-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patha1_analyzer.r
executable file
·329 lines (280 loc) · 14.6 KB
/
a1_analyzer.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
#!/usr/local/bin/Rscript
############# FUNCTION ##############
installLibrary <- function(pkg_name){
#### Check required package and install if the package is not in the library
if (pkg_name %in% rownames(installed.packages()) == FALSE) {
install.packages(pkg_name, repos='http://cran.us.r-project.org', quiet=TRUE)
}
require(pkg_name, character.only=TRUE, quietly=TRUE)
}
file_parser <- function(filenames, ...) {
pattern <- "(?P<A>^[A-Za-z0-9]+?)_(?P<B>[A-Za-z0-9]+?)\\.csv$"
m <- regexpr(pattern, filenames, perl=TRUE)
file_lists <- do.call(rbind, lapply(seq_along(m), function(i) {
if (m[i] == -1) return(NULL)
st <- attr(m, "capture.start")[i, ]
lt <- attr(m, "capture.length")[i, ]
c(substring(filenames[i], st, st+lt-1))
}))
if (is.null(file_lists)) {
stop("Your input directory does not have any valid files. Please provide the right input folder to --inputfolder argument!\n")
}else{
colnames(file_lists) <- attr(m, "capture.names")
file_lists <- cbind(filename=filenames[m!=-1], file_lists)
return(file_lists)
}
}
.get_formula <- function(x) {
basic_formula <- "Surv(time, event) ~ type + V4 + V6"
if (x[,uniqueN(V5)] > 1) basic_formula <- paste0(basic_formula, ' + V5')
return(paste(c(basic_formula, colnames(x)[-(1:9)]), collapse=" + "))
}
plotStats <- function(outdf,dAn, dBn, label, opt) {
##### study duration #####
du = round(opt$duration*365.24)
##### generate table of frequency #####
tb <- data.frame(dropoff = sapply(split(outdf,outdf$type),function(z) sum(z$event == 0 & z$time != du)),
event = sapply(split(outdf,outdf$type),function(z) sum(z$event == 1 )),
survived = sapply(split(outdf,outdf$type),function(z) sum(z$event == 0 & z$time == du)))
tb <- t(tb)
rownames(tb) <- c("Total Drop-off Frequency","Event Frequency","Survived Frequency")
colnames(tb) <- c("Non-Exposed","Exposed")
#### subset the input csv to only dropoff patients ####
dropset = subset(outdf,event == 0 & time != du)
#### calculate ks p-value ####
ksp = ks.test(dropset[type==1,time],dropset[type==0,time])$p.value
dropset$type <- factor(dropset$type,labels = c("Non-Exposed","Exposed"))
cat(" Save drop-off distribution plot:", paste0(label, ".dropoff.png\n"))
gg_graph <- ggplot(aes(time),data=dropset) +
# geom_histogram(aes(y=..density..),colour="black", fill="white") +
# geom_histogram(colour="black", fill="white") +
# geom_freqpoly() +
geom_density(alpha=.2, fill="#FF6666") +
ylab("Density") + theme_bw() + facet_grid(.~type) +
xlab(paste0("Time (Days)\nExposure = ",dAn," KS test P-value = ",signif(ksp,3)) )+
ggtitle(paste0("Time to Drop-off Distribution\nOutcome = ",dBn)) +
# annotation_custom(tableGrob(tb), xmin=2500, xmax=2501, ymin=75, ymax=76) +
theme(plot.title=element_text(hjust=0.5))
# geom_text(data = tb,aes(label =type))
g_table <- tableGrob(tb)
cbg <- grid.arrange(gg_graph, g_table,
nrow=2,
as.table=TRUE,
heights=c(5,2))
ggsave(file.path(opt$outputfolder, paste0(label, ".dropoff.png")), cbg,
width=7.25, height=4.35)
}
RunCoxPH <- function(outdf, A, B, opt) {
###### Run CoxPH model for A to B ######
label <- paste0(A, "_", B)
cat(paste0("Processing ", label, " .... \n"))
default_formula = .get_formula(outdf)
# Test if user wants to control for pair variable
if (opt$pair){
formula <- paste0(default_formula, " + frailty(pair)")
coetar <- c(1,2,4,6)
}else{
formula <- default_formula
coetar <- c(1,3:5)
