run_simulation(temp = c(15, 20, 25, 30, 35))
[1] 28.97596 41.86122 51.98388 60.55778 75.83143
+[1] 33.45604 42.73547 49.41673 60.40195 72.35998
diff --git a/docs/lab05.html b/docs/lab05.html index 53651eb..237ee67 100644 --- a/docs/lab05.html +++ b/docs/lab05.html @@ -566,16 +566,16 @@
# A tibble: 10 × 30
Experiment Subject `Cell Type` `Target Type` Cohort Age Gender Race
<chr> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
- 1 ePD85 5869 naive_CD8 C19_cI Healthy (No … 27 F <NA>
- 2 ePD81 2922 PBMC C19_cI COVID-19-Con… 64 M <NA>
- 3 eQD129 2283 PBMC C19_cI COVID-19-Con… 60 F White
- 4 eHO125 4611 PBMC C19_cI COVID-19-Con… 52 M <NA>
- 5 eNL192 1524 B-CD8-_PBMC C19_cII COVID-19-Con… NA <NA> <NA>
- 6 eJL151 3270 PBMC C19_cI COVID-19-Con… 79 F <NA>
- 7 eHO126 6913 PBMC C19_cI COVID-19-Con… 37 F <NA>
- 8 eQD124 361 PBMC C19_cI COVID-19-B-N… 40 F White
- 9 eQD136 2818 PBMC C19_cI COVID-19-Con… NA <NA> <NA>
-10 eXL31 20300 naive_CD8 C19_cI Healthy (No … 28 M White
+ 1 eLH43 3565 PBMC C19_cI COVID-19-Con… 57 M <NA>
+ 2 eQD134 2903 PBMC C19_cI COVID-19-Con… NA <NA> <NA>
+ 3 ePD100 1811 PBMC C19_cI COVID-19-Con… 66 M <NA>
+ 4 eAV100 1995 PBMC C19_cII COVID-19-Con… 29 F <NA>
+ 5 ePD91 169 PBMC C19_cI COVID-19-Con… 52 M White
+ 6 eHO133 1005699 PBMC C19_cI COVID-19-Acu… 67 M White
+ 7 eHO129 142 PBMC C19_cI COVID-19-Con… 66 F Asian
+ 8 eMR22 1565927 PBMC C19_cI COVID-19-Con… 65 M <NA>
+ 9 eMR14 2845 PBMC C19_cI COVID-19-Con… NA <NA> <NA>
+10 eQD124 361 PBMC C19_cI COVID-19-B-N… 40 F White
# ℹ 22 more variables: `HLA-A...9` <chr>, `HLA-A...10` <chr>,
# `HLA-B...11` <chr>, `HLA-B...12` <chr>, `HLA-C...13` <chr>,
# `HLA-C...14` <chr>, DPA1...15 <chr>, DPA1...16 <chr>, DPB1...17 <chr>,
@@ -639,16 +639,16 @@
+ 1 eEE217 Healthy (N… 32 F White "A*0… "A*0… "B*1… "B*4… "C*0… "C*0…
+ 2 eLH41 COVID-19-C… 71 F <NA> "A*0… "A*0… "B*1… "B*1… "C*0… "C*0…
+ 3 ePD73 Healthy (N… 37 F White "A*0… "A*0… "B*1… "B*4… "C*0… "C*0…
+ 4 eHO136 COVID-19-C… 51 M Hisp… "" "" "" "" "" ""
+ 5 eHO125 COVID-19-C… 52 M <NA> "A*0… "A*0… "B*3… "B*4… "C*0… "C*0…
+ 6 eOX46 Healthy (N… 45 M White "A*0… "A*0… "B*3… "B*4… "C*0… "C*0…
+ 7 eQD113 COVID-19-C… 36 M <NA> "A*0… "A*1… "B*5… "B*5… "C*0… "C*1…
+ 8 eOX56 Healthy (N… 30 M Blac… "A*0… "A*3… "B*5… "B*5… "C*0… "C*0…
+ 9 eQD108 COVID-19-C… NA <NA> <NA> "A*1… "A*6… "B*0… "B*5… "C*0… "C*1…
+10 eXL43 Healthy (N… 36 F White "A*3… "A*3… "B*0… "B*1… "C*0… "C*0…
Now, we have a beautiful tidy
dataset, recall that this entails, that each row is an observation, each column is a variable and each cell holds one value.
