-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathfinetune.py
295 lines (253 loc) · 12.4 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import argparse
from loader import MoleculeDataset,DataLoaderMasking
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from tqdm import tqdm
import numpy as np
from model import MolGT_graphpred
from sklearn.metrics import roc_auc_score
from splitters import scaffold_split,random_scaffold_split,random_split,scaffold_split_fp
import pandas as pd
import os
from util import *
import warnings,random
warnings.filterwarnings("ignore")
def disable_rdkit_logging():
"""
Disables RDKit whiny logging.
"""
import rdkit.rdBase as rkrb
import rdkit.RDLogger as rkl
logger = rkl.logger()
logger.setLevel(rkl.ERROR)
rkrb.DisableLog('rdApp.error')
disable_rdkit_logging()
#Workaround because python functions are not picklable
class WorkerInitObj(object):
def __init__(self, seed):
self.seed = seed
def __call__(self, id):
np.random.seed(seed=self.seed + id)
random.seed(self.seed + id)
def train(args, model, device, loader, optimizer,criterion):
model.train()
for step, batch in enumerate(tqdm(loader, desc="Iteration")):
batch = batch.to(device)
pred = model(batch)
y = batch.y.view(pred.shape).to(torch.float64)
#Whether y is non-null or not.
is_valid = y**2 > 0
#Loss matrix
loss_mat = criterion(pred.double(), (y+1)/2)
#loss matrix after removing null target
loss_mat = torch.where(is_valid, loss_mat, torch.zeros(loss_mat.shape).to(loss_mat.device).to(loss_mat.dtype))
optimizer.zero_grad()
loss = torch.sum(loss_mat)/torch.sum(is_valid)
loss.backward()
optimizer.step()
def eval(args, model, device, loader):
model.eval()
y_true = []
y_scores = []
for step, batch in enumerate(tqdm(loader, desc="Iteration")):
batch = batch.to(device)
with torch.no_grad():
pred = model(batch)
y_true.append(batch.y.view(pred.shape))
y_scores.append(pred)
y_true = torch.cat(y_true, dim = 0).cpu().numpy()
y_scores = torch.cat(y_scores, dim = 0).cpu().numpy()
roc_list = []
for i in range(y_true.shape[1]):
#AUC is only defined when there is at least one positive data.
if np.sum(y_true[:,i] == 1) > 0 and np.sum(y_true[:,i] == -1) > 0:
is_valid = y_true[:,i]**2 > 0
roc_list.append(roc_auc_score((y_true[is_valid,i] + 1)/2, y_scores[is_valid,i]))
if len(roc_list) < y_true.shape[1]:
print("Some target is missing!")
print("Missing ratio: %f" %(1 - float(len(roc_list))/y_true.shape[1]))
return sum(roc_list)/len(roc_list) #y_true.shape[1]
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch implementation of pre-training of graph neural networks')
parser.add_argument('--device', type=int, default=0,
help='which gpu to use if any (default: 0)')
parser.add_argument('--batch_size', type=int, default=32,
help='input batch size for training (default: 32)')
parser.add_argument('--epochs', type=int, default=100,
help='number of epochs to train (default: 100)')
parser.add_argument('--lr', type=float, default=0.0001,
help='learning rate (default: 0.001)')
parser.add_argument('--lr_decay', type=float, default=0.995,
help='learning rate decay (default: 0.995)')
parser.add_argument('--lr_scale', type=float, default=1,
help='relative learning rate for the feature extraction layer (default: 1)')
parser.add_argument('--decay', type=float, default=0,
help='weight decay (default: 0)')
parser.add_argument('--loss_type', type=str, default="bce")
parser.add_argument('--num_layer', type=int, default=5,
help='number of GNN message passing layers (default: 5).')
parser.add_argument('--emb_dim', type=int, default=768,
help='embedding dimensions (default: 300)')
parser.add_argument('--heads', type=int, default=12,
help='multi heads (default: 4)')
parser.add_argument('--num_message_passing', type=int, default=3,
help='message passing steps (default: 3)')
parser.add_argument('--dropout_ratio', type=float, default=0.5,
help='dropout ratio (default: 0.5)')
parser.add_argument('--graph_pooling', type=str, default="set2set",
help='graph level pooling (collection,sum, mean, max, set2set, attention)')
parser.add_argument('--JK', type=str, default="last",
help='how the node features across layers are combined. last, sum, max or concat')
parser.add_argument('--gnn_type', type=str, default="gin")
parser.add_argument('--data_dir', type=str, default="")
parser.add_argument('--dataset', type=str, default = 'tox21', help='root directory of dataset. For now, only classification.')
parser.add_argument('--input_model_file', type=str, default='pretrained_model/MolGNet.pt',
help='filename to read the model (if there is any)')
parser.add_argument('--exp', type=str, default = '', help='output filename')
parser.add_argument('--seed', type=int, default=88, help = "Seed for splitting the dataset.")
parser.add_argument('--runseed', type=int, default=0, help = "Seed for minibatch selection, random initialization.")
