-
-
Notifications
You must be signed in to change notification settings - Fork 297
/
x64primop.c
1584 lines (1393 loc) · 39.1 KB
/
x64primop.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Based on Realmode X86 Emulator Library, and enhanced to handle 64bits
/****************************************************************************
*
* Realmode X86 Emulator Library
*
* Copyright (c) 1996-1999 SciTech Software, Inc.
* Copyright (c) David Mosberger-Tang
* Copyright (c) 1999 Egbert Eich
* Copyright (c) 2007-2017 SUSE LINUX GmbH; Author: Steffen Winterfeldt
*
* ========================================================================
*
* Permission to use, copy, modify, distribute, and sell this software and
* its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and that
* both that copyright notice and this permission notice appear in
* supporting documentation, and that the name of the authors not be used
* in advertising or publicity pertaining to distribution of the software
* without specific, written prior permission. The authors makes no
* representations about the suitability of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*
* THE AUTHORS DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL THE AUTHORS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
* USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*
* ========================================================================
*
* Description:
* Implement the primitive machine operations used by the emulation code
* in ops.c
*
* Carry Chain Calculation
*
* This represents a somewhat expensive calculation which is
* apparently required to emulate the setting of the OF and AF flag.
* The latter is not so important, but the former is. The overflow
* flag is the XOR of the top two bits of the carry chain for an
* addition (similar for subtraction). Since we do not want to
* simulate the addition in a bitwise manner, we try to calculate the
* carry chain given the two operands and the result.
*
* So, given the following table, which represents the addition of two
* bits, we can derive a formula for the carry chain.
*
* a b cin r cout
* 0 0 0 0 0
* 0 0 1 1 0
* 0 1 0 1 0
* 0 1 1 0 1
* 1 0 0 1 0
* 1 0 1 0 1
* 1 1 0 0 1
* 1 1 1 1 1
*
* Construction of table for cout:
*
* ab
* r \ 00 01 11 10
* |------------------
* 0 | 0 1 1 1
* 1 | 0 0 1 0
*
* By inspection, one gets: cc = ab + r'(a + b)
*
* That represents alot of operations, but NO CHOICE....
*
* Borrow Chain Calculation.
*
* The following table represents the subtraction of two bits, from
* which we can derive a formula for the borrow chain.
*
* a b bin r bout
* 0 0 0 0 0
* 0 0 1 1 1
* 0 1 0 1 1
* 0 1 1 0 1
* 1 0 0 1 0
* 1 0 1 0 0
* 1 1 0 0 0
* 1 1 1 1 1
*
* Construction of table for cout:
*
* ab
* r \ 00 01 11 10
* |------------------
* 0 | 0 1 0 0
* 1 | 1 1 1 0
*
* By inspection, one gets: bc = a'b + r(a' + b)
*
****************************************************************************/
// This has been heavily modified to fit box64 purpose...
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "x64emu_private.h"
#include "x64run_private.h"
extern int box64_dynarec_test;
/*------------------------- Global Variables ------------------------------*/
#define PARITY(x) (((emu->x64emu_parity_tab[(x) / 32] >> ((x) % 32)) & 1) == 0)
#define XOR2(x) (((x) ^ ((x)>>1)) & 0x1)
/*----------------------------- Implementation ----------------------------*/
/****************************************************************************
REMARKS:
Implements the AAA instruction and side effects.
****************************************************************************/
uint16_t aaa16(x64emu_t *emu, uint16_t d)
{
uint16_t res;
CHECK_FLAGS(emu);
if ((d & 0xf) > 0x9 || ACCESS_FLAG(F_AF)) {
d += 0x6;
d += 0x100;
SET_FLAG(F_AF);
SET_FLAG(F_CF);
} else {
CLEAR_FLAG(F_CF);
CLEAR_FLAG(F_AF);
}
res = (uint16_t)(d & 0xFF0F);
CLEAR_FLAG(F_SF);
CONDITIONAL_SET_FLAG(res == 0, F_ZF);
CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
return res;
}
/****************************************************************************
REMARKS:
Implements the AAS instruction and side effects.
