-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodel.py
executable file
·128 lines (105 loc) · 5.16 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
import utils
from config import args
device = torch.device(args.device)
class Network(nn.Module):
def __init__(self, input_shape, output_size, criterion, path):
super(Network, self).__init__()
self.input_shape = input_shape
self.output_size = output_size
self._criterion = criterion
self.optim_path = path
self.feature = nn.Sequential(
nn.Conv2d(input_shape[0], 16, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(16),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
)
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear((input_shape[1]) * (input_shape[2]) * 16, 512),
nn.ReLU(),
nn.Linear(512, output_size)
)
def forward(self, x):
x = self.feature(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return x
def test_loss(self, ts):
self.eval()
with torch.no_grad():
input, target = utils.load_single_test_data(self.optim_path, ts, self.input_shape)
logits = self(input)
loss = self._criterion(logits, target).item()
onehot_target = np.zeros((target.size(0), self.output_size))
onehot_target[np.arange(target.size(0)), np.array(target)] = 1
sm = nn.Softmax(dim=1)
probs = sm(logits)
max_idx = torch.argmax(probs, 1)
onehot_predict = np.zeros((target.size(0), self.output_size))
onehot_predict[np.arange(target.size(0)), np.array(max_idx)] = 1
predict_correctness = np.sum(onehot_target * np.array(onehot_predict), axis=1).tolist()
predict_confidence = np.sum(onehot_target * np.array(probs), axis=1).tolist()
return loss, predict_correctness, predict_confidence
def online_update(self, path, ts_list, input_shape, criterion, optimizer, logger, ga_gen):
if len(ts_list) == 0:
return 1
self.train()
train_data = utils.load_disc_update_data(path, ts_list, input_shape)
train_queue = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size,
shuffle=True, pin_memory=True, num_workers=2)
logger.info('****************************************************************')
logger.info('****************************************************************')
logger.info('****************************************************************')
logger.info('time = %s, ga gen %d, online update discriminator', str(utils.get_unix_timestamp()), ga_gen)
for epoch in range(args.update_epochs):
logger.info('time = %s, epoch %d', str(utils.get_unix_timestamp()), epoch)
print('time = {}, epoch {}'.format(str(utils.get_unix_timestamp()), epoch))
self.train()
train_loss, train_acc = train(train_queue, self, criterion, optimizer, logger)
logger.info('time = %s, train_loss %f train_acc %f', str(utils.get_unix_timestamp()), train_loss, train_acc)
print(
'time = {}, train_loss {} train_acc {}'.format(str(utils.get_unix_timestamp()), train_loss, train_acc))
def train(train_queue, model, criterion, optimizer, logger):
objs = utils.AvgrageMeter()
top1 = utils.AvgrageMeter()
model.train()
for step, (input, target) in enumerate(train_queue):
n = input.size(0)
input = Variable(input.float(), requires_grad=False).to(device)
target = Variable(target, requires_grad=False).to(device)
logits = model(input)
loss = criterion(logits, target)
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
optimizer.step()
prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
objs.update(loss.item(), n)
top1.update(prec1.item(), n)
if step % args.report_freq == 0:
logger.info('time = %s, train %03d %e %f', str(utils.get_unix_timestamp()), step, objs.avg, top1.avg)
print('time = {}, train {} {}'.format(str(utils.get_unix_timestamp()), step, objs.avg))
return objs.avg, top1.avg
def test(test_queue, model, criterion, logger):
objs = utils.AvgrageMeter()
top1 = utils.AvgrageMeter()
model.eval()
with torch.no_grad():
for step, (input, target) in enumerate(test_queue):
n = input.size(0)
input = Variable(input.float()).to(device)
target = Variable(target).to(device)
logits = model(input)
loss = criterion(logits, target)
prec1, prec5 = utils.accuracy(logits, target, topk=(1, 5))
objs.update(loss.item(), n)
top1.update(prec1.item(), n)
if step % args.report_freq == 0:
logger.info('time = %s, test %03d %e %f', str(utils.get_unix_timestamp()), step, objs.avg, top1.avg)
print('time = {}, test {} {}'.format(str(utils.get_unix_timestamp()), step, objs.avg))
return objs.avg, top1.avg