From ffe02f93a5e7e6e56573e7135acb380b4e79117f Mon Sep 17 00:00:00 2001 From: qiskit-crowdin-bot <54556828+qiskit-crowdin-bot@users.noreply.github.com> Date: Wed, 29 Nov 2023 09:50:23 -0500 Subject: [PATCH] New translations 05_torch_connector.po (Marathi) --- .../tutorials/05_torch_connector.po | 22 +++++++++---------- 1 file changed, 11 insertions(+), 11 deletions(-) diff --git a/machine-learning/docs/locale/mr_IN/LC_MESSAGES/tutorials/05_torch_connector.po b/machine-learning/docs/locale/mr_IN/LC_MESSAGES/tutorials/05_torch_connector.po index e5894c430de090..335ec1e792332d 100644 --- a/machine-learning/docs/locale/mr_IN/LC_MESSAGES/tutorials/05_torch_connector.po +++ b/machine-learning/docs/locale/mr_IN/LC_MESSAGES/tutorials/05_torch_connector.po @@ -2,8 +2,8 @@ msgid "" msgstr "" "Project-Id-Version: qiskit-docs\n" "Report-Msgid-Bugs-To: \n" -"POT-Creation-Date: 2023-11-10 17:18+0000\n" -"PO-Revision-Date: 2023-11-10 18:27\n" +"POT-Creation-Date: 2023-11-29 12:46+0000\n" +"PO-Revision-Date: 2023-11-29 14:50\n" "Last-Translator: \n" "Language: mr\n" "Language-Team: Marathi\n" @@ -172,39 +172,39 @@ msgstr "" msgid "We take advantage of the ``torchvision`` `API `__ to directly load a subset of the `MNIST dataset `__ and define torch ``DataLoader``\\ s (`link `__) for train and test." msgstr "" -#: ../../tutorials/05_torch_connector.ipynb:1373 +#: ../../tutorials/05_torch_connector.ipynb:1348 msgid "If we perform a quick visualization we can see that the train dataset consists of images of handwritten 0s and 1s." msgstr "" -#: ../../tutorials/05_torch_connector.ipynb:1447 +#: ../../tutorials/05_torch_connector.ipynb:1422 msgid "Step 2: Defining the QNN and Hybrid Model" msgstr "" -#: ../../tutorials/05_torch_connector.ipynb:1458 +#: ../../tutorials/05_torch_connector.ipynb:1433 msgid "This second step shows the power of the ``TorchConnector``. After defining our quantum neural network layer (in this case, a ``EstimatorQNN``), we can embed it into a layer in our torch ``Module`` by initializing a torch connector as ``TorchConnector(qnn)``." msgstr "" -#: ../../tutorials/05_torch_connector.ipynb:1460 +#: ../../tutorials/05_torch_connector.ipynb:1435 msgid "**⚠️ Attention:** In order to have an adequate gradient backpropagation in hybrid models, we MUST set the initial parameter ``input_gradients`` to TRUE during the qnn initialization." msgstr "" -#: ../../tutorials/05_torch_connector.ipynb:1539 +#: ../../tutorials/05_torch_connector.ipynb:1514 msgid "Step 3: Training" msgstr "" -#: ../../tutorials/05_torch_connector.ipynb:1653 +#: ../../tutorials/05_torch_connector.ipynb:1628 msgid "Now we'll save the trained model, just to show how a hybrid model can be saved and re-used later for inference. To save and load hybrid models, when using the TorchConnector, follow the PyTorch recommendations of saving and loading the models." msgstr "" -#: ../../tutorials/05_torch_connector.ipynb:1675 +#: ../../tutorials/05_torch_connector.ipynb:1650 msgid "Step 4: Evaluation" msgstr "" -#: ../../tutorials/05_torch_connector.ipynb:1686 +#: ../../tutorials/05_torch_connector.ipynb:1661 msgid "We start from recreating the model and loading the state from the previously saved file. You create a QNN layer using another simulator or a real hardware. So, you can train a model on real hardware available on the cloud and then for inference use a simulator or vice verse. For a sake of simplicity we create a new quantum neural network in the same way as above." msgstr "" -#: ../../tutorials/05_torch_connector.ipynb:1834 +#: ../../tutorials/05_torch_connector.ipynb:1809 msgid "🎉🎉🎉🎉 **You are now able to experiment with your own hybrid datasets and architectures using Qiskit Machine Learning.** **Good Luck!**" msgstr ""