# A tibble: 10 × 7
`TCR BioIdentity` TCR Nucleotide Seque…¹ Experiment `ORF Coverage`
<chr> <chr> <chr> <chr>
- 1 unproductive+TCRBV03-01/03-… TCACATCAATTCCCTGGAGCT… eHO141 surface glyco…
- 2 CASSRRDMGGGPTDTQYF+TCRBV19-… CAAAAGAACCCGACAGCTTTC… eEE226 ORF7b
- 3 CSASLESETQYF+TCRBV20-01+TCR… CTGACAGTGACCAGTGCCCAT… eEE226 ORF7b
- 4 CASSLTGALGRSIANQPQHF+TCRBV1… AGGGACTCAGCTGTGTACTTC… eXL31 ORF3a
- 5 CASRKGSTNEKLFF+TCRBV05-06+T… GTGAACGCCTTGTTGCTGGGG… eEE226 ORF7b
- 6 CASSPGLVIEQFF+TCRBV13-01+TC… AACATGAGCTCCTTGGAGCTG… eHO136 ORF1ab
- 7 CASTPGLAVYEQYF+TCRBV12-X+TC… ATCCAGCCCTCAGAACCCAGG… eEE228 ORF1ab
- 8 CSARAGGYSNQPQHF+TCRBV20-X+T… ACCAGTGCCCATCCTGAAGAC… eOX52 surface glyco…
- 9 CASSPDWGGGEQYF+TCRBV05-04+T… GTGAACGCCTTGGAGCTGGAC… eEE228 ORF1ab
-10 CASDEGVDNEQFF+TCRBV02-01+TC… AAGATCCGGTCCACAAAGCTG… eEE226 surface glyco…
+ 1 CASSLWASGPNEQFF+TCRBV28-01+… GAGTCCGCCAGCACCAACCAG… eHH175 surface glyco…
+ 2 CASSPQGSLTEAFF+TCRBV06-05+T… NNNNTGTCGGCTGCTCCCTCC… eQD126 ORF1ab
+ 3 CASSVGQGVIAGGPSEQFF+TCRBV09… CTGGGGGACTCAGCTTTGTAT… eOX52 ORF1ab
+ 4 CASSPQLAMRGNEQFF+TCRBV07-08… CGCACACAGCAGGAGGACTCC… eQD124 membrane glyc…
+ 5 CASSFTTGAGANVLTF+TCRBV05-04… GCCTTGGAGCTGGACGACTCG… eEE226 surface glyco…
+ 6 CSATGRAGINEQFF+TCRBV20-X+TC… GTGACCAGTGCCCATCCTGAA… eEE240 ORF1ab
+ 7 CSASLGLYEQYF+TCRBV20-01+TCR… CTGACAGTGACCAGTGCCCAT… eOX49 ORF1ab
+ 8 CASSFGQVGQPQHF+TCRBV28-01+T… CTGGAGTCCGCCAGCACCAAC… eXL31 membrane glyc…
+ 9 CSVGTGDGETQYF+TCRBV20-X+TCR… ACAGTGACCAGTGCCCATCCT… eXL32 ORF7b
+10 CSADTRGVEETQYF+TCRBV20-X+TC… GTGACCAGTGCCCATCCTGAA… eLH49 ORF1ab
# ℹ abbreviated name: ¹`TCR Nucleotide Sequence`
# ℹ 3 more variables: `Amino Acids` <chr>, `Start Index in Genome` <dbl>,
# `End Index in Genome` <dbl>
@@ -933,18 +933,18 @@ # A tibble: 10 × 3
- Experiment `TCR BioIdentity` `Amino Acids`
- <chr> <chr> <chr>
- 1 eLH51 CASSTSGNTGELFF+TCRBV19-01+TCRBJ02-02 APSASAFFGM,AQFAPSASA,ASAF…
- 2 eHO140 CASNDLNTGELFF+TCRBV02-01+TCRBJ02-02 YLQPRTFL,YLQPRTFLL,YYVGYL…
- 3 eEE240 CSASGSLIGTNEKLFF+TCRBV20-X+TCRBJ01-04 AFLLFLVLI,FLAFLLFLV,FYLCF…
- 4 eEE240 CSLALADPDTQYF+TCRBV29-01+TCRBJ02-03 DFLEYHDVR,EDFLEYHDVR,LEYH…
- 5 eMR23 CSARGWGGPKTSTDTQYF+TCRBV20-X+TCRBJ02-03 ALNTPKDHI,ATEGALNTPK
- 6 eOX54 CASSQGVGTEAFF+TCRBV04-03+TCRBJ01-01 AFPFTIYSL,GYINVFAFPF,INVF…
- 7 eOX49 CASSLGQGAYEQYF+TCRBV04-01+TCRBJ02-07 FLNGSCGSV
- 8 eEE224 CASSQDLGMGEQFF+TCRBV06-X+TCRBJ02-01 TVLSFCAFA,VLSFCAFAV
- 9 eHH175 CASSQPSYEQYF+TCRBV04-02+TCRBJ02-07 AFLLFLVLI,FLAFLLFLV,FYLCF…
-10 eMR15 CASDQTGGRGTDTQYF+TCRBV28-01+TCRBJ02-03 FPRGQGVPI,KFPRGQGVPI
+ Experiment `TCR BioIdentity` `Amino Acids`
+ <chr> <chr> <chr>
+ 1 eQD137 CASSPLDEDEAFF+TCRBV18-01+TCRBJ01-01 HTTDPSFLGRY
+ 2 eQD112 CASS*PED*RGLNRDTQYF+TCRBV13-01+TCRBJ02-03 LSPRWYFYY,SPRWYFYYL
+ 3 eQD131 CASSLSGAPGVGTDTQYF+TCRBV05-06+TCRBJ02-03 FLQSINFVR,FLQSINFVRI,…
+ 4 eDH105 CASSRTGTGPYEQYF+TCRBV28-01+TCRBJ02-07 ALALLLLDR,GDAALALLLL,…
+ 5 eEE224 RASSLESYNEQFF+TCRBV07-03+TCRBJ02-01 AFPFTIYSL,GYINVFAFPF,…
+ 6 eOX54 CASSLGGVTGGELFF+TCRBV04-02+TCRBJ02-02 YLDAYNMMI