parser.add_argument('--split', type = str, default="scaffold", help = "random or scaffold or random_scaffold")
parser.add_argument('--eval_train', type=int, default = 0, help='evaluating training or not')
parser.add_argument('--num_workers', type=int, default = 4, help='number of workers for dataset loading')
parser.add_argument('--iters', type=int, default=10, help='number of run seeds')
parser.add_argument('--cpu', default=False, action="store_true")
args = parser.parse_args()
device = torch.device("cuda:0") if torch.cuda.is_available() and not args.cpu else torch.device("cpu")
print(device)
for i in range(args.iters):
seed=args.seed+i
runseed=args.runseed
torch.manual_seed(runseed)
np.random.seed(runseed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.runseed)
#Bunch of classification tasks
if args.dataset == "tox21":
num_tasks = 12
args.batch_size=16
args.lr = 0.0001
args.lr_decay = 0.98
args.dropout_ratio = 0.2
args.graph_pooling = 'collection'
elif args.dataset == "hiv":
num_tasks = 1
elif args.dataset == "muv":
num_tasks = 17
elif args.dataset == "bace":
num_tasks = 1
args.batch_size=16
args.lr = 0.0001
args.lr_decay = 0.99
args.dropout_ratio = 0
args.graph_pooling = 'collection'
args.data= 'data/downstream/'
elif args.dataset == "bbbp":
num_tasks = 1
args.batch_size=16
args.lr = 0.00015
args.lr_decay = 0.995
args.dropout_ratio = 0.2
args.graph_pooling = 'attention'
args.data = 'data/downstream/'
elif args.dataset == "toxcast":
num_tasks = 617
args.batch_size=16
args.lr = 0.0001
args.lr_decay = 0.98
args.dropout_ratio = 0.2
args.graph_pooling = 'collection'
elif args.dataset == "sider":
num_tasks = 27
args.batch_size=16
args.lr = 0.0001
args.lr_decay = 0.995
args.dropout_ratio = 0.2
args.graph_pooling = 'collection'
elif args.dataset == "clintox":
num_tasks = 2
args.batch_size=16
args.lr = 0.0001
args.lr_decay = 0.99
args.dropout_ratio = 0.2
args.graph_pooling='set2set'
args.data = 'data/downstream/'
else:
raise ValueError("Invalid dataset name.")
#set up dataset
transform = Compose(
[
Self_loop(),Add_seg_id(),Add_collection_node(num_atom_type=119,bidirection=False)
]
)
dataset = MoleculeDataset(args.data_dir + args.dataset, dataset=args.dataset,transform=transform
)
smiles_list = pd.read_csv(args.data_dir + args.dataset + '/processed/smiles.csv')['smiles'].tolist()
train_dataset, valid_dataset, test_dataset = random_scaffold_split(dataset, smiles_list, null_value=0,
frac_train=0.8, frac_valid=0.1,
frac_test=0.1,
seed=seed)
train_loader = DataLoaderMasking(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers)
val_loader = DataLoaderMasking(valid_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)
test_loader = DataLoaderMasking(test_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers)
#set up model
model = MolGT_graphpred(args.num_layer, args.emb_dim,args.heads,args.num_message_passing, num_tasks,
drop_ratio = args.dropout_ratio, graph_pooling = args.graph_pooling)
if not args.input_model_file == "":
model.from_pretrained(args.input_model_file)
print('Pre-trained model loaded!')
total = sum([param.nelement() for param in model.gnn.parameters()])
print("Number of parameter: %.2fM" % (total / 1e6))
model.to(device)
#set up optimizer
#different learning rate for different part of GNN
model_param_group = []
model_param_group.append({"params": model.gnn.parameters()})
if args.graph_pooling == "attention":
model_param_group.append({"params": model.pool.parameters(), "lr":args.lr*args.lr_scale})
model_param_group.append({"params": model.graph_pred_linear.parameters(), "lr":args.lr*args.lr_scale})
optimizer = optim.Adam(model_param_group, lr=args.lr, weight_decay=args.decay)
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer,gamma=args.lr_decay)
criterion = nn.BCEWithLogitsLoss(reduction = "none")
train_acc_list = []
val_acc_list = []
test_acc_list = []
exp_path = '{}/{}_seed{}/'.format(args.exp,args.dataset,seed)
if not os.path.exists(exp_path):
os.makedirs(exp_path)
best_acc = 0
for epoch in range(1, args.epochs+1):
print("====epoch " + str(epoch))
train(args, model, device, train_loader, optimizer,criterion)
scheduler.step()
print("====Evaluation")
train_acc = eval(args, model, device, train_loader)
val_acc = eval(args, model, device, val_loader)
test_acc = eval(args, model, device, test_loader)
if val_acc>=best_acc:
best_acc=val_acc
torch.save(model.state_dict(), exp_path + "model_seed{}.pkl".format(args.seed))
print("train: %f val: %f test: %f" %(train_acc, val_acc, test_acc))
val_acc_list.append(val_acc)
test_acc_list.append(test_acc)
train_acc_list.append(train_acc)
df = pd.DataFrame({'train':train_acc_list,'valid':val_acc_list,'test':test_acc_list})
df.to_csv(exp_path+'{}_seed{}.csv'.format(args.dataset,seed))
best_epoch = np.argmax(val_acc_list)
test_acc_at_best_val = test_acc_list[best_epoch]
print("The test auc at best valid (epoch {}) is {} at seed {}".format(best_epoch,test_acc_at_best_val,args.runseed))
# if not args.filename == "":
# writer.close()
# mean_score, std_score = np.nanmean(all_test_acc), np.nanstd(all_test_acc)
#
# logs = '{},{},{},{},{},{},{:.3f},{:.3f},{:.3f},{:.3f},{:.3f}'.format(
# args.dataset,args.lr,args.dropout_ratio,args.lr_decay,args.graph_pooling,args.epochs,
# all_test_acc[0],all_test_acc[1],all_test_acc[2],mean_score,std_score)
# print(logs)
# with open('runs/{}_log.csv'.format(args.dataset),'a+') as f:
# f.write('\n')
# f.write(logs)
if __name__ == "__main__":
main()