt6mrWY21ZEfl4dS68LMZSSqOa3aBk+hemmYtDK8KAaAkpJyikFL3WLzRcX4Y/TQ4HCp52XWoqi9faimEEN5Dkt0eLKIqDFODHy6Ni/zwwhYHyBedo9JUTU5kPi6NirneRGJxHDqXfNHS3SkoRFVG0KsiAlSoCKwkL7wQFy40GoWEZDOKAlWVDspKbJ4OVwghegRJdnswBYW4sl5oXBrqjA2UBJd7OqQeoTzAQn5EESgQWBtAQkksWlVeir4kzBpCXFkvFBWqzTWNpSqKE5NZS3Rc42gNhXn11NXKBC9CCNHZ5C9sD6d36okpjwKgLLCCGmOthyPyXSoqxcFlFIWWAhBaHdz4YUMmDPBJQXWBJJTEonFpqPWr52hUHnatg/BIA0HBOlQVsjNrcTrlGxUhhOhMkuwKguoCCLEGNQ5HFlaEQyO9TR1NRaUgtJiyoAoAIi1h9LJEyCx2Pq5pLF6dU0uDwUZWVC42vZ34JDN6g4KtwUXeUanfFUKIziTJrgCglyUCg12PQ+ekIKxY6nc7kEtxkRtRQGVANagQXR5JRHWYJLo9hJ/dSFJR/LHXl4OsqFwazPUk9jYDUGmxU1EmF4gKIURnkWRXAKBRNcSVRaOoYDXVUBHQUUNf9WxOxUl2ZD5WUy2KSyG+NJrQmmBPhyW6mMGpJ6k4HlODEZfWRXZkPs6Ienf9bn5OndTvCiFEJ5FkV7j52Y1EWRpn7SoOKSO7vtTDEXVvdq2do73yqDPWo3FpSCyJJbA+wNNhCQ/RubQklsQRUGdG1ajkhhei7V1PYFBj/W6O1O8KIUSnkGRXNBNqDW78Y6yovJr3NQ4cng6pW6rXN5DVK5cGvQ2dQ9s4w5bN5OmwhIdpVA3xpTEEH6uRLwovwTSwHp1eoaHBJePvCiFEJ5BkVzSjoBBT3gudQ0u+zcIW/3Sp320jq18NR6NycWidGO0Gkovj8bMbPR2W8BIKCjEVkURUNk7qUh5Zgf/gBgAqK+yUFsv4u0II0ZEk2RUn0Lm0xJVFo0Ehx1BMhiHf0yF1G2WmcnIifp4sIqkoDr3MiiZ+QUEhsiqc6PJIUKEmvhJT/8aEtzCvnuoquWBNCCE6iiS7okVmm4lfR50LwA7zYcq1VR6OyLupqCwp3kBuUAEoEFwTSGJJLFpV6+nQhBcLrQkmviwaxaVgS6tCH9/Yq5uTWUdDg1ywJoQQHUGSXXFSl4UNIdYWgUtRWR+wl3pFvl5tiRMnG/3380nZdgAiKsOIKY+SocVEqwTWBRz7YKTBNbQSTYgDp1Pl6BG5YE0IITqCztMBtMXy5cvZtGkTeXl5GAwG0tLSuOmmm4iNjXVvY7PZWLRoEevXr8dutzNkyBBmzZpFSEiI5wLvphRFYVRNf77RbsWqreMn/71MtA5BI5+R3GqVetYH7KFCZ0WLhtjKGAKqzCB1zqINzDYTyUVxZEcWYB9VCWtCaaiH3KO1csGaEEKcoW6Vtezbt4+LL76Y5557jscffxyn08mzzz5LfX29e5t33nmHrVu38uCDDzJnzhwqKip48cUXPRh196ZHxzjrQHSqlhJ9JTtNRzwdktco01bybdA2KnRWDC4djyZeQVh9iKfDEt2U0WFsvJhRq0M7qhI0KlUWB8vXH/B0aEII0a11q2T3scceY/LkySQkJJCcnMw999xDaWkpGRkZANTW1vLdd99xyy23MHDgQFJSUrj77rs5ePAg6enpHo6++wpy+TOq5iwADvvlkWko8HBEnpdlKOT7wB3Ua2wEO/y5oHoEZ/nHeTos0c3pnbrGYerMOjSDrQAsWbOH9ftzPRyZEEJ0X92qjOGXamtrAQgIaByoPyMjA6fTyaBBg9zbxMXFERERQXp6OmlpaS0ex263Y7f/fPWzoiiYTCb3752t8RxNX1V6V51nUzTx9ggG1CWz15TFVnM6/i4jvRxhHo+rq7lQ2W3K4KBfDgBxtghG1fRHf8JLyZva0ZtiOZ43xvXLmLo+Rq2qI7EkjvzIQiy9a1Ezzcxdvp6/BZ1P//iILo+nO2p63+6K92/ReaQdfYM3tGO3TXZdLhcLFy6kX79+JCYmAmCxWNDpdPj7+zfbNjg4GIvFctJjLV++nKVLl7pv9+7dm7lz5xIZGdkpsbfkSG4+BoOhy87XKopCQGCg++YoBlLvsnNEk8f6gH1MdY4nlMBTHKCTwtI0j6ur1NHAOs028jWNM8sNcfVluKYfSuCxF/CxF7K3taO3xdPEG+M6PiZPx9e7OonclAJKahtwFhl57P3VLHn4NyT2CvVoXN1JdHS0p0MQHUDa0Td4sh27bbI7f/58cnJyeOaZZ874WNOnT2fq1Knu202fPkpKSnA4On8Gsabz2WxeNtqBqmKtrm62aCh9qAywUqqv5CtlA+dVD8esdu2ECarrxLg6W4nOwgb/fdRrbGhVDSNr+pNoj6IG63GBNfbOe1s7els8TbwxrqaYDAaDV8QXZQtn8qWhfLj8EPWVcMNLi3jjt5cTGeh/+p17MEVRiI6OprCwUC7w68akHX1DZ7ajTqdrVcdkt0x258+fz7Zt25gzZw7h4eHu5SEhITgcDmpqapr17lZWVp5yNAa9Xo9e3/LA/13/AvOuF/Qvo9GgYWzNQL4L3IZVW8eawJ1MqR6KUe3aXrCuepRUVA4ac9hjykBVIMhp5lzrAIJc/qeJwZva0ZtiOZ43xqXSvHTBszEqwDWxIwmZ7sdbH+6ltgruWriS1269lOiAII/G1h2oqipJkg+QdvQNnmzHbnWBmqqqzJ8/n02bNvHkk08SFRXVbH1KSgparZbdu3e7l+Xn51NaWnrSel3RdkZVz0TrYEwuI9XaWtYG7MJO5/eAd7UGxc6P/rvZbW5MdJMaenF+1QiCXNKrJrrWlQlDuP/a4ShGF3UVcM+7n5FpLfV0WEII0S10q2R3/vz5rF27lvvvvx+TyYTFYsFisbi/bjSbzZx33nksWrSIPXv2kJGRwRtvvEFaWpokux3M32ViYvVgDC49FTor6wJ2+1TCW6yr4JvALRQYytGoCiNq0hhZ2x8dMiOa8IwLE/vz8IxzUXQqDaUaHnjvS7Zbsj0dlhBCeL1uVcbw9ddfA/D00083W3733XczefJkAG655RYUReHFF1/E4XC4J5UQHS/I5c9E62DWBOygVF/JD4G7mGAdhEFtuSSkO3DgZLcpg8N+eQAEOE2cW3M2Ic6uvyBOiF8an5SMfoaWZ5esx1Gk56n/reGeXw3j4siBng5NCCG8VrdKdj/88MPTbmMwGJg1a5YkuF0k1BnIROsQ1gbsolxXxZqAnUy0Du7yGt6OUKqtZLP/AazaOgBSGmIYXNunhWHFhPCc0SkJPDFjPM9+sA5XoYF/fryNvEss3BI/Fq3Srb6sE0KILiHvjOKMhTmDmFw9FKNLj0Vn5bvA7VRraj0dVqs5cbLLdITVgduxauswuYxMqB7MiNp+kugKrzSqTxxPXTcRjRbUQiPLv8xgzuFPqHbUn35nIYToYSTZFR0i2BXAlOphmFxGrNo6vg3cRrGuwtNhnVaRroJVQVsaJ4k4dhHaRVXnEO3BCTOEaI0RqTE8dd1EtFoFtdDI9m+qefDAh2TVyYVrQghxPEl2RYcJdJm5oGo4YY5A7BoHPwTs4rAxF9ULh5iqVer5yX8vPwTupFpbh9GlZ5x1IKNqz+rWNceiZxmRGsP/3TAJo16LWmqg4HsND+9fxvrKw54OTQghvIYku6JD+alGJlcPJcEWhaqobDcf5kf/PTQonh+gH8COg91+GXwZvIkcQwmokFofxyVVo4i1y1SsovsZnNyLv/xmCgF+eqjQU7PGn7n7v+a/hT/hVF2eDk8IITxOkl3R4bRoGV1zFkNrU9GoCgWGMr4O2kKuvsRjvbwOnBw05vBF8EYOmLJxKi4i7MFcUD2CYXV9pTdXdGv94sKZe8v5hAeawKrD+UMoHx7cwTOZK7E4uk/9vBBCdAZJdkWnUFDo2xDP+dUjCHSaqdfY2BCwl7UBu7r04jWbYueA8SifBf/ELvMRGjR2ApwmxloHMNk6lFAZUkz4iKSoYF6ceQG9e4VAgwbnjyFsTy/igfQl7LHmeTo8IYTwGEl2RacKcQZwQdUIzqpLRKMqFOkr+CpoM5vNBzo16bVoq9liPsinwRvYbc7EprHj7/TjnJp+XFw1kjh7JEqzaWGF6P4igszMveU8RvSJBqeCa3MwpbvhiSMf87+iLbhkylUhRA8k4yqJTqdDy8D6FJJt0Ww3H6ZQX06WsZAsQyGx9giSbb2ItoehPYPZyVRUrJo6cg0lZBuKqNL+nEgHO/zp15BAgi0KjXy+Ez7ObNTz5PUTePvbnXz8Uzpquj+OSh2Lh29kb00eDyReRLDO5OkwhRCiy0iyK7pMgMvMBOtgyrSVHPDLJt9QRr6hlHxDKXqXlmhHOBGOYCIcwQQ5zadMTJ24qNbWYNHWUKqrpEhXTq22wb1eoyrE2iNIbYgjwhEsvbiiR9FqNMy6cBh9eoXy2mdbsBUZcX2vY/s5Bfy+/n3uSzifYYFJng5TCCG6hCS7osuFO4MZVzOIqroaMo2F5BiKqNPYyDEUk2MobtxIBZNqxOwyolW17lTVptj59tAWKkJqUJXmX8kqqkKEI5h4exSx9ggMauPT26mojQcUooeZMjiZhMgg5n60gYIKK851IZSdVcPT9pVcFjGIW2LG4qeRizOFEL5Nkl3hMUEuf4bU9WFwXQqlukqKdRWU6qoo11XhUJzUKQ3UaRpO3NEBKKBxafCzGfCz++Ffb8LcYEKjaqjHRQbFXX5/YKAHzinEqaXGhPHyrAv552dbWLsvB9e+ACgy8Pnwveyszub3iReSZo72dJhCCNFpJNkVHqegEOkIIdIRAjTW39YrNmo19dRpGnAqLne/rEHVccnAfryzfis6p1bKE4RoBX8/A3+66lyG9O7Fv7/eTkOZAdfqMHIHWnm44SOu63UO1/Y6B53S/rp5IYTwVpLsCq+joGBSjZicRnCeuL6PqRd6pzx1hWgLRVG4ZHgfBidH8Y8VG9mfW4a6IxA118iSIVvZWJXJ3fFTSDP38nSoQgjRoeTSdCGE6EFiwwL56y3ncdv5QzDoGqcZdq4OI2NnLX86+D/eyltDjbOF8iEhhOimJNkVQogeRqvRcPXY/rx+xyUM6d0LXAquA/44vg3j053p3HvgPdZXHkaVcXmFED5Akl0hhOihYsICePbGSfxx+hgig8xQp8W1NYiS7/XM3fENz2V9RkGDxdNhCiHEGZHCRyGE8GI6RUu9w9Wp5xjdP5GhfWJZuSmd5Rv201AOzh9C2Rhfxrb+S7g44WyuihhJoM4PAL1Wg1aRXl8hRPcgya4QQngxh9PJ8vX7uuRcCnDJ8D7syioms8iCmuuHLc/Ip/GZfJ26nwG6BFIb4rhu3GC0OhkJRQjRPUiyK4QQXk3BoXRuz+7xDH5azukfQ0pcCHszSyisqEHN8aMhx8j2+BIOphYQXWnk/LA0tIpUwgkhvJ8ku0II4dVUDlTne+TMkb11+Ef5U1zQQHWVAzXXj5pcldfSN7Kk3xZ+fdYwJof2R6+R8XmFEN5Lkl0hhBAnZfbXkZyqo67WSVFhPdUWB2q+H8X58Mq27bzddxvXDxvExVEDMWrkT4oQwvvIO5MQQojTMpm1JKf4U1/nJFYfzrq92Tgr9VRtgbd27efd3ru5bHgqv0oaTKje39PhCiGEmyS7QgghWs3PpOWeS0Zxx4XD+HzbYT7efACr1UHdQQMfHcxmWcQR0voF8euhQxgRmoiiyIVsQgjPkmRXCCFEmwWZjVw/fgDXjj2L9Qdzef+n3WTnWlFL9RwsrePpnzbgH7+eKYOTuPbswYQbAjwdshCih5JkVwghRLtpNRomnJXIhLMSKbbU8NG2fXy/+yg1VU5qjip8ejSHT786SniCnvFnJXDNWQMJ9ZMyByFE15FkVwghRIeICvHnrvNGcueUc9iRXcj7W3Zx4LAFl01D2REnK45kseLLDMLj9YxJi2PqWf1JCAr1dNhCCB8nya4QQogOpSgKw5JiGJYUg8Pp4ocjWXy2+yCHMypx1msoy3LyWVY2n319FGMY9EkMZnzfJC7o0xezXu/p8IUQPkaSXSGEEJ1Gp9VwXloK56Wl4FJV1mZm8unugxw5WoWtUqGhHPaVV7Fvx27e0u0iKFJLcmwQI5Jimdw7hXCzlDwIIc6MJLviFLp25iYhhG/TKAqTUlKYlJICQEZ5GZ8fSGd7RiHF+fWoDRqqClzsKrCwa6uFt9mLIQRios2kRIcwOC6ac+LiCTWaPXtHhBDdiiS74hQ8N3PTqQ30dABCiA6QEhbOvWPPhbHgcLlYn5PFhsxs0nPLKS2y4axVsFngqKWOowfqWE0BKNvQBaqEhOuJiQggMSKYtKhwzo7sRS+/IDQy1JkQ4hck2RVCCOFxOo2GiUkpTExKcS87XF7KmoxM9uaWUFhSQ3W5E9Wm4KhSKK1yUppZyW4q+YxsUFQUfxd+QQqBgXoiwwMJMemIDgkgPjSYhMBgwg0BhOjMMr2xED2Mzya7X375JStXrsRisZCUlMTMmTNJTU31dFhCCNHt6RQt9Y7OL3GKDwrnxqHhMLTxtqqq5FZa2Jqbx/7CYgpKrVgsDdRVuVCdCqpVS50V6nBSjOXYUUob/9GoYHKimFzozWA0aTGbdPib9QSZDYT4+xHq70dEgD/BBhNmjQGTVo9Jo8fP/bsBo0aHVtF0+n0XQnQcn0x2169fz6JFi5g9ezZ9+/bls88+47nnnuPll18mODjY0+EJIUS35nA6Wb5+nwcjUEgz9SItoRckNCbBtTY7yQnBZJaVUWCxUlXnoKTcSo3Vga1WBZcCNTrUGrDR+FONys+3rD8fXu8Cgwv0KopOBb3auEyvouhVdAYFg0GL0ajBZNThZ9Bh1GuP/egxG7QYtTqMWj0GRYdBo8Oo0bp/1ytajJrG35uWGRQtOkWLTtGg1/z8e9O/kmCLjqKqKi5UnKrr539VFSfH/j223KW6cKoqLo79q7pw0vxf17H16nHHjzYEE2sM8dTda5FPJruffvop559/PlOmTAFg9uzZbNu2jdWrV/OrX/3Ks8EJIUS352UXrypg9NMxuV8q49XejYsUDaraGKPD6aK8uo6SyhpyLZUUVFZTYa2jsraeqtoGamrt1NY5aKh3gQrYNY0/0OyPeNPtE9Nj57EfgLpjMamgVUHLsX9//lE0x9ZraPxp+t29TAXl53WKBhRN4wV+GkVBq2jQaI79qyhojy3TKgoaRYNW0/hv0/aKAlo0aDSNw8Jp0KBRQKNoGk/zy385th8KyrF/NU0PtPv/uKeCVhRQfl6Kctw2TUuUpg2P37/ZMuUXyxv/52/2p6a2BlVt3hJqC7+11F5NS9SW1p/0mL88gvqL9Y1LmpJGVW1c0vSfS/3Fehr/RVVx/WK5emz/xuP8vO3x+7uOW+7+/di/TlzH9nfhUqEx9QSX6joWV+NyV9Nxj+3XmS5J6s/dZ03s1HO0lc8luw6Hg4yMjGZJrUajYdCgQaSnp7e4j91ux263u28rioLJZEKn65qHR1EUDBqVpPDwLjlfaxkNepLCIzwdxgm8Oa7EsFDsdoenQ3Hz5sfK2+I6Pia9Xuc17eidj5WOOoPN02GcQKvVsGDDZuDUbagxQbjJRDimZstVVcXlUnE6VJwuFZdTxekC1anidLoal7mOX6ficoHqBNXV+HNGVJrnzR2o6dDt27Nzk6NTq/HgudtL+cW/7TtC0+ed7sYvNBD9ceNlN30o0uv1J3xoOVOtzdMUtaPP7GHl5eXceeedPPvss6SlpbmXL168mH379vGXv/zlhH0+/PBDli5d6r49btw47r///i6JVwghhBBCdJ7u+KGhw02fPp2FCxe6f2bPnt2sp7ez1dXV8fDDD1NXV9dl5xQdT9rRN0g7dn/Shr5B2tE3eEM7+lwZQ1BQEBqNBovF0my5xWIhJCSkxX30en2zLveupqoqmZmZHd69L7qWtKNvkHbs/qQNfYO0o2/whnb0uZ5dnU5HSkoKe/bscS9zuVzs2bOnWVmDEEIIIYTwfT7XswswdepUXn/9dVJSUkhNTeXzzz+noaGByZMnezo0IYQQQgjRhXwy2R07dixVVVV8+OGHWCwWkpOTefTRR09axuBper2ea665xqOlFOLMSTv6BmnH7k/a0DdIO/oGb2hHnxuNQQghhBBCiCY+V7MrhBBCCCFEE0l2hRBCCCGEz5JkVwghhBBC+CxJdoUQQgghhM/yydEYupMvv/ySlStXYrFYSEpKYubMmaSmpno6LHESy5cvZ9OmTeTl5WEwGEhLS+Omm24iNjbWvY3NZmPRokWsX78eu93OkCFDmDVrlteOBiLg448/5r333uOyyy7j1ltvBaQdu4vy8nIWL17Mjh07aGhoIDo6mrvvvps+ffoAjQPaf/jhh3z77bfU1NTQv39/Zs2aRUxMjIcjF9A4Dv6HH37I2rVrsVgshIWFMWnSJK6++moURQGkDb3Vvn37+OSTT8jMzKSiooKHHnqIUaNGude3pt2sVisLFixg69atKIrC6NGjue222/Dz8+vQWKVn14PWr1/PokWLuOaaa5g7dy5JSUk899xzVFZWejo0cRL79u3j4osv5rnnnuPxxx/H6XTy7LPPUl9f797mnXfeYevWrTz44IPMmTOHiooKXnzxRQ9GLU7l8OHDrFq1iqSkpGbLpR29n9Vq5YknnkCn0/Hoo4/yj3/8g5tvvhl/f3/3NitWrOCLL75g9uzZ/OUvf8FoNPLcc89hs9k8GLlo8vHHH7Nq1Sp++9vf8o9//IMbb7yRTz75hC+++MK9jbShd2poaCA5OZnf/va3La5vTbu9+uqr5OTk8Pjjj/PII4+wf/9+5s2b1+GxSrLrQZ9++innn38+U6ZMIT4+ntmzZ2MwGFi9erWnQxMn8dhjjzF58mQSEhJITk7mnnvuobS0lIyMDABqa2v57rvvuOWWWxg4cCApKSncfffdHDx4kPT0dA9HL36pvr6e1157jTvuuKNZgiTt2D2sWLGC8PBw7r77blJTU4mKimLIkCFER0cDjT1Ln3/+OVdddRUjR44kKSmJe++9l4qKCjZv3uzh6AVAeno655xzDsOHDycqKooxY8YwePBgDh8+DEgberNhw4Zx/fXXN+vNbdKadsvNzWXHjh3ceeed9O3bl/79+zNz5kzWr19PeXl5h8Yqya6HOBwOMjIyGDRokHuZRqNh0KBB8se0G6mtrQUgICAAgIyMDJxOZ7N2jYuLIyIiQtrVC/3nP/9h2LBhDB48uNlyacfuYcuWLaSkpPDSSy8xa9Ys/vSnP/HNN9+41xcXF2OxWJq1r9lsJjU1VdrRS6SlpbFnzx7y8/MByMrK4uDBgwwbNgyQNuyuWtNu6enp+Pv7u0uOAAYNGoSiKO4POx1FanY9pKqqCpfLdUL9X0hIiPtFL7yby+Vi4cKF9OvXj8TERAAsFgs6na5ZLyFAcHAwFovFA1GKk/nxxx/JzMzk+eefP2GdtGP3UFxczKpVq7j88suZPn06R44c4e2330an0zF58mR3WwUHBzfbT9rRe/zqV7+irq6OBx54AI1Gg8vl4vrrr2fChAkA0obdVGvazWKxEBQU1Gy9VqslICCgw9tWkl0h2mn+/Pnk5OTwzDPPeDoU0UalpaUsXLiQxx9/HIPB4OlwRDu5XC769OnDDTfcAEDv3r3Jzs5m1apVTJ482bPBiVbZsGED69at47777iMhIYGsrCwWLlxIaGiotKHoMJLsekhQUBAajeaETy8Wi0Wu9u4G5s+fz7Zt25gzZw7h4eHu5SEhITgcDmpqapr1ClZWVkq7epGMjAwqKyt5+OGH3ctcLhf79+/nyy+/5LHHHpN27AZCQ0OJj49vtiw+Pp6NGzcCuNuqsrKS0NBQ9zaVlZUkJyd3VZjiFBYvXsy0adMYN24cAImJiZSUlPDxxx8zefJkacNuqjXtFhISQlVVVbP9nE4nVqu1w99npWbXQ3Q6HSkpKezZs8e9zOVysWfPHtLS0jwYmTgVVVWZP38+mzZt4sknnyQqKqrZ+pSUFLRaLbt373Yvy8/Pp7S0VNrViwwaNIgXXniBv/3tb+6fPn36MH78ePfv0o7er1+/fieUfeXn5xMZGQlAVFQUISEhzdqxtraWw4cPSzt6iYaGBjSa5qmIRqNBVVVA2rC7ak27paWlUVNT477AG2DPnj2oqtrhQ7BKz64HTZ06lddff52UlBRSU1P5/PPPaWhokK9uvNj8+fNZt24df/rTnzCZTO6eebPZjMFgwGw2c95557Fo0SICAgIwm80sWLCAtLQ0eWP2IiaTyV1n3cRoNBIYGOheLu3o/S6//HKeeOIJli1bxtixYzl8+DDffvstt99+OwCKonDZZZexbNkyYmJiiIqKYsmSJYSGhjJy5EgPRy8ARowYwbJly4iIiCA+Pp6srCw+/fRTpkyZAkgberP6+noKCwvdt4uLi8nKyiIgIICIiIjTtlt8fDxDhw5l3rx5zJ49G4fDwYIFCxg7dixhYWEdGquiNn18Eh7x5Zdf8sknn2CxWEhOTua2226jb9++ng5LnMR1113X4vK7777b/SGlaTKCH3/8EYfDIZMRdBNPP/00ycnJJ0wqIe3o3bZu3cp7771HYWEhUVFRXH755VxwwQXu9U0D23/zzTfU1tbSv39/fvvb3zabCEZ4Tl1dHR988AGbNm2isrKSsLAwxo0bxzXXXINO19gfJ23onfbu3cucOXNOWD5p0iTuueeeVrWb1Wpl/vz5zSaVmDlzZodPKiHJrhBCCCGE8FlSsyuEEEIIIXyWJLtCCCGEEMJnSbIrhBBCCCF8liS7QgghhPj/9u49pur6j+P4Ew4XD8RFrh4VrANy8ZJQyskAt6RYs5ZJzZw1ZrPmJowkTexiwwYYkZFYUS6sJs0y/1Agps6IGG6QDGMCB8EUhyJCoHLnAIffH4zz6/y4KKj589v78Zfnez63r/zhyw/v7+crhGJJ2BVCCCGEEIolYVcIIYQQQiiWhF0hhBBCCKFYEnaFEEIIIYRiyeuChRCKUllZydGjR6mrq6O9vZ1p06bh6OjInDlzmDdvHsuWLcPOzg6AmJgYWlpaOHjw4C2NnZiYSHV1NZ999hkeHh5TWt/IGJMxMt/q1atxd3fn888/n/R8t7PmgwcPcujQIbM3BQohxP1Cwq4QQjEOHTpkCq6zZs1i7ty5qFQqGhsbKS0tpaSkBK1Wi5+f3z1bY1BQEO7u7mbXmpqaOHv2LE5OTgQFBY3qc6dfnSmEEP8mEnaFEIpw