+ 7 eEE228 CASSPVTGTNQPQHF+TCRBV03-01/03-02+TCRBJ01-05 AFLLFLVLI,FLAFLLFLV,F…
+ 8 eQD121 CASSLSSSQETQYF+TCRBV27-01+TCRBJ02-05 HTTDPSFLGRY
+ 9 eXL30 CASSYSAAANTGELFF+TCRBV06-06+TCRBJ02-02 AEAELAKNVSL,AELAKNVSL…
+10 eLH47 CASSPDIQAFF+TCRBV07-09+TCRBJ01-01 YLQPRTFL,YLQPRTFLL,YY…
# A tibble: 10 × 5
Experiment CDR3b V_gene J_gene `Amino Acids`
<chr> <chr> <chr> <chr> <chr>
- 1 eEE226 CASSSFGTGGAGELFF TCRBV05-01 TCRBJ02-02 IVDTVSALV
- 2 eOX54 CASIQGMNTEAFF TCRBV07-09 TCRBJ01-01 FVCNLLLLFV,LLFVTVYSH…
- 3 eAV88 CASSFMGGNQPQHF TCRBV05-06 TCRBJ01-05 KLSYGIATV
- 4 eEE240 CASSSADRVKSNGYTF TCRBV28-01 TCRBJ01-02 TLDSKTQSL
- 5 eOX43 CASSLRRDHTDTQYF TCRBV28-01 TCRBJ02-03 REGVFVSNGTHW
- 6 eOX43 CSASSSLGYNEQFF TCRBV20-X TCRBJ02-01 AFLLFLVLI,FLAFLLFLV,…
- 7 eOX52 CASSLGVLAGADTQYF TCRBV27-01 TCRBJ02-03 QYIKWPWYI,YEQYIKWPW,…
- 8 eOX54 CASGLAEYEQYF TCRBV10-02 TCRBJ02-07 FKVSIWNLDY,ILLIIMRTF…
- 9 eQD128 CASRVELEPQHF TCRBV12-03/12-04 TCRBJ01-05 ALALLLLDR,GDAALALLLL…
-10 ePD84 CSAPDRVNTGELFF TCRBV20-X TCRBJ02-02 AFLLFLVLI,FLAFLLFLV,…
+ 1 eJL149 CASSLAGTANYEQYF TCRBV07-02 TCRBJ02-07 FAYANRNRF,LQFAYANRNR…
+ 2 eXL32 CASSEEEGAGAYEQYF TCRBV02-01 TCRBJ02-07 RQLLFVVEV
+ 3 eLH48 CASSSRAASGDTQYF TCRBV07-06 TCRBJ02-03 VLAWLYAAV
+ 4 eXL27 CASGAGANVLTF TCRBV25-01 TCRBJ02-06 LLDDFVEII,LLLDDFVEI
+ 5 eEE226 CASSPGSGTGFHEQYF TCRBV07-06 TCRBJ02-07 AFLLFLVLI,FLAFLLFLV,…
+ 6 eXL30 CASSSGTGEAFF TCRBV04-01 TCRBJ01-01 AFLLFLVLI,FLAFLLFLV,…
+ 7 eEE240 CSADDRGGEQYF TCRBV20-X TCRBJ02-07 AFLLFLVLI,FLAFLLFLV,…
+ 8 eXL31 CASSYLQGWETQYF TCRBV06-02/06-03 TCRBJ02-05 AFLLFLVLI,FLAFLLFLV,…
+ 9 eEE224 CATTRGHYTDTQYF TCRBV06-06 TCRBJ02-03 ELYSPIFLI,LYSPIFLIV,…
+10 ePD83 CASSLRLGLAYEQYF TCRBV28-01 TCRBJ02-07 SEHDYQIGGYTEKW,YQIGG…
# A tibble: 10 × 6
Experiment CDR3b V_gene J_gene `Amino Acids` n_peptides
<chr> <chr> <chr> <chr> <chr> <dbl>
- 1 eXL30 CASSQPPGEHNYGYTF TCRBV04-01 TCRBJ… AEAELAKNVSL,… 2
- 2 eOX43 CASSLRGEQYF TCRBV28-01 TCRBJ… KLSYGIATV 1
- 3 eEE240 CASSFGYEQYF TCRBV12-03/12-04 TCRBJ… FLNGSCGSV 1
- 4 eQD110 CATSRETESSTDTQYF TCRBV15-01 TCRBJ… HTTDPSFLGRY 1
- 5 eXL27 CASSFPGLAGEQFF TCRBV11-02 TCRBJ… KPLEFGATSAAL 1
- 6 eEE224 CASSFLRPDRGNNEQFF TCRBV28-01 TCRBJ… TVLSFCAFA,VL… 2
- 7 eOX52 CASSLTSWDRAYGYTF TCRBV05-08 TCRBJ… APKEIIFL,KEI… 2
- 8 eXL32 CASSLAGNQPQHF TCRBV05-06 TCRBJ… FVCNLLLLFV,L… 3
- 9 eEE228 CASSPGPYTGELFF TCRBV06-04 TCRBJ… IMLIIFWFSL,M… 2
-10 eOX43 CSVGLAGGPYEQYF TCRBV29-01 TCRBJ… DFLEYHDVR,ED… 5
+ 1 eXL30 CASSLGLNTEAFF TCRBV13-01 TCRBJ… HLVDFQVTI 1
+ 2 eEE226 CASSYPRTGYYGYTF TCRBV06-02/06-03 TCRBJ… APKEIIFL,KEI… 2
+ 3 eOX54 CSARAGVRETQYF TCRBV20-X TCRBJ… NYLYRLFRK,NY… 2
+ 4 eHO130 CATGFRPNTEAFF TCRBV28-01 TCRBJ… FVDGVPFVV 1
+ 5 eOX46 CASSSPGGTFYNEQFF TCRBV09-01 TCRBJ… FLNRFTTTL 1
+ 6 eAV88 CASSFTGGILDTQYF TCRBV05-04 TCRBJ… ELYSPIFLI,LY… 5
+ 7 eXL37 CASSVFEGTGGNSPLHF TCRBV09-01 TCRBJ… GMEVTPSGTWL,… 4
+ 8 eHO141 CASSQQPGQGLNYGYTF TCRBV04-01 TCRBJ… AYKTFPPTEPK,… 2
+ 9 eEE226 CASSYMGGAASTDTQYF TCRBV06-X TCRBJ… KLSYGIATV 1
+10 eEE226 CASSEASLNTEAFF TCRBV06-01 TCRBJ… LPAADLDDF 1
