-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy patheval.py
executable file
·229 lines (185 loc) · 7.41 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import subprocess
import numpy as np
import os
import pandas as pd
from PIL import Image
import h5py
import matplotlib.pyplot as plt
from typing import List, Callable
import torch
from torch.utils import data
from tqdm.notebook import tqdm
import torch.nn as nn
from torchvision.transforms import Compose, Normalize, Resize
import sklearn
from sklearn.metrics import matthews_corrcoef, confusion_matrix, accuracy_score, auc, roc_auc_score, roc_curve, classification_report
from sklearn.metrics import precision_recall_curve, f1_score
from sklearn.metrics import average_precision_score
from sklearn.utils import resample
import scipy
import scipy.stats
import sys
sys.path.append('../..')
import clip
from model import CLIP
def compute_mean(stats, is_df=True):
spec_labels = ["Atelectasis", "Cardiomegaly", "Consolidation", "Edema", "Pleural Effusion"]
if is_df:
spec_df = stats[spec_labels]
res = np.mean(spec_df.iloc[0])
else:
# cis is df, within bootstrap
vals = [stats[spec_label][0] for spec_label in spec_labels]
res = np.mean(vals)
return res
def accuracy(output, target, topk=(1,)):
pred = output.topk(max(topk), 1, True, True)[1].t()
print('pred: ', pred)
expand = target.expand(-1, max(topk))
print('expand: ', expand)
correct = pred.eq(expand)
print('correct: ', correct)
return [float(correct[:k].reshape(-1).float().sum(0, keepdim=True).cpu().numpy()) for k in topk]
def sigmoid(x):
z = 1/(1 + np.exp(-x))
return z
''' ROC CURVE '''
def plot_roc(y_pred, y_true, roc_name, plot=False):
# given the test_ground_truth, and test_predictions
fpr, tpr, thresholds = roc_curve(y_true, y_pred)
roc_auc = auc(fpr, tpr)
if plot:
plt.figure(dpi=100)
plt.title(roc_name)
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
return fpr, tpr, thresholds, roc_auc
# J = TP/(TP+FN) + TN/(TN+FP) - 1 = tpr - fpr
def choose_operating_point(fpr, tpr, thresholds):
sens = 0
spec = 0
J = 0
for _fpr, _tpr in zip(fpr, tpr):
if _tpr - _fpr > J:
sens = _tpr
spec = 1-_fpr
J = _tpr - _fpr
return sens, spec
''' PRECISION-RECALL CURVE '''
def plot_pr(y_pred, y_true, pr_name, plot=False):
precision, recall, thresholds = precision_recall_curve(y_true, y_pred)
pr_auc = auc(recall, precision)
# plot the precision-recall curves
baseline = len(y_true[y_true==1]) / len(y_true)
if plot:
plt.figure(dpi=20)
plt.title(pr_name)
plt.plot(recall, precision, 'b', label='AUC = %0.2f' % pr_auc)
# axis labels
plt.legend(loc = 'lower right')
plt.plot([0, 1], [baseline, baseline],'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.xlabel('Recall')
plt.ylabel('Precision')
# show the plot
plt.show()
return precision, recall, thresholds
def evaluate(y_pred, y_true, cxr_labels,
roc_name='Receiver Operating Characteristic', pr_name='Precision-Recall Curve', label_idx_map=None):
'''
We expect `y_pred` and `y_true` to be numpy arrays, both of shape (num_samples, num_classes)
`y_pred` is a numpy array consisting of probability scores with all values in range 0-1.
`y_true` is a numpy array consisting of binary values representing if a class is present in
the cxr.
This function provides all relevant evaluation information, ROC, AUROC, Sensitivity, Specificity,
PR-Curve, Precision, Recall for each class.
'''
import warnings
warnings.filterwarnings('ignore')
num_classes = y_pred.shape[-1] # number of total labels
dataframes = []
for i in range(num_classes):
# print('{}.'.format(cxr_labels[i]))
if label_idx_map is None:
y_pred_i = y_pred[:, i] # (num_samples,)
y_true_i = y_true[:, i] # (num_samples,)
else:
y_pred_i = y_pred[:, i] # (num_samples,)
true_index = label_idx_map[cxr_labels[i]]
y_true_i = y_true[:, true_index] # (num_samples,)
cxr_label = cxr_labels[i]
''' ROC CURVE '''
roc_name = cxr_label + ' ROC Curve'
fpr, tpr, thresholds, roc_auc = plot_roc(y_pred_i, y_true_i, roc_name)
sens, spec = choose_operating_point(fpr, tpr, thresholds)
results = [[roc_auc]]
df = pd.DataFrame(results, columns=[cxr_label+'_auc'])
dataframes.append(df)
''' PRECISION-RECALL CURVE '''
pr_name = cxr_label + ' Precision-Recall Curve'
precision, recall, thresholds = plot_pr(y_pred_i, y_true_i, pr_name)
dfs = pd.concat(dataframes, axis=1)
return dfs
''' Bootstrap and Confidence Intervals '''
def compute_cis(data, confidence_level=0.05):
"""
FUNCTION: compute_cis
------------------------------------------------------
Given a Pandas dataframe of (n, labels), return another
Pandas dataframe that is (3, labels).
Each row is lower bound, mean, upper bound of a confidence
interval with `confidence`.
Args:
* data - Pandas Dataframe, of shape (num_bootstrap_samples, num_labels)
* confidence_level (optional) - confidence level of interval
Returns:
* Pandas Dataframe, of shape (3, labels), representing mean, lower, upper
"""
data_columns = list(data)
intervals = []
for i in data_columns:
series = data[i]
sorted_perfs = series.sort_values()
lower_index = int(confidence_level/2 * len(sorted_perfs)) - 1
upper_index = int((1 - confidence_level/2) * len(sorted_perfs)) - 1
lower = sorted_perfs.iloc[lower_index].round(4)
upper = sorted_perfs.iloc[upper_index].round(4)
mean = round(sorted_perfs.mean(), 4)
interval = pd.DataFrame({i : [mean, lower, upper]})
intervals.append(interval)
intervals_df = pd.concat(intervals, axis=1)
intervals_df.index = ['mean', 'lower', 'upper']
return intervals_df
def bootstrap(y_pred, y_true, cxr_labels, n_samples=1000, label_idx_map=None):
'''
This function will randomly sample with replacement
from y_pred and y_true then evaluate `n` times
and obtain AUROC scores for each.
You can specify the number of samples that should be
used with the `n_samples` parameter.
Confidence intervals will be generated from each
of the samples.
Note:
* n_total_labels >= n_cxr_labels
`n_total_labels` is greater iff alternative labels are being tested
'''
np.random.seed(97)
y_pred # (500, n_total_labels)
y_true # (500, n_cxr_labels)
idx = np.arange(len(y_true))
boot_stats = []
for i in tqdm(range(n_samples)):
sample = resample(idx, replace=True, random_state=i)
y_pred_sample = y_pred[sample]
y_true_sample = y_true[sample]
sample_stats = evaluate(y_pred_sample, y_true_sample, cxr_labels, label_idx_map=label_idx_map)
boot_stats.append(sample_stats)
boot_stats = pd.concat(boot_stats) # pandas array of evaluations for each sample
return boot_stats, compute_cis(boot_stats)