diff --git a/src/lib.rs b/src/lib.rs index 864ba11..fe4e1bd 100644 --- a/src/lib.rs +++ b/src/lib.rs @@ -247,8 +247,8 @@ where /// $ /// \gdef \uk {\hat u \cdot \vec K} - /// \gdef \Lmu {\Lambda^{\mu'}\_{\phantom {\mu'} \mu}} - /// \gdef \Lnu {(\Lambda^T)\_\nu^{\phantom \nu \nu'}} + /// \gdef \Lmu {\Lambda^{\mu\'}\_{\phantom {\mu\'} \mu}} + /// \gdef \Lnu {(\Lambda^T)\_\nu^{\phantom \nu \nu\'}} /// $ /// Lorentz transformation $\Lmu(\hat u, \zeta)$ boosting degree-1/degree-2 tensors to inertial /// `frame` of reference. @@ -271,14 +271,14 @@ where /// Boosts degree-1 tensors by multiplying it from the left: /// /// $$ - /// x^{\mu'} = \Lmu x^\mu + /// x^{\mu\'} = \Lmu x^\mu /// $$ /// /// Boosts degree-2 tensors by multiplying it from the left and its transpose (symmetric for /// pure boosts) from the right: /// /// $$ - /// F^{\mu' \nu'} = \Lmu F^{\mu \nu} \Lnu + /// F^{\mu\' \nu\'} = \Lmu F^{\mu \nu} \Lnu /// $$ /// /// ``` @@ -335,7 +335,7 @@ where /// \begin{pmatrix} /// x^0 \\\\ /// \vec x - /// \end{pmatrix}' = \begin{pmatrix} + /// \end{pmatrix}\' = \begin{pmatrix} /// x^0 \cosh \zeta - \xu \sinh \zeta \\\\ /// \vec x + (\xu (\cosh \zeta - 1) - x^0 \sinh \zeta) \hat u /// \end{pmatrix} @@ -1018,14 +1018,14 @@ where } /// $ - /// \gdef \Bu {B^{\mu'}\_{\phantom {\mu'} \mu} (\vec \beta_u)} - /// \gdef \Bv {B^{\mu''}\_{\phantom {\mu''} \mu'} (\vec \beta_v)} + /// \gdef \Bu {B^{\mu\'}\_{\phantom {\mu\'} \mu} (\vec \beta_u)} + /// \gdef \Bv {B^{\mu\'\'}\_{\phantom {\mu\'\'} \mu\'} (\vec \beta_v)} /// \gdef \Puv {u \oplus v} - /// \gdef \Buv {B^{\mu'}\_{\phantom {\mu'} \mu} (\vec \beta_{\Puv})} - /// \gdef \Ruv {R^{\mu''}\_{\phantom {\mu''} \mu'} (\epsilon)} + /// \gdef \Buv {B^{\mu\'}\_{\phantom {\mu\'} \mu} (\vec \beta_{\Puv})} + /// \gdef \Ruv {R^{\mu\'\'}\_{\phantom {\mu\'\'} \mu\'} (\epsilon)} /// \gdef \R {R (\epsilon)} /// \gdef \Kuv {K(\epsilon)} - /// \gdef \Luv {\Lambda^{\mu''}\_{\phantom {\mu''} \mu} (\vec \beta_{\Puv})} + /// \gdef \Luv {\Lambda^{\mu\'\'}\_{\phantom {\mu\'\'} \mu} (\vec \beta_{\Puv})} /// $ /// Wigner rotation matrix $R(\widehat {\vec \beta_u \wedge \vec \beta_v}, \epsilon)$ of the /// boost composition `self`$\oplus$`frame`.