}
out <- tryCatch({
model <- coxph(as.formula(formula), data=outdf, ties='breslow')
testHR <- cox.zph(model)
HRp <- testHR$table["GLOBAL", "p"]
sig <- summary(model)$coef[1,coetar]
expcoe <- exp(sig[1])
testp <- sig[4]
if (abs(expcoe) >= opt$exp_coef && testp <= opt$sigcut){
dAn <- opt$metafile[opt$metafile[,1] == A, 2]
dBn <- opt$metafile[opt$metafile[,1] == B, 2]
plotStats(outdf=outdf,dAn=dAn, dBn=dBn, label=label, opt=opt)
cat(" Save Cox survival plot:", paste0(label, ".cox.survival.png"), "\n")
subobj <- survfit(with(outdf, Surv(time, event)) ~ type, outdf,
conf.type="log-log")
autoplot(subobj, censor.shape = '*') + theme_light() +
ylab(paste0(dBn, " Survival Prob")) +
xlab(paste0("Time (Days)\n Exposure = ", dAn)) +
# guides(fill=guide_legend(title="Exposure")) +
ggtitle(paste0(dAn, " vs. ", dBn, " Cox Survival Curve")) +
theme(plot.title=element_text(hjust=0.5))
ggsave(file.path(opt$outputfolder, paste0(label, ".cox.survival.png")),
width=6.5, height=6.15)
cat(" Save Cox residual plot:", paste0(label, ".cox.residual.png"), "\n")
coxsnellres <- outdf$event-resid(model, type="martingale")
fitres <- survfit(coxph(Surv(coxsnellres, outdf$event) ~ 1,
ties='breslow'), type='aalen')
ggplot(data.frame(x=fitres$time, y=-log(fitres$surv)), aes(x=x, y=y)) +
geom_line() + theme_light() +
ylab(paste0(dBn, " Estimated Cumulative Hazard Rates")) +
xlab(paste0("Cox-Snell Residuals\n Exposure = ", dAn)) +
geom_abline(intercept=0, slope=1, colour="red", linetype=2) +
ggtitle(paste0(dAn, " vs. ", dBn, " Cox-Snell Residual Plot")) +
theme(plot.title=element_text(hjust=0.5))
ggsave(file.path(opt$outputfolder, paste0(label, ".cox.residual.png")),
width=6.5, height=6.15)
}
res <- data.frame(from=A, to=B, sig[1],expcoe, t(sig[2:4]),nrow(outdf), HRp, row.names = NULL)
colnames(res) <- c("from", "to", "coef", "exp_coef",
"se_coef", "z", "Pr", "N", "HRtest-p")
res
},
error = function(e) {
return(NULL)
})
return(out)
}
RunRF <- function(outdf, A, B, opt) {
###### Run RF model for A to B ######
label <- paste0(A, "_", B)
formula <- .get_formula(outdf)
outdf <- as.data.frame(unclass(outdf))
outdf$type <- factor(outdf$type)
dAn <- opt$metafile[opt$metafile[,1] == A, 2]
dBn <- opt$metafile[opt$metafile[,1] == B, 2]
out <- tryCatch({
model <- rfsrc(as.formula(formula), data=outdf,
ntree=opt$ntree, tree.err=TRUE)
t <- c(model$time.interest[1], diff(model$time.interest))
suvtab <- data.frame(model$survival)
cat(" Save RF survival plot:", paste0(label, ".rf.survival.png"), "\n")
dplt <- data.frame(timePoint=model$time.interest,
sapply(split(suvtab, outdf$type), colMeans))
colnames(dplt)[2:3] <- c("NonExposed", "Exposed")
tplt <- melt(dplt, id.vars=c("timePoint"))
ggplot(tplt, aes(x=timePoint, y=value, col=variable)) +
geom_line() + theme_light() +
ylab(paste0(dBn, " Survival Prob")) +
xlab(paste0("Time (Days)\n Exposure = ", dAn)) +
guides(colour=guide_legend(title="Group")) +
ggtitle(paste0(dAn, " vs. ", dBn, " RF Survival Curve"))
ggsave(file.path(opt$outputfolder, paste0(label, ".rf.survival.png")),
width=6.95, height=5.05)
area <- rowSums(suvtab*t)
tresult <- t.test(area ~ outdf$type, alternative='g')
data.frame(from=A, to=B,
Pr_wil=wilcox.test(area ~ outdf$type, alternative='g')$p.value,
Pr_t=tresult$p.value,
NonExposedMean=tresult$estimate[1],
exposedMean=tresult$estimate[2],
row.names=NULL)
},
error = function(e) {
return(NULL)
})
return(out)
}
######### FUNCTION END ##############
#### Required packages ######
.cran_packages <- c("KMsurv","survival", "randomForestSRC", "data.table",
