-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathenvironment.py
185 lines (150 loc) · 5.83 KB
/
environment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import numpy as np
import gym
from gym import spaces
from gym.utils import seeding, EzPickle
X = 1
Y = 0
class BaseAgent:
def __init__(self, index, world_shape, random_state):
self.goal = None
self.pose = None
self.reached_goal = None
self.random_state = random_state
self.index = index
self.world_shape = world_shape
self.reset()
def is_valid_pose(self, p):
return all([0 <= p[c] < self.world_shape[c] for c in [Y, X]])
def update_pose(self, delta_p):
desired_pos = self.pose + delta_p
if self.is_valid_pose(desired_pos):
self.pose = desired_pos
def get_obs(self):
return np.hstack([self.goal, self.pose])
def reset(self):
raise NotImplementedError()
def step(self, action):
raise NotImplementedError()
class DiscreteAgent(BaseAgent):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def reset(self):
self.pose = self.random_state.randint((0, 0), self.world_shape)
self.goal = self.random_state.randint((0, 0), self.world_shape)
self.reached_goal = False
return 0
def step(self, action):
delta_pose = {
0: [0, 0],
1: [0, 1],
2: [0, -1],
3: [-1, 0],
4: [1, 0],
}[action]
self.update_pose(delta_pose)
return self.get_obs()
class ContinuousAgent(BaseAgent):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def reset(self):
self.pose = self.random_state.uniform((0, 0), self.world_shape)
self.goal = self.random_state.randint((0, 0), self.world_shape)
self.reached_goal = False
return [0, 0]
def step(self, action):
action_clipped = np.clip(action, -1, 1)
self.update_pose(action_clipped)
return self.get_obs()
class InvalidConfigParameter(Exception):
"""Raised when a configuration parameter is invalid"""
pass
class DemoMultiAgentEnv(gym.Env, EzPickle):
def __init__(self, env_config):
EzPickle.__init__(self)
self.timestep = None
self.goal_poses = None
self.random_state = None
self.seed(1)
self.cfg = env_config
self.observation_space = spaces.Dict(
{
"agents": spaces.Tuple(
(
spaces.Box(
low=0.0,
high=float(max(self.cfg["world_shape"])),
shape=(4,),
),
)
* self.cfg["n_agents"]
),
"state": spaces.Box(
low=0.0, high=1.0, shape=self.cfg["world_shape"] + [2]
),
}
)
if self.cfg["action_space"] == "discrete":
agent_action_space = spaces.Discrete(5)
agent_class = DiscreteAgent
elif self.cfg["action_space"] == "continuous":
agent_action_space = spaces.Box(low=-1.0, high=1.0, shape=(2,), dtype=float)
agent_class = ContinuousAgent
else:
raise InvalidConfigParameter("Invalid action_space")
self.action_space = spaces.Tuple((agent_action_space,) * self.cfg["n_agents"])
self.agents = [
agent_class(i, self.cfg["world_shape"], self.random_state)
for i in range(self.cfg["n_agents"])
]
self.reset()
def seed(self, seed=None):
self.random_state, seed = seeding.np_random(seed)
return [seed]
def reset(self):
reset_actions = [agent.reset() for agent in self.agents]
self.goal_poses = [agent.goal for agent in self.agents]
self.timestep = 0
return self.step(reset_actions)[0]
def step(self, actions):
self.timestep += 1
observations = [
agent.step(action) for agent, action in zip(self.agents, actions)
]
rewards = {}
# shift each agent's goal so that the shared NN has to be used to solve the problem
shifted_poses = (
self.goal_poses[self.cfg["goal_shift"] :]
+ self.goal_poses[: self.cfg["goal_shift"]]
)
for i, (agent, goal) in enumerate(zip(self.agents, shifted_poses)):
rewards[i] = -1 if not agent.reached_goal else 0
if not agent.reached_goal and np.linalg.norm(agent.pose - goal) < 1:
rewards[i] = 1
agent.reached_goal = True
all_reached_goal = all([agent.reached_goal for agent in self.agents])
max_timestep_reached = self.timestep == self.cfg["max_episode_len"]
done = all_reached_goal or max_timestep_reached
global_state = np.zeros(self.cfg["world_shape"] + [2], dtype=np.uint8)
for agent in self.agents:
global_state[int(agent.pose[Y]), int(agent.pose[X]), 0] = 1
global_state[int(agent.goal[Y]), int(agent.goal[X]), 1] = 1
obs = {"agents": tuple(observations), "state": global_state}
info = {"rewards": rewards}
all_rewards = sum(rewards.values())
return obs, all_rewards, done, info
def render(self, mode="human"):
top_bot_margin = " " + "-" * self.cfg["world_shape"][Y] * 2 + "\n"
r = top_bot_margin
for y in range(self.cfg["world_shape"][Y]):
r += "|"
for x in range(self.cfg["world_shape"][X]):
c = " "
for i, agent in enumerate(self.agents):
if np.all(agent.pose.astype(int) == np.array([y, x])):
c = "x" if agent.reached_goal else str(i)
if np.all(agent.goal == np.array([y, x])):
c = "abcdefghijklmnopqrstuvwxyz"[i]
r += c + " "
r += "|\n"
r += top_bot_margin
print(r)