/vx5fvrpJ1QqFfHx8YSEhJh9f/36dYqKirC3t5/yHLGxsfT19eHi4jLlMZ5//vlR1woLCzl79iyzZs0iJiZmymOP5U6sWQgh7mcSdoUQilBaWsrQ0BBLly4dFXQBnJ2dee65525rDjc3t9vqfy/cj2sWQog7ScKuEEIR2tvbAXB0dLztsVpbW0lKSuLy5cu8/PLLrFy5Ehi//nWklnbPnj3k5OTw66+/0tLSgpOTE6Ghobz00ktYW1vf9rpGGI3GW55noprdjo4O8vLyKCsro7m5GUtLS9zc3AgODuaZZ55h+vTpE65jaGiI7777jvz8fPz9/dm2bRv29vZmNb5arZYDBw5QU1PDwMAAWq2WtWvX4u/vP+aYdXV15ObmUlNTQ0dHh6m048UXXxwV3IeGhiguLub48eM0NTXR3d2No6MjM2fOZMmSJTz99NOmtgMDA/zyyy8UFhZy9epVDAYDTk5OeHl5ER4eTmho6GR+BEKI+4iEXSGEIri6ugLDO7yrVq3CyclpSuM0NjaSnJxMa2srGzZsICIi4pb77t69m9OnTzNv3jw0Gg01NTXk5OTQ1tZGXFzclNZzt+a5dOmS6T6dnZ1ZtGgRAFeuXCEnJwc/P78xd8hHDA4OkpmZSVFREcHBwbz55pvY2tqatfnzzz/JysrC09OTRYsWcfnyZfR6PR988AE7d+7E29vbrP2xY8fYt28fAL6+vgQEBHDlyhUKCgooKysjMTGR2bNnm9pnZ2eTm5uLtbU1gYGBODg4cP36dS5evEhTU5NZ2M3IyKCkpAS1Wk1AQABqtZpr165RU1NDb2+vhF0hFEzCrhBCEcLDwzl8+DCtra3ExcUREhJCQEAAWq2WOXPmYGl585MWz58/T0pKCj09PcTHx6PT6W55/paWFmxsbMjIyMDZ2RmA5uZmEhISKC4uZvXq1cyYMWOqt3dH5xkcHOTjjz+mtbWVFStW8Morr2Bl9d9/DhoaGibciTYYDHzyySeUl5cTGhpKTEyMWf8Rx44dY926daxYscJ07dtvvyU/P5+cnBxiY2NN12tra/nmm2+YPn06W7duRavVmr4rKCjgyy+/JDMzk+TkZNMajh49ilqtJi0tzWzXenBwkNraWtPn5uZmSkpKcHd358MPP8TBwcHsXurr6yf8+xJC3N/knF0hhCJ4enqSkJCAq6srPT09/Pbbb3z11VckJCSwfv16vv76a65duzZu/+rqanbs2IHBYGDbtm2TCrojXn31VVMABfDw8CA8PByAmpqaSY93t+YpLS2lsbERLy8voqOjRwVVLy+vcQNzd3c3ycnJlJeXExkZSVxc3JhBF8Df398s6AK88MILAOj1erPrhw8fxmg08vrrr5sFXYDly5ezePFi6urquHDhAgA9PT309/fj6ek5qjxDpVIRGBho+jxS4vLggw+aBV0AGxube3o6hxDi7pOwK4RQjIULF7Jnzx62bNnCU089xUMPPYRKpaKrq4vjx4+zdetWGhsbR/UrKysjOTkZKysr3n//fRYuXDjpuVUqFQsWLBh1XaPRAEwYtP/pec6cOQMMh8hb2fEecePGDRITE9Hr9URFRfHaa69hYWExbvuR0oi/c3Bw4IEHHjBbp9FopLKyEltb2zH7AAQEBABw7tw5AJycnHB1daW+vp7vv/+eq1evjruOmTNnYmtrS3l5uancQwjx7yFlDEIIRbGysiIkJMRUb9rV1cXJkyc5cOAAN27cICsri+3bt5v12bVrF4ODgyQmJuLr6zuleZ2dnccMjmq1GoD+/v4pjXs35mltbQWGd8Mn44cffmBwcJDIyEjWrFlz0/bjHXemVqvp7Ow0fe7o6KC3txeAtWvXTjhmR0eH6c8xMTF8+umnHDlyhCNHjuDu7k5gYCChoaEEBweb2tnZ2bFhwwb27t1LdnY22dnZaDQa5s+fz7Jly0xBWgihTBJ2hRCKZm9vT2RkJC4uLnz00UdUVVXR19dn9jBVaGgoRUVF7N+/n3feeWdKL3GYzA7p7fin5hlLSEgIp06doqioiLCwsJuGxFtd69DQEDD88oyblY/8/QG1BQsWkJGRQXl5OX/88QdVVVUUFRVRVFSETqdj8+bNprZhYWE8/PDDnDp1ioqKCvR6PSdOnODEiRM8++yzREdH39JahRD3Hwm7Qoh/hZFf/RuNRrq6uszC7saNGzEajRQXF7Nz507efvttRb+1bOTkiol+9T+W4OBgwsPD2bVrFykpKbz77rvjHiE2GQ4ODlhbW2NhYcHGjRsnLI34X3Z2doSFhREWFgYMP+iWnp5OaWkp5eXlPPLII6a2jo6OREREEBERwdDQEBUVFaSnp5OXl8cTTzyBl5fXbd+LEOL/j9TsCiEUYWR3cDxNTU3AcJnD/57Fa2lpSWxsLI8//jh6vZ7U1FT6+vru2lrvtZGa5IKCAoxG46T6Ll68mPj4ePr7+0lJSTE79WCqVCoV8+fPp6enx1RPPFV+fn6mh/UaGhrGbWdhYUFQUJApDE/UVghxf5OwK4RQhB9//JH9+/ebQu3ftbW1sXfvXmA4rI11eoClpSVxcXEsXbqUqqoqUlNTMRgMd33d94JOp0Oj0dDQ0EB2djYDAwNm3zc0NEy46xsSEsKmTZswGAykpKSYHhq7HVFRUVhYWJCZmUlVVdWo73t7eykoKDD9TP766y8KCwtH/afEYDCY+o/sYF+4cIHS0tJR99nZ2Wlau7xpTgjlkjIGIYQi9Pb2kp+fT25uLhqNhtmzZ2NtbU1bWxt1dXUMDg4yY8YM1q1bN+4YI4HXaDRSWlpKamoqCQkJ2NjY/HM38g9QqVRs3ryZpKQk8vLyOHnyJHPnzgWGXyrR0NDAli1bJnyATafT8cYbb7B7926Sk5N577338PHxmfKaAgICWL9+Pfv27WPHjh14eXmh0WiwsrKipaWF+vp6+vv70el02NjY0NnZyRdffEFWVhZarRZXV1d6e3upra2lvb0dHx8fU/1vS0sLu3btws7ODh8fH5ycnOju7kav19PT08Ojjz4qx48JoWASdoUQihAVFYVWq6WiooKLFy9SU1NDd3c3arUaX19flixZQmRk5E1rcVUqFZs2bSI9PZ3ff/+dtLQ03nrrLcUFXm9vb9LS0sjJyaGsrIzTp09jbW2Nm5sbK1euvKXw99hjj2E0GsnIyCApKYnt27ePOiN3MiIjI/Hz8+Pnn3+murqa8vJybG1tcXFxISwsDJ1Oh52dHTB8kkR0dDRnzpzh0qVLnDt3jmnTpuHh4cGqVat48sknTS/G8PPzY82aNVRWVtLY2Iher8fe3h5vb2+WL19uKnsQQiiTxdDNCt2EEEIIIYS4T0nNrhBCCCGEUCwJu0IIIYQQQrEk7AohhBBCCMWSsCuEEEIIIRRLwq4QQgghhFAsCbtCCCGEEEKxJOwKIYQQQgjFkrArhBBCCCEUS8KuEEIIIYRQLAm7QgghhBBCsSTsCiGEEEIIxZKwK4QQQgghFOs/soN+epK9J80AAAAASUVORK5CYII=\n" + }, + "metadata": {} + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "plt.style.use('ggplot')\n", + "\n", + "# Plot for Age\n", + "plt.figure(figsize=(8, 4))\n", + "sns.histplot(x=df['Age'], hue=df['Outcome'], palette=\"viridis\", kde=True)\n", + "plt.xlabel('Age', fontsize=15)\n", + "plt.title('Age Distribution by Outcome')\n", + "plt.show()\n", + "\n", + "# Plot for BMI\n", + "plt.figure(figsize=(8, 4))\n", + "sns.histplot(x=df['BMI'], hue=df['Outcome'], palette=\"viridis\", kde=True)\n", + "plt.xlabel('BMI', fontsize=15)\n", + "plt.title('BMI Distribution by Outcome')\n", + "plt.show()\n", + "\n", + "# Plot for BloodPressure\n", + "plt.figure(figsize=(8, 4))\n", + "sns.histplot(x=df['BloodPressure'], hue=df['Outcome'], palette=\"dark\", kde=True)\n", + "plt.xlabel('BloodPressure', fontsize=15)\n", + "plt.title('Blood Pressure Distribution by Outcome')\n", + "plt.show()\n", + "\n", + "# Plot for DiabetesPedigreeFunction\n", + "plt.figure(figsize=(8,4))\n", + "sns.histplot(x=df['DiabetesPedigreeFunction'], hue=df['Outcome'], palette=\"dark\", kde=True)\n", + "plt.xlabel('DiabetesPedigreeFunction', fontsize=15)\n", + "plt.title('Diabetes Pedigree Function Distribution by Outcome')\n", + "plt.show()\n", + "\n", + "# Plot for Glucose\n", + "plt.figure(figsize=(8,4))\n", + "sns.histplot(x=df['Glucose'], hue=df['Outcome'], palette=\"flare\", kde=True)\n", + "plt.xlabel('Glucose', fontsize=15)\n", + "plt.title('Glucose Distribution by Outcome')\n", + "plt.show()\n", + "\n", + "# Plot for Insulin\n", + "plt.figure(figsize=(8,4))\n", + "sns.histplot(x=df['Insulin'], hue=df['Outcome'], palette=\"flare\", kde=True)\n", + "plt.xlabel('Insulin', fontsize=15)\n", + "plt.title('Insulin Distribution by Outcome')\n", + "plt.show()\n", + "\n", + "# Plot for Pregnancies\n", + "plt.figure(figsize=(8,4))\n", + "sns.histplot(x=df['Pregnancies'], hue=df['Outcome'], palette=\"viridis\", kde=True)\n", + "plt.xlabel('Pregnancies', fontsize=15)\n", + "plt.title('Pregnancies Distribution by Outcome')\n", + "plt.show()\n", + "\n", + "# Plot for SkinThickness\n", + "plt.figure(figsize=(8,4))\n", + "sns.histplot(x=df['SkinThickness'], hue=df['Outcome'], palette=\"viridis\", kde=True)\n", + "plt.xlabel('SkinThickness', fontsize=15)\n", + "plt.title('Skin Thickness Distribution by Outcome')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": { + "id": "FXlTreHXorF5" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file diff --git a/Diabetes prediction (Machine Learning Algorithms)/deeplearning.pkl b/Diabetes prediction (Machine Learning Algorithms)/deeplearning.pkl new file mode 100644 index 0000000000000000000000000000000000000000..c8fb1638c196e16fe34cb8cdffe26dc98226a9ae GIT binary patch literal 88576 zcmeFY2|ShGw?A&4B8ns=Nrp0oID74rP%0%!DN&gsBxFjZGL{gMBnc5Il1iLs?^C2n zl4ul#G-=W#P15fueTUDzpL@Ue-v9r9@BRP2+v_}gSZfb!J@2*m+WXleh4#$k`xTPL zuJH_V3)Tw`^3V%*3-j?`trzIyvBuBSB{amxFE~AE+$zst&mbQ+Kc9`BE^7l;dHT6{ z1qG~iao-T)>A}mU?@qTou#BJ2Zl0i!+)$(A`P#H1Ma_A+!JicGx7IVnZIxSyo1SlQ zfd3}7pMAQ7c?Jdh1o*3gs+ytRl&N|KYC5WFJT6Zc-bg%G{VX>yG}bjR(KRqMH(-JB zR4_JG+x+)kJ$o`@LV+Y7-{5Z;uPcuLe=ncaLmlx39O~ye*wW7~2Rrcaa|;f3@poJM zvv`r`x=>I55T1NLX+P`o*f**DW(fWZgUggb7C*NQykYZLoHwccp>@3>+P~<;+CMNf z#AdMKA3AY&3-R!F@fjq$1be#$4i3rLKh)1pN0qf=P#GZ`ewL|u`31Oz7#R*$4-Rw- z3La$ia`OxJIACR@DZ_^gN{3v)X@M z`oE$7E7IHigxW7t`l&oWLtbQ{XJ9bJ;8!pPgH+oSoZfxqdC*UB$^|9YD~ zAshZM(jn@Q6uc1x|AbP=Un~A>@?Q}Cd>A~8xQF`qt#bJrasI^QHvh*=At)d)AT;C; z;P{I%{FV9-8bc6o>ienXsk|Zk2l()S{d-av(#k&synk3;6XO;CL4p5W+czFm#y=?T zKW+Penr$1SpMk|<85&P9L{t9UrUohhn@syZ4)woU@83)tf3WRe9>G5d_x~SQ_tgJ{ zbsO@K^7jjOaDZ3HTDS1Qw*I+x|8hfrdlLWZ+C4P)|F1K*6@NZ`49*_^=#tFi^$1uS z=)>ER{Ea0B1cvym9dd5ecw38~E}CCJ@Sq#0=D}M?R|f?7c)0nwc<|h(V4jE1v*!(i zkmKz{c!Zx0JP(&1p+RmQ8`M_t2!oYf)_eM__WtQ{4r%>Y0ncClYrP>#P^iC)r`u}J zAioWN^-Xxrbzrbdpl6VaXSk;aZwvKvdoxtS*C&K0!cS3#YHa?Sy-bx=t)t>6&#u6E z{CtBynZa$-;C@SQXi$3IQ+LdnIZH}HQG!R};}a9(6Z*;ZGxziHV<-&P9}K_qKQp|C z>rmnsm5(oeC|@k_E5Xk<_{YbmFjPKbsQo|kEw;C^;^T4tZvS^YRE@7w_*Y8ocfmj7 z|En}G$I8NPP+-R)sSSqWx*?nmW%V1>{QlKG{)pc{YyY3+|95EMkNEvPkHrt+=eHJqQ-wm8%Z*Wyd@F8VtYr6smsZSX5zs z?(_FL_7{8kP54j7e}-R~U!EVI!4NKg;aA{K{V*}FA$$34AAiL0-`DX@+}H|AiQm@q6is+HVu=E7XD7WAlBfm^g~0_d~?JNEl_ zDpMWFvHP)%hK*hV>Y9<*f5A5_)_;IG)8`Fec5Y*LRV`q96E|9Qr9CdvHZ9)`u#)=?i3CuS7qkY=V!M;gY77GVpJL}{{9*B$Lh0L zsp^m?Xv=QwyGQtwPScQg$MK`;Y+774m!#$kvFBRv!sZ_5A#lV}cK6;~GHa&=*ZAgk zqO?N?*L91K!>VpXUcHvO@K;c4>jPM2V-Q|`zJbx4nBhE6h^eJ*7#xllG0 z8Q*UrA$)0A+dm4MZ7{~Z-SfEhy6M!ttP9kQfLkpf&rUMS0E@YEamczOOuv~5bq@o) z%-I6_*h|o_af@l^CRz54(puatITv5Jn8CbVUc^0<=z>*}E%2&IU#V;BVa!U)pxxiY zvB_Kw?!$@+lxR<8JIyP^EV74YbwrVYMXK!bu~KCAMoG58!IebPK8HS)?7|JH6x!Jv zsW;zkdMe~1DSS1H_FNgk&c0>NPO2D(>Z=}Ozsvo^sZkFO1y1E|Jo$h;xOjkucN)Ss z0V}Tgt+7;VOeBdsZjTyWV@c8LI$G zwjG~)e~Rjf`_hp_g*!aG5UREY(hB8y)NxfU8L-+9xF(z7zcz>Ko+wJUf1Am!zPJxo zwcKL5B8%|q^Na9-+IgV5KZa-=)8Vf5Xs1pKMR9q_LWs)Ri>=#c)9_R|3W4Wn)A$%p z$*JLZdvFoWI8nl_D|iS!FGpZ8Z66}Tok)bIHIQ+Elkui!uSl$XCVo1x5yZdQu{%Gn zrL!f+Q#(&S960qpvb#E$xhhl#xe}7xmvDsi=856O!O>V+y$E~sI@1pY=W&{K0haNU zWY=mh$N3@JMDX-Ifo-l@$-6RLh12P1r%l zN(j*F>e9q5*dCTmZXvhF-G+@DM`7iPEaak7gGKvv@Ylc_jQFuf$hUenw`FcTNA`g; z?N%0NtGEH3C>akXYuAw^IRSQE@)(?VK90$6xr3EzD`|rARWj9cKeld=r*=05@Rh}U z%;QhdROypC?wIxohg(KN^4A>@8_$oHd?=y2mGdAu=`4sDO5$K!Z{jT^Peyp9;vX7q zRO{*|V$nOAHe4?U<1it-VB#3A>eVk~%dQIIXXyhu-mPR)`vEwnRSsGc+Q`|g6WEB; zLl;d6qED?4VZ{Y}*mC%5QeyuKKHXGi=gGEnA}7vg~Z z4P77b`m$_NK2Lxhcryk!R7TLX?G>c?Yc_Srn8~i#(?)mJC^P%g?6^gz)?+0>c@m>A zf*ba&gZj29unU(Jk>0i$bk=PF%!=uN@du`0<7fBrfm2uLcu{@Y?JEb%1cHSA&x#+9?HG0f0eFMPQhC*oub-zmDzPq14&y?JSd-=2yCZ)5M7!; z$A3tsa(9<;+wiS2O9F&m7b?obo1!T zunvPoujn+|B07p3y=%x_t;^3%SzbuA@g-Paok@?p$j7bmnRL!F5pJsW zKD@bXAz7@yl~@{u5RO`29gj;ytUZ;9znXzXypnO(%`Zqvrj9&AF(BW$j|OIM zK+7&`U}62+#CWzQQ{k|SF;2^(qa5F0KEZt~+rvV1V9`Cm`kLg!%S!a4=rGY=xqybt zZ$%GB#bS6e8DBTG#FIWaGbU%bbYgxHeo?ar2S~nyLb-YL(4i${Qkf0uvKfsf4!4j4 zJE9n)Rjr`cp^rBfZlTL!ig5aYOQh)4Y^suzjhCD4Ls;4b@h2ydP50XI5^rtpuJ&}| ze@KD7ZAm*8tV;y@&%*5Sp@7BKC$Zh`VH)12fNn)vvb!~(k-n*Y`0Wh=YUeP(QCt!S z*(sLP_2oxsGJnnKYTDc(8G7H%a8TrPaD4 z@jLVo^ToffTymfv+Z@tgq)mP1gjv0!mp7n(c3hOsgNXhgs|bm*llyeheg3_q8!;*$H((XuY|tw|0w z{740?YJet2+QQDO*N{@&aFn$+6n%H7Kmqr9(Th{l;QgjHl(nfADO;2y?v+W%ykP>o zxj7rDylg{kt<%UuWeV7aFMzLabI_u|D5UTH4yno&qKY%yQDmernsQMWD)mc|MGzZ4 zis+$nZ&aWvErz8#eG#hd)<*N1RnY9?>Tn}K8D#HVM!t{4VQOs?Dl8cV#-3uJ?|p|A zh1$`Nspd$*_aJH%tzmr$@jKv2uP|zAzXP7?wtnJh2y~OlO2>CD?#_hY)6Y^>(K3bFLc7S5fw}qL2Xxs;W)R1 zHR}couGlI=tdt%a{Wchm9-IK73Nhe$tQ38GHXejW$sqgVBIx8YEwGl<1+6z~sQrRI z7$a{~6DozY?#4mRJ$J-OI0VDIrX!=XTTqg<8B&@(64j+TK{L%m%HO8Lyt`K5<=Kz! zl%%8Kv+kg%Ga;yiJq?}u`U9=Di2j46Ql56S+>~L(iXO zp(k%lQRAX)^wQ%!OTA?pT;-axBvUq^tz{?BQ`L6Xx}_^1J&rd=NIyhgUHq`lLlPc3 zM1qc-3>f52Msu1(VC?J?gk$cb#>QsW6}~VR*b>dTsR=Rl2S8wR z4lG8p<(lLeXlu$TNNh*zxPZ`o_o<_dJ&lsY85I}84sCq<58x^a5!9F&T2X| z4JjXuNAI1!u(~J5!TZ{;NZwf=?kk-@6}^0L=HLUQ74HF}U8`6R-Zdig=PKa!!XGZG zIk57Cr=!K)hA5;z5WdJ4!;!2*tTNU{STUC$+8lhK`z8T}Noh!-60t(pE=2Iw2Iko+ zfzezw6t*70u#?enF4>Z0zgZmb9aq6R)wU3pjgx{tZZ)go=_EAm+6<^L%|#a+VqjUy zal}{e1?wY6LxI+7mNUy5#pcDKQ={Y{>9i4ARW1Qv?(Tvn6Gv27rwU`vnt|Ie9~83q zJ}WU<8wJchgW_~r(WjtS$iz4uZJE3aJ(51g5^OJG-96C2I(u&tGBCP?G_uW+#Jo1} zcOC|cW-n0UEfd&1RTRV{Z?HyfZASCAXQ87dPf**(J*)=vOQ>H#22B>Zgn}K^p!Mun z^x)fg2)MfhLd$HS!2b?n)DI)~o=dC+8WYj3wOpjtRE@UgZDZLkI)t2}+oK!GC0u=f6bW%P!R$7M(~%XBR4gQ#Bu4SmA(f{a6V0L7FgT_Ab`* za2a?v&JoFs;DZNiBUnK%XQE6qEA%FMKT1FR4mrr zb5DL?W!yJGGqg*Pg7hY2Ejxzg6DbXmAO&Ii_AE}5EO_rQLvd@Cz`)`ZwDrq9)`ig7 zDAXk#ZMSPh_8Z56!Blma(`pTScfCh1e!O7Gecys6zwbuu+DC}Lb_UXXwjS)oub>kZ zMJVP)D@stE3%PB8+%M;|rannW{RY0Ub$mav?wJA$>g185_q7)-ziET^Z=Qy(Jbl9Ya-;}- zZCHdlwoC$>WCbX5+Q*w0gDBPBbg8Z?j;JIE0KC&dy!qzAhe*PlrN>PK7$T(Ks zS7``+c?F@3uUQ*8iqQP#E6Y-12duwUhZ1yFqO7wn$amUlv~f%mdLf_%NA}jB)2Zp` zoqIDf*4>57iWDI~Arg%~cO0#0S%6GkbYbaLGsvpjgO)U$LXXvNqQuUT=#737+My(Z z3bwvN{v`>>T1eRv|7z}c|Q|1-<5Odt7HOhvlVa_D361B7m2SbsJT{Y!u7*GUyW z|IcH^pV#{b{TA~f=jA_t9uzrYsEJ<<4`u#(L**|8|E-B5zFFA9=Noa|(n8CGrP%K4 z`El=-v3TycT{!8K5bkcChX-m$vOAyhf%SQQ+_?ggplKXB>OvIODoTXv7xC<`g(KMA zvl^()umIvQE&_%P=Vxv zCM&xf@T?SBod2#5A`@&#=dvCY-V;l2Z)m^{tx{~wi#ypDM)osdktgYA3sp?