-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_kgqa.py
38 lines (29 loc) · 1.4 KB
/
run_kgqa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from utils.dataset import Dataset
from components.entity_linking import EntityLinker
from components.relation_linking import RelationLinker
from components.kgqa import KGQA
from utils.KGQA_Exception import UnknownTaskException
from utils.args import get_args
def main(args):
data = Dataset(args=args, dataset_name=args.dataset)
if args.task == "EL": # entity linking
el = EntityLinker(data=data, args=args)
el.perform_EL() # perform entity linking over all the data
el.save_predictions()
if args.evaluate:
el.evaluate() # evaluate and show the scores on standard metric
elif args.task == "RL":
rl = RelationLinker(data=data, args=args)
rl.perform_RL_single(data[0],args)
elif args.task == "KGQA": # KGQA task
el = EntityLinker(data=data, args=args) # initializes the entity linker for performing KGQA
qa = KGQA(entity_linker=el, data=data, args=args)
qa.perform_KGQA()
qa.save_predictions() # evaluate and show scores on standard metric
if args.evaluate:
qa.evaluate() # evaluate and show the scores on standard metric
else:
raise UnknownTaskException(task=args.task)
if __name__ == "__main__":
args = get_args()
main(args)