# A tibble: 10 × 18
Experiment CDR3b V_gene J_gene peptide_1 peptide_2 peptide_3 peptide_4
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
- 1 eEE240 CASSDSSGELFF TCRBV… TCRBJ… FVCNLLLL… LLFVTVYS… TVYSHLLLV <NA>
- 2 eEE228 CASSHRTGRVL… TCRBV… TCRBJ… APAHISTI LIVNSVLL… LLFLAFVV… SVLLFLAFV
- 3 eEE224 CASSLLAGGHN… TCRBV… TCRBJ… AFLLFLVLI FLAFLLFLV FYLCFLAFL FYLCFLAF…
- 4 eQD111 CASSPDGNTEA… TCRBV… TCRBJ… HTTDPSFL… <NA> <NA> <NA>
- 5 eEE228 CASSFAGTDYE… TCRBV… TCRBJ… FLNGSCGSV <NA> <NA> <NA>
- 6 eMR14 CASSLDDRGLP… TCRBV… TCRBJ… KAYNVTQAF <NA> <NA> <NA>
- 7 eXL31 CSARDSQLAGY… TCRBV… TCRBJ… FLYIIKLI… FLYIIKLV… LYIIKLIFL LYIIKLIF…
- 8 eQD129 CASSDKPGPGA… TCRBV… TCRBJ… ALSKGVHFV <NA> <NA> <NA>
- 9 ePD83 CASSIGQGFAN… TCRBV… TCRBJ… SEHDYQIG… YQIGGYTEK YQIGGYTE… <NA>
-10 eXL30 CASSDIRTEVY… TCRBV… TCRBJ… RQLLFVVEV <NA> <NA> <NA>
+ 1 eQD111 CASTLAGGNEQ… TCRBV… TCRBJ… LSPRWYFYY SPRWYFYYL <NA> <NA>
+ 2 eQD132 CASGVGQYEQYF TCRBV… TCRBJ… AEIRASANL AEIRASAN… ASANLAATK <NA>
+ 3 eMR16 CAISDPTSGTD… TCRBV… TCRBJ… FLLNKEMYL <NA> <NA> <NA>
+ 4 eXL31 CSAPRGGVSSY… TCRBV… TCRBJ… AFLLFLVLI FLAFLLFLV FYLCFLAFL FYLCFLAF…
+ 5 eOX46 CASSYPDSTGE… TCRBV… TCRBJ… HPLADNKF… SPFHPLAD… <NA> <NA>
+ 6 ePD83 CASSKGSGGPS… TCRBV… TCRBJ… SEHDYQIG… YQIGGYTEK YQIGGYTE… <NA>
+ 7 eHH173 CASEIWLAGPR… TCRBV… TCRBJ… AFLLFLVLI FLAFLLFLV FYLCFLAFL FYLCFLAF…
+ 8 eOX46 CSARGGTSGSH… TCRBV… TCRBJ… APAHISTI LIVNSVLL… LLFLAFVV… SVLLFLAFV
+ 9 eQD114 RASSRLEHRGA… TCRBV… TCRBJ… HTTDPSFL… <NA> <NA> <NA>
+10 eXL30 CASSQRTGADE… TCRBV… TCRBJ… LPAADLDDF <NA> <NA> <NA>
# ℹ 10 more variables: peptide_5 <chr>, peptide_6 <chr>, peptide_7 <chr>,
# peptide_8 <chr>, peptide_9 <chr>, peptide_10 <chr>, peptide_11 <chr>,
# peptide_12 <chr>, peptide_13 <chr>, n_peptides <dbl>
@@ -1108,18 +1108,18 @@ # A tibble: 10 × 7
- Experiment CDR3b V_gene J_gene n_peptides peptide_n peptide
- <chr> <chr> <chr> <chr> <dbl> <chr> <chr>
- 1 eOX54 CASSAETRMGNTIYF TCRBV21-01 TCRBJ… 3 peptide_9 <NA>
- 2 eMR12 CASGSWTAGYEQYF TCRBV03-01/… TCRBJ… 2 peptide_5 <NA>
- 3 eEE224 CASSEEQADNEQFF TCRBV10-01 TCRBJ… 2 peptide_9 <NA>
- 4 eOX46 CSASGGSKDTQYF TCRBV20-X TCRBJ… 2 peptide_9 <NA>
- 5 eAM13 CASSYGGGQETQYF TCRBV06-05 TCRBJ… 3 peptide_4 <NA>
- 6 eQD125 CASSAGDASGYTF TCRBV09-01 TCRBJ… 1 peptide_8 <NA>
- 7 eOX54 CASGGYEQYF TCRBV12-03/… TCRBJ… 1 peptide_… <NA>
- 8 ePD83 CASSMTSGRSSYNEQFF TCRBV19-01 TCRBJ… 3 peptide_9 <NA>
- 9 eEE226 CASSLSKDRSYNEQFF TCRBV13-01 TCRBJ… 1 peptide_8 <NA>
-10 eQD108 CSVVRGGDTAPDTQYF TCRBV29-01 TCRBJ… 3 peptide_… <NA>
+ Experiment CDR3b V_gene J_gene n_peptides peptide_n peptide
+ <chr> <chr> <chr> <chr> <dbl> <chr> <chr>
+ 1 eEE224 CASSPTQTKDVHPYEQYF TCRBV0… TCRBJ… 5 peptide_4 VQELYS…
+ 2 eXL31 CSARDMEQTQYF TCRBV2… TCRBJ… 1 peptide_… <NA>
+ 3 eJL164 CASSDQENRALAGGRRPDTQYF TCRBV0… TCRBJ… 4 peptide_3 YPDKVF…
+ 4 eOX49 CSATKLAGPTSNEQFF TCRBV2… TCRBJ… 11 peptide_… <NA>
+ 5 eMR25 CASSWTSGALQNIQYF TCRBV0… TCRBJ… 1 peptide_1 KLWAQC…
+ 6 eOX54 CASSHHGLAGVRQYNEQFF TCRBV1… TCRBJ… 11 peptide_… <NA>
