-
Notifications
You must be signed in to change notification settings - Fork 15
/
app.py
326 lines (274 loc) · 12.3 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import os
import io
import IPython.display
from PIL import Image
import base64
import io
from PIL import Image
import gradio as gr
import requests
import time
import random
import numpy as np
import torch
import os
from transformers import ViTModel, ViTImageProcessor
from utils import text_encoder_forward
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
from utils import latents_to_images, downsampling, merge_and_save_images
from omegaconf import OmegaConf
from accelerate.utils import set_seed
from tqdm import tqdm
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from PIL import Image
from models.celeb_embeddings import embedding_forward
import models.embedding_manager
import importlib
import time
from PIL import Image
import os
os.environ['GRADIO_TEMP_DIR'] = 'qinghewang/tmp'
title = r"""
<h1 align="center">CharacterFactory: Sampling Consistent Characters with GANs for Diffusion Models</h1>
"""
description = r"""
<b>Official Gradio demo</b> for <a href='https://qinghew.github.io/CharacterFactory/' target='_blank'><b>CharacterFactory: Sampling Consistent Characters with GANs for Diffusion Models</b></a>.<br>
How to use:<br>
1. Enter prompts (the character placeholder is "a person"), where each line will generate an image.
2. You can choose to create a new character or continue to use the current one. We have provided some examples, click on the examples below to use.
3. You can choose to use the Normal version (the gender is random), the Man version, and the Woman version.
4. Click the <b>Generate</b> button to begin (Images are generated one by one).
5. Our method can be applied to illustrating books and stories, creating brand ambassadors, developing presentations, art design, identity-consistent data construction and more. Looking forward to your explorations!😊
6. If CharacterFactory is helpful, please help to ⭐ the <a href='https://github.com/qinghew/CharacterFactory' target='_blank'>Github Repo</a>. Thanks!
"""
article = r"""
---
📝 **Citation**
<br>
If our work is helpful for your research or applications, please cite us via:
```bibtex
@article{wang2024characterfactory,
title={CharacterFactory: Sampling Consistent Characters with GANs for Diffusion Models},
author={Wang, Qinghe and Li, Baolu and Li, Xiaomin and Cao, Bing and Ma, Liqian and Lu, Huchuan and Jia, Xu},
journal={arXiv preprint arXiv:2404.15677},
year={2024}
}
```
📧 **Contact**
<br>
If you have any questions, please feel free to open an issue or directly reach us out at <b>[email protected]</b>.
"""
css = '''
#color-bg{display:flex;justify-content: center;align-items: center;}
.color-bg-item{width: 100%; height: 32px}
#main_button{width:100%}
<style>
'''
model_id = "stabilityai/stable-diffusion-2-1-base"
pipe = StableDiffusionPipeline.from_pretrained(model_id) # , torch_dtype=torch.float16
# model_path = "/home/use/.cache/huggingface/hub/models--stabilityai--stable-diffusion-2-1/snapshots/5cae40e6a2745ae2b01ad92ae5043f95f23644d6"
# pipe = StableDiffusionPipeline.from_pretrained(model_path)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
vae = pipe.vae
unet = pipe.unet
text_encoder = pipe.text_encoder
tokenizer = pipe.tokenizer
scheduler = pipe.scheduler
input_dim = 64
original_forward = text_encoder.text_model.embeddings.forward
text_encoder.text_model.embeddings.forward = embedding_forward.__get__(text_encoder.text_model.embeddings)
embedding_manager_config = OmegaConf.load("datasets_face/identity_space.yaml")
normal_Embedding_Manager = models.embedding_manager.EmbeddingManagerId_adain(
tokenizer,
text_encoder,
device = device,
training = True,
experiment_name = "normal_GAN",
num_embeds_per_token = embedding_manager_config.model.personalization_config.params.num_embeds_per_token,
token_dim = embedding_manager_config.model.personalization_config.params.token_dim,
mlp_depth = embedding_manager_config.model.personalization_config.params.mlp_depth,
loss_type = embedding_manager_config.model.personalization_config.params.loss_type,
vit_out_dim = input_dim,
)
man_Embedding_Manager = models.embedding_manager.EmbeddingManagerId_adain(
tokenizer,
text_encoder,
device = device,
training = True,
experiment_name = "man_GAN",
num_embeds_per_token = embedding_manager_config.model.personalization_config.params.num_embeds_per_token,
token_dim = embedding_manager_config.model.personalization_config.params.token_dim,
mlp_depth = embedding_manager_config.model.personalization_config.params.mlp_depth,
loss_type = embedding_manager_config.model.personalization_config.params.loss_type,
vit_out_dim = input_dim,
)
woman_Embedding_Manager = models.embedding_manager.EmbeddingManagerId_adain(
tokenizer,
text_encoder,
device = device,
training = True,
experiment_name = "woman_GAN",
num_embeds_per_token = embedding_manager_config.model.personalization_config.params.num_embeds_per_token,
token_dim = embedding_manager_config.model.personalization_config.params.token_dim,
mlp_depth = embedding_manager_config.model.personalization_config.params.mlp_depth,
loss_type = embedding_manager_config.model.personalization_config.params.loss_type,
vit_out_dim = input_dim,
)
text_encoder.text_model.embeddings.forward = original_forward
DEFAULT_STYLE_NAME = "Watercolor"
MAX_SEED = np.iinfo(np.int32).max
def replace_phrases(prompt):
replacements = {
"a person": "v1* v2*",
