forked from TobiasScholl/TPTP-ANTLR4-Grammar
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tptp_v7_0_0_0.g4
1304 lines (1142 loc) · 67.5 KB
/
tptp_v7_0_0_0.g4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// created by Alexander Steen ([email protected])
// and Tobias Gleißner ([email protected])
// #INFO is about sections or where the parse tree has been flattened according to ANTLR idiomatics
// #ALT alternative grammar formulation for some parts
// #RES where no further restrictions are applied e.g. in the case of defined_functor
// any dollar word is allowed instead of only the predefined functors
grammar tptp_v7_0_0_0;
// #INFO HERE COME THE LEXER RULES
fragment Do_char : [\u0020-\u0021\u0023-\u005B\u005D-\u007E] | '\\'["\\];
fragment Sq_char : [\u0020-\u0026\u0028-\u005B\u005D-\u007E] | '\\'['\\];
fragment Sign : [+-];
fragment Exponent : [Ee];
fragment Non_zero_numeric : [1-9];
fragment Numeric : [0-9];
fragment Lower_alpha : [a-z];
fragment Upper_alpha : [A-Z];
fragment Alpha_numeric : Lower_alpha | Upper_alpha | Numeric | '_';
Or: '|';
And: '&';
Iff : '<=>';
Impl : '=>';
If: '<=';
Niff: '<~>';
Nor: '~|';
Nand: '~&';
Not: '~';
ForallComb: '!!';
TyForall: '!>';
Infix_inequality : '!=';
Infix_equality : '=';
Forall: '!';
ExistsComb: '??';
TyExists: '?*';
Exists: '?';
Lambda: '^';
ChoiceComb: '@@+';
Choice: '@+';
DescriptionComb: '@@-';
Description: '@-';
EqComb: '@=';
App: '@';
Assignment: ':=';
Arrow: '>';
Star: '*';
Plus: '+';
Subtype_sign: '<<';
Gentzen_arrow : '-->';
Real : Signed_real | Unsigned_real;
Signed_real : Sign Unsigned_real;
Unsigned_real : Decimal_fraction|Decimal_exponent;
Rational: Signed_rational | Unsigned_rational;
Signed_rational: Sign Unsigned_rational;
Unsigned_rational: Decimal '/' Positive_decimal;
Integer : Signed_integer | Unsigned_integer;
Signed_integer: Sign Unsigned_integer;
Unsigned_integer: Decimal;
Decimal : '0' | Positive_decimal;
Positive_decimal : Non_zero_numeric Numeric*;
Decimal_exponent : (Decimal|Decimal_fraction) Exponent Exp_integer;
Decimal_fraction : Decimal Dot_decimal;
Dot_decimal : '.' Numeric Numeric*;
Exp_integer : Signed_exp_integer|Unsigned_exp_integer;
Signed_exp_integer : Sign Unsigned_exp_integer;
Unsigned_exp_integer : Numeric Numeric*;
Dollar_word : '$' Lower_word;
Dollar_dollar_word : '$$' Lower_word;
Upper_word : Upper_alpha Alpha_numeric*;
Lower_word : Lower_alpha Alpha_numeric*;
Single_quoted : '\'' Sq_char+ '\'';
Distinct_object : '"' Do_char+ '"';
WS : [ \r\t\n]+ -> skip ;
Line_comment : '%' ~[\r\n]* -> skip;
Block_comment : '/*' .*? '*/' -> skip;
//%----Top of Page---------------------------------------------------------------
//%----Rules from here on down are for defining tokens (terminal symbols) of the
//%----grammar, assuming they will be recognized by a lexical scanner.
//%----A ::- rule defines a token, a ::: rule defines a macro that is not a
//%----token. Usual regexp notation is used. Single characters are always placed
//%----in []s to disable any special meanings (for uniformity this is done to
//%----all characters, not only those with special meanings).
//
//%----These are tokens that appear in the syntax rules above. No rules
//%----defined here because they appear explicitly in the syntax rules,
//%----except that <vline>, <star>, <plus> denote "|", "*", "+", respectively.
//%----Keywords: fof cnf thf tff include
//%----Punctuation: ( ) , . [ ] :
//%----Operators: ! ? ~ & | <=> => <= <~> ~| ~& * +
//%----Predicates: = != $true $false
//
//%----For lex/yacc there cannot be spaces on either side of the | here
//<comment> ::- <comment_line>|<comment_block>
//<comment_line> ::- [%]<printable_char>*
//<comment_block> ::: [/][*]<not_star_slash>[*][*]*[/]
//<not_star_slash> ::: ([^*]*[*][*]*[^/*])*[^*]*
//%----Defined comments are a convention used for annotations that are used as
//%----additional input for systems. They look like comments, but start with %$
//%----or /*$. A wily user of the syntax can notice the $ and extract information
//%----from the "comment" and pass that on as input to the system. They are
//%----analogous to pragmas in programming languages. To extract these separately
//%----from regular comments, the rules are:
//%---- <defined_comment> ::- <def_comment_line>|<def_comment_block>
//%---- <def_comment_line> ::: [%]<dollar><printable_char>*
//%---- <def_comment_block> ::: [/][*]<dollar><not_star_slash>[*][*]*[/]
//%----A string that matches both <defined_comment> and <comment> should be
//%----recognized as <defined_comment>, so put these before <comment>.
//%----Defined comments that are in use include:
//%---- TO BE ANNOUNCED
//%----System comments are a convention used for annotations that may used as
//%----additional input to a specific system. They look like comments, but start
//%----with %$$ or /*$$. A wily user of the syntax can notice the $$ and extract
//%----information from the "comment" and pass that on as input to the system.
//%----The specific system for which the information is intended should be
//%----identified after the $$, e.g., /*$$Otter 3.3: Demodulator */
//%----To extract these separately from regular comments, the rules are:
//%---- <system_comment> ::- <sys_comment_line>|<sys_comment_block>
//%---- <sys_comment_line> ::: [%]<dollar><dollar><printable_char>*
//%---- <sys_comment_block> ::: [/][*]<dollar><dollar><not_star_slash>[*][*]*[/]
//%----A string that matches both <system_comment> and <defined_comment> should
//%----be recognized as <system_comment>, so put these before <defined_comment>.
//
//<single_quoted> ::- <single_quote><sq_char><sq_char>*<single_quote>
//%----<single_quoted>s contain visible characters. \ is the escape character for
//%----' and \, i.e., \' is not the end of the <single_quoted>.
//%----The token does not include the outer quotes, e.g., 'cat' and cat are the
//%----same. See <atomic_word> for information about stripping the quotes.
//
//<distinct_object> ::- <double_quote><do_char>*<double_quote>
//%---Space and visible characters upto ~, except " and \
//%----<distinct_object>s contain visible characters. \ is the escape character
//%----for " and \, i.e., \" is not the end of the <distinct_object>.
