From 80d982169b64c69ccec57b15ddd383e3d183c44a Mon Sep 17 00:00:00 2001 From: SDprogramer Date: Wed, 12 Jun 2024 16:39:57 +0530 Subject: [PATCH] Home.py and main_analysis/py changed --- .../__pycache__/functions.cpython-312.pyc | Bin 0 -> 19208 bytes .../__pycache__/main_analysis.cpython-312.pyc | Bin 0 -> 17695 bytes streamlit/home.py | 30 ++++++++-------- streamlit/main_analysis.py | 34 +++++++++--------- 4 files changed, 32 insertions(+), 32 deletions(-) create mode 100644 streamlit/__pycache__/functions.cpython-312.pyc create mode 100644 streamlit/__pycache__/main_analysis.cpython-312.pyc diff --git a/streamlit/__pycache__/functions.cpython-312.pyc b/streamlit/__pycache__/functions.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..563f0551884d188f3d3e009c91c3b7c7bf029dac GIT binary patch literal 19208 zcmd^n4Nx0do?lC9eIbN|5JG@40^8VHY%s>yU^Djk3mbO8pW~TjY-@zN0bwC&UP~Bh zASZ84Ztc3c8vC*p&jAT-7oR-i^99tZ7ke)^nBbF{2G!BWHb2Gup^);;P`fiL*g!6W7Gq;b}8h z4NuLS17Z(X191!Igt(Qfg?J0+f_N)e2k|z}4RI4!4{;mU0P*&O#=Ch9Cw9cEk=SsA zOee2Q#$r+7KxZfMU+b6%#wO!qae*g+NI1raV;zCWbmuuf5aIY;r-Czl=lPgFa5XZ+ zlkrgG+O8vEe<&dYh0bYzFx)A`2=AW`1!JAu_@3Q+c6S7XnO|M|UA?q@@~arX5GONy z!bf-^9*PM*!9N`h@xDE~|4RDo`@jF5zw&QK-$^o`_lNu>@%s7W!B?$1Ch7ZCe9Qbt z#7PXWxc2kG2v;O{&$N`-#quPFVWwcqmWEIA3G?h6Go>%hWtcgQvWbr~mpd5d60|X| zpEu00Q`k>QDC)~pk_C@*hB+;gj5+EvX_vL1!poh)yCrm(;Vjfjg ze&D_7{f+k2v0Q80$2-5bbLpMm?R?5;^sj0})8-o$w}x^i%Lmq**6)tp8NWTgkX&lH zJHK*Z)ph7I)8QvNEcci-X4zVitz9^=^v->Mnyp=BUwy08G>W8Kf7D<)99 zxNs)u5)IKMItR-P7siyjRI!E}lm$Aa@Ngvqu5(&t`IK9_O3iuwoQBg(Xy^1kwT&2# zfQBiG8k8sbI!9~3qJw&zHmIG`#MI?HRk^+_K9yU9Q}!>HTh@Jo3jqRbAj4FRd|wk`GQy#w7iyH74mJDb7LW~cQYV6E`5l$fNGA%bQS>!h4Ev1h|qP{R` z#WGtUlFZzAzJG!fRJ_j!Ey7UI-TwU3p z?mw4ypU>5`{`lzc4}LnB?LRB_pUw8aDfYklT(7l^YEs9Zm>9iD-cO6|>4RtKb~=|+ z_t?dy9-7qkxyAay;hTpSx-*vMG}}xXVW8_a87?)t$$tB5Z8BvWy=aSZuoWACFMOqq zTucaHh!~VU^6eO6DsP!mH=bM)6?RkpWB~p|kS0q8x>JOE8sdbQv_Q#5L zjfw2Sa=_6U(uq-FvpAx_yn=yX6t-O?>?6SAkOaW)m5ji=e9<5;;8)2rDo^naf;?ph z^+OSm!x-TnM6iSE8yCKLw>ewiBi8q1>i1{s`^EbHO#Pv3{Ry%DM5g}aL&L+`bp7cx z>&jJD-FWxr>1^c=v2sVI@*CO8F0ryJQ`x;Tu=0Ak@?h%3=T-I(f;WR7j(s$KcRaoG z(1ZBu=HYbH$ZFN;)X5xc$+Gn#Tc7syWIg?&r~m$28P8yvtzTt_)XYWKQk*9Be4gi3 zCqH91$=fIoPGH~+qw*>c4ncOD0NL^TntAP4S?cq;n96acSlZgUs3N-_dd`r(ZS{pw}D=T*NqX&mdVtNaqFK zKS6jtELG4)`QAeB6MP6{seDEtLi`~~&Jg^e=}1^Ih5R!-Z~$^oSHyKHr~TwAPk>$n z)A^$MA~FvTWm$p;ma#`No#TZlfE%7P!EgyKMX#CegyOY-6xfKK@)yz#B_sp!hq=f! zu$IY4Fd**>;C6*w@C{l@=29}3Kte?qxxB*Nlt&aZGi9ldK*7WCCj=o%F_M)_4Lr8m zZdq>nvR1EX^=7Q?sewG!