From 069851fc1a64c2d6437fc7bae2c9a73799d21536 Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Wed, 30 Oct 2024 18:16:30 -0400 Subject: [PATCH 01/25] Probabilistic proofs doc WIP --- .../primitives/probabilistic_proofs.md | 111 +++++++++++++++++- 1 file changed, 105 insertions(+), 6 deletions(-) diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md index 5b7b8d169..685e8a1e0 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md @@ -3,7 +3,7 @@ title: Probabilistic Proofs sidebar_position: 3 --- -# Probabilistic Proofs +## Probabilistic Proofs :::warning @@ -13,11 +13,110 @@ document as a reference for writing this. ::: - [Introduction](#introduction) + - [Problem Statement](#problem-statement) + - [Example Scenario](#example-scenario) +- [Solution](#solution) -## Introduction +### Introduction -Probabilistic Proofs is the solution to solving for the long tail of low relay -sessions that can cause on-chain bloat. +Probabilistic Proofs is a method to scale Pocket Network indefinitely. -This complements the design of [Relay Mining](./relay_mining.md) -to solve for all scenarios. +#### Problem Statement + +_tl;dr Too many on-chain proofs do not scale due to state bloat and excessive CPU usage._ + +The core limiting factor to Pocket Network's scalability is the number of necessary onchain proofs. For details on how proofs are generated and validated, see the [Claim & Proof lifecycle](./claim_and_proof_lifecycle.md) section. + +In every session, for every `(Application, Supplier, Service)` tuple, there is a +single onchain Merkle proof to prove the claimed work done. + +These proofs are large and costly to both store and verify. Too many proofs result in: + +- **State Bloat**: Full Node disk space grows too quickly because blocks are large (i.e. full of transactions containing large proofs) increasing disk usage. +- **Verification cost**: Block producers (i.e. Validators) must verify all these proofs on every block increasing CPU usage. + +:::note + +There is a lot of research around this type of problem, but our team is not looking into zero-knowledge as a solution at the time of writing (2024). + +::: + +#### Example Scenario + +Consider the hypothetical scenario below as an extremely rough approximation + +Network state and parameters: + +- Median Proof Size: `1,000` bytes +- Num services: `10,000` +- Num applications: `100,000` +- Num suppliers: `1,00,000` +- Num suppliers per session: `10` +- Session duration: `1` hour +- Num proofs per session: `1` + +Conservative (simple) Scenario: + +- Num active applications: `10,000` +- Num services used per application per session: `5` +- Num suppliers used per application per session: `10` +- 1 proof per (service, supplier) pair for each app +- Total time: `1` day (`24` sessions) + +Total disk growth per day: + +```bash +10,000 app * 1 proof/(service,supplier) 10 supplier/app * 5 services/session * 24 sessions * 1,000 bytes/proof = 12 GB +``` + +A very simple (conservative) scenario would result in `12GB` of disk growth per day, amount to more than `4TB` of disk growth in a year. + +This discounts CPU usage needed to verify the proofs. + +### Solution + +_tl;dr Require a claim for every (App, Supplier, Service) tuple, but only require a proof for a subset of these claims and slash Suppliers that fail to provide a proof when needed._ + +The diagram below makes reference to some of the onchain [Governance Params](./../governance/params.md). + +```mermaid +flowchart TD + DR[Distribute Reward] + SC[Submit Claim] + PR[Proof Required] + NP[Proof NOT Required] + SLASH[Slash Supplier Stake] + + %% Is Claim Above Threshold + ISCAT{ Is
Claim.ComputeUnits > Gov.ProofRequirementThreshold ? } + %% Is Probabilistic Proof Required + ISPPR{"Is P(Gov.ProofRequestProbability) == 1 ?
(omitting rand seed details)"} + %% Is Proof Available + ISPA{"Is Proof Available?"} + + SC --> ISCAT + + ISCAT --> |No| ISPPR + ISCAT --> |Yes| PR + + ISPPR --> |No| NP + ISPPR --> |Yes| ISPA + + ISPA --> |"Yes
(Assume proof is valid)"| DR + ISPA --> |No| SLASH + + PR --> ISPA + NP --> DR + + style DR fill:#c2f0c2,stroke:#27ae60,stroke-width:2px,color:#000 + style SLASH fill:#f2a3a3,stroke:#e74c3c,stroke-width:2px,color:#000 + style NP fill:#f0f0c2,stroke:#f39c12,stroke-width:2px,color:#000 + style PR fill:#c2d1f0,stroke:#2980b9,stroke-width:2px,color:#000 + + classDef decision fill:#B39CD0,stroke:#5D3FD3,color:#000; + class ISCAT,ISPPR,ISPA decision; +``` + +## Crypto-economic Analysis & Incentives + +## Motivation from Morse From afe4c6acc4aa00c5c763accd04cb46dee4706bae Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Thu, 31 Oct 2024 10:36:07 -0400 Subject: [PATCH 02/25] Quick interim commit --- .../primitives/probabilistic_proofs.md | 86 ++++++++++++++++++- geometric_probability_distribution.py | 29 +++++++ probabilistic_proofs.py | 38 ++++++++ 3 files changed, 152 insertions(+), 1 deletion(-) create mode 100644 geometric_probability_distribution.py create mode 100644 probabilistic_proofs.py diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md index 685e8a1e0..6269b8eca 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md @@ -73,7 +73,7 @@ A very simple (conservative) scenario would result in `12GB` of disk growth per This discounts CPU usage needed to verify the proofs. -### Solution +### Approach _tl;dr Require a claim for every (App, Supplier, Service) tuple, but only require a proof for a subset of these claims and slash Suppliers that fail to provide a proof when needed._ @@ -117,6 +117,90 @@ flowchart TD class ISCAT,ISPPR,ISPA decision; ``` +## Key Question + +What values need to be selected to deter a Supplier from submitting a false claim? How can this be modelled? + +## Guarantees & Expected Values + +Pocket Network's tokenomics DO NOT provide a 100% guarantee against gaming the system. +This is similar to how Data Availability (DA) layers DO NOT provide a 100% guarantee +that the data is available. + +Rather, there is a tradeoff of what the network's security guarantees are in exchange +for scalability, cost, user experience, and acceptable gamability. + +Our goal is to model the expected value of an honest and dishonest supplier and +have levers in place to adjust an acceptable gaming risk. + +A Supplier's balance can changed in the following ways: + +1. Earn rewards for valid Claims w/ Proofs; proof required +2. Earn rewards for valid Claims w/o Proofs; proof not required +3. **Earn rewards for invalid Claims w/o Proofs; proof not required** +4. Slash stake for Claims w/ invalid Proofs; proof required +5. Slash stake for Claims w/ missing Proofs; proof required + +The goal of Probabilistic Proofs is to