+&A}>y zN3g>)e_-s=@vEoP>2~Xt^#40Nq)zUkD-Ya@D`D~b5$y+Yo>{1%dNoK~`)M@K5-FG?QvsVT-lU zB6c?_nk58TF{fFjZM7&?tO!jr>}B8HB|<$ zJH}5=$bLoznm3^CcrcD!aSysy3F0i>QndAg0<$GrnrWC{2;C=?={mmc=(_r8{L;k< z&v+$Dqjuea-AOHC+!%j+Ow@pB*V5(r7!R4zOryjyzjSENE2oZyQMgNG2Gda6#I#Qv zMYPw&0{6HX66h->Ijc?Z+e_DB&Ri#OUE_?7Ra`e!QcfkKQw~5h>oH8B>R4N^l~isN zp-~a<$>y^vm_J${e=vN+7_JV%ovYhGxb7lT+F^{s+pL+Z&dqyR8+Xu)j~VEE_lV;` zmyz=cjjZzAV8+d`3fpc^qxJ=haJP5?bKU*|tP_@{Klp;-a^f>Q(7%T^Pc_4~WFfws zolES}Y;mr*7S5esiPK8kAmn~8q%{cRJi+@|agr{!Ja>$Ay5zB1QVx$Z?`VLF>m|rn z)hKdqbRw<@%7|U!EP!37SJ9k3K6u8GXzZzUmuU6K;Iwm?l)i9fjm#^7ifa|jwvEE< z$EBaZw6GFqoY3OU!w&QT3B(C80w46!19S(1L8BWo{8-!C(i|qF8rps>4 zq^5WGP@C`TLFTI)4WHwVZrdzH;W2l}18;p`yA(q0)jh;}`8P-(p9%RhQbFZ&1!PCh z#pV}-Q0)B-5^Mh+I;8XIE=y;0dXJ)J_k|u39(|t`y8kk4I8X>`8a1)23U)xxSUYZA zPX=@H*exbca2N6NW#QN#i}0h6ZLojAa(X`F1`MRvK)seUcD48j$Ed5 zVw%*;T*?&0pYP-{^utqf<%bdTZHf`S)M-UTUX*YuoBNr`aa~N4pD655e9YW({ECA4 z9I&DCZBo5foyeX& zZyN?ohXr!(Cufoy7M7@7CK9p=z5{pKJW@8fh=dQY7{l(<%(fUd$y3{h7P7<8y-kk9 z^^gVTLzf^w{a)4F$!_#P+g4WN{2CbEr%!B;Jb>KsB}WvG_d-ni1yJ{{WOQH0;&I0i zYI2TcBpn|zTIFIm{-GbF^TxGxdlO-=IBEK#;U%&h$iP{lElk&842=`GWVD_HE$tZ% z4{pRm+>%{b`xS=?db5-?3X0;o>`$;EaSzWx zlASz+M;$r`IvSmvrmbAwcc5pa{>462F>^lQ&ZQ9jZ6msyl!Mq(M>sQ*EjVM&eIr%L ziAYw04=3*L27aA(BsBXy(`eERX)D#pM87ajfnGav!t*rwil1=Se2BrL$7+L{z7bh@ z`5;udnWI(W)0q1+7nQcGY(gLN#PN8ca1xwV#aOzl!G}dNp>%8)WOqnnOOyp6YMX-A!mna<)fyFb&G7%p#hdoQX1g5acJCw0Wk)gbW^y?3-gMythX*X*fJ9Pea0O&7 zgt5lbcE&bI7-p2s!Aeh?5OwxEZfzQaGme~QZA^>6C-qhFuKu&6`q35GGHM*t zAGU);#|XoofnntP!ihwNRmzf#RV4QNq-nTRGqda-=4ixu;_fdSp+zD9ozZI1nB@M6 zgszvyVZ+9du|Wx-5ODxh%XxaZCXZvLl|tY3b$Ic)=b-;ChKLujIJt_18TI1^e6&!2 zmQgeDy}l$;pT8HJ4hx{1wn?bK#gd#h`ws8a&4~Qf;gt1xH>&B<;IumJA@T~JV1Grc zdP8g~6E3TO#GVeo=83*!alcobT2D5!_q-e^IQcM(Hu%Ej=3vBS&FL7Sk=5 z&sxS7#c9c^5YA{J&a(!_Xlyt~aEdKSDIJF&+lfHI8$mo;A(}KaWs|TNVQT*4GxB8L zf(F+sFwE&V%;Z1M1ZW(9OPxVjz#yF%$_td~sX39LUF(RLk{NmYNS~=3K5*d>h}di*~^`YcyoufEyA7<;RF)?VLSQkdx10j z(=Zw-(vQx{55op-o*e$LbfVMP$0)p5LDrF##B`-=9N(jeDlhIEa&~1j4A{sp@#_sF za)JwpWtlp4;ch0M{V6IUPdLUKHKEeS8eBwYAb$&a!ai&O!3$@@ji+w4pOYD9bsbA2IY`YFId4}#N*Kjqc z&MPICO+U%p-WW$z1#~NAg2u4SNfoMiKZ68nG%y!tJR-2^?dwjAvzV( zp`~gTJyv`g2}ukv>JzrmRxC#%v*kH2jCAQksYr}(Y0Yh8HPtw< zmr=}mNk$fN;fK5t72{iq(?jKm$k#@)!^j&qDkh;#m-z9Q*GG%}%#w(pfHHPc*Cyrf zFGALU1z0CuAZr?HXsHe#R0Q=ykH-l*{NrWPWqlOnlC?-e6D89hoMm(;??f-Gj^KCI zm zTVZU2i{6gnlHvr=l067LrSF*RxFxKr`D^HEuQfDf`ZZ>p(*@c!cO+Z+V*-gD*aM2( zYVyI0r-!H{l$^MeZV3y=XOG}SL}$z)rYTR75QG+=pIC5RqM#zAUkMXt3l7_ z9VJeuc9E$Irjz_x1I#N$Oa@x{DSP;Na>C&#v9*3ftQ?nU#viSQzQi6lW%5Fd#nNKnMM+5Ye2~jb5c-dL`>GokxRGVk>fh*tK+ zhr_auf!Fp=h<*4NJ$LmoS+2MhZp@g3^TLi`iAZ-GIo25_EdBvEe^lTx^Azxbt2^np za5IqD!yVPkT0yOz7INGt31KhGr*PrI>7804m(lx;h?YIBg~!vI(Awl(WaQRj@_kc1 z7#9SR0bYD^`Uw2!`v|i2#dQ)iCWG0^-3haTr;&1v(};V$pZLtP#mbM=(97F>WcS`~ z(%Y&))iqp5rBel5PHJHM=dYlCSIfXdOO_@&SCPE*)UpS`$05XM56DR^L8Ui_V=`$2 z>8aL02|Kj#OqV8NwQ>m@y_Chd(EM*^L6HN}1(6(P5^ z7|A)$F&(x2K8ey9jSubF#Yt0XW$F!9 z#O<}ryK^7mi{eD$P%V*ZqL9d}6>?&3U_RP)P8!xNi)L=+7Lri^5Xg;rhc1;{;JRty zoQBO;VcPY(u;-}->R+US`|q8Fah9>DY})~t9A-pjR+NDgGQ`PS$HL02Lg?x{0u*$EN#E)r)jRoDv z{?T?Q8GeNvyLN{hx>Zlp7x1&Cw{OQ63)X5{ee%TgLkI((u)I|8QZ0D|;L8Ip!qZ>ga*{griN%bNVZb&LvS! z#B!52FSpSh8LzNAZ*B6^eaK81kwdEV#xP6PoPet@bSR^I6mPm62_IyV@R%lJMniB1 zr&9GZ+P3B~+A%Ye=H~)Q@4Se^7ZN-#Sd|7U7;vVR=*f1T6=$D*_#9eS6IN;MWEAxM zvcSSIU*KAWBy~PogP(>?hNlWvU@d!)%GY2RrZCr4u_nVb3SKC@+%0u)KSAO|d$GReX-Xg6Dm-j-iP1V!|TqSY~yc2J9s z;hd%suXJJJIT?1iUN8Caq>{Xdjlunulj!y>8^BKM87%JyI#6MaMMJ&l#Z&X?aK0t9 zh}4nkeg$-N^+YPYtYy#hn^&p9Z9#lnz>IfqDuyOMeJ-@XWIHIYcBH%B3zM?c9B>_< zP0q=D07v#B8hh_C%$%c5Bfe;IoJ>5akkTS-a{4o!de{idQ4?~;Qk~4(BT8q5XA_5d zL%O+_f$wV`67}ajC}ZPka(`e7J~7IY+Et&yM@1?i{!9p+#I7gSr+4dbn!!&UCnl1L zhxH&_a0rj@%V9l8QKv%pZj$vUgUR~ovb5r&Bu=Wd1?SP5sCm$bstudv*rlqOETKFJ z=7!E0pb8Pp{!7*H+Nc^cE02@8tPZRS%b`ZxjA`v`hT{7IBt}Mo9{V9o3_3e=E5Djj z-eOAbr^R>UtWPrA8YgUlZ-^ZCFK`=VNe3kbZtYqV?boV{F(!a+io= zk4;w8U6+du=C)G#swjB7=_xUhpNW5r9ZtXHh%rZd?lYCVZ){gxUy*O->)4X+jp(RT z1&&x4P5L*D!}Ff!;F_K7j2-%h5+om%Kh5oeRS!=x#^+P9mX8EGz{r5wZLT0`xC#4W z3q0RcoE(alK5)CYF-I0+Bc1QeGca0TF9QN(?Y2xvFEV6RmdQ2T)l%<;(sroR>MYkUptG5qWz#)|23O(D;x z-@)nY_EDWjJ7^gH2Hb;87(LBRG@A~`dmb8-wI+8_^U7^>)#5<1G+czrjflndXVvJ` z;!~xgOzv`K?batLfxLT6Ty-3qd4Op(bD{Ol3qjpWnPeBY!euE961}sDQ4Q2Xo%>#! z2Kuf>=1U)g(g#0s2(}~RfMIy%-hE(hmBq1_Vw34JE77tmGNc7fCU1ho@D4u_taj8E z*CuX9=lDF+LpWbhV4M)WrLvCG7omlHrrE{S^jC6rCuV{~#01Q@wUbq}xC+TEP-7xR zKXED)pQFjUrLfKWX40kz_^#@6D0%zSz4 zfLO<(VX@2)6p{R;a{SC#-W@PS#z)EmWvGmR@X;*#DZrh~mbJq_rVgmOvlB_Zq9hsD zmI3;blX03wZ|vy>t4Mv+XC#rz+c&oglaq-LOf{o+qLZN;$-<0ztRBHQkd|nKwnQ~X z(m5G!eOAUl6#FVGkGs)6a}_*g*mcr0ub-&-uLI$Shgnwr)x@Bp3)znCfvr&@%mEQo z8eVvV>0NRLPFz_8Xx4R76Suwm!TC)L^XM6G-&4zQrz*m@_eIQuCv1A#=P4}Ptb=z% zkH%NLr0_0w9Bd3(4+d{br-F1+LtZ#<419J-pn5xAGGY6b@Sd9y^z4duCRlk16zzyY z>&bce?5|B)LmE8Q5lmPA|*)$}`5a#+mL^qDTfLL}aDSH@8!!vAXtG77e8hxZw z4A0}zYo&0>DHkqndCAPG*TO>AOUP}x-Bc`C0_PguEq#CcG;x@`5FeU044(?R1#VI& zAbR9FkgbS?h*!2?S6z?FKhA|!-w$$%vf1SD@$D>UP9T0#_!Ko4PX~799U^mOGubAYM3E*}w7~o69Y|h2 zjTy!bq{&IB1zw#ze$8Gx;g%B+%NwDx~Z_j^A5=CpL(%?p8*GL>IqiRUyNCiaVpQP_td9=u8w+yY& z>w;_Hf%vVH02)m^iRS4UblB?i%zfTj)&f5kNpU(GAYygq z{oXOc{`B>jY?4;#j*ri&LI!OYV>`u9^Kdj14SV#4u}_|X(-qoK=6K$Bub|x|Z{ajp z#yjib+drR_cN7uXfN1=-<{9BzmJOf$5zQg0@DKa$4&z z;R{ux8T-}qVez#OMD$iBuw-6fvq!Vgl37&{HJwjChqqtQ*jEqo!A&5Vegik|NPx}a zg-pktX#6zL8YE-;@Q;DpP+>EQzEiQsch*(1qUxtZuhB!)v)YSts>G^HLR=VDZ7P@x z89})GA}reBLwYSo;Td~H{S#3BEl2P?^B$DS#HjXtJ(^z;$(a|p4riWThR!$`liY+TlCdEY zSL}SoYBe5)RprD%ZJ#`K63iww&1X4p^Hj+2ag(V2yh-@2s|Oh7^Fx_L1Ql~QXsYEg zn={qY1CpFr++c0lIBom6<1G3Ae+gRc!NrBS!KVVQ>qoDUj~b({&r?~lYmS@KwE z$`slpZAA7holM(TCDAjhcBpK7n?=Q})0hywP&~{(i!PlxM$qwbI=GL^;hle2(W&7W zt9BUENt3;?UQ!Zy-a8ELUYtN*1nbb$7f)$_q#NeD*Gh%%x}g3n1M<#n4z(VeLwgcd z(YkjMw5;_Lc)tyTH9KW+tKvrb@yZNb`C$VU2ss7JX(710Q;&vbe*msZ*Wp-sQEbAA zLYfl}g2`)X>|EH$7}s{t^`Z>EIqxC_maf4?wfe~H@cf0l z$@AU9@cB$T99=a7?H=6=re>?~gl88($VC?`dXK~(Psp+JPThs0rk9ZSt5sMjaL=wD z=?}zYbrNK7_)zb#94seR5o`Ry1-`!8i%05hhW+Pmz}W7$P_tkUXWM0A++I=3aqnD- zb;`S8%k^EDy;2GffB69CNJoLvl<&l*E(M=`n+~6r$PuSa6ER=YBedmCBC1D%fK*MX zq}2m#zjF+|5IY0nW}gNnS6L|gC{D&qpK|EL-PP#yY=rH(<;>dzS*BujC?zXWQ`Z3FCFa28r^Qr$Z0v?P8v8F#bK1i4`fAVJ?ehF)5OP6 zn39$eG-LM!YQ^nk=AIjX!j}xndNPcryt@P0R-YyuQ657itb`es>~`jd)njx$(M5QR zaTaNfrD`!zHV~&qwu^|x z`WvYCvk8feGlP@0T(qsZl9|)7hHML#rD+?Ak%``N^4PbGybmViYco1dbA>4-c`jUiM@n4?X|?lEf>J)JhqJf$U6rrN47h(fR&iZ znz5F(T8*tFNnxg9RqlX5;ag!?B$3 zx*Ep#;s)|cN{%i~Ot+P16Lr+e`mQpM`Ce^|YYu!z z`%Rlk^}2<;{|{J=+j2O>S2dQVKDkW9rDN&JYr$BnQ~%6)31q3NJgDE967B-__SAoL7#F}uwD>^oh>HAvlp@Uot_1edp|HuXZH~^ z$8k_K?iAXslglZ!5+X6HszBC|1K(TaiT;l+^tS#kGzBTZ@>m^sTp~geF0yh@+55xw z*8_~f>WSd4p$Biid&G$t?n9oXm}JNW!xK|krZRdvDc>H6%n!|G&9pW^vI<+_@>(vj zpC^L-OhCxDXIq1cwRUF-U3FL9sIuP4>iIeI!pA@%5Qfo~% zJ^4P2EI(>bog?nUn2uQ5{O-J8JR>`gN3hM(x*#Qobbr!`J7mLE27)n z1`S1-xXG6vD_CXG+NlzB^1>T5=!7&)ABd3A>f+MTu}xsv>w>4PHlr)5C4}#~>)^m( zN$xdYL8??Jjw1UOQpd*mxJM+H6lG;Yolh>EKOv2@FMmtZCMMuxZRK>u&6OnIAe!bi zk3sP2 zBPu11Qnca48JK%i9jkBzAW*iEreP{*j{sWfi0FQa&N}{hs+ayigJa33rq7RqGkEEza=m z)E2B*@nWC+wnF-L`we)&`~Rli_7-M!#vQ@#iVjGPl!xed*NIw31eV?U8pVE-#9PKH z(LS9dqK>VR&zMT+UZKh?-!6x07DaN3k2o=pmmMUHmuJC=H%hqT@hP}5<_gN3;6av_ z*ArPUdn`P>3T9o>q#c}{&!PJmkA6l$)LjBMj#!9I8rHL8dwm)?~EjBO%Y z77OEh-=xqxzwscxvJ;+7a>8aKydaWqI-NakJoVifO&l}KMq;!C zF2cAw-DvEKM)H2+ZV>tYNU6O^4sL0iLi^=TM)YtHEar~q-Q)M9nsw#y_RSn}wltNM zpOnVQ^Uvp?llhECj}SySFU3{kx*6Hm3t(loKh$SlhAUCa;D%~GQIV@638J!WvsZDT z*4;_Ow|qlmzv+`Bo#kYgpc-sw)0S#0&Y?wKN<=o0g`M+;ll3;S!Wl8WOkU#}xJFY5 z@6Z9iQWHjHUyW#L*H?04SS86xt0AHtuhFgp3e=Ww7Vpe8o_Klr!o3x4rX8YsV6^H4 zqqajHm&{5*f=dKwe}WsSn9+)_x1V6RzMsgVhEc?PjU;_PLzz8aN{K!#m!wy|rIhtW zUL-q~io%KsQQ+FfhaDG6kS!UKv}Q&F>)Pg6*f!-po;0%pSX0e-_h-{^l+RX1qI5Yl zSt9)6;duN+dOo(7nTXejXyX8PA<&7;Lwj1C@%!78V8A;E1)58-r8n1ucCH~USR09@ z%tmRpxAT#fR#^lhWAPHJ2B;jF9_!m9fF(yCB!1%};ks)zr1~BP^${b9_HTy?9K(dhBzj7_?^QF~-?nm|H3@m^$<6@&+am#VrHfa~%Ntq~YY!_%M{iaU|C| z`#2R2HT2}9Leey+9g@%YpwE-Kn1Kdo;>kLLf{w;Bt34_pEKq>7tdqiV+;7Bx-zl;v zt_ALH?IqNHcOkR-IQcRA7;I}$qt<+qG|gX}9G%bm_B+}ZK5PT5Zc_|f_RoO4DZ3f& z9(R}~_LPauFThjOrEqX-BU2QzncOkehsVQQU-J1}tTwi} zt^=Qq#pt9=b$rCAc|`iA*F?3W3r-16##B5DT=z)FT?k-tCM9np)80#CcWg$&M}#vI zAIVbTYtrcKuv;Y3i)-q}Cx_X&wzS18zsg{L3#=vaAxD9!3#MpP}Q zp@(XBK(Vxvn9ou{2KIMBs(L=vuQ7;;BZoAHKwWE|fnl4G3&Op+#@ zFZPM^HNOUqy!wRnWQ1}3Kn(2X-Q`Yq*vCvwDS-CT+sUr_4DuI?_LP4KB-78)XE}JaLlG8_l&#~y#v_NN4LtBl_;|k$u=00Yx zKq4%Avjir!7J_`S5og7m$0XwOO*meEj5t)>z}hYz|IeL)-d3$Rt| z1Q<16Id(ze3aY0=_HYmN%dUC6s9b^0oft0`ix%Esf&C6nn_&+%-t<@-qe%i-+VH;rlH z@ttIOco}|~x{p=V>_#oOMB~eQCefENd|Vy9Lnv7}9j6B=(eMTPsMD8zW>mZ>xqpp| zU$$jZS3l0toPjCScjFC~?vXJ>Y-<8Jpi;%8HJ8(|x@zRTR|nW(!BtA z$44`@$56R2Z#)_Ysjh5Kq@SYLi;w3$SO- zVzSzJ7@ey>2FkuCaGqIiV#@bQf?t<9sfd%oAw73YpFfeJYVUW@Dx;Yop)i@Ywsex5 ztv8r9$0)L(Ns=CTvJ;DSJb(+Og>?M2ODw6)>Udy`682g98r}M)K@&C{R5z9xPVL8a zk)#>}k{p|b8)`mry!d{Q$mPd@@1`Kqkqx60_gK(FfphTu=@)7EcHVub(TmwCN?LSQ zbs6ILG~+3L6KG#y3eG>*g);?Bn5~r}Y{_IjEI0o+oU~X&gOLx>(%(Sh;z!chs*#0^ z%PyLx_J5fB?szKS_$uNSHr&dd>y^>U$63vN*Z8N|UTny; zMf@ChP5!`5bH=0Lv9P@T6n9)%j=iRwT9s-UZ1dxWEno2>hK)&2=Owg1u{y&HY;tnU z_yi?6mhHY!`rqLbcf( zlQ3>&{BSrX%JZ4)mHBJ_3hD{jW_b0 zv?<)4TUDPZLb-M@SL3aPKSX@dvaQd!?T?GN?f>~QUS?Og3CAkw`06SA*0rCi8g9(u zjB_7xdb*T*K0l91*L($4Etz3Uzq&GI>+~71w{mRan=U?1 zdOYj+;C@2Zg9cvugDb1{J)6~EyqkNY2-rrog*ylVsW2 zPuyZIlo2?2@nIj7*p>2k`BA6xm@(Ua@weAnv&zeoIewD_7g+d~(O)}~KfTO}PYP-l z4!%s`4=x(ZF7IBz$jCKtC$@wOl?tTUbxmW~Uk7vft*KL)-}hG-zc`}EPYEe!pIJ+@ zCS70#-i>FSBXqgU72ezv;e6(|Od~sHWFces#El!bd>QY&&rrBpq&*F4*i14`?`6jr zsB&rLZcIt*Z0239Df85Cpvtp!2jl*qC;wP}ve3O*owwV#kX}+q@Rxii*X0_@-8!Jj>8y?uu1LSb zX`U};bZ(wx#Fu|%rbr|)WBRg%k3g6aEGFXATiC4lQINauz*=t^#rpqnu@Om( zX!zARHvVfvn6KL}aj)3nHfFj!)3VZ!{k?q!tN3{w@AFB4|269$b9;sgU#TC-q{ioP zuAbTSZ_gPf<%TOOW_y_1Ew()U%b+`FGWe^?@suNd)VPEHG&4q+`x$(~LMG4ne|mpyjek#*b9K$mET zv-6LHvD}Fv*t7`P5Tik6ZS^N6HpPf{ygpHTUc+i8_|9~$-*7VXI;w|p3f(DVw5nJb z`;%~6HUtZ+VuehC>?o0E31ODppU$dmStsm%32x!Q4g@HP-d}MI_OFQFt;w^aCs*GU zelP2yc?`$&cRDb3Hs_hxl_#p2{6o0*ZRYIyt?|6$o~>-m22K9&mvp+LdM(qfdy4z- zk0&QTFtIrO-#A9b#e}MeevetK0=+&wpVO&v;N?^&2tR+A#m?Q?gVrSn7#;hY+=!KH zxKX3*a9jI2vrJuqU9fg7W2U;DOILU$eAG0RU$f&B)40%;KWVmsZ`QZwN1&e@+3&)v zF0g0k{CLRROlx7>)H<|miykt~b|(C({>_|Pi7~rFe<-Z;a2PkR)aG!{Now@Hp&KM z$z^PAZXmB?d>LMDICFJJ8dD?@68>V-BPLPJm3=vBnK0^$*!yH(B_lefhlIW=U(69zP0{k zW|XXFHhh$|asQ+jKEpzqHO$@2Evao{`_k)a%@ji_c86nb`JZ4Z^ciE1684E>A+u>E zYonvp%v6Qx*_4mCz~mea=ia`SwK=**wTd%?@SbO_cdm-oz**a2{iMw2n!9%rQB?E;8RzH&or-ITy_(3;EA; za`@eaceuSS^Z8Xf-!ac(O7ZTzzA*MfoT$%D5gsrsq&~IlS#`G|?$m2_wsTJ~qqKPo zGdf+3^=;b3MmEc_5`K|fmZ1T6Y4StvW6c+##zZOgkFQtrAul|rjYkS&@xz(l+oBye zsllJQo*;JR_Rb%icc2@aKK%}7KVcgCcVH~t_#%dB+HA$UIC%*zetzWa?m4h2Q!a5= z4)h6o)c)}{a^S{nYv;tYZTRPlr1`4iim~s;W^!v@6*DLI3s{#CJDHAiOPKQC{me;yFtfUggj&)2x!QZ~ z+z+qSe7Dp@#_j53##$)L4A*qdelyxl=;(KW^WQ7YMJvDLYJI0jitTW!x>J)+Bk!8> zabD%Do#Pe8>wPq{dFwB3*50vH?ruI^STc>K@j~v>c1JcWyNq|+B+1vU z$>ECagZOiQk8lanUX1b6n^4jstZ%?*ep-J7JFUuAm^eO~d$Br+mD4feyj3+>%cGGd z4avHEoc=sk)95VcuB^e-MXRx1cjfu9m!*V}KQ*}0o@1O$|l{uL)o2g7VD>SW*Vtun~mzGYf5=M`GQ z9lBk`oGiFIVe_RProhz*w-0S#*F4MM7O(aSHx=KCK4Cg{=v)UUFh9pKH_pQN<{jb1 zRdczfU;fl|^9A9FZwv>{r%?5b&_jzu|Jb}e7A!+Ge(jP ziO^#wN;xs+Q6_wLy9R$y-;W=D@_Ni!3oSy5pI9VgW+FW-Jmm^ zdKt~EOEfJ9tlWeTjMs)q?44`J*xDbLxl8vYxckdC@>8D3@rTSpxFWNkNGnzxE=c~w zJv$jC6zp2W2EV$_ZJw(W9`e(UJ!SYvxVun<4ah67XEx;sOUFyHcMcrpm3{{^k|8R* z!3sV8*dGJYd7foPn~deJw!D;=XY9iK%?#@M&yN zFe)!qrc-yd0`5=xEoRE+^{jc58^5XCka;-wdG0Rb3A}5}XjV3;fLUIU$@n(Tq89^} zah0!