forked from marian-margeta/gait-recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gait_nn.py
287 lines (218 loc) · 11.2 KB
/
gait_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import settings
import os
import tensorflow as tf
import tensorflow.contrib.layers as layers
import numpy as np
from abc import abstractmethod
slim = tf.contrib.slim
SUMMARY_PATH = settings.LOGDIR_GAIT_PATH
KEY_SUMMARIES = tf.GraphKeys.SUMMARIES
SEED = 0
np.random.seed(SEED)
class GaitNN(object):
def __init__(self, name, input_tensor, features, num_of_persons, reuse = False, is_train = True,
count_of_training_examples = 1000):
self.input_tensor = input_tensor
self.is_train = is_train
self.name = name
self.FEATURES = features
net = self.pre_process(input_tensor)
net, gait_signature, state = self.get_network(net, is_train, reuse)
self.network = net
self.gait_signature = gait_signature
self.state = state
if is_train:
# Initialize placeholders
self.desired_person = tf.placeholder(
dtype = tf.int32,
shape = [],
name = 'desired_person')
self.desired_person_one_hot = tf.one_hot(self.desired_person, num_of_persons, dtype = tf.float32)
self.loss = self._sigm_ce_loss()
self.global_step = tf.Variable(0, name = 'global_step', trainable = False)
self.learning_rate = tf.placeholder(
dtype = tf.float32,
shape = [],
name = 'learning_rate')
def _learning_rate_decay_fn(learning_rate, global_step):
return tf.train.exponential_decay(
learning_rate,
global_step,
decay_steps = count_of_training_examples * 2,
decay_rate = 0.96,
staircase = True)
self.optimize = layers.optimize_loss(loss = self.loss,
global_step = self.global_step,
learning_rate = self.learning_rate,
summaries = layers.optimizers.OPTIMIZER_SUMMARIES,
optimizer = tf.train.RMSPropOptimizer,
learning_rate_decay_fn = _learning_rate_decay_fn,
clip_gradients = 0.1,
)
self.sess = tf.Session()
self.sess.run(tf.global_variables_initializer())
# Initialize summaries
if name is not None:
if is_train:
logdir = os.path.join(SUMMARY_PATH, self.name, 'train')
self.summary_writer = tf.train.SummaryWriter(logdir)
self.ALL_SUMMARIES = tf.merge_all_summaries(KEY_SUMMARIES)
else:
self.summary_writer_d = {}
for t in ['avg', 'n', 'b', 's']:
logdir = os.path.join(SUMMARY_PATH, self.name, 'val_%s' % t)
self.summary_writer_d[t] = tf.train.SummaryWriter(logdir)
tf.set_random_seed(SEED)
@staticmethod
def pre_process(inp):
return inp / 100.0
@staticmethod
def get_arg_scope(is_training):
weight_decay_l2 = 0.1
batch_norm_decay = 0.999
batch_norm_epsilon = 0.0001
with slim.arg_scope([slim.conv2d, slim.fully_connected, layers.separable_convolution2d],
weights_regularizer = slim.l2_regularizer(weight_decay_l2),
biases_regularizer = slim.l2_regularizer(weight_decay_l2),
weights_initializer = layers.variance_scaling_initializer(),
):
batch_norm_params = {
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon
}
with slim.arg_scope([slim.batch_norm, slim.dropout],
is_training = is_training):
with slim.arg_scope([slim.batch_norm],
**batch_norm_params):
with slim.arg_scope([slim.conv2d, layers.separable_convolution2d, layers.fully_connected],
activation_fn = tf.nn.elu,
normalizer_fn = slim.batch_norm,
normalizer_params = batch_norm_params) as scope:
return scope
def _sigm_ce_loss(self):
ce = tf.nn.softmax_cross_entropy_with_logits(logits = self.network, labels = self.desired_person_one_hot)
loss = tf.reduce_mean(ce)
return loss
def train(self, input_tensor, desired_person, learning_rate):
if not self.is_train:
raise Exception('Network is not in training mode!')
