-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.go
99 lines (78 loc) · 2.92 KB
/
main.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
package main
import (
"fmt"
"log"
"time"
)
func main() {
fmt.Println("Starting Personal AI Model Project")
// Initialize Enhanced Belief System Processor
beliefProcessor := NewBeliefSystemProcessor("./beliefs", "./personal_data/journals")
// Update beliefs from journals
err := beliefProcessor.UpdateBeliefsFromJournals()
if err != nil {
log.Printf("Error updating beliefs from journals: %v", err)
}
// Save updated beliefs
err = beliefProcessor.SaveBeliefs()
if err != nil {
log.Printf("Error saving updated beliefs: %v", err)
}
// Collect data
data, err := collectTextData("./personal_data")
if err != nil {
log.Fatalf("Error collecting data: %v", err)
}
fmt.Printf("Collected %d content items\n", len(data))
// Create ContentManager
cm := NewContentManager(data)
// Example usage of ContentManager
journals := cm.FilterByType(Journal)
fmt.Printf("Found %d journal entries\n", len(journals))
recentContent := cm.FilterByDateRange(time.Now().AddDate(0, -1, 0), time.Now())
fmt.Printf("Found %d content items from the last month\n", len(recentContent))
aiRelatedContent := cm.SearchByKeyword("artificial intelligence")
fmt.Printf("Found %d content items related to AI\n", len(aiRelatedContent))
personalGrowthContent := cm.FilterByTags([]string{"personal_growth", "self_improvement"})
fmt.Printf("Found %d content items tagged with personal growth or self-improvement\n", len(personalGrowthContent))
cm.SortByDate() // Sort all content by date
// Preprocess data
processedData := preprocessAllData(cm.Contents, beliefProcessor)
fmt.Println("Data preprocessing and belief system processing completed")
// Set up and train neural network
err = setupAndTrainNetwork(processedData)
if err != nil {
log.Fatalf("Error in neural network setup and training: %v", err)
}
fmt.Println("Neural network training completed")
// Example of using the trained model with belief system
exampleInput := "How can we promote ethical conduct in AI development?"
response := generateResponseFromNetwork(exampleInput)
processedResponse := beliefProcessor.ProcessResponse(exampleInput, response)
fmt.Printf("Input: %s\nResponse: %s\n", exampleInput, processedResponse)
// Start the interactive loop
interactiveLoop(beliefProcessor)
}
func preprocessAllData(contents []Content, bsp *BeliefSystemProcessor) []string {
processedData := make([]string, len(contents))
for i, content := range contents {
preprocessed := preprocessText(content.Text)
processedData[i] = bsp.ProcessResponse(content.Text, preprocessed)
}
return processedData
}
func interactiveLoop(bsp *BeliefSystemProcessor) {
fmt.Println("Enter your questions (type 'exit' to quit):")
for {
var input string
fmt.Print("> ")
fmt.Scanln(&input)
if input == "exit" {
break
}
response := generateResponseFromNetwork(input)
processedResponse := bsp.ProcessResponse(input, response)
fmt.Printf("AI: %s\n", processedResponse)
}
fmt.Println("Goodbye!")
}