****************************************************************************/
uint16_t aas16(x64emu_t *emu, uint16_t d)
{
uint16_t res;
CHECK_FLAGS(emu);
if ((d & 0xf) > 0x9 || ACCESS_FLAG(F_AF)) {
d -= 0x6;
d -= 0x100;
SET_FLAG(F_AF);
SET_FLAG(F_CF);
} else {
CLEAR_FLAG(F_CF);
CLEAR_FLAG(F_AF);
}
res = (uint16_t)(d & 0xFF0F);
CLEAR_FLAG(F_SF);
CONDITIONAL_SET_FLAG(res == 0, F_ZF);
CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
return res;
}
/****************************************************************************
REMARKS:
Implements the AAD instruction and side effects.
****************************************************************************/
uint16_t aad16(x64emu_t *emu, uint16_t d, uint8_t base)
{
uint16_t l;
uint8_t hb, lb;
RESET_FLAGS(emu);
hb = (uint8_t)((d >> 8) & 0xff);
lb = (uint8_t)((d & 0xff));
l = (uint16_t)((lb + base * hb) & 0xFF);
CLEAR_FLAG(F_CF);
CLEAR_FLAG(F_AF);
CLEAR_FLAG(F_OF);
CONDITIONAL_SET_FLAG(l & 0x80, F_SF);
CONDITIONAL_SET_FLAG((l&0xff) == 0, F_ZF);
CONDITIONAL_SET_FLAG(PARITY(l & 0xff), F_PF);
return l;
}
/****************************************************************************
REMARKS:
Implements the AAM instruction and side effects.
****************************************************************************/
uint16_t aam16(x64emu_t *emu, uint8_t d, uint8_t base)
{
uint16_t h, l;
RESET_FLAGS(emu);
h = (uint16_t)(d / base);
l = (uint16_t)(d % base);
l |= (uint16_t)(h << 8);
CLEAR_FLAG(F_CF);
CLEAR_FLAG(F_AF);
CLEAR_FLAG(F_OF);
CONDITIONAL_SET_FLAG(l & 0x80, F_SF);
CONDITIONAL_SET_FLAG((l&0xff) == 0, F_ZF);
CONDITIONAL_SET_FLAG(PARITY(l & 0xff), F_PF);
return l;
}
/****************************************************************************
REMARKS:
Implements the ADC instruction and side effects.
****************************************************************************/
uint8_t adc8(x64emu_t *emu, uint8_t d, uint8_t s)
{
uint32_t res; /* all operands in native machine order */
uint32_t cc;
CHECK_FLAGS(emu);
if (ACCESS_FLAG(F_CF))
res = 1 + d + s;
else
res = d + s;
CONDITIONAL_SET_FLAG(res & 0x100, F_CF);
CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
/* calculate the carry chain SEE NOTE AT TOP. */
cc = (s & d) | ((~res) & (s | d));
CONDITIONAL_SET_FLAG(XOR2(cc >> 6), F_OF);
CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
return (uint8_t)res;
}
uint16_t adc16(x64emu_t *emu, uint16_t d, uint16_t s)
{
uint32_t res; /* all operands in native machine order */
uint32_t cc;
CHECK_FLAGS(emu);
if (ACCESS_FLAG(F_CF))
res = 1 + d + s;
else
res = d + s;
CONDITIONAL_SET_FLAG(res & 0x10000, F_CF);
CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
/* calculate the carry chain SEE NOTE AT TOP. */
cc = (s & d) | ((~res) & (s | d));
CONDITIONAL_SET_FLAG(XOR2(cc >> 14), F_OF);
CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
return (uint16_t)res;
}
uint32_t adc32(x64emu_t *emu, uint32_t d, uint32_t s)
{
uint64_t res; /* all operands in native machine order */
uint64_t cc;
CHECK_FLAGS(emu);
if (ACCESS_FLAG(F_CF))
res = 1LL + d + s;
else
res = (uint64_t)d + s;
CONDITIONAL_SET_FLAG(res & 0x100000000LL, F_CF);
CONDITIONAL_SET_FLAG((res & 0xffffffff) == 0, F_ZF);
CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
/* calculate the carry chain SEE NOTE AT TOP. */
cc = (s & d) | ((~res) & (s | d));