self.sess.run(self.optimize, feed_dict = {
self.input_tensor: input_tensor,
self.desired_person: desired_person,
self.learning_rate: learning_rate
})
def feed_forward(self, x):
out, states = self.sess.run([self.gait_signature, self.state], feed_dict = {self.input_tensor: x})
return out, states
def write_test_summary(self, err, epoch, t = 'all'):
loss_summ = tf.Summary()
loss_summ.value.add(
tag = 'Classification in percent',
simple_value = float(err))
self.summary_writer_d[t].add_summary(loss_summ, epoch)
self.summary_writer_d[t].flush()
def write_summary(self, inputs, desired_person, learning_rate, write_frequency = 50):
step = tf.train.global_step(self.sess, self.global_step)
if step % write_frequency == 0:
feed_dict = {
self.input_tensor: inputs,
self.desired_person: desired_person,
self.learning_rate: learning_rate,
}
summary, loss = self.sess.run([self.ALL_SUMMARIES, self.loss], feed_dict = feed_dict)
self.summary_writer.add_summary(summary, step)
self.summary_writer.flush()
def save(self, checkpoint_path, name):
if not os.path.exists(checkpoint_path):
os.mkdir(checkpoint_path)
checkpoint_name_path = os.path.join(checkpoint_path, '%s.ckpt' % name)
all_vars = tf.get_collection(tf.GraphKeys.MODEL_VARIABLES, scope = 'GaitNN')
saver = tf.train.Saver(all_vars)
saver.save(self.sess, checkpoint_name_path)
def restore(self, checkpoint_path):
all_vars = tf.get_collection(tf.GraphKeys.MODEL_VARIABLES, scope = 'GaitNN')
saver = tf.train.Saver(all_vars)
saver.restore(self.sess, checkpoint_path)
@staticmethod
def residual_block(net, ch = 256, ch_inner = 128, scope = None, reuse = None, stride = 1):
"""
Bottleneck v2
"""
with slim.arg_scope([layers.convolution2d],
activation_fn = None,
normalizer_fn = None):
with tf.variable_scope(scope, 'ResidualBlock', reuse = reuse):
in_net = net
if stride > 1:
net = layers.convolution2d(net, ch, kernel_size = 1, stride = stride)
in_net = layers.batch_norm(in_net)
in_net = tf.nn.relu(in_net)
in_net = layers.convolution2d(in_net, ch_inner, 1)
in_net = layers.batch_norm(in_net)
in_net = tf.nn.relu(in_net)
in_net = layers.convolution2d(in_net, ch_inner, 3, stride = stride)
in_net = layers.batch_norm(in_net)
in_net = tf.nn.relu(in_net)
in_net = layers.convolution2d(in_net, ch, 1, activation_fn = None)
net = tf.nn.relu(in_net + net)
return net
@abstractmethod
def get_network(self, input_tensor, is_training, reuse = False):
pass
class GaitNetwork(GaitNN):
FEATURES = 512
def __init__(self, name = None, num_of_persons = 0, recurrent_unit = 'GRU', rnn_layers = 1,
reuse = False, is_training = False, input_net = None):
tf.set_random_seed(SEED)
if num_of_persons <= 0 and is_training:
raise Exception('Parameter num_of_persons has to be greater than zero when thaining')
self.num_of_persons = num_of_persons
self.rnn_layers = rnn_layers
self.recurrent_unit = recurrent_unit
if input_net is None:
input_tensor = tf.placeholder(
dtype = tf.float32,
shape = (None, 17, 17, 32),
name = 'input_image')
else:
input_tensor = input_net
super().__init__(name, input_tensor, self.FEATURES, num_of_persons, reuse, is_training)
def get_network(self, input_tensor, is_training, reuse = False):
net = input_tensor
with tf.variable_scope('GaitNN', reuse = reuse):
with slim.arg_scope(self.get_arg_scope(is_training)):
with tf.variable_scope('DownSampling'):
with tf.variable_scope('17x17'):
net = layers.convolution2d(net, num_outputs = 256, kernel_size = 1)
slim.repeat(net, 3, self.residual_block, ch = 256, ch_inner = 64)
with tf.variable_scope('8x8'):
net = self.residual_block(net, ch = 512, ch_inner = 64, stride = 2)
slim.repeat(net, 2, self.residual_block, ch = 512, ch_inner = 128)
with tf.variable_scope('4x4'):
net = self.residual_block(net, ch = 512, ch_inner = 128, stride = 2)
slim.repeat(net, 1, self.residual_block, ch = 512, ch_inner = 256)
net = layers.convolution2d(net, num_outputs = 256, kernel_size = 1)
net = layers.convolution2d(net, num_outputs = 256, kernel_size = 3)
with tf.variable_scope('FullyConnected'):
# net = tf.reduce_mean(net, [1, 2], name = 'GlobalPool')
net = layers.flatten(net)
net = layers.fully_connected(net, 512, activation_fn = None, normalizer_fn = None)
with tf.variable_scope('Recurrent', initializer = tf.contrib.layers.xavier_initializer()):
cell_type = {
'GRU': tf.nn.rnn_cell.GRUCell,
'LSTM': tf.nn.rnn_cell.LSTMCell
}
cell = cell_type[self.recurrent_unit](self.FEATURES)
cell = tf.nn.rnn_cell.MultiRNNCell([cell] * self.rnn_layers, state_is_tuple = True)
net = tf.expand_dims(net, 0)
net, state = tf.nn.dynamic_rnn(cell, net, initial_state = cell.zero_state(1, dtype = tf.float32))
net = tf.reshape(net, [-1, self.FEATURES])
# Temporal Avg-Pooling
gait_signature = tf.reduce_mean(net, 0)
if is_training:
net = tf.expand_dims(gait_signature, 0)
net = layers.dropout(net, 0.7)
with tf.variable_scope('Logits'):
net = layers.fully_connected(net, self.num_of_persons, activation_fn = None,
normalizer_fn = None)
return net, gait_signature, state