`tH#?1GfhjE`D_B?xm%RfA{je%RhDfQPWSF(r;YO3|?7v z`Z5)70~%8ZetL7~ie+g&z3G*Q2hxElO8c+oELEu?d8w)k47$c$kNoc0D5QRq(ZF*3 zD$BGSwBm~Brc9N~E#Pu8fI`dXb#uDo%q`930KgrTF3M1HWps1w)g7Qz(2Z01U|t_X zEI~s#xHYFQN3WHBA-BwOR&qI3S<3Tu3Xg=0=AM+kOes#XJ4*X+S{-d2UoM~EI{iy z)8EwG(P&^Dzdz1`H2HhFYZ`Cu$iO`f$b&)v$QKA_1Zn#k2N7^`6+e@`kRY+4V3;S! zP$V7UxixwRa-lHk)sbdMrU;c>#L5PVjU}SIq@CR@X%p}_+XdGyavn01J4cX*ht{D1 z1n)<}VF1YVpj ze=NomS%elQ{qT+~7YxK?EZ+;Yfr29`rpO;;0g6c^Go{7^-U?*|03akGS!4Wk6cksW zU%_g+cS1=*4`u9dmiZ1_MVJ=;K9s8xEsmZFNpRFS^Ha}{jH4sa%%8# z&8BBet=@6Nm~%ILWVmZsAd78xlS^-i&3jj_rkjt5?xQ!X&kc;zb?4yigA4Q7=G|iR z?o9KZmEr8(6XM$z%T5})wgBq+r|3!O#QBvmg1*> zu=Phfez@cQE7^m?;=$p}!PDupSF&dV;@LpvET5i;WhZ9EiP_9VGPCF1M~%&k{7TpT zeXET}pBNdl>p7z{AJ;sofPS*3deH>1Yb5J=UG%)3zIZv~xsq$^&$V?v(KF_T=Zx0e zMMor;T&!6-mNwO|ns!5?&GEkZ&)Z?n{z5=B^z8xfK)WVT48>3?z@_$V3F13Uk+!M0 z6coUq@D@&U^-|H3_A01AlJIdkU4a+OF`ORp>Q`*hu&za;+M)^DL8hQknP0M9^SX8` z)OIajv)#&d?ON4#tG;Htwsq~=)po1DX1k7c?bfL6I=^PSwb(A_+NhQC8cFTCNV)AYAEMLkvy+@jQ2ZdF==@u{4C%3box*t2TpqVnyQku?;r*AQ(b ztzA8yU7oH!PlERoQ1Bd?;C=D%)o|omSTf@S!1M`z4e{6-Hl4KY*$ox;?3F95;hU`? z?uQI)X-~eTHAGKqtu&(>Yji6$5K^omGDupxu|~I20}v;(hD;}E-HSE$_T>9Op*ZQ- zyUzm>gU3GxMj<(a${Qe@BN-aF0Ged&Sc05|2gw)=M?=UGHOSRf1Rz-=z@);czlww@ z97y6jdd}fHN+tqoHzM#Hn5@kHcnkz2NQU|--%)Lvq^D|Wua&%wz38t^@`NW=)yXP*3_t~_20^R;q2nXhU01Hc zeyi?gCte!Gil&^i?zxd|Fg#~iixJd~RjRr%=WNV5n;%s<7DiXAb^vSF18ZmXhUb-x z-l!_`zbtj)@}XS$3EUJ(obXf{%1fG{^42Mc`$byDUzYlU%}CYUp)^`faRQn<4RU_S zMd`UDa9S8!k)j<-&uJ%QDHU3z3iU5E2QR=DHt@4iAQ0FB_&%32tyoqq^z9~)@@ia47F(VYj7hZ zAp+3qaxXOAj$~b4(dEs$Iz?CKithgLw5v1YI+Asr6kR7XuEDJ9qUgGqalM&!`9+sM zJ#jVd@@HJ3)al%oJ=rb2;+Edj>093vSx=6w$+FEN+q`&TWiM!(SJ~d2Yun!a0EJKkO8srp3HLk&IwS zn+DICf>FWirW6Ws2OXY#?USEjh}tM8>46LaEHaD-L!q!=GJv%Yl_9zyv}i6^3w2y@ z1_)|=nnD`@MI;Dshaa>E1R>rdxaDLxMAaAtOoT|(Ya~-}k!lp;%JD*w$i6V;68p*| z!oVFR)%~GRX~C{OaIo3H?g%#3X)w1SWk(aJ4;TnlM37HmY`+eF!f(OC0JzoQ`GIT6 zwc^S&^rqRm7e4|3XxQ|T`>s3P+LPWt^l&Eq*4S!&0MNms`bIf@Z+hS0!}0W}f3?ot87QE1?(+i%fW2RQL*LdKkLr4oP?scW<+-LUoHz|eC)*o z{AAI!0=;-v*?o^2c4ixPiw(QeUB|LrC&jLlnXbW1!w|eB+GS2%Kb5w6ves>)b=#sp zW8JaJdW)PE9y_*W9lJ!wE_7L#(A+Sr^HxYV@5wgzip{<0{?q9*7sdWJ(pR`u7yp@Q z99PvzP>}P>C`jdC@S!a5NBLYE zd@w{o<(wIS&*k@dIV7aeuW}fOVx)ZCc`(Yn#{iQQfEcSL1}|w&V%8k;N-EDAvz87 zEztK~V`g>VVyZp2`31N5c(DZ zzC~XDXrBO=hkSjwa(r@^s*wb%6yU`WADisx2TiL#Bpm7}E&fAjNCV<16l)HGjr13fYz?p}%uT)W(BU!