(85Om;RW33*tj4lH`rq^ts`K8t%DC@im2*HQGiyOQBe$`Q%PL7`GA2xiTV_6! z-&fAO-S0rHt_|l#ye_I5_sEJFRTIRV;I;UYHz%ti1t*zJ*Q-_kRi<-|KhuTf#%kQH z(>Iu}zkkc_iJd33*}aQ%KUFRa_i3ZYZ%qDq)%_2s@yNV&ALSmNwJ#M*|H2cotIj1`* zj9upz!K4hdP#>9NOh(gV`eV))W~;Uo?W#J)F=UWiE4hwo{+7=u<|GLpy#K-6ILZpG zcO-EQqPj@$=TR)JGi^iXB#^ry`GVH{Jv> z@tO+?uO7}7K76nN9kXh<>?fJbi~2LdQQ{K(rpx14<+g*|^{t-FOchBkW@|ZJX)=|Y zIZK=VRd-}9-p(PpFJ>?vX(L#+@2k*#Dy6Tsm@{DyC-Dz@_1UQBpSTi{&b(dq5U1Yb z%IGGI=JIc>;XX;_<&|IZ<21EAIVaU}VgHgOMrqH+uvK@pIQbkW{_LoDX1Jj_bL6a^ z@Ti&^-#Iaf+a|3?#Xan3O34fQ`iluCoOzYe`88JfreHv5_}hZtsag%a6gi&tJT7$F z_pK_SZZRTtia0R>CXe%BN;kgcGNQ*aOBUT>9?K0fo@W1qN}uJqDUZIMi_w?krYh8M z{t<56;v7TvWZ@9?Ihe|M^-W>v!DQAkHlLm170Tu{-xuy#lgM5Z|3hb<`;Tc1r>u`q zk*i{JnJRjo30S1ddhOi6-u{%#x*R$t++}UZ?z}Xf&ArmgI$m1F3k&LhE4h0!&T-!a@%;Yi)69nSQ0jT|I?entl`a1~x~!{dJ=>$yMrW>C!bqOBW%p!m zs@iAxi<@25t!pp(7T;hT~RRK4pn1p%vxSv;7uyt8WxU~EF z>==G5xAn4E)tcakT-K&Z+!2qlyid$4&U98a`&;P<%XClR{!|+0912-k0yoZ@)B=bF?VqE~(_O-OUa{UyJWlV@@-tyhVrIu+hIF&io^tkw1~m z(jR6MuCB;E6nQZQ9l1=yE?08=mNM2%DVq7#%d*q+qo~PIL;l*{&778gDU%uF&dzFm zFKp?GXDg217h3v72@{Od*w#ZcxhYfr6|YV=_cVRbgmFDf^V>rEu9{k+%Gq_Sm|CAMy{`7u6Aj0#iF^v5?MQDr-LEW;Z!Z0;Cj7E1mSV+Ui-Pg ziED(Pt&_R&MNQn^P3yS!_h&f0$IguR4Bg~}W9!(8@MZK54dmafJV_-Sd*$s9f2E5o zNAr_Rtc5w5cHG~FQf5JEH9dGKkLiheLIv3mn5AZ2!cSA2**$aycP{xpqc?4#Fla|F zcSS{$b(hTH;?<^esSB10H*Jw*R!&V~%G^Y=N-j2BR{042ne!(0Ua={&OX+~{x#hVd&KikM=PX}q+OEB&qF%c~wQp@zxx z_-_3ybd+Z?*fNdJ%h3>Ny`#C=S{>Y#Khnaf-n*%7Lq4PYSC4izM={-zHjJ(0VfNPa zD6YGHALl00i&i|!RWdHLVm*(lFqLO&V1I1^EB0=6*r1UnBd&CvuYGl!@j3I5-U>G0 zH=UAV9u%rETfK9IehM>bP)8bOOy12l++N5i3zgV0Qje-2^6V6IJ}%s%x?TAGV=@&x zI8^EQDnmGB%vS!w+wzLz8~1P@ROc`$mo50eRo2|K)gvyK&6~$f)w2`!Dz@ewDJVDn7aDG|XfxxAz5`>B;evj^6k*i|k5y;C1IbtU27m5Js_nx}GNiw@&+$ZY0~ zg)_gwIhL{6>CJjc)pGhaz0CVpj@;5E_u!tJjEPCZ*q6cMIE$U7d|cIVKKH?S{)TWF zQ}RnPu4BF=6R_z-m5K~#$jrI?QZ=LS#x)C>$vb7PD1Hgxuiv}IESZqW&DQf}y_TJY z`TSJoI<4g%w=LqnecQtuWNEP(4+}+lS`}{h*m&Mom~r)L^|=-4kvO%i%`bIWszC33*doBS?Drea2>Gw9qcC zLYN}EnsaUY`Tz09_}}tFxUk{>q8~!|`U338oQ{2`OR>??8gQIX+OKAzRtTg|9D{VWK8BS{ zw0!RJ1H+<2h~8)$GLx)B2XVD*cy3SVMJL+7O&l&O)yeG`b!=LaOAZTm;Y6n_(fBNn zJyy4g_oY5~J+L8Xl0TyB;3%?Tw;F}cC1N=$2i;U;tNYTEY`T;#$ls$y)3qmH=+Hb| zIeA?$I{Yq-{)LeTb7qiIeFq$S97-;a+iy84=ruXNvzr8rN+&~!_C&;Y3EBix==Nvh z>1fGbG!NIJk8uu~4RvJimyy)vzPF%f?<$<(&cgN0c*^G(i)xQxG}m{KKbwQ_u5k@+ zFL6NXeg}Mfu7aIf=2YtAKNK2hiF7B)sH~H)N;~aAOH-rprEdiGBtJx5L)KJZt$Y$T zWiySeJBiH;T8NB`JHAaBhhyiyL44a@66BhM<69Xx`+vsDxBtlWCx7rmW)%1Xh4hwK zIFu}P=|Y`*c)9-_`P{daWO*?3GCNbh~3mtNZ9)Y1D_^Z>{p^>I8M?tE5dPIMg#ja!!SWY0*~fC#e`{@MDPAC zxGWhDHR3?qn|~4OWv=va+a*C7F`_}sS0K(;ns&5jff2tzQis`)i_XDx>8N0=*SZN~ zwx5(VYSLxqnpnPlKAD!9k9UiYkeSgBEM+!^5Z^^%P!F4mV_u)h{l&?G{E|$Xt(J($ zDJ)Ddpjo++$F)OcL(0`DEF?^CXx#X(^LggTn#i>5EPlt7j*YcCiOj-F%hd)u#o| zxJEKN=?n@>c%oV}8IIN_c&S!R(#9+xgIS4$TQ(YIM@J*g!Vp{6x}&Q)13TFQ@|Y8O zW_YXMp7W5vBQ=buo?MK?wVP?wwLX%1P?hri{@?-<5pNX$8@&>?c-S!BY zy%}hl7L1&I;^0@!LqOLT@^^U@tPdZDT;C*=Su8-#tr^Jjo`oe^#e$RD+o4#lftHMu zz~Fj>iRs{M^Dwmjm?_d0PNEi@yRiOr8bZDqITZKSH$eBXazsJ}MOrus6~KX^t0h{;w?lO>ZIZD*h1< zgBon;lz`vjaBOS{g1*#zI{WcQGHLb!q$N!Pl_%tG*(}oeHwA9jqG`saH)L$zAqE{%$yi0+-hZadu5HiJK^n!Ac=Wm>AUxyNB_sqtHK0 z9UT#x5R+EK^G|Wawf;SMG$q#Z%BqJjU2Q`33I+K2^E`2MNijcstcPUf&%;)=N2GOL z92N&86Q2e8uo`cMi>HMoxNaMfaSSIc7uv*Jm#wxlLC+Nc;_Mo zNnVwV$y!AYJ~c#w;cWWv#C>w)KSjDjelgzJ2H^f~7tE`EP5jqPKtPz5mCdgY$as7d zlI9**KR7_F^Q^J4DG1NJhagiP0ZEhJcMya)sZaqrYzaI&MxEd0wr%2g% zRyck01JaXCF>i(uj{lm7)^KB**S{E7o&1S(d@4ykG6?ly(`fPNDr}K?MlayBJy=Tr)kDd(1ug6cgoM;liX@h`*44C*Oh~$wXLHzL%#*o$9fnyBS5#Lttua zfKwG)XwJp~B;UV=vcWc32#fGqIR?{v7DK+PT5vb}F@i(_rc=|;8K}Pg6i@#|A!g=os7O!5(E5j#pU3t?N_zsm{A?~#TZ16u z^~l`$pavxD1T!ANM8U@Q&j|Em;=pw%#E6-)cp^59SE)tHI|N z2AEK{nKN+5_6d=j|4=ZL@;LJchBE6(826B@f1m;RT^Gp0 zm6Ks;t4(gbJwqanSCD~&EULB@kaTl`aWdIt{#zOPa{plxb|(#&N=%^l=c%B#Mu|vh zb)f6BI1Rr2ltk?45!D!)_;1T0%wT?!k(Jj-oLU=MJvPEhwloXN##`X!8y$q?6_D=d z0Ypml9{ng$rFpvJsLF~n7_mt-Zs)R^Ca&B=w=7*w>iSFR;l54;ygH54NH5xbHyT5l z-LMtYV5ayCXOt_>(et(m^r*KoJuxyISCZuDi%T64EKh(QJgwGnopexAo6&C6r;DdP zz~+T3Els;#Vsc6!R6m76I(8BDvVKcU&Z*LdcoRB8cnVwBsA18kFXZBnM%cywhOfdt z`sx5f%Wo;r$ftSep1E8!OB;+!N7~4alN<1DPaLYq3?{EE3lBvew)K0G=#!!>TGpaR zKS_$y0}aabO^cNEy-f;?7aKwQm-^C@%T2HzXG0fhi#%6#`_bQ!hkY|OsC~}~$a)tL z^<4vKlh+pPa5zR%i-Iv4V)X8sM6z9D8}d%&6Q#wo(B(fG%JC`~br!1HMuycWi%64EWZm~;^k?^4$XqBO3;*BN zk{vBX`C0{@?u{ZImsX+i;0PReX+a~AW%~NiyRe8lqyQlm43x&Y&}9g z1{OPft?PCp@0aMEzrPSZAI@9aD~+KYUp7;}hHqG5 zybnc|-4?MvF>t+p8tb%zaL|7Sof>TqqZv0bG5jc$6*KVntv|k>vcf%iNg5zufV`cF zP+t5G4$UUCY3FtX)-)ltDFH#(c9HmVy7+Kcfj%nkp*}}y5%$i6zA+Tlxauy{FaHbf zge=96>MKYb*<__6u*f(ToiKK%h6DvO5-YI zX`CHH)>Pi3*@}_a@_rnRZMUIMh5=?3cj09mN5!Vhr(evT(FyWv>E7gS)b#353HuyG z-Z_S4?~bD4skl|_!EicB-Rl%`NGHcCR^ow!Iab%e|;vOd58CDbNPhRfrq5n!LJXj*9nc z^m;@+4GukrNC!|coe!YHLh03Mlj-0Mk=DJj3`^F?TDxSG(Z(weapKol8a@09zKtD2 zn?_s!Q|w0vHAm7(9%JboK|fZ^nupzMl&MGBH$jkAJ+hy4z&~d$y*lbF6yM*&E~1UVN!#ygk@+`W9+t zO}2Ed*Mr%rt#sPg7dSIggf|UDlvfDE^|PM%@6~-^ zPBu=D2(#LvbqJlhDQF20qdMab9+{1E`xoGJ^+Mz(sYBe~9QMVF z1+KPYAP+~O{BbhWmp>y>ky0plR7TcZDMxC44gPR%;J?5CuT@*g#pAb7>==Uy2`@;o zRyV2Na>?>(#tWDQMnZGMT_SXx0XF@fMefK-GX2m9YPR|pc`$DpF4T;LvH4Ttv)>Q4 zN(SU!r8xR-H3J|fX7>2EE>Qw31;Rf0!+E*a6gf#_Xt z#I`~eYTzTPvAaFEy z)7M^<8%(0vkHS%VT!7Qe2)buuAxzGC;Cjwl>`IWb+TYL8iL#q8Zb%b579=AuVXnE; zatUm#Jwin`h&Yx!1;t~6k>NHKQp4)N{-;ScdYhoiT^{4!tcI6=FX^0p6V_2;_$IcK zo}V}hH|C6>E1i5%y88%OzdeBH$St86)>_nEIT06S2Z)FI3&=6C(9>RvyU(_xb9oOL zkvZBrCHDf-%v(tFzjg4r_mgbvH9){4MfyA=7Tb+OaH#qj>6UIJ6XfI2S{4hpwu=Jy zj=M;&nu4ci*5Zv}1}-mBLD3CE6fGG=AOBLM>23Wm9(@@h)w7^KVgsriJg`kh9S6Hc zA<$UQ((RKr&6c#HifctK_#a!yf@{_0p+~jQQ-2)muBsxxF#~lDWn^jTe2{gXSeMsJ z%Kob-25W8+Rb2&`582_o*+}Fk9z|VoFM@Up39*aEh}k2tWYl&t>c32)yk<5!y^qkv zy)`7_w*>XD$bykZA=-mBVKO&JeB11BW?`t#zG|el=-su6Tzny>t2LsG}6Jh!HnW|`S!WZ~HI*8$-c|X~Eo|fIB8d2Ev z0!3Ei5z~4EDbocQ{$LeqM$X2yN!C!)8H-(IKgsM7?_oD)Aznq6!em$ooa-u~l_&$x zC#R6U-4yB_cI1fmX<{_?pGXssNarsKMNINxjNjl3<$d=sw0}P8DGOUS7fd}^W>uc{ z2J?oMpm*RhcE?)a-Qf|?>mExF?hk>V2-n!};fkuS66pMNnY36sp~}fj5UTHtG%pFf z8MY6CnujDgsfw&wn@esamf=o-7cO7kg~W6#sDwWupZ!g7+tvim7q=spek5f>ah8t) zT5#Dn7-C&D|i%GkY){ z6JghxNSd~~ki6@%R8mwcXa_NPn$knGSA51-{~-AIxI)Uy8;0jQ$pP_btJ3y9sAYE( z3)K~(SpJ(FpJk5XX~XDDIZ3*4izA-?>m$`aqv3Mq0bY7MhhxGU!ME>0R3q02g-)rM zYu65|_-iC(n-ks$w^50eE;KhNkj9g_Ifg$D{(fuT8aja+w1_b%2y5CB=LNw`GOIb{Rx&!heQ{Z18#PBrSk7Q31kR*N< z?luOYTI@OgwR0$Tt%CY^Rk(}tj)IvAo~KI_!Q5}8ZR8=WHA|*HR}y3dPNJt2pP<@N zpZ=I~7t3bshwIigBD_P%S}bTYJ+vqf20w3MV!>R<<=sT#-C_*w)uIZ1H__dE9X2;2 zp%y+F$`3kFcR5Q?GIjmtMrfh#k_ z>*Rb=zk518cS?)S53IzNU?rOPGYRKaN8n$vB8|T?P2f4haTp>jR6CQP9ghfR5&;&By5Nq%spDW# zIDm@K;g+UXGRfP7qm<-rL&v}d%sILmYu;<)ljq@+VEoVwf(4NxSFjq_?pNB%=NEVu(zqp?Ka9lzcXiPmMj;Yd%nRE!I&m{%q-do-7BwgG~++=TYnmy z)9T5n&PYVI&cnIUr$l($VlcPm@xtLP#8>Cx!>d>vD+|*^O|ir^))QMkXv3^$92J>kkox3F zwBYDXQdy8n$9u|QSz-%5xUYkA{s9s?Q;|pquBE?{M$z;s5!i7rl*s;QhWWFR=yAD0 zwv_Hi*p3?{C-Sl7RCf(HE|)}^yc(Qdr;+)UEYZ_`hc6<`u=q*<9_%#3of|WtZuTC% z`(NNk%O`<%lO9cdz6fVc_F-mgE1daO;(FE>bAB38!G@Le>-^2M%2SpOvx~-m4xMD+ z{Y==#9zo$*eazH)X?Z@wo>m??Nd2#5;i3tH5cdp=MFUG9bv_W)hQr~WCr3A&dqYCz zM4{Z>2_D*}=r|Kc2IAw1{0?(8WclLer%I#*mBX{y6)FE2Lvcwqe9U&EFUEp&i?@-@ zVw>Q&tAM`xw;B7kF!cTX6gV1dQb$ogxNUS0@^)-QVS$Xb_Rd%u^g@CocPdA z0@!F|uM07O#69``QCR;PAyjV%)0 z>4z4}H{Bqkdp?8w-Uz=H_lOL1(EYH7ENt$j@8Fo8(DgI=^Y~V@g?LB zX~NYag))ui&|ff|dS2a&|04I1JHn~N@wq1Tc)WmiPTY?T0i9&z+jgj&io)NUYKXu# zydTp{bWgfkNqu>Ut$~H;|Lg@v@t0(rN+>xMG?^+G9>*RXFPO^Sgru7uTGmX0*WJw+ zJ=;tW(K8hwx}dcu@nQKW1W)}*ZhyW>d{z$-ovqu!4okw=)m|8t^nv)MC*a2pZ>ZJZ zz;e+!R?a?R>9Mx}zEM$-)KtLl8#7^mi5BwPl1ca9JEA^%IC8G9f?upU?AN{`TJJXF zg~c&)`qNJm+j^ELKWsvteJy$6b{unFg_HLYp)hI^!(N4Dc)8XbvkEQAjv-y*B>4nx z3rEu$ZxPnL-XCrv?!9`87rY(SARTCpPboR1y6CaxRgLusKJEg``J-@iUk&*&A)C}2 zwIlhWB<&4Rq=h2f<6jVmn5UE;yYmnk+4e-k@HAD=djPXFqC2?JmZtZo;O(&s$fIf0 zJ-L`FF1tiWMlGODWiN2Kz5^MnbMP(d6}mjjFhOv`a%cZdx;X0yU2iswPTPDM(*^!! zyR~bvp(Gf~MZC&qxux`A{dH^@e1&GE$0+dCN3x6&G+OrK^Xu`LC3_2VCzWGp@n>w` zUkcNJO}JiVPP2(5?MW;m*%M6Rp$FRC)K2y1D^Rg(tEipxGrSM>q1Q$j(wEnS$QbB_ ze2lF1LUCo0ws@pSXQ@MD6|Z8;XiZulGK|LWyNo#dB@j2c2HEBrc;XaH&iu`SqUQr^ zrGye9BdZ707Q<*Tm+YWw*lH9=TK+oX*bOTzx!{QN>qlU&Y%WPk<#GOMGP)X{VBWN8 z7-R6#^1j=DXp@u1>hfapLoyn-Q!OmUJKB(e`-GYmN+9s9A;GCJICAwEaejIb34hiQ zBQrJhFSte0gkp5;o@f$d{0q0^{|OphyCC@8OqOoX#~TS37#f0XJliAC@zkUTRwTn` z#dfTeD<(k_xe!$JkyBp&#NNOdV;Uof#p%nI5&Ead`&>QLb~TYu)79j&=@G$>dDCgp zEh(D0CKi+SWWnHu4t9?mLq|Soga{NN9UU9!FO3MK$XrHix;)(=Zj2Gt@i=>E0bSU6 zjBbz2rgc|Dwd{5d|Fqmt9k*A+K^#Y#@;v-W++b-RF^^J>3)HIhE(Z5HqGa|2i^8()J+={NjKTvlM!pp-MBw<_~O!g@X-qq$1 zjo3vvY0RTAt(aVRXoZDwr9}NuES!F>Kvdsy$W)JnpJob~zvTr2VzY5>?t7&CT!Z&p z-Ky^TFARNcyjRR8B>J-LnfxvZFI3g>k-iPiGPUW*~?gHw;in-zNAy~r9iiQ2DM&ohUnKK z++*@>@FS{jHD|Tha$n_w`HSfze{KFewcn3gLl=| zaH~?O;H;>xQksH8OMFniK?4gTUSjs-P-1yz9%@ev$7azyQum(UM6uqOnh9r+7|Shm z_7ofB{_4WpNssc{V9 zjpVJKnD>)Qn+q^!u?Kptb(5s@gT$dEiH_m*X?y@;etX;xgrMaZdmv(?JZ(19p|TT0p;LVttK1Y63tnFXvpvnqVP64-yXdo*iuBmIR6OZ>jTFuYKNpoF zdSwK5dgNf;3sbzEJr4KlqHurO62WnYWZd@C#@1_va7mqo@nvdY9OYopZjW8XL1>Nb zhV!^w+`cj%UOfePX%PtJd%@5j9EZ}!(h@Shmj%VlQmXK5{&1@f%My zTPNU9yB&0Y8ev|f0=8_}3mE?-C(VZgH=dAN>nd<%fdVu>m%}+|42tfEYLXGE@cNdF zXNhAWsWOAC%w0;}+|#79sUwy355Sm~iAZ~Y7$Xf5@uXG(nfjCPxbQhqy{T$d+&&$f ztTsV;&N@-f{X!NT$R=Tl8uaRmSbAOsbYPCDXospYZCSGnVl$@FA;V$hsIU+XInwmk z&^r2M&rx*l{Di>Rbo^%#kGAnbw1~Va`bjkgWs*=Gl}Gc$G-+S4JRR9CO}~!YW*Pom zNVD#5!TF6gSRtlPUub7rEO5U{rXP=?rl)@6>3T=3isk^#t4Pn+dl;LL zhp&l)aC6#@z93`z{pLD+jsHh;ny$jpXd?~nmZTA%jj%D{2f6Cb(R0#H)Xr%v^$n4s zhR1eO`EyR7TC%9!(2F_$PGIxUYOA{&*CMy@2x>*~A?#Ze+|}zytz{7PDcOZ=(Vjp4 zU>l}x3&tMbP+ZKiLs?V0pk3l5Zi(WT-Kci>F3@g3941C;l1EXuE;ql3pm}oxE?B8QW>|a=bW*uD& z$y6X*ghk!HV~;t{kAa``oHTClCI(WmBz|@^eg;G=C&@(EW^duYO2;k43h^Tl}f8w0dxB12wO@ zPw#e&pl6jo!Sl!y^KgZCXpqyU%l2M?0&TuKd{pG0`s5_?~k7&X5xQ?>IDcM&Z=nU9jh5!CrkEj;rK z=nDA~SS~+Fs?SQ&KX+sWO3Mq#L+7(t7a&Quvk|1Jh7i8nMZ`&ugL2n69I_oG z#n~^&$fz;&x=t$uWF&R&JqE9liI!qwvuPW7Od?XNNyE%{SVhb%6_lrw+^NB|eDOhC zO13AT)@(vnZabM>)`ovF?&P_sPye~y7)DY5!`_>~_4IB1;|&@V8kC}>NRrT`v(D%2 z{SgW!N-`J8kRmc=3Jpqwq+AmSy|4TH zp8MSA`F-!{^=_Sg&id?g&N}O?wf5d?pJTzwj+Bh8pBu?K6v;6?=d5Cp^i)VvP-m}B zp~7gI#=jJ6kcHhY`A);b?KJ*;Vy%FiP$!3=EwCDkI;*YcU3!oM6IKvOrzFdK@VR7K->BlT~lw${Y6881O z{qV3zk#$#D1=k1mVAmSN!TN(XaB^e_q^5^iy>JL*_3k#nceN&%y4DpM-bBE*WjElR zjXHbqNV%kK{u&Y^Q(@OrD|qziJ6x+=W^L_s7cNWMFwahOW@qZIg~>0bLBPFYX2bqc zkV_u{y+8zo2{CYF_E*Mnr8FCM^&R9Fbd$8H(m?f=lVwQl47S9(lrifx3_fpefFw@G zB5D3XCge#HJ4`MFoM9xqySNET5(hwD@)0nu?#Waoc|)SQBB;>kFm82si7Zvwo10AG z#NEEEbAub0Us7b_Md`4_JeTpU^JnHRL+p&0HL%mKNiv450ypL=vDv)?;QKTO@cvv3 zv5#YzEo)q@Htp!nzMNgjjFDd=X(ubge8+*Xi3YKqW`6*oUkdcmzYdoo;$VP!J=0eq z1HPQlvQ|8KiQy%>)z|72yc)qXhkPY@$%c~rHv<+f`8$BY=OE}eRtD-%RWSlb4R*+Z zBa-pw^YFA6hE;dIS}q&`LKjCTXUy zdhQ-(bm>{}E!1U3HB5#+lD^oyyl)^oFN7(mP-JtTIx@B6Y}kgC{b8udMcBZslk|ly zWTd1FnOAqau?K=T!1!(1@S&g^G@&a{ReYEE(se0Qylf#H7_^(Qy`E_~V#YIO)TrqY z7}dly+3#fhOS&+tdyQxBNXf7=;d{XGOckW~EP&p93ZTyPB^V7nVV%)!6x+Nd2F~a` zhD<{Ow$%fne6J3SYYJr5Kbx|XwoYXuB3^>_D1T74I|2iDWkJO75a_;B(*B(I)biPE zh7B6`4OZnug0!TKQt;B;@>IGtl+WA`Huoj@l2`A7Av*y|KYN1xmgA-1j*-5u1fd14nc>LB9T8{fOiYx0Gt?GPW0$tf*Xa_h* z+TL9be}+d}&XIC-zQ(;VDj_cvRPHW}PC` zzH0UE{g*yGt_VYcB7NUNI<9v}1JuFXp5bN3U|oI4Dj z_!?L>5KZ>c3<75)I_~pT2~Y+Z+d5HyRy>Ngb$s2&RjkL}= zp9&ssqrl;52uLZ70<|-`Fem9Nlki^h9Z;j2prcU)UqAW*mgJ3=#Ku6+9RbiVww0M& zWDd&;Z&-fG`2;hpZ^7{)`mo4JN78mo85+}in;9Ss2b00ZaC84unDc2DQx@AF+{Q&g zVdQ2;*Wdv&eI(ClnXAC6EwJ9{6*DV50$QH-g-q6!@wmE>={$Tg zc;>L|xn^}(r=-G`k3A0w3oT&zB~=*fq6aIl_J!b{1FSk*1wwFhB%IW7gsAaSV5lJr z==dHO+or_^%{~h=uWyCzRt0dZ)e<^q9|c$4eCtV8nQ&%R8pNc2gSpcegYVm|;QMs2 zB)NtK#I=r~ULGR!;Nc^M&^~=IQ zy22gic^zQq1qfh)0n55Rs)5=AyO}&;ETbxrw9SH6uu+@BLA1z$t>0@Z=~E1axIyC~ zyV(yu2MmV%i;-6HH$7q9`O8pxJ_XFI2Ex{_Cz(zko!PIFcrSF35x6wuz`mt}VY^x@ z;}ONd#!Ol3rJ~mi*`*3I&=OcNQVLRZE0~nTY-WdvI}A!^VaKZ&_~whjC;lk2{mp!k zb+re_r(rPSR%dt?mt^@E<$#`+2O2eI@Cg8AG8#;MT z1PlLYxF(5r;Y&10cJ?QIR_ksp6m**m>1GA+Y!eR;-&DYNjUZSe z$wAXK;^2wwBN%i&94vOdv0f3Z%*Nky1lghj2yQw7SCm>Ax?>7VXsU)cD`&G~9agZy zU0-2Ak4=Dvw7_yX2N-7i7G9anfU>NNnJT#ew!Qpx< zs5=`i88ey+uW#8haz0hekZWa7H;iZVa(OV#7qUBAilNh!