define an acceptable risk for (3) +such that the expected value (i.e. balance) of the Supplier is lower even +if (1) and (2) + +TODO: IMPROVE THIS. + +## Modelling an Attack + +### Defining a Trial - Bernoulli Trial - A False Claim that gets caught + +A [Bernoulli probability distribution](https://en.wikipedia.org/wiki/Bernoulli_distribution) +is used as the foundation of modelling an attack. + +Each (Claim, Proof) pair can be treated as an independent Bernoulli Trial. + +If `Claim.ComputeUnits > Gov.ProofRequirementThreshold`, the model is _short-circuited_ and is therefore outside the sample space for this definition. + +Defining Bernoulli Trial success & failure: + +- **Success**: False/invalid/missing Claim that penalizes the Supplier. For example: + - A false Claim that does not have an associated Proof + - A false Claim that has an associated invalid Proof + - A valid Claim that fails to submit a Proof on time +- **Failure**: All other outcomes. For example: + - Supplier submits a false Claim and gets away with it + - Supplier submits a true Claim and is required prove it + - Supplier submits a true Claim and is not required prove it + - Supplier submits a true Claim and fails to prove it + +### Modelling k Claims that do not require a proof + +Successive Proof - Geometric Probability Distribution Function + +The foundation/DAO is responsible for selection a value `p` (ProofRequestProbability) +that represents + +$$ p = ProofRequestProbability $$ + +$$ q = 1 - p $$ + +$$ Pr(X=k) = (1-p)^{k-1}p $$ + +$$ k = \frac{ln(\frac{Pr(X=k)}{p})}{ln(1-p)} + 1 $$ + +TODO: ADD GRAPH + +TODO_FUTURE: + +### Geometric CDF + +$$ x ∈ ℝ ∣ 0 ≤ x < 1 $$ + +$$ p = ProofRequestProbability $$ + +$$ P(X<=k) = 1 - (1 - p)^{k} $$ + +$$ k = \frac{log(1 - P(X<=k))}{log(1 - p)} $$ + +TODO: ADD GRAPH + ## Crypto-economic Analysis & Incentives ## Motivation from Morse diff --git a/geometric_probability_distribution.py b/geometric_probability_distribution.py new file mode 100644 index 000000000..86022847e --- /dev/null +++ b/geometric_probability_distribution.py @@ -0,0 +1,29 @@ +import matplotlib.pyplot as plt +import numpy as np + + +# Function to calculate Pr(X = k) +def geometric_pmf(k, p): + return (1 - p) ** (k - 1) * p + + +# Updated p values to include 1.0 +p_values = [0.2, 0.5, 0.8, 1.0] # Different values for p, including 1.0 + +# Extend the k_values to start from 0 +k_values = np.arange(0, 21) # k from 0 to 20 + +plt.figure(figsize=(10, 6)) + +# Plot the geometric distribution for different p values +for p in p_values: + probabilities = geometric_pmf(k_values[1:], p) # Skip k=0 as PMF is undefined for k=0 + plt.plot(k_values[1:], probabilities, marker="o", label=f"p = {p}") + +plt.xticks(np.arange(0, 21, 1)) # Set x-axis ticks from 0 to 20 +plt.xlabel("k") +plt.ylabel("Pr(X = k)") +plt.title("Geometric Distribution PMF") +plt.legend() +plt.grid(True) +plt.show() diff --git a/probabilistic_proofs.py b/probabilistic_proofs.py new file mode 100644 index 000000000..9e3226257 --- /dev/null +++ b/probabilistic_proofs.py @@ -0,0 +1,38 @@ +import numpy as np +import matplotlib.pyplot as plt +from matplotlib import cm + +def pdf(x, p): + return np.log(x/p) / np.log(1-p) + +# Line Graph +x = np.linspace(0.01, 1, 200) + +# Points +xp = np.linspace(0.01, 1, 20) + +# Plot the actual functions +ps = [0.25, 0.5, 0.75, 0.9] +colors = cm.get_cmap('hsv', len(ps)+1) +for i, p in enumerate(ps): + color = colors(i) + y = pdf(x, p) + yp = pdf(xp, p) + plt.plot(x, y, label=f'p = {p}', color=color) + # Select only the points where y > 0 and plot them as dots + x_pos = xp[np.where(yp > 0)] + y_pos = yp[np.where(yp > 0)] + plt.plot(x_pos, y_pos, 'o', color=color) + + +# Add a horizontal line at y = 0 +plt.axhline(y=0, color='gray', linestyle='--') + +# Add legend, axis labels, and title +plt.legend() +plt.xlabel('Probability(X=k)') +plt.ylabel('k (num failures)') +plt.title('Number of failures until a single success') + +# Display the plot +plt.show() \ No newline at end of file From a0151632a72b7abf02723303dd4dc08d927e9a86 Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Thu, 31 Oct 2024 16:17:06 -0400 Subject: [PATCH 03/25] Checkpoint commit --- .../Peanlty_vs_ProofRequestProbability.png | Bin 0 -> 68292 bytes ...t_Network_Morse_Probabilistic_Proofs.ipynb | 828 ++++++++++++++++++ .../primitives/geometric_pdf_vs_cdf.png | Bin 0 -> 102554 bytes .../primitives/geometric_pdf_vs_cdf.py | 37 + .../penalty_vs_proof_request_prob.py | 17 + .../primitives/probabilistic_proofs.md | 553 ++++++++++-- .../primitives/probabilistic_proofs_morse.md | 332 +++++++ 7 files changed, 1676 insertions(+), 91 deletions(-) create mode 100644 docusaurus/docs/protocol/primitives/Peanlty_vs_ProofRequestProbability.png create mode 100644 docusaurus/docs/protocol/primitives/Pocket_Network_Morse_Probabilistic_Proofs.ipynb create mode 100644 docusaurus/docs/protocol/primitives/geometric_pdf_vs_cdf.png create mode 100644 docusaurus/docs/protocol/primitives/geometric_pdf_vs_cdf.py create mode 100644 docusaurus/docs/protocol/primitives/penalty_vs_proof_request_prob.py create mode 100644 docusaurus/docs/protocol/primitives/probabilistic_proofs_morse.md diff --git a/docusaurus/docs/protocol/primitives/Peanlty_vs_ProofRequestProbability.png b/docusaurus/docs/protocol/primitives/Peanlty_vs_ProofRequestProbability.png new file mode 100644 index 0000000000000000000000000000000000000000..827a02cf883ea42e9cc0d28be4f2c0d4ed4b0680 GIT binary patch literal 68292 zcmeFZc{rBs`ak*@k}^hQo*GETN{R?c8b~r{7BUnGnWtn{WG*t4sWQ(*##D-unS_!e zA(^A!=YHR{e*3$Ree7fZv-f{{9c#UBOONNdpXkxnTq zYPlu3_3!bWP#wu~_gA|l|Nj^Nzq1;q zqW)%VBKpOTvRZNue3_WAcoD(w=;E@eNn&~V^Bp^bM>1y&4Y}BY8txq1(7WOyre91+ z+r+nX=jX_^)zwvj!-o^s*HV2q$ng4!RNubhkrC77)m5GQUY6HBzo2ve-nogDmDQAu z>c-C@$(QbJZMV5)>m_K%#>Prt>*g73^7Zv~tTHUU`jLZ_rXf^l+Cc8+?(W|-YPvi- zN|lhH>3-VI&immM&m%3aNz&NDiKiP$NlEEuO+jvd*O#L2-81+w_I=mUqg-d=MHF3K zUDd)hEdy@eEc@Yb#J99XQ|yEds0xRboFZf=q)LM z*TomLquR#V4p`CdKX9PPb=u(1La)i}++1$Y^~)JP?;rarr8A0&iGAxY5hOnK_wV0M z-ONl(0h?%8)9iZl`|7-9@pF1oU-=bIT;r|x4^Mu^>edUUdSyr(J${{gAzS$Ow&4=% zbE1Qx$^xbK{Y+Cmc{fjIcBZDOsI?}t3#FkwVq2Hh7aDo({P^b+7iA)+^Vh1r0R3)oz^tPn`v6Y z+gMm`y}d8}P`ALi^4e!AgVM`pj`|Cy6cx$v_FL1w-O36Vy;xq~*~zrBvO>LOOGB|` z8zTotSX+YlO*1x%(@%IG9CatB&;H>sj@zLOQMCiRZ5@ z)P*t}`@=XrSP`t5tL)(+)7aEhFMbs zj)#}mmp<_`QkTA#J9@MbH|XYfO?~wgnOkc24{5*Lf*aBt#F>tUG3OtB+twDRo9;>3 zjr{y+JjSL({YZ1KvcUPWwwU<%AndQnp~aqy4mPg_YCUhzavf&8SZ?3&_3iy9MywXr zzrVeAbatjBy-7N-`JqZ=<7iXxwS`G-=buCR6Ox-YZBkh}ug!7q_F0?R6)y@^O=lzW zoSr-KMS8R}G~xS~z7N;Rs@&np({^3@Y4m&M6EEIE>C&ZLLqkI(lA+iRL$Qj$A%SSs zwv`JBy4hl@UVF5tI5|1k{79v?-KQt6MRG_fnVOpBF3_{@r`*`s zkg0I_Ih5pbn`~sL>iV~yJWl&7SIlf|LRBI;M#IJHgf9FHs~>gjd%*0{alfEIJcyP( zpv1Z(!