#J_<$7I@$&vuJO_Tj8QbP=c97Y9>p63Hz_4QE3gqaCO;eqFX}eH@+IMgBuG~z zPJwUKiwPVjL(wv%iBr9ofy5Xn1l7o;@fp!h5{M~hOad^06q8)yCB4ylzoc!w%yQ=R`L@xhR=#cQx+HMb zoCBB(8rYDaL%>l0Bd8rA{|KHW!%6B7ARG3tLkjtOn5@4LiTOk19Nt$Ha4A{D1l=$g zob+!*rqS*+42}pU4jc%^z-s_RX;l?RK`j}etwC8noHTCfInlT8L|?K+?$k3Qc+lad zM|L(q>k^vH0Iv2WZ6z7xccCF@9#y^t^h-X*RBI^>GlS1)SU?XP62SgVVX$2Rs*X{i zUt)toFkA#(3#b*>2*6a76C@J=OCR+nwW4#I%tfdH3?FHR3EoP+tGI@5Nbfhook0Hp zpZjLO0X7otQJW)=p|gJuf5JFW7odT*>JO4PlM8)|lj(-ejBR(;)+5?_GPeC$+cD90 z>|tHnb}VB%n>v+qd$R5wqI<_uea79ra#D2nXWav$d*DGl;~q|(y72~hh~}EMEl!9{ z9V_np+r_SfHf5b#Md#MVZ)KdFD@M`Tn|1b!&i;(^P}X@; zbe?>u$vB6y&NHI(Olml1t6MNF){E};tb4cU-o4V4aUT|Kucl5xQ+7AxxkdLkmUz+K zE!y_N7^~|Sb}aUa4LhOfhW%o7Z)ynL^zt6C6b*i7`1SG926TnR(9O) z7x$cc7*7YLR~_M1Hd0#dz+zBr+`Te%e@@){TKfEGI!IO>!YUh6J!5lKT{-8roYMoq z@`;&3O1<6yY@^bq_;J9Ts{xl4CFb9Uj{rIoHKTBsM}EZ!G+(M5_5tllo>_1@l?Wk5 zEk~YJotbPu_@#-eVOjNWn@2WL4l^3S=3(M=%VtGt2105|BEGt3K3nwq?8GF+g>Hh#pGILZjTT^y+4?jFHpip9RwtH7;NJd6%LSZ!&ufHoM4$Xs_p;l z@c2dT5kONQZ_Bp)ywQH^JuUeha%nrs0~aQFN~OAXdnUpC3aE%D>Q8_Vf(L0pp zr4=G}ugJBRplB&0FkEYr6<{4d5g~~P0jltYEr#^gqxv`eTPOqJ@nJB}!)t*dUk6m< zo^0umjI;hQLNm#jkZ)kbH=#JCj^0Xg5AS~qBFTh^5DwG`GKu6dqYWc!!a$HmyckhQ zy@2jm@bDF+Do*gBbAfF8Pe@3UixXr@hkT`A%WzU(WSAtMJV|)crH}kKD1%cfJcbBl zYqRaUhFb~I-jcO%6Yblw_72hBk?uU4vA_D@xM)8mnuk(HbG3DMMsJTUnlrWESUM=y z?$6fti?#ik+C$meA+dG{O)FH zIXSf~HNl+@fUPuuja{KU)EZfi;wW&Z9HrrksmVqb)N<4W%6^HOV46%#bVW8)RBn|7 zfNUF6lZ_lEUqnq*>QmO!Or0aD!*h?2e+A}n=-*(3)PvwA zC4UA{vimPVB*+?8|92SudyM`AM*k6`|Af(h#^@1S?ZxOMMyD_;cn!<`^F`Qu z5c7vH>c;4s7`=uOzu!m!Rfjl_uaLYrjt!2$)vNLrUFys`70f z%xD~ZQd!N2PM#FBf!X6j3&2ID91{Q#h_0J?unT>|SmjX8q{}&!1xF7nYGE^|5R|I{ zw=mU|2rU(Iz`1CHoLb0Hjf?B*fGbgP4jeYD8%fq28T6c|=WIQSr@G)}!PRB(I68R1 zX+lA=9vK`&AO+9_up2(+iw4I)Pi8tYI1mS29KTKnik}IW;4@ssRK+9D!MYf{-2g`s z2TWvs#}sFC+QNr84<8FeZ{3Jwh>W4;Ze3^ib!lfPG8eClIi_H^RlW$ZLw88TOM*g< z%YB8BM}rv8wBdW`cQO78LpeQ**oIw=&? zqe|wNQ!KdQ(9oD-emwe6^V9CtS5B{Jeq{Wi@$Z{cO#1bUDTcx#Fp23o*~m2QhXF`B zP)!yMfasy2WaA6^raf(?J*D5el6{L4-{R7f(La7Gx)Ati;_iglb}_U04d`CPg=7^j6<7dq^k$7El8ym?kc4?b@SKK9;LOn4^apvhUEyQ4J*Vh`r#C#uz( zJcTnfgB3V_JQxmAwKV!ew~puMuoWdAzcSgufCs&;;zGWI!l0T4!*HO{Pdi69EP1Z6 zsj0}AklcxAic?QWdf*5OjwZ^Zy555|aSPM5BZJB9M?4eicY(Kr(h(?5JVgCOp0Nm* zNH)OPUhtpB>4Z}%@)rxqUraKLL}-~)gWIP){JKv?yNX0*Ie6AMD{Md)Cf{kZmJ zM#XX>rNW&-6?HtX<|*RP<<3%rI97xiKGcFyGS6)`1dnLMw9tR(Tw#!30(dv_G#bha zVqDd-P2p-(7_*NIkTXzW;dLNfKlKrgi#_ze_lm;*Ho=zrxi+7@|CR11UX7q^;xbnb0@()q^(YJw}P zozc_7s**X(U(288uEG-}V1R=c$6pzd?BLOXSVv7MEA`=#a40UjKX_nzw!)wAF$@4; zv)y^80?