$MEf&7{1%mD|ANtHsftI6gu-$&Q_1v^3 zSaZD(3^!W^fi03e%f>Qh+^O!6I4m7Z9`$71%amA?raYLN(+~2mE`;nWlF9o6$G~2n zAz%}#YFT*bBzQ=^xm9sc2rWxrFsFKsvf#IALDzB}=q;lNhSzJrM!JM)xor*Oo4zwG zt%sRu)j5pQ`BTiNE035KWiwdZ*%{sl-C^V0HNcE{&m8)`6!InWMQptXGDBv?GMUP& zpjKx&`)SB1_~_r2RZW(RC(lm>a9ask++Aj0fdjnrm9i2oux0l=DuP2YL9j8kFBCWX zLqN1NEU793vu+l!W4WXsZEG9THBKA)O8SWw5<}~LIh!Dwf6JIi#sFFe_JYoq4NR6x z8sl?jGaOOc4IjQs`d1GQ122v1%>4s#Fm;?Uj9~VA zEM*W_*jVPer!$rJJF`Ra31(I9K-f61KZNXf$P_;74<42>jN0&gNsmf2!)FJ<$w~Rl zgU7+3G42V|waXbuJD$zdmr2GfCIUEDDl>|!2Q&KodvNi%0F&e7;Ceq1W0MmCV{S~8 z%->Lj@xk)Y%kvOpT|RW!?m;)fr%w&zJz5{?`X6LwR5vrmg(pD&{(H!0N?`H14=};= z0C>&V%Y4nsgHJJYt!wY~mE?%0f~%x`w(303LPzOCh=OC7^W#Jke>2+bQhp@!q+kr|YZwNj zCAp~%aTDRPbqy2fcLut=8_f({x)SEi90FZ4Q^3=iFsjUTaF@?wVstXumpd_-Z&qZV zW*!HZTXBr_4O0fJ?Ah}Xifo#G4EU}Sz^U)j>@;Z;=o*^CL@LIB{I&*W@mo_Xf!8Rw zxO23`9%{nNYlX}?BMruNX*c$2Us-nh&S~(@EC~`V$3b??R+u+;3@G18vaWLyOY#hr z;C9e{=>B>e1hptaepfAMZHt2nUY6}+GKxJ?w-?UTIl)H78q zl}UfozzmfxhYKn?P&0EcJXA0O4_nMK;gY%Q0adflSx?dTh`NFV^FB zFW7i&43yp92$sigz}c}gy~7<(rwDI8YrvD)~QQ!X(aiVGab9Zvj?3)>0LT( zwjIPy&yZp_du76{apz%3$cOq9ChU#6TW})z5JcD}z=N*= zY|gz%_N|l&yWdQWt*gp~{)The3!S^LpB=JcllxAv2zX~X?RgAaXz0lvdL@EzxCnc@ z+nKA$Z-DpRMzd>mqM(J#1{I%FSnO~Zvi!7I-LF;kQaXqRFag4Q3O!%mU7D zJ0yhFf!;V6)+Jbn9k)P{O^td8v3-0Y?~D~(S!KjZoswbaD93|}DS-tES#Tw%g6X$A z8)o&IYJKy|9(e06$wA^Tz$~fmaA&qH6m6FZ(hE9l()eJur*j%8Masea$#SfZAP};J77)LFDh!C#1jTO)t-3qc1DoM1>AxQU z1NIa!B@b+wqy&b|>{SE~t(Rb{~ROxpE@xG4y6n z2z1#a<;P)w|3)a%TrKIBoC)WB1IF<`1}4f~>6pz3)ywoLjd zNWOK*j(xWmG%htUb5&&6#K~IL#*L9oreto0i>w@bFfxS^j9Uk5E3z2x$-QAw!yxE3 z@CCC?S_k@SRWV`L4Or>npJ8VYQ?@oZ16ohyST5k~*mwPoGWK5ej0b84v-HW9y}If$ zzQ?z)X3xVw^fZA{j0*!)U&_R;eh7jjN2ZOBgpwWo;njs1?5j_^nU)-5cD_7sJ=%6S z`^6^+7EY39uSjxwO|*71cTEkMo`ZealTy-9Nb6wf6h-jE-Po7U%b9qM#Z0*75olBo zWs;8XvwU$$4P<;=;B|3lP;V+>gpP8I;zSqL^7=uLkM{+uH`~E~)pWS`GL#A0yb8uo zGqf(VlmdkrmN0YfF{nW`jIm`usJ@WIG;SLYviEw!OA9-g-$NN*dhTS}N*e)HZH1-Y zeIUfTCn&D)x13e2!k+1UgGn5d$zVqz%qxp93*y`u()SzSo6gYvc^otBLw8WGFJvZH zZ2&z^gXxsg4~&9uGtrke!?Cs;W_I&-i2AmLSw7j5?PRV6$E#~$+jK`bNfC1}P=`^d ze+j+HLgCq@QSi;;31icc23GVUbF2F-W@WE2u;Y6H)0Ek48PC))pFW*o94)&*gvtS? z?#>r$;+q3k78|f$CC4DX{2}annFN)Z@gOkl#wHhsTIWtnh1DlBVez`VpxGxBoXkeR zRXas!a|wmlcJXjwzzwJ@Dut)XmY_fO0&IO$51+CnIi*XtL)Xe_mWqe1*qB9CP^4f3 z57q0S-;_;eQzn%#gUgfH(hZv+KQ|FhO>hOBSrYm3nNV&k1;OF$}y8b!VTp ztcJ-C4Zz;H3@#aDF!yYvtx6vSLV3h$(3H#}?{cjt%uwqBZX#b+T1rkz`p1h2e*XJG zw12*)KwA3O2AiKHDX9)BE7|{JkD7iTsZKxl=}T!TN@;Cs=aZ9C{JCF7M&@S)itY8u zN|*0zXK6oDdr2z1W95GY?R3yols4xIKkH&0CqKB9{}{ZFJNA4ci4@Cnms{$P%9~5P z_Vf%v?@cc_j}0q$vpxOL0ft4V!$zZ;my1xUtr_x8j^(aDt>glIcd(OBYZIx}b4B%I zyUQ%!GoH+76^P1hjnTnnLEOwvIx_J}1)SrxTmqYQ1=g1`P@%pD?=s^cx4z;8Km3c3 zTca=OP_b04zd;}Lw1Nf9BwN9bAWy-|Bn5#?y^_G(aH_z+uO!wta1?B;)e^MD zFBKfW(^v9c(?@Lb5z0DtGZXaMv|J#&c#XhSWvt*#Lp>YQwn8vxJST9FyyIop00qIx z<-4pxPZGg=6Ia1HlUDXxBo@>yFf8Hi9OP^X$Uyo&t5pv#c7IA}H?Nz=}>f3m)B55}XzcWLF(EWDhKj z7ieZx2#SXY1(W3+1=%Bm1Owja3tsxwupd_I3bsEfX1yP04UhU7;`*WAs%kH;X{Y}h zGWyB}PLiXw#x_Rl#asGwu`ayo`Pl_A5Q z%#h)R^yx_?KzLjbFB})d-M8+}J+SW1Yxa07Qt$CtpfNL2pgl8ER6U`9KR=;>8{J6f?E#{i$0D&%zqevn0vdiO(cO}bT2&_ z34&X6n6i2uhOMVd`Ac*uw^>bAuw6}7G^jx0TMBk?;stU%zd(+gp6JQDCVF!DTMfDW zTMhYO5f*J0VZn^+BGI(#BEfF+Y?hj5m$`b%ax*<;`6utw`N!|mx%edy1+hyWiX3(B zOWvz>UyvHOo|k|-?iI#~y~6k^KB4RkpTM3deFsaAy*su|h2yuYa9sMc)q$bN{;M;YsoT#OGm`^k6}@1cA=C*&qpGp2q$}L>15ez=6c` zKcQ}y$aa@tNY)V6RD$YVhCdOxsD#}r!S!Y(!4GJa#;`xoAhVslD}mF;`9E>!%YOC; z>}2wOVz{uI;0KnjEM=ET;4~utCtj`cU|S_PaQgjETy9Nff8foHwd^Yi#>`)2r?^c0E309XJWq&}Y#GCCc!Fjnj_JRc4moz|(1Ur>> zvzZdypMCl#>R!HOFG|3cnO?pPqGsvnEUzMPnZsEWQRzw_h2ZyM}ia$ z>7N*;V9x%4@vTsHfCNc;vVtEl*<8Z@z$d9L>_-WT?DqYHHoA3EatKmPhJ zOMg!{BcM$E)?9vwX#mEgkwd_K&;&;nJ^mtc;{L z?bouV%P-nde_{J`QQLkV9p|NZ>W_S8?PcfF?G^pWh_vL6{E*qN=tRYB7xuSK!-kkY}cO-IheJtbo7&TJg+t#4F4egWe24H z!wzh3*V~SIf7j!Gu=+m@`(MW8zbtEq9RKs}le~7z@M|>W{|GeY|E&HGTsv-*Kk|1U zlXBv3pJ<2edt3Rp`TlHs|9QIAsoi`3@6s(Psa~W0n&16B9{GEIH~ic$ZR&`F{%pGS zXTRRx{ceX1^7}2G{jZL{|C;``wjWouT`&Kh{ywb!bq71n`_Fzq|7_R)yZ&~>jb`oo z(;<(4cHDTTU2i+$o!|Ai<2?RN|0scfo^Nkxw+#Q=eEXxnh#PCq|50YYmpW{pY0d9@ z{@mq%o^GLwza;y=O}GAf+_mR*RDSu z;+Qvo$%^@s!o1~6{g$p;DfP2F+q|PJS^Ks8+HUb5{k!_@+kYp2Ep9Zv^ow(ByI%f1 z{XKL27yrN8J-;5W!gl@Xkivg;yXRM*(2p$M_N85KJL1OQ^|&LRwR!%F zzk_dKdpZ2&uk9W2Ee!v~(ZT1@UJe}bYfHy2jb-41j-Z+`9i({Xwo z&sT@P>d=0h4u*e_{yy%Y*six7_5QBM|6uih8uq`8@r{38dq*B^hn=-)m&ots|NOXw z{;l7tY%i{9r~ew#>8*`e>0~{caLY#A=i5^(H`W7nGF>Y?pRYx$rVl|kjt2?PCl12Q zR8_H?EEXHZ7SU-Qvh<_lR-s)=4{?&Imw33{QSqbWX6&oOeQ-I}LSa4E3e8PGywoWb zebiPYO8H`>kGcuR#dQ^r-FS(9YNU9)Opv%P>?^(;?I#`` zZ!4C;kLcAQQ^iltoWWC-L&c}B6YRPBDrGkxpmJWj=qtre;-Rv`X)k{>YBe!VsPITx zI9zIuxaD;t-uN`QtpB$m!m|oHkw*C{dap-!aj)+hLM!`V@ojE|@ZpRF;^=HjZs>}s z*M?SloevUEF-{YEXV+odfD_1K$}~J@doXtOx<_9%*HW1S3xxegYl)Zi9WSh!J6?Ra zn235lEf!8`UM4QynJ4s6SSI|uMqQi~a*8_Jb`h&SHW02`=_TwY_YC)_Tujr-n{kLq zJ_cJ?aosh0@rR!B;wIlf;fIA0;?x(PNjKAF!q#Ai1o3O)6m zaiCrm{raLOcKMP-TzbWcF9szDEfiLY(ai|)=W#D+zN)n_%{q;q%kC@gsK<6fxBiMkUH4m}5qYEWu%upiLSYDTY_t#u_|C_smJ{)<0h&12v=r}M z(-r$N_h@|IXrYnW1-fALDZI?)C{1-}reoK%5PZTOt6eC=HQh!EcS(&Dt~7TPh6zP< zuihv8N-$YGQsX@R*vFJE8NLahtIeU7&$|dCq$6?km8~@6!ZFIrMkD5uy!hP6G`5?E zHGOOF5Jh*}!?~?A5%1)a=(bXUIPPgO%}wsh8%cEcQsWkEymuZ=h&RUfhVG&HDNp#| z7rn$&Vs22kZS%$D1~qui=!rD6crShZ(3i^3vlX8Yi=uOkrNsM>&7up`709KH4e0H= z)xz5?W|-~s1}Cry)Mf#p&CiPP_7GpOO7&UJxT=sW^3*5C`|iTyZ4j#e#&foQBK$t! z6^?#7lYik|%~k47q1O#KvEGQj!n?x;3XiwR2xF&yrl*bE@DQ<>R@dL84?&+icrlme zls00l)P~;fohcTV4nq4Ey+uLGD7joVnwVNDi*vVDQ{2@_I9R@qu;Ohzb&gyjPX5}) z`PV24pQwDnizh0I>7LhEwkVKVJ+Ktp?thIRf9x!l4^|Y<&NdZBnO{L;-dWQ$n*;c~ zem9|1fr9Xk+C=do1!v*}AI7H!C6gWw7UG%0Toe$TPXiwx=a1WF6$pPTdYFqx?R$Vn80`{&Z|qO^U1xBJcP;j+ z-!6`>?kn7~IzYJl?RBbsG#7QfqFl?^cTKMHW4n|oPy1wo*?f`JK@xq z=dqE$9ZoV`BbN1lL!VuXpjoyiMD@u5F6X9|u+6uP%K3k!+4*5;XLB@Vyt2fich2}3 zH&ifO$%?l1Scb2usfqi;5Ok$SJh7gTL7NRVgo@hw;%}~Y;?aX|qlUwqaY5re@rIE1 z-19&q-adYzctx11FsMidH{Z#lK?T)xM61L1yyZ)JtCMebtb8Dqt**}a9vOQ+z= zmF6@+c^NgYR~GLIPouVbRK+)^kH9wfZ;^Dr9Hczs06x3tI4$N(#QiI@h2jDbh9v}x zKQQ{jWy4m8?Q?q4xQdB*bYvEOc`ArEw4W=!x$YpY8e=bf`TRcSCKlnePmZLM!BoNB zLQP>nt~IuQK2z-CevQt%aEq=uT1Z_g8_N<>`-)3T-y_RudE$xMGQwVS1$Y9H6)W3i zN_@svv5b;EikhM+F6=&Bm|37B^smzvo4Ae;e#kHo&qzrS7q!IUlqnm9g_BncPjAr` z8isztBhx3+{a^COk@TaZ_{kwV@$haTw1@k6>OZ&% zPl;iK>nH2d1*TQB*O2kToXJA5zZFAk@2gX^#gD$|tb!*l+bXEw`9H`#>+i^%oyJz9Uzs>h&+xwSs<*$~(fBn4OHBIfZ?Fjwb zi{byHMD8K1Cf8H5aCZMksJ_bws#;P`9|XtHOLDWQqUi+kJkW}o`<*2Tm5nr3;#<2m zWOL)928sjDt)dt1)F7E053JQPfo7R9=*psP^hGaksyDro_8P272g&cFN>qw28TgGV zc2!4mie1qyomx6@M}O+)^?|y^Wm9Uy^WjRSwA=e}wB+$_ayUMj&TTr2T4M&{TkE~( zrd5e}rj#``itA5C*q5MpUg4Pni!LU#?E)4@{#Qzqr$zGBMVc%yay`-{kN0 zH+*dVbz3{yA^)Rp^1n~!pDuyl`x`p!Z^M&69{Rt!-|?^MugBA0#|>=P%U}8{^;hSS z{P8URUHY?0;CKD)uwy&h^`}D~9nQ?TW5fR?{k^{o+V!^MIKS)h|K;KSpZ)n?vje}6 zC;UA>R{r{zh&t~7|FZ)7_l5ocO5k@p(Ba4O+Q*|he)Qkv$BbKl9dT^CUj9A()gJcC za&(+`$NB!7{y8M@yZ&~J`z&nNpAIRQwXgiM#(kvP^|r&0{jSFy=kag)M+y98``q{^ zL&vy}O*{KvqyPDFAMJO)Ro!0v*N*#K4i3Ocm38RZeKYJ~Z^k=Lb>hW76VP+7$GqB{ zyABl*wNu5-zViTx>2VPOe}7%{O1zvCiNBy{9z3^Yiprp+3uMra$&(4W z(*;=+?&gmcJ=hXa7D8(GeJ060yC6IFon&#=2h#oVb#m+NNUmVkLh{XAfIT+oq1=QK zbmp^4GDS5V`5T`mW0J#hOxi7Ut8y@2F5`mNz1oSKf{v5uc{j+11*Y^=&ueI-w>lZU zY$NV`u92_MP2?41f>6yNqh?QG~jc68$)ayJ@dLbS^GI%@>kr>4n|I zb*mv=Ez`)OMQ73C!Z>W<7R*Cf6z&~YF*IRvDKhMCPyLl^$@)*L@QTwt!`I0*k-CX~ zsLY`s4t`h8-)1vW6??t*U@Rg)p#Eb-xW)2ZR?QB<~* z3zjZih(Gt}gD_iy(A=9u)}xcK0xzN??xo`Xcmcf_vJStGDIzc4y&>6~B2cf32gvCc z9tW)ao#>Uwn<8mfb$Z%zJ5lcYi9`h_;-z^ic*xQIWbgw;lBF|&gv_(Tq2>pXv+Nv{ z@3jHjCmtntY#aEl?&|najf-f%=QVNYZ@ zl$P19FJ#9&&m^h-!J-^wiW(=6Bza4#`LHHwQABSAq#7JV3L>?+-rBRB zILUkMJe<$t{&AbgnC4bAFooeW+xpSbvii8ycRBew@)|nxY<=;E&<|wndLKU7{4J-` zs~jm$4?tBpZRFi(BdU8+4J!#}lEYyJ=<=ZylsT=KC}9hMz|RS((x|$5qJJgkrL?&XVk8 zJJDW?weg%wXVLe?n~6AXCb2XaeE4=;5MI1wInJE>67_PPhkOEb2#z0xY?XV`&qodl zJgyI?^$`w4cq9ykN^HybGuu(gyIK@{5e0yU)k(mdevUmy#7hbv{z) zkwp4w1##D@2szH$L^RVKaL+gMNXGf)=xq2<+AQ~mKXCjUAJA_Y8q{kR>c86*Z?b6O zg)gM(z5co^+3b#=%IkkE`nP(&Z2c@4P;@2GEG=$NCT`>QCwmK2`McgU!$fWd86+r zaNY})c{>nqE{q(KbkPYFNOj>}vBS8F^W3?B1xLd_COe`12VUaOyTiEBD~j0Rb~1U~ zl*s!Orjg)9S;VwwvZzl{9@3bXfUTaIpc6K7)PLJ~(c(2Wq|?mHNd06Et~Uus*A$}B z*42mk5&k2%u^BmJL7&qos_!YjFe(^}_PXNxhn}HPPiEl5jc3S9t>H(eD|g1Td{pSc zE!Vk47MD<*eIqfw+Kg8&8iQY^HX_ga0qDWDhn(lFcjRSjGP)F`K%N})qnpA%qKDiU z!R-ibs>Dhj*>DVE<3Igx3yvDO@THwwdjnC zt{f*DZkpny(K7U1k6?PjXeEC3=?S@Bek-eL{CMh|Z7BMvmqbJ469~Q#P6b~*aBJ3V zw46TWdmqW5Syxw5(ZLFGJw=_^K8QpWoBE=AuJ$DKtOo6C*OeO8a>VAQOWA9+$z+ea zA70(~2DY4MsMqo&V&HR!%jh|uHk}wvqa8KLtR?67oL;jRuf1J{c6)atySzQ9$DxRD zxpg|IyYyx>BV!dQFxk$(9@U%P*GNFDksrBnt%1~hi|03N!-8mycu~!^YSPncB&{$= z;6H_i@|}9r@ZE+2m8)n)>WfbDJy)j@#XcH%_DnY%l8{Odc6CFI^VPA=ZH7*Z`A8`H zg&cZ)73tMnDSA1mk(ftBa7(=<_O(U{8I8y$n)?0dq)x${$&xc<-Qpy=_}~o5_;3n( zxVVet8NSI~bACpa&s$9I@0!gGipxXKN(^YpZFM~1=t;C_tsPdVF~ecslyP%fD2ijX zDE_QNSA9`J#Nj*1DBZL7+V&(Q=XsxZ*`tcx6WpjO2@dy*vqEpGUz6PvEvaSD67tO{ zhn$wy#Fq}~&H7SXv29&=mI zR+6{f4kN1`7erC?JjyIACcA8vvDYGR>Z5Xk7_HCXXFuslqiwxN>z(bEm8TL>@}nN~ z^Eo*zyVeZvdR0NtaWy*IF9~r|a?xfN2a>9whm-bwAft1Eo28V+JsRyx)V}zM47q! zn8@s#fj7_sZo}cPWY(64Tiokp$(RYy z8JhU6M37pcfHS70p^B2>sA)zOiN3QHjgXBlv=-kLG#Mqad3QGuUEPnIUP3EjV`tLa zk6B#3VKePpH<`rS7Lu(GFg87PpWK*~%%3zpk5^q8N#z&2qmPn&fxR0yky**7`F)l} zc=ppS)c8RHKG(1SFPy5xjdU|6x%v}=Z)!r-P_yAFD|I9uzL~~4dEkXgqiD}b zk-BecII>;Ko0Mynkz(Degneg2Qa_rIVM!r0)b=FDB_ANYPU-UN(`7MN!{PU9dehIl zJ|GPyl`dUmN5)+oOwHvhByqQxc)HpO)NDiO^~+8;VrMscXto*I8Lv%WecDS7+3Fw_ znnIb)zUUbB{z>#0S&xy*@Z)oG>JT&&vL&4qwERD`e!ZU+nC?fW z-`|E$j8;auN9@UI-(FZQR~J{mI?WrG>0+s^P9#zMov&XyjhsqTZ6{Wu;kh6A-TOcAE^eN9;pFJBiEVFrPuWHIOVc78`*thY z>iPzSWIf}PhihPif@#F1*%7}J9YJ2^2l18AM*i8XbCNGdg^@Y=@>uixJpAD48?;^{ z5Puz4kF4$r$R?|B%q&);4SB)XSLz^N^*9xueLR749`cTH+Bg+2FPu!IuV@e0a^8un z8he%GuMZ*Xs)NZH)R()XwjFnJ)xoYR(P)pe85wt8gz6=J+A{DldN|sUYWl z^paK3(|`@+aX=X=UjLdX56a|oRif$M;C?jqeG?gZa{z5UIR!tlm$Vh6D!H_*C_(Dn zi-VEUaenw+zt80)c+Ceq@+Zq@bis2PJJT_ZqjAt03!I(amqeV16HgXZopo+Nn@@@e+gTm$XEcv#h}{lfbPndNtyeMQRwr{I1#^hZ)E1&{ z(+8g(wTV_$hwvuXZVW-LqaVG`tH^h2iq2k@WB0?$JTxHfPXaJ+WLlQ6<TtoAN!Et)VBIBKhHS^!c=?&h%sFFf$c*z!zRk$MM0b2!FfC z>))TTL)TJ;sBJz-=iPZp9^K3*xN!@8P75YiUN*5`7Ov4-}U%ZC)8;seNVp@Z)v=)<)lso+Qh1R%%OqXA`w}HsZr{e5sR#??j ziK+x@NZOXO$;(kPxTL6*ThQwkI#{w7OJ|wDYCRkNGl~3E={iCv`JP-{&c zBs%w=e39fkdS2Q^HXpk{X7$d($`#va#<6we*ep!@MBCEv?rV^q+FMfnF$^ic=1@d| zH+{TFi;jpnj8_VK&|Ucz=-X>Qy8me;ALn=gPh(Z^i7}5*(W{>Hu*`mnj}M|IMyu%? z6Zzb+wTG$sV1KIJNfo~?Tto+`hi<<$Y8M*Wyq`{4`q>j<7O}eV@${~~0rogrTDr7!C|#uA58q$rYQ1(vU+S8=0r%Ap#~T$#;(={r z&`yN|^jvHRz33&e(XP2P)T=kOO$;Pwbc)GHyBC5p3vc00g(GR?j`wA#8_9)@Tn~$b* z@5JHJGaazcjRMklK_2RNuU~1+elujfyEC10?-AM>W`k$uspD#&3L38&i8F5xLH6oA zS{XP5_edN_2iF)NH(LX~vzHOws4@=Ks>h0IYOQTb~PS90) zh}_#WmO$`Q>>prDH6{+Hr{whLv}s2NKlUrf>#`P6si;Ddv3@E!>JXSXLAHk6NlYT6 zymzDFue;I0+poyyn>|P;&Hzu=3uAL@1|U17WMpCIjOPR$H=_A3F z{KLB8!F13_b+Y%_L)1UDA8+HKLgQ{uz#)U;P#3={wBk`Z?{m`vwI02}hkC}L^+E9> zCjJ7UE^l}oGZ+!CRPyXfcf4B|#c$i<%HI&3K{rP5sI89!>FO0kOjRc0O(X5_a5YnU zOQc91Di-8AzkJ7Mem15@w=|H^!eHVxExW61f*FbGJq+JSpGE4(L)5mm9PN8!PpaGG z$jIF*xX5SDPY-A?>7+Q)9&PNirFiUz?-GbaPUoUVx zyBd8M=S~w+x)S#jgK=YhCz_cP#g*xvCVGy5wsqA(IodKMc?DCjmw!Jx>hx^l+qi@r z{pe0Y_6))keC)8P;b3I6`ViN4NtUz8(4f=xVmU=GQ&fA^0_%C2qS-dH&|@)0k+rLk zdC(rxpq&5>m3gR8IT9a`%|>CR;i5)eZ~V2Y4lPpOM0yzXA@c{brhAL`iyoVDbh7+2 zk;TfJ=&K$V{?z6^`Zg^VyL7YVn(k-w9;G^{$?U7-6GUa4{bVV=I$0S#anQ#54UB20 z1SK@XX9nMGwKJcSwH#%O&Ip8q%S7uH73h~U3yAF`ifB_J9u)bU*sq+$HDui7vV zJotAJ6Vc*P_SE3=dr}&2OwC>$C7+5-wND7;c*=R=SMJqF_q`?!e*aP7a#AB#F)^Ne zvJT}p7Yfn7id*DUb}aYtls8pui{UQ#>e2(+dx_oRU=lo2uT0r~1oiE483_*P6a7y| z$>WwPQfoGb3L^&d^M>dmkHAFgziJ^KU)YIWl=yW_+PliT&ec=ms zh8@oBc>?v>c$d$T?T3A@$>4DFo#<2CXVf%TNQ=j)Q^)vwBGR>zkc6v(&fBGtYvyM3 zyhN2uubfRyKYk*~l76|z$M=#xT?gZMziGJKW(x{9PLT^8j=O%HkLITY(H)OF)2=VB zk?FCzw4h(8{<14c)VE*)F=!irAKp(UKEwN_`By98yW171E$&V4r4?