>GoUF;sbZWg?Y~Bq=FLobn&j(`G0G*g&ISUd8O5R6BE~>G$^!qhn*_2M!#- zr*HNBGq<_MNbU;@Cuew!;5pm=@`Jc$`m~%IDltEP*n9n%Yn}b|D?md?d3|+Zu8HAT zEZfGb_I4FVM+tj-ds92R@VytZM%q(kQ7C0yf0!;!^_OI~5AQOXv&NF+@E(l z+RK-!XA>pJP`+`SE+$pSsXWoiE4=zqhNwu{sXpdy;jOnMX>Xzm92a3NDc6{}J~wva zsMm6os4hcN!qTefRFcMnwQ~pRekYjtDAsx`@NM7vzRufosPfwJw#EC0u9z>J|0^7p zl*B$z;c(~Kv!gvpy7O5#+Jfjf>&KnS8hvyMjOl{RByRjPEI*s8)%g1L)>Q9B_KS-s z%NZyGj*gCgs=Ji1i?7X&G%)?bwJd$|<*jj@R>FP3hh6*nhMiR36wL6x=7s}S)y>0W ztY)TeU#~`aLc$J@-{1UiZe~ytOGxOe!*S_)qRW6*r0nH&bYtoH-}LhjRj}poA@zxp z7Oz<>^ai{iPgUvb>4mg}?|A65zRI}u7Pe0#8p!EDuJ3Ddx*y*0)bH1L{*IfAi$p?0 zXzDfbjZ919dy^55MhK7ZWaBp+dRcXubM=QcLBkg48+693K?_9ITaGBPp>tvh(0 z8r8&4dtY;MYJ7AmM&kO{vq#-#N$3LBcdF0>@S@pnU6Z)SGkrxClJ37QVf`s^)2!P* zfBsCAtfvNLTNU2lG<_Mxf4RSSciqZYPU>4qN4;0KCy1NmS4Ov`Rj&JIj8@KlZnaqa z(Vuwa`W_A`+rX|aEdod2Kg+XC45K3>e#bVJDUJuzw_xW=nm1FE{FDV0J08f*{r-O8 z+24(|+4=b>^|UcX)m&Z7KdS8YvuS)SPQ^oYl%V<)VxyNfI-I`jj6()+!^v&q4v+c4o^(`%#hSTYPT17avPt1Rh3uX^R2Q<uO@*`U(;1oUeu5K7QCwU+3)H4FuxQ!;wxfe#rgn+Pb$Z~|p(_KIxhw2? z#eVj+-Kc`mRn{!v!Ht5**#6ewVskzZ`hI#Un9qX?YS#{@ZfeVZtL32bB2>A zPXgEq?B2Zz1tvf#y}t1ljhUI5Kh`*NNG=cW&=iCg&$;ikkNh|Xm$NGyK8H*a2Ar+Q~;Z;S@>GNF9mO-(g<%6Y-_|~_BwWNb7Nxw;8o1;-_E~qK#Q@3 z8YO6LPylLD@7!S^Q)o{<^3df^E3fZaQWUCfktJ$Sb4SM=EH_i8<|%6aOCPIUC`tWQ z*9B`*&+gfoB70*`e0=;aX=&XlL*hQkoU^wVAyWYGJl*->!>QA!w^liSXR`TJCr740 z&vm%|=Nbweap_DfEScJ^xN%z&+IDZ*vL%pF={AqtX;M_&KHcIqP|Hr>FLFQoPjxAx z4Aj(oSUs8PiO-*#HoU)g?k4y9F;I5K?)d@h_RDd+N1Osle9~8kgwAK*1EOT=eQ*!u znwbQMAh=6TE(HsC7soXT6%K4iso7j|pERl1WlAUSbK4+~ZOxOJ6H>kTMmtF_f%_Zd zS+;MFjk=B^MoHR2L$i;64N$ynasAWZjgzD(9D!m>d3pIuSk51xc8DAABE7_i^%sv_ z(TM*D%z19;1(MBBrR18S=bvTCq+`DFWN8cbduM7+ ze*FKYfkoS7iU!(4ac;#zvN|I|gjy7UOJ z@X?K#VS{lJH7*zRt4mn-m_>n6&5QWV%*<^-rztb(W4IKibPc_+>Wh_*{A;xDcMI|d z8df=FHm_;*%IW=)*S_$lY6X>L8-4J@g*v{#D69n&=?ef#VAP~<2m4NEYQ39v-fN8j zOvc8>Y|>Y`L_|feeR;Xf&CP8DwOJ!qi+bx;B^4E_wd*b}CvH;Fou(Z$Ffg!f@u8+9 zcmDQ{3`NMEJ)zCg!W@SfTo8iAyL=pmq|(o2M1EY=R07iI#){iu~(9llSjUM2}F(j46v#&(VjwF zS>F1eKYvcsTBL&0amzTr<9JWdN17-BV*N z;iF%^P~vZ$XNI}&@W?fy1C*IR!s+lsp=@ezSD*6uK3E|hdwO?cW20V@+fklj?UtYP*jos=wV1dH|n8YS!t95JYjJo;@lmT>jT2D{U@@JN9 z@!xt2Qq_&VzDc@pWYonJK>yjZXSPoYp7j=R82z(@ZC~8xe$sujfPU(om$7aT_HRi? z*^5X{i|)tTY%8U&>wXRpIyS^t-eqz-?qnc6w@jg>y1M%K?ZJ|gk|vPlS=<8PRth1G z^}d=L;wX>70G{zt7sL`i<6P#LJeLPG*|)AP(vB5=_vjS!!K*`hZNroA;>J2!C%rn@ zIlIWZOi`i_-}uQTX8bG!ce=T`xsW0L+qcV%O7GGXDHelt{_@CqXbC)M`tYHo*)b+1 z#VC|5p1?_9;ekNDTwGklhQi?&5ERVr^f>$AC_5_PkHUI%6bLC{5JYO{fMQw&BqgK0 z6OVc>(pFsk*odE$Eq)&;BltKO=tl&nG+6CSL8qFzl~oYYctNkIX=sj{n+u4U)ENrw zdEe1d&|EY(H+Q)!=X|Ksf}Ka$ulwc8m-_zxs^*pX`T73q zn<*(x@gaKE&U?AIxh3uUBv86*8*^{qE(8+Sh63F1A^Y6iNCQRbl|dalUIvCcOw1(V z0UkPzgF@GS;zroEY__zr8hdz0J|H}tMpVfu<3jGV)_`18baX?VbN9FEJHlt6zGQw8i~ME$+!icscSvwE0d|p%XZb>Pb#=r|Y=0mZ4%pn()I`8_gBW4qUsnmDe)VJZrcmVoG{J_qZ|NLr z7g!C-Y+K}K{sMLO_-kJuYu-YrF(BZD6&2P^+nql$XUbW)eDq~;S653uyv@9bt@SoH zg+}Zv0WmT4w$NDBU3#ULw{cc{|MrbqP*4zrO80w8&M9Z-gMf#6jXk!4T2~yrpG`#2 zaZuza2Getw?vc5ip_vPbPCZpV@A_ArxgBmcB{c^SaeNgQq*bfAK zJh_XBUqpl!-K-fclb}#P1}hjKJE^FmAXt@Os~U28WldYM1|V7gTISMAMks|MhLw!K zU*-k8ai?#g!k9G#Y?7JMIA$+Q-XtOOxhzaJ6^t1z@9E9+Tnm(&g3KIeM-&ZfJy>ww zTTzxIuM8Y~YFx_!-AeSDS^|KnT;JiYP6@3V@C$w@iTH9S!MGt6Y{5s6QBcKBHCzcP zm4a5nyyt8^U}hL@-DmWXf9g_*e_d|=BJ{wJu&~ZB>3rewTA%K3otYU+ChiY<;~Idv zrmA|%>~x%0H<;uzw03ejeh+~g~AR(WwG@0tC0#6q(DQF}ODB+T3jg&uzYdLY5 zpI<~;EUk>(WGM7rb0xHgZ$niFpflj6qTDULSgR=Y)Xmkh?bpuKOb0^ME3t}fU$1@k zjPz|n&e~pMb73+;Q3Dy5S5~wq$MeF0u^K;p;tgit?WuN?y513|qAxDIKx2iywhU0{ z`1{*=P{$I(9ZwRw)6v%pPE>t?lH#xqP>)>U&!sA5YHGV{-;wUW zf_9`=>mhZU_ty0?!mT_c20kMWMmwzk4VHwT4j>h6yFI00EF zalhqONE>hCPi1yGiMp8*3-laCH81*+$HL?&cFngB*&UpNU5UfjSN-V85@JAU1KP&T zzjtQtuG_kWKQk*yh^Fj#mj0(QyWZDjj{{fzjRztnZ8~?M1Dc@@;zkr`%n(gtZmfmo z4-R{!=Td&pthmO(H#%Gk5teU9n{e=U^7E$;P2`E72Q)5B^_KnE!x}yZ4p`sYn-FQu ze(*A*rlux=kz9}6Qu2@Fly2ta2!aeMd)Whn^vFECsmMILiKGF6%{pvNYd*@a@_~iSPMXtJYx*D@?d3 zW+=M?@x{WiORL@&xW}vh3OC+=P&ICe+J(Yl&!BZ;SakB>e$T}pib_fWIt*#b0uAU) z8U@C3hXi+OIGae&K9te~#%pbN6=fh65rqEQ`l?I0h@4z)m+?R+p;>=%Is%RyNpKO# zKtk4~I|LkI9(#NTOpqr027k<}zGCpySk(`#+qVZkdbI1$>Quq*Nw9bON@e#?*UQ)k zDD>2^e8DqyYxL-yN5EVpyp|pH^!51<9b!Fso2voGSHfZV+1BnOD9Bv$UTiy6BI>c% z0L#O%4jDEdval({=k;77x`~4e!PmcI;xh=C6|d%%fl|f!uW$SPdMk!Ko(wsm2~+Fn z=n$4erQy}k`rm|o0aDF&)J+1XI||}B(I!89xL_xs0%pv}$e6aYz_A1ByqxEv=}5gl zp$M5lS0<1SWS7Iv-xvpL4%+pI{DF2uO;7&<*F=aOIFn;2*?JXMjpD`<e+rVa>*14-U_?ncX<)!ne)VIR)!TbEqP47yjDFaz7A;{cmDeZeSC?iO zP{M&@xDGp#ps!gc3=ceWKcEu9=8qG}FD}kNSRYUG^7OM6cQK`7F^L+=ambz;F!vzV z-5}@>zzfdMNr1E2pEWZXg@ufSJ9P6Vh3p$^xL!p69e*8%jWs(vtDveHqQlcM1~O{? z?Oi&XgefWCuqpu1*&OHenI=S=X(4J_nGHmX+B?l&=Y_ML?pfRjqe@0 z5~g^QY7~n{Xp}~yH_o7U%|T#ndhsI2$o*x1KRbl`M!?e3Um7`a+k2ks-$c_j#pS6& zXUF1dJooV)s<}~MxL;hakmS3*u!D-0&F_xhYlUOJW#rq_{Qk!cA2rlk?aSoMzC9ng$M`;nElaz;KxuEGY-gy0f){xAs{Z^GwnJbF=-zB=ZWSm2sr+Omw^z;~^ zE_9;$`~o8``p~!Keae7e)ZJVG5JUYsuOmRi{7UIjr8XaeATDJz`vk_Gr8us7{xJny zkH%3)XZ047DyQAhFvLwZRBFQxTpLp+_X7^DXfCJOAr=L=x$VY{8v=~fAvHC!?8kh( zLSt!2&RL>+)ou0)ggx9R6@CxiSu~mfGt@;ua}^oqZwl(khtHcohkm->Wm0SG+c#B8 zax$Cu8MoTII4v{%^~-GI)Y)N|5^Bh~RQcV3+cPs(aBfb)r3h8v8X9wojUs^GsXy!M#4q8%?ZKsVyVpVs5`X?jX`uYd z8NlkI;$i`a&U`eiB7EY;&-n0RJoq9<=N1?DU}+A^%Es^?4~n`k?O@vt%~75BHA-^- z9+w>Ty}z;!Zpr+}5Exq^cW}DSW5IT8eEdY95oP2C;y>LsKC1z3|RSkR)9lAU1oyK&cdA31U)FzVOy3EKm- z{Mr#tnQWpcSgjDN0xByjnM#I)UZ_FLgdhQ!xhS2lq?nrm5?_yg7|tr%NSyW$V;VxS zGE|Xd2hUUU|Kln!GAg7T+uB0i54Ak@v}IN2f%C|CxE!}2snHhcML?|OB=`Wd^8VyA z+qbqHrlzAi0k;y+DG0u&uKNo~2#%*X)|=2~``n4-K%i89?%dOvdC zp-vGtH`M6I*UP2xdNy*7{}C;b{C~`o#3(%WJDu5xB4BE1X&H6m3*=JbW4V>6AzH!0 z%`anhHwuvP(;mSlgEjNmM)KcWidH~#vohSDo>Dd`au?DQKaadl{6z2K#e^v~fc>Z_ zMpy4MVLs`LheW!DgKiBB7HW8MvU(55N=xs63Z-p8QCEJPyIwerXR)ljJU@!!GMrIJ zMyn)A(*O7cTZbldYR}&B*}Uo_vugiI%><{@r}>XMRbBpAEroW9EQDa%|M_!l9oCg} z$#co!`G7VkLZ+w+_WSqCb&335SF<3|-BwCh(9>gseMH7{=bp(Y;_`@3d%CzMP$6AI zAy=!XRH!=)`ZqfBd#GIxiz{+9Sv;>-8P2*rli~inwC5X(y=hlf@a5JgX8-y87Pe{8 zm{(D-Qc!g7v1ShN2iC)6gZ|J}Btg?iJx3n6i;&t3;2nn zKY!BuE0}8DzI!@T$;U??Lfw@8FVo|i`ku^6e0b*v4{rDM=^ecM&aXUy{@-X&tgYgn z7{yG@hPF1EuV24PiK>@9)Xc?;;iIZ>Z>7*+@eEfMfM?#^+FIhGQJOoi>j)VcZTJ?N zP6l`pV|a^)9B)F~3DDW^PxnwLPG8Z>sig}q8W_|{*%@SJ3Z$Z0d+)_r?ddCzd(B+V zPk55hhvyJ6NryK7^39t-4WX{7mBU>0$tfud9`vv6@ar^X6=uZkr)_#i`Hm`Z;NtTx zo26xJZulABpaGEThlh=44%7h7sXsWnrOGhBcU~jxf859%En)C@cpKfNLN4UErJ7H; z>kA7do~!IFu$PCW*+)ShU`*^jVjw5rxD8<=hQ=_#E;EW-GtO zsiH5YYp{Je8Y}R>uPvVkJ)uE@c5n*RDj2C11>v~Kg=gdLceW`NUVbkCDTDwg4xj2m zZr>IwF;??NTbb-FxC8X2GUahzI8Lv|6{Y?%8SHVCTr=RbO0Sh-9V2+#etCI$I{gn% z-WeGm-vmiw@o2SALqkKH6y1rAF5Ar-BCHR!pXl_J+QhU^6PXF9OGMxUnkr|WK^Yu= zzRu20(ssGS;zreh1QCb#@Q>vl^q@(V?0!1$Zy0kM=2Loyp z6QZ^%2+Hox3C;=kT}aSrpO{bA%q?Xq-cL)xb4Sw$9wOU&PK_zOOO8j?_Mw$Bk-F3C`mf$~KF{H2w zS&_WtrctfsWD<^XU*hR==gtv29?nh^!ZxRqv#XuA($Xp;q7mxR?ZT);82nxf-MWxo zg{b)n`xF(x5h8a4?=j&4LsU z$UN2R;xx^fGiS=LLbX9^DS}Os{O{VQzj`$}XlfLs!!k0q3v9NNnn|vjf1hXc-d)wJ zGHf3fzqfS3C|gI?