forked from MhLiao/DB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
204 lines (164 loc) · 7.65 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import torch
from tqdm import tqdm
from experiment import Experiment
from data.data_loader import DistributedSampler
import time ##
class Trainer:
def __init__(self, experiment: Experiment):
self.init_device()
self.experiment = experiment
self.structure = experiment.structure
self.logger = experiment.logger
self.model_saver = experiment.train.model_saver # here we are also getting the model saving path
# FIXME: Hack the save model path into logger path
self.model_saver.dir_path = self.logger.save_dir(
self.model_saver.dir_path) + str(int(time.time())) ## here I am adding the time stamp as well to create a different directory for each execution
self.current_lr = 0
self.total = 0
def init_device(self):
if torch.cuda.is_available():
self.device = torch.device('cuda')
else:
self.device = torch.device('cpu')
def init_model(self):
model = self.structure.builder.build(
self.device, self.experiment.distributed, self.experiment.local_rank)
return model
def update_learning_rate(self, optimizer, epoch, step):
lr = self.experiment.train.scheduler.learning_rate.get_learning_rate(
epoch, step)
for group in optimizer.param_groups:
group['lr'] = lr
self.current_lr = lr
def train(self):
self.logger.report_time('Start')
self.logger.args(self.experiment)
model = self.init_model()
train_data_loader = self.experiment.train.data_loader
if self.experiment.validation:
validation_loaders = self.experiment.validation.data_loaders
self.steps = 0
if self.experiment.train.checkpoint:
self.experiment.train.checkpoint.restore_model(
model, self.device, self.logger)
epoch, iter_delta = self.experiment.train.checkpoint.restore_counter()
self.steps = epoch * self.total + iter_delta ## need to check this for resuming the training
# Init start epoch and iter
optimizer = self.experiment.train.scheduler.create_optimizer(
model.parameters())
self.logger.report_time('Init')
# self.skip_batches = 9000 ## give here how many batches to skip incase of resuming the training from middle
# self.skipped = 0
model.train()
while True:
self.logger.info('Training epoch ' + str(epoch))
self.logger.epoch(epoch)
self.total = len(train_data_loader)
for batch in train_data_loader:
# if self.skipped <= self.skip_batches:
# self.skipped +=1
# print(f'batch skipped: {self.skipped}')
# continue
#start_time=time.time()
self.update_learning_rate(optimizer, epoch, self.steps)
self.logger.report_time("Data loading")
if self.experiment.validation and\
self.steps % self.experiment.validation.interval == 0 and\
self.steps > self.experiment.validation.exempt:
self.validate(validation_loaders, model, epoch, self.steps)
self.logger.report_time('Validating ')
if self.logger.verbose:
# torch.cuda.synchronize()
pass
self.train_step(model, optimizer, batch,
epoch=epoch, step=self.steps)
if self.logger.verbose:
# torch.cuda.synchronize()
pass
self.logger.report_time('Forwarding ')
self.model_saver.maybe_save_model(
model, epoch, self.steps, self.logger)
self.steps += 1
self.logger.report_eta(self.steps, self.total, epoch)
# print(f'time taken per batch: {time.time()-start_time}')
epoch += 1
if epoch > self.experiment.train.epochs:
self.model_saver.save_checkpoint(model, 'final')
if self.experiment.validation:
self.validate(validation_loaders, model, epoch, self.steps)
self.logger.info('Training done')
break
iter_delta = 0
def train_step(self, model, optimizer, batch, epoch, step, **kwards):
optimizer.zero_grad()
results = model.forward(batch, training=True)
if len(results) == 2:
l, pred = results
metrics = {}
elif len(results) == 3:
l, pred, metrics = results
if isinstance(l, dict):
line = []
loss = torch.tensor(0.).cuda()
for key, l_val in l.items():
loss += l_val.mean()
line.append('loss_{0}:{1:.4f}'.format(key, l_val.mean()))
else:
loss = l.mean()
loss.backward()
optimizer.step()
if step % self.experiment.logger.log_interval == 0:
if isinstance(l, dict):
line = '\t'.join(line)
log_info = '\t'.join(['step:{:6d}', 'epoch:{:3d}', '{}', 'lr:{:.4f}']).format(step, epoch, line, self.current_lr)
self.logger.info(log_info)
else:
self.logger.info('step: %6d, epoch: %3d, loss: %.6f, lr: %f' % (
step, epoch, loss.item(), self.current_lr))
self.logger.add_scalar('loss', loss, step)
self.logger.add_scalar('learning_rate', self.current_lr, step)
for name, metric in metrics.items():
self.logger.add_scalar(name, metric.mean(), step)
self.logger.info('%s: %6f' % (name, metric.mean()))
self.logger.report_time('Logging')
def validate(self, validation_loaders, model, epoch, step):
all_matircs = {}
model.eval()
for name, loader in validation_loaders.items():
if self.experiment.validation.visualize:
metrics, vis_images = self.validate_step(
loader, model, True)
self.logger.images(
os.path.join('vis', name), vis_images, step)
else:
metrics, vis_images = self.validate_step(loader, model, False)
for _key, metric in metrics.items():
key = name + '/' + _key
if key in all_matircs:
all_matircs[key].update(metric.val, metric.count)
else:
all_matircs[key] = metric
for key, metric in all_matircs.items():
self.logger.info('%s : %f (%d)' % (key, metric.avg, metric.count))
self.logger.metrics(epoch, self.steps, all_matircs)
model.train()
return all_matircs
def validate_step(self, data_loader, model, visualize=False):
raw_metrics = []
vis_images = dict()
for i, batch in tqdm(enumerate(data_loader), total=len(data_loader)):
pred = model.forward(batch, training=False)
output = self.structure.representer.represent(batch, pred)
raw_metric, interested = self.structure.measurer.validate_measure(
batch, output)
raw_metrics.append(raw_metric)
if visualize and self.structure.visualizer:
vis_image = self.structure.visualizer.visualize(
batch, output, interested)
vis_images.update(vis_image)
metrics = self.structure.measurer.gather_measure(
raw_metrics, self.logger)
return metrics, vis_images
def to_np(self, x):
return x.cpu().data.numpy()