forked from open-mmlab/mmrazor
-
Notifications
You must be signed in to change notification settings - Fork 1
/
autoslim_mbv2_subnet_8xb256_in1k.py
29 lines (24 loc) · 1.18 KB
/
autoslim_mbv2_subnet_8xb256_in1k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
_base_ = [
'./autoslim_mbv2_supernet_8xb256_in1k.py',
]
model = dict(
head=dict(
loss=dict(
type='LabelSmoothLoss',
mode='original',
label_smooth_val=0.1,
loss_weight=1.0)))
# FIXME: you may replace this with the channel_cfg searched by yourself
channel_cfg = [
'https://download.openmmlab.com/mmrazor/v0.1/pruning/autoslim/autoslim_mbv2_subnet_8xb256_in1k/autoslim_mbv2_subnet_8xb256_in1k_flops-0.53M_acc-74.23_20211222-e5208bbd_channel_cfg.yaml', # noqa: E501
'https://download.openmmlab.com/mmrazor/v0.1/pruning/autoslim/autoslim_mbv2_subnet_8xb256_in1k/autoslim_mbv2_subnet_8xb256_in1k_flops-0.32M_acc-72.73_20211222-b5b0b33c_channel_cfg.yaml', # noqa: E501
'https://download.openmmlab.com/mmrazor/v0.1/pruning/autoslim/autoslim_mbv2_subnet_8xb256_in1k/autoslim_mbv2_subnet_8xb256_in1k_flops-0.22M_acc-71.39_20211222-43117c7b_channel_cfg.yaml' # noqa: E501
]
algorithm = dict(
architecture=dict(type='MMClsArchitecture', model=model),
distiller=None,
retraining=True,
bn_training_mode=False,
channel_cfg=channel_cfg)
runner = dict(type='EpochBasedRunner', max_epochs=300)
find_unused_parameters = True