&l2p&ajHku3mw{?9dgB|I`3=auUSY6*oDy`BCyecdHA4MAtoYL z)(#uhl;Fv)k1Hwl#cm!R9=`k`iw=x0I53dXH5E2nI=Bx~5hPN1b`dOOB*YX^S2{!$ zBD7_>UxwXN*65kr`!CM>U%0}?BTs1S=BUa!l|lrv(BbCiu@ne3m_gtD{nSuM>c`bR zObA!;NlP;*H%acVkl38saZ=s&cKnZcop>Zx+^gIT#&vphPE545^$J%MmH8Wr1)tty z$xTKdOo86@^3r|)E>TWB0|TX8EyOwtc^BWme~-N$jC90BD!;c^gjmDT#0r7z2;l5;FO27m`l*!1W^;f4S|r{o6D^6d-S5A z>p~sD5Qu7oWDtA>q%m{^%Szl_@OWH9lXfl(sG>z2v;`}+-wpQH@I zS=LM37yF35Roi}T%KK*tn_$jI-e*WRqlrbxFc%WGmNo+^m zgi`%=C-bS??*(fEJv0xij4s3vJdKg8i1FAW!EC6@ zdLk-N;W=--#m}5}-xHGwzcn06TKGDC7g;sBd&K+A1#GSW*hQJ0k7G{ydZ;CQXIx!=LcXO@$4TMXCbx5%? zlw43V(43*?Gy&xUR3TAz62Td807iE9P}J`X*G@L_I`{cKqLrSH?myPNIe&;i(>aiZ75cf=7-6 zU@#;+{3cjexx=U1=j2x?abS==CPG(4o|aG`7ASR=7z+osl@}Kyi;{l4zWZ$6PqH^1 z9lev?p^=d-&}9&kWPlq?eC~y;vx>-=AqcRU5Ub3K5>r?Vjb>N=Fg1xAis?>7JzV8C z{FBJEC1=G;kAclExhXi>_XpckS!bbZ?VXqQ(g!!auiB+a9So;a!*QEds4o&hT8XLiL;@f4_Xh{Y8trPoNp{mjF!${f+E zfiQ~AK<1%SGbkND{vPTh(^{OXv5}>Nu=w=f@w}70>*+Hmcx@@l2FRryhKVd`-*X&w z8WJIXyZ-3&Cmc;VIc{)LB?LnZDy~MN^b>h1gYg_y4mJ`2uX?(Ech>#9axzl6eYEMN zoC^m%4XdBURpTj75nFSnmoRbbB_evN45GxvEu)^JIP zmB8~4fkzL+L*|UhpGvlMK9V=N4y7y{N}mO6jAi6NHUmu)?jIt~-{8l}k{zG-p$f}S zg0yK)ED>6Kd+M<}s8e>+x__R<*$Adx&N1}1KQWyze>= zH01t%k)mzb>%}$5t0D`FJbnB_;BPYdR1<+(Rhu~{%a-_8<4!3>mbY%*lCdD|W(sZZ zD-H-C&+FUouaL$fZoO3|$y_$qg2a2wC*skgM@*7_gsq1YGWDBLg5cZo7NqWRn~UXR zVL&faj1(r$h~+BF_bRzg3VuX2f2e(8q!_l-3l(^o3i!kJ!KPbOa%oL zN?hVOO4;k4N}f|I$13%ng8E(N2yOqr|H_QvsNSAD>OtyG3{%(MD;=vo`Bzs1zptjc014L|v4 zSXni?eAn!wip(vOW6kQLIqs4nb3SEKh1OL2b*_3)FTQm=9kJE}WKUmi0x*L6O?L8R ztLA4x=jfGIUR9$xIk)!qoEwX@hXu}Cw&Y*X>KTrGO|a*Px5EHn(CLxTv@og6qU0~= ztrin)kJR+m>K?WdLAJVPnPyPBy57Co%UbG$C2!zXYX`_t! z(1n|2m(t`|Gh0cZ_J@}N!A6S3l^y6`SncswX^ zlL%}0J~HKv=4HBg?$X?tA54LtvKFW+w!2p zeaDfS8%@_~Jft(l)3wyz`+D+t& zNyWW;Qo=0G%H(PZr*y=0UJ}oHCgWnx_TepsDzzE+whQm^)mM8?d2{DpG1l+L&iL5n z)#b>2v-NX25>|0_%OVuye73!;j|v&TA6wUY+nL0pT_&Ar{*UT2Gr1GvJuU*vUh;&> z2jmJo?aCWu);IiolEB>#&({wjcm@;rMj-QHCBA8PJ&-nLp4EJ>6CF|TI-tXxNGtI(2#yV&W$+TJn2 zvkL8_I}4KzZXx&mYjEHnaHK?iHzo#+C|~>JzaSw~lYj5tEs#W!ul^5EAQ2{;{J99l z>;aiAlq7NrilQrnhhC055&8pU3X&g;j|U%32z)WroqhqiRKgNOE&>qXo}6*XZKCow z1x= znqX&zpl>w-Wg(2Dh>#}81FgS;9|Vtw`XyEX8ck5B-XY^|2%e8=2ZM5r-gPL|qc<7k z>j_K;Exm9M=5Hk6punzOfmZ~<#CqggEVTsV3f`1Gk{3*&%pi_Iz~i&zM0$Jw{{2Mo zloUs6;P9SnMeTm${{2koCMP?8+pryUbIhYQC;-?2+lIfF9iu>-^8qT(S#?2dMp;?e zq36D--VeG;)yv$OLNs$J5sOP5$9TdwgvykZlx88(UheLgm_M(fp&=^cg2^SAX_jqL z7N5F&3xIA2b01WfP=Vq9W*`&aS7OaTcx#Z-Mt}5|5K1sC!1~W~h1Wi-5F{Cy04ZXO zB{o?Cl1BZ+yqTRH4R#-d5u4 zgc(E%8NDPujAA}#Pu%PgLdd&0E zQ)9ZRpC9>V7Z0tbxukt1pL6NHFzB+s2TIJRSZ7V5ex)2R>fn2b!_0hBf0WGVyy2TC zCZY3_v4%@^nQ;e5iQ>j2a+>L1ntNzS^?(*;SFX_gZ=(9=_lI*&#qQnCt$uLhllKnr z3DFb90w_#va%M^g4$+ec#gK$SIfHTh0|aXm=}}fzV}HN?6c^^S78e)cH14~0^{q$O z--K6}h7)!~B)I1L_uD}6LEaBz;!Di1k_cT)b!i*j zG06ILc2a2iZ|1bgvt)Jh_jF}`n69M4@^&+I*-G0m{Sphz7+H0Brnh{=Yh#r;;&!l; zQI^cKn)`u&#QhqN??7=_XL1|^h?4=WpUseO`{C-skdswAjX5L-2NUKo9U5XhrEYa{ z9||&5m4CJ^HnRRivA|8Jj^)Y-ts=`EfousT@QP0te=nBKTumeFfjKv5MrX>pS{x5M zUaaFPY6?}$Jhwvham}Gz!s3K;X>3&svu$>9F+WPg*3cw#^|YFrrNv5@FTCn|A5VU~ zkfV~W!FS+5j9lHpuN|p(a0YPo#kCO%=bvTcn8CV!G+&AQ3l^=%m^3mvO3ck8)JTvBokGNEfKG)5@#80{;1v&zlQeI8P8Wp%af zLg}@`To{)!1A13Ib?Uv0ia@j}4kY1-zhC?Q`SVTRzw0~p?%j*8q!7AAhDGt8FZ0jw zxkvRCdwbT0r9hWkaq6oBga7!-{LANV+fLE2*4r(KNfdN$XS?{$L+vcN`>!us&|lP4 z1TC%#LdZ1!gsQaRqM55@(7|j0>Yq)J5iwrOVGt{gnEn?0Z!a}J7%5zdOG_1HWw-M3 zu4KBrZfpDST7!|9`6jGfsP#p)LA>6-w-E%ctH2~xjp8%78~kT75{LBFi28a3VoC_+ zVGt}Jf~Z5}Z0PPT>)O80mYbSi#?l0yC~+nb&Kt$wpTu`3vLWzO6vYxOU})NZyte?w zh!3+B1o4BSk30Leol<8eTQm2y)Rsp`G?4qJX~rmY{d#v$qB@=4bazf}nIBo~y|MJa z87G87Li~QbVjg-R#hGiNaZk^8(AsU95$t%(S0?39(|Op$SEMErw4p$&73 z@QjE-+Bd1kcwvlFVE^Qte~8@4vCApCx*Tk|T3d6q9+#v%efrc9Lr#RIP0XdB=pb+v zOk^3rM*)AVrh3m(#6Z4BBj%EIr6mTKU>rD3cI|bw%Ex#sD6kPtWl*|}>0<>o5Vi#u zaWwbPk_po3-CSRN$ZK*hMCP{!Wcd?~(Apfl>f_>`^h^v!LC

$&`LttY4UKv?Icg3Ipi zE@O^|4VtD~awDM%yl~YVyeOw^wN-|tHPKlh@SE3z*gc*$;~r`hH^Z`j3OT%vEq=W( zM(m5)cpxJnTlt&q&j0YJf8OMITwDsi0bL5ExhZ0zz;X}gNA5Dz$U1SF(Alz)*w$0;yS*rxC;qztkuPL(r z+qd(P+#<=pSUrNt{DsZ6x5KGvuv z9-;YpvBJ;J?7X#=`QtmH^2$2*UG{%<)#Tlo(1wGn7NI66bzsU{?J)PU)Pk4QmzXtOvaBTD6{Q1Ssr6z`V zb|dvNG2wXtP4K)Fot;ZxeY^ByT6vztp(40>^Ja*-_cj-D{369mKTr0^D%tz}-@l#Q zj30yjF_@|?=!MJ-w}dB^q`mG4&N;r>&EX??V$yqKw#Urfp_6#0dm0Yx-QQh~yrs}P z)J67`+;(%Jz>X-?04Nmip-|nN;J-Umbu;k$fi$LYv!3GJ&&sco74*s6&Qehus1YM> z&;OPEQ6jL6&T>#Hlq~0QZCf?ZzWI$qQr~tlQXHpN^ziVAd}GU0c9m}ClP^W@3#v}f zB}QqVqn9|2Yh8;^KNkFZgT43)xm8JB%qh54i#lQB$OAU?>35#`gs?2B2CI32cFAYGfO_ z!)&Ph-n=<`771&}y@h3EE$IExCL;4qNGrcXY!@CYVKYP47P(N4Ijo*Nv`zI54P?kM zSX=aWAN5*hL=4f<$%&9XzzzsnuzmaX%hMBxrokGr`7Q;m(bcAQ?3h>r4bU`_&X^Fa z?N5x|s>oe06Y}m8113im`bxLNCM98mMI4Q+cSI&3H~jz3>&%AYkI9}wM94Ik^pPzh zz#(Ba!V!fmrC@5B7Jpp^F(cyQ2$K%ESVmUXAh3&~!RyzrzklxQyS%(S0!&DFq46U6 z0hn|fkKF&@m@f~^)x(~PBCv{xAwZ~C6ePrQ!+-~s_QViF(g;I0Vi2v+qLu#lRPQ-E z^PoLA%819cLeUS!zu}W6tz$r&9b%larX~}*I0T(tc=$uyhm2UK<3e$J1O1$4oLi$Mrb z5i=_l4x z-s@CHeP_Id!qr9#-m=BiPLTsoW*+Lh&lo`Nt{C}8mBqZ3m`8-vN7U*FGqyvuA@>mH zY63ibW1_@jo@ZfU5q>(|8jO4dR?cTSc=ZM1*58WtzUAMk?5s_IUFn}{JJnvQgLoHW6 zVm{QYF-QE{W3Qx1iox>_`Rx0sJC3auUUqufcg=Bq)vhms&G?DKQH!#QT%ug&)ILdo zFKmYSZX{8NNCn(rVtVtc;G@fN%)e~4w~}yu!L^~;A12`g<7;AY3>2>jd`~pERG`=7 z@5cHy1mQ(Y>bP*%M6a6|EoN!)c9A_Q3^6zu{3-po8}bf}!6u5oc9`(}{p3q5d1ZOI zlqe5M%dHSM0mJ)_c`w?Hwuy*{5HU_bfUbsM{Xudp*}+#K9K%F^88BPS?Q6^$L&FP9o$ALcSHf zs?YWr4M!cvZUm6F0XAG1BltkkS`Ma%;T(=o&~hH4C7y}UTOd9^w0#}b(Y9W%mz+vC zdi+y6JsR%V_{{U2*FRW&Ns*&@l_Kl-chobn%)w+zM=Z^b>_eH~lgIz287xd_^qQHw z`?fMqUU87guI5>&Vh{R<8B|@LFvoFc3@vrh=sf^=9@%7Tw)Hv{^Mc^ z(BJ$S0}uu~XxkOyG8xvEzwtafTTs^PX@5RJ-++>d=gNRa6!q@nr-W2z>A4!#+Yj%X zK#m~c;-i$d11G$bSN}STj!fQ?@rz3<&)a19-bFt3Me|5#jcnjdyZ_*WS_NBSrhsfE z$;*u9vNy=xS(FVg_E=0~9^~INKui1wDJwummhM+F`*Ux-w{yf)Ly0^u}13C-dx&If^ zScGH-&0ozM!FGGErH?lt`rgEl5b^9AkSmnZ%_Jh?PW<73)th=m5YsesXR)&^U}xa? z5`dV9@)DtNqICrG`h-9XLM5johB=@-x4UX)J8lbaF(}uqAhb9%t6+>Un8TD_{?#Uq ziJ2hZjg`%WwnRMn0T0$GZcjR$8K5P60`HB4tRLLk5ePp)TEZ=lwV(94l814rxzu!) z`7J1GXEFA=bbWYvVE_IQOdTTtiv>Y!6TCw7gGfT#xWV{j?tEsPUHq#{`!O>WaynD^ z#u5G#xdI28rPIyTjFy zg6AWh{6r*9@d z!DmzjCnsJC`STJKAIsM~%*@A0QIK;IazEhjUqYD*t*wFAf1WZWR7a3w;naI&9yL-2Of)kZgxLVLq; zw?l5!PU^`ASJ^|#-Vc`%s)o`u;*!D?E~LHVL3TDzNY&6#}<<+(hn$Fm*fH7fGkIe!zNUxnXT2@&0j- zzw%63>c<=mlK_Au+jqko>;MvjNF{U)_GlB>h_^x(HPTWXgzUH00J3b=eKCR*YO z$JVPSyGld;iO_c0Ae{N0^XSQwl|Bo*CsSzrrr-voxPe^jqHBz!)6-A>aF- z)wd;8GpVxVoZWLxiMqz;k`c|-IKkcg7E>KBCErWXVv5UR%Ek#Jo^JKigAN+UzKHzT zbB^4?it79Nn(FGv@n%|{fTy);gHCDLZl^9h42pI5BCy7z?dW;a+{zb@PxIJe&LBKH_JGKoBYuw zh^LH{mLAMoN4no1Ck{xX0TY&(6+nZLEnN%^52t97AjVBD#^1jmP7H(%4JFIn$xkgP za7c2}Jgqswt$<)C@mw(w0u@;1zkTGPrXug$^IhN5OIo_pXKvGEu(4lLa{q{)z9K7U zc_=n2>eHzf{8Ga8;qhP83eA0BxXnIu~uSW6WzlC0hAw$ zuoj3%4-x)3GVp}8V1`bg2=NcLxvp)kjg1ZAqXS1liwyko<b{#Iw zR$`C?WiU?W(Ep$(dt#zN9GQ~N>f~O(ClL0`>z7k2J=4c0(xLV!