-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathtrain_baseline.py
346 lines (296 loc) · 13.5 KB
/
train_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# -*- coding: utf-8 -*-
#Author: qiaoguan(https://github.com/qiaoguan/Person_reID_baseline_pytorch)
'''
this is the baseline, if do not add gen_0000 folder(generateed images by DCGAN) under the training set,
so the LSRO equals to crossentropy loss, and the generated_image_size is 0. else the loss function will use the generated images, the loss function for
the generated images and original images are not the same.
'''
from __future__ import print_function, division
import cv2
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
from torchvision.datasets.folder import default_loader
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
from PIL import Image
import time
import os
from model import ft_net, ft_net_dense
from random_erasing import RandomErasing
import json
import torch.nn.functional as F
from torch.utils.data import Dataset,DataLoader
######################################################################
# Options
parser = argparse.ArgumentParser(description='Training')
#parser.add_argument('--gpu_ids',default='3', type=str,help='gpu_ids: e.g. 0 0,1,2 0,2')
parser.add_argument('--name',default='ft_DesNet121', type=str, help='output model name')
parser.add_argument('--data_dir',default='/home/gq123/guanqiao/deeplearning/reid/market/pytorch',type=str, help='training dir path')
parser.add_argument('--batchsize', default=64, type=int, help='batchsize')
parser.add_argument('--erasing_p', default=0.8, type=float, help='Random Erasing probability, in [0,1]')
parser.add_argument('--use_dense', action='store_true', help='use densenet121' )
opt = parser.parse_args()
data_dir = opt.data_dir
name = opt.name
generated_image_size=24000
'''
str_ids = opt.gpu_ids.split(',')
gpu_ids = []
for str_id in str_ids:
gid = int(str_id)
if gid >=0:
gpu_ids.append(gid)
# set gpu ids
if len(gpu_ids)>0:
torch.cuda.set_device(gpu_ids[0])
'''
######################################################################
transform_train_list = [
#transforms.RandomResizedCrop(size=128, scale=(0.75,1.0), ratio=(0.75,1.3333), interpolation=3), #Image.BICUBIC)
transforms.Resize(144, interpolation=3),
transforms.RandomCrop((256,128)),
# transforms.Resize(256,interpolation=3),
# transforms.RandomCrop(224,224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
if opt.erasing_p>0:
transform_train_list = transform_train_list + [RandomErasing(opt.erasing_p)]
#print(transform_train_list)
transform_val_list = [
transforms.Resize(size=(256,128),interpolation=3), #Image.BICUBIC
# transforms.Resize(256,interpolation=3),
# transforms.RandomCrop(224,224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]
data_transforms = {
'train': transforms.Compose( transform_train_list ),
'val': transforms.Compose(transform_val_list),
}
# read dcgan data
class dcganDataset(Dataset):
def __init__(self, root,transform=None, targte_transform=None):
super(dcganDataset,self).__init__()
self.image_dir = os.path.join(opt.data_dir, root)
self.samples=[] # train_data xxx_label_flag_yyy.jpg
self.img_label=[]
self.img_flag=[]
self.transform=transform
self.targte_transform=targte_transform
# self.class_num=len(os.listdir(self.image_dir)) # the number of the class
self.train_val=root # judge whether it is used for training for testing
if root=='train_new' :
for folder in os.listdir(self.image_dir):
fdir=self.image_dir+'/'+folder # folder gen_0000 means the images are generated images, so their flags are 1
if folder == 'gen_0000':
for files in os.listdir(fdir):
temp=folder+'_'+files
self.img_label.append(int(folder[-4:]))
self.img_flag.append(1)
self.samples.append(temp)
else:
for files in os.listdir(fdir):
temp=folder+'_'+files
self.img_label.append(int(folder))
self.img_flag.append(0)
self.samples.append(temp)
else: #val
for folder in os.listdir(self.image_dir):
fdir=self.image_dir+'/'+folder
for files in os.listdir(fdir):
temp=folder+'_'+files
self.img_label.append(int(folder))
self.img_flag.append(0)
self.samples.append(temp)
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
temp=self.samples[idx] # folder_files
# print(temp)
if self.img_flag[idx]==1:
foldername='gen_0000'
filename=temp[9:]
else:
foldername=temp[:4]
filename=temp[5:]
img=default_loader(self.image_dir +'/'+foldername+'/'+filename)
if self.train_val=='train_new':
result = {'img': data_transforms['train'](img), 'label': self.img_label[idx], 'flag':self.img_flag[idx]} # flag=0 for ture data and 0 for generated data
else:
result = {'img': data_transforms['val'](img), 'label': self.img_label[idx], 'flag':self.img_flag[idx]}
return result
class LSROloss(nn.Module):
def __init__(self): # change target to range(0,750)
super(LSROloss,self).__init__()
#input means the prediction score(torch Variable) 32*752,target means the corresponding label,
def forward(self,input,target,flg): # while flg means the flag(=0 for true data and 1 for generated data) batchsize*1
# print(type(input))
if input.dim()>2: # N defines the number of images, C defines channels, K class in total
input=input.view(input.size(0),input.size(1),-1) # N,C,H,W => N,C,H*W
input=input.transpose(1,2) # N,C,H*W => N,H*W,C