//%----<distinct_object>s are different from (but may be equal to) other tokens,
//%----e.g., "cat" is different from 'cat' and cat. Distinct objects are always
//%----interpreted as themselves, so if they are different they are unequal,
//%----e.g., "Apple" != "Microsoft" is implicit.
//
//<dollar_word> ::- <dollar><lower_word>
//<dollar_dollar_word> ::- <dollar><dollar><lower_word>
//<upper_word> ::- <upper_alpha><alpha_numeric>*
//<lower_word> ::- <lower_alpha><alpha_numeric>*
//
//%----Tokens used in syntax, and cannot be character classes
//<vline> ::- [|]
//<star> ::- [*]
//<plus> ::- [+]
//<arrow> ::- [>]
//<less_sign> ::- [<]
//
//%----Numbers. Signs are made part of the same token here.
//<real> ::- (<signed_real>|<unsigned_real>)
//<signed_real> ::- <sign><unsigned_real>
//<unsigned_real> ::- (<decimal_fraction>|<decimal_exponent>)
//<rational> ::- (<signed_rational>|<unsigned_rational>)
//<signed_rational> ::- <sign><unsigned_rational>
//<unsigned_rational> ::- <decimal><slash><positive_decimal>
//<integer> ::- (<signed_integer>|<unsigned_integer>)
//<signed_integer> ::- <sign><unsigned_integer>
//<unsigned_integer> ::- <decimal>
//<decimal> ::- (<zero_numeric>|<positive_decimal>)
//<positive_decimal> ::- <non_zero_numeric><numeric>*
//<decimal_exponent> ::- (<decimal>|<decimal_fraction>)<exponent><exp_integer>
//<decimal_fraction> ::- <decimal><dot_decimal>
//<dot_decimal> ::- <dot><numeric><numeric>*
//<exp_integer> ::- (<signed_exp_integer>|<unsigned_exp_integer>)
//<signed_exp_integer> ::- <sign><unsigned_exp_integer>
//<unsigned_exp_integer> ::- <numeric><numeric>*
//
//%----Character classes
//<percentage_sign> ::: [%]
//<double_quote> ::: ["]
//<do_char> ::: ([\40-\41\43-\133\135-\176]|[\\]["\\])
//<single_quote> ::: [']
//%---Space and visible characters upto ~, except ' and \
//<sq_char> ::: ([\40-\46\50-\133\135-\176]|[\\]['\\])
//<sign> ::: [+-]
//<dot> ::: [.]
//<exponent> ::: [Ee]
//<slash> ::: [/]
//<zero_numeric> ::: [0]
//<non_zero_numeric> ::: [1-9]
//<numeric> ::: [0-9]
//<lower_alpha> ::: [a-z]
//<upper_alpha> ::: [A-Z]
//<alpha_numeric> ::: (<lower_alpha>|<upper_alpha>|<numeric>|[_])
//<dollar> ::: [$]
//<printable_char> ::: .
//%----<printable_char> is any printable ASCII character, codes 32 (space) to 126
//%----(tilde). <printable_char> does not include tabs, newlines, bells, etc. The
//%----use of . does not not exclude tab, so this is a bit loose.
//<viewable_char> ::: [.\n]
//%----Top of Page---------------------------------------------------------------
// #INFO HERE COMES THE GRAMMAR
//%----v7.0.0.0 (TPTP version.internal development number)
//%------------------------------------------------------------------------------
//%----README ... this header provides important meta- and usage information
//%----
//%----Intended uses of the various parts of the TPTP syntax are explained
//%----in the TPTP technical manual, linked from www.tptp.org.
//%----
//%----Four kinds of separators are used, to indicate different types of rules:
//%---- ::= is used for regular grammar rules, for syntactic parsing.
//%---- :== is used for semantic grammar rules. These define specific values
//%---- that make semantic sense when more general syntactic rules apply.
//%---- ::- is used for rules that produce tokens.
//%---- ::: is used for rules that define character classes used in the
//%---- construction of tokens.
//%----
//%----White space may occur between any two tokens. White space is not specified
//%----in the grammar, but there are some restrictions to ensure that the grammar
//%----is compatible with standard Prolog: a <TPTP_file> should be readable with
//%----read/1.
//%----
//%----The syntax of comments is defined by the <comment> rule. Comments may
//%----occur between any two tokens, but do not act as white space. Comments
//%----will normally be discarded at the lexical level, but may be processed
//%----by systems that understand them (e.g., if the system comment convention
//%----is followed).
//%----
//%----Multiple languages are defined. Depending on your need, you can implement
//%----just the one(s) you need. The common rules for atoms, terms, etc, come
//%----after the definitions of the languages, and mostly all needed for all the
//%----languages.
//%----Top of Page---------------------------------------------------------------
//%----Files. Empty file is OK.
//<TPTP_file> ::= <TPTP_input>*
//<TPTP_input> ::= <annotated_formula> | <include>
tptp_file : tptp_input* EOF;
tptp_input : annotated_formula | include;
//%----Formula records
//<annotated_formula> ::= <thf_annotated> | <tfx_annotated> | <tff_annotated> |
// <tcf_annotated> | <fof_annotated> | <cnf_annotated> |
// <tpi_annotated>
//%----Future languages may include ... english | efof | tfof | mathml | ...
//<tpi_annotated> ::= tpi(<name>,<formula_role>,<tpi_formula><annotations>).
//<tpi_formula> ::= <fof_formula>
//<thf_annotated> ::= thf(<name>,<formula_role>,<thf_formula>
// <annotations>).
//<tfx_annotated> ::= tfx(<name>,<formula_role>,<tfx_formula>
// <annotations>).
//<tff_annotated> ::= tff(<name>,<formula_role>,<tff_formula>
// <annotations>).
//<tcf_annotated> ::= tcf(<name>,<formula_role>,<tcf_formula>
// <annotations>).
//<fof_annotated> ::= fof(<name>,<formula_role>,<fof_formula>
// <annotations>).
//<cnf_annotated> ::= cnf(<name>,<formula_role>,<cnf_formula>
// <annotations>).
//<annotations> ::= ,<source><optional_info> | <null>
annotated_formula : thf_annotated | tfx_annotated | tff_annotated
| tcf_annotated | fof_annotated | cnf_annotated
| tpi_annotated;
tpi_annotated : 'tpi(' name ',' formula_role ',' tpi_formula annotations? ').';
tpi_formula : fof_formula;
thf_annotated : 'thf(' name ',' formula_role ',' thf_formula annotations? ').';
tfx_annotated : 'tfx(' name ',' formula_role ',' tfx_formula annotations? ').';
tff_annotated : 'tff(' name ',' formula_role ',' tff_formula annotations? ').';
tcf_annotated : 'tcf(' name ',' formula_role ',' tcf_formula annotations? ').';
fof_annotated : 'fof(' name ',' formula_role ',' fof_formula annotations? ').';
cnf_annotated : 'cnf(' name ',' formula_role ',' cnf_formula annotations? ').';
annotations : ',' source optional_info?;
//%----In derivations the annotated formulae names must be unique, so that
//%----parent references (see <inference_record>) are unambiguous.