%NyiT1XY+O)kbW8a^(zarXSfm7GD^>;4azO?Ag)b31;Jg(dJgRzgtzc;>g zCA;g0xa&x!4VBDor^Grq0qT^kad0j>XL9E%s&f@J;1HRs?|U#M+Ri?=7%T>`z}Zy` zT+X>S=iCfOIC7gk_}}Iz@(2J!UEVKp>B67nHzzpKphzD4CouTnj{&jf6Ub#qr4is9 zEaBY&PA$ss%E+!P2J|2F3j|@4R3#ro?*Oktm>5`Z`5W05>dfa-OyraC8=%T{kFs3z z``DO19G{LR$lG{t0o`OY(E$Jq4DE;!shA^a;ioRZBiYaS;P*u6CnZQ3i4|UCJvr`^ zEHZVbzl9^K_x=vH46BBIaQY(?^aMRY+np>3Me*)8F&f6`Q;hx)qsJJbN{)*8lr9te z{P$#xMvv|Q5(Iyuc!)nlIw1@GGXneu69a~Ajpk>J>t{^O&zZ)bGc7-3>_1~1KW8@m zjIq+#{MhJ7k?*{F{oQnpkTJ$mY|iYw;rO8OW@EZGo-xm)3^{w_E$to4Z41a%O=nTm zsy?SpS#wqOH^x4=dh;qIH=f31+nEiMEnjZcY`qZ!-$|Qiai3`Oistr|0ho!!b))rz z_M7c#*R@Q=Y|8l5q1V(ub67NqCV<1GxD#-$B!SRC6Cm7gOXzMj3NaN|B`L67o~m+!)5#1i zjWi&kZALTNX0$CW54%#2dREKZwzMy^v$xr8%_^P*h4IkcXtrPajaDN?;%UGC)Wv0E z6NZMFmDVlda-CEE`7hspIsdWyv)bBf4zE8<%On5z2FLvmeXw3$^WxhpE{^+<6FJe9 z;4Zq@yZfSty?c|si&ZXT%zrW9<|NORWfpN3Uk*)7GX66Ro4NK9(8IXp$ONQo5AVTjNTy z?YtCMM5*PNJTA2j=tBIeGA^kj31y8d0o6SCeWj&!znwztN$ z@z+PcV>hF(z7GDij5;o5W2&TO61o=Cgk(A)#X8&nENk}u>E(Rwwqr8og9AcBP_u6h z9F`B%dbr8h>#(J1L{ehD{*aOac6CWKR=&{e&ims^B9lyMdB2=WCxo~ZH-iZI2N%FU z5B`0tE}`(G+hbQum!e75OLSQ->2l7rLYy@X?}bp+4X1Qat#V8QyRfI$QS8!*? zlf-GsOSFUCAY_M;ubHk{gy)(?c;@uA*4i0P z3rul3U-+zEd?CE8Ei2Ooi%#JkGOb%wCVo1!h)khHWO@<2t#|NT$PH!Clm{|d*(dmXoIBY29u#}F-O@|Tr9Fb5xUHDYEy3$we+=N=xC|x)NI~sl@uL+l(zEcnFtU0lc?bv!}zUpOnPtHwzKFaP=qS=9J!Q z$yB&1C&iyyPgCLddtL~MZI*6}s-kk@>d3_;$?kua%b_*qicfHfPE<91npIL);O|N)9r&BA6IW47= zdzuQ;;3;z&b<5%;af6-RzoVZ?RoUn`FMeZ`U6FEMhu z{4-h3xZm7;W^xVdxt%q8Zu|i2P4QOiZ8CIN&;|aSDvit1M6>5>szOyNX4s#6)ln%W zO6u1l?#REwp!@`X^40xlX(`zxdVDe(s$9PAEt)o}3gT(uilXNIhm=f8SF>MJt<>zw z`*bB8O9>xgZZ(hBUQr(B;|W32_H7l+Hed^N4bcgd)E4QQt_oZCv#AxQ>$0AZw(hq? z*~1@}(LZ|sllZuy4Sr%wj*szUg2wKS z;b}?J`J^PIc)?&+V?8ZiHfFq)lF@DAVM1Nfm`F)UmE*#;&aU=odwY8`e^^PN38uC3 z7qEvZk=53v2depg|!a3)?z+x}v?EJw*#Bnb9%+cuJH7 zCIbGF04kr#B!}?^jiXzZ1_ywJ7UgB#mK5DyTTpW~%-+=59qsJc+4>F?1Px>eLYgi> z0)0%-8J|x6@PxpN(zujR(ol*e9aNRfkX8+5@My|--Z@`Rjam=17Eo0HfQf|*fa=mr zN)tw;7>uV(pr@EjG`m&W4ls|HTz^zjfb%pg32dE9C^~-x$U0w;JYVDZAiVWrkpH8> zUc?5R5&BYiZA_UcZw_8g@sa>FnQD8z;3qJSI`zaDB<>9Ol|>9coVB=%@)I~qUk_H6kEddHJMI0G+ECQ?pb62`qOX#0zYH0tdOQ;qM%*{o7$K_ z9x218;vf#mid;&29#$up98ckVMdIHc;EgD)Qn0mek89@bW>4OAE$_-A2vfua#2au% z6SJdjY(f^{HB|l-T;sX%*#XuUkIp8yHd`eKtW4;oLoks95><)9slelC3F7m^h)Xb; zD36R_C>6&YNuQ9Ul&LOed%%KJ3oK<}*0_YjE0IMvDX!x>k!|H|UC}c1It>!Q1frK> zJ;NsztZqg;7MUhMHpP#qN|Iqj7{+NBRx}R63g#wyB?