-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_utils.py
257 lines (201 loc) · 10.8 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import numpy as np
import pandas as pd
import torch
import torchvision
import matplotlib.pyplot as plt
import os
import json
from collections import OrderedDict
from datetime import datetime
from PIL import Image
transform = torchvision.transforms.Compose(
[torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean=(0.0,), std=(1.0,))])
mnist_dset_train = torchvision.datasets.MNIST(
'./mnist_pytorch', train=True, transform=transform, target_transform=None, download=True)
mnist_train_loader = torch.utils.data.DataLoader(
mnist_dset_train, batch_size=100, shuffle=True, num_workers=1)
mnist_dset_test = torchvision.datasets.MNIST(
'./mnist_pytorch', train=False, transform=transform, target_transform=None, download=True)
mnist_test_loader = torch.utils.data.DataLoader(
mnist_dset_test, batch_size=100, shuffle=False, num_workers=1)
fmnist_dset_train = torchvision.datasets.FashionMNIST(
'./fmnist_pytorch', train=True, transform=transform, target_transform=None, download=True)
fashion_mnist_train_loader = torch.utils.data.DataLoader(
fmnist_dset_train, batch_size=100, shuffle=True, num_workers=1)
fmnist_dset_test = torchvision.datasets.FashionMNIST(
'./fmnist_pytorch', train=False, transform=transform, target_transform=None, download=True)
fashion_mnist_test_loader = torch.utils.data.DataLoader(
fmnist_dset_test, batch_size=100, shuffle=False, num_workers=1)
# usps_transform = torchvision.transforms.Compose( [torchvision.transforms.Resize((28,28)),
# torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean=(0.0,), std=(1.0,))])
#usps_dset_train = torchvision.datasets.USPS('./usps_pytorch', train=True, transform=usps_transform, target_transform=None, download=True)
#usps_train_loader = torch.utils.data.DataLoader(usps_dset_train, batch_size=12, shuffle=True, num_workers=1)
#usps_dset_test = torchvision.datasets.USPS('./usps_pytorch', train=False, transform=usps_transform, target_transform=None, download=True)
#usps_test_loader = torch.utils.data.DataLoader(usps_dset_test, batch_size=100, shuffle=False, num_workers=1)
def create_permuted_loaders(task):
permut = torch.from_numpy(np.random.permutation(784))
transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),
torchvision.transforms.Lambda(
lambda x: x.view(-1)[permut].view(1, 28, 28)),
torchvision.transforms.Normalize(mean=(0.0,), std=(1.0,))])
if task == 'MNIST':
dset_train = torchvision.datasets.MNIST(
'./mnist_pytorch', train=True, transform=transform, target_transform=None, download=True)
train_loader = torch.utils.data.DataLoader(
dset_train, batch_size=100, shuffle=True, num_workers=1)
dset_test = torchvision.datasets.MNIST(
'./mnist_pytorch', train=False, transform=transform, target_transform=None, download=True)
test_loader = torch.utils.data.DataLoader(
dset_test, batch_size=1000, shuffle=False, num_workers=1)
elif task == 'FMNIST':
dset_train = torchvision.datasets.FashionMNIST(
'./fmnist_pytorch', train=True, transform=transform, target_transform=None, download=True)
train_loader = torch.utils.data.DataLoader(
dset_train, batch_size=100, shuffle=True, num_workers=1)
dset_test = torchvision.datasets.FashionMNIST(
'./fmnist_pytorch', train=False, transform=transform, target_transform=None, download=True)
test_loader = torch.utils.data.DataLoader(
dset_test, batch_size=100, shuffle=False, num_workers=1)
return train_loader, test_loader, dset_train
class DatasetProcessing(torch.utils.data.Dataset):
def __init__(self, data, target, transform=None):
self.transform = transform
self.data = data.astype(np.float32)[:, :, None]
self.target = torch.from_numpy(target).long()
def __getitem__(self, index):
if self.transform is not None:
return self.transform(self.data[index]), self.target[index]
else:
return self.data[index], self.target[index]
def __len__(self):
return len(list(self.data))
def process_features(X_train, X_test, mode):
if mode == "cutoff":
cutoff = 8
threshold_train = np.zeros((np.shape(X_train)[0], 1))
threshold_test = np.zeros((np.shape(X_test)[0], 1))
for i in range(np.shape(X_train)[0]):
threshold_train[i, 0] = np.unique(X_train[i, :])[-cutoff]
for i in range(np.shape(X_test)[0]):
threshold_test[i, 0] = np.unique(X_test[i, :])[-cutoff]
X_train = (np.sign(X_train - threshold_train + 1e-6) + 1.0)/2
X_test = (np.sign(X_test - threshold_test + 1e-6) + 1.0)/2
elif mode == "mean_over_examples":
X_train = (X_train - X_train.mean(axis=0, keepdims=True)) / \
X_train.var(axis=0, keepdims=True) # ???