//%----Types for problems.
//%----Note: The previous <source_type> from ...
//%---- <formula_role> ::= <user_role>-<source>
//%----... is now gone. Parsers may choose to be tolerant of it for backwards
//%----compatibility.
//<formula_role> ::= <lower_word>
//<formula_role> :== axiom | hypothesis | definition | assumption |
// lemma | theorem | corollary | conjecture |
// negated_conjecture | plain | type |
// fi_domain | fi_functors | fi_predicates | unknown
formula_role : Lower_word; // #RES no restrictions
//%----"axiom"s are accepted, without proof. There is no guarantee that the
//%----axioms of a problem are consistent.
//%----"hypothesis"s are assumed to be true for a particular problem, and are
//%----used like "axiom"s.
//%----"definition"s are intended to define symbols. They are either universally
//%----quantified equations, or universally quantified equivalences with an
//%----atomic lefthand side. They can be treated like "axiom"s.
//%----"assumption"s can be used like axioms, but must be discharged before a
//%----derivation is complete.
//%----"lemma"s and "theorem"s have been proven from the "axiom"s. They can be
//%----used like "axiom"s in problems, and a problem containing a non-redundant
//%----"lemma" or theorem" is ill-formed. They can also appear in derivations.
//%----"theorem"s are more important than "lemma"s from the user perspective.
//%----"conjecture"s are to be proven from the "axiom"(-like) formulae. A problem
//%----is solved only when all "conjecture"s are proven.
//%----"negated_conjecture"s are formed from negation of a "conjecture" (usually
//%----in a FOF to CNF conversion).
//%----"plain"s have no specified user semantics.
//%----"fi_domain", "fi_functors", and "fi_predicates" are used to record the
//%----domain, interpretation of functors, and interpretation of predicates, for
//%----a finite interpretation.
//%----"type" defines the type globally for one symbol; treat as $true.
//%----"unknown"s have unknown role, and this is an error situation.
//%----Top of Page---------------------------------------------------------------
//%----THF formulae.
//<thf_formula> ::= <thf_logic_formula> | <thf_sequent>
//<thf_logic_formula> ::= <thf_binary_formula> | <thf_unitary_formula> |
// <thf_type_formula> | <thf_subtype>
//<thf_binary_formula> ::= <thf_binary_pair> | <thf_binary_tuple> |
// <thf_binary_type>
thf_formula : thf_logic_formula | thf_sequent;
thf_logic_formula : thf_binary_formula | thf_unitary_formula
| thf_type_formula | thf_subtype;
thf_binary_formula : thf_binary_pair | thf_binary_tuple
| thf_binary_type;
//%----Only some binary connectives can be written without ()s.
//%----There's no precedence among binary connectives
//<thf_binary_pair> ::= <thf_unitary_formula> <thf_pair_connective>
// <thf_unitary_formula>
//<thf_binary_tuple> ::= <thf_or_formula> | <thf_and_formula> |
// <thf_apply_formula>
//<thf_or_formula> ::= <thf_unitary_formula> <vline> <thf_unitary_formula> |
// <thf_or_formula> <vline> <thf_unitary_formula>
//<thf_and_formula> ::= <thf_unitary_formula> & <thf_unitary_formula> |
// <thf_and_formula> & <thf_unitary_formula>
//%----@ (denoting apply) is left-associative and lambda is right-associative.
//%----^ [X] : ^ [Y] : f @ g (where f is a <thf_apply_formula> and g is a
//%----<thf_unitary_formula>) should be parsed as: (^ [X] : (^ [Y] : f)) @ g.
//%----That is, g is not in the scope of either lambda.
//<thf_apply_formula> ::= <thf_unitary_formula> @ <thf_unitary_formula> |
// <thf_apply_formula> @ <thf_unitary_formula>
thf_binary_pair : thf_unitary_formula thf_pair_connective thf_unitary_formula;
thf_binary_tuple : thf_or_formula | thf_and_formula
| thf_apply_formula;
thf_or_formula : thf_unitary_formula Or thf_unitary_formula
| thf_or_formula Or thf_unitary_formula;
thf_and_formula : thf_unitary_formula And thf_unitary_formula
| thf_and_formula And thf_unitary_formula;
thf_apply_formula : thf_unitary_formula App thf_unitary_formula
| thf_apply_formula App thf_unitary_formula;
//%----<thf_unitary_formula> are in ()s or do not have a <binary_connective> at
//%----the top level. Essentially, any lambda expression that "has enough ()s" to
//%----be used inside a larger lambda expression. However, lambda notation might
//%----not be used.
//<thf_unitary_formula> ::= <thf_quantified_formula> | <thf_unary_formula> |
// <thf_atom> | <thf_conditional> | <thf_let> |
// <thf_tuple> | (<thf_logic_formula>)
thf_unitary_formula : thf_quantified_formula | thf_unary_formula
| thf_atom | thf_conditional | thf_let
| thf_tuple | '(' thf_logic_formula ')';
//%----All variables must be quantified
//<thf_quantified_formula> ::= <thf_quantification> <thf_unitary_formula>
//<thf_quantification> ::= <thf_quantifier> [<thf_variable_list>] :
//<thf_variable_list> ::= <thf_variable> | <thf_variable>,<thf_variable_list>
//<thf_variable> ::= <thf_typed_variable> | <variable>
//<thf_typed_variable> ::= <variable> : <thf_top_level_type>
thf_quantified_formula : thf_quantification thf_unitary_formula;
thf_quantification : thf_quantifier '[' thf_variable_list ']' ':';
thf_variable_list : thf_variable (',' thf_variable)*; // #INFO thf_variable_list flattened
//thf_variable_list : thf_variable | thf_variable ',' thf_variable_list; // #ALT flattened to thf_variable_list
thf_variable : thf_typed_variable | variable;
thf_typed_variable : variable ':' thf_top_level_type;
//thf_variable : variable (':' thf_top_level_type)?; // #ALT to thf_variable (more condensed)
//%----Unary connectives bind more tightly than binary. The negated formula
//%----must be ()ed because a ~ is also a term.
//<thf_unary_formula> ::= <thf_unary_connective> (<thf_logic_formula>)
//<thf_atom> ::= <thf_function> | <variable> | <defined_term> |
// <thf_conn_term>
thf_unary_formula : thf_unary_connective '(' thf_logic_formula ')';
thf_atom : thf_function | variable | defined_term
| thf_conn_term;
//%----Defined terms have TPTP specific interpretations. Note that <thf_atom>
//%----allows <defined_type>s as terms, which will fail type checking. The
//%----user must take care with this liberal syntax!
//<thf_function> ::= <atom> | <functor>(<thf_arguments>) |
// <defined_functor>(<thf_arguments>) |
// <system_functor>(<thf_arguments>)
thf_function : atom | functor '(' thf_arguments ')'
| defined_functor '(' thf_arguments ')'
| system_functor '(' thf_arguments ')';
// #ALT to thf_function
// Splitted rules of <thf_function> to avoid using <atom> here:
// We use conditional arguments, i.e.