+ 7 eQD137 CASTRTQIRDRVDTEAFF TCRBV1… TCRBJ… 1 peptide_6 <NA>
+ 8 eEE224 CASSLGHSYEQYF TCRBV0… TCRBJ… 11 peptide_5 IDFYLC…
+ 9 eHO136 CASSLGGVYNEQFF TCRBV0… TCRBJ… 1 peptide_4 <NA>
+10 eQD137 CASSITGTYEQYF TCRBV1… TCRBJ… 2 peptide_… <NA>
# A tibble: 10 × 5
- Experiment CDR3b V_gene J_gene peptide
- <chr> <chr> <chr> <chr> <chr>
- 1 eGK111 CASSYEGMLGYTF TCRBV06-05 TCRBJ01-02 HTTDPSFLGRY
- 2 eXL30 CASSSAGPNYEQYF TCRBV27-01 TCRBJ02-07 AFPFTIYSL
- 3 eEE240 CSASGVSGRYQETQYF TCRBV20-01 TCRBJ02-05 FLAFLLFLV
- 4 eOX49 CSATQRDRVENEQFF TCRBV20-X TCRBJ02-01 LIDFYLCFL
- 5 eOX54 CASSGRDSVTPGELFF TCRBV09-01 TCRBJ02-02 IDFYLCFLAF
- 6 eEE226 CASSPTPGQGSYEQYF TCRBV05-04 TCRBJ02-07 FYLCFLAFL
- 7 eHO136 CSVEDRNTGELFF TCRBV29-01 TCRBJ02-02 YLQPRTFLL
- 8 ePD84 CASSPQGSTDPNYGYTF TCRBV07-09 TCRBJ01-02 GLEAPFLYLY
- 9 eHH175 CASSLPLSYEQYF TCRBV28-01 TCRBJ02-07 AFLLFLVLI
-10 eXL31 CSADGEGDGTDTQYF TCRBV20-X TCRBJ02-03 AFLLFLVLI
+ Experiment CDR3b V_gene J_gene peptide
+ <chr> <chr> <chr> <chr> <chr>
+ 1 eJL158 CASSERVIRRGQEAFF TCRBV25-01 TCRBJ01-01 KLWAQCVQL
+ 2 eXL37 CASSPDRDNQPQHF TCRBV27-01 TCRBJ01-05 AFLLFLVLI
+ 3 eXL30 CASSQDITGELFF TCRBV04-03 TCRBJ02-02 WPVTLACFVL
+ 4 eOX52 CSAQWASGGAGTGELFF TCRBV20-X TCRBJ02-02 MIELSLIDFY
+ 5 eOX52 CASSLAGVVEQYF TCRBV07-08 TCRBJ02-07 APKEIIFL
+ 6 eEE224 CSARQTRTGAWEQYF TCRBV20-X TCRBJ02-07 IDFYLCFLAF
+ 7 eQD137 CASSLGTGAMETQYF TCRBV27-01 TCRBJ02-05 VYFLQSINF
+ 8 eAV88 CSAETSGSSNEQFF TCRBV20-X TCRBJ02-01 IDFYLCFLAF
+ 9 eOX46 CASSGLAGGRSQFF TCRBV12-X TCRBJ02-01 YLCFLAFLL
+10 eXL30 CASSLGAYEGVLTF TCRBV12-X TCRBJ02-06 MIELSLIDFY
# A tibble: 10 × 7
- Experiment CDR3b V_gene J_gene peptide k_CDR3b k_peptide
- <chr> <chr> <chr> <chr> <chr> <int> <int>
- 1 eLH47 CASSLGTDTQYF TCRBV05-01 TCRBJ… SVLLFL… 12 9
- 2 eEE240 CASSLWGYNEQFF TCRBV05-01 TCRBJ… LYIIKL… 13 10
- 3 eEE224 CASSGDGTYEQYF TCRBV02-01 TCRBJ… SINFVR… 13 10
- 4 eXL30 CASSLYGTSGGQETQYF TCRBV03-01/03-… TCRBJ… RFLYII… 17 10
- 5 eOX52 CASSGLAGASTDTQYF TCRBV06-X TCRBJ… AFLLFL… 16 9
- 6 eEE228 CASSQKCLAAYEQYF TCRBV07-07 TCRBJ… LWPVTL… 15 9
- 7 eOX52 CASSQAGPGTEAFF TCRBV04-01 TCRBJ… YEDFLE… 14 14
- 8 eMR25 CASSHGGSSYNEQFF TCRBV06-02/06-… TCRBJ… QWNLVI… 15 10
- 9 eEE226 CASSLGDEQYF TCRBV07-09 TCRBJ… YLCFLA… 11 9
-10 eAV88 CASSFQGLASNEQFF TCRBV27-01 TCRBJ… FLAFLL… 15 9
+ Experiment CDR3b V_gene J_gene peptide k_CDR3b k_peptide
+ <chr> <chr> <chr> <chr> <chr> <int> <int>
+ 1 eHO136 CSARDFVQSYGYTF TCRBV20-X TCRBJ01-02 CNDPFLGV… 14 10
+ 2 eEE240 CSAGGTSDYGYTF TCRBV20-X TCRBJ01-02 YLCFLAFLL 13 9
+ 3 eXL27 CASSPRDRPVYEQYF TCRBV18-01 TCRBJ02-07 RFLYIIKL… 15 10
+ 4 ePD76 CASSHRLAGFPYEQYF TCRBV11-02 TCRBJ02-07 SLIDFYLC… 16 10
+ 5 eOX46 CSVHGQHTEAFF TCRBV29-01 TCRBJ01-01 LLFLVLIML 12 9
+ 6 eXL37 CSATGGGQPQHF TCRBV20-X TCRBJ01-05 YLCFLAFLL 12 9
+ 7 eEE228 CASSLPGSEAFF TCRBV07-09 TCRBJ01-01 MIELSLID… 12 10
+ 8 eEE240 CASSRGAGELFF TCRBV04-01 TCRBJ02-02 SINFVRII… 12 10
+ 9 eAV91 CASSEGGNQPQHF TCRBV10-02 TCRBJ01-05 HVTFFIYNK 13 9
+10 eXL30 CSLMGSSYNSPLHF TCRBV20-X TCRBJ01-06 AFPFTIYSL 14 9
