Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Segmentation fault during open_dataset() with dask and netcdf4 #9779

Open
4 of 5 tasks
enrico-mi opened this issue Nov 13, 2024 · 1 comment
Open
4 of 5 tasks

Segmentation fault during open_dataset() with dask and netcdf4 #9779

enrico-mi opened this issue Nov 13, 2024 · 1 comment
Labels
bug needs triage Issue that has not been reviewed by xarray team member

Comments

@enrico-mi
Copy link

enrico-mi commented Nov 13, 2024

What happened?

I am writing a snippet of code that reads netCDF files and convert them to a dask dataframe with the method read_nc_to_df().

When opening multiple netCDF files with open_dataset() and dask.delayed, the code fails with segmentation fault error. Some times the segmentation fault error is preceded by more information, like:

  • *** Error in 'python3': double free or corruption (fasttop): 0x0000000003448df0 *** (this happened only once)
  • [Errno -101] NetCDF: HDF error: 'path/to/file/output_00.nc' There are 28 HDF5 objects open! Report: open objects on 72057594037927944 (this happened multiple times)

Note that I simply re-execute the same code, and different error outputs might appear, the only constant being the segmentation fault line.

What did you expect to happen?

I expected the code to execute regularly, open the netcdf files, and eventually convert the multiple datasets into a dask dataframe.

Minimal Complete Verifiable Example

import xarray as xr
import numpy as np
import dask
import dask.dataframe as dd
import pandas as pd
import threading
##########################################################################
def create_nc():
    # Create data arrays for each variable with different dimensions
    time = np.arange(10)
    lat = np.linspace(-90, 90, 180)
    lon = np.linspace(-180, 180, 360)

    for j in range(3):
        # Variable 1: 1D array (time)
        var1 = xr.DataArray(np.random.rand(len(time)), dims=["time"], coords={"time": time})

        # Variable 2: 2D array (lat, lon)
        var2 = xr.DataArray(np.random.rand(len(lat), len(lon)), dims=["lat", "lon"], coords={"lat": lat, "lon": lon})

        # Variable 3: 3D array (time, lat, lon)
        var3 = xr.DataArray(np.random.rand(len(time), len(lat), len(lon)), dims=["time", "lat", "lon"], coords={"time": time, "lat": lat, "lon": lon})

        # Combine data arrays into a dataset
        ds = xr.Dataset({
            "var1": var1,
            "var2": var2,
            "var3": var3
        })

        # Save the dataset to a NetCDF file
        ds.to_netcdf("output_" + str(j).zfill(2) + ".nc")

    return

##########################################################################
def read_nc_into_df(filename,engine,lock):
    # Read the NetCDF file into an xarray dataset

    if lock is None:
        with xr.open_dataset(filename,cache=False,engine=engine) as ds:
            # Convert the dataset to a pandas dataframe
            df = ds.to_dataframe()
    else:
        with lock:
            with xr.open_dataset(filename,cache=False,engine=engine) as ds:
                # Convert the dataset to a pandas dataframe
                df = ds.to_dataframe()

    return df

############# READING WITHOUT DASK  ######################
def no_dask(filenames,engine):

    # Read each NetCDF file into a pandas dataframe
    dfs = []
    for f in filenames:
        dfs.append( read_nc_into_df(f,engine,None) )
    df = pd.concat(dfs)

    print(df.sample(frac=0.000005, random_state=42))
    return

############# READING WITH DASK.DELAYED  ######################
def with_dask_delayed(filenames, engine, lock):

    df = [ dask.delayed(read_nc_into_df)(f, engine, lock) for f in filenames ]

    df = dd.from_delayed(df)

    print(df.sample(frac=0.000005, random_state=42).compute())

    return

########################################################################
if __name__ == "__main__":

    create_nc()

    filenames = ["output_" + str(j).zfill(2) + ".nc" for j in range(3)]

    engines = [
        "h5netcdf",
        "netcdf4"
    ]