CONDITIONAL_SET_FLAG(XOR2(cc >> 30), F_OF);
CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
return (uint32_t)res;
}
uint64_t adc64(x64emu_t *emu, uint64_t d, uint64_t s)
{
uint64_t lo; /* all operands in native machine order */
uint64_t hi;
uint64_t res;
uint64_t cc;
CHECK_FLAGS(emu);
if (ACCESS_FLAG(F_CF)) {
lo = 1 + (d & 0xFFFFFFFF) + (s & 0xFFFFFFFF);
res = 1 + d + s;
}
else {
lo = (d & 0xFFFFFFFF) + (s & 0xFFFFFFFF);
res = d + s;
}
hi = (lo >> 32) + (d >> 32) + (s >> 32);
CONDITIONAL_SET_FLAG(hi & 0x100000000L, F_CF);
CONDITIONAL_SET_FLAG(!res, F_ZF);
CONDITIONAL_SET_FLAG(res & 0x8000000000000000LL, F_SF);
CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
/* calculate the carry chain SEE NOTE AT TOP. */
cc = (s & d) | ((~res) & (s | d));
CONDITIONAL_SET_FLAG(XOR2(cc >> 62), F_OF);
CONDITIONAL_SET_FLAG(cc & 0x8, F_AF);
return res;
}
/****************************************************************************
REMARKS:
Implements the CMP instruction and side effects.
****************************************************************************/
uint8_t cmp8(x64emu_t *emu, uint8_t d, uint8_t s)
{
uint32_t res; /* all operands in native machine order */
uint32_t bc;
RESET_FLAGS(emu);
res = d - s;
CLEAR_FLAG(F_CF);
CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
CONDITIONAL_SET_FLAG((res & 0xff) == 0, F_ZF);
CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
/* calculate the borrow chain. See note at top */
bc = (res & (~d | s)) | (~d & s);
CONDITIONAL_SET_FLAG(bc & 0x80, F_CF);
CONDITIONAL_SET_FLAG(XOR2(bc >> 6), F_OF);
CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
return d;
}
uint16_t cmp16(x64emu_t *emu, uint16_t d, uint16_t s)
{
uint32_t res; /* all operands in native machine order */
uint32_t bc;
RESET_FLAGS(emu);
res = d - s;
CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
/* calculate the borrow chain. See note at top */
bc = (res & (~d | s)) | (~d & s);
CONDITIONAL_SET_FLAG(bc & 0x8000, F_CF);
CONDITIONAL_SET_FLAG(XOR2(bc >> 14), F_OF);
CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
return d;
}
uint32_t cmp32(x64emu_t *emu, uint32_t d, uint32_t s)
{
uint32_t res; /* all operands in native machine order */
uint32_t bc;
RESET_FLAGS(emu);
res = d - s;
CONDITIONAL_SET_FLAG(res & 0x80000000, F_SF);
CONDITIONAL_SET_FLAG(!res, F_ZF);
CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
/* calculate the borrow chain. See note at top */
bc = (res & (~d | s)) | (~d & s);
CONDITIONAL_SET_FLAG(bc & 0x80000000, F_CF);
CONDITIONAL_SET_FLAG(XOR2(bc >> 30), F_OF);
CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
return d;
}
uint64_t cmp64(x64emu_t *emu, uint64_t d, uint64_t s)
{
uint64_t res; /* all operands in native machine order */
uint64_t bc;
RESET_FLAGS(emu);
res = d - s;
CONDITIONAL_SET_FLAG(res & 0x8000000000000000LL, F_SF);
CONDITIONAL_SET_FLAG(!res, F_ZF);
CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
/* calculate the borrow chain. See note at top */
bc = (res & (~d | s)) | (~d & s);
CONDITIONAL_SET_FLAG(bc & 0x8000000000000000LL, F_CF);
CONDITIONAL_SET_FLAG(XOR2(bc >> 62), F_OF);
CONDITIONAL_SET_FLAG(bc & 0x8, F_AF);
return d;
}
/****************************************************************************
REMARKS:
Implements the DAA instruction and side effects.