`-g1L@<=%--evVt z+4}Qif#%2m`etpgD`#HL zFZN!roekOA-U}MyUqp`f;-a65p@_a_;HP{X z5Wuk#E&RJn4v!YXGkBmaS^liRGee*h$FH1GRm~~of`JTal}Kpz@5j?1h{vn_FT&nB zEXy=%`+ewcM5IBaL`nhaMoKy)B@6_mK~m`u5d;yWJEcWIq$DMz8!73MZg8)AX5MeV z-~MMGhaTgoGf&)CtT@l#0$(5+3h)nDpFe-L9x0};(SSb%?UBRAxS(4qJWT5q3P2ix z<$~$@_3&SJcEwkH2A4Q_A;X7g5~5OY?ty7;WNbhfq7`^8OF(fLEoh{O%Rp?`2d4b> z>3T-cPG1t0%Jv>y-4B4RUkap@$*-;iNIDEsBBW7S*#j*rvwotc-;JIPD3I@x@tuYXN}KQQLY_;7nQ?XNnl*2!;^r>TIffp-TdG8A|*p+pHiK;1=t z=fy4=Xt;eig^p^Raqt|xE1;63U)A2LUq6BPXlq;O`Wk{8AiEK9 z=R3ZQiNOHP8n;{NPg&3m^6u4|j!Qjm8dI}LM z0>MIBWT;XgyCjKwkVAi@2`qwWCz0HkVMJDCOmx(0Sro-Cr<8y zs|bKBXmOoE+WCPh*_MZTah(qY5EBicR&M-uxDAhU-9h2~ErQ(N8kw11cLpm8a<2uP z*w(xEK7Xe(?|4Uu9^&x zkJ?4taj}4EI5RFtX;OpzCW7cAHj)2+J6Y+|zKlQ+HbEr^L4g!*CJZVYcs#RbcdZ5= z45W7;sYIn~TK}sn#iZPy%1Z^+69qFSyaBG*0_)%$rNH1Xb~ZnXQ>vBCvX42;iVeSf zrQ;C6`0~k#I7CPHu+X+tddiwwqa4%WUvl1ym96x{JK>lW&J${wqN1(M=P;O2o)-p5MeO*!f)q`w7KkE^V#Sv#Ucw688ysjjZ{NWJws!aWiZX&q7%%K>!3RusxCB0IG&4 z6hdnOh8$9uf&*)2+Z|D@Lk2d*C7ddnDbwG>^nuTrX#oKh}Vf#w`J)?kfIHIY6l)AEi z7%3^jr$uy(;JpRo6hLk8@^w4hnn6tuKjIS;|Y1qKWX z(R#?U#gIW$1U&Y@Z4Q!cd=DlOO3ElC+$p=K2IW4nL^aq3r@`#OF^ggeF>h)_qm%sU ziae1_7MhU{AI4H>-*UcN0e>qF{J`swFL#(Fs3$Be#Gc<3y`;j*x;Cc}y)}DhUTc?X zop7!_r(0>V%W!^S`en>nmzon;^MOuk6Qo{Qn+#!@mrvp=M1(2uL2b=Ldq8wyX(CyEJiO2U!N264uE-F5wsOb}GeLvTM2Lg@#fRYu@sP`)o+A_RXW zc-omE`d|jS2@CkynII&6yawJcR?r$CX4!ejavwl5xEX?QP|pU%Zo`FlRh%Ibl&`O# z_#VY=^eGfVEGMvbXuF<(mlI;JyB{{npxgq^;C65vsROJ<2?!PKpbJuhy7ULJ=R7sj z@Bl{*8z3BnWnK;q1qA*E>-N(+fiD=7^VDioS;=>{X62&cww`<8dA##5ITh<^ImjLx zL7NSy!i~cVAQeO06-j<+`~9x*)~CJZ-Ls{tD0eiuv*6|Pq)M{j&LD-6;?m{uO9e@E zp*=|oKg%+sre6Ajijguf$gk{EplYTfM`?NR!zFd|*W%_WV74Sd*tY-@M9{`i{4TvJ zG4uoR3WA>E;17f)l+u0jp^&X$ppecqY*WPK14jnJXa&bWcIDR=_@1{LaTwF?*S~;> z36M{efZ*w|`vRyFh*Yix%0~BBTplZd{ zop%8d*X*A^k$^z3g7_Lt-PXe&uOMocnVA`ZwTt-}4KR-LK@9UxKlu6$90l4KL;N=u z)J293z`F$uTU~D z6g#&URH?68RDm5{--EiCJDDLkutAgsefZ1Oh7oEN(0Z`cD-g_ow!>Po`_-HCY{Dq> zpEEaqRdj4(;x{y2jLJu{)M4#nGh>2>41(u%QU}mr2L=09s9r(mku)h_K>vCD8SXtR z?0iq$s?t);B}7}__iCF87xP~^zu#~#OA{ZW*Sp6pbR}7>EO}6_0fEv$nLLbn2G+L~ z>;YF#&f77rsQ+8O&tX0Yi6ON!xTapjGWceS^h^QNuhZ>h)SST)R|F)`gfIN*0T z^gzoyM*SJ54As!(qEwV;`rCD7K1GBewzcWi(j0nW!$s-(G^0P&jZxRo2vhcMC!Htk z1u-kjtW@D-jEp4zx*BU8=Mv~a8;be2FICrZ>a~ro--uNKQ3QdMlvL5IvW_3pc*gdV zZV(luJlE3migT6FUp#+iGq~!Thxp-(rlDnIf>LPu2I|KKkQTz7{RV0S%-61AL5$D} zX2OD&d9hFvuh>HwN96gmt><}GE=@9)O`Rps&arRn0R^J+g~BtovLMC?M3S< zqzh=xLd-@cJdaE4A)Jfp{YO!qt)0Iw&X1j}w0(<@ZLmTf(ba%T3tv<(+hiKir^1Z| zA-KcsB>c`iNp?UtBpUs~xTizSf?WzuwNlqog+tR{TGIG@W0nFmJG8?m@z>Z^?aOv^iU= z`@H`hPSk(BKvC!D+;`bo;xhSI(B}v)M?IfKr_6s+qS3MN9cqH{hs$WY48Ix=_u*1! zo2bx@WoUrUk`Bk#C!Ahs312XsSf;WI7RBU))HsD%V=GlodL12dfA?+ zCxqr>(C3Fnd@wky5iTn1FS+XBE$`@K%*@D0?8qj$<#^4}4`a34)E%~5Hui#nq)Lq9 z@@C6e^Y?KTEXpdmjwPp%;wP1aXTvw2Q-Qe5Le+m%*A`C?^xI6J%eZ{)p~_u3T)%tV z!2oFjOFr1HpM!U2?)PtaeNN={mz}9fA4RqV4p3~}UgKZF;zr+w7FR+%dYd3y+EgXl{Kz&8^{{a#D;Y! z!$hiEu=MKSy;gF;xDFJm!K_UjB#Q=X-z}PQ1I_zx_e+6c*;`g9zgIV~3_fHRuBxv6 z=4bd_5?asKWlP=F-EF(kuP0bW7Y7*|gcaa-EX*0mdhXEHM1PEd)4(E1Llw!;C?rHY zzo1Haw#$ouaeNuYk0Zu^_+vokGFeFCM>bq|SwctPacH>q)Lhy9G zQ_0rK_U8lPB(~!Ta!wkW;yw z=-H7M^%`?fFt}yg-Gr7 z?-$jeD945v9hy1GAIwbL#xbnZ7#biev;sNQ?H6aaK^_ZuF}OpcK70s+kAYBu!Oe)2 z)j$+Q$gEwNapBn?*tuXMLT585EW2%`5s2+sDFx4uyDAl%;tZGIj0{tOR;V#U=kYz4P0YHu%VOe|DjQiB^_(kNt?@3}^|xIm z0$wZUzOwu%g1O)%0s$@*VO1*apHLU7>&Z-uZXbKYDFB5a{n05Ku9Me!s>{F75y=)r zE(mK4&WALJK|s~Leh?o|jey&r$=wJg0feZW0Y|_IRiRNnA`iM8<@tB#g~eT40irvp z3@rh1B&6hw{!$HH6Z#U@+ zm4B!TG5y*5z(W7)7xU^UnZ7AJ)jA1koDkvF2VEOkl8QWWBgeKqq@wwplC1ygjQZbo z>bmrE3kxORN@YLk%`eV8WS&8)vyi)7k2_?5HarwKi-O7`-WJTGeN>q$Cx|Afy5~+N zsV^Dd`T?6~_XJDRc<23)Jdcno&vjFNU+f{}e0g3Cjd`;ZlKiC}nRijRIq_Cp&Mxu* zUFXPKBC!jnS{AXCPlnrCr^VF?h~|h5$jqVAl-?d;C+(w3AHHBpI~-_qjU zQW9cBi-QWm@UUcYdc&Zw6L){sa0Vs+{Ey!fmZ*24b*J~rfIc(Y( z!5p(!E9K)|abHuOdTc7F63)B!kvhbY>dRP`=u%{)3$apJAX)q>bExJ1hoSk4 zedd-0YiO&J+WN7N4`}VMx{N;gdaMnT3fjG%n{I2(h3A=7C7-iK9LEBnclGQ{r8btFC)JbY!ke;yG;`=##^lIlcVH1K0yg(dJs}GReRw? z*F0yg_PV@t6i9x`FU#CTBOGkl`JS}$DO$y1H}lpuS`(+&6!m{1PAI@Cq#htntXr68 zIe5@WMF;I$r4V*03#lyJ{bo0AX5PShe^fm2Jl@TXhFFnap0~tod3G$5ChHb`!N61w zs%c4X@Y@yn?nE>Sc61b_p<&ci4bG2WUZCT{`Eh=#xiDW!Y&l$LC8Dp-XFElhv8X_t zo~PivH97fd)Bb-NqW_RqUhs!vv@h*~Mwy6^LAk>TlD++^QKjK*oc<{Zu=rqZ?MdRorDRgalwfL=`l6< z_n}Z22oiTd>2;B2=n}N@5mX&<7ut*YgmW_MkVccD&yq2V;)@L*f3UJiMqIU^_>fmn z`0!d?a7g_=|>N7m1;;y>wIpcFH}%mDuZ1Hp>~5VVcXE z#IdQoG}y$_IYmU94P=> z{UJyS6+yf1cgc-poajF7w2j1_XL7JT-pR++hN%UA&(&a#cwkzxzDw>Xe9j|@dyW#r+4wl1+Oje*^)7n3T=*(! z!^bB&@q*7zJf*V9%a4v&9&c%};xkJ5!3E24^CmNZpvxck_{Ol0omUeR^VtsKes7Ji z7|vsccPO{KgrmsBm-nI-ySDB>v=N-ej;J9=dmF^F23tW-eFVQ4nrqC%`$i#n?CeZD z!o;Z;r<|YnexXZ-+#kr$;@~EXBS^283cR=|y`ue&-j@_z!BZ5UQNn+3n}Sl(gK#CY zEvltW?s(@~Gjs$)Lh6eH+pZU6TFBwj3UWJ<(h6brv;;|NK)|*@MBR)wNO+dD%y{SR zRiT5aP~}|qS)(06?wYTJaJuF2D!kHa;v+oz`Ey20tb+3iO8VN{G(J(9es&GbBUb#N zNJcrDOIUh#JouRzn&9nBayKPuYsG#? z&8)0%ZuqI*o$tPjR z-qJAQlanKmS{LAH=zQu4F8s`3*-13_7(r*Gz zN}U{`Z}s~TGIR}~hKBi5SD0 zhW6_swnpr(^nfFLn99EJjQy_K!uZWV_0=^ofOQf!#Rozi8t@R>`R{yEKo^^Uos+Uq==Z+WAjy5z}09km#?eu#j;#Z{_LQ1%`ZJ8 z{m6Jn_`-XS-Aw$YpWxNuc<&v}G>$GLrH7&=0BG`+mvw2!SKydx&DELsTooUUu8=q^ zoj8nQUhXTucDpCWVd-d^G$%_o%4qL56_xA(H+K1Be$x7%WrPmZGoJ2D6XW;-k1w~I zBsK2t%6&;=V$I2+F+tpyMN7&G6F(?RBz)GgTHm<{9JpnKrR@jEc%poKd=LQERX#q= zr2`OKn?v#o_R)ba9I#NmPyjFL1-f~_KB}O;^gwbfJobw|I*Lu`L#W2|31zRfkIu0T z_Y?*-sI@@s`)}s=Ux`C;2;&}EGA^^UA~t@iM8LfAVBx1*8t{OExTF|GEvUC7BpMG7 z0~+9|TwIV2?}p@A$Vs#I+mg(HI%#xC`H5((o*man3bTv${b_*OW=QyAucGNnX;_n( z?^{JNGyv;eAkNcv>YIqRN_byB78J=3W($M=cN(ecWcY2WR< z10Q3N#ie}mgyZ##SKo8{q9np)EYt|`0Sf|4Y^Pbioq|GZ%Rc@y_s^fCgS#QUJ@w1? zU%tdWTk~65*L|2g$g6JJllIkfBR^eq=tc72>F%+&KDN)AZXBNyNg6b`p(_*ufcKTj z7r^y?4ax_gVD|p=82pun!frtHYV%Z}b!BwmXs4c++299Kk{|8$3i!bmE`;qha&0vO zIWd60`aKsm?(TZ5)e&KNZckb-wI>>Yq_8Zf_3>I`WRrUnR-$mN;oh=Z7B@D??Ti zF1c|RLdcfmFc&tdi4t?trs%)eDj~IEH9AL7w*+X->x_~W- ze~#<1BYre-WTiTN!{Lid3BSi)P}yirvGhh!ga9u|c|0|xWVj#q;#lEJD<)Mn%v-^Q zpJtqxxAwT5@Xybf_Fx5+EVorw43uC0FG7S93}kBaD9M)>bilRP`ahDE^87h4aMEmaLqZ<&hgf8Fy}@qb0sJqHs-0=RSzlp{6w$ z44|gPXbFFi=i~&D^<{{x$E>{3nm^trsjKnQ(nv4i#jKN5kn60go2mZlpROFvNvXn5 zNQJcm{R_l4as4_0xav{9P$X=cnwrvN(R7)ynSGTU;AXiJn|=F=GkKw1@%QuBr}xGm za)K5fk#cM20;J3P^5rd46Z5|Om|>w@3+p>v;>AGbnxY9kEq@q@IV^TlIO1N<0SK0I;I1Z1$D`c|E;e%Awo zB?b5T*CJ_xHmalT*2vow&#^TsQY~G3hPJ+Jmps{qs~Po139|x;9IE(@+2T4KSLc=Y z{*2yPB-pE*@ zVB3U(KUNPsU{01v7%(^V1xj0DxM#z&XrHO6Ns4?9c^|<*V-bN5`}_Xy~BTP z22~d+d}KB?bLuX){2Sw@l$3+GctdpojrpLfCIH0xoV?=y!^7s z`$cGRwfDML6~txZ5fKel5B`KoPvN&gbx`^L%yxsSvMUec9`v@vJOQwJu0sBd^s$l7@W``^hS;+>+Yy;sF>h$M3SNxr$mnWd%{ezapqdorr%E2u4Sz zBU98Bh;u5$w6W9*urYpvl5v)0p0>I%HTX5gFXP!HT6nu+ zm0X+}W(*Iu@uJw9FL&QlR|u73<)ZI&N zW&;bVrkGQb@God3+GB&mZd?eAWJEA|S=-^H#heO+2`XXb@U|=dKBmr*Uw@ykJ;5W+ zY!G_9v1H}@2gQwlKQMPpqim~RHtDrU7_XQQ9*JsX0#%usO=7LB7}N<`;@7(?