-
Notifications
You must be signed in to change notification settings - Fork 488
/
Copy path7B_qlora_single_device.yaml
120 lines (101 loc) · 3.39 KB
/
7B_qlora_single_device.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# Config for multi-device QLoRA finetuning in lora_finetune_single_device.py
# using a gemma 7B model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download google/gemma-7b --ignore-patterns "gemma-7b.gguf" --hf-token <HF_TOKEN>
#
# To launch on a single device, run the following command from root:
# tune run lora_finetune_single_device --config gemma/7B_qlora_single_device
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run lora_finetune_single_device --config gemma/7B_qlora_single_device checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works only for training on single device.
output_dir: /tmp/torchtune/gemma_7B/qlora_single_device # /tmp may be deleted by your system. Change it to your preference.
# Tokenizer
tokenizer:
_component_: torchtune.models.gemma.gemma_tokenizer
path: /tmp/gemma-7b/tokenizer.model
# Dataset
dataset:
_component_: torchtune.datasets.alpaca_dataset
packed: False # True increases speed
seed: null
shuffle: True
# Model Arguments
model:
_component_: torchtune.models.gemma.qlora_gemma_7b
lora_attn_modules: ['q_proj', 'v_proj', 'output_proj']
apply_lora_to_mlp: True
lora_rank: 64 # higher increases accuracy and memory
lora_alpha: 128 # usually alpha=2*rank
lora_dropout: 0.0
checkpointer:
_component_: torchtune.training.FullModelHFCheckpointer
checkpoint_dir: /tmp/gemma-7b/
checkpoint_files: [
model-00001-of-00004.safetensors,
model-00002-of-00004.safetensors,
model-00003-of-00004.safetensors,
model-00004-of-00004.safetensors,
]
recipe_checkpoint: null
output_dir: ${output_dir}
model_type: GEMMA
resume_from_checkpoint: False
save_adapter_weights_only: False
optimizer:
_component_: torch.optim.AdamW
fused: True
lr: 2e-5
lr_scheduler:
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup
num_warmup_steps: 10
loss:
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss
# Fine-tuning arguments
batch_size: 4
epochs: 1
max_steps_per_epoch: null
gradient_accumulation_steps: 8 # Use to increase effective batch size
clip_grad_norm: null
compile: False # torch.compile the model + loss, True increases speed + decreases memory
# Training env
device: cuda
# Memory management
enable_activation_checkpointing: True # True reduces memory
enable_activation_offloading: False # True reduces memory
# Reduced precision
dtype: bf16
# Logging
metric_logger:
_component_: torchtune.training.metric_logging.DiskLogger
log_dir: ${output_dir}/logs
log_every_n_steps: 1
log_peak_memory_stats: True
# Show case the usage of pytorch profiler
# Set enabled to False as it's only needed for debugging training
profiler:
_component_: torchtune.training.setup_torch_profiler
enabled: False
#Output directory of trace artifacts
output_dir: ${output_dir}/profiling_outputs
#`torch.profiler.ProfilerActivity` types to trace
cpu: True
cuda: True
#trace options passed to `torch.profiler.profile`
profile_memory: False
with_stack: False
record_shapes: True
with_flops: False
# `torch.profiler.schedule` options:
# wait_steps -> wait, warmup_steps -> warmup, active_steps -> active, num_cycles -> repeat
wait_steps: 5
warmup_steps: 5
active_steps: 2
num_cycles: 1
# For colab use True
low_cpu_ram: False