****************************************************************************/
uint8_t daa8(x64emu_t *emu, uint8_t d)
{
uint32_t res = d;
CHECK_FLAGS(emu);
int cf = ACCESS_FLAG(F_CF);
CLEAR_FLAG(F_CF);
if ((d & 0xf) > 9 || ACCESS_FLAG(F_AF)) {
res += 6;
SET_FLAG(F_AF);
CONDITIONAL_SET_FLAG(cf || d&0x100, F_CF);
} else
CLEAR_FLAG(F_AF);
if (d > 0x99 || cf) {
res += 0x60;
SET_FLAG(F_CF);
} else
CLEAR_FLAG(F_CF);
CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
CONDITIONAL_SET_FLAG((res & 0xFF) == 0, F_ZF);
CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
return (uint8_t)res;
}
/****************************************************************************
REMARKS:
Implements the DAS instruction and side effects.
****************************************************************************/
uint8_t das8(x64emu_t *emu, uint8_t d)
{
uint32_t res = d;
CHECK_FLAGS(emu);
uint32_t newcf = 0;
if ((d & 0xf) > 9 || ACCESS_FLAG(F_AF)) {
res -= 6;
newcf = ACCESS_FLAG(F_CF) || (d < 6);
SET_FLAG(F_AF);
} else
CLEAR_FLAG(F_AF);
if (d > 0x99 || ACCESS_FLAG(F_CF)) {
res -= 0x60;
newcf = 1;
}
CONDITIONAL_SET_FLAG(newcf, F_CF);
CONDITIONAL_SET_FLAG(res & 0x80, F_SF);
CONDITIONAL_SET_FLAG((res & 0xFF) == 0, F_ZF);
CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
return res;
}
/****************************************************************************
REMARKS:
Implements the RCL instruction and side effects.
****************************************************************************/
uint8_t rcl8(x64emu_t *emu, uint8_t d, uint8_t s)
{
unsigned int res, cnt, mask, cf;
CHECK_FLAGS(emu);
s = s&0x1f;
/* s is the rotate distance. It varies from 0 - 8. */
/* have
CF B_7 B_6 B_5 B_4 B_3 B_2 B_1 B_0
want to rotate through the carry by "s" bits. We could
loop, but that's inefficient. So the width is 9,
and we split into three parts:
The new carry flag (was B_n)
the stuff in B_n-1 .. B_0
the stuff in B_7 .. B_n+1
The new rotate is done mod 9, and given this,
for a rotation of n bits (mod 9) the new carry flag is
then located n bits from the MSB. The low part is
then shifted up cnt bits, and the high part is or'd
in. Using CAPS for new values, and lowercase for the
original values, this can be expressed as:
IF n > 0
1) CF <- b_(8-n)
2) B_(7) .. B_(n) <- b_(8-(n+1)) .. b_0
3) B_(n-1) <- cf
4) B_(n-2) .. B_0 <- b_7 .. b_(8-(n-1))
*/
res = d;
if ((cnt = s % 9) != 0) {
/* extract the new CARRY FLAG. */
/* CF <- b_(8-n) */
cf = (d >> (8 - cnt)) & 0x1;
/* get the low stuff which rotated
into the range B_7 .. B_cnt */
/* B_(7) .. B_(n) <- b_(8-(n+1)) .. b_0 */
/* note that the right hand side done by the mask */
res = (d << cnt) & 0xff;
/* now the high stuff which rotated around
into the positions B_cnt-2 .. B_0 */
/* B_(n-2) .. B_0 <- b_7 .. b_(8-(n-1)) */
/* shift it downward, 7-(n-2) = 9-n positions.
and mask off the result before or'ing in.