%l-2_ zZiXhrnVgz_;0+e%pN-YIM`_CuuHnngPxk5^WnQx-rKD%z_dAg)be&trGhUvuGaIJ! ztezg1_E|l>0{*Pvsf)z@EF^yYW6Ble(B~FW%;q}TJU>~YuP=-qnA5(fJG?p1B?1XZ zj&SOm{O;WEuOI6V%xQ7FGYVbRV~{hHm3?a!ABAgZi9QeCP^~)}C9Tb%zeR(yqsIoN z=aW4qPY*w+UGhnAREB&#y5J!O_>J^K9)Oz#0hkevg4Okd;v3Bm+Gc8Or)L#Ah=Ayj zjkEYAF>-3EHiApSKYz65Gh$3z^{)-n#`AE(pYY<)@c!k@p`pa#ydsX8xo0dlvvO>s zG)Ca9!8z;of2OFO|W-rM<;b7Lli`nU#G>Bsi>x z`DMzH=)sl;`8(eGvavB3Pt=LCNEpl8JkUe`Zanwx#G39d%KOqgP-q?f%HVB9`{5qu z$nbF9cMFbpbDB84FdhX1Gu~=>1=9uz@;TJh(vu-<+}x9@cE_0gY%;D2T8?{~%%!31DY>q$CXXkbYTGUTKrsDpT9DE7=2 znl&4EkSvt26)&qeHGvOeX4Y(;+S9YnjdF-MBm1GCjj40*nsGf89@LbSq@lYqRu5?v zA3&Ioj*d_$WY`3VK-)<(G;MHsLc*CZ?R63PWgQ9gruFbI`{nGgOn$+i% zL46voDFL=tI`f2{?(bYkCBz%Z@b`<@vZ>5TaiW@Lt#7n?BWQy2{gL%)5Hq!RbO;1; zh{C9IX+Y}m!N|)q(8vg~-7)oTo3)7g%S5sz{HakM{GQWfV&f|Ef!BRz<=x3?bl zqnj-=S+z!#zgY&>MgrgJSc{$ASN7cY2PMIA@K`-B#sf|n}b-rkpjG}Nm-7uY7u)y{X?@NPr2{VgSJZUwEbZH+-5 z3T};TdDH>5cdrDfp^JdF8<@3;cBA6S02}iA5c2%P z3$mLGh3aMLLI08?oOjnvHg`fE6<(!mjk@QGkH{Pk;c3ea$K2RaHMj~_>qM6EXb>>|Et z)FtguVSbi)#Csq<6=2Ib;=sSn!oy}3SQ8|sC`cCsw@$;4$^5Rb|D9L}5hBOVKDY^O zdhCk#2XqC0 z7maGoxElsHOb3>KA%_A`IG$G@YN)9AhlJdzKA^wtz=TaqcW?CojCAJUMvfPCmh5 zlVMDibbo(Nh?7Z-tTlJ$7k&|Bv}MOXAGsW^znR?+$qac+vL$lM;R6W%_OP0M*RKBB zMTx$fRDU4QuA^<%#=ur<9`gR7a!Rise zzmHX~cU{8P;IOv_V-yHv$V52sZ%TX7-%LOuN@{Qcv_XD~fGxdY7L1-`35a7sr?dsL zFDf2F#0^e>7VtWuP@t`B05~`bh3J|_ZvEkEz+h39 zeC-)Jg)$D*d?2rM%el4Gh3;Vg3t(0Wx5h*pbk|25r9%GJFk zkIc->VW>f``*fje^um(dHp`Wr%gUOp*JM5<5gtQ$z|fM#npa+)*6~BeLY)}@DkB;y z32k2Vw(Q_X!^$RPA{R*7$E{rjD&4-iZ)f~idGLB; z9#q``DqITVL`WzP02lTzxd7=;^~1z(>a(9>$b6w915y5bpin@AnvTrlA0(oxU8sukyG;D+vcN_R>%y3NspdI>C2=N^lf&b`Chk5`J%Nm6+ zuwkqtqPAA;x&Z@=5NH}2na!gHrh2za|F%|A;TdLLC& zulzz#UyHq3<<0dU23ya&rg2sA17!6+NrlX&#n`eF<_lw@F`$t;-si2eTNg#k89|y+ zh|b{ww7rWFJ|L{5^xa0VF`;LdDfbAfpVpeAis=uhGn#><%I z>&`)v30hdg6`3M$vR?074!h4CHaGpXo6xe}1@_EdZMcc@@jhkJi4Gg!&vg_yVBM_$ z7P&R=5Xc@P*M2FZ#_Kue33f)JmvHFq3}FMce1z8nD^eaBq7At}9_+u-&Tj@pO2>;7 z%>p6_)8J&tycBWgCT>CxMJ0uDzNFf41{lm?;!F#ic%x=A|K+|Qf(D-)j0XP>-jLCf zm{){o)8N_wJ-R#8r+oWsMr%fB(N7cW1LPUnM1G>Rdr+a4OB)kiI#fFY7Iai!x7^z+ zTMe)_yH&hkA{Q)xu|(1H+k4Ifms#F;;xqNgBf74E?zcPQEqSg55gYHKqb;38uULtJ z2zeGpfvxX0Qz9jFbYIXD&%n(O0}#r-3;@8n(3D*i^JxRKxetsFhrxj1!?I6d2_Q48 zU|Td!O))@C4uKiusD1E9q&6_5w*iFp$k%rh3bwrv)^=?8K$PsNdkTDR`4oqpy?|Zn^ zLDYnLHih<+8`Jsu<*g31EM2-_i{8;X{sa-hraMJa-)mocDb)JmExpx`3f6JVb>P~h z?5cXSyx2!{?tPLTZhZOPw^i3{#6{dPm^UQhD;Ts$>Y%Gj31b>fEpczNu*g1s?&9uV z^>cH%x3@Ribe+m1@5NITvDTbr=AS6rP1Agy18~A7o34XsPBerFLBUmo*BZGvxwRtY zDDkJ7WXa(10y?Bh7rNch*Gt4ElD-6Cmq|Gz<%xe-d~t3JlImfMIF9HGoW_)xTD8#q z*PG8(jK~BLG5XN17M$w`ZlGmChA^upW0}yp3beR+#;E@fdDw*{O@>~&>>eQj!N7`M zeix~OLd~e27rWo?kv+#mPjJCs0nw*v?9eH3f47f&IrYB0wIzq8vt{Mav99zho}T;i z!e8vHttX;PJKE#Hm12j#A^#6@H%}c%xSo7KqJnA0pc_CUA_#tN4nEmed^k+53mRS+ z>H_XU%{s%oeM`QknP_k6w^k^84Jr-WT_f-(PA`>-lqsn8Tr+9@wO7OB?vr>sQ4EO# zFx|1!0&H>Oce^|D^6j(?y>z&6{)^(EIB!ZY+Q9D%DOEFsTfH^U?O_nRC5RE@#XSUo zsz}7CSgG?iRvMNYOk0Op5z@FGyO-ZTf4=o`vSI$39GM5*BvmGA@C`4w)sYRnOC=2r zUgpk3m!0yh?^%j5eEEH>-`;&|e);3?takskz|U$k9|G^> z@?oNfq9tlzU|<{U0T$2}cL$gVoYROG5dkUad+X_4!`?zln4nMZ?4+>LlCt2X$-aot zEqqVfEpBLQ$^Dwyt{He3aO5D|LouswT%yUf4pfKbo3mkOcq#3vOo`m~lfy8> zc>VMyxoK_9+_dvw{TlV0QFYzijukM|8OR=t7sJ^RbMh@a+Yh*EKz`_>ZV=Y_9U~2l zkWe^mz!}vDuLDNSMz9SUhIGXD+0syV^M352-umK#Lc{QOASgY|y&rLD8I2GR4{&*D z`Wcg;gCzCGbVTQ=uXg^jM+i=UlyaRh9x(i2t)_#{~A*;bZQ+14i{?ZsUj14`+)ia zc1sLITLB{3F(0I11%#batBcmxGQ4T;P8)_dQMi0-_Zw;}U-aC`7YM5k!+lAH+?oy& z$D%v)9!3+txF>u2imdv2Dz7GWCEF-z!=;yRj8u7u(_n5PlFq>>z%+T)5wE#%4!v@@{>hpa~(WZn(~RX_9!uvD{(Mqm6AWV+|i)H=ai%v-mH5p{3@9)!-YJQTe;atu#w0pXt3sZk2HGsiPj}E2! zRTPZw9DFreCv35-%(R-=`i+m?hmjXEGy1pFc~6wZ(Cc5*)B#T;m>sIVvikw*@UdJE ziy2wu<5!PE^_u5`c7pT^uAm%dtJ5CWrfkig_0V~y)2=q~{IQdx&?gMpohnSu6a^0ImHU-VdGTaMh6>qY{^dxd3e zY<{}A>R1KnlWNsrwm(K3Ztk;XRAg$=FyQ7P5Zm3#E7*;Exye1ozV=}HGVW;|E*H8#M^#$U_%N4t9M7tT!i3GU zwPF1Ny)u=dufCNEL0XCmb+`V@!hwyqpH@Xlt;qv}T<72^RUifuJ1nKz>BX*jH z=RIuHY%gn2MD#=t^d6SgJ4u}u9yoV75XP(@2^H=3^9y=&4P4E+dBd9~W-o^Fes;6Y z*#-~p%j@A=U&?O}Otaw0r=$1)uHc)I!7?{DN0;Hk%gY-b9qm3B#twOUamC#$`tR-$ zRQ0eOykR@qb;;7lSnNz~6mYIw7NUNbAiAJVtVcg5y?|C;P|+^*V8F)4^>(h2b__$b z9TEQ3+?)IlShQYf)eiH!UAmicPeV4Qm-SY44qG4AN6pI);8-xHXF37M3^_S@M)SjD z#U55tUl@>NrpyH4n-8(lFW~W|DlC^vqoFGK zRy{5A89N}oN9OajYu9{;%e%X~H{fr-On{*c14~R3el|4i4YRvLStD!tB_-^focZuF z&j%kA=0@d^&Z*3WUVU@@ti;#Bn&6q0@lT;Q!VI}ucJuc(_}>gM{7z1K{&DG@OSA1< zm_b{G^&|_GhDjG73E&B{|MF6?rYUA6HRzvT-Dg!MH!yKjs8?p%%=5w53+++X)A!`j{)$Cp%1l1*YR3P@D51kIQ%p2i@S3Y{*J3$< z+jXh-k8_X2lDukCNQN@gXD9pnRhuPS9SV8)b^bo~-;>0e8!UwHqWjI3>pAPGkfGF=MYPRZ z%sJ5nd2*${3$ih%w&co8KU-E9ZcjH8YZ#NOlI=Yy-NQRtUy9nMRWf{Vg97)Y!Qgl2 z$2`NXR|#16Dt4|LUq@b{X(;4}&;#d>i_~{p+1z6PSQ>ad|DqOnKd>@LQz|U%ButGk zQ7P(quaYtu=y)1Q$xIvM%=rxE%ee;z2Lsh}X;achEdA>56XbrDTjxINTS}v{7ZM8o zHO=s*&yw{ESSy0B4i_!r9`7IDd!Sn4^V@YB{*Uc}rFh6cj!L&NtuX@YFUe0%cd(ol zasS-=(vD7rHWNkNMJ=7#7ushnpV`Nx+`sj@%$i$acO?9+C=EZaH)dzh;e-@T#Baru z1kJOqZPCq-$}65Wf}fqfZQd5y7ddFya@k!mlf(`s31ydHO%Ai5_&~@1VQx;viSsS)v zdIcFg=3SwW4Xb4rN2}laJKwo`RZnAt=j(gM*XL-EhGhtr#tJxJ$zIgvo~3#-M3?!k zGAVkITqQyEC}W=B)RDP>)N+ttzA#gnNNK?NK8Ar8_%oHsEb*WmoreAS}LyD zl+7L3{!YLPgDSfsU!GZk(8pEL;VRBFt`#T3R_=R8 zQ74ecKir2WXT^b{^D_6H!lC}&zJ{=IiljV=#3pwUsAq@EOVd0nk?1jj2sm#lL(V;-)@ZTOWZ1}05MFO_@3Mk$*d_{*s1wk~c+9IynX6$W~ijz*ml$nz0ib(04T;9}sVH8o6 z^ik{y31Q?21A7TiB$X8bP64q)+N!V5{n#uPPQI|cD3{jYH3m{s{m1>1E>=q-#Es*O zW8%)pO<(I*$#Ow8dgWvNT`GzoqM)QavBt0jiuu8XD4j$((>tcAr#N0XH-#R2YT2GV+l&{`kjkvD! zk;0&}T+P*3P^3}>-i$-}0W15Oy7uTjC7(MIUR(#Ixt5XVbX>{`{ycvC%vRJC;;kn) z9}qgCIp*or)&z@VIsSVM;=U9kQ7}e9Q}~I!Jv%r~!&|-&Xh?NK`VCPfVg1E^$uGNz znZ|E2)Deov{4Pi}PU+eCpFTaOUw6l5z2v<_6z`JkT(acPv1;$faFx zr9r-~_+GD^irI_3vMqyNU1FTS#Eg@~TtsSBo>@iYxWR#6#uLLVhKH1%wwJ5j^&)~# zJ&w^d`PD>SFe&5LB{*gR;rrrOn%@_U2fx-Eev8S>fFD@TX7xLdfWP5Eq z+oyw*Btk?uqq(@5U{am(v<<$K7D22h{#8t?=!}HH#G1{gDY#8npTy-_uNrRJ zBzQ_{B&9$3lxdAR0;Jzg0OJ`FqWoOhxQ9*ILT<*sNYxHC^jxdWRJ@Ra{1%B zVruzmnRu>bUlk&|HN$sh&$|9FspyB$(}tK^)t(a1#>y4cFgGwM=`n6YlG^%)z7x0* z>MkxWCELO>GMklEXXb4F3}wRHRyeDFFEEG7{xTKTM%A6Nz2CdUa6HU$3-4~g(BLDR z%(Qf0|3!55q15u{SK}(*^)bqr$z);XMv=$MTAH(P`f;-2T%*`vjL0Iez(hhI&Z#0)K895X=&eq|loeh|n8GVU{ z_g)Iac~f&3JLn3yM`Xo^ri)tj@oDhe?c3Sw>%6W%<59@@b0@E)HEurbfwsT)y0Mdk z!1h=7PX)7AdN=bg-1Poi!^%wf&(V64#o|CS6^Vz!2^f3&2n=FC6*W1=2{j^^_Mq@) z3_Pbb9|-7mpyBZuv|qb>9sY#FQ2k%Z=i65?4#uH473@E!^tKL5^-q-1uSSP zZN?5uK;`RN_m$*4L5GE1QcBxoHa2JaTkj2*hz8vwKDna%8P8^JTbSgz-uRtDeM3=& zMs*#{q9?T|M<1V-fb%JLAbH#FiqHPAIUnDT*~gz=e!A21kb@NW-JL$vme}+$F-q#B zFLM3iXROL!oOsO}Z&~kcIrp|SwEe{i`TLLvy<{2}ZT9N3Wa*g$Ydxd2s)iX#o@}pZ zFT?lwPm5e|aS3SgIjuR;3W_@F6nCcZ+b}74V=v?R;StMNz$12i;i#fYfs4uDpMhpB zBjXnx=d8@C3^!YKE9R#GdvsIQGuum)J{T`+G40%G=N`TJ^sp&d_1KG&>CDHCRhgwj z>J`Udj>VQP=cA9+6(7DU+Vb7&)inQGn^zX9uFCGQ?=e5Lv@iPDm&=#rv$wQUso-rj zLN!)Sj<6$N_fIzbhT9G-oAwXMF5q@$^K++RxEcCs74zG3iotom@y-M~f!*P^pH-Mh zQIEnulrIY4(-aj2ect^2Jy^D2qTp0Q{YHKmUT7J1ps8Q_#-Y+*CEaLhoom#!?p=q6 zq?+O=ZpThln z%$ao5d~&##XmOk>y>_$QjfgC6|4RrG$K9pByZ+;sT%tX#!d(SQK}s#S3AC)pigJcu zMDFT)#gN8JXYlkfP_tpOMN!8q#cRY{JFeg$m%z>Q8|czOHNL>ae)!