// the atoms are included (= thf_arguments is empty).
//thf_function: thf_plain_term | thf_defined_term | thf_system_term;
//thf_plain_term : functor ('(' thf_arguments ')')?;
//thf_defined_term : defined_functor ('(' thf_arguments ')')?;
//thf_system_term : system_functor ('(' thf_arguments ')')?;
//%----| <defined_type> | <defined_prop>, but they are captured by <atom> as
//%----<defined_constant> as <atomic_defined_word>.
//<thf_conn_term> ::= <thf_pair_connective> | <assoc_connective> |
// <thf_unary_connective>
thf_conn_term : thf_pair_connective | assoc_connective
| thf_unary_connective;
//%----Note that syntactically this allows (p @ =), but for = the first
//%----argument must be known to infer the type of =, so that's not
//%----allowed, i.e., only (= @ p).
//<thf_conditional> ::= $ite(<thf_logic_formula>,<thf_logic_formula>,
// <thf_logic_formula>)
thf_conditional : '$ite(' thf_logic_formula ',' thf_logic_formula ',' thf_logic_formula ')';
//%----<thf_let> is about to be changed. Don't trust anything here.
//%----The LHS of a term or formula binding must be a non-variable term that
//%----is flat with pairwise distinct variable arguments, and the variables in
//%----the LHS must be exactly those bound in the universally quantified variable
//%----list, in the same order. Let definitions are not recursive: a non-variable
//%----symbol introduced in the LHS of a let definition cannot occur in the RHS.
//%----If a symbol with the same signature as the one in the LHS of the binding
//%----is declared above the let expression (at the top level or in an
//%----encompassing let) then it can be used in the RHS of the binding, but it is
//%----not accessible in the term or formula of the let expression. Let
//%----expressions can be eliminated by a simple definition expansion.
//<thf_let> ::= $let(<thf_unitary_formula>,<thf_formula>)
//<thf_let> :== $let(<thf_let_defns>,<thf_formula>)
//<thf_let_defns> :== <thf_let_defn> | [<thf_let_defn_list>]
//<thf_let_defn_list> :== <thf_let_defn> | <thf_let_defn>,<thf_let_defn_list>
//<thf_let_defn> :== <thf_let_quantified_defn> | <thf_let_plain_defn>
//<thf_let_quantified_defn> :== <thf_quantification> (<thf_let_plain_defn>)
//<thf_let_plain_defn> :== <thf_let_defn_LHS> <assignment> <thf_formula>
//<thf_let_defn_LHS> :== <constant> | <functor>(<fof_arguments>) |
// <thf_tuple>
thf_let : '$let(' thf_unitary_formula ',' thf_formula ')';
// TODO nothing since it is about to be changed
//%----The <fof_arguments> must all be <variable>s, and the <thf_tuple> may
//%----contain only <constant>s and <functor>(<fof_arguments>)s
//
//%----Arguments recurse back up to formulae (this is the THF world here)
//<thf_arguments> ::= <thf_formula_list>
thf_arguments : thf_formula_list;
//%----A <thf_type_formula> is an assertion that the formula is in this type.
//<thf_type_formula> ::= <thf_typeable_formula> : <thf_top_level_type>
//<thf_typeable_formula> ::= <thf_atom> | (<thf_logic_formula>)
//<thf_subtype> ::= <thf_atom> <subtype_sign> <thf_atom>
thf_type_formula : thf_typeable_formula ':' thf_top_level_type;
thf_typeable_formula : thf_atom | '(' thf_logic_formula ')';
thf_subtype : thf_atom Subtype_sign thf_atom;
//%----In a formula with role 'type', <thf_type_formula> is a global declaration
//%----that <constant> is in this thf_top_level_type>, i.e., the rule is ...
//<thf_type_formula> :== <constant> : <thf_top_level_type>
// #INFO the previous thf_type_formula leads to constant on the left side of the :
//thf_type_formula : constant ':' thf_top_level_type;
//%----<thf_top_level_type> appears after ":", where a type is being specified
//%----for a term or variable. <thf_unitary_type> includes <thf_unitary_formula>,
//%----so the syntax allows just about any lambda expression with "enough"
//%----parentheses to serve as a type. The expected use of this flexibility is
//%----parametric polymorphism in types, expressed with lambda abstraction.
//%----Mapping is right-associative: o > o > o means o > (o > o).
//%----Xproduct is left-associative: o * o * o means (o * o) * o.
//%----Union is left-associative: o + o + o means (o + o) + o.
//<thf_top_level_type> ::= <thf_unitary_type> | <thf_mapping_type> |
// <thf_apply_type>
thf_top_level_type : thf_unitary_type | thf_mapping_type | thf_apply_type;
//%----Removed along with adding <thf_binary_type> to <thf_binary_formula>, for
//%----TH1 polymorphic types with binary after quantification.
//%---- | (<thf_binary_type>)
//<thf_unitary_type> ::= <thf_unitary_formula>
//<thf_apply_type> ::= <thf_apply_formula>
//<thf_binary_type> ::= <thf_mapping_type> | <thf_xprod_type> |
// <thf_union_type>
//<thf_mapping_type> ::= <thf_unitary_type> <arrow> <thf_unitary_type> |
// <thf_unitary_type> <arrow> <thf_mapping_type>
//<thf_xprod_type> ::= <thf_unitary_type> <star> <thf_unitary_type> |
// <thf_xprod_type> <star> <thf_unitary_type>
//<thf_union_type> ::= <thf_unitary_type> <plus> <thf_unitary_type> |
// <thf_union_type> <plus> <thf_unitary_type>
thf_unitary_type : thf_unitary_formula;
thf_apply_type : thf_apply_formula;
thf_binary_type : thf_mapping_type | thf_xprod_type
| thf_union_type;
thf_mapping_type : thf_unitary_type Arrow thf_unitary_type
| thf_unitary_type Arrow thf_mapping_type;
thf_xprod_type : thf_unitary_type Star thf_unitary_type
| thf_xprod_type Star thf_unitary_type;
thf_union_type : thf_unitary_type Plus thf_unitary_type
| thf_union_type Plus thf_unitary_type;
//%----Sequents using the Gentzen arrow
//<thf_sequent> ::= <thf_tuple> <gentzen_arrow> <thf_tuple> |
// (<thf_sequent>)
thf_sequent : thf_tuple Gentzen_arrow thf_tuple
| '(' thf_sequent ')';
//%----By convention, []s are used for tuple of statements, {}s for tuples of
//%----objects. The convention matches the requirements for <tff_tuple_formula>s
//%----and <tff_tuple_term>s. Mixed THF tuples should use []s.
