-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathTopOpt_Julia.jl
231 lines (217 loc) · 8.55 KB
/
TopOpt_Julia.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# 2-D Topoplogy Optimization in Julia
# IMPORT PACKAGES
using Printf
using SparseArrays
using LinearAlgebra
using Plots: heatmap
using Statistics
include("mmasub.jl")
include("subsolv.jl")
include("kktcheck.jl")
# FUNCTIONS
function optimize!(F::Array{Float64,1}, U::Array{Float64,1},
freedofs::Array{Int64,1},
penal::Float64, E0::Float64, Emin::Float64, ft::Int64,
nelx::Int64, nely::Int64,
iK::Array{Int64,1},
jK::Array{Int64,1},
edofMat::Array{Int64,2},
KE::Array{Float64,2},
H::SparseMatrixCSC{Float64,Int64},
Hs::Array{Float64,2}, volfrac::Float64,
alg::String)::Tuple{Array{Float64,2},Array{Float64,2}}
x = repeat([volfrac],nely,nelx)
xPhys = copy(x)
xnew = copy(x)
if alg == "MMA"
m = 1
n = nely*nelx
xold1 = copy(vec(x))
xold2 = copy(vec(x))
xmin = zeros(n)
xmax = ones(n)
low = zeros(n)
upp = ones(n)
cc = 1000.0 * ones(m)
dd = ones(m)
aa0 = 1.0
aa = zeros(m)
move = 0.2
f0 = 1.0
end
maxoutit = 1000
kkttol = 5e-5
kktnorm = kkttol+10
loop = 0
change = 1.0
sK = zeros(64*nelx*nely)
K = spzeros(2*(nely+1)*(nelx+1),2*(nely+1)*(nelx+1))
dc = zeros(nely, nelx)
dv = zeros(nely, nelx)
ce = zeros(nely, nelx)
while (kktnorm > kkttol) & (change > 1e-2) & (loop < maxoutit)
loop = loop +1
# FE-ANALYSIS
sK = reshape(vec(KE)*(Emin.+vec(xPhys)'.^penal*(E0-Emin)),64*nelx*nely)
K = sparse(iK,jK,sK)
U[freedofs] .= Symmetric(K[freedofs,freedofs])\F
# OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
ce .= reshape(sum((U[edofMat]*KE).*U[edofMat], dims=2),nely,nelx)
c = sum((Emin.+xPhys.^penal.*(E0-Emin)).*ce)
dc .= -penal*(E0-Emin).*xPhys.^(penal-1).*ce
dv .= ones(nely,nelx)
# FILTERING/MODIFICATION OF SENSITIVITIES
if ft == 1 # sensitivity filtering
dc .= reshape(H*(vec(x).*vec(dc))./Hs./max.(1e-3,vec(x)),nely,nelx)
elseif ft == 2 # density filtering
vec(dc) .= H*(vec(dc)./Hs)
vec(dv) .= H*(vec(dv)./Hs)
end
if alg == "OC"
# OPTIMALITY CRITERIA UPDATE OF DESIGN VARIABLES AND PHYSICAL DENSITIES
optimalityCriteria!(x, xPhys, xnew, dc, dv, H, Hs, nelx, nely, ft, volfrac)
change = maximum(abs.(vec(xnew) - vec(x)))
x .= xnew
elseif alg == "MMA"
# MMA UPDATE OF DESIGN VARIABLES AND PHYSICAL DENSITIES
xmin = max.(vec(x) .- move, 0.0)
xmax = min.(vec(x) .+ move, 1.0)
if loop == 1
f0 = c
end
f0val = c / f0
df0dx = vec(dc) ./ f0
fval = [sum(vec(xPhys)) / (n*volfrac) - 1.0]
dfdx = vec(dv)' ./ (n*volfrac)
xmma,ymma,zmma,lam,xsi,eta,mu,zet,s,low,upp =
mmasub(m,n,loop,vec(x),xmin,xmax,xold1,xold2,f0val,df0dx,fval,dfdx,low,upp,aa0,aa,cc,dd)
xold2 .= xold1
xold1 .= vec(x)
if ft == 1
vec(xPhys) .= xmma
elseif ft == 2
vec(xPhys) .= (H*xmma)./Hs
end
change = maximum(abs.(xmma-vec(x)))
vec(x) .= xmma
#### The residual vector of the KKT conditions is calculated:
residu,kktnorm,residumax =
kktcheck(m,n,xmma,ymma,zmma,lam,xsi,eta,mu,zet,s,xmin,xmax,df0dx,fval,dfdx,aa0,aa,cc,dd)
end
s = @sprintf "It: %i Obj.: %.4f Vol: %.3f Ch: %.3f |KKT|: %.4f" loop c mean(xPhys) change kktnorm;
println(s)
end
return x, xPhys
end
function optimalityCriteria!(x::Array{Float64,2}, xPhys::Array{Float64,2}, xnew::Array{Float64,2},
dc::Array{Float64,2}, dv::Array{Float64,2}, H::SparseMatrixCSC{Float64,Int64},
Hs::Array{Float64,2}, nelx::Int64, nely::Int64, ft::Int64,
volfrac::Float64)
l1 = 0.0; l2 = 1.0e9; move = 0.2
while (l2-l1)/(l1+l2) > 1.0e-3
lmid = 0.5*(l2+l1)
xnew .= max.(0,max.(x.-move,min.(1.0,min.(x.+move,x.*sqrt.(-dc./dv./lmid)))))