>C}I2q~J$5H@35C{aEb9zBO zXpaf?R{UWkU%grFm3UaTh>H@2E3U79Cj%d`R9RBlL=D{+dpl*`VKViYkWNb}*pyk~ zoiU_Y9#I^)u)WrOZ(&rDTfJ zG)f}gI4VT^K(R!Xi=qOlfDB`6K*=Bo_Gz+^LL6hI1AyGo(b~InGqDPEGEABox3!qj z67@SiPHuRnQW}N$BSlHf(>E#!I6f}Kgo*~VBgr#$8$Cj=vgO{Q^_!!b;D-eb%0*o# zj7kns4D!a`@{4>Ya1r5CsJ(au2$Z@A)lQzsP;uZug}Fr~DN}whlapyzW40#2@W*vZ zN(mA8GdzD(YEgxhp?HDUvuRdP(CImeSzNVGNW(}qQn7(8*$IuTBB3xxiIz%6qBOoA0HG(#tRl;BjCP!gj2pt?WHK$A!+ zh-)Z*86!ru2xAr?;n0$KIl1EynH_d>5{w4-l#$j`Eg0hpJi7w|H4A5Ig4#cI-L;7^N+&4u2j+FN45VwE18jsZ!BKI~*o1 zDZ$v(BKgDHlNs##vn*EYW2!{mgOnzHFM|xk427-r1XZ=r?+IXHz{Z3GiZHvy0u?l( z6i*NjSjY$lv~*cto?O*0W@r-v<(?vbsHz-b-H5!uUu3twrtg;sf8}&k(pXs+v7Plh z76mWqwiWsMZq+7{?L#qUbSyLp2p|+YtAdF!#qcbVvXtQ5q%muyvo=hp>ErlJ7LCSae?O^BPAImi=>dHaz)Irs6j!3HKEW+8bQ_pQjloyI+zcr7YTzgET9_z&oQ+PF149r_e1if?^7l zn?p^4(Tj7msCwJ4n#w42FHn}CmxiPbhlBtq_tCVZ4S~x1o#Yq9aRFOPHias6q}dd@ zhoekD7QnSJdBiRkS&j!Utn61&43J9Uh-iKw2(d1M!KNb*lk_F|YI0X;VQ>X($FL>raY`%c;WptTcm z;@G%Gq0hXtu&ZOurRV4M;uu~guWvT;ZBb5VO(p}vFy$-F>*t(#ouW;p#Qp|~P*#Mz zqReilQs%o7|GF~!pC_@up1l5?%w8rsINW2hg&q57aYSq#rzTV?B#}6Z;+U3};xe{~ znvRyCS40zZa=Wp)%kuBYsL>dW0gFaS_ec1F)jN2#QKW3K@oWU4Q!Se{WI423b%z38 zLu^1ILUm0&fuulbg*dPkO#K_`3L3{FY`;OdiS6={O4#?|&1O(5f0}k+rOy*#mLBN2 zw+1ZV>xg!@x3_fcYH#Pw(wEW?TAXmBoxCn55t7Ud%u;J9Sw@nb>9pb;gN{5<`J)kk zR8pB3M2)R@(&(gjb?#!jjGa4stp!P{LR%DSAUUyx1jC2W*%Yx~ID$?`9JSIJ3A9wy z_9BW{tJi)$gIdDeRM-blW;xG7oO6rYUaFX~#jI)ReEkV!cmOr6HX@*Ji+UyV{|uDJ zt*s{6kQ$EGj)G2SS&zm%kz_l>qRO=RKoUg^c92DwW)?n?acGXeJapCej6moYgc&?PDk0EZfwDD+ve~`{ zJ7d~H)9FuKK-bl3r~^A1+t|>KCXR!5+7RP7h)t$GuCW4s)FYwALETfM<}0@;GImT9 z2u%WzBwCr3LMS6e_pvQu5#HZ0b~>W08RE!@)dgpub^21H3hU6EM+1o>?@2W~nw_MU zL=@ls5QS9nBE?_ZU`}dmKw0jjkWEx+e+6yYix$&h>B=5+Fmzf-=wRU}nv-}tlufHR z0eOy(G)MAo^dafXo%sON4+$hSAEc-=g3g_!($7iq?vasvJ+--GX<3TVMIxKufb$g` z*6LC$r66%7V$hNOT@W@&%ZH4)vG^E5PTot6uY3Sq=c}SJk;*sN6yjqFYMlg9Ro`E+ie>wzrt+m;uw~G zKNN$kjC8&RAwtq)=*dc08$#p*W-CR@*N$Wo5Dogk+Pm3Q{KCw5&X4El=Vr|-^KNk@ zUk$o3*2(K|Tz5LIcjkS>Ga9l+5XA4)=;u_#XN;O8`6}axARn-fC-Y04XZpsZ>JfSL zpmOaTDCL(Kr=~GeW=5pWK1MU<2S`P1#8M5dXZo-)&~(b|{T(i95F3L&lB*-n-a3u9 zo%!Wc$%j)FN6iFdHA2n_($dbX!{qB$AVs zdp$kTzi05A(QSsq4;~#DP!3U}v1_oX-fQVIk9`MWW#gxhgY-*CV8J{NPG|GAMR(M* zSeN`mJM8DU>)bPD)6J&aL$kq6-*7J9s)vE<4?;IXx6jW7 zRxWsO<4F~_J^BxkpGWQ;oo(Km^KQ9*;&%0&6Ayw7G=Ded&j%v8K;%y6oogRAd>p^G zb1txpp4|P&n6lS7W$NRBdmHa*bAdN#%3gEI0heRW%(}LF4fo=og3g;X>3|C?)Yi|3 zI&z_odmHY_zZB*|$FBE3^486Jn{wW!j}G5m{?