-
Notifications
You must be signed in to change notification settings - Fork 0
/
search.py
285 lines (248 loc) · 7.79 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import sys
from collections import defaultdict
from nltk.stem import PorterStemmer
import timeit
import re
from bisect import bisect
from math import log10
from operator import itemgetter
ps = PorterStemmer()
stopwords=defaultdict(int) #Create stopwords list
with open('stopwords.txt','r') as f:
for line in f:
line= line.strip()
stopwords[line]=1
# Regular Expression to remove Punctuation
regExp4 = re.compile(r'[.,;_?()"/\']',re.DOTALL)
def cleanText(text):
'''
Use the Regular Expressions stored to remove unnecessary things from text for tokenizing
'''
text = text.lower()
text = regExp4.sub(' ',text)
text = re.sub(r'[^\x00-\x7F]+',' ', text)
return text
noDocs=0
docNameMap = defaultdict(int)
def readDocToName():
global docNameMap
global noDocs
path = "merged_index/docTitleMap.txt"
with open(path, 'r') as file:
lines = file.readlines()
for line in lines:
docID,t = line.split("#")
ind = t.rfind(":")
# t = t.split(":")[0:-1]
name = t[:ind]
docNameMap[docID]=name
noDocs+=1
def getName(docID):
# print(docID," ",docNameMap[docID])
return docNameMap[docID]
secondaryIndex = list()
def readSecondaryIndex():
try:
f = open("merged_index/secondary_index.txt","r")
for line in f:
secondaryIndex.append(line.split()[0])
except:
print( "Can't find the secondary index file in 'merged_index' Folder.")
print( "Re - run the program when the file is in the same folder.")
sys.exit(1)
def parseQuery(query):
# try:
isField = False
if ":" in query and ("title" in query or "ref" in query or "category" in query or "body" in query or "link" in query or "infobox" in query):
d = dict()
d["title"] = "t"
d["ref"] = "r"
d["body"] = "b"
d["category"] = "c"
d["link"] = "l"
d["infobox"] = "i"
isField = True
query = query.split()
parsed_query = []
for q in query:
if ":" in q:
c,w = q.split(":")
w = cleanText(w)
w = ps.stem(w)
try:
parsed_query.append((w,d[c]))
except:
parsed_query.append((w,"b"))
else:
q = cleanText(q)
q = ps.stem(q)
parsed_query.append((q,"b"))
return parsed_query,isField
else:
query = cleanText(query)
parsed_query = []
query_words = query.split(" ")
for word in query_words:
word = ps.stem(word)
if stopwords[word]!=1 and len(word)>0:
parsed_query.append(word)
return parsed_query, isField
def binary_search(l, word):
lo = 0
hi = len(l)-1
while lo <= hi:
mid = int((lo + hi)/2)
t = l[mid].split("=")[0]
# print(t,word)
if t == word:
return mid
elif t < word:
lo = mid + 1
else:
hi = mid - 1
return lo
weight = dict()
weight["t"] = 1000
weight["i"] = 50
weight["r"] = 50
weight["l"] = 50
weight["c"] = 50
weight["b"] = 1
def normalSearch(query):
global weight
globalSearch = dict(list())
id_tfidf_map = defaultdict(int)
for word in query:
loc = bisect(secondaryIndex,word)
startFlag = False
if loc-1 >= 0 and secondaryIndex[loc-1] == word:
startFlag = True
if loc-1 != 0:
loc -= 1
if loc+1 == len(secondaryIndex) and secondaryIndex[loc] == word:
loc += 1
primaryFile = "merged_index/index" + str(loc) + ".txt"
# print("opening primary file ",primaryFile)
file = open(primaryFile,"r")
data = file.read()
if startFlag:
startIndex = data.find(word+"=")
else:
startIndex = data.find("\n"+word+"=")
endIndex = data.find("\n",startIndex+1)
reqLine = data[startIndex:endIndex]
# print(word)
# ind = binary_search(data,word)
# print("index ",ind)
# reqLine = data[ind]
# print("line read: ",reqLine.split("=")[0])
pl = reqLine.split("=")[1].split(",")
# print("posting list len: ",len(pl))
numDoc = len(pl)
idf = log10(noDocs/numDoc)
for d in pl:
docID, rest1 = d.split(":")
num = rest1.split("#")
tf = 0
for i in num:
category = i[0]
freq = i[1:]
tf += int(freq) * int(weight[category])
# tf += int(freq)
id_tfidf_map[docID] += float(log10(1+tf)) * float(idf)
docToFreqMap = sorted(id_tfidf_map.items(), key=lambda item: item[1], reverse=True)[0:10]
result = []
for i in docToFreqMap:
docID,freq = i
# print(docID+" "+str(freq))
result.append(getName(docID))
# print(getName(docID))
return result
def printSearchResult(result):
for res in result:
print(res)
def fieldSearch(query):
globalSearch = dict(list())
id_tfidf_map = defaultdict(int)
for word, cat in query:
loc = bisect(secondaryIndex,word)
startFlag = False
if loc-1 >= 0 and secondaryIndex[loc-1] == word:
startFlag = True
if loc-1 != 0:
loc -= 1
if loc+1 == len(secondaryIndex) and secondaryIndex[loc] == word:
loc += 1
primaryFile = "merged_index/index" + str(loc) + ".txt"
file = open(primaryFile,"r")
data = file.readlines()
ind = binary_search(data,word)
reqLine = data[ind]
pl = reqLine.split("=")[1].split(",")
pl_updated = []
for i in pl:
if cat in i:
pl_updated.append(i)
if(len(pl_updated)<=0):
pl_updated = pl
# print(pl_updated)
numDoc = len(pl_updated)
idf = log10(noDocs/numDoc)
for d in pl_updated:
docID, rest1 = d.split(":")
num = rest1.split("#")
tf = 0
for i in num:
category = i[0]
freq = i[1:]
tf += int(freq) * int(weight[category])
# tf += int(freq)
id_tfidf_map[docID] += float(log10(1+tf)) * float(idf)
docToFreqMap = sorted(id_tfidf_map.items(), key=lambda item: item[1], reverse=True)[0:10]
result = []
for i in docToFreqMap:
docID,freq = i
# print(docID+" "+str(freq))
result.append(getName(docID))
# print(getName(docID))
return result
print()
print("reading secondary index")
readSecondaryIndex()
print("Done...!")
print()
print("reading doc name map")
readDocToName()
print("Done...!")
print()
while True:
print()
query = input("Enter your query: ")
print()
start = timeit.default_timer()
queryWords, isField = parseQuery(query)
# print(queryWords)
if not isField:
try:
result = normalSearch(queryWords)
stop = timeit.default_timer()
printSearchResult(result)
print()
print( "Query Took ",stop-start," seconds.")
print()
print()
except Exception as e:
print( "Some Error Occurred! Try Again")
print(e)
else:
try:
result = fieldSearch(queryWords)
stop = timeit.default_timer()
printSearchResult(result)
print()
print( "Query Took ",stop-start," seconds.")
print()
print()
except Exception as e:
print( "Some Error Occurred! Try Again")
print(e)