input=input.contiguous().view(-1,input.size(2)) # N,H*W,C => N*H*W,C
# normalize input
maxRow, _ = torch.max(input.data, 1) # outputs.data return the index of the biggest value in each row
maxRow=maxRow.unsqueeze(1)
input.data=input.data-maxRow
target=target.view(-1,1) # batchsize*1
flg=flg.view(-1,1)
#len=flg.size()[0]
flos=F.log_softmax(input) # N*K? batchsize*751
flos=torch.sum(flos,1)/flos.size(1) # N*1 get average gan loss
logpt=F.log_softmax(input) # size: batchsize*751
# print(logpt)
logpt=logpt.gather(1,target) # here is a problem
logpt=logpt.view(-1) # N*1 original loss
flg=flg.view(-1)
flg=flg.type(torch.cuda.FloatTensor)
loss=-1*logpt*(1-flg)-flos*flg
return loss.mean()
dataloaders={}
dataloaders['train'] = DataLoader(dcganDataset('train_new',data_transforms['train']), batch_size=opt.batchsize,
shuffle=True, num_workers=8)
dataloaders['val'] = DataLoader(dcganDataset('val_new',data_transforms['val']), batch_size=opt.batchsize,
shuffle=True, num_workers=8)
dataset_sizes={}
dataset_train_dir=os.path.join(data_dir,'train_new')
dataset_val_dir=os.path.join(data_dir,'val_new')
dataset_sizes['train']=sum(len(os.listdir(os.path.join(dataset_train_dir,i))) for i in os.listdir(dataset_train_dir))
dataset_sizes['val']=sum(len(os.listdir(os.path.join(dataset_val_dir,i))) for i in os.listdir(dataset_val_dir))
print(dataset_sizes['train'])
print(dataset_sizes['val'])
#class_names={}
#class_names['train']=len(os.listdir(dataset_train_dir))
#class_names['val']=len(os.listdir(dataset_val_dir))
use_gpu = torch.cuda.is_available()
######################################################################
# Training the model
# ------------------
y_loss = {} # loss history
y_loss['train'] = []
y_loss['val'] = []
y_err = {}
y_err['train'] = []
y_err['val'] = []
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = model.state_dict()
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train(True) # Set model to training mode
else:
model.train(False) # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for data in dataloaders[phase]:
# get the inputs
inputs=data['img']
labels=data['label']
flags= data['flag']
if use_gpu:
inputs = Variable(inputs.cuda())
labels = Variable(labels.cuda())
flags=Variable(flags.cuda())
else:
inputs, labels,flags = Variable(inputs), Variable(labels), Variable(flags)
# zero the parameter gradients
optimizer.zero_grad()
# forward
outputs = model(inputs)
_, preds = torch.max(outputs.data, 1) # outputs.data return the index of the biggest value in each row
loss = criterion(outputs,labels,flags)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.data[0]
for temp in range(flags.size()[0]):
if flags.data[temp]==1:
preds[temp]=-1
running_corrects += torch.sum(preds == labels.data)
# print('running_corrects: '+str(running_corrects))
epoch_loss = running_loss / dataset_sizes[phase]
#epoch_acc = running_corrects / dataset_sizes[phase]
if phase =='train':
# epoch_acc = running_corrects / (dataset_sizes[phase]-4992) # 4992 generated image in total
epoch_acc = running_corrects / (dataset_sizes[phase]-generated_image_size) # 4992 generated image in total
else:
epoch_acc = running_corrects / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
y_loss[phase].append(epoch_loss)
y_err[phase].append(1.0-epoch_acc)
# deep copy the model
if phase == 'val':
if epoch_acc>best_acc:
best_acc=epoch_acc
best_model_wts = model.state_dict()
if epoch>=40:
save_network(model, epoch)
# draw_curve(epoch)
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
save_network(model, 'best')
return model
######################################################################
# Save model
#---------------------------
def save_network(network, epoch_label):
save_filename = 'net_%s.pth'% epoch_label
save_path = os.path.join('./model',name,save_filename)
torch.save(network.state_dict(), save_path)
# this step is important, or error occurs "runtimeError: tensors are on different GPUs"
# if torch.cuda.is_available:
# network.cuda(gpu_ids[0])
#if torch.cuda.is_available:
# network=nn.DataParallel(network,device_ids=[0,1,2]) # multi-GPU
#print('------------'+str(len(clas_names))+'--------------')
if opt.use_dense:
#print(len(class_names['train']))
model = ft_net_dense(751) # 751 class for training data in market 1501 in total
else:
model = ft_net(751)
if use_gpu:
model = model.cuda()
criterion = LSROloss()
ignored_params = list(map(id, model.model.fc.parameters() )) + list(map(id, model.classifier.parameters() ))
base_params = filter(lambda p: id(p) not in ignored_params, model.parameters())
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD([
{'params': base_params, 'lr': 0.01},
{'params': model.model.fc.parameters(), 'lr': 0.05},
{'params': model.classifier.parameters(), 'lr': 0.05}
], momentum=0.9, weight_decay=5e-4, nesterov=True)
model=nn.DataParallel(model,device_ids=[0,1,2]) # multi-GPU
# Decay LR by a factor of 0.1 every 40 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=40, gamma=0.1)
dir_name = os.path.join('./model',name)
if not os.path.isdir(dir_name):
os.mkdir(dir_name)
# save opts
with open('%s/opts.json'%dir_name,'w') as fp:
json.dump(vars(opt), fp, indent=1)
model = train_model(model, criterion, optimizer_ft, exp_lr_scheduler,
num_epochs=130)