//<thf_tuple> ::= [] | [<thf_formula_list>] |
// {} | {<thf_formula_list>}
//<thf_formula_list> ::= <thf_logic_formula> |
// <thf_logic_formula>,<thf_formula_list>
thf_tuple : '[]' | '[' thf_formula_list ']'
| '{}' | '{' thf_formula_list '}';
thf_formula_list : thf_logic_formula (',' thf_logic_formula)*;
//%----New material for modal logic semantics, not integrated yet
//<logic_defn_rule> :== <logic_defn_LHS> <assignment> <logic_defn_RHS>
//<logic_defn_LHS> :== <logic_defn_value> | <thf_top_level_type> | <name>
//<logic_defn_LHS> :== $constants | $quantification | $consequence |
// $modalities
//logic_defn_rule : logic_defn_lhs Assignment logic_defn_rhs;
//logic_defn_lhs : logic_defn_value // TODO dunno why this is there
// | thf_function // for constant selection
// | thf_top_level_type // for domain selection
// | name // for axioms selection
// | Dollar_word; // #RES no restrictions
//| '$modal' // enables modal logical options
//| '$constants' // modal logic: alter constants
//| '$quantification' // modal logic: alter quantification
//| '$consequence' // modal logic: alter consequence
//| '$modalities'; // modal logic: alter modality operators
//%----The $constants, $quantification, and $consequence apply to all of the
//%----$modalities. Each of these may be specified only once, but not necessarily
//%----all in a single annotated formula.
//<logic_defn_RHS> :== <logic_defn_value> | <thf_unitary_formula>
//<logic_defn_value> :== <defined_constant>
//<logic_defn_value> :== $rigid | $flexible |
// $constant | $varying | $cumulative | $decreasing |
// $local | $global |
// $modal_system_K | $modal_system_T | $modal_system_D |
// $modal_system_S4 | $modal_system_S5 |
// $modal_axiom_K | $modal_axiom_T | $modal_axiom_B |
// $modal_axiom_D | $modal_axiom_4 | $modal_axiom_5
//logic_defn_rhs : logic_defn_value
// | thf_unitary_formula; // TODO dunno why this is there
//logic_defn_value : Dollar_word; // #RES no restrictions
// '$rigid' // modal logic: consequence option
// | '$flexible' // modal logic: consequence option
// | '$constant' // modal logic: quantification option
// | '$varying' // modal logic: quantification option
// | '$cumulative' // modal logic: quantification option
// | '$decreasing' // modal logic: quantification option
// | '$local' // modal logic: consequence option
// | '$global' // modal logic: consequence option
// | '$modal_system_K' // modal logic: Axiom: K
// | '$modal_system_T' // modal logic: Axiom: K + T
// | '$modal_system_D' // modal logic: Axiom: K + D
// | '$modal_system_S4' // modal logic: Axiom K + T + 4
// | '$modal_system_S5' // modal logic: Axiom K + T + 5
// | '$modal_axiom_K' // modal logic: box(s -> t) -> (box s -> box t)
// | '$modal_axiom_T' // modal logic: box s -> s
// | '$modal_axiom_B' // modal logic: s -> box dia s
// | '$modal_axiom_D' // modal logic: box s -> dia s
// | '$modal_axiom_4' // modal logic: box s -> box box s
// | '$modal_axiom_5' // modal logic: dia s -> box dia s
// | '$modal_axiom_CD' // modal logic: dia s -> box s
// | '$modal_axiom_BOXM' // modal logic: box (box s -> s)
// | '$modal_axiom_C4' // modal logic: box box s -> box s
// | '$modal_axiom_C'; // modal logic: dia box s -> box dia s
//%----Top of Page---------------------------------------------------------------
//%----TFX formulae
//<tfx_formula> ::= <tfx_logic_formula> | <thf_sequent>
//<tfx_logic_formula> ::= <thf_logic_formula>
//% <tfx_logic_formula> ::= <thf_binary_formula> | <thf_unitary_formula> |
//% <tff_typed_atom> | <tff_subtype>
tfx_formula : tfx_logic_formula | thf_sequent;
tfx_logic_formula : thf_logic_formula;
//%----Top of Page---------------------------------------------------------------
//%----TFF formulae.
//<tff_formula> ::= <tff_logic_formula> | <tff_typed_atom> |
// <tff_sequent>
//<tff_logic_formula> ::= <tff_binary_formula> | <tff_unitary_formula> |
// <tff_subtype>
//<tff_binary_formula> ::= <tff_binary_nonassoc> | <tff_binary_assoc>
//<tff_binary_nonassoc> ::= <tff_unitary_formula> <binary_connective>
// <tff_unitary_formula>
//<tff_binary_assoc> ::= <tff_or_formula> | <tff_and_formula>
//<tff_or_formula> ::= <tff_unitary_formula> <vline> <tff_unitary_formula> |
// <tff_or_formula> <vline> <tff_unitary_formula>
//<tff_and_formula> ::= <tff_unitary_formula> & <tff_unitary_formula> |
// <tff_and_formula> & <tff_unitary_formula>
//<tff_unitary_formula> ::= <tff_quantified_formula> | <tff_unary_formula> |
// <tff_atomic_formula> | <tff_conditional> |
// <tff_let> | (<tff_logic_formula>)
tff_formula : tff_logic_formula | tff_typed_atom
| tff_sequent;
tff_logic_formula : tff_binary_formula | tff_unitary_formula
| tff_subtype;
tff_binary_formula : tff_binary_nonassoc | tff_binary_assoc;
tff_binary_nonassoc : tff_unitary_formula binary_connective tff_unitary_formula;
tff_binary_assoc : tff_or_formula | tff_and_formula;
tff_or_formula : tff_unitary_formula Or tff_unitary_formula
| tff_or_formula Or tff_unitary_formula;
tff_and_formula : tff_unitary_formula And tff_unitary_formula
| tff_and_formula And tff_unitary_formula;
tff_unitary_formula : tff_quantified_formula | tff_unary_formula
| tff_atomic_formula | tff_conditional
| tff_let | '(' tff_logic_formula ')';
//%----All variables must be quantified
//<tff_quantified_formula> ::= <fof_quantifier> [<tff_variable_list>] :
// <tff_unitary_formula>
//<tff_variable_list> ::= <tff_variable> | <tff_variable>,<tff_variable_list>
//<tff_variable> ::= <tff_typed_variable> | <variable>
//<tff_typed_variable> ::= <variable> : <tff_atomic_type>
//<tff_unary_formula> ::= <unary_connective> <tff_unitary_formula> |
// <fof_infix_unary>
//<tff_atomic_formula> ::= <fof_atomic_formula>
tff_quantified_formula : fof_quantifier '[' tff_variable_list ']' ':' tff_unitary_formula;
tff_variable_list : tff_variable (',' tff_variable)*; // #INFO tff_variable_list flattened
//tff_variable_list : tff_variable | tff_variable ',' tff_variable_list; // # ALT to tff_variable_list
tff_variable : tff_typed_variable | variable;
// tff_variable : variable (':' tff_atomic_type)?; // #ALT to tff_variable (more condensed)
tff_typed_variable : variable ':' tff_atomic_type;
tff_unary_formula : unary_connective tff_unitary_formula
| fof_infix_unary;
tff_atomic_formula : fof_atomic_formula;
//<tff_conditional> ::= $ite_f(<tff_logic_formula>,<tff_logic_formula>,
// <tff_logic_formula>)
//<tff_let> ::= $let_tf(<tff_let_term_defns>,<tff_formula>) |
// $let_ff(<tff_let_formula_defns>,<tff_formula>)
//%----See the commentary for <thf_let>.