X_test = (X_test - X_test.mean(axis=0, keepdims=True)) / \
X_test.var(axis=0, keepdims=True)
elif mode == "mean_over_examples_sign":
X_train = (np.sign(X_train - X_train.mean(axis=0, keepdims=True)) + 1.0)/2
X_test = (np.sign(X_test - X_test.mean(axis=0, keepdims=True)) + 1.0)/2
elif mode == "mean_over_pixels":
X_train = (X_train - X_train.mean(axis=1, keepdims=True)) / \
X_train.var(axis=1, keepdims=True) # Instance norm
X_test = (X_test - X_test.mean(axis=1, keepdims=True)) / \
X_test.var(axis=1, keepdims=True)
elif mode == "mean_over_pixels_sign":
X_train = (np.sign(X_train - X_train.mean(axis=1, keepdims=True)) + 1.0)/2
X_test = (np.sign(X_test - X_test.mean(axis=1, keepdims=True)) + 1.0)/2
elif mode == "global_mean":
X_train = (X_train - X_train.mean(keepdims=True)) / \
X_train.var(keepdims=True) # Batch norm
X_test = (X_test - X_test.mean(keepdims=True)) / \
X_test.var(keepdims=True)
elif mode == "rescale":
X_train = (X_train / X_train.max(axis=1, keepdims=True))
X_test = (X_test / X_test.max(axis=1, keepdims=True))
return X_train, X_test
def relabel(label):
label_map = [5, 6, 0, 1, 2, 3, 4, 7, 8, 9]
return label_map[label]
vrelabel = np.vectorize(relabel)
def process_cifar10(subset):
cifar_X_train = torch.load(
'cifar10_features_dataset/train.pt').cpu().numpy()
cifar_Y_train = torch.load(
'cifar10_features_dataset/train_targets.pt').cpu().numpy()
cifar_X_test = torch.load('cifar10_features_dataset/test.pt').cpu().numpy()
cifar_Y_test = torch.load(
'cifar10_features_dataset/test_targets.pt').cpu().numpy()
cifar_Y_train = vrelabel(cifar_Y_train)
cifar_Y_test = vrelabel(cifar_Y_test)
if subset == 'animals':
partition = np.vectorize(lambda l: l < 5)
elif subset == 'vehicles':
partition = np.vectorize(lambda l: l >= 5)
else:
raise('error unsuported subset')
mode = 'mean_over_pixels'
sub_X_train = cifar_X_train[partition(cifar_Y_train)]
sub_X_test = cifar_X_test[partition(cifar_Y_test)]
sub_X_train, sub_X_test = process_features(sub_X_train, sub_X_test, mode)
sub_Y_train = cifar_Y_train[partition(cifar_Y_train)]
sub_Y_test = cifar_Y_test[partition(cifar_Y_test)]
sub_dset_train = DatasetProcessing(sub_X_train, sub_Y_train)
sub_train_loader = torch.utils.data.DataLoader(
sub_dset_train, batch_size=100, shuffle=True, num_workers=4)
sub_dset_test = DatasetProcessing(sub_X_test, sub_Y_test)
sub_test_loader = torch.utils.data.DataLoader(
sub_dset_test, batch_size=100, shuffle=False, num_workers=0)
return sub_train_loader, sub_test_loader, sub_dset_train
def process_cifar100(n_subset):
subset_size = 100//n_subset
train_loader_list = []
test_loader_list = []
dset_train_list = []
cifar100_X_train = torch.load(
'cifar100_features_dataset/train.pt').cpu().numpy()
cifar100_Y_train = torch.load(
'cifar100_features_dataset/train_targets.pt').cpu().numpy()
cifar100_X_test = torch.load(
'cifar100_features_dataset/test.pt').cpu().numpy()
cifar100_Y_test = torch.load(
'cifar100_features_dataset/test_targets.pt').cpu().numpy()
for k in range(n_subset):
partition = np.vectorize(lambda l: (
(l < (k+1)*subset_size) and (l >= k*subset_size)))
mode = 'mean_over_pixels'
sub_X_train = cifar100_X_train[partition(cifar100_Y_train)]
sub_X_test = cifar100_X_test[partition(cifar100_Y_test)]
sub_X_train, sub_X_test = process_features(
sub_X_train, sub_X_test, mode)
sub_Y_train = cifar100_Y_train[partition(cifar100_Y_train)]
sub_Y_test = cifar100_Y_test[partition(cifar100_Y_test)]
sub_dset_train = DatasetProcessing(sub_X_train, sub_Y_train)
sub_train_loader = torch.utils.data.DataLoader(
sub_dset_train, batch_size=20, shuffle=True, num_workers=4)
sub_dset_test = DatasetProcessing(sub_X_test, sub_Y_test)
sub_test_loader = torch.utils.data.DataLoader(
sub_dset_test, batch_size=20, shuffle=False, num_workers=0)
train_loader_list.append(sub_train_loader)
test_loader_list.append(sub_test_loader)
dset_train_list.append(sub_dset_train)
return train_loader_list, test_loader_list, dset_train_list
def createHyperparametersFile(path, args):
hyperparameters = open(path + r"/hyperparameters.txt", "w+")
L = ["- scenario: {}".format(args.scenario) + "\n",
"- interleaved: {}".format(args.interleaved) + "\n",
"- hidden layers: {}".format(args.hidden_layers) + "\n",
"- normalization: {}".format(args.norm) + "\n",
"- net: {}".format(args.net) + "\n",
"- task sequence: {}".format(args.task_sequence) + "\n",
"- lr: {}".format(args.lr) + "\n",
"- gamma: {}".format(args.gamma) + "\n",
"- meta: {}".format(args.meta) + "\n",
"- beaker: {}".format(args.beaker) + "\n",
"- number of beakers: {}".format(args.n_bk) + "\n",
"- ratios: {}".format(args.ratios) + "\n",
"- areas: {}".format(args.areas) + "\n",
"- feedback: {}".format(args.fb) + "\n",
"- ewc: {}".format(args.ewc) + "\n",
"- ewc lambda: {}".format(args.ewc_lambda) + "\n",
"- SI: {}".format(args.si) + "\n",
"- Binary Path Integral: {}".format(args.bin_path) + "\n",
"- SI lambda: {}".format(args.si_lambda) + "\n",
"- decay: {}".format(args.decay) + "\n",
"- epochs per task: {}".format(args.epochs_per_task) + "\n",
"- init: {}".format(args.init) + "\n",
"- init width: {}".format(args.init_width) + "\n",
"- seed: {}".format(args.seed) + "\n"]
hyperparameters.writelines(L)
hyperparameters.close()