-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.Rmd
209 lines (164 loc) · 6.06 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
---
bibliography: man/references/ref.bib
always_allow_html: yes
output:
github_document:
df_print: kable
---
```{r, setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE, comment = "#>",
fig.path = "man/figures/README",
fig.align = "center", out.width = "100%",
asciicast_theme = if (Sys.getenv("IN_PKGDOWN") == "true") "pkgdown" else "readme"
)
asciicast::init_knitr_engine(
echo = TRUE, echo_input = FALSE,
startup = quote(library(LearnNonparam))
)
options(
asciicast_at = "all",
asciicast_cursor = FALSE,
asciicast_knitr_svg = TRUE,
asciicast_padding_y = 0,
asciicast_start_wait = 0,
asciicast_end_wait = 1,
asciicast_timeout = Inf
)
```
# LearnNonparam <img src="man/figures/logo.svg" alt="logo" width="15%" align="right"/>
[![License](https://img.shields.io/cran/l/LearnNonparam?color=orange)](https://cran.r-project.org/web/licenses/GPL-2)
[![CRAN status](https://www.r-pkg.org/badges/version/LearnNonparam)](https://cran.r-project.org/package=LearnNonparam)
[![Dependencies](https://tinyverse.netlify.app/badge/LearnNonparam)](https://cran.r-project.org/package=LearnNonparam)
[![CRAN RStudio mirror downloads](https://cranlogs.r-pkg.org/badges/LearnNonparam)](https://r-pkg.org/pkg/LearnNonparam)
[![CRAN RStudio mirror downloads](https://cranlogs.r-pkg.org/badges/grand-total/LearnNonparam)](https://r-pkg.org/pkg/LearnNonparam)
## Overview
This R package implements several non-parametric tests in chapters 1-5 of [@higgins2004](#references), including tests for one sample, two samples, k samples, paired comparisons, blocked designs, trends and association. Built with [Rcpp](https://CRAN.R-project.org/package=Rcpp) for efficiency and [R6](https://CRAN.R-project.org/package=R6) for flexible, object-oriented design, it provides a unified framework for performing or creating custom permutation tests.
## Installation
Install the stable version from [CRAN](https://CRAN.R-project.org/package=LearnNonparam):
```{r, install_cran, eval = FALSE}
install.packages("LearnNonparam")
```
Install the development version from [Github](https://github.com/qddyy/LearnNonparam):
```{r, install_github, eval = FALSE}
# install.packages("remotes")
remotes::install_github("qddyy/LearnNonparam")
```
## Usage
```{r, library, eval = FALSE}
library(LearnNonparam)
```
- Construct a test object
- from some R6 class directly
```{r, create_R6, eval = FALSE}
t <- Wilcoxon$new(n_permu = 1e6)
```
- using the `pmt` (**p**er**m**utation **t**est) wrapper
```{r, create_pmt, eval = FALSE}
# recommended for a unified API
t <- pmt("twosample.wilcoxon", n_permu = 1e6)
```
```{asciicast, create, include = FALSE}
t <- pmt("twosample.wilcoxon", n_permu = 1e6)
```
- Provide it with samples
```{asciicast, test}
set.seed(-1)
t$test(rnorm(10, 1), rnorm(10, 0))
```
- Check the results
```{asciicast, statistic}
t$statistic
```
```{asciicast, p_value}
t$p_value
```
```{asciicast, print}
options(digits = 3)
t$print()
```
```{asciicast, plot}
ggplot2::theme_set(ggplot2::theme_minimal())
t$plot(style = "ggplot2", binwidth = 1)
```
```{asciicast, save_plot, include = FALSE}
ggplot2::ggsave(
"./man/figures/README/histogram.svg",
width = 12, height = 9, device = "svg"
)
```
```{r, include_plot, echo = FALSE}
knitr::include_graphics("./man/figures/README/histogram.svg")
```
- Modify some settings and observe the change
```{asciicast, modify}
t$type <- "asymp"
t$p_value
```
<details><summary>
See <code>pmts()</code> for tests implemented in this package.</summary>
```{r, echo = FALSE}
LearnNonparam::pmts()
```
</details>
## Extending
`define_pmt` allows users to define new permutation tests. Take the two-sample Wilcoxon test as an example:
```{asciicast, define_r}
t_custom <- define_pmt(
# this is a two-sample permutation test
inherit = "twosample",
statistic = function(x, y) {
# (optional) pre-calculate certain constants that remain invariant during permutation
m <- length(x)
n <- length(y)
# return a closure to calculate the test statistic
function(x, y) sum(x) / m - sum(y) / n
},
# reject the null hypothesis when the test statistic is too large or too small
rejection = "lr", n_permu = 1e5
)
```
Also, the statistic can be written in C++. Leveraging Rcpp sugars and C++14 features, only minor modifications are needed to make it compatible with C++ syntax.
```{asciicast, define_cpp}
t_cpp <- define_pmt(
inherit = "twosample", rejection = "lr", n_permu = 1e5,
statistic = "[](const auto& x, const auto& y) {
auto m = x.length();
auto n = y.length();
return [=](const auto& x, const auto& y) {
return sum(x) / m - sum(y) / n;
};
}"
)
```
It's easy to check that `t_custom` and `t_cpp` are equivalent:
```{asciicast, prepare_data}
x <- rnorm(10, mean = 0)
y <- rnorm(10, mean = 5)
```
```{asciicast, t_custom_res}
set.seed(0)
t_custom$test(x, y)$print()
```
```{asciicast, t_cpp_res}
set.seed(0)
t_cpp$test(x, y)$print()
```
## Performance
[coin](https://CRAN.R-project.org/package=coin) is a commonly used R package for performing permutation tests. Below is a benchmark:
```{asciicast, benchmark}
library(coin)
data <- c(x, y)
group <- factor(c(rep("x", length(x)), rep("y", length(y))))
options(LearnNonparam.pmt_progress = FALSE)
benchmark <- microbenchmark::microbenchmark(
R = t_custom$test(x, y),
Rcpp = t_cpp$test(x, y),
coin = wilcox_test(data ~ group, distribution = approximate(nresample = 1e5, parallel = "no"))
)
```
```{asciicast, benchmark_res}
benchmark
```
It can be seen that C++ brings significantly better performance than pure R, even surpassing the `coin` package (under sequential execution). However, all tests in this package are currently written in R with no plans for migration to C++ in the future. This is because the primary goal of this package is not to maximize performance but to offer a flexible framework for permutation tests.
## References