if ft == 1
xPhys .= xnew
elseif ft == 2
xPhys .= reshape((H*vec(xnew))./Hs,nely,nelx)
end
if (sum(xPhys) > volfrac*nelx*nely) l1 = lmid else l2 = lmid end
end
end
function prepFilter(nelx::Int64, nely::Int64, rmin::Int64)::Tuple{SparseMatrixCSC{Float64,Int64}, Array{Float64,2}}
iH = ones(nelx*nely*(2*(ceil(rmin)-1)+1)^2)
jH = ones(size(iH))
sH = zeros(size(iH))
k = 0
for i1 in 1:nelx
for j1 in 1:nely
e1 = (i1-1)*nely+j1
for i2 in max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx)
for j2 in max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-1),nely)
e2 = (i2-1)*nely+j2
k = k+1
iH[k] = e1
jH[k] = e2
sH[k] = max(0.0,rmin-sqrt((i1-i2)^2+(j1-j2)^2))
end
end
end
end
iH .= Int.(iH)
jH .= Int.(jH)
H = sparse(iH,jH,sH)
Hs = sum(H, dims=2)
return (H,Hs)
end
################################################################################
# MAIN CODE
function TopOpt(nelx = 120::Int64, nely = 40::Int64,
rmin = 5::Int64, volfrac = 0.5::Float64,
penal = 3.0::Float64, ft = 1::Int64,
alg = "MMA"::String)
# TOPOPT SETTINGS
# nelx, elements in x
# nely, elements in y
# rmin, filter radius
# volfrac, volume fraction
# penal, SIMP penalty
# ft, filtering option: 1 = sensitivity filter, 2 density filter
nele = nelx * nely
# MATERIAL PROPERTIES
E0 = 1.0
Emin = 1.0e-9
nu = 0.3
# ELEMENT STIFFNESS MATRIX
A11 = Float64[12 3 -6 -3; 3 12 3 0; -6 3 12 -3; -3 0 -3 12.0]
A12 = Float64[-6 -3 0 3; -3 -6 -3 -6; 0 -3 -6 3; 3 -6 3 -6.0]
B11 = Float64[-4 3 -2 9; 3 -4 -9 4; -2 -9 -4 -3; 9 4 -3 -4.0]
B12 = Float64[2 -3 4 -9; -3 2 9 -2; 4 9 2 3; -9 -2 3 2.0]
KE = 1/(1-nu^2)/24 * ([A11 A12; A12' A11] + nu*[B11 B12; B12' B11])
# CONNECTIVITY
nodenrs = reshape(1:(1+nelx)*(1+nely), 1+nely, 1+nelx)
edofVec = reshape(2*nodenrs[1:end-1,1:end-1]+ones(nely,nelx), nelx*nely, 1)
edofMat = Int.(repeat(edofVec, 1, 8) + repeat([0 1 2*nely .+ [2 3 0 1] -2 -1], nelx*nely, 1))
iK = reshape(kron(edofMat, ones(8,1))', 64*nelx*nely)
jK = reshape(kron(edofMat, ones(1,8))', 64*nelx*nely)
iK = convert(Array{Int64}, iK)
jK = convert(Array{Int64}, jK)
# DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)
F = zeros(2*(nely+1)*(nelx+1))
F[2,1] = -1.0
U = zeros(2*(nely+1)*(nelx+1))
fixeddofs = union(collect(1:2:2*(nely+1)), [2*(nelx+1)*(nely+1)])
alldofs = collect(1:2*(nely+1)*(nelx+1))
freedofs = setdiff(alldofs,fixeddofs)
# PREPARE FILTER
H,Hs = prepFilter(nelx,nely,rmin)
# INITIALIZE ITERATION
x, xPhys = optimize!(F[freedofs], U, freedofs, penal, E0, Emin, ft, nelx, nely, iK, jK, edofMat, KE, H, Hs, volfrac, alg)
# PLOT FINAL DESIGN
heatmap(1.0.-xPhys[end:-1:1,:], yaxis=false, xaxis=false, legend = :none,
color = :greys, grid=false, border=nothing, aspect_ratio=:equal)
end
################################################################################
# Run the main code
nelx = 140
nely = 60
rmin = 5
volfrac = 0.4
penal = 3.0
ft = 2 # options: 1 sensitivity filtering, 2 density filtering
alg = "MMA" # options: "OC" or "MMA"
TopOpt(nelx,nely,rmin,volfrac,penal,ft,alg)
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# This code was written by Nicolò Pollini, %
# Technion - Israel Institute of Technology %
# %
# %
# Contact: [email protected] %
# %
# Code repository: https://github.com/pollinico/topopt_jl %
# %
# Disclaimer: %
# The author reserves all rights but does not guarantee that the code is %
# free from errors. Furthermore, the author shall not be liable in any %
# event caused by the use of the program. %
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%