# A tibble: 10 × 7
- Experiment CDR3b V_gene J_gene peptide k_CDR3b k_peptide
- <chr> <chr> <chr> <chr> <chr> <int> <int>
- 1 eEE224 CSAVRGLSSYEQYF TCRBV20-X TCRBJ… NVFAFP… 14 9
- 2 eXL27 CASGNEQFF TCRBV12-03/12-04 TCRBJ… NVFAFP… 9 10
- 3 eEE228 CASSQRWAVTYNEQFF TCRBV21-01 TCRBJ… YLYALV… 16 9
- 4 eEE226 CASSDLPGGVYEQYF TCRBV10-02 TCRBJ… FLAFLL… 15 9
- 5 eOX54 CASSPAGGWVTDTQYF TCRBV07-03 TCRBJ… KLSYGI… 16 9
- 6 eQD110 CASMAEASNTGELFF TCRBV19-01 TCRBJ… YFLQSI… 15 10
- 7 ePD82 CASSDLASETQYF TCRBV25-01 TCRBJ… INVFAF… 13 10
- 8 eXL27 CASSFLGPAYEQYF TCRBV12-X TCRBJ… WLLWPV… 14 9
- 9 eEE226 CASSIDQENTEAFF TCRBV19-01 TCRBJ… LIIMRT… 14 9
-10 eXL30 CASSPVHPGNTEAFF TCRBV27-01 TCRBJ… TLACFV… 15 10
+ Experiment CDR3b V_gene J_gene peptide k_CDR3b k_peptide
+ <chr> <chr> <chr> <chr> <chr> <int> <int>
+ 1 eHH175 CSADIAGAAYEQYF TCRBV20-X TCRBJ02-07 SLIDFYL… 14 10
+ 2 eEE228 CASSEGLAGEEEQFF TCRBV11-01 TCRBJ02-01 HLVDFQV… 15 9
+ 3 eAV93 CASSAGESNEQYF TCRBV07-09 TCRBJ02-07 FLWLLWP… 13 10
+ 4 eOX52 CSVTLASEQYF TCRBV29-01 TCRBJ02-07 FYLCFLA… 11 9
+ 5 eOX52 CASSSHPASGDSNIQYF TCRBV07-08 TCRBJ02-04 LYSPIFL… 17 9
+ 6 eQD123 CASSPGEGSTGELFF TCRBV09-01 TCRBJ02-02 QSINFVR… 15 9
+ 7 eLH47 CASSSPLEGVRYGYTF TCRBV07-09 TCRBJ01-02 TLKKRWQ… 16 9
+ 8 eQD109 CASIPAPRQGLDGYTF TCRBV06-X TCRBJ01-02 NVFAFPF… 16 9
+ 9 eLH46 CASSGDSYEQYF TCRBV09-01 TCRBJ02-07 IMRTFKV… 12 9
+10 eHH175 CASSVEGISLYETQYF TCRBV02-01 TCRBJ02-05 FLAFLLF… 16 9
# A tibble: 10 × 11
Experiment Cohort Age Gender Race A1 A2 B1 B2 C1 C2
<chr> <chr> <dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
- 1 ePD82 COVID-19-C… 60 F <NA> A*26… A*33… B*40… B*44… C*08… C*14…
- 2 eHH173 Healthy (N… 50 M White A*02… A*03… B*35… B*44… C*04… C*05…
- 3 eQD121 COVID-19-C… 38 M <NA> A*01… A*24… B*18… B*57… C*05… C*07…
- 4 eQD108 COVID-19-C… NA <NA> <NA> A*11… A*68… B*08… B*52… C*07… C*12…
- 5 eEE228 Healthy (N… 45 M White A*02… A*02… B*35… B*44… C*04… C*05…
- 6 eQD127 COVID-19-C… 61 F <NA> A*02… A*03… B*27… B*35… C*02… C*04…
- 7 ePD84 Healthy (N… 29 F Asian A*02… A*02… B*13… B*44… C*03… C*07…
- 8 eQD114 COVID-19-C… 73 M <NA> A*01… A*24… B*08… B*41… C*07… C*17…
- 9 eLH50 COVID-19-C… 28 M <NA> A*02… A*26… B*15… B*27… C*01… C*03…
-10 eHO124 Healthy (N… 62 M <NA> A*02… A*03… B*07… B*44… C*07… C*07…
+ 1 eHO136 COVID-19-C… 51 M Hisp… "" "" "" "" "" ""
+ 2 eHH175 Healthy (N… 28 M White "A*0… "A*2… "B*0… "B*4… "C*0… "C*1…
+ 3 eQD115 COVID-19-C… 48 M <NA> "A*0… "A*0… "B*0… "B*4… "C*0… "C*0…
+ 4 ePD73 Healthy (N… 37 F White "A*0… "A*0… "B*1… "B*4… "C*0… "C*0…
+ 5 eHO127 COVID-19-C… 28 M <NA> "A*2… "A*2… "B*4… "B*5… "C*0… "C*1…
+ 6 eHO131 COVID-19-C… 58 F <NA> "A*0… "A*0… "B*1… "B*5… "C*0… "C*1…
+ 7 eMR16 COVID-19-C… NA <NA> <NA> "A*0… "A*0… "B*1… "B*1… "C*0… "C*0…
+ 8 eLH44 COVID-19-C… 61 F <NA> "A*0… "A*6… "B*1… "B*3… "C*0… "C*1…
+ 9 eQD129 COVID-19-C… 60 F White "A*0… "A*0… "B*4… "B*5… "C*0… "C*0…
+10 eQD126 COVID-19-C… 54 F <NA> "A*0… "A*0… "B*0… "B*0… "C*0… "C*0…
Remember you can scroll in the data.