^aV%iA=3EMDk zc1m)Q7a5wgHe79rx=r2n=qB*nphHnLjM2>AJAR&c{7q0~er7`RD`T-2Q3e|% z-{dso(<&|q4~Q9t8q=%lV-=1jsyS#-bw_jI-wwuYVYo{);HAeqA9p9Tz-XYnEKdJA z&HR};9HvL2-bYq>qSz%j{I5kePNsUU>++-fnDumz;Y3}6h zfaddxg&{Hn{rwqPoK3G(OR&V_KMcq4G&;2zR_S5%_uT?obz1VrijFe#Si}jUUG(pS;IwrRdHQM!exl-=?Of|A(^o0LQxj-^MQ#AuF=8BSK_^kUcU(HrZQtLUwkNojo(M z_skxNjBr`mBqKsdM*r94zQ5n!^Bl+Xe~#lh4)@(rM_t$F`dshN`~7;I=lMEMK?v+? zXqcTf*luLD$T(ODNY;1aFj6Vbhp7c7dFM~MZFQV2@o)%1tJ{VvRFg({DT_60tAD;X z>=W^rwoL)|#PF?qUnZwMjwI($mk54J`d#qiO1uR2d+O)gsJx zG@pfd!kHu)ll#bbC#=SAmR34e%+UADjmB$>JKg(G=V{Xqe$?;bFL`Vf=069u$MM`z zOMV<{XMkSGW#PEGo@wE+zsJ~dmS{%ux_%zVE(INGU$tUckfvM7fffIEeRk}AaJ^j$dg$Fz$A0~4x zX|t0;xDU9Axs}2Bf5wPXI%68`z2 zrq_&?v>QzTleOdPvQRUnK`RqEF_ z(fNgij>{sKgXGGkrvaMpZqg4Y%fDbIosxKL8!v(ocCp>C%Wf=5hMpT=Rrvar0|Sya~Y3Cf~vE;@|`8M$i% z^_RbBwINxI|H=rQil$Cp!likM>+|i9SPu76K(zGD!ma*qX@c>1Vv@2L`6}8LLWA2 zNb^pA{Td&9&f>Y+&7n(WVq$vUlbdjE>^Ls8S?QE-b|dJS4HX|2ljIzqYobfXh>h9sy?gf#CKIRn!L3lx^VcmHS{iI=9wiKv^P=m2 zb4K&xn29&NHbGiB_+6Cb^gBk|6frtNSNi_D!TgeC3&V$XS)Uz|%a3EiZ?zT}wj0}t zvBQeXeZJ39a-p1gD*$p)g|83YBVrV`yL0e}Ne+u~CkYr0^;_#|f2 zlc2JUz}J|zI$yfWzZ1!&=GP0->^P7~UKAoB8JecI%|Dx`KHYxG$8OJAgB5n;+v_Tt zo%~%!O)>?2F?Ut+vIrJ_x`atT?H9Zz&j*f|22S)Y`Qf;s^;ZsnC(Mnx@Z^+~BvJ21 z$k}P*{DD_yS$i=7El-CClGGzn;8G<4O2*_|WT(6)t{}ZjlvV&0*8v zUB5Xk2ZF1n7}OZua;Y>%S&yUs3_{XM(M%r5gwr7xe{(m%(lU&#M?P=zdBJS{sB=%szUD%+(05bOa02L3&%u}KV3(ylV2&3 zPhW)}>i42!o6jS2=|4UAly$knvYdQ_n5{AKa%V6D+5(t&$JM`TyN><3jyYW4l@_|J z$~pgL4kX7eL;dr}8go_QG3a1YmP-zq1#cy-WVVFx^SSa)!kM+1#UaLS%h_qgt=pfX za+H+1RJ2=z6?9l4TTZ@keZejaouI=l(ebA$4D~^{dd{69RwnFH9Rjiv{{c6oSowFV zO;VB1lyt9~Y$mm?Q`DT(&_i*HsxN~#9K60cYwrx0&oqaK1WM@j8(X`uJ}!9-2-?S@ zA;vP%vibcPJv@x1P$+q@!Ya@zo)^v9BJrGj?~`>W2JAC+(S4yGR<$wEefn31t5&x^ zfVkM@it=Cj=bJKP!v11(jyHuqr^WFlx?u%dx^hprk7evrFSaZm`f>F<=$WgbrXo~` z^Ch7i|87luZGJvS7*SkSX4w~W^Q|JYA~W&PoYx)quTH%lv=81=fqh{Gq^5ux$@B@G zm&T|XhL>T`hcZdq$eMxsS1jhxt9Ja}bkV07UaZ%P&!;~%&(T9_%Qflp)p+09OQ)#t zpt!f_W{umav6!8EzwrbqF`?wkCzsgdrxFA#|G;X^X~xygABAW`dnYtxC;O7j<+xTWWr1z%fvJQfD9t2R-Nj$~e^0};RADF6AlH$WY(1@2e zccq1%(Y^$>hI+ghCZZ)`iBOd*0FZlnKaJ+lsM9>c!Li?`*R0ksswQW(Vb3n8xbn&C zNvGDbEdjngB+=WPq`!AB5&jwG2g3(+RF^tmJ-oc0s8_cU zi}biub&eezTYjAQv)hzwSNClV<&s6jmNBdrat44la($Vi&!Y!IQ%5#kV!NeKrwZ%4 z;&%gC*GCdEW9Hwe_(=L>Ok5ep{54f$cVb}1bvtUb7s07p{c&*zoD_}jCIO#|wE$jY z1>-grgQ#2W}Gv6SomBzyq!xPQK?*tfS<6pl(|RT?Y#|?Sa@R z#O1N3rt_@Z#4ZZTr=ajKoS+>bM~~>1ke9~>HsA8I-Q8pkZ8Hjo$hW64hccUYT~7GL z#z(gILc_S0EjE)o&%NDeGRj&ncLrYUT0l>@&$}kyXLVq8w-dKxdsp2pbY7nK;alq3 zl|B5*TDrrxbIj9sDBY@(DXe*Z9_`U;rgW2w1;vV`duMHg#KA%5eg|W0a#9Zd9%f*>4+c13!BJ#UMG?_$GC!gD^llP$W74<{A6xvV ztQX6r42H+={jfL{*8Wh8;PX#nb|fq2?XykT)Ihy5U{MuV#!IQxx_UMxN}?pvA1SlE zz}t6MZC#XC$AOXdjIeL)DTk(Ybg$uSo1V|wYNW;qO?sCN4AseK9{R(hIqn8Tj&2x)WXQF`?o?dubIf`J!C+I-_kGEc-~MF_`&MeO0u{17Cd+1&vMTqh4n3za}K_$V-a&UzP1aK1YnGcFN zBjo^=Ud0SF;L(nK0$i>lEF|c?4)@?}2BSe0aPuHGf86O|F9KXZ`sY?)| z2`T{cSr%CB_CaziqQS(prn}?nBwP_O!x2`$6aWVq9T^b^i3(Kx z3Oo&|%qqn!S$*rtFu3eBwGH^zhjfVW(Qb4tl(kmNPVX3Br0x@vK%l)cXD8+*)^=LO zdH??XWQ)svw*;XLcDHKlnV(U+EOl&&*^LYv18!qv<5j)QmfCzE=ej%nsQR)h0Mc;p zsvH+3LiRu=$38+ z6?RaHmsPcF4cz#7GK~C?UQNx7Hu`d>yhiAiLg}BDPTd&JGVG&bmYk7~;GYAZmK7`p zX|kYQ(^RpjN`f!vKZHf!Gv7N95F;NWETKN+tW}hMc=!yA7dw`2M(iFOUgz-Ze3i}N zhr;{8bMxDjWkwB)31pL}Wc)o{L!Ao`lhNBCSA}{mc`yi)?B?bMGvp0u7d|gJ5t&gJ ztponQdozzJFX9DkP|qRP=Z*oyb-vl)Bg{Q;g%PmT|UQMx60 zm6czznky?~3JMD7)4X5+wD?Ku+&S{@8_osT5)r6$z|6nQhvud|u};M?M~5Wb?Qv0g zw#~a%oBZVE%&mQ9$H^ng+RBP&G%+cMgc`mig=S=NTN2Z!3h&)wtyDe)beTW6c_Njy zY3tnSi2@vZt)06)EAjFxL{x;uV~ZwY@l;UcMKx$ajVG8I{ba3fLO?6&-hN5p5=`p- zJ|Pfk%5PRCCjdRA()kByC?0>kR+>SV1p!ivU;0YD2n^H{=0p}as-xw*MXNl6)1X#e}&!*a3m zO@~8cyHs2Xu@%CpgjE?0DaMEgjS=6RAfF(#icyvyB zl>oXvll{7f@0_pjUm6tuIzK2qf+)|+3#NKn?+*_lKqSz|f|a`CjC~zQWIC#bMDJ(r zgE82Uak}_S?kME0nZTa*_4#t7hL+a;%=~#mcsLHq<{IR6Ltg2v=j0E`ejb~l1=fU} z{n0@p9KDqJc1|sc#SOD(j53pdd5Rny95CIydGK6^T&1JgTrp}tf2%)n_s&-dRWEF{ zb}iMP*IyjE=mz$xFWpND&!pfzk!p&&*o>@y8niLsYU?NgVbpzHtK5CZFluBa>;Trx zP-M12TisV@+{cd}H=qC6M73sM0tBgF9bj2D2zOZkO#B;EmL#s`f$v+TUshAnpZmUj zX1-1$1e`ZIqsW*do(7`XfcGwH69F^ZDoeD9bcy(V*7vC@(GQOV^;Pf{0)MT_Eo&Nu zC%^t`D(*V+ff2>G{rq0Y5`DS2m|2hXCk!g=?(JPOXuEj!L12XnXoj>q!MG?2o?rk= zfZ5Tk)-5?(w3RH;ynl(B-|p`fOB&PL4`Qh-S;|}M(+LO?oFuWU_(ye0mc8} zuK1ezT*i;JFRm@C7!@B{_u8#CHie%lMXw|6+bOMX1*Iw>OBQT%lZ7XbE#Zf^C5y{~ z^_2l;VPXLPb1A+C8<8oWBPJz&efj^R07J8=W@f=oDF<6xWcbS$lO47n^3Y^4j1~#t zqSiIBP(~fm47cOyY!Zi>k#Pp=4)dlBoWpd-vorrw&A<$8iJk`&wNHkV7yt=sj!x?i35fZd%>NhE`1aF}=c5ig<{Fot7TYdx_lqS)HEr%ft;LNM}? zF3)5<#V2xz$mUNqG%Z(#FHPx8|_B?~m+}+fPG^4vYG`l!5xy2krNmY{rnW zZ!u*kltA4C&p0>UtAJz>g}`pQHC@whiXu6}tc_9wvrQ3E)Pf!F5)D5A5`+o^fB|Yg zm?VE!Tblp{q?)>V{9SWx6tS*nnAUR78#s^1?4;w5ZaTN)GpVO|`|7BPf3;)p!;Ow5W9U`HitkxQQRmR{P)1^c zSOutaVyz+;`4}r(+o}hs4fgg#EPFqcS^!gUr+kK^%(9_qJQle12VhVePmUola7&cH zNKz8x&WB&upvli}Xh;I4&vC-Q9hL6_09OD9g8Cz#8878jwKXvet?js{b|rnR9H?}= zFQ79uFdOmZxnq(x#mWncSFKp?S^T#KUY_2e-%;RN5%Af*ajB0?@{@#|!PP9*!)+54 z32t9p#G=DHB49)<|9ElD&!-2Q7_`acL_-Wys+OTgkSvXdRAIm8r5L6P3u~bV$0t5> zzw`X`zTLb=^quF61-57QK@hh>F_oCNygQfn&+FCq+QL-ew?@>t`sjU$+P)jXwL;)e z32ZNhcm+bWXgnq@&3pUCETJW{|Ky>bFn^r&uDDq|@6WY6E*`%=IpOn%J`FThM5n-4 z5_jSBkqx<%wZoJ~s5%dw8ETDCcV^f~V zKa`13rIaQ5Qg$&j=t1;Jl+cfXcK=A_(2O!wiErL2&jAq88?W+%HkOXnb9V=9`5XCH zj(*h2U!~smWw1g`z=S+Dm5~`0NciiBXCKK&J@rdyQK|QegU~}&J))RJCiqGAc0eEg zPAn_=on+}wbF`Wg1D3Mu%y;|)rWi4J`M_~FLCrcZ2)8gM!nMrrKSG zFOS((Xf_l1KvWa?F`TSbCSh^8>5hrB{;=N=cQX0=R@s-|Y;Jw3ei}3{HeNAza*0J^ zDd>$O8q)yA8F``{o0EcX6E_@L{|Zy&&?)@cjZ`EG*%x>k{(fK=71I7BZS8sPbMjR@ z&9r)fNXLtV4|$9k(O4U9_hv{tbneao<&~bH8qA;(b@80jl?|FjhkFwLcKK$2lvj{` z;>wh|7K#@s(|M-Q^HcsA#rz7zq)&DLu6n0boqy3y|Eu}T^MnJ|iIUT+$h|>kUURH+ z5*?PTgogxlHAn$7ihdi1mG9OccU|b7;%{`}avi@6XCfrn46dS&5rbC-09p>+iBp*X zQP#9A1j<-Bz|!E^n$2N(Rj-F&cVgBlPKjZH!<$TkFjd9Cackm7$ z?|iRm`s zx7l8cfQiF+a5r0CTf6suN8~1N(q{|Nzo#xI`(4Dma0*Oq??63x@Q~d_3%WvslJx1B znIA*Mu){@Px;qfc?I&rJ+e>J7|55iwq!-%nwHq!;8Sk~eV)~~H&mr=U#QSIjK9D^; z(&-;$qQhCT5Z_YVB;~pBLT0V=5gp-kPR6sdA2^{1$17LAVM4tJr6Uw3Z1FZ9`Grpx zjpwG+746FJr0g`2r$v#!{TjP?Sl4S*A*PhhM_zsTWqhxgs0+>w>|dtz&oH|N%Fkb= zUYc&v%0_KzfbRdZv!U=y7JnudmJGi56Btv#(dD@d(k2L-=?29_$ZGKULHMrOH;P-O z_N#p=uXlgB=i>*)r*}G@%$TYc(!D5lOYw=VDXzNwi9kmWrypNz-KXGAZKlwi~;9AzjDF&oVAkW_Yqhwm9A@HzAL?R9^OlBCP>+Km*=(!VZ&MBH-Dj{w2;>dfnQn&57&B zFM%8G`l%gH+*6mb2r84v`Jx=t4kFxn@u?5%t&LDS3uAH@#;#(W*_rJ{(j>~X-9 z=l@6(j_96-`Y!S|^?YTN8lIAhN_IMKKYNXr3!;%$;Nx4CSsUTg2v1r*^n}bZfG!N5 zD#*__y4hw}A3}osy2rbzCylNYx1Y>O8@k;NL%VyV$h*90u2fa_{{05e=N4#@h6*tt znry@}+1oey+4k2d%j7dvzBKy{zY9I(`uFd2Y;55W{t-32;(XxReZ5+1#nEK5=~5jj z;h3hBqbkT4`(T9P5dLhqnr98@KXVsD(U5 zAdag7>|=fM$(&?Sg3+}vzo2DyflfJUgWHdj2m!K<(bLsCzFFnvj=4${gn>zzJxLDQ zLBXV&=Qm@6`H8iZ!j`6Xlu0)$aFiHxkA+4P!OxIFzObCz|S&9%|CThs_h-kPPymP#;ZV`D2QE&X=K z_ZZiG&Ldwf??Y?geI~mibLCa;=#kZwrH0> zO@-*6s|6eZ$5OKV=|)cHDeE$mH4&P=D68jW*)pfV z%sjg6;JSlBoEw#wj=PQ*h6YVgcqh`YT$t*;ikK`T$xh|dXG~WV;GBq#ZA9-1BTPkf zHfuNEr@LVLQBU<+Hb`&2=R~o2G(74j_{RK3Z@epbKw{f>htP@MM=>0a(z@zWK+7)n zMw+)Bf50M>2DSgEPUJ%Q-mPj4y|p{VeSxNb*XQQ%4-4@rt-LJFATD{}9T>042vy2c ze^6?O#R$vT#%?