{kxyxShUz@5il|61>iH}Yf&=kx#Q z?spp`LiTI;>Jzz$+QYBFE# z+Y6$Rz>PYa=It~0#QQK6NbY^S5)0iLxf#0S{%GW9p$E0FzdP9eFjV)!v75(cmiNwu z_Ta;OXj3k<>F)WDm(PXTKt9+G@^y{SO>hr%vodt!7*tbR|G~+dC+`IA9ljsxg=R2j zXvWPDWoUa~E^xtA!bk4;m7Tejo%cFtSN0IT!1r!j>HW}#eo#UQb((e4Hz%5GH@eQz{V*UFVIWa z*z*`@tGj;ikw19r?f0i1);9d~$b5K9F1%$nyzS#vx$w^U@UC2V*L?UuE_`67FFhOn z-b^N&3ukk+lQ-NCfQF%)LwCbBhGuKG+;l$x&c<)9W@PU4=E9rj!_B#H^L)577w(+d zIXoMV&x~Hpg|Fsnlg~c=Rc+*>ee+FSxu&k!rk;D*TvOkCQ-7|hf4=EVuIbFo+3(Lb z{opaj9d;jcf5UOB+26Y3?ovuO+z{vb_f4F)+Bol<3ms&(UYiS13;^y)RY6NtLEl+I zP7C1J>_ATUuMq^!5OOfQa)s}x>v0zss3v`}C0xNC2i2L4U2~ysM89Cq<0{jAys*GJ z?~UYwCm8fT37c+z`}DmF_XB%Od-AqD+Yy@RL*31~pH9pL){!-N(4sIE@*M(;)$76H znkS8R{Am6ZlnySeV#93G!X-a40Lu$c7Xk?BEaX33@FH~6Ql4;tjx?EXHwzmMHN&h8(_{lhMRmj+rHagYH_pDuL4PDGsUk|l`DSxi6Uf~Fxw zu;=MQ71T?sdY>+=gwBWvkGln}Jk@x77vYn}LAU3hH$?{PJ--S>23LE26^#rwd;V=} zbg;+s?`tBLJf8n>^;KP3;`#N`$fY%&Uw20@ZTI}=j>x55p8r}G9rAiUTOJu&>iMj9 z|Ik{`Z(Na~9iHE8-Z8Y>^WTw3%;))S?~d3q&unWXw$3xZKN^dA9&|-wy`JB#Uvat0 zlXrVAH+b?}+Ai~+->-{YZt*;H`vyb)hxNX}RsM&oeS=&451W01JN*xPe3v-?=N{js zTL0%ue3v5r&)4`aZS{Y?-FK|6-|csLB7uTHnw%{}(%aL*4!_ zcKc#(|Cc^rtlt0SGGA=9|I2m0ShN4js4v#z|FYM2+2emy<-5GZ|ER%td5!-O@4LL+ z|ER@xxyRoe&Ij!pMWr7o<*TSV7c^AJV!qBOtXomCqX@-M;mr#bKPlq!!I4agHD5G! zJ$(+K))8a$dwMTbV@3ttv0L3qgGCi?Z@$JTc-j9CLfwH0YLxzT)6^<_d5<;)R1*E1 z`xbvW^$h+z4eU)SVkRN&SBLNs=H;~C;?HA`%jNn#*Z6y`;d8DD7mxhQuB$(K@BQ~? z8njuze%<>Z7{0NLN~oFTnc3j@^{NL;nr^#4tod;bV$7PqaAS?7=iS$9AJnb7G5o>R zn^$qW=`7u@KUeW~&9hX4wKw$JCv)}u-JV>1b1t~!dKJ96rt!vx4|d$#G1E9PTYc@i pAGcg}^ISN`g=f~b-D{dzv+tMs3>Ti`PJQd0_P7qY)JqWSe*r-dyqW+2 literal 0 HcmV?d00001 diff --git a/streamlit/home.py b/streamlit/home.py index ecc6382..991d7c3 100644 --- a/streamlit/home.py +++ b/streamlit/home.py @@ -130,7 +130,7 @@ def plot_value_counts(column_name): highest_paying_ds_text = """
Analysis: Data Scientist Market
-
+
The top three countries with the highest mean annual salary of a data scientist are South Korea (253,315) in 2018, Ireland (275,851) in 2019, and the USA (118,863) in 2020. Apart from that, the mean salary of the rest of the countries is less than 200,000 per year. Japan provides the highest mean annual salary among Asian countries (118,969). Figures in Dollars $.
@@ -144,7 +144,7 @@ def plot_value_counts(column_name): operating_text = """
Analysis: Operating Systems
-
+
Windows is the dominating operating system used by people. OS and Linux are almost tied. The knowledge about the operating system can help developers decide to whom their audience is catered towards.
