English | 简体中文
MMOCR 是基于 PyTorch 和 mmdetection 的开源工具箱,专注于文本检测,文本识别以及相应的下游任务,如关键信息提取。 它是 OpenMMLab 项目的一部分。
主分支目前支持 PyTorch 1.5 以上的版本。
文档:https://mmocr.readthedocs.io/en/latest/。
-全流程
该工具箱不仅支持文本检测和文本识别,还支持其下游任务,例如关键信息提取。
-多种模型
该工具箱支持用于文本检测,文本识别和关键信息提取的各种最新模型。
-模块化设计
MMOCR 的模块化设计使用户可以定义自己的优化器,数据预处理器,模型组件如主干模块,颈部模块和头部模块,以及损失函数。有关如何构建自定义模型的信 息,请参考快速入门。
-众多实用工具
该工具箱提供了一套全面的实用程序,可以帮助用户评估模型的性能。它包括可对图像,标注的真值以及预测结果进行可视化的可视化工具,以及用于在训练过程中评估模型的验证工具。它还包括数据转换器,演示了如何将用户自建的标注数据转换为 MMOCR 支持的标注文件。
支持的算法:
(click to collapse)
该项目采用 Apache 2.0 license 开源许可证。
如果您发现此项目对您的研究有用,请考虑引用:
@misc{mmocr2021,
title={MMOCR: A Comprehensive Toolbox for Text Detection, Recognition and Understanding},
author={MMOCR Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmocr}},
year={2021}
}
最新的月度版本 v0.1.0 在 2021.04.07 发布。
测试结果和模型可以在模型库中找到。
请参考安装文档进行安装。
请参考快速入门文档学习 MMOCR 的基本使用。
我们感谢所有的贡献者为改进和提升 MMOCR 所作出的努力。请参考贡献指南来了解参与项目贡献的相关指引。
MMOCR 是一款由来自不同高校和企业的研发人员共同参与贡献的开源项目。我们感谢所有为项目提供算法复现和新功能支持的贡献者,以及提供宝贵反馈的用户。 我们希望此工具箱可以帮助大家来复现已有的方法和开发新的方法,从而为研究社区贡献力量。
- MMCV: OpenMMLab 计算机视觉基础库
- MMClassification: OpenMMLab 图像分类工具箱与测试基准
- MMDetection: OpenMMLab 检测工具箱与测试基准
- MMDetection3D: OpenMMLab 新一代通用3D目标检测平台
- MMSegmentation: OpenMMLab 语义分割工具箱与测试基准
- MMAction2: OpenMMLab 新一代视频理解工具箱与测试基准
- MMTracking: OpenMMLab 一体化视频目标感知平台
- MMPose: OpenMMLab 姿态估计工具箱与测试基准
- MMEditing: OpenMMLab 图像视频编辑工具箱
- MMOCR: OpenMMLab 全流程文字检测识别理解工具包.
- MMGeneration: OpenMMLab 图片视频生成模型工具箱
扫描下方的二维码可关注 OpenMMLab 团队的 知乎官方账号,加入 OpenMMLab 团队的 官方交流 QQ 群
我们会在 OpenMMLab 社区为大家
- 📢 分享 AI 框架的前沿核心技术
- 💻 解读 PyTorch 常用模块源码
- 📰 发布 OpenMMLab 的相关新闻
- 🚀 介绍 OpenMMLab 开发的前沿算法
- 🏃 获取更高效的问题答疑和意见反馈
- 🔥 提供与各行各业开发者充分交流的平台
干货满满 📘,等你来撩 💗,OpenMMLab 社区期待您的加入 👬