@@ -1279,18 +1279,18 @@# A tibble: 10 × 7
- Experiment Cohort Age Gender Race Gene Allele
- <chr> <chr> <dbl> <chr> <chr> <chr> <chr>
- 1 eQD119 COVID-19-Convalescent 51 M <NA> B1 "B*08:0…
- 2 eMR14 COVID-19-Convalescent NA <NA> <NA> B1 "B*07:0…
- 3 eDH107 COVID-19-Convalescent 72 F <NA> A1 "A*03:0…
- 4 eHO141 COVID-19-Acute NA <NA> <NA> C1 ""
- 5 eQD131 COVID-19-Exposed NA <NA> <NA> C1 "C*02:0…
- 6 eNL192 COVID-19-Convalescent NA <NA> <NA> A2 ""
- 7 eJL147 Healthy (No known exposure) 40 M Mixed Race B1 "B*07:0…
- 8 eEE240 Healthy (No known exposure) 23 M White B1 "B*40:0…
- 9 eNL187 COVID-19-Convalescent NA <NA> <NA> C1 ""
-10 eJL147 Healthy (No known exposure) 40 M Mixed Race A2 "A*11:0…
+ Experiment Cohort Age Gender Race Gene Allele
+ <chr> <chr> <dbl> <chr> <chr> <chr> <chr>
+ 1 eHO129 COVID-19-Convalescent 66 F Asian A1 "A*24:02:01"
+ 2 eLH51 COVID-19-Convalescent 55 M Asian C2 "C*12:04:02"
+ 3 eQD138 COVID-19-Convalescent NA <NA> <NA> B2 "B*44:03:01"
+ 4 eXL31 Healthy (No known exposure) 28 M White B2 "B*44:03"
+ 5 eLH57 COVID-19-Convalescent NA <NA> <NA> B1 "B*07:02:01"
+ 6 ePD83 Healthy (No known exposure) 29 F Asian C1 "C*03:04"
+ 7 eHO138 COVID-19-B-Non-Acute NA <NA> <NA> B1 ""
+ 8 eJL148 COVID-19-Convalescent 41 F <NA> C1 "C*03:03:01"
+ 9 eXL27 Healthy (No known exposure) 24 M White C1 "C*03:04"
+10 eXL32 Healthy (No known exposure) 37 F White C2 "C*04:01"
Remember, what we are aiming for here, is to create one data set from two. So:
@@ -1306,18 +1306,18 @@# A tibble: 10 × 2
- Experiment Allele
- <chr> <chr>
- 1 eJL151 "A*68:01:01"
- 2 eJL143 "B*14:01"
- 3 eJL153 "B*15:01:01"
- 4 eLH53 "B*57:01:01"
- 5 eQD120 "A*31:01:02"
- 6 eHO131 "B*51:01:01"
- 7 eNL189 ""
- 8 eOX49 "A*26:01"
- 9 eQD129 "C*06:02:01"
-10 eEE240 "A*02:01"
+ Experiment Allele
+ <chr> <chr>
+ 1 eAV93 B*35:01
+ 2 eHO134 A*01:01:01
+ 3 eQD127 C*04:01:01
+ 4 eQD114 B*08:01:01
+ 5 eXL30 B*39:01
+ 6 eJL152 C*07:02:01
+ 7 eJL149 B*44:03:01
+ 8 eQD112 B*07:02:01
+ 9 eHO131 A*02:01:01
+10 eJL164 A*02:01:01
Use the View()
function again, to look at the meta_data
. Notice something? Some alleles are e.g. A*11:01
, whereas others are B*51:01:02
. You can find information on why, by visiting Nomenclature for Factors of the HLA System.
# A tibble: 10 × 3
Experiment Allele Allele_F_1_2
<chr> <chr> <chr>
- 1 eXL32 C*04:01 C*04:01
- 2 eJL151 A*24:02:01 A*24:02
- 3 eDH105 A*24:02:01 A*24:02
- 4 eJL158 A*24:02:01 A*24:02
- 5 eEE224 B*40:01 B*40:01
- 6 eJL161 C*07:01:01 C*07:01
- 7 eQD108 A*68:01:02 A*68:01
- 8 eJL160 A*02:01:01 A*02:01
- 9 ePD84 C*07:06 C*07:06
-10 eJL149 C*16:01:01 C*16:01
+ 1 eQD127 C*02:02:02 C*02:02
+ 2 eQD136 B*15:01:01 B*15:01
+ 3 eQD121 C*07:01:01 C*07:01
+ 4 eLH41 B*13:02:01 B*13:02
+ 5 eLH59 A*02:01:01 A*02:01
+ 6 eLH47 C*07:01:01 C*07:01
+ 7 eLH42 A*23:01:01 A*23:01
+ 8 eQD113 A*11:01:01 A*11:01
+ 9 eLH48 A*03:01:01 A*03:01
+10 eQD121 B*57:01:01 B*57:01
The asterisk, i.e. *
is a rather annoying character because of ambiguity, so:
# A tibble: 10 × 2
Experiment Allele
<chr> <chr>
- 1 eLH49 A03:01
- 2 eMR22 A03:01
- 3 eQD128 C08:01
- 4 eQD108 B52:01
- 5 eEE226 C04:01
- 6 eLH47 A01:01
- 7 eEE228 C04:01
- 8 eJL160 A02:01
- 9 eQD108 C07:01
-10 eEE226 A01:01
+ 1 eDH105 C08:01
+ 2 eQD131 C02:02
+ 3 eQD132 C07:02
+ 4 eJL157 B07:02
+ 5 eJL151 B40:01
+ 6 eHO129 C08:01
+ 7 eOX46 C05:01
+ 8 ePD86 A02:01
+ 9 ePD80 A02:01
+10 eJL154 C04:03
# A tibble: 10 × 7
- Experiment CDR3b V_gene J_gene peptide k_CDR3b k_peptide
- <chr> <chr> <chr> <chr> <chr> <int> <int>
- 1 eXL30 CASSGLAVDEQFF TCRBV06-02/06-03 TCRBJ… LIDFYL… 13 9
- 2 ePD83 CASSQDMGIYNEQFF TCRBV03-01/03-02 TCRBJ… YQIGGY… 15 9
- 3 eOX49 CASSQSLDPDAYEQYF TCRBV07-09 TCRBJ… LIDFYL… 16 9
- 4 eXL31 CSLDENYGYTF TCRBV20-01 TCRBJ… FYLCFL… 11 10
- 5 eQD125 CASSLDVGSPLHF TCRBV11-02 TCRBJ… LQIPFA… 13 9
- 6 eXL32 CASRGDRGRGYGYTF TCRBV25-01 TCRBJ… LIDFYL… 15 9
- 7 eXL30 CSASTNEGGQETQYF TCRBV20-X TCRBJ… MIELSL… 15 10
- 8 eEE226 CASSHNIARGPYEQYF TCRBV14-01 TCRBJ… FYLCFL… 16 10
- 9 eAV88 CASSLRTDNSPLHF TCRBV06-06 TCRBJ… FYLCFL… 14 9
-10 eOX54 CASSQGPALHF TCRBV03-01/03-02 TCRBJ… GYINVF… 11 10
+ Experiment CDR3b V_gene J_gene peptide k_CDR3b k_peptide
+ <chr> <chr> <chr> <chr> <chr> <int> <int>
+ 1 eLH47 CASSLAGGPAGELFF TCRBV05-01 TCRBJ02-02 LSPRWYF… 15 9