//<tff_let_term_defns> ::= <tff_let_term_defn> | [<tff_let_term_list>]
//<tff_let_term_list> ::= <tff_let_term_defn> |
// <tff_let_term_defn>,<tff_let_term_list>
//<tff_let_term_defn> ::= ! [<tff_variable_list>] : <tff_let_term_defn> |
// <tff_let_term_binding>
//<tff_let_term_binding> ::= <fof_plain_term> = <fof_term> |
// (<tff_let_term_binding>)
//<tff_let_formula_defns> ::= <tff_let_formula_defn> | [<tff_let_formula_list>]
//<tff_let_formula_list> ::= <tff_let_formula_defn> |
// <tff_let_formula_defn>,<tff_let_formula_list>
//<tff_let_formula_defn> ::= ! [<tff_variable_list>] : <tff_let_formula_defn> |
// <tff_let_formula_binding>
//<tff_let_formula_binding> ::= <fof_plain_atomic_formula> <=>
// <tff_unitary_formula> | (<tff_let_formula_binding>)
tff_conditional : '$ite_f(' tff_logic_formula ',' tff_logic_formula ',' tff_logic_formula ')';
tff_let : '$let_tf(' tff_let_term_defns ',' tff_formula ')'
| '$let_ff(' tff_let_formula_defns ',' tff_formula ')';
tff_let_term_defns : tff_let_term_defn | '[' tff_let_term_list ']';
tff_let_term_list : tff_let_term_defn (',' tff_let_term_defn)*;
tff_let_term_defn : Forall '[' tff_variable_list ']' ':' tff_let_term_defn
| tff_let_term_binding;
tff_let_term_binding : fof_plain_term Infix_equality fof_term
| '(' tff_let_term_binding ')';
tff_let_formula_defns : tff_let_formula_defn | '[' tff_let_formula_list ']';
tff_let_formula_list : tff_let_formula_defn (',' tff_let_formula_defn)*;
tff_let_formula_defn : Forall '[' tff_variable_list ']' ':' tff_let_formula_defn
| tff_let_formula_binding;
tff_let_formula_binding : fof_plain_atomic_formula Iff tff_unitary_formula
| '(' tff_let_formula_binding ')';
//<tff_sequent> ::= <tff_formula_tuple> <gentzen_arrow>
// <tff_formula_tuple> | (<tff_sequent>)
//<tff_formula_tuple> ::= [] | [<tff_formula_tuple_list>]
//<tff_formula_tuple_list> ::= <tff_logic_formula> |
// <tff_logic_formula>,<tff_formula_tuple_list>
tff_sequent : tff_formula_tuple Gentzen_arrow tff_formula_tuple
| '(' tff_sequent ')';
tff_formula_tuple : '[]' | '[' tff_formula_tuple_list ']';
tff_formula_tuple_list : tff_logic_formula (',' tff_logic_formula)*;
//%----<tff_typed_atom> can appear only at top level
//<tff_typed_atom> ::= <untyped_atom> : <tff_top_level_type> |
// (<tff_typed_atom>)
//
//<tff_subtype> ::= <untyped_atom> <subtype_sign> <atom>
tff_typed_atom : untyped_atom ':' tff_top_level_type
| '(' tff_typed_atom ')';
tff_subtype : untyped_atom Subtype_sign atom;
//%----See <thf_top_level_type> for commentary.
//<tff_top_level_type> ::= <tff_atomic_type> | <tff_mapping_type> |
// <tf1_quantified_type> | (<tff_top_level_type>)
//<tf1_quantified_type> ::= !> [<tff_variable_list>] : <tff_monotype>
//<tff_monotype> ::= <tff_atomic_type> | (<tff_mapping_type>)
//<tff_unitary_type> ::= <tff_atomic_type> | (<tff_xprod_type>)
//<tff_atomic_type> ::= <type_constant> | <defined_type> |
// <type_functor>(<tff_type_arguments>) | <variable>
//<tff_type_arguments> ::= <tff_atomic_type> |
// <tff_atomic_type>,<tff_type_arguments>
//%----For consistency with <thf_unitary_type> (the analogue in thf),
//%----<tff_atomic_type> should also allow (<tff_atomic_type>), but that causes
//%----ambiguity.
//<tff_mapping_type> ::= <tff_unitary_type> <arrow> <tff_atomic_type>
//<tff_xprod_type> ::= <tff_unitary_type> <star> <tff_atomic_type> |
// <tff_xprod_type> <star> <tff_atomic_type>
tff_top_level_type : tff_atomic_type | tff_mapping_type
| tf1_quantified_type | '(' tff_top_level_type ')';
tf1_quantified_type : '!>' '[' tff_variable_list ']' ':' tff_monotype;
tff_monotype : tff_atomic_type | '(' tff_mapping_type ')';
tff_unitary_type : tff_atomic_type | '(' tff_xprod_type ')';
tff_atomic_type : type_constant | defined_type
| type_functor '(' tff_type_arguments ')' | variable;
// tff_atomic_type : defined_type | type_functor ('(' tff_type_arguments ')')? | variable; // #ALT to tff_atomic_type (more condensed)
tff_type_arguments : tff_atomic_type (',' tff_atomic_type)*;
tff_mapping_type : tff_unitary_type Arrow tff_atomic_type;
tff_xprod_type : tff_unitary_type Star tff_atomic_type
| tff_xprod_type Star tff_atomic_type;
//%----Top of Page---------------------------------------------------------------
//%----TCF formulae.
//<tcf_formula> ::= <tcf_logic_formula> | <tff_typed_atom>
//<tcf_logic_formula> ::= <tcf_quantified_formula> | <cnf_formula>
//<tcf_quantified_formula> ::= ! [<tff_variable_list>] : <cnf_formula>
tcf_formula : tcf_logic_formula | tff_typed_atom;
tcf_logic_formula : tcf_quantified_formula | cnf_formula;
tcf_quantified_formula : Forall '[' tff_variable_list ']' ':' cnf_formula;
//%----Top of Page---------------------------------------------------------------
//%----FOF formulae.