    for engine in engines:
        print("no_dask()")
        print(f"Engine: {engine}")
        try:
            no_dask(filenames,engine)
            print(f"no_dask() + {engine}: ok")
        except Exception as e:
            print(f"Error during no_dask() with engine {engine}: {e}")
            raise
        print()

    for lock in [threading.Lock(),None]:
        for engine in engines:
            print("with_dask_delayed()")
            print(f"Engine: {engine}")
            print(f"Lock: {lock}")
            try:
                with_dask_delayed(filenames,engine,lock)
                print(f"with_dask_delayed() + {engine} + {lock}: ok")
            except Exception as e:
                print(f"Error during with_dask_delayed() with engine {engine} and lock {lock}: {e}")
                raise
            print()

MVCE confirmation

  • Minimal example — the example is as focused as reasonably possible to demonstrate the underlying issue in xarray.
  • Complete example — the example is self-contained, including all data and the text of any traceback.
  • Verifiable example — the example copy & pastes into an IPython prompt or Binder notebook, returning the result.
  • New issue — a search of GitHub Issues suggests this is not a duplicate.
  • Recent environment — the issue occurs with the latest version of xarray and its dependencies.

Relevant log output

no_dask()
Engine: h5netcdf
                                 var1      var2      var3
time lat        lon                                      
5     35.698324  155.933148  0.125790  0.885606  0.719581
4    -43.743017  9.526462    0.733908  0.875954  0.543229
9    -27.653631  165.961003  0.659727  0.687533  0.700775
2     51.787709 -98.774373   0.569830  0.723463  0.108524
4     11.564246  66.685237   0.905972  0.286024  0.552127
7     85.977654  180.000000  0.058067  0.388723  0.834327
3     11.564246 -84.735376   0.896814  0.703934  0.014507
2     42.737430  156.935933  0.728145  0.424194  0.052766
      70.893855  167.966574  0.728145  0.599037  0.101830
4    -20.614525 -33.593315   0.733908  0.540253  0.788079
no_dask() + h5netcdf: ok

no_dask()
Engine: netcdf4
                                 var1      var2      var3
time lat        lon                                      
5     35.698324  155.933148  0.125790  0.885606  0.719581
4    -43.743017  9.526462    0.733908  0.875954  0.543229
9    -27.653631  165.961003  0.659727  0.687533  0.700775
2     51.787709 -98.774373   0.569830  0.723463  0.108524
4     11.564246  66.685237   0.905972  0.286024  0.552127
7     85.977654  180.000000  0.058067  0.388723  0.834327
3     11.564246 -84.735376   0.896814  0.703934  0.014507
2     42.737430  156.935933  0.728145  0.424194  0.052766
      70.893855  167.966574  0.728145  0.599037  0.101830
4    -20.614525 -33.593315   0.733908  0.540253  0.788079
no_dask() + netcdf4: ok

with_dask_delayed()
Engine: h5netcdf
Lock: <unlocked _thread.lock object at 0x2aab12ca6b40>
                                 var1      var2      var3
time lat        lon                                      
8    -9.553073   137.883008  0.285621  0.369071  0.394301
6    -60.837989  78.718663   0.621654  0.588331  0.015968
3     14.581006  45.626741   0.896814  0.346255  0.653513
7     37.709497 -151.922006  0.474633  0.286773  0.913073
9     65.865922  32.590529   0.659727  0.892672  0.478125
4    -48.770950  111.810585  0.752644  0.258328  0.041822
9     59.832402 -43.621170   0.555145  0.361261  0.079000
8     46.759777 -13.537604   0.246128  0.154291  0.980776
6     26.648045  11.532033   0.146838  0.050511  0.163982
with_dask_delayed() + h5netcdf + <unlocked _thread.lock object at 0x2aab12ca6b40>: ok