*/
mask = (1 << (cnt - 1)) - 1;
res |= (d >> (9 - cnt)) & mask;
/* if the carry flag was set, or it in. */
if (ACCESS_FLAG(F_CF)) { /* carry flag is set */
/* B_(n-1) <- cf */
res |= 1 << (cnt - 1);
}
/* set the new carry flag, based on the variable "cf" */
CONDITIONAL_SET_FLAG(cf, F_CF);
/* OVERFLOW is set *IFF* cnt==1, then it is the
xor of CF and the most significant bit. Blecck. */
if(cnt == 1)
CONDITIONAL_SET_FLAG((cf ^ (res >> 7)) & 0x1, F_OF);
}
return (uint8_t)res;
}
uint16_t rcl16(x64emu_t *emu, uint16_t d, uint8_t s)
{
unsigned int res, cnt, mask, cf;
CHECK_FLAGS(emu);
s = s&0x1f;
res = d;
if ((cnt = s % 17) != 0) {
cf = (d >> (16 - cnt)) & 0x1;
res = (d << cnt) & 0xffff;
mask = (1 << (cnt - 1)) - 1;
res |= (d >> (17 - cnt)) & mask;
if (ACCESS_FLAG(F_CF)) {
res |= 1 << (cnt - 1);
}
CONDITIONAL_SET_FLAG(cf, F_CF);
if(cnt == 1)
CONDITIONAL_SET_FLAG((cf ^ (res >> 15)) & 0x1, F_OF);
}
return (uint16_t)res;
}
uint32_t rcl32(x64emu_t *emu, uint32_t d, uint8_t s)
{
uint32_t res, cnt, mask, cf;
CHECK_FLAGS(emu);
s = s&0x1f;
res = d;
if ((cnt = s) != 0) {
cf = (d >> (32 - cnt)) & 0x1;
res = (d << cnt);
mask = (1 << (cnt - 1)) - 1;
res |= (d >> (33 - cnt)) & mask;
if (ACCESS_FLAG(F_CF)) { /* carry flag is set */
res |= 1 << (cnt - 1);
}
CONDITIONAL_SET_FLAG(cf, F_CF);
if(cnt == 1)
CONDITIONAL_SET_FLAG((cf ^ (res >> 31)) & 0x1, F_OF);
}
return res;
}
uint64_t rcl64(x64emu_t *emu, uint64_t d, uint8_t s)
{
uint64_t res, cnt, mask, cf;
CHECK_FLAGS(emu);
s = s&0x3f;
res = d;
if ((cnt = s) != 0) {
cf = (d >> (64 - cnt)) & 0x1;
res = (d << cnt);
mask = (1LL << (cnt - 1)) - 1;
res |= (d >> (65 - cnt)) & mask;
if (ACCESS_FLAG(F_CF)) { /* carry flag is set */
res |= 1LL << (cnt - 1);
}
CONDITIONAL_SET_FLAG(cf, F_CF);
if(cnt == 1)
CONDITIONAL_SET_FLAG((cf ^ (res >> 63)) & 0x1, F_OF);
}
return res;
}
/****************************************************************************
REMARKS:
Implements the RCR instruction and side effects.
****************************************************************************/
uint8_t rcr8(x64emu_t *emu, uint8_t d, uint8_t s)
{
uint32_t res, cnt;
uint32_t mask, cf, ocf = 0;
CHECK_FLAGS(emu);
s = s&0x1f;
/* rotate right through carry */
/*
s is the rotate distance. It varies from 0 - 8.
d is the byte object rotated.
have
CF B_7 B_6 B_5 B_4 B_3 B_2 B_1 B_0
The new rotate is done mod 9, and given this,
for a rotation of n bits (mod 9) the new carry flag is
then located n bits from the LSB. The low part is
then shifted up cnt bits, and the high part is or'd
in. Using CAPS for new values, and lowercase for the
original values, this can be expressed as:
IF n > 0
1) CF <- b_(n-1)
2) B_(8-(n+1)) .. B_(0) <- b_(7) .. b_(n)
3) B_(8-n) <- cf
4) B_(7) .. B_(8-(n-1)) <- b_(n-2) .. b_(0)
*/
res = d;
if ((cnt = s % 9) != 0) {
/* extract the new CARRY FLAG. */
/* CF <- b_(n-1) */
if (cnt == 1) {
cf = d & 0x1;
/* note hackery here. Access_flag(..) evaluates to either
0 if flag not set
non-zero if flag is set.
doing access_flag(..) != 0 casts that into either
0..1 in any representation of the flags register
(i.e. packed bit array or unpacked.)