//<fof_formula> ::= <fof_logic_formula> | <fof_sequent>
//<fof_logic_formula> ::= <fof_binary_formula> | <fof_unitary_formula>
//%----Future answer variable ideas | <answer_formula>
//<fof_binary_formula> ::= <fof_binary_nonassoc> | <fof_binary_assoc>
//%----Only some binary connectives are associative
//%----There's no precedence among binary connectives
//<fof_binary_nonassoc> ::= <fof_unitary_formula> <binary_connective>
// <fof_unitary_formula>
//%----Associative connectives & and | are in <binary_assoc>
//<fof_binary_assoc> ::= <fof_or_formula> | <fof_and_formula>
//<fof_or_formula> ::= <fof_unitary_formula> <vline> <fof_unitary_formula> |
// <fof_or_formula> <vline> <fof_unitary_formula>
//<fof_and_formula> ::= <fof_unitary_formula> & <fof_unitary_formula> |
// <fof_and_formula> & <fof_unitary_formula>
//%----<fof_unitary_formula> are in ()s or do not have a <binary_connective> at
//%----the top level.
//<fof_unitary_formula> ::= <fof_quantified_formula> | <fof_unary_formula> |
// <fof_atomic_formula> | (<fof_logic_formula>)
//%----All variables must be quantified
//<fof_quantified_formula> ::= <fof_quantifier> [<fof_variable_list>] :
// <fof_unitary_formula>
//<fof_variable_list> ::= <variable> | <variable>,<fof_variable_list>
//<fof_unary_formula> ::= <unary_connective> <fof_unitary_formula> |
// <fof_infix_unary>
fof_formula : fof_logic_formula | fof_sequent;
fof_logic_formula : fof_binary_formula | fof_unitary_formula;
fof_binary_formula : fof_binary_nonassoc | fof_binary_assoc;
fof_binary_nonassoc : fof_unitary_formula binary_connective fof_unitary_formula;
fof_binary_assoc : fof_or_formula | fof_and_formula;
fof_or_formula : fof_unitary_formula Or fof_unitary_formula
| fof_or_formula Or fof_unitary_formula;
fof_and_formula : fof_unitary_formula And fof_unitary_formula
| fof_and_formula And fof_unitary_formula;
fof_unitary_formula : fof_quantified_formula | fof_unary_formula
| fof_atomic_formula | '(' fof_logic_formula ')';
fof_quantified_formula : fof_quantifier '[' fof_variable_list ']' ':' fof_unitary_formula;
fof_variable_list : variable (',' variable)*;
fof_unary_formula : unary_connective fof_unitary_formula | fof_infix_unary;
//%----<fof_term> != <fof_term> is equivalent to ~ <fof_term> = <fof_term>
//<fof_infix_unary> ::= <fof_term> <infix_inequality> <fof_term>
//<fof_atomic_formula> ::= <fof_plain_atomic_formula> |
// <fof_defined_atomic_formula> |
// <fof_system_atomic_formula>
//<fof_plain_atomic_formula> ::= <fof_plain_term>
//<fof_plain_atomic_formula> :== <proposition> | <predicate>(<fof_arguments>)
//<fof_defined_atomic_formula> ::= <fof_defined_plain_formula> |
// <fof_defined_infix_formula>
//<fof_defined_plain_formula> ::= <fof_defined_plain_term>
//<fof_defined_plain_formula> :== <defined_proposition> |
// <defined_predicate>(<fof_arguments>)
//<fof_defined_infix_formula> ::= <fof_term> <defined_infix_pred> <fof_term>
//%----System terms have system specific interpretations
//<fof_system_atomic_formula> ::= <fof_system_term>
//%----<fof_system_atomic_formula>s are used for evaluable predicates that are
//%----available in particular tools. The predicate names are not controlled by
//%----the TPTP syntax, so use with due care. Same for <fof_system_term>s.
fof_infix_unary : fof_term Infix_inequality fof_term;
fof_atomic_formula : fof_plain_atomic_formula
| fof_defined_atomic_formula
| fof_system_atomic_formula;
fof_plain_atomic_formula : fof_plain_term;
fof_defined_atomic_formula : fof_defined_plain_formula | fof_defined_infix_formula;
fof_defined_plain_formula : fof_defined_term;
fof_defined_infix_formula : fof_term defined_infix_pred fof_term;
fof_system_atomic_formula : fof_system_term;
//%----FOF terms.
//<fof_plain_term> ::= <constant> | <functor>(<fof_arguments>)
//%----Defined terms have TPTP specific interpretations
//<fof_defined_term> ::= <defined_term> | <fof_defined_atomic_term>
//<fof_defined_atomic_term> ::= <fof_defined_plain_term>
//%----None yet | <defined_infix_term>
//%----None yet <defined_infix_term> ::= <fof_term> <defined_infix_func> <fof_term>
//%----None yet <defined_infix_func> ::=
//<fof_defined_plain_term> ::= <defined_constant> |
// <defined_functor>(<fof_arguments>)
//%----System terms have system specific interpretations
//<fof_system_term> ::= <system_constant> | <system_functor>(<fof_arguments>)
fof_plain_term : constant
| functor '(' fof_arguments ')';
fof_defined_term : defined_term | fof_defined_atomic_term;
fof_defined_atomic_term : fof_defined_plain_term;
fof_defined_plain_term : defined_constant
| defined_functor '(' fof_arguments ')';
fof_system_term : system_constant
| system_functor '(' fof_arguments ')';
// #ALT alternatives for these terms
//fof_plain_term: functor ('(' fof_arguments ')')?; // contracted for easier handling
//fof_defined_term: defined_functor ('(' fof_arguments ')')?; // contracted for easier handling
//fof_system_term: system_functor ('(' fof_arguments ')')?; // contracted for easier handling
//%----Arguments recurse back to terms (this is the FOF world here)
//<fof_arguments> ::= <fof_term> | <fof_term>,<fof_arguments>
//%----These are terms used as arguments. Not the entry point for terms because
//%----<fof_plain_term> is also used as <fof_plain_atomic_formula>. The <tff_
//%----options are for only TFF, but are here because <fof_plain_atomic_formula>
//%----is used in <fof_atomic_formula>, which is also used as
//%----<tff_atomic_formula>.
//<fof_term> ::= <fof_function_term> | <variable> |
// <tff_conditional_term> | <tff_let_term> |
// <tff_tuple_term>
//<fof_function_term> ::= <fof_plain_term> | <fof_defined_term> |
// <fof_system_term>
fof_arguments : fof_term (',' fof_term)*;
fof_term : fof_function_term | variable
| tff_conditional_term | tff_let_term
| tff_tuple_term;
fof_function_term : fof_plain_term | fof_defined_term
| fof_system_term;
//%----Conditional terms should be used by only TFF.
//<tff_conditional_term> ::= $ite_t(<tff_logic_formula>,<fof_term>,<fof_term>)
//%----Let terms should be used by only TFF. $let_ft is for use when there is
//%----a $ite_t in the <fof_term>. See the commentary for $let_tf and $let_ff.
//<tff_let_term> ::= $let_ft(<tff_let_formula_defns>,<fof_term>) |
// $let_tt(<tff_let_term_defns>,<fof_term>)
//%----<tff_tuple_term> uses {}s to disambiguate from tuples of formulae in []s.