@@ -159,12 +159,12 @@ def plot_value_counts(column_name): top_ide_text = """
Analysis: Top IDEs
-
+
1.Popular IDEs: Visual Studio Code, Visual Studio, and Notepad++ are among the most widely used IDEs, with high user counts ranging from 25,870 to 26,280. - \n2.Text Editors: Sublime Text, Vim, and IntelliJ are also popular choices, with user counts ranging from 19,477 to 21,810. - \n3.General-purpose Editors: TextMate, Coda, and Light Table are also used, although they have lower user counts compared to other IDEs. - \n4.Emerging Trends: IPython / Jupyter, Atom, and Emacs show significant adoption, indicating a growing interest in interactive computing environments, lightweight editors, and customizable text editors, respectively. - \n5.Industry Standard: Xcode, primarily used for macOS and iOS development, maintains a substantial user base due to its integration with Apple's development ecosystem. +
2.Text Editors: Sublime Text, Vim, and IntelliJ are also popular choices, with user counts ranging from 19,477 to 21,810. +
3.General-purpose Editors: TextMate, Coda, and Light Table are also used, although they have lower user counts compared to other IDEs. +
4.Emerging Trends: IPython / Jupyter, Atom, and Emacs show significant adoption, indicating a growing interest in interactive computing environments, lightweight editors, and customizable text editors, respectively. +
5.Industry Standard: Xcode, primarily used for macOS and iOS development, maintains a substantial user base due to its integration with Apple's development ecosystem.
""" @@ -173,19 +173,19 @@ def plot_value_counts(column_name): func.ai_graphs() ai_text = """ -
+
Analysis: AI Perception
-
+
1.AIDangerous: The most commonly cited concern is "Algorithms making important decisions," followed closely by "Artificial intelligence surpassing human intelligence" and "Evolving definitions of fairness." "Increasing automation of jobs" is also a significant concern but appears to be less frequently mentioned compared to the other categories. - \n2.AIInteresting: The most interesting aspect for respondents seems to be "Increasing automation of jobs," followed by "Algorithms making important decisions" and "Artificial intelligence surpassing human intelligence." +
2.AIInteresting: The most interesting aspect for respondents seems to be "Increasing automation of jobs," followed by "Algorithms making important decisions" and "Artificial intelligence surpassing human intelligence." "Evolving definitions of fairness" appears to be less intriguing to respondents compared to other categories. - \n3.AIResponsible: The majority of respondents believe that responsibility lies with "The developers or the people creating the AI." +
3.AIResponsible: The majority of respondents believe that responsibility lies with "The developers or the people creating the AI." Fewer respondents attribute responsibility to "A governmental or other regulatory body," "Prominent industry leaders," or "Nobody." - \n4.AIFuture: A significant proportion of respondents express excitement about the future of AI, indicating that they are "Excited about the possibilities more than worried about the dangers." +
4.AIFuture: A significant proportion of respondents express excitement about the future of AI, indicating that they are "Excited about the possibilities more than worried about the dangers." However, there is also a notable percentage of respondents who are "Worried about the dangers more than excited about the possibilities." A smaller portion of respondents either "Don't care about it" or "Haven't thought about it." - \n5.Overall, these results suggest a complex and varied perspective on AI technology. While many see great potential in AI, there are also concerns about its implications, particularly regarding decision-making, automation of jobs, and the ethical considerations surrounding its development and regulation. +
5.Overall, these results suggest a complex and varied perspective on AI technology. While many see great potential in AI, there are also concerns about its implications, particularly regarding decision-making, automation of jobs, and the ethical considerations surrounding its development and regulation.
""" @@ -202,7 +202,7 @@ def plot_value_counts(column_name): highest_paying_ds_text = """
Analysis: Data Scientist Market
-
+
The top three countries with the highest mean annual salary of a data scientist are South Korea (253,315) in 2018, Ireland (275,851) in 2019, and the USA (118,863) in 2020. Apart from that, the mean salary of the rest of the countries is less than 200,000 per year. Japan provides the highest mean annual salary among Asian countries (118,969). Figures in Dollars $.
@@ -220,7 +220,7 @@ def plot_value_counts(column_name): highest_paying_ds_text = """
Analysis: Data Scientist Market
-
+
The top three countries with the highest mean annual salary of a data scientist are South Korea (253,315) in 2018, Ireland (275,851) in 2019, and the USA (118,863) in 2020. Apart from that, the mean salary of the rest of the countries is less than 200,000 per year. Japan provides the highest mean annual salary among Asian countries (118,969). Figures in Dollars $.
diff --git a/streamlit/main_analysis.py b/streamlit/main_analysis.py index 0b0a079..aa9d0e4 100644 --- a/streamlit/main_analysis.py +++ b/streamlit/main_analysis.py @@ -40,7 +40,7 @@ def main_analysis(df): annual_salary_top_text = """
Analysis: Distribution of Annual Salary for Top Countries
-
+
Overall, the country which has the highest mean annual salary is the United States of America(240,000) Dollars. The second highest country which provides the highest mean salary is Australia(164,926) Dollars. Though India has a higher number of respondents, it has the lowest mean salary of $25,213.We can understand that the mean salary of a developed country is much higher than that of a developing country.
@@ -57,7 +57,7 @@ def main_analysis(df): geographical_text = """
Analysis: Geographical plot to show number of respondents in each country
-
+
The geographical plot shows the number of respondents by country, with the United States having the highest participation. Other countries with significant participation include India, Brazil, and several European nations. The intensity of color represents the number of respondents, with darker shades indicating higher numbers.
@@ -73,7 +73,7 @@ def main_analysis(df): income_gender_text = """
Analysis: Income vs Gender
-
+
There is a little bit of difference between Gender and income they received respectively. Men tend to receive more salary than women from the above analysis.
