Skip to content

Latest commit

 

History

History
134 lines (82 loc) · 3.99 KB

README.md

File metadata and controls

134 lines (82 loc) · 3.99 KB

Latent Video Transformer

Code for paper Latent Video Transformer.

Preparation

The training routine code is based on detectron2.

Run this command after cloning the repository.

python setup.py build develop

Inference on the pretrained model

Download the pretrained model here: https://yadi.sk/d/8QjrPTcxznrqNg

In order to run inference use the command:

CUDA_VISIBLE_DEVICES=<gpus> python scripts/generate_videos.py --video-dir ./example --config-file configs/vt/DSFVT.yaml MODEL.GENERATOR.WEIGHTS pretrained/DSFVT/netG/model_final.pth OUTPUT_DIR ./example/sample

It takes the following parameters:

  • video-dir — Folder containing priming frames.
  • config-file — Config file for specific type of LVT model
  • any other parameters insided config-file you would like to change

Datasets

Bair

Download the dataset:

wget http://rail.eecs.berkeley.edu/datasets/bair_robot_pushing_dataset_v0.tar -P ./bair
tar -xvf ./bair/bair_robot_pushing_dataset_v0.tar -C ./bair

Preprocess the dataset:

python ./scripts/convert_bair.py --data_dir ./bair

Kinetics-600

Kinetics-600 dataset is presented as a set of links to YouTube videos.

Download links:

mkdir ./kinetics/
wget https://storage.googleapis.com/deepmind-media/Datasets/kinetics600.tar.gz -P ./kinetics/
tar -xvf ./kinetics/kinetics600.tar.gz -C ./kinetics/
rm ./kinetics/kinetics600.tar.gz

Download data from YouTube:

python  ./scripts/download_kinetics.py ./kinetics/kinetics600/train.csv ./kinetics//kinetics600/train_vid --trim --num-jobs 1
python  ./scripts/download_kinetics.py ./kinetics/kinetics600/test.csv ./kinetics/kinetics600/test_vid --trim --num-jobs 1

Note, that YouTube can block you from downloading videos. That is why it is important not to load many videos simultaneously.

Preprocessing of videos includes:

  1. Trimming videos to the scecified 10-sec range
  2. Converting videos to png files
  3. Center-crop each image
python ./scripts/convert_kinetics.py --video_dir ./kinetics/kinetics600/train --output_dir ./kinetics/kinetics600/train_frames --num_jobs 5 --img_size 64
python ./scripts/convert_kinetics.py --video_dir ./kinetics/kinetics600/test --output_dir ./kinetics/kinetics600/test_frames --num_jobs 5 --img_size 64

Preprocessing script will store images in train_frames and test_frames folders.

VQVAE

Training

In order to train VQVAE run the following command. If you want to modify some parameters, consider changing them in the config configs/vqvae/PR-DVQVAE2.yaml.

CUDA_VISIBLE_DEVICES=<gpus> python tools/train_net.py --config-file configs/vqvae/PR-DVQVAE2.yaml --num-gpus <number of gpus> OUTPUT_DIR experiments/PR-DVQVAE2

Codes sampling

After training of VQVAE one should run code extraction on train data:

CUDA_VISIBLE_DEVICES=<gpus> python tools/train_net.py --eval-only --config-file configs/vqvae/PR-DVQVAE2.yaml OUTPUT_DIR experiments/PR-DVQVAE2 TEST.EVALUATORS "CodesExtractor" DATASETS.TEST "kinetics_train_seq"

Train Latent Transformer

Latent transformer is trained on codes extracted with VQVAE. You should run Latent Transformer after VQVAE training finished.

Note, that in the config file, you should specify the dataset for latent codes:

DATASETS:
  TRAIN: ("prdvqvae_train",)
  TEST: ("prdvqvae_test",)

In order to specify path to codes, modify file vidgen/data/datasets/builtin.py:

register_latents("prdvqvae_train", "datasets/prdvqvae2/inference/bair_train_seq")
register_latents("prdvqvae_test", "datasets/prdvqvae2/inference/bair_test_seq")

register_kinetics_latents("kdvqvae_train", "datasets/K-DVQVAE/inference/kinetics_train_seq")
register_kinetics_latents("kdvqvae_test", "datasets/K-DVQVAE/inference/kinetics_test_seq")
CUDA_VISIBLE_DEVICES=<gpus> python tools/train_net.py --config-file configs/vt/DSFVT.yaml --num-gpus 1 OUTPUT_DIR experiments/vt/DSFVT