*/
ocf = ACCESS_FLAG(F_CF) != 0;
/* OVERFLOW is set *IFF* cnt==1, then it is the
xor of CF and the most significant bit. Blecck. */
/* parenthesized... */
CONDITIONAL_SET_FLAG((ocf ^ (d >> 7)) & 0x1,
F_OF);
} else
cf = (d >> (cnt - 1)) & 0x1;
/* B_(8-(n+1)) .. B_(0) <- b_(7) .. b_n */
/* note that the right hand side done by the mask
This is effectively done by shifting the
object to the right. The result must be masked,
in case the object came in and was treated
as a negative number. Needed??? */
mask = (1 << (8 - cnt)) - 1;
res = (d >> cnt) & mask;
/* now the high stuff which rotated around
into the positions B_cnt-2 .. B_0 */
/* B_(7) .. B_(8-(n-1)) <- b_(n-2) .. b_(0) */
/* shift it downward, 7-(n-2) = 9-n positions.
and mask off the result before or'ing in.
*/
res |= (d << (9 - cnt));
/* if the carry flag was set, or it in. */
if (ACCESS_FLAG(F_CF)) { /* carry flag is set */
/* B_(8-n) <- cf */
res |= 1 << (8 - cnt);
}
/* set the new carry flag, based on the variable "cf" */
CONDITIONAL_SET_FLAG(cf, F_CF);
}
return (uint8_t)res;
}
uint16_t rcr16(x64emu_t *emu, uint16_t d, uint8_t s)
{
uint32_t res, cnt;
uint32_t mask, cf, ocf = 0;
CHECK_FLAGS(emu);
s = s&0x1f;
/* rotate right through carry */
res = d;
if ((cnt = s % 17) != 0) {
if (cnt == 1) {
cf = d & 0x1;
ocf = ACCESS_FLAG(F_CF) != 0;
CONDITIONAL_SET_FLAG((ocf ^ (d >> 15)) & 0x1,
F_OF);
} else
cf = (d >> (cnt - 1)) & 0x1;
mask = (1 << (16 - cnt)) - 1;
res = (d >> cnt) & mask;
res |= (d << (17 - cnt));
if (ACCESS_FLAG(F_CF)) {
res |= 1 << (16 - cnt);
}
CONDITIONAL_SET_FLAG(cf, F_CF);
}
return (uint16_t)res;
}
uint32_t rcr32(x64emu_t *emu, uint32_t d, uint8_t s)
{
uint32_t res, cnt;
uint32_t mask, cf, ocf = 0;
CHECK_FLAGS(emu);
s = s&0x1f;
/* rotate right through carry */
res = d;
if ((cnt = s) != 0) {
if (cnt == 1) {
cf = d & 0x1;
ocf = ACCESS_FLAG(F_CF) != 0;
CONDITIONAL_SET_FLAG((ocf ^ (d >> 31)) & 0x1,
F_OF);
} else
cf = (d >> (cnt - 1)) & 0x1;
mask = (1 << (32 - cnt)) - 1;
res = (d >> cnt) & mask;
if (cnt != 1)
res |= (d << (33 - cnt));
if (ACCESS_FLAG(F_CF)) { /* carry flag is set */
res |= 1 << (32 - cnt);
}
CONDITIONAL_SET_FLAG(cf, F_CF);
}
return res;
}
uint64_t rcr64(x64emu_t *emu, uint64_t d, uint8_t s)
{
uint64_t res, cnt;
uint64_t mask, cf, ocf = 0;
CHECK_FLAGS(emu);
s = s&0x3f;
/* rotate right through carry */
res = d;
if ((cnt = s) != 0) {
if (cnt == 1) {
cf = d & 0x1;
ocf = ACCESS_FLAG(F_CF) != 0;
CONDITIONAL_SET_FLAG((ocf ^ (d >> 63)) & 0x1,
F_OF);
} else
cf = (d >> (cnt - 1)) & 0x1;
mask = (1LL << (64 - cnt)) - 1;
res = (d >> cnt) & mask;
if (cnt != 1)
res |= (d << (65 - cnt));
if (ACCESS_FLAG(F_CF)) { /* carry flag is set */
res |= 1LL << (64 - cnt);
}
CONDITIONAL_SET_FLAG(cf, F_CF);
}
return res;
}
/****************************************************************************
REMARKS:
Implements the ROL instruction and side effects.