with_dask_delayed()
Engine: netcdf4
Lock: <unlocked _thread.lock object at 0x2aab12ca6b40>
                                 var1      var2      var3
time lat        lon                                      
8    -9.553073   137.883008  0.285621  0.369071  0.394301
6    -60.837989  78.718663   0.621654  0.588331  0.015968
3     14.581006  45.626741   0.896814  0.346255  0.653513
7     37.709497 -151.922006  0.474633  0.286773  0.913073
9     65.865922  32.590529   0.659727  0.892672  0.478125
4    -48.770950  111.810585  0.752644  0.258328  0.041822
9     59.832402 -43.621170   0.555145  0.361261  0.079000
8     46.759777 -13.537604   0.246128  0.154291  0.980776
6     26.648045  11.532033   0.146838  0.050511  0.163982
with_dask_delayed() + netcdf4 + <unlocked _thread.lock object at 0x2aab12ca6b40>: ok

with_dask_delayed()
Engine: h5netcdf
Lock: None
                                 var1      var2      var3
time lat        lon                                      
8    -9.553073   137.883008  0.285621  0.369071  0.394301
6    -60.837989  78.718663   0.621654  0.588331  0.015968
3     14.581006  45.626741   0.896814  0.346255  0.653513
7     37.709497 -151.922006  0.474633  0.286773  0.913073
9     65.865922  32.590529   0.659727  0.892672  0.478125
4    -48.770950  111.810585  0.752644  0.258328  0.041822
9     59.832402 -43.621170   0.555145  0.361261  0.079000
8     46.759777 -13.537604   0.246128  0.154291  0.980776
6     26.648045  11.532033   0.146838  0.050511  0.163982
with_dask_delayed() + h5netcdf + None: ok

with_dask_delayed()
Engine: netcdf4
Lock: None
Segmentation fault

Anything else we need to know?

The same read_nc_to_df function works regularly when:

  • using engine='h5netcdf', or
  • if it contained within a with threading.Lock() statement, or
  • if executed without dask.

The example above illustrates these situations, too. The behaviour seems to contradict the documentation, which states that "By default, appropriate locks are chosen to safely read and write files with the currently active dask scheduler."

The same read_nc_to_df function does not work regularly when a lock is explicitly passed to open_dataset() through the backend_kwargs argument. This is not in the above example to keep it more coincise.

Environment

INSTALLED VERSIONS

commit: None
python: 3.9.10 (main, Feb 20 2022, 11:57:16)
[GCC 8.3.1 20190311 (Red Hat 8.3.1-3)]
python-bits: 64
OS: Linux
OS-release: 3.10.0-1160.76.1.el7.x86_64
machine: x86_64
processor: x86_64
byteorder: little
LC_ALL: None
LANG: en_US.UTF-8
LOCALE: ('en_US', 'UTF-8')
libhdf5: 1.14.2
libnetcdf: 4.9.4-development

xarray: 2024.2.0
pandas: 2.2.2
numpy: 1.26.4
scipy: 1.13.1
netCDF4: 1.7.2
pydap: None
h5netcdf: 1.4.1
h5py: 3.12.1
Nio: None
zarr: None
cftime: 1.6.4.post1
nc_time_axis: None
iris: None
bottleneck: None
dask: 2024.7.1
distributed: 2024.7.1
matplotlib: 3.9.2
cartopy: None
seaborn: None
numbagg: None
fsspec: 2023.10.0
cupy: None
pint: None
sparse: None
flox: None
numpy_groupies: None
setuptools: 69.5.1
pip: 24.3.1
conda: None
pytest: None
mypy: None
IPython: 8.18.1
sphinx: None

@enrico-mi enrico-mi added bug needs triage Issue that has not been reviewed by xarray team member labels Nov 13, 2024
Copy link

welcome bot commented Nov 13, 2024

Thanks for opening your first issue here at xarray! Be sure to follow the issue template!
If you have an idea for a solution, we would really welcome a Pull Request with proposed changes.
See the Contributing Guide for more.
It may take us a while to respond here, but we really value your contribution. Contributors like you help make xarray better.
Thank you!

@enrico-mi enrico-mi changed the title Segmentation fault due to improper locking during open_dataset() with dask and netcdf4 Segmentation fault during open_dataset() with dask and netcdf4 Nov 13, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug needs triage Issue that has not been reviewed by xarray team member
Projects
None yet
Development

No branches or pull requests

1 participant