@@ -90,7 +90,7 @@ def main_analysis(df): Ethnicity_text = """
Analysis: Ethnicity vs Participation
-
+
From the Survey Analysis, more participation has been happened from White or of European Ethnicity. The least has been recorded as only 0.16% from Indigenous. The second top survey contributors are from South Asians which is 11.93% of the respondents..
@@ -107,7 +107,7 @@ def main_analysis(df): age_text = """
Analysis: Distribution of respondents based on age
-
+
Late twenties respondents are clearly dominating the survey responses. It could be the age-range of a typical user on StackOverflow website. The graph is plotted in a descending order for better visuality, and understanding.
@@ -122,7 +122,7 @@ def main_analysis(df): gender_top_country_text = """
Analysis: Men vs Women Participation
-
+
Women participation is extremely low in the STEM field, compared to men. They are even less than 20% of total male population that is dominating the tech industry in almost all the countries.
@@ -137,9 +137,9 @@ def main_analysis(df): LanguageDesireNextYear_text = """
Analysis: Programming language desired to work
-
- In 2019, respondents said that they wanted to work in javascript is around more than 10 % and the fewer respond have a desire to work on VBA next year. People started to work in Haskell, Julia, and pearl in 2019 though the amount was less around 5% of people have the desire to work in those languages in 2021. Here, phyton is the 2nd one in which people have the desire to work in both 2019 and 2020. - \n However, if we look at the big picture, Python has been constantly gaining significant popularity within the developers community for three consequent years, whereas JavaScript is either constant or decling in popularity. +
+ In 2019, respondents said that they wanted to work in javascript is around more than 10 % and the fewer respond have a desire to work on VBA next year. People started to work in Haskell, Julia, and pearl in 2019 though the amount was less around 5% of people have the desire to work in those languages in 2021. Here, python is the 2nd one in which people have the desire to work in both 2019 and 2020. +
However, if we look at the big picture, Python has been constantly gaining significant popularity within the developers community for three consequent years, whereas JavaScript is either constant or decling in popularity.
""" st.markdown(LanguageDesireNextYear_text, unsafe_allow_html=True) @@ -160,9 +160,9 @@ def main_analysis(df): education_salary_text = """
Analysis: Programming language desired to work
-
+
As we can see, the respondents who have done Doctorate have the highest mean salary among all other education levels. Secondly, the respondents who have done Bachelors degree have more salary than that of Masters degree holders. This may be due to years of professional coding experience and due to the higher number of respondents in that category than that of Masters degree - \nThe most interesting is that the respondents who do not have any degree have a mean salary of $90k. This shows the improvement in online learning and advancement of technology that is shifting the company from relying on University degrees. +
The most interesting is that the respondents who do not have any degree have a mean salary of $90k. This shows the improvement in online learning and advancement of technology that is shifting the company from relying on University degrees.
""" st.markdown(education_salary_text, unsafe_allow_html=True) @@ -175,9 +175,9 @@ def main_analysis(df): devtype_text = """
Analysis: Distribution of surveyors based on their developer role
-
+
Based on respondents responses the survey concluded that they wanted to work in JavaScript is around more than 10%, and fewer respondents have a desire to work on VBA next year. People started to work in Haskell, Julia, and Pearl in 2019, though the amount was less; around 5% of people have the desire to work in those languages in 2021. Here, Python is the 2nd one in which people have the desire to work in both 2019 and 2020. - \nHowever, if we look at the big picture, Python has been constantly gaining significant popularity within the developer community for three consequent years, whereas JavaScript is either constant or declining in popularity. +
However, if we look at the big picture, Python has been constantly gaining significant popularity within the developer community for three consequent years, whereas JavaScript is either constant or declining in popularity.
""" @@ -205,7 +205,7 @@ def main_analysis(df): data_scientist_participation_text = """
Analysis: Data Scientist Market
-
+
There are many data scientists who responded to the Stackoverflow survey. Most data scientists are from the US around 1,500-1700 people and it is 3 times higher than data scientists from India. Followed by Germany and the UK with 427 and 339 people respectively. The rest are Canada, France, Netherlands, Brazil, Russia, and Australia which have less than 200 data scientists.
@@ -230,7 +230,7 @@ def main_analysis(df): highest_paying_ds_text = """
Analysis: Data Scientist Market
-
+
The top countries which have a highest mean annual salary of a data scientist are South Korea (253,315) in 2018,Ireland (275,851) in 2019, and the USA(118,863) in 2020. Apart from that, the mean salary of the rest of the countries is less than (200,000) per year. Japan provides the highest mean annual salary among Asian countries (118,969) Figures in Dollars $
@@ -247,7 +247,7 @@ def main_analysis(df): jobsatis_text = """
Analysis: Data Scientist Market
-
+
In 2019, the top three countries which have a highest mean annual salary of a data scientist are Ireland (275,851), Luxembourg (272,769), and the USA (265,211). Apart from that, the mean salary of the rest of the countries is less than (200,000) per year. Japan provides the highest mean annual salary among Asian countries (118,969) Figures in Dollars $
@@ -262,7 +262,7 @@ def main_analysis(df): feature_jobsatis_text = """
Analysis: Features for Job Satisfaction
-
+
The top 2 features negatively affecting Job Satisfaction are age, country. So, in the elderly ages, job satisfaction may decrease because of the personal expectation increases. In the same way, as the professional coding years are increasing, satisfaction may decrease. Among the countries; most dissatisfied countries are Angolia, Rwanda, Krygyzstan, Sudan. UndergradMajor and other Science, are mostly satisfied.