****************************************************************************/
uint8_t rol8(x64emu_t *emu, uint8_t d, uint8_t s)
{
unsigned cnt;
s = s&0x1f;
if(!s) return d;
if((cnt = s % 8) != 0) {
d = (d << cnt) + ((d >> (8 - cnt)) & ((1 << cnt) - 1));
}
CHECK_FLAGS(emu);
/* OF flag is set if s == 1; OF = CF _XOR_ MSB of result */
if(s == 1) {
CONDITIONAL_SET_FLAG((d + (d >> 7)) & 1, F_OF);
} else if(box64_dynarec_test) {
CLEAR_FLAG(F_OF);
}
/* set new CF; note that it is the LSB of the result */
CONDITIONAL_SET_FLAG(d & 0x1, F_CF);
return d;
}
uint16_t rol16(x64emu_t *emu, uint16_t d, uint8_t s)
{
unsigned cnt;
s = s&0x1f;
if(!s) return d;
if((cnt = s % 16) != 0) {
d = (d << cnt) + ((d >> (16 - cnt)) & ((1 << cnt) - 1));
}
CHECK_FLAGS(emu);
/* OF flag is set if s == 1; OF = CF _XOR_ MSB of result */
if(s == 1) {
CONDITIONAL_SET_FLAG((d + (d >> 15)) & 1, F_OF);
} else if(box64_dynarec_test) {
CLEAR_FLAG(F_OF);
}
/* set new CF; note that it is the LSB of the result */
CONDITIONAL_SET_FLAG(d & 0x1, F_CF);
return d;
}
uint32_t rol32(x64emu_t *emu, uint32_t d, uint8_t s)
{
unsigned cnt;
s = s&0x1f;
if(!s) return d;
if((cnt = s % 32) != 0) {
d = (d << cnt) + ((d >> (32 - cnt)) & ((1 << cnt) - 1));
}
CHECK_FLAGS(emu);
/* OF flag is set if s == 1; OF = CF _XOR_ MSB of result */
if(s == 1) {
CONDITIONAL_SET_FLAG((d + (d >> 31)) & 1, F_OF);
} else if(box64_dynarec_test) {
CLEAR_FLAG(F_OF);
}
/* set new CF; note that it is the LSB of the result */
CONDITIONAL_SET_FLAG(d & 0x1, F_CF);
return d;
}
uint64_t rol64(x64emu_t *emu, uint64_t d, uint8_t s)
{
unsigned cnt;
s = s&0x3f;
if(!s) return d;
if((cnt = s % 64) != 0) {
d = (d << cnt) + ((d >> (64 - cnt)) & ((1L << cnt) - 1));
}
CHECK_FLAGS(emu);
/* OF flag is set if s == 1; OF = CF _XOR_ MSB of result */
if(s == 1) {
CONDITIONAL_SET_FLAG((d + (d >> 63)) & 1, F_OF);
} else if(box64_dynarec_test) {
CLEAR_FLAG(F_OF);
}
/* set new CF; note that it is the LSB of the result */
CONDITIONAL_SET_FLAG(d & 0x1, F_CF);
return d;
}
/****************************************************************************
REMARKS:
Implements the ROR instruction and side effects.