"doParallel", "foreach", "optparse", "ggplot2",
"ggfortify","gridExtra","intcox")
sapply(c(.cran_packages), installLibrary)
if (!"OIsurv" %in% rownames(installed.packages())){
install.packages('https://cran.r-project.org/src/contrib/Archive/OIsurv/OIsurv_0.2.tar.gz', repos = NULL, type="source")
}
if (! "intcox" %in% rownames(installed.packages())){
install.packages("https://cran.r-project.org/src/contrib/Archive/intcox/intcox_0.9.3.tar.gz",repos=NULL, type="source")
}
#### Command line options #####
option_list = list(
make_option(c("--inputfolder"), type="character", default='.',
help="Input folder name. \n\t\tShould be a folder that contains all disease trajectories. Each file is named as NameA_NameB.csv. Default is current directory", metavar="character"),
make_option(c("-m", "--metafile"), type="character", default=NULL,
help="Meta file for each disease name [required]. \n\t\tFirst column is the disease ID used in the input file column Disease, second column is the disease name. All the other columns should be additional attribute of the disease, tab separated. Header is needed", metavar="character"),
make_option(c("--outputfolder"), type="character", default=NULL,
help="Survival analysis / random forest PNG output folder, default is the <inputfolder>", metavar="character"),
make_option(c("--method"), type="character", default="CoxPH",
help="Survival Analysis method, choises are CoxPH, RF. The default is CoxPH", metavar="character"),
make_option(c("-o", "--outfile"), type="character", default=NULL,
help="Adjacency matrix output file name, default is <method>.edges.csv", metavar="character"),
make_option(c("--duration"), type="integer", default=5,
help="study duration (years), default is 5 years", metavar="integer"),
make_option(c("-s", "--sigcut"), type="double", default=0.05,
help="Significant P-value cutoff. Only p-values that are less than this cutoff will be considered as significant P-values, and kept in the adjacency matrix. Default is 0.05", metavar="double"),
make_option(c("-e", "--exp_coef"), type="double", default=1.0,
help="Exponentiated coefficients cutoff used in plotting survival curve. Default is 1.0", metavar="double"),
make_option(c("-a", "--adjust"), type="character", default="BH",
help = "Method of adjusting p-values, choices are holm, hochberg, hommel, bonferroni, BY, and fdr. The default is BH", metavar="character"),
make_option(c("-n", "--ntree"), type="integer", default=1000,
help="Number of trees to run random forest, default is 1000", metavar="integer"),
make_option(c("--pair"), type="logical", action = "store_true",default=FALSE,
help="A flag to control for matched subject in CoxPH. Default is false"),
make_option(c("-p", "--processors"), type="integer", default=8,
help="Number of cores/CPUs to use, default is 8",metavar="integer")
)
opt_parser = OptionParser(usage = "usage: Rscript %prog -i <inputFileName> -m <metaFileName> [options]",
option_list=option_list,
description = "\n\t\t >> This is the step 2 of EMR package. << \n\tThis R script will perform either Cox-PH regression or random forest survival analysis on the valid files in result folder from step 1. \n\t\tOutputs:\n\t\t > CoxPH: an adjacency matrix with all the significant hazard ratios, hazard ratio test p-values, and survival curve and residual graphs.\n\t\t > RF: Wilcoxon and T test p-values, mean time to event in exposed and non-exposed group, and survival curve graphs. \n\t\t*Multiple test correction will be applied to the p-values in both methods.")