"a man": "v1* v2*",
"a woman": "v1* v2*",
"a boy": "v1* v2*",
"a girl": "v1* v2*"
}
for phrase, replacement in replacements.items():
prompt = prompt.replace(phrase, replacement)
return prompt
def handle_prompts(prompts_array):
prompts = prompts_array.splitlines()
prompts = [prompt + ', facing to camera, best quality, ultra high res' for prompt in prompts]
prompts = [replace_phrases(prompt) for prompt in prompts]
return prompts
def generate_image(chose_emb, choice, gender_GAN, prompts_array):
prompts = handle_prompts(prompts_array)
print("gender:",gender_GAN)
# if choice == "Create a new character":
# c = "create"
# elif choice == "Still use this character":
# c = "continue"
# if gender_GAN == "Normal":
# e = "normal_GAN"
# elif gender_GAN == "Man":
# e = "man_GAN"
# elif gender_GAN == "Woman":
# e = "woman_GAN"
if gender_GAN == "Normal":
experiment_name = "normal_GAN"
steps = 10000
Embedding_Manager = normal_Embedding_Manager
elif gender_GAN == "Man":
experiment_name = "man_GAN"
steps = 7000
Embedding_Manager = man_Embedding_Manager
elif gender_GAN == "Woman":
experiment_name = "woman_GAN"
steps = 6000
Embedding_Manager = woman_Embedding_Manager
else:
print("Hello, please notice this ^_^")
assert 0
embedding_path = os.path.join("training_weight", experiment_name, "embeddings_manager-{}.pt".format(str(steps)))
Embedding_Manager.load(embedding_path)
print("embedding_path:",embedding_path)
print("choice:",choice)
# index = "0"
save_dir = os.path.join("test_results/" + gender_GAN) # , index
os.makedirs(save_dir, exist_ok=True)
random_embedding = torch.randn(1, 1, input_dim).to(device)
if choice == "Create a new character":
_, emb_dict = Embedding_Manager(tokenized_text=None, embedded_text=None, name_batch=None, random_embeddings = random_embedding, timesteps = None,)
test_emb = emb_dict["adained_total_embedding"].to(device)
elif choice == "Still use this character":
test_emb = torch.load(chose_emb).cuda()
test_emb_path = os.path.join(save_dir, "id_embeddings.pt")
torch.save(test_emb, test_emb_path)
v1_emb = test_emb[:, 0]
v2_emb = test_emb[:, 1]
embeddings = [v1_emb, v2_emb]
tokens = ["v1*", "v2*"]
tokenizer.add_tokens(tokens)
token_ids = tokenizer.convert_tokens_to_ids(tokens)
text_encoder.resize_token_embeddings(len(tokenizer), pad_to_multiple_of = 8)
for token_id, embedding in zip(token_ids, embeddings):
text_encoder.get_input_embeddings().weight.data[token_id] = embedding
total_results = []
i = 0
for prompt in prompts:
image = pipe(prompt, guidance_scale = 8.5).images
total_results = image + total_results
i+=1
if i < len(prompts):
yield total_results, gr.update(visible=True, value="<h3>(Not Finished) Generating ···</h3>"), test_emb_path
else:
yield total_results, gr.update(visible=True, value="<h3>Generation Finished</h3>"), test_emb_path
total_results = []
def get_example():
case = [
[
'demo_embeddings/example_1.pt',
'Still use this character',
"Normal",
"a photo of a person\na person as a small child\na person as a 20 years old person\na person as a 80 years old person\na person reading a book\na person in the sunset\n",
],
[
'demo_embeddings/example_2.pt',
'Still use this character',
"Man",
"a photo of a person\na person with a mustache and a hat\na person wearing headphoneswith red hair\na person with his dog\n",
],
[
'demo_embeddings/example_3.pt',
'Still use this character',
"Woman",
"a photo of a person\na person at a beach\na person as a police officer\na person wearing a birthday hat\n",
],
[
'demo_embeddings/example_4.pt',
'Still use this character',
"Man",
"a photo of a person\na person holding a bunch of flowers\na person in a lab coat\na person speaking at a podium\n",
],
[
'demo_embeddings/example_5.pt',
'Still use this character',
"Woman",
"a photo of a person\na person wearing a kimono\na person in Van Gogh style\nEthereal fantasy concept art of a person\n",
],
[
'demo_embeddings/example_6.pt',
'Still use this character',
"Man",
"a photo of a person\na person in the rain\na person meditating\na pencil sketch of a person\n",
],
]
return case
with gr.Blocks(css=css) as demo: # css=css
# binary_matrixes = gr.State([])
# color_layout = gr.State([])
# gr.Markdown(logo)
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column():
prompts_array = gr.Textbox(lines = 3,
label="Prompts (each line corresponds to a frame).",
info="Give simple prompt is enough to achieve good face fidelity",
value="a photo of a person\na person reading a book\na person wearing a Christmas hat\na Fauvism painting of a person\n",
interactive=True)
choice = gr.Radio(choices=["Create a new character", "Still use this character"], label="Choose your action")
gender_GAN = gr.Radio(choices=["Normal", "Man", "Woman"], label="Choose your model version (Only work for 'Create a new character')") # , disabled=False
chose_emb = gr.File(label="Uploaded files", type="filepath", visible=False)
generate = gr.Button("Generate!😊", variant="primary")
with gr.Column():
gallery = gr.Gallery(label="Generated Images", columns=2, height='auto')
generated_information = gr.Markdown(label="Generation Details", value="",visible=False)
generate.click(
fn=generate_image,
inputs=[chose_emb, choice, gender_GAN, prompts_array],
outputs=[gallery, generated_information, chose_emb]
)
gr.Examples(
examples=get_example(),
inputs=[chose_emb, choice, gender_GAN, prompts_array],
run_on_click=False,
fn=generate_image,
outputs=[gallery, generated_information, chose_emb],
)
gr.Markdown(article)
demo.launch() # share=True