****************************************************************************/
uint8_t ror8(x64emu_t *emu, uint8_t d, uint8_t s)
{
unsigned cnt;
s = s&0x1f;
if(!s) return d;
if((cnt = s % 8) != 0) {
d = (d << (8 - cnt)) + ((d >> (cnt)) & ((1 << (8 - cnt)) - 1));
}
CHECK_FLAGS(emu);
/* OF flag is set if s == 1; OF = MSB _XOR_ (M-1)SB of result */
if(s == 1) {
CONDITIONAL_SET_FLAG(XOR2(d >> 6), F_OF);
} else if(box64_dynarec_test) {
CLEAR_FLAG(F_OF);
}
/* set new CF; note that it is the MSB of the result */
CONDITIONAL_SET_FLAG(d & (1 << 7), F_CF);
return d;
}
uint16_t ror16(x64emu_t *emu, uint16_t d, uint8_t s)
{
unsigned cnt;
s = s&0x1f;
if(!s) return d;
if((cnt = s % 16) != 0) {
d = (d << (16 - cnt)) + ((d >> (cnt)) & ((1 << (16 - cnt)) - 1));
}
CHECK_FLAGS(emu);
/* OF flag is set if s == 1; OF = MSB _XOR_ (M-1)SB of result */
if(s == 1) {
CONDITIONAL_SET_FLAG(XOR2(d >> 14), F_OF);
} else if(box64_dynarec_test) {
CLEAR_FLAG(F_OF);
}
/* set new CF; note that it is the MSB of the result */
CONDITIONAL_SET_FLAG(d & (1 << 15), F_CF);
return d;
}
uint32_t ror32(x64emu_t *emu, uint32_t d, uint8_t s)
{
unsigned cnt;
s = s&0x1f;
if(!s) return d;
if((cnt = s % 32) != 0) {
d = (d << (32 - cnt)) + ((d >> (cnt)) & ((1 << (32 - cnt)) - 1));
}
CHECK_FLAGS(emu);
/* OF flag is set if s == 1; OF = MSB _XOR_ (M-1)SB of result */
if(s == 1) {
CONDITIONAL_SET_FLAG(XOR2(d >> 30), F_OF);
} else if(box64_dynarec_test) {
CLEAR_FLAG(F_OF);
}
/* set new CF; note that it is the MSB of the result */
CONDITIONAL_SET_FLAG(d & (1 << 31), F_CF);
return d;
}
uint64_t ror64(x64emu_t *emu, uint64_t d, uint8_t s)
{
unsigned cnt;
s = s&0x3f;
if(!s) return d;
if((cnt = s % 64) != 0) {
d = (d << (64 - cnt)) + ((d >> (cnt)) & ((1L << (64 - cnt)) - 1L));
}
CHECK_FLAGS(emu);
/* OF flag is set if s == 1; OF = MSB _XOR_ (M-1)SB of result */
if(s == 1) {
CONDITIONAL_SET_FLAG(XOR2(d >> 62), F_OF);
} else if(box64_dynarec_test) {
CLEAR_FLAG(F_OF);
}
/* set new CF; note that it is the MSB of the result */
CONDITIONAL_SET_FLAG(d & (1L << 63), F_CF);
return d;
}
/****************************************************************************
REMARKS:
Implements the SHLD instruction and side effects.
****************************************************************************/
uint16_t shld16 (x64emu_t *emu, uint16_t d, uint16_t fill, uint8_t s)
{
unsigned int cnt, res, cf;
s = s&0x1f;
cnt = s % 16;
if(!s)
return d;
RESET_FLAGS(emu);
if (s < 16) {
if (cnt > 0) {
res = (d << cnt) | (fill >> (16-cnt));
cf = d & (1 << (16 - cnt));
CONDITIONAL_SET_FLAG(cf, F_CF);
CONDITIONAL_SET_FLAG((res & 0xffff) == 0, F_ZF);
CONDITIONAL_SET_FLAG(res & 0x8000, F_SF);
CONDITIONAL_SET_FLAG(PARITY(res & 0xff), F_PF);
} else {
res = d;
}
if (cnt == 1) {
CONDITIONAL_SET_FLAG(((res ^ d) >> 15)&1, F_OF);
} else {
CLEAR_FLAG(F_OF);
}
} else {