-
Notifications
You must be signed in to change notification settings - Fork 0
/
polynomial_regression.py
62 lines (51 loc) · 1.84 KB
/
polynomial_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# import libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# import machine learning libraries
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
# import the dataset
dataset = pd.read_csv("Position_Salaries.csv")
X = dataset.iloc[:, 1:-1].values
y = dataset.iloc[:, -1].values
print(dataset)
# Training the Linear Regression model on the whole dataset
lin_reg = LinearRegression()
lin_reg.fit(X, y)
# Training the Polynomial Regression model on the whole dataset
poly_reg = PolynomialFeatures(degree=4)
poly_reg.fit_transform(X)
X_poly = poly_reg.fit_transform(X)
lin_reg_2 = LinearRegression()
lin_reg_2.fit(X_poly, y)
# Visualizing the Linear Regression results
plt.scatter(X, y, color="red")
plt.plot(X, lin_reg.predict(X), color="blue")
plt.title("Truth or Bluff (Linear Regression)")
plt.xlabel("Position Level")
plt.ylabel("Salary")
plt.show()
# Visualizing the Polynomial Regression Results
plt.scatter(X, y, color="red")
plt.plot(X, lin_reg_2.predict(X_poly), color="blue")
plt.title("Truth or Bluff (Polynomial Regression)")
plt.xlabel("Position Level")
plt.ylabel("Salary")
plt.show()
# Visualizing Polynomial Regression Results (higher resolution and smoother curve)
X_grid = np.arange(min(X), max(X), 0.1)
X_grid = X_grid.reshape(len(X_grid), 1)
plt.scatter(X, y, color="red")
plt.plot(X_grid, lin_reg_2.predict(poly_reg.fit_transform(X_grid)), color="blue")
plt.title("Truth or Bluff (Polynomial Regression)")
plt.xlabel("Position Level")
plt.ylabel("Salary")
plt.show()
# Predicting new result with Linear Regression
salary1 = round(lin_reg.predict([[6.5]])[0], 2)
print(salary1)
# Predicting a new salary with Polynomial Regression
salary2 = round(lin_reg_2.predict(poly_reg.fit_transform([[6.5]]))[0], 2)
print(salary2)