//<tff_tuple_term> ::= {} | {<fof_arguments>}
tff_conditional_term : '$ite_t(' tff_logic_formula ',' fof_term ',' fof_term ')';
tff_let_term : '$let_ft(' tff_let_formula_defns ',' fof_term ')'
| '$let_tt(' tff_let_term_defns ',' fof_term ')';
tff_tuple_term : '{}' | '{' fof_arguments '}';
//%----Top of Page---------------------------------------------------------------
//%----This section is the FOFX syntax. Not yet in use.
//% <fof_let> ::= := [<fof_let_list>] : <fof_unitary_formula>
//% <fof_let_list> ::= <fof_defined_var> |
//% <fof_defined_var>,<fof_let_list>
//% <fof_defined_var> ::= <variable> := <fof_logic_formula> |
//% <variable> :- <fof_term> | (<fof_defined_var>)
//%
//% <fof_conditional> ::= $ite_f(<fof_logic_formula>,<fof_logic_formula>,
//% <fof_logic_formula>)
//%
//% <fof_conditional_term> ::= $ite_t(<fof_logic_formula>,<fof_term>,<fof_term>)
// #INFO not yet in use therefore not implemented
//<fof_sequent> ::= <fof_formula_tuple> <gentzen_arrow>
// <fof_formula_tuple> | (<fof_sequent>)
//
//<fof_formula_tuple> ::= [] | [<fof_formula_tuple_list>]
//<fof_formula_tuple_list> ::= <fof_logic_formula> |
// <fof_logic_formula>,<fof_formula_tuple_list>
fof_sequent : fof_formula_tuple Gentzen_arrow fof_formula_tuple
| '(' fof_sequent ')';
fof_formula_tuple : '[]' | '[' fof_formula_tuple_list ']';
fof_formula_tuple_list : fof_logic_formula (',' fof_logic_formula)*;
//%----Top of Page---------------------------------------------------------------
//%----CNF formulae (variables implicitly universally quantified)
//<cnf_formula> ::= <disjunction> | (<disjunction>)
//<disjunction> ::= <literal> | <disjunction> <vline> <literal>
//<literal> ::= <fof_atomic_formula> | ~ <fof_atomic_formula> |
// <fof_infix_unary>
cnf_formula : cnf_disjunction | '(' cnf_disjunction ')';
cnf_disjunction : cnf_literal | cnf_disjunction Or cnf_literal;
cnf_literal : fof_atomic_formula | Not fof_atomic_formula
| fof_infix_unary;
//%----Top of Page---------------------------------------------------------------
//%----Connectives - THF
//<thf_quantifier> ::= <fof_quantifier> | <th0_quantifier> |
// <th1_quantifier>
//%----TH0 quantifiers are also available in TH1
//<th1_quantifier> ::= !> | ?*
//<th0_quantifier> ::= ^ | @+ | @-
//<thf_pair_connective> ::= <infix_equality> | <infix_inequality> |
// <binary_connective> | <assignment>
//<thf_unary_connective> ::= <unary_connective> | <th1_unary_connective>
//<th1_unary_connective> ::= !! | ?? | @@+ | @@- | @=
thf_quantifier : fof_quantifier | th0_quantifier
| th1_quantifier;
th0_quantifier : Lambda | Choice | Description;
th1_quantifier : TyForall | TyExists;
thf_pair_connective : Infix_equality | Infix_inequality
| binary_connective | Assignment ;
thf_unary_connective : unary_connective | th1_unary_connective;
th1_unary_connective : ForallComb | ExistsComb | ChoiceComb | DescriptionComb | EqComb;
//%----Connectives - THF and TFF
//<subtype_sign> ::= <<
// #INFO See Lexer rules
//%----Connectives - TFF
//% <tff_pair_connective> ::= <binary_connective> | <assignment>
tff_pair_connective : binary_connective | Assignment;
//%----Connectives - FOF
//<fof_quantifier> ::= ! | ?
//<binary_connective> ::= <=> | => | <= | <~> | ~<vline> | ~&
//<assoc_connective> ::= <vline> | &
//<unary_connective> ::= ~
fof_quantifier: Forall | Exists;
binary_connective: Iff | Impl | If | Niff | Nor | Nand;
assoc_connective : Or | And;
unary_connective : Not;
//%----The seqent arrow
//<gentzen_arrow> ::= -->
//<assignment> ::= :=
// #INFO See Lexer rules for definitions
//%----Types for THF and TFF
//<type_constant> ::= <type_functor>
//<type_functor> ::= <atomic_word>
//<defined_type> ::= <atomic_defined_word>
//<defined_type> :== $oType | $o | $iType | $i | $tType |
// $real | $rat | $int
//%----$oType/$o is the Boolean type, i.e., the type of $true and $false.
//%----$iType/$i is non-empty type of individuals, which may be finite or
//%----infinite. $tType is the type of all types. $real is the type of <real>s.
//%----$rat is the type of <rational>s. $int is the type of <signed_integer>s
//%----and <unsigned_integer>s.
//<system_type> :== <atomic_system_word>
type_constant : type_functor;
type_functor : atomic_word;
// #PREDEF
defined_type : Dollar_word; // #RES no restrictions //Defined_type;
//Defined_type : '$oType' | '$o' | '$iType' | '$i' | '$tType' |
// '$real' | '$rat' | '$int';
// #UNDEF
//defined_type : atomic_defined_word;
system_type : atomic_system_word;
//%----For all language types
//<atom> ::= <untyped_atom> | <defined_constant>
//<untyped_atom> ::= <constant> | <system_constant>
atom : untyped_atom | defined_constant;
untyped_atom : constant | system_constant;
//<defined_proposition> :== <atomic_defined_word>
//<defined_proposition> :== $true | $false
//<defined_predicate> :== <atomic_defined_word>
//<defined_predicate> :== $distinct |
// $less | $lesseq | $greater | $greatereq |
// $is_int | $is_rat |
// $box_P | $box_i | $box_int | $box |
// $dia_P | $dia_i | $dia_int | $dia
// #PREDEF
defined_proposition : Dollar_word; // #RES // Defined_proposition;
// Defined_proposition : '$true' | '$false';
defined_predicate : Dollar_word; // #RES // Defined_predicate;
//Defined_predicate : '$distinct'
// | '$less' | '$lesseq' | '$greater' | '$greatereq'
// | '$is_int' | '$is_rat'
// | '$box_P' | '$box_i' | '$box_int' | '$box'
// | '$dia_P' | '$dia_i' | '$dia_int' | '$dia';
//# UNDEF
// defined_proposition : atomic_defined_word;
// defined_predicate : atomic_defined_word;
//%----$distinct means that each of it's constant arguments are pairwise !=. It
//%----is part of the TFF syntax. It can be used only as a fact, not under any
//%----connective.
//<defined_infix_pred> ::= <infix_equality> | <assignment>
//<infix_equality> ::= =
//<infix_inequality> ::= !=
defined_infix_pred : Infix_equality | Assignment;
//# INFO See lexer rules for definitions
//<constant> ::= <functor>
//<functor> ::= <atomic_word>
constant : functor;
functor : atomic_word;