}ogB*CdIq`^F zZ%?bcT4K+O@-!W9BQY`V$a6J^71np-b#BbWiyRGUwHYCIb1F!Pb#FSo|0+IzZ*QBTO-@k_8N2d#rami=2 zOPL{B-p@J9TYE@Ft327R@SfigltGFO5|PjJsl@QfA*7Wfzzb$Y^Tm4kyoh|xZA5bJLRy-rMVhLdZnQMg(HH^JCv|{R+YeMfF539b_=Z^?1u-sY?jRRU~qaL zd3^4P5O>onBaL&q;3B={Wc^uQaUAlfTi`LvA4@DUDy#MV$6 zbJLaZmymMaHSi4|YdVf_cXy)A4Xu3Ag#I{Bd=uF&C?|<0I?B@S*otL?=g_V4s@$sSyU-n9hGqm7 zA66Q4lS@4&q*oSUx_y%^-#kH!P+3WzwWJU0#o03?@B0gKX5$0&rTh}V<6S9IjEO~2 zy7pMhP12TC3gg%J=kT;kHl%9D0rag?KlDjI7dhF+W2aI*l=D#o-~6skdsvU=AFb%Z z`#AL=CZAjfD7+yJ>4sExoHly*GM2x&QGjum zqk>wC64a!(ji_C&A}!rZ&_auwXcAXQ_8l?ABfN9TnSQIu!_CUb>^sYO%1VK?pT=#ZZic3-y)p-P@K$km-VE{*ItS5FpM6_Jt0 z!g!ZY+lkApfh4M4gHD)mkn@chNI!mBh)Qg~k|2RLx0;SZeqMpdCMivSLe(~^+cS@r z8U~Qv0ZJ$>KQpZHVHaA{)PfvrO?XEcD>}PH3I&CQ6E zsNBgYisn7wD+Z|2-NR;3L$~>bAJZeq?9Sdacu+E0R&<4b?L3g4ii+n&FK*&_GF|Wu z$#eN?Km@X$GnlTtatkkd5>K`jp5w2k3vrNj3_6%RhEBl-xOuQNP05R;hT9v6T+e8l zQr(B1d@_id70BVvvP<#3XK&FZB8^YZe>HHNaU=e=W)#hORK}aOMBu}zVzoEw`Q+nl zjt;uwg53^8kkKpNqTP{a$(VT}N!&4<$)TPbDdOA)>v;*b*Y5DCCifQXYAgyi@5VLNAq~NP0<;sJ+JA-clq=NJM#s zkhkRV+vgtsxX$nV?(cK&=bqpF-Fx=_tUcCRd(E}xnsdxC<{V?p?`)&lD*@Lb;xu+Vibv~6i(yku(oAU&gu5=}hT=;*(grLDWaLfuP$^TdO55Q_`Qum3m6e3mHaICn%| z$+U>SH7u2E#w|vZa~!Gf-^zb0Euk4w&RD!&4@R3y{GSDrq0w3!yDEEd!2@?`Gs^frXY<&ryl}kYI0Ba>9)%gR+hCKV@3f@i z9iNmC&Sxv!709p3AM~~FAsC!L7VnwX!@Zwbymp{#cNe2kAlEEl_fGU+E94cqxF!SE zJfoa@HM#Lo^a1#dIvDG8 z8Wt(M1glaxX1qF+((dTu!8~g;uxo=6dPnL0)&Q8|UqKH~bW&mdBv9Ho7*fJRD0RUg zyrknopSH)c=tdP*(?bJg1?@Cv^9|auqLx2&*-Z2@EP>Tuea06}vMMOd2}O(Ts%*jX zGD@!)L#d8o%4;h9>8Vp33-bTLUo2E(I7f{=8PtX8JUxQfD|T~p4}5`nfuXS3buFx} z?#dke)Yz91)s!`JFox$83l6r8#ar7oSk{p{HX)-GSy8$s>+6_EpL*@5Ow|as^JN|> zM&F?* zObWy5o%oETI)1|GZE!}{8=qRVKri=ekn7e09-6Pgu5UHaM2XM#MFUs=#iOvprzdk> z6hZ)2o4li$R=Y^z4i*f9i_0Z;WVQRCIbZ>_#>lWsTlA=6 z^HwVE>c{3P{Df0ZjSx6{Ay>bA7P_u2JC$8shxNl2iL0Ow8$*-kRF64 zN_KGCX&yeFYK{BXZQ-AB5;@*6kFU~w$jOZAhTYdqMDhC3+~7+b$k@4Y6IusDfMy{K zn6?hOm^?o@(`Txn=y@Rao27#_JA<)(Z3j%hF+Okllm4K6U5@gXvSzE}amnV+q?Dbo4mX;QJiUx`lgRjf)Gy4V;MSjda(FLmQYIxVHMr=avQILBy zj;}0g7D@g?V~wU`XvG9O9mckMvwH;qw^2ugw|6-dfP}ixM@SOM^Whm*C2ogUX^EcnA%( zB;&?Yg0I4rFsvnp+*O0AWlb^PtY?YeYqYS`b~w5R>ES;9iDhxwT2$TNk5@jeMzWm; zKA|}1Lpi%8^`*OCy&rn8)mwX3w<2U z7s~d*VIDJKo^?UNqPP!y(0Fe+Ie0#oAmsq%Qetjday(yXGmOoAc%94NrOPy?XtQTJ z%ivk*bI$FFIt($nLJ#w7;Fz@zR^52XQSxSyt4%V5bp1y6PaP)(wGbMk+aDgEspM34 zXkcaf9h$Z=2(uCga$UYY%lo?jEE*L>^19cxP;O=uv_2Rd{aH(at#8_fgGR~Xn~qh4 zrb%RTtQW`y)xeq!Jm|&g5nR`SeuJH`&z;MBv0(^Z8c;?4xw%+gJqvy&8KYlGCFhcT znZM#}&y73OlM8tFk_<1^!`x36Y*K1JEIsAM8y5Fuok9=THgFi}9*-_w&1te-8Dnth z9T7Cop9yipM}YgaNDROK8iGm!_&re*snKN~jIYxbq#V>@^(>2^EGZo5s5Du)c5E1uK5 zch-1mpeM#&E)sn-^^Wdqr;FzG_H4t*etgG5HJokTlgVG(3s>(u3RZ?y!;_a0e38l? zLC(HC>|^v^G#QKBE6v?7A@e>>%*|vz2|Gx(_e>bJ^%`wi+69Y-RSDX3>o6y$kY>Oc z2sG7XnQYnRxsa@cyeHc`R- z{j@EtkWWxAqrpC7>BFj%&_8o4P0-oR8QOMXgC?hgey=>iiP}eeZQ~h8?eM1sX9J)t zaVMC`Af9?t33nB0s81WC)+LX5+0YOC!mLZ?#_m_>u#6!NJY)i?aEUJ63W~0K%R{e& z<~S$V3+C#IVac8+U?TCkEO6|?itfyUX$QuET0u9OI_wgyk<>w8x87L!DI5;&+Qn2q zju9zcmdJINPSOcmLb6L7;PIC+ST3=>-EK_a75b>))7NUW&h;6XIrZhTf2^X+4+?1V zw#Cx<$sCw+S{Zj%a2R8|1gh#ULFw(8P`Sw+bwX3{*{D*o9x8|8k*X};Yc2O;{&K#h zV;vh>d7sN19|qt2w=q{U+wvFR?ve4qovfhuJSHdV$HX_|+48!*Jqj#pfa#a$0cU)U-`k?E;zED`3qt3+z969fZFc0IJ3@d{IwZ zT<0~7`L?tPE(l|})j8VGoU)&tuyiuU#02L3G@V9ER!Fs@mSx|tb5(V(A#MJxNT`2!EKj1EN%I-6EOPsJ((TgRO_Q2#Py{L3eJd8Yev{YRZ@0a5= zgRS1ri>lOgadVn8&euN9E+)ic=-IchLFNT`82bsqc}zDma-hcil^0l8(V`^rODf#ezk~^SJ7f4rpk0h{|QJ!AsK< zeEVy8{?z3-e!}HQOz59Ufr=3rXnh^NX`Vo@mO?l=W-WlGHI4pOO;>vVBn_p_Fi)ln zCb=5mc;!cQMXMj(9JCeg-X6r)dYmwmzq^D6^eo{<@64ylm~B?@rQKF z6CzE~5FG9Pg*V+ikL$RjN>MeE_Eoc%L^oAfd36dezoraEDi7xqHw*#urI~PZZywg? ze}J=bQs|NIfCrxTBkF#dI)XC=dtUic@QAMZ#^W-`ZFLW!v_yWti#bh!`}ahf+`q>) zzxhG=wKE~LzD(3rKAFq591P_lPpMb*VYp^`PGsHD8}k%BSkAp=ocX{cc3E*+neGn+V@=d?>C*-pXcmfVmjzRJj>Oj? z69%7M#|<+7)JiP?i_fHJ^%@#O4w9Eq0UleM zE*L5qC!Recf@w8dF(PO+Hz~Lm7Ti=~+UZ8HNLWnAl=jn@2!dA%MwBVB8Rp-gkM=cF zFzAa9R0Z3l-K`Sf;1FvzWX^2}Sn!b4ykesR7n;(jemgL8Rw@nosm}I9_rq>VXGE%+ ziCoE;Y|>xa6P<(%9a)r`k*K1HcUDM( zJ)Nd_ShE&n*7iaBb@wDOm&$ZgIi7q6p5wCdX$J4wL4y}xT!mwQc4g_qPEav~ zpjBCEkM&Oq=zd5p?-w>2Pn}pxbqXfjn4Qz9^`-}|c{H8>u8{^VcP;Udr#%I#8L?xZ z(_wQ|D22~I1G1{E;Qg@=tf=dYZkAKQ>}wJgPc_G#&$qFX_Hr0;{UV81^+BPvlW5U^ zV`Ns-3@K{nWr+)))_Mf2hn+! zbZ2)uZ#&$cm3U^-z4|;_tm(<*ZxvFNzcX%~WQj}PsDc|QvLkn!kKb_k39FJ$P=$gQ zJu58b^!miY&dXu!hrJ?uukA(G-aqAAYBT9`pBLQ0woyb?M(`+MHY(^RkpJ7=d~}x% zkPVUeM!&xR-SQ8dxab7F4_W{VuQfv4SwxMG*F{;U!YCaE($q;QT!*#wAUVs^G;Ty3 zKJ0q~ZYG%V>Lz2N4c$sOulP!;KXI5(3{2;DEA680vAQ^BgtDY>+6WF+4cw)f?zGO& zn2ED`VD>IqQJ1Dg(6G)Fqv;}iQ&C~J4-SH^xrPw&telIl*e{BIupid%xWJ!mZGl|@ zYOHpi6&h&^F~$B3>9ToTlETNKeOfgz|F{tI??=Mz@yozsL>=5Oy3Q+@2-(TEi6t7{?EH9gR%?_m;{j^&z%sNqI~ zJur1eIT+3lA@%R8XjQ}_Chw$WbK_7{?x}D6+2P$jY*)J@DlCnmL(0|BGE&Z96Md1A z&&AQ2;%vGgenUR1YvAgoVMYtH?G)$uk)pP2R3^ zKC^d;gMhJiXdizFrU#ybGW%)dQf|eLO6F}`DY9YyCL8G8k;nXMuf@1r(Hf0&wt>vb z%N*wzd?YKoiuRPsU~97nXZucz)#hx7_P5KTx#8MuMn@4}Yi-0vY*Uu3!+sw4&{uF~ zMmg*?QwKg*0}Y@1p>Rqs)-voWU33^hpRQfTtR-#S73mG=Seeb`^wT1*j6i|j)MOTQ z?jChXm)MDWZp6`F_n`6Tfvi2T4|q;G4=>(NC&T`-R-^9NGxy`FIQ*l!%?)i!n(yyS z)wgegm&B(TrT&h~8F3Sio#}>B6Kr`I0S{@*Z*mC^Q()}oeVml|6|eA60j(sMOEKpL z<5OiB{BZdxXBK6IGE2*$cds`b-myiwS<^u3@;S&&7V^i+%=$HTF{UNFI^GLaz=c`4 zf}N2qI+YKW^9CCw{+W%E_kFC5i=}#@&cjCdsW1kj%hWM)K~FI8QzX~v!;#aQ%=I6< zo7k-^{>Nfdnz`~Q*s0v-_jYv%j=*Kxhwyxu4>x2^G0f&dDZc$1%~;eaIKAr% zbPw5r4^j*vxcCm-n0JofWo^QYR`zAL+PYv>%p0oF&V>;=UHC694ft5n7w`6J1eMh9 zfcb65Ao^Vg<$fH%YzI#y+Z&n%Z(dCxgN9TvcJ#nAS<_kBg?sWB>Kec?X)N>cuIICS zcJedThLa$*20o2+B#YG+pt1Y||8(&;J*qyH3 zEudv;C*XwidD7o}3nD|LnfkU`| z#goNxpevNdPXQ13KGX7|C#27X@TNG{cPbNkERMm=dd=L;gT}Z)-kIh_s1qINLl!1) z`T1{iz`Xhs^gX!U=991xJgj19VEq76Pwh>vryfx6t_x_)_91Y7+IG5}X^ES?(_zd& zO}zF^l@0sQ0~-7%LZa+jzE(2NX704-RysjE-kp|>I!EdtKeqxD+ZI8Zf-EyuZYZ~$ zaFr$vt>WCmr6I`n6>N1@!>OGP5aOeQ1En%Whsw@~s-|6ph!$z~&S^57+gVL>D<n|9>xXr=!Tu$5A!iMmDy;evCyiD{AQ7r`saWd%)V5Jmvh?T`tZ0iKl|Y5#~)+i z?4kxTzTwSJ-2DjxwG}Dg+h{zRGlpq;Po_o3CsX@}Y21SD!Jzi~7N?P2!G~&0MRoUK z6dSaQIvyT_Cz5eupj{~+ERg}LBB#^H2P@I*Vh-`eia6_V9c34W!p9z+@VxJ7QXV=1 zyUGV2)qRkI&T7&aHh%{{R&E#E>Cz69xTkdOqZ5YCii3UK-QX5<6O5mgLNDitV10cU z&CIwf>Q=LZ4{iDk8cTbC#ZxhOndq}^=PlUV>^3-i-kWXhUq-GM?~;?R3dToP@H2eU zA>*76pL|u6**P*BbZmO@{8wW#3G7LtA{!0ao@G?HB^eHC8e+~TE3P_T4~^T2UyxBm zA&zIM!(=r4*p~!LHRfWty)h+rI|s8b_viZdF96H(8-k$~m&nOvE6$X!;|$Xc>HCs) z*zk1|OIQ=jHw`;N&!6eRZGC@1bW#Yc-6rvIEZRbP=3`6lFN(rLyR_N2Z>PyqYY>S& zi94gdi03+9aGFjF;OToC+;t!o4xBV*&nC}=y^jy`*S_{-v-(9t_JV!5+9H%q?C*|? z9%-_jTf)gkDn){~7|mR7O=fF{n6gz1!tw3%?{M$-1jd%`;TpVb4o1m3pq!iuO`JKJ zg={*^Ew8;IUuIiR_I`#88*E`lv>G2_UjjB0l-T-Sp7=g$AH_!&!N?PaxcH$n3r882 zzbuV6-q?d(^B#m3+wEZYkMGdlFdxMS!=Pn$6=lrPgsMVI>aX2S^^5NUvhHk6&`8=ov?q?8wUXPoU(%ku8u?na5~jK2H0M?}2rbuN1=Uqf zpqQhB;s_O1tauih$IYg+;RS_)k(TUYk1nk5s8M`i%UIfMy19F>WeRD1GGy<~c5tQM z-?%x;^7(j;M>On#5!LwQ(Dh!k=y80sz~!n67ck!xzRpd6gd^58S9&FyWn_|jXA5n- zVaO%CtKcX1cZb%xCKx@ff$p_6)7f@I_S5qt7*7a5rPuY)IAkaNsF_O}&WtUMb9f02 z6P0jf!c(}!-zw8lzD!)tJ=FSMmbE{=13?Rp(}+hGV9Rbbe5}!r&3z(?@9KO&t)Xja z?+zc(9^M^g_ypcWqN_&w45cHhdf=khsci6~6`<`f8UoLb$0OZGK!fRGdS`!!dcWS0 z|FLy4Ga5Ubc~1WUKNmQXz{^bThE*g4);80$e95@~;a%Qid=v}`?1s~&6S&*01)P;Z zKL60@E%(SEnhjsMo13F|m}e4so$v9E94;5q{WA&}V7@T;Pp3jxo^ETL{c-X6xySu#O?kR*r^?C=mIn@}By>1g#IY}_o z=Iub&H{1A%3L^~pUcim4+`(T9Y~}17jYOK!M)={BEZ$l<5HFYebL|zkK_{yYV*AQ7 z=Q3YrJ>&~)(%lceFO+hOL$+&k*1Dx=UQ;LSlO> z>xxy@lDSP|W|iEXV~4tyQrhxcChnX|v$O!ZHeveVBUvFnIrFqhuSC6(qw z?Ij0FTDt-IbSV?@uV(yz+q>a{gKlvM{&ccZA#`xg58h&oE!_;9d zR4537T4hAT%wv4FYsnD*;yRQ)zfU`6I?%`|rtHR^o{&&4&DtLU$jFaJ$DP}0pXVM3 z*fj{G?Iq)(sH2eaatzzBVFzM_0aniZ3OVED@IhWHH|}6H$2aSgW};QKeFiS z`Bvy0n@zzAF?^`{Q407nnhCY9Qp>Dyl(nP~eRU1M_klmoHOPS@D`gJh(g3^>caQqJ zm{Q)01WY`qy*II}g_0Hy;k&iRV9KE7H0}FDynf=Dq#lCM%2Jn9du6~m{XH<>;T+D# zCc60|pKrMoP3B&o`CRvz7_@jL&M6)bb=%sYaG97qD+_VKnRr&yqKt~X8LRf)fs?P> z(T97n^m(c}?z_>SPVP}IST?o~rQrk8mfKHTDvW83a0DH3wP&|YTsr4dQFg6bBfwx^x4AgC&wa2uKQHQ$kqmRRxyG&XZinE` z9&Bp&Ffb2kpy6(x;f_fYzqt1Xyjm)WuuLr;SgD5Ko9S!u%QhGv{9-S zN6gtyQ4*}$m73j|>q&JM*(k(!P9n-3s9QAoj0M|OWd&)m@iby~pvdW)CNmQk(Vw`F z@*jS|68s(V8~4Q1`Zw~#-?{LA*y+E;mH5xXeOx*6SIPfT0nz`ZO1xIqpBp+p88z#i zamd+C5S4unsz2_)(=JC~=)9w3Exe39jFT~YMloECDnu6-8!QSt!Qx+8mACz{U|Uvu zqika%G)UsW$Eof_>A5OcEY88~V0m`@<3d>9yOKVGKGtl=!jz#EH1XX9QCYnWT$%M6 z#lFd8X>x!c8L$?+y&Z=4WJ-C@U=fOC&%=gzMfSM;5_(SU4Lcl6`6~r0$@&aK2Oo*w zes?5{*N?}8N9uPXz@N@Y8ZHI=)v(%M6a;ILE3-@WE4aUhm-Xj582=XDP&@v$n*WKH^fAL~}%7Nc{Ec4g;V!vk|0e@%jHA_fh&+GTUGD_wm0U_fciSue$nut6z8ie~bILM7UenbbT6o zv?4+1u{~ClFnf#eYwUfN|L`#dh3pcS=57@mZ`nr=)vSb~V>aRz_Cr)HorQImV#KNE zUtrD?XJKdgR5s_~SfNFejF>kH7mwNLg4egH2z?KV*j96i4RfBCuqf3tbBP{lLX|h`g#trKoce=sHd$LkxOr@b zaGByESiCxt-5aeW>}e3f2Kc3l7iUZoUb(viRvH@!XPZWd!)|Hg?&t`iVH^lwa<1a9 z=i;ECOQLYW-$YatTE}X3wJAPgyJXEhJ-g-nq$Q(3;gQczu zg`N7iv&c^fiSc4-tvB3{;3%Qdk41m8-b)wz-xB2)d;URw>pizg|L5!eNcP|U@NebH zzqb4RZuGzDzh92{P5x`i{~kg8F52kdJO3r1$ literal 0 HcmV?d00001 diff --git a/Diabetes prediction (Machine Learning Algorithms)/diabetes.csv b/Diabetes prediction (Machine Learning Algorithms)/diabetes.csv new file mode 100644 index 000000000..9e6a36214 --- /dev/null +++ b/Diabetes prediction (Machine Learning Algorithms)/diabetes.csv @@ -0,0 +1,769 @@ +Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age,Outcome +6,148,72,35,0,33.6,0.627,50,1 +1,85,66,29,0,26.6,0.351,31,0 +8,183,64,0,0,23.3,0.672,32,1 +1,89,66,23,94,28.1,0.167,21,0 +0,137,40,35,168,43.1,2.288,33,1 +5,116,74,0,0,25.6,0.201,30,0 +3,78,50,32,88,31,0.248,26,1 +10,115,0,0,0,35.3,0.134,29,0 +2,197,70,45,543,30.5,0.158,53,1 +8,125,96,0,0,0,0.232,54,1 +4,110,92,0,0,37.6,0.191,30,0 +10,168,74,0,0,38,0.537,34,1 +10,139,80,0,0,27.1,1.441,57,0 +1,189,60,23,846,30.1,0.398,59,1 +5,166,72,19,175,25.8,0.587,51,1 +7,100,0,0,0,30,0.484,32,1 +0,118,84,47,230,45.8,0.551,31,1 +7,107,74,0,0,29.6,0.254,31,1 +1,103,30,38,83,43.3,0.183,33,0 +1,115,70,30,96,34.6,0.529,32,1 +3,126,88,41,235,39.3,0.704,27,0 +8,99,84,0,0,35.4,0.388,50,0 +7,196,90,0,0,39.8,0.451,41,1 +9,119,80,35,0,29,0.263,29,1 +11,143,94,33,146,36.6,0.254,51,1 +10,125,70,26,115,31.1,0.205,41,1 +7,147,76,0,0,39.4,0.257,43,1 +1,97,66,15,140,23.2,0.487,22,0 +13,145,82,19,110,22.2,0.245,57,0 +5,117,92,0,0,34.1,0.337,38,0 +5,109,75,26,0,36,0.546,60,0 +3,158,76,36,245,31.6,0.851,28,1 +3,88,58,11,54,24.8,0.267,22,0 +6,92,92,0,0,19.9,0.188,28,0 +10,122,78,31,0,27.6,0.512,45,0 +4,103,60,33,192,24,0.966,33,0 +11,138,76,0,0,33.2,0.42,35,0 +9,102,76,37,0,32.9,0.665,46,1 +2,90,68,42,0,38.2,0.503,27,1 +4,111,72,47,207,37.1,1.39,56,1 +3,180,64,25,70,34,0.271,26,0 +7,133,84,0,0,40.2,0.696,37,0 +7,106,92,18,0,22.7,0.235,48,0 +9,171,110,24,240,45.4,0.721,54,1 +7,159,64,0,0,27.4,0.294,40,0 +0,180,66,39,0,42,1.893,25,1 +1,146,56,0,0,29.7,0.564,29,0 +2,71,70,27,0,28,0.586,22,0 +7,103,66,32,0,39.1,0.344,31,1 +7,105,0,0,0,0,0.305,24,0 +1,103,80,11,82,19.4,0.491,22,0 +1,101,50,15,36,24.2,0.526,26,0 +5,88,66,21,23,24.4,0.342,30,0 +8,176,90,34,300,33.7,0.467,58,1 +7,150,66,42,342,34.7,0.718,42,0 +1,73,50,10,0,23,0.248,21,0 +7,187,68,39,304,37.7,0.254,41,1 +0,100,88,60,110,46.8,0.962,31,0 +0,146,82,0,0,40.5,1.781,44,0 +0,105,64,41,142,41.5,0.173,22,0 +2,84,0,0,0,0,0.304,21,0 +8,133,72,0,0,32.9,0.27,39,1 +5,44,62,0,0,25,0.587,36,0 +2,141,58,34,128,25.4,0.699,24,0 +7,114,66,0,0,32.8,0.258,42,1 +5,99,74,27,0,29,0.203,32,0 +0,109,88,30,0,32.5,0.855,38,1 +2,109,92,0,0,42.7,0.845,54,0 +1,95,66,13,38,19.6,0.334,25,0 +4,146,85,27,100,28.9,0.189,27,0 +2,100,66,20,90,32.9,0.867,28,1 +5,139,64,35,140,28.6,0.411,26,0 +13,126,90,0,0,43.4,0.583,42,1 +4,129,86,20,270,35.1,0.231,23,0 +1,79,75,30,0,32,0.396,22,0 +1,0,48,20,0,24.7,0.14,22,0 +7,62,78,0,0,32.6,0.391,41,0 +5,95,72,33,0,37.7,0.37,27,0 +0,131,0,0,0,43.2,0.27,26,1 +2,112,66,22,0,25,0.307,24,0 +3,113,44,13,0,22.4,0.14,22,0 +2,74,0,0,0,0,0.102,22,0 +7,83,78,26,71,29.3,0.767,36,0 +0,101,65,28,0,24.6,0.237,22,0 +5,137,108,0,0,48.8,0.227,37,1 +2,110,74,29,125,32.4,0.698,27,0 +13,106,72,54,0,36.6,0.178,45,0 +2,100,68,25,71,38.5,0.324,26,0 +15,136,70,32,110,37.1,0.153,43,1 +1,107,68,19,0,26.5,0.165,24,0 +1,80,55,0,0,19.1,0.258,21,0 +4,123,80,15,176,32,0.443,34,0 +7,81,78,40,48,46.7,0.261,42,0 +4,134,72,0,0,23.8,0.277,60,1 +2,142,82,18,64,24.7,0.761,21,0 +6,144,72,27,228,33.9,0.255,40,0 +2,92,62,28,0,31.6,0.13,24,0 +1,71,48,18,76,20.4,0.323,22,0 +6,93,50,30,64,28.7,0.356,23,0 +1,122,90,51,220,49.7,0.325,31,1 +1,163,72,0,0,39,1.222,33,1 +1,151,60,0,0,26.1,0.179,22,0 +0,125,96,0,0,22.5,0.262,21,0 +1,81,72,18,40,26.6,0.283,24,0 +2,85,65,0,0,39.6,0.93,27,0 +1,126,56,29,152,28.7,0.801,21,0 +1,96,122,0,0,22.4,0.207,27,0 +4,144,58,28,140,29.5,0.287,37,0 +3,83,58,31,18,34.3,0.336,25,0 +0,95,85,25,36,37.4,0.247,24,1 +3,171,72,33,135,33.3,0.199,24,1 +8,155,62,26,495,34,0.543,46,1 +1,89,76,34,37,31.2,0.192,23,0 +4,76,62,0,0,34,0.391,25,0 +7,160,54,32,175,30.5,0.588,39,1 +4,146,92,0,0,31.2,0.539,61,1 +5,124,74,0,0,34,0.22,38,1 +5,78,48,0,0,33.7,0.654,25,0 +4,97,60,23,0,28.2,0.443,22,0 +4,99,76,15,51,23.2,0.223,21,0 +0,162,76,56,100,53.2,0.759,25,1 +6,111,64,39,0,34.2,0.26,24,0 +2,107,74,30,100,33.6,0.404,23,0 +5,132,80,0,0,26.8,0.186,69,0 +0,113,76,0,0,33.3,0.278,23,1 +1,88,30,42,99,55,0.496,26,1 +3,120,70,30,135,42.9,0.452,30,0 +1,118,58,36,94,33.3,0.261,23,0 +1,117,88,24,145,34.5,0.403,40,1 +0,105,84,0,0,27.9,0.741,62,1 +4,173,70,14,168,29.7,0.361,33,1 +9,122,56,0,0,33.3,1.114,33,1 +3,170,64,37,225,34.5,0.356,30,1 +8,84,74,31,0,38.3,0.457,39,0 +2,96,68,13,49,21.1,0.647,26,0 +2,125,60,20,140,33.8,0.088,31,0 +0,100,70,26,50,30.8,0.597,21,0 +0,93,60,25,92,28.7,0.532,22,0 +0,129,80,0,0,31.2,0.703,29,0 +5,105,72,29,325,36.9,0.159,28,0 +3,128,78,0,0,21.1,0.268,55,0 +5,106,82,30,0,39.5,0.286,38,0 +2,108,52,26,63,32.5,0.318,22,0 +10,108,66,0,0,32.4,0.272,42,1 +4,154,62,31,284,32.8,0.237,23,0 +0,102,75,23,0,0,0.572,21,0 +9,57,80,37,0,32.8,0.096,41,0 +2,106,64,35,119,30.5,1.4,34,0 +5,147,78,0,0,33.7,0.218,65,0 +2,90,70,17,0,27.3,0.085,22,0 +1,136,74,50,204,37.4,0.399,24,0 +4,114,65,0,0,21.9,0.432,37,0 +9,156,86,28,155,34.3,1.189,42,1 +1,153,82,42,485,40.6,0.687,23,0 +8,188,78,0,0,47.9,0.137,43,1 +7,152,88,44,0,50,0.337,36,1 +2,99,52,15,94,24.6,0.637,21,0 +1,109,56,21,135,25.2,0.833,23,0 +2,88,74,19,53,29,0.229,22,0 +17,163,72,41,114,40.9,0.817,47,1 +4,151,90,38,0,29.7,0.294,36,0 +7,102,74,40,105,37.2,0.204,45,0 +0,114,80,34,285,44.2,0.167,27,0 +2,100,64,23,0,29.7,0.368,21,0 +0,131,88,0,0,31.6,0.743,32,1 +6,104,74,18,156,29.9,0.722,41,1 +3,148,66,25,0,32.5,0.256,22,0 +4,120,68,0,0,29.6,0.709,34,0 +4,110,66,0,0,31.9,0.471,29,0 +3,111,90,12,78,28.4,0.495,29,0 +6,102,82,0,0,30.8,0.18,36,1 +6,134,70,23,130,35.4,0.542,29,1 +2,87,0,23,0,28.9,0.773,25,0 +1,79,60,42,48,43.5,0.678,23,0 +2,75,64,24,55,29.7,0.37,33,0 +8,179,72,42,130,32.7,0.719,36,1 +6,85,78,0,0,31.2,0.382,42,0 +0,129,110,46,130,67.1,0.319,26,1 +5,143,78,0,0,45,0.19,47,0 +5,130,82,0,0,39.1,0.956,37,1 +6,87,80,0,0,23.2,0.084,32,0 +0,119,64,18,92,34.9,0.725,23,0 +1,0,74,20,23,27.7,0.299,21,0 +5,73,60,0,0,26.8,0.268,27,0 +4,141,74,0,0,27.6,0.244,40,0 +7,194,68,28,0,35.9,0.745,41,1 +8,181,68,36,495,30.1,0.615,60,1 +1,128,98,41,58,32,1.321,33,1 +8,109,76,39,114,27.9,0.64,31,1 +5,139,80,35,160,31.6,0.361,25,1 +3,111,62,0,0,22.6,0.142,21,0 +9,123,70,44,94,33.1,0.374,40,0 +7,159,66,0,0,30.4,0.383,36,1 +11,135,0,0,0,52.3,0.578,40,1 +8,85,55,20,0,24.4,0.136,42,0 +5,158,84,41,210,39.4,0.395,29,1 +1,105,58,0,0,24.3,0.187,21,0 +3,107,62,13,48,22.9,0.678,23,1 +4,109,64,44,99,34.8,0.905,26,1 +4,148,60,27,318,30.9,0.15,29,1 +0,113,80,16,0,31,0.874,21,0 +1,138,82,0,0,40.1,0.236,28,0 +0,108,68,20,0,27.3,0.787,32,0 +2,99,70,16,44,20.4,0.235,27,0 +6,103,72,32,190,37.7,0.324,55,0 +5,111,72,28,0,23.9,0.407,27,0 +8,196,76,29,280,37.5,0.605,57,1 +5,162,104,0,0,37.7,0.151,52,1 +1,96,64,27,87,33.2,0.289,21,0 +7,184,84,33,0,35.5,0.355,41,1 +2,81,60,22,0,27.7,0.29,25,0 +0,147,85,54,0,42.8,0.375,24,0 +7,179,95,31,0,34.2,0.164,60,0 +0,140,65,26,130,42.6,0.431,24,1 +9,112,82,32,175,34.2,0.26,36,1 +12,151,70,40,271,41.8,0.742,38,1 +5,109,62,41,129,35.8,0.514,25,1 +6,125,68,30,120,30,0.464,32,0 +5,85,74,22,0,29,1.224,32,1 +5,112,66,0,0,37.8,0.261,41,1 +0,177,60,29,478,34.6,1.072,21,1 +2,158,90,0,0,31.6,0.805,66,1 +7,119,0,0,0,25.2,0.209,37,0 +7,142,60,33,190,28.8,0.687,61,0 +1,100,66,15,56,23.6,0.666,26,0 +1,87,78,27,32,34.6,0.101,22,0 +0,101,76,0,0,35.7,0.198,26,0 +3,162,52,38,0,37.2,0.652,24,1 +4,197,70,39,744,36.7,2.329,31,0 +0,117,80,31,53,45.2,0.089,24,0 +4,142,86,0,0,44,0.645,22,1 +6,134,80,37,370,46.2,0.238,46,1 +1,79,80,25,37,25.4,0.583,22,0 +4,122,68,0,0,35,0.394,29,0 +3,74,68,28,45,29.7,0.293,23,0 +4,171,72,0,0,43.6,0.479,26,1 +7,181,84,21,192,35.9,0.586,51,1 +0,179,90,27,0,44.1,0.686,23,1 +9,164,84,21,0,30.8,0.831,32,1 +0,104,76,0,0,18.4,0.582,27,0 +1,91,64,24,0,29.2,0.192,21,0 +4,91,70,32,88,33.1,0.446,22,0 +3,139,54,0,0,25.6,0.402,22,1 +6,119,50,22,176,27.1,1.318,33,1 +2,146,76,35,194,38.2,0.329,29,0 +9,184,85,15,0,30,1.213,49,1 +10,122,68,0,0,31.2,0.258,41,0 +0,165,90,33,680,52.3,0.427,23,0 +9,124,70,33,402,35.4,0.282,34,0 +1,111,86,19,0,30.1,0.143,23,0 +9,106,52,0,0,31.2,0.38,42,0 +2,129,84,0,0,28,0.284,27,0 +2,90,80,14,55,24.4,0.249,24,0 +0,86,68,32,0,35.8,0.238,25,0 +12,92,62,7,258,27.6,0.926,44,1 +1,113,64,35,0,33.6,0.543,21,1 +3,111,56,39,0,30.1,0.557,30,0 +2,114,68,22,0,28.7,0.092,25,0 +1,193,50,16,375,25.9,0.655,24,0 +11,155,76,28,150,33.3,1.353,51,1 +3,191,68,15,130,30.9,0.299,34,0 +3,141,0,0,0,30,0.761,27,1 +4,95,70,32,0,32.1,0.612,24,0 +3,142,80,15,0,32.4,0.2,63,0 +4,123,62,0,0,32,0.226,35,1 +5,96,74,18,67,33.6,0.997,43,0 +0,138,0,0,0,36.3,0.933,25,1 +2,128,64,42,0,40,1.101,24,0 +0,102,52,0,0,25.1,0.078,21,0 +2,146,0,0,0,27.5,0.24,28,1 +10,101,86,37,0,45.6,1.136,38,1 +2,108,62,32,56,25.2,0.128,21,0 +3,122,78,0,0,23,0.254,40,0 +1,71,78,50,45,33.2,0.422,21,0 +13,106,70,0,0,34.2,0.251,52,0 +2,100,70,52,57,40.5,0.677,25,0 +7,106,60,24,0,26.5,0.296,29,1 +0,104,64,23,116,27.8,0.454,23,0 +5,114,74,0,0,24.9,0.744,57,0 +2,108,62,10,278,25.3,0.881,22,0 +0,146,70,0,0,37.9,0.334,28,1 +10,129,76,28,122,35.9,0.28,39,0 +7,133,88,15,155,32.4,0.262,37,0 +7,161,86,0,0,30.4,0.165,47,1 +2,108,80,0,0,27,0.259,52,1 +7,136,74,26,135,26,0.647,51,0 +5,155,84,44,545,38.7,0.619,34,0 +1,119,86,39,220,45.6,0.808,29,1 +4,96,56,17,49,20.8,0.34,26,0 +5,108,72,43,75,36.1,0.263,33,0 +0,78,88,29,40,36.9,0.434,21,0 +0,107,62,30,74,36.6,0.757,25,1 +2,128,78,37,182,43.3,1.224,31,1 +1,128,48,45,194,40.5,0.613,24,1 +0,161,50,0,0,21.9,0.254,65,0 +6,151,62,31,120,35.5,0.692,28,0 +2,146,70,38,360,28,0.337,29,1 +0,126,84,29,215,30.7,0.52,24,0 +14,100,78,25,184,36.6,0.412,46,1 +8,112,72,0,0,23.6,0.84,58,0 +0,167,0,0,0,32.3,0.839,30,1 +2,144,58,33,135,31.6,0.422,25,1 +5,77,82,41,42,35.8,0.156,35,0 +5,115,98,0,0,52.9,0.209,28,1 +3,150,76,0,0,21,0.207,37,0 +2,120,76,37,105,39.7,0.215,29,0 +10,161,68,23,132,25.5,0.326,47,1 +0,137,68,14,148,24.8,0.143,21,0 +0,128,68,19,180,30.5,1.391,25,1 +2,124,68,28,205,32.9,0.875,30,1 +6,80,66,30,0,26.2,0.313,41,0 +0,106,70,37,148,39.4,0.605,22,0 +2,155,74,17,96,26.6,0.433,27,1 +3,113,50,10,85,29.5,0.626,25,0 +7,109,80,31,0,35.9,1.127,43,1 +2,112,68,22,94,34.1,0.315,26,0 +3,99,80,11,64,19.3,0.284,30,0 +3,182,74,0,0,30.5,0.345,29,1 +3,115,66,39,140,38.1,0.15,28,0 +6,194,78,0,0,23.5,0.129,59,1 +4,129,60,12,231,27.5,0.527,31,0 +3,112,74,30,0,31.6,0.197,25,1 +0,124,70,20,0,27.4,0.254,36,1 +13,152,90,33,29,26.8,0.731,43,1 +2,112,75,32,0,35.7,0.148,21,0 +1,157,72,21,168,25.6,0.123,24,0 +1,122,64,32,156,35.1,0.692,30,1 +10,179,70,0,0,35.1,0.2,37,0 +2,102,86,36,120,45.5,0.127,23,1 +6,105,70,32,68,30.8,0.122,37,0 +8,118,72,19,0,23.1,1.476,46,0 +2,87,58,16,52,32.7,0.166,25,0 +1,180,0,0,0,43.3,0.282,41,1 +12,106,80,0,0,23.6,0.137,44,0 +1,95,60,18,58,23.9,0.26,22,0 +0,165,76,43,255,47.9,0.259,26,0 +0,117,0,0,0,33.8,0.932,44,0 +5,115,76,0,0,31.2,0.343,44,1 +9,152,78,34,171,34.2,0.893,33,1 +7,178,84,0,0,39.9,0.331,41,1 +1,130,70,13,105,25.9,0.472,22,0 +1,95,74,21,73,25.9,0.673,36,0 +1,0,68,35,0,32,0.389,22,0 +5,122,86,0,0,34.7,0.29,33,0 +8,95,72,0,0,36.8,0.485,57,0 +8,126,88,36,108,38.5,0.349,49,0 +1,139,46,19,83,28.7,0.654,22,0 +3,116,0,0,0,23.5,0.187,23,0 +3,99,62,19,74,21.8,0.279,26,0 +5,0,80,32,0,41,0.346,37,1 +4,92,80,0,0,42.2,0.237,29,0 +4,137,84,0,0,31.2,0.252,30,0 +3,61,82,28,0,34.4,0.243,46,0 +1,90,62,12,43,27.2,0.58,24,0 +3,90,78,0,0,42.7,0.559,21,0 +9,165,88,0,0,30.4,0.302,49,1 +1,125,50,40,167,33.3,0.962,28,1 +13,129,0,30,0,39.9,0.569,44,1 +12,88,74,40,54,35.3,0.378,48,0 +1,196,76,36,249,36.5,0.875,29,1 +5,189,64,33,325,31.2,0.583,29,1 +5,158,70,0,0,29.8,0.207,63,0 +5,103,108,37,0,39.2,0.305,65,0 +4,146,78,0,0,38.5,0.52,67,1 +4,147,74,25,293,34.9,0.385,30,0 +5,99,54,28,83,34,0.499,30,0 +6,124,72,0,0,27.6,0.368,29,1 +0,101,64,17,0,21,0.252,21,0 +3,81,86,16,66,27.5,0.306,22,0 +1,133,102,28,140,32.8,0.234,45,1 +3,173,82,48,465,38.4,2.137,25,1 +0,118,64,23,89,0,1.731,21,0 +0,84,64,22,66,35.8,0.545,21,0 +2,105,58,40,94,34.9,0.225,25,0 +2,122,52,43,158,36.2,0.816,28,0 +12,140,82,43,325,39.2,0.528,58,1 +0,98,82,15,84,25.2,0.299,22,0 +1,87,60,37,75,37.2,0.509,22,0 +4,156,75,0,0,48.3,0.238,32,1 +0,93,100,39,72,43.4,1.021,35,0 +1,107,72,30,82,30.8,0.821,24,0 +0,105,68,22,0,20,0.236,22,0 +1,109,60,8,182,25.4,0.947,21,0 +1,90,62,18,59,25.1,1.268,25,0 +1,125,70,24,110,24.3,0.221,25,0 +1,119,54,13,50,22.3,0.205,24,0 +5,116,74,29,0,32.3,0.66,35,1 +8,105,100,36,0,43.3,0.239,45,1 +5,144,82,26,285,32,0.452,58,1 +3,100,68,23,81,31.6,0.949,28,0 +1,100,66,29,196,32,0.444,42,0 +5,166,76,0,0,45.7,0.34,27,1 +1,131,64,14,415,23.7,0.389,21,0 +4,116,72,12,87,22.1,0.463,37,0 +4,158,78,0,0,32.9,0.803,31,1 +2,127,58,24,275,27.7,1.6,25,0 +3,96,56,34,115,24.7,0.944,39,0 +0,131,66,40,0,34.3,0.196,22,1 +3,82,70,0,0,21.1,0.389,25,0 +3,193,70,31,0,34.9,0.241,25,1 +4,95,64,0,0,32,0.161,31,1 +6,137,61,0,0,24.2,0.151,55,0 +5,136,84,41,88,35,0.286,35,1 +9,72,78,25,0,31.6,0.28,38,0 +5,168,64,0,0,32.9,0.135,41,1 +2,123,48,32,165,42.1,0.52,26,0 +4,115,72,0,0,28.9,0.376,46,1 +0,101,62,0,0,21.9,0.336,25,0 +8,197,74,0,0,25.9,1.191,39,1 +1,172,68,49,579,42.4,0.702,28,1 +6,102,90,39,0,35.7,0.674,28,0 +1,112,72,30,176,34.4,0.528,25,0 +1,143,84,23,310,42.4,1.076,22,0 +1,143,74,22,61,26.2,0.256,21,0 +0,138,60,35,167,34.6,0.534,21,1 +3,173,84,33,474,35.7,0.258,22,1 +1,97,68,21,0,27.2,1.095,22,0 +4,144,82,32,0,38.5,0.554,37,1 +1,83,68,0,0,18.2,0.624,27,0 +3,129,64,29,115,26.4,0.219,28,1 +1,119,88,41,170,45.3,0.507,26,0 +2,94,68,18,76,26,0.561,21,0 +0,102,64,46,78,40.6,0.496,21,0 +2,115,64,22,0,30.8,0.421,21,0 +8,151,78,32,210,42.9,0.516,36,1 +4,184,78,39,277,37,0.264,31,1 +0,94,0,0,0,0,0.256,25,0 +1,181,64,30,180,34.1,0.328,38,1 +0,135,94,46,145,40.6,0.284,26,0 +1,95,82,25,180,35,0.233,43,1 +2,99,0,0,0,22.2,0.108,23,0 +3,89,74,16,85,30.4,0.551,38,0 +1,80,74,11,60,30,0.527,22,0 +2,139,75,0,0,25.6,0.167,29,0 +1,90,68,8,0,24.5,1.138,36,0 +0,141,0,0,0,42.4,0.205,29,1 +12,140,85,33,0,37.4,0.244,41,0 +5,147,75,0,0,29.9,0.434,28,0 +1,97,70,15,0,18.2,0.147,21,0 +6,107,88,0,0,36.8,0.727,31,0 +0,189,104,25,0,34.3,0.435,41,1 +2,83,66,23,50,32.2,0.497,22,0 +4,117,64,27,120,33.2,0.23,24,0 +8,108,70,0,0,30.5,0.955,33,1 +4,117,62,12,0,29.7,0.38,30,1 +0,180,78,63,14,59.4,2.42,25,1 +1,100,72,12,70,25.3,0.658,28,0 +0,95,80,45,92,36.5,0.33,26,0 +0,104,64,37,64,33.6,0.51,22,1 +0,120,74,18,63,30.5,0.285,26,0 +1,82,64,13,95,21.2,0.415,23,0 +2,134,70,0,0,28.9,0.542,23,1 +0,91,68,32,210,39.9,0.381,25,0 +2,119,0,0,0,19.6,0.832,72,0 +2,100,54,28,105,37.8,0.498,24,0 +14,175,62,30,0,33.6,0.212,38,1 +1,135,54,0,0,26.7,0.687,62,0 +5,86,68,28,71,30.2,0.364,24,0 +10,148,84,48,237,37.6,1.001,51,1 +9,134,74,33,60,25.9,0.46,81,0 +9,120,72,22,56,20.8,0.733,48,0 +1,71,62,0,0,21.8,0.416,26,0 +8,74,70,40,49,35.3,0.705,39,0 +5,88,78,30,0,27.6,0.258,37,0 +10,115,98,0,0,24,1.022,34,0 +0,124,56,13,105,21.8,0.452,21,0 +0,74,52,10,36,27.8,0.269,22,0 +0,97,64,36,100,36.8,0.6,25,0 +8,120,0,0,0,30,0.183,38,1 +6,154,78,41,140,46.1,0.571,27,0 +1,144,82,40,0,41.3,0.607,28,0 +0,137,70,38,0,33.2,0.17,22,0 +0,119,66,27,0,38.8,0.259,22,0 +7,136,90,0,0,29.9,0.21,50,0 +4,114,64,0,0,28.9,0.126,24,0 +0,137,84,27,0,27.3,0.231,59,0 +2,105,80,45,191,33.7,0.711,29,1 +7,114,76,17,110,23.8,0.466,31,0 +8,126,74,38,75,25.9,0.162,39,0 +4,132,86,31,0,28,0.419,63,0 +3,158,70,30,328,35.5,0.344,35,1 +0,123,88,37,0,35.2,0.197,29,0 +4,85,58,22,49,27.8,0.306,28,0 +0,84,82,31,125,38.2,0.233,23,0 +0,145,0,0,0,44.2,0.63,31,1 +0,135,68,42,250,42.3,0.365,24,1 +1,139,62,41,480,40.7,0.536,21,0 +0,173,78,32,265,46.5,1.159,58,0 +4,99,72,17,0,25.6,0.294,28,0 +8,194,80,0,0,26.1,0.551,67,0 +2,83,65,28,66,36.8,0.629,24,0 +2,89,90,30,0,33.5,0.292,42,0 +4,99,68,38,0,32.8,0.145,33,0 +4,125,70,18,122,28.9,1.144,45,1 +3,80,0,0,0,0,0.174,22,0 +6,166,74,0,0,26.6,0.304,66,0 +5,110,68,0,0,26,0.292,30,0 +2,81,72,15,76,30.1,0.547,25,0 +7,195,70,33,145,25.1,0.163,55,1 +6,154,74,32,193,29.3,0.839,39,0 +2,117,90,19,71,25.2,0.313,21,0 +3,84,72,32,0,37.2,0.267,28,0 +6,0,68,41,0,39,0.727,41,1 +7,94,64,25,79,33.3,0.738,41,0 +3,96,78,39,0,37.3,0.238,40,0 +10,75,82,0,0,33.3,0.263,38,0 +0,180,90,26,90,36.5,0.314,35,1 +1,130,60,23,170,28.6,0.692,21,0 +2,84,50,23,76,30.4,0.968,21,0 +8,120,78,0,0,25,0.409,64,0 +12,84,72,31,0,29.7,0.297,46,1 +0,139,62,17,210,22.1,0.207,21,0 +9,91,68,0,0,24.2,0.2,58,0 +2,91,62,0,0,27.3,0.525,22,0 +3,99,54,19,86,25.6,0.154,24,0 +3,163,70,18,105,31.6,0.268,28,1 +9,145,88,34,165,30.3,0.771,53,1 +7,125,86,0,0,37.6,0.304,51,0 +13,76,60,0,0,32.8,0.18,41,0 +6,129,90,7,326,19.6,0.582,60,0 +2,68,70,32,66,25,0.187,25,0 +3,124,80,33,130,33.2,0.305,26,0 +6,114,0,0,0,0,0.189,26,0 +9,130,70,0,0,34.2,0.652,45,1 +3,125,58,0,0,31.6,0.151,24,0 +3,87,60,18,0,21.8,0.444,21,0 +1,97,64,19,82,18.2,0.299,21,0 +3,116,74,15,105,26.3,0.107,24,0 +0,117,66,31,188,30.8,0.493,22,0 +0,111,65,0,0,24.6,0.66,31,0 +2,122,60,18,106,29.8,0.717,22,0 +0,107,76,0,0,45.3,0.686,24,0 +1,86,66,52,65,41.3,0.917,29,0 +6,91,0,0,0,29.8,0.501,31,0 +1,77,56,30,56,33.3,1.251,24,0 +4,132,0,0,0,32.9,0.302,23,1 +0,105,90,0,0,29.6,0.197,46,0 +0,57,60,0,0,21.7,0.735,67,0 +0,127,80,37,210,36.3,0.804,23,0 +3,129,92,49,155,36.4,0.968,32,1 +8,100,74,40,215,39.4,0.661,43,1 +3,128,72,25,190,32.4,0.549,27,1 +10,90,85,32,0,34.9,0.825,56,1 +4,84,90,23,56,39.5,0.159,25,0 +1,88,78,29,76,32,0.365,29,0 +8,186,90,35,225,34.5,0.423,37,1 +5,187,76,27,207,43.6,1.034,53,1 +4,131,68,21,166,33.1,0.16,28,0 +1,164,82,43,67,32.8,0.341,50,0 +4,189,110,31,0,28.5,0.68,37,0 +1,116,70,28,0,27.4,0.204,21,0 +3,84,68,30,106,31.9,0.591,25,0 +6,114,88,0,0,27.8,0.247,66,0 +1,88,62,24,44,29.9,0.422,23,0 +1,84,64,23,115,36.9,0.471,28,0 +7,124,70,33,215,25.5,0.161,37,0 +1,97,70,40,0,38.1,0.218,30,0 +8,110,76,0,0,27.8,0.237,58,0 +11,103,68,40,0,46.2,0.126,42,0 +11,85,74,0,0,30.1,0.3,35,0 +6,125,76,0,0,33.8,0.121,54,1 +0,198,66,32,274,41.3,0.502,28,1 +1,87,68,34,77,37.6,0.401,24,0 +6,99,60,19,54,26.9,0.497,32,0 +0,91,80,0,0,32.4,0.601,27,0 +2,95,54,14,88,26.1,0.748,22,0 +1,99,72,30,18,38.6,0.412,21,0 +6,92,62,32,126,32,0.085,46,0 +4,154,72,29,126,31.3,0.338,37,0 +0,121,66,30,165,34.3,0.203,33,1 +3,78,70,0,0,32.5,0.27,39,0 +2,130,96,0,0,22.6,0.268,21,0 +3,111,58,31,44,29.5,0.43,22,0 +2,98,60,17,120,34.7,0.198,22,0 +1,143,86,30,330,30.1,0.892,23,0 +1,119,44,47,63,35.5,0.28,25,0 +6,108,44,20,130,24,0.813,35,0 +2,118,80,0,0,42.9,0.693,21,1 +10,133,68,0,0,27,0.245,36,0 +2,197,70,99,0,34.7,0.575,62,1 +0,151,90,46,0,42.1,0.371,21,1 +6,109,60,27,0,25,0.206,27,0 +12,121,78,17,0,26.5,0.259,62,0 +8,100,76,0,0,38.7,0.19,42,0 +8,124,76,24,600,28.7,0.687,52,1 +1,93,56,11,0,22.5,0.417,22,0 +8,143,66,0,0,34.9,0.129,41,1 +6,103,66,0,0,24.3,0.249,29,0 +3,176,86,27,156,33.3,1.154,52,1 +0,73,0,0,0,21.1,0.342,25,0 +11,111,84,40,0,46.8,0.925,45,1 +2,112,78,50,140,39.4,0.175,24,0 +3,132,80,0,0,34.4,0.402,44,1 +2,82,52,22,115,28.5,1.699,25,0 +6,123,72,45,230,33.6,0.733,34,0 +0,188,82,14,185,32,0.682,22,1 +0,67,76,0,0,45.3,0.194,46,0 +1,89,24,19,25,27.8,0.559,21,0 +1,173,74,0,0,36.8,0.088,38,1 +1,109,38,18,120,23.1,0.407,26,0 +1,108,88,19,0,27.1,0.4,24,0 +6,96,0,0,0,23.7,0.19,28,0 +1,124,74,36,0,27.8,0.1,30,0 +7,150,78,29,126,35.2,0.692,54,1 +4,183,0,0,0,28.4,0.212,36,1 +1,124,60,32,0,35.8,0.514,21,0 +1,181,78,42,293,40,1.258,22,1 +1,92,62,25,41,19.5,0.482,25,0 +0,152,82,39,272,41.5,0.27,27,0 +1,111,62,13,182,24,0.138,23,0 +3,106,54,21,158,30.9,0.292,24,0 +3,174,58,22,194,32.9,0.593,36,1 +7,168,88,42,321,38.2,0.787,40,1 +6,105,80,28,0,32.5,0.878,26,0 +11,138,74,26,144,36.1,0.557,50,1 +3,106,72,0,0,25.8,0.207,27,0 +6,117,96,0,0,28.7,0.157,30,0 +2,68,62,13,15,20.1,0.257,23,0 +9,112,82,24,0,28.2,1.282,50,1 +0,119,0,0,0,32.4,0.141,24,1 +2,112,86,42,160,38.4,0.246,28,0 +2,92,76,20,0,24.2,1.698,28,0 +6,183,94,0,0,40.8,1.461,45,0 +0,94,70,27,115,43.5,0.347,21,0 +2,108,64,0,0,30.8,0.158,21,0 +4,90,88,47,54,37.7,0.362,29,0 +0,125,68,0,0,24.7,0.206,21,0 +0,132,78,0,0,32.4,0.393,21,0 +5,128,80,0,0,34.6,0.144,45,0 +4,94,65,22,0,24.7,0.148,21,0 +7,114,64,0,0,27.4,0.732,34,1 +0,102,78,40,90,34.5,0.238,24,0 +2,111,60,0,0,26.2,0.343,23,0 +1,128,82,17,183,27.5,0.115,22,0 +10,92,62,0,0,25.9,0.167,31,0 +13,104,72,0,0,31.2,0.465,38,1 +5,104,74,0,0,28.8,0.153,48,0 +2,94,76,18,66,31.6,0.649,23,0 +7,97,76,32,91,40.9,0.871,32,1 +1,100,74,12,46,19.5,0.149,28,0 +0,102,86,17,105,29.3,0.695,27,0 +4,128,70,0,0,34.3,0.303,24,0 +6,147,80,0,0,29.5,0.178,50,1 +4,90,0,0,0,28,0.61,31,0 +3,103,72,30,152,27.6,0.73,27,0 +2,157,74,35,440,39.4,0.134,30,0 +1,167,74,17,144,23.4,0.447,33,1 +0,179,50,36,159,37.8,0.455,22,1 +11,136,84,35,130,28.3,0.26,42,1 +0,107,60,25,0,26.4,0.133,23,0 +1,91,54,25,100,25.2,0.234,23,0 +1,117,60,23,106,33.8,0.466,27,0 +5,123,74,40,77,34.1,0.269,28,0 +2,120,54,0,0,26.8,0.455,27,0 +1,106,70,28,135,34.2,0.142,22,0 +2,155,52,27,540,38.7,0.24,25,1 +2,101,58,35,90,21.8,0.155,22,0 +1,120,80,48,200,38.9,1.162,41,0 +11,127,106,0,0,39,0.19,51,0 +3,80,82,31,70,34.2,1.292,27,1 +10,162,84,0,0,27.7,0.182,54,0 +1,199,76,43,0,42.9,1.394,22,1 +8,167,106,46,231,37.6,0.165,43,1 +9,145,80,46,130,37.9,0.637,40,1 +6,115,60,39,0,33.7,0.245,40,1 +1,112,80,45,132,34.8,0.217,24,0 +4,145,82,18,0,32.5,0.235,70,1 +10,111,70,27,0,27.5,0.141,40,1 +6,98,58,33,190,34,0.43,43,0 +9,154,78,30,100,30.9,0.164,45,0 +6,165,68,26,168,33.6,0.631,49,0 +1,99,58,10,0,25.4,0.551,21,0 +10,68,106,23,49,35.5,0.285,47,0 +3,123,100,35,240,57.3,0.88,22,0 +8,91,82,0,0,35.6,0.587,68,0 +6,195,70,0,0,30.9,0.328,31,1 +9,156,86,0,0,24.8,0.23,53,1 +0,93,60,0,0,35.3,0.263,25,0 +3,121,52,0,0,36,0.127,25,1 +2,101,58,17,265,24.2,0.614,23,0 +2,56,56,28,45,24.2,0.332,22,0 +0,162,76,36,0,49.6,0.364,26,1 +0,95,64,39,105,44.6,0.366,22,0 +4,125,80,0,0,32.3,0.536,27,1 +5,136,82,0,0,0,0.64,69,0 +2,129,74,26,205,33.2,0.591,25,0 +3,130,64,0,0,23.1,0.314,22,0 +1,107,50,19,0,28.3,0.181,29,0 +1,140,74,26,180,24.1,0.828,23,0 +1,144,82,46,180,46.1,0.335,46,1 +8,107,80,0,0,24.6,0.856,34,0 +13,158,114,0,0,42.3,0.257,44,1 +2,121,70,32,95,39.1,0.886,23,0 +7,129,68,49,125,38.5,0.439,43,1 +2,90,60,0,0,23.5,0.191,25,0 +7,142,90,24,480,30.4,0.128,43,1 +3,169,74,19,125,29.9,0.268,31,1 +0,99,0,0,0,25,0.253,22,0 +4,127,88,11,155,34.5,0.598,28,0 +4,118,70,0,0,44.5,0.904,26,0 +2,122,76,27,200,35.9,0.483,26,0 +6,125,78,31,0,27.6,0.565,49,1 +1,168,88,29,0,35,0.905,52,1 +2,129,0,0,0,38.5,0.304,41,0 +4,110,76,20,100,28.4,0.118,27,0 +6,80,80,36,0,39.8,0.177,28,0 +10,115,0,0,0,0,0.261,30,1 +2,127,46,21,335,34.4,0.176,22,0 +9,164,78,0,0,32.8,0.148,45,1 +2,93,64,32,160,38,0.674,23,1 +3,158,64,13,387,31.2,0.295,24,0 +5,126,78,27,22,29.6,0.439,40,0 +10,129,62,36,0,41.2,0.441,38,1 +0,134,58,20,291,26.4,0.352,21,0 +3,102,74,0,0,29.5,0.121,32,0 +7,187,50,33,392,33.9,0.826,34,1 +3,173,78,39,185,33.8,0.97,31,1 +10,94,72,18,0,23.1,0.595,56,0 +1,108,60,46,178,35.5,0.415,24,0 +5,97,76,27,0,35.6,0.378,52,1 +4,83,86,19,0,29.3,0.317,34,0 +1,114,66,36,200,38.1,0.289,21,0 +1,149,68,29,127,29.3,0.349,42,1 +5,117,86,30,105,39.1,0.251,42,0 +1,111,94,0,0,32.8,0.265,45,0 +4,112,78,40,0,39.4,0.236,38,0 +1,116,78,29,180,36.1,0.496,25,0 +0,141,84,26,0,32.4,0.433,22,0 +2,175,88,0,0,22.9,0.326,22,0 +2,92,52,0,0,30.1,0.141,22,0 +3,130,78,23,79,28.4,0.323,34,1 +8,120,86,0,0,28.4,0.259,22,1 +2,174,88,37,120,44.5,0.646,24,1 +2,106,56,27,165,29,0.426,22,0 +2,105,75,0,0,23.3,0.56,53,0 +4,95,60,32,0,35.4,0.284,28,0 +0,126,86,27,120,27.4,0.515,21,0 +8,65,72,23,0,32,0.6,42,0 +2,99,60,17,160,36.6,0.453,21,0 +1,102,74,0,0,39.5,0.293,42,1 +11,120,80,37,150,42.3,0.785,48,1 +3,102,44,20,94,30.8,0.4,26,0 +1,109,58,18,116,28.5,0.219,22,0 +9,140,94,0,0,32.7,0.734,45,1 +13,153,88,37,140,40.6,1.174,39,0 +12,100,84,33,105,30,0.488,46,0 +1,147,94,41,0,49.3,0.358,27,1 +1,81,74,41,57,46.3,1.096,32,0 +3,187,70,22,200,36.4,0.408,36,1 +6,162,62,0,0,24.3,0.178,50,1 +4,136,70,0,0,31.2,1.182,22,1 +1,121,78,39,74,39,0.261,28,0 +3,108,62,24,0,26,0.223,25,0 +0,181,88,44,510,43.3,0.222,26,1 +8,154,78,32,0,32.4,0.443,45,1 +1,128,88,39,110,36.5,1.057,37,1 +7,137,90,41,0,32,0.391,39,0 +0,123,72,0,0,36.3,0.258,52,1 +1,106,76,0,0,37.5,0.197,26,0 +6,190,92,0,0,35.5,0.278,66,1 +2,88,58,26,16,28.4,0.766,22,0 +9,170,74,31,0,44,0.403,43,1 +9,89,62,0,0,22.5,0.142,33,0 +10,101,76,48,180,32.9,0.171,63,0 +2,122,70,27,0,36.8,0.34,27,0 +5,121,72,23,112,26.2,0.245,30,0 +1,126,60,0,0,30.1,0.349,47,1 +1,93,70,31,0,30.4,0.315,23,0 \ No newline at end of file diff --git a/Diabetes prediction (Machine Learning Algorithms)/lr .pkl b/Diabetes prediction (Machine Learning Algorithms)/lr .pkl new file mode 100644 index 0000000000000000000000000000000000000000..149b8024f5a2384afb654d65460c0984dac80ed0 GIT binary patch literal 772 zcmZ{iL1+^}6o#|gq+Qx5ZNZC{AcB}8E+$A(D6AMza3x6bKFsb;va6GwFf(fnSg}g9 zk-jxqk>2!XPg=Zs5J7~3iU@*EC((L{bC`W^_s#eJ^Y&fO-}_J5{Z&j5+0JagcUXQH$fuA+C~$6OBF+kg+PlW zX~q)js>pE~u@({%OQQ2p!RTeeK^17wXbMnH3tvHr#)2QIiB?8sf(%33!kJ{C#&mta z1OY#%#uqU+FfO&<(G*=|fzVioRuIQBVLINOq6Wb-)3?@!5%`XB3{mHx_M};>-El+4 ziEGp_=U6wQh&TyZDkRTBsXL_#rcleLQNLtW8|XsK3g9*@K-sr^y9@D*Dnzo=Cfi5s z$sH4pWA{p>Hj%;x7L1ijj1zoEIDH3&ez)+(k62;zNlXzsa3?QvBkTHrD3fo`1c5 z=iAoLhbJC+*CtLs{W`a?zI1o4w#-Q_G*%&5=nom~EtgyqQ~7sJKF@U(wc5U7YZIux{#QVnn?rNh>D^(I4N$5W?nUcT}#g(NW=^e z`5We%^1jk=vN^fdk09uJ6zK$J5YsWy1#ci;CY#d?haxTG*)E2Z!kpl>Iz@&zd8?A5NCfgCUX~Jf#DHi{lqEuWVb$`W>E^OXy;9!WE($ZHYy~g7A$odx zF8!9_UlK7_qzc#M!E5>`N)t#7jF>dIV0(tckl;HyY{xNWk}-K|xlfK_a@oShD3On3 zWfx(djfvnD9o=1m?>vWL3b}~&Arq%5LY*ElTfN=p`vRw@N&GRku!fa5|Fy_P+((xVp`(hK{W@dRAYq|CM&WTl2jbo zq-Y)93P$M_;^5g+8E?WseH7r-u)n_U><3p=6ps7(L+eR!U&gLqF>qvW_mlRvFEN!~ zeguF}?N*LM`mbZOOOwXMvFMBW{YrFhaP_Vd-949@04%yVHoM?}cVp4~&(-&!DgV7? zPjxTY*Z6s%q5f5jMi={k#9_(AhlT!UGZ=ZhG_qC=rdnseJzkH2YP?dna2?#Cz8Lzrer!25we-BLfAT=dCZccr82UJ(%%5wpMQhbs Ig_qL)01;bH-~a#s literal 0 HcmV?d00001