opt = parse_args(opt_parser)
###### Check arguments ######
if (any(sapply(c(.cran_packages), installLibrary) == F)) {
print_help(opt_parser)
stop("At least one of required R packages is not available. Please install it manually.\n", call.=FALSE)
}
### check validity of meta file format ###
if (is.null(opt$metafile)){
print_help(opt_parser)
stop("Please supply meta file name as -m/--metafile <filename>.\n", call.=FALSE)
}
opt$metafile <- read.csv(opt$metafile, sep="\t", stringsAsFactors=FALSE)
if (ncol(opt$metafile) < 2){
stop("Your metafile has less than 2 columns. Please correct!\n", call.=FALSE)
}
if (!opt$method %in% c("CoxPH","RF")){
print_help(opt_parser)
stop("Please enter the correct method for analysis --method <method>. Choices are CoxPH, RF. Case sensitive.\n", call.=FALSE)
}
if (!(opt$adjust %in% p.adjust.methods)){
print_help(opt_parser)
stop("Please supply an existing method of adjusting P-value from holm, hochberg, hommel, bonferroni, BY, BH and fdr.\n", call.=FALSE)
}
if (!is.integer(opt$processors)){
print_help(opt_parser)
stop("Number of processors is not integer, please correct!\n", call.=FALSE)
}
if (is.null(opt$outputfolder)){
opt$outputfolder <- opt$inputfolder
}
if (!file.exists(opt$outputfolder)) {
dir.create(opt$outputfolder)
cat("Creating output folder:", file.path(getwd(), opt$outputfolder), "\n")
}
if (is.null(opt$outfile)){
opt$outfile <- paste0(opt$method, ".edge.csv")
}
##### Read in Input ########
# dir <- "/Users/ruichenrong/Projects/Loyola/Huaiying_codes/test_result"
# test_filenames <- c('A_B.csv', '1_2.csv', 'AAA_12dgf.csv', 'A.vs.B.csv', 'a1_Run.r', 'A__B.csv', 'AA_BB.csv.csv', 'AA_BB_CC.csv.csv', '__abc_abc.csv')
valid_files <- file_parser(list.files(opt$inputfolder))
cat(">> Totally", nrow(valid_files), "valid csv files in input folder: \n",
opt$inputfolder, "\n")
registerDoParallel(cores=opt$processors)
cat("Using ", getDoParWorkers(), " processors...\n", sep="")
#final <- foreach(i=1:nrow(valid_files), .errorhandling="remove") %do% {
final <- foreach(i=1:nrow(valid_files), .errorhandling="remove") %dopar% {
# for (i in 1:nrow(valid_files)) {
dt <- fread(file.path(opt$inputfolder, valid_files[i,1]),
sep=",", stringsAsFactors=FALSE)
# dt[,V3 := as.Date(V3)]
get(paste0("Run", opt$method))(dt, valid_files[i,2], valid_files[i,3], opt)
}
final <- do.call(rbind.data.frame, final)
### multiple test correction ####
pvalue_col <- grep("^Pr", colnames(final), value=TRUE)
adjust_p <- sapply(pvalue_col,
function(i) p.adjust(final[,i], method=opt$adjust))
colnames(adjust_p) <- paste(pvalue_col, opt$adjust, sep=".")
final <- cbind(final, adjust_p)
if (opt$method == "CoxPH") {
final <- final[final[, "Pr"] <= opt$sigcut & final$exp_coef >= opt$exp_coef,]
}
### add metafile attribute to output ###
frmatr <- paste("from", colnames(opt$metafile)[-1], sep="_")
toatr <- paste("to", colnames(opt$metafile)[-1], sep="_")
atrmeta <- cbind(opt$metafile[match(final$from, opt$metafile[,1]), -1],
opt$metafile[match(final$to, opt$metafile[,1]), -1])
colnames(atrmeta) <- c(frmatr, toatr)
write.csv(cbind(final, atrmeta), file.path(opt$outputfolder, opt$outfile),
row.names=FALSE, quote=FALSE)
cat("\nJob Completed!\n")
proc.time()