+ 2 ePD83 CASSARSTGELFF TCRBV19-01 TCRBJ02-02 YQIGGYT… 13 10
+ 3 eOX52 CASSFGTITAQETQYF TCRBV28-01 TCRBJ02-05 NYNYLYR… 16 9
+ 4 eEE228 CASSLEEGVLGYEQYF TCRBV07-02 TCRBJ02-07 RNPANNA… 16 10
+ 5 eOX56 CASSLDSYTSTDTQYF TCRBV07-06 TCRBJ02-03 MIELSLI… 16 10
+ 6 eOX52 CASSLEVLPRETQYF TCRBV11-03 TCRBJ02-05 FYLCFLA… 15 9
+ 7 eEE224 CASSLTGMNTEAFF TCRBV27-01 TCRBJ01-01 VTPSGTW… 14 10
+ 8 eEE224 CASSLTSGTSGNQPQHF TCRBV05-06 TCRBJ01-05 LIDFYLC… 17 9
+ 9 eEE224 CSASIEGQETQYF TCRBV20-01 TCRBJ02-05 YLCFLAF… 13 9
+10 ePD76 CASSQRWGADTEAFF TCRBV04-01 TCRBJ01-01 FVCNLLL… 15 10
# A tibble: 10 × 8
- Experiment CDR3b V_gene J_gene peptide k_CDR3b k_peptide Allele
- <chr> <chr> <chr> <chr> <chr> <int> <int> <chr>
- 1 eXL30 CASSYFSGETQYF TCRBV… TCRBJ… TESIVR… 13 10 B35:02
- 2 eOX52 CASSQEGTGTYEQYF TCRBV… TCRBJ… NATRFA… 15 9 A24:02
- 3 eEE228 CASSLMQGATEAFF TCRBV… TCRBJ… LWLLWP… 14 9 C04:01
- 4 ePD85 CASSAGQGLIYEQYF TCRBV… TCRBJ… YQIGGY… 15 9 A29:01
- 5 eHH173 CASSNPGWAAGGPVIGTE… TCRBV… TCRBJ… YIIKLI… 21 9 C05:01
- 6 eEE226 CASKEGRGQPPYEQYF TCRBV… TCRBJ… RNPANN… 16 10 C04:01
- 7 eXL37 CASSPTSGARREQYF TCRBV… TCRBJ… DFLEYH… 15 9 B40:01
- 8 eQD110 CASRPGIHTIYF TCRBV… TCRBJ… FLQSIN… 12 10 A11:01
- 9 eXL31 CSATGTSGFEQYF TCRBV… TCRBJ… AFLLFL… 13 9 A29:02
-10 eEE226 CASSSEGQGRAYEQYF TCRBV… TCRBJ… TFKVSI… 16 9 B35:02
+ Experiment CDR3b V_gene J_gene peptide k_CDR3b k_peptide Allele
+ <chr> <chr> <chr> <chr> <chr> <int> <int> <chr>
+ 1 eEE224 CASSGATSGITGELFF TCRBV0… TCRBJ… MIELSL… 16 10 C03:04
+ 2 eEE228 CSARDYMVASGKGYEQYF TCRBV2… TCRBJ… FPPTSF… 18 9 C04:01
+ 3 eEE224 CASSTTGGGEQFF TCRBV0… TCRBJ… SVLLFL… 13 9 B27:05
+ 4 eLH51 CASPLGTGSSYEQYF TCRBV2… TCRBJ… APSASA… 15 10 A34:01
+ 5 eOX54 CASNLRLTGNSPLHF TCRBV2… TCRBJ… SLIDFY… 15 10 B15:03
+ 6 eOX52 CASSGGDTYEQYF TCRBV1… TCRBJ… VQELYS… 13 9 B40:01
+ 7 eEE226 CSVYLALAKNIQYF TCRBV2… TCRBJ… FLWLLW… 14 9 C07:02
+ 8 eLH51 CASSESILGYNEQFF TCRBV1… TCRBJ… SLIDFY… 15 10 C12:04
+ 9 eXL30 CASSLNEQYF TCRBV0… TCRBJ… FYLCFL… 10 10 A01:01
+10 eXL31 CASSLEDYNEQFF TCRBV1… TCRBJ… INFVRI… 13 9 B44:03
This mini symposium on Applications of R for Bio Data Science in Industry aims to give students a glimpse into how modern bio data science is transforming value creation in the pharmaceutical industry and healthcare sector.
+This mini symposium on Applications of R for Bio Data Science in Industry offers participants a glimpse into how modern Bio Data Science is transforming value creation in the pharmaceutical and healthcare sectors.
+Each talk features a Bio Data Science professional sharing unique insights into real-world projects that apply cutting-edge Bio Data Science techniques, while also providing a glimpse into the career paths that have enabled their exciting work. Every talk will be followed by a Q&A session.
run_simulation(temp = c(15, 20, 25, 30, 35))
[1] 28.97596 41.86122 51.98388 60.55778 75.83143
+[1] 33.45604 42.73547 49.41673 60.40195 72.35998
Let’s just go ahead and create some data, we can work with. For this example, we take samples starting at 5 degree celsius and then in increments of 1 up to 50 degrees:
diff --git a/docs/search.json b/docs/search.json index d4b137a..fe5df39 100644 --- a/docs/search.json +++ b/docs/search.json @@ -340,7 +340,7 @@ "href": "lab05.html#creating-the-micro-report", "title": "Lab 5: Data Wrangling II", "section": "Creating the Micro-Report", - "text": "Creating the Micro-Report\n\nBackground\nFeel free to copy paste the one stated in the background-section above\n\n\nAim\nState the aim of the micro-report, i.e. what are the questions you are addressing?\n\n\nLoad Libraries\n\n\n\nLoad the libraries needed\n\n\nLoad Data\nRead the two data sets into variables peptide_data and meta_data.\n\n\n\nClick here for hint\n\n\nThink about which Tidyverse package deals with reading data and what are the file types we want to read here?\n\n\n\n\n\n\nData Description\nIt is customary to include a description of the data, helping the reader if the report, i.e. your stakeholder, to get an easy overview\n\nThe Subject Meta Data\nLet’s take a look at the meta data:\n\nmeta_data |> \n sample_n(10)\n\n# A tibble: 10 × 30\n Experiment Subject `Cell Type` `Target Type` Cohort Age Gender Race \n