+8e%#wlegAZ^D0cj7qcOqGoClgUQDZc}0-eBvvFUB3$kQ!Ohtdrk z%qVS^(o*5+SzYbD61PoxqvD#GNg9&ZSl*tk#5%Y@Q(K9TAh-kseisvq2fFEJGRc3) z`|*9&mn&`O!yk^`PgKX}woM*8gSc|o1dbbS26*pIIm(w@eX*p( zrr#ky2TxrI)(5qOTlIY|J7K)YcSw$%2pXC9biCIYdUP;4Lw5;9=ca3lpOwYCcAb^5 zU!2*%mMEcnY?jnL|DF|6e}L3Wy5~THfV}0UlDfGiz|I(0S^HXcZYJty$LR$2j92=d zusLkU!IjKAXJ?1WrQQ2mZ_h99=^HJ`%O(K`i&US9N@a?(q%TQem64s&WFe zc+!q9Z#qY#8JNYo1QfGO>6oS(|AgJP+Ur8;f0&~$3p3oBM*m&cdKS5s?)7@d_wUJJ zB~XUR&tmt(;`K<$6$j zVX@~X-F2lKFOKd!+5bsR`?T2^8>O=ztcpuXnSsAqn%if@^-IuQ;|U5mtI%fm9>n-w znk-zAo|?}Zr5kuaaeInZ*U?v{g@3lv$ zw;6oL%EJ>o@*2P=fUY1eC6wEgI-gk(#;?J@A*ZJ1pZcsCQCm|35l8LNvyRx*gnux8 z%wO$1N_8S&Zbi>O8R9$VgtklHLh~1CbvFq$O9ZSZ{%w}}DrT+H{~aCM&gq-Ph802D zxv^Yeqb%Wuudzl)apJ?-$Hwt8k1ixX2ZuI9`T?nn73Ir!{ynlpO8*7Y*7Q_FcH_KM zu$5|0ydVNrE@p)&*)yR@SEQz{ZYF~T(k`+uJH7?9kV{lF9k8^>{0yJztW$^@W)T%N zlvfYFUZQF1`+Hi|UCGFcxz_h3PgF(xk=u4wLXierwj}!Vqe0x?b5B}V@TC03on|;8(%OUugbvFyzQbI4a}Z`@xen%K9^hli!^+vGq>R zIzlIx?PR9sb0QxtJH&qyI(BtLf2H%qfU_T2XmeH20Bx~vJ40!8Sl@USr}dd|29oxd zHPT4+0dhLBnAY~QBJxjq_p3)s4rJmNRd`y2LhKo?Wl+Q58#$)~| zPPF&-tuXd};S{Hs#M)J~^5^=OhUU2<=^h*<~=$H>|v#Tx*u@ji8nF{EN z9Uh9~Ls*?fcd8X?ZDK!63S$$Voen2Y#u3fg$NfBo(z2$mI}jn*zFt0sydTH?&-YwF zvEc;v+CoA?2rDbA1p?pSl4WB~DqSWOs`~l^x$?0xr)UiF*9bTjSmbwx7-?@rj?dA3Lyy(#Pa9TA=e&;$ypDs& z3_qg&^rjNguZ1R_Wpc82%PhY0Dvy+IPe3{Gz{e72LNVfo_2{L5kq9Pnv3j@72Iaec zg~S^;+>g`fSoVo~LTpvX(<(7TImTyA@giCTms1TWKH;|;zpokRx`nT?q@YPh&H*Z} zZ!0V1M(qKHt6-o#HZgJAI(*?Ob2sMh?kw4^?+(q%ras0|OGNw@0mlJ_6~00X+6(wr0PMVF{V5a%X@UH6?<>wD^u5Dh zn%=pur(EgdMYFTTYH?IZiS%}$R9^~^oo*Ii{B(XO1-14&72gv~$*+o=NMfB@3x?SmZ{ zg{(+ROMmtKdv^NmUh5(dcaNY^Z@+;=r`g)tP4XB&Jq={k;D46+Nd9Z9E4#aX+)Jst z$nCtoG|MhBIOXzf?ox11T&EvjVH{7Fcz-|WeJP@WpLQesjTz4wz3mwt69p^#bp^S* z2@6bDlw|PbrLU7j>gIsY7%xyg71u&Rln#U+A;>Be?tF+tA~i|bwZYrt9_&h)dY64A zb#R|w@K~5$4Mn9j+KI89A50gYTxP4Z(GcGEz^C20v(Q+t$>4p1uVL>`wC4vJ`IsyC z_@uUIxJoqnth~H&z@iQ;;yzVPw%MGl*|gHKzA9uO6rshQS6>h+iFLF%Vcgc56C-Dj z%PLNq98r~ZNaB-*snMfZAcXT+wnQeB-g8zTY8PJ?)=(00s_~@Ut?~PuruyX7`<5$i z-e?KQFA6GZ>C~RQKqg3P=&rnxT3KLP8ICK}>>|-HwkF5O7N1Qk*KfHr|EN&#=oY@Hv<-JKpL+1!~ETC)}!+8goN zIj~$7>+jZWV+>)S`TqU;LPal)DNH9k_wd+7F>fF?t2FM!r14lG0-hJP)7EQwS1{%E zLunmK(m(rFKJ-{xHcc(CGFknj_%tc8>rA2d+RCP2tSrc_jKxZ7n8RKkMlV=$OPUs% zI%;bTA9(rm={00cHeTQQ?%kX*M?<3P%k1`-hEUKZM(t8SR;C=;PiQU_480E?C$Q^u z!016?X{iMu6)1)5>4sM8(x1&T_kMXAES}i1#NLU%v%RIc2x za*;3doUcFxtBL;T76PbNV;D@=_dXb>7Ic0IDQS*S(C+n6InXuirc7J4`nUA){haKT z?JKguG_uhrj4}|3UdN_qv`Z4B`>8!m)fmt&(c4yDOGv2_Xt(}XTmG_tg$Q~VQ?J;_ zJ*jG%*VklDj_%zeL3nz206r~dSL|kv4IyAKtk((Wbegwy{@s5BEFdg_M{Z{!r9@tThV`l^ zp^A3r#ufT7Z>&)9-M6aPzPCepc2Fl2FXpfv|MKeU+mY*pgqdCM4DfXltZi&eF2$6k z1!$Hm9Y(0vd+J{GJ!KCeAV~kVENN~hsy0Y)M{Xs(+w{r-Z9|Q$$mjXe*B4@i4F8@Y z+pwmwxs1L_x1{EDP><796jBROW-XPw-6xh0(k1IOi@<+;=DL|XDH15<`@u?t+Tven zmATG0q@F`J1g-f2o9eR{o3XI7vr|4FLhDoTQV^YmFl&EtiYjj}Cn84sWD2`wkguG+ z>W%Nt{m*H*YTDk9?xM{tMe0DQLl|=jjR?u%qr5W|X|Jj^cAbP2bVRkSO7?P*`Pf(= zMdwbQm-xDG8kd(`ujrjOWSnPYAp9j2?XUt~QG%yuowVnwVf{EVeqr3=&E7NmErTWB z3YAy{H0M56=_&77SfIIc%9)R!N>$XBgH%bRx`mK?urW_f?C6Rz$Iz)_K_6_EwO*l%Xd$FQ-m^GE^Xj?Ra28byBsP# zJmPprT*OOAGLdsoF8hW&RluexG0np_g4>S)L49orQ|N)B1@7Pb8a=pAzNu-9;)sQ2 zB#e_WSJ@a|6ZbK}7xx!iXs;eW01Vl51%dF>z&jUL%pAX~zt$K`|3fGKqe3=kH^&_=` zX30uCN7JdZ_&JIJRSN0XY2}C_zOK~VxJ=?;LF#xgrv0>4AZd4`^JGXs_e@0X-)Y{f zO|6gFu7uY-4ckAdHyYYr&E5vRV^vA5*X{e0M|`d$NTc#HO(`;3-&@-bYm1FFr3h%_ zzCuBu@%VAph}G}U4nCdGW<2;};UR1j-}PACwBGq4?~L>N=N?|7UbvgT7uu{v1sszj zzWn<7%;|38D{S|Mcxj;D#UAm_WvWy?^&XkC!o%E*IKd~3L-sESM#M~O@^7=RJn>Sn+R)YM8dCV|#$(cO9KiG?#}z{;<3IAGy2|INtsJCQ zrQdOIB5q)G{b8`Wb$JSCTmhy6reF9Z-dL@?1+b;|AR0Xo^{|trdwin+osEizhaf7Z z!c-!4^Yws4Gj%Q^w2PTu`B&;U|j_JJ9yOV07othUT-^_1pElzBt@8E8hY+0 z5cUn9nDz$ys>6NUz8|`_@nhiJlkwy{FJMKrF2p$WtKr8YU(i4bc{0Ft3-R?rX>GvgQtmq|m8* zdIJ>!32GbQ|0j=%N=jBilJKo&!qD{mR1|aZu+yl@@7_OCani^+54!%lO?$S_ZMEp1 zP?vSsRm_$8i&B=R5cM8?>*C>j?>mqCKU%+^M-;ylRSWNI-?&w)k#R!ZlJ(jYKajZb z+XKb6@3f!uIA-9SF%EAge-qffV@XmHsoxlr$?skk17{sBmz_f|C@5F->ULQnPw4?&Y+?UIl#AH ztv$1wB<&LA;d$TcT%rjAuXelbr#*>G*pV`$4j#U>8A|F;P{aFEVd4YIsSnLf@6%G> zT7Gh(z*^#9x;!WWtH(@Dk#0VXqQ7QzdE~g@2Jh71RMo(BUJnzIBt_>2vPAVsKwbmMMtJ$yb%t>=Mz{2V#x>X4hJuVeCjpdO7~t8YVrZDIU<07ne>FBZ*cGqKD*qRiO|G1Xw43!_ z8g5Hw*hKl#mxuz9c;&8L9@ zv+8A}L7PZ4Q(qQteR1(C=%)ex?t>88t&_7QvepH_(@da0Ks8kC+U0&wCrv)^g=#HH zxFO1p?ax!RSKz{8#5I}nX6S(b3la%98zv;%N*9g49<1vz9@7~8()SlXe!tyc&6%yK z7bp1G%V{<4R%tRx`+DcR^YLmwwXUMRPAs1L|GPFT@jXjb(%~PRL$lMAhKMpLssw@J zWE)#sY+PJogSMRb2+qcji@}0qFns>p%Zp$=nKCl?okHUDU;0auj05u#!!8Du^mKSB@t}gP!eT&Y zVUV|ST^wlmhCjA+{tSm^^YQ;pc!eN`;ujq3r0e{N`7S4KCYe|-O9gh#*@Q8=u_;sN zdN}Ec-g(;3GWf(o=55e*^=zGIBX)JeC>0DZUQ`|k0>MjigYXp!$|}px&1C|+uB8iH zP>Sql!|o)fksny$-L)K~M(wW%&@uty^A)(FL#8)bM*R$+UEv(Fca-t)R=9uX)QhTH z>W#;HWV-ZKEtgfGt;lQm>r-{dGO=|Uj|e(G(<6R!xezKR#rhFLge=I`eB=z4{BrMHZ`4Z zd8jU6y!A5N{MNA}|2P2hG`!hYN1vc}8->y1gxiIzle88g{lbken3dA*rr;;;TR#(Q z!nF}_ZSUz%e{6{i@v(i6rK?IgH=@?jHDl6E5s+x# z_u%jGkfAAp0O+f==PyA_0&>s~U-@Z_fra&cUGW>_Fd@P{*&x9j;wA+o0sc(DX-O)> zl>N_WHDnry_G;G$Fn=&q@%9#hDG_gF440n^;;&b(yW}b}G-)!_Jqjw6HB^0*IFL)2 z6kiq7;5qmFuKNqVB^0FmGOyhl><-q=o0@E$4?JU-!Y&S<-LL=g_7FY)ZCcv$XXDZA zWp*eJx!!X7l^zDKhB-t^j*NXZw(u(T|18V)TWCVe*7B&~^uw5b9BEJXFGnz3ASPY- zL3;5f%vthQ*OG&?ShnNxHPGleMR@B>q{XwoDLFz&?|c`$tc7-`Z9Z^pGZTx z6lr;7GW^fQX_M(qw8^b~MEJXfxN+W8g?1%*#V*G^gmswGm~4B6XV}BXd$^lacPM7LBeva}(`GeIE+ zY(yk;Mt)fjIa=+hwRf*a>!&_VGc2gANV~yObi8542cn1q2fj+a{NxhBapB{2?Cii7 zZ!_Mnq266_l$hc>51rClr8m=N-!}(v(5{-^R!$!5is#i~PY}&uIh&e$(s0}Q!u039 zWbBXg+RLooi%*k1mu!+jQ|viAkAlVtIs7EW%m6Q1`!Y6Vy`t?woOH}*_HClPwIE%& zYWdG7tEVr#8P7ezms4TwFaLNoRA0yfQL9EKk$D9DmM#LTTNP@|4RYL{%}$K`N|172 zU0dtCw<6!oXFqpJf!J+3VptqcNvPndi#c*PbEyY%(TkZI1xMOCX6pe71g@;+y zLM@k|?uj>cWbodjM=BDdZG7top76MD{p?=55JEFBGJ>M!wX8LYV=_eyMOvXzqnljK z+-&7zQROH}DY0 z{F%v>su&3hvUid>+h=0eQ7YrM;46p_G|&e+;5^WBsRkyNoqb@AMD&Z&R{EsRbF*hYOmw3z$(@2Bp6q{m-sR zguoBTQodxMt}Y2R#==yfoq@c%FK%d4QC>)*9^Va7i_CfoWj^^hinEVJJfmaACKH9a z&(hvs7DMlm!X(_Bm5-~9%ta(!dGeNf)*~5?Q?_l9AYMLR-bt{k$%ZFY9=bJ`HRUMO z&K(yW4LYAxKaeJ&2g;+P6aXN?8ynL&d3$*m`CV8E0M&p1bjX*d?&)i&%BvbDjtNiQ z!#pHKI%n3WV{{+Hjnz0YLsyX3t*3{T-?j1f8kJOe#B8LB$I7jLX*0KH&!#h2C?jQ<{IBv{Joj?fLP16h*94PE z;Y@Gn<1)&ab4KKpmGMDa&6#w`nSW;JF{n$4O#+h$sRrKTmiTJjb8{@Oe|^^NM$P`7 zrKvi-=Na*RXS}VCe3MZM$P*q8(YJ+8;))7aj9*maJ1EV^CS@qWLrtTMk|=a$^;z*A z9t*Dz9iD$e-Fbfe>aRMJRrZ~NdY=jRUZ zXO=-T;??_DXtiYIbOS45Q&3w?#XqaN#oM)<1W}@EBH>D>z8siz%@XgbdIyGTQErui zGD_(8)b9%7a=@ctP$#R|5yqMX)_bJa6t~pG7RPv=B*4)-ouG`L_H zBnTQz$Y{!oggo33bZtz}F^{ZvO`cL$?N1NTJ*g0)#fvo!d`nH$_0sCb^c!*_LbjLx zmV_u>4r-a0a2RD-^IFGf*zCPe?qe&3+}Q{v3}U&pX8rZ@ZI)d+m_3UC~<-a9w|z$^tNIvL?rJBWLKbklN({#${u zvhZ6|dbe-V)a=E^{pZvVlW%^~%_^MjDplv(5_)XO@0GwWGsN(PM4@G@j4ytE^3T5!0?T*7}!q=8JN#BcOp&g~0 zze^cucm4ubUVSZEYqWjwi|6Y&en;T(`Av5cBuaD{_=Nq!MueDqFnKuH{C-{WMfYw> zjG?kt!ar=(7D@UHx8)`u%znp@18V;4;?N?rMQcKip`BS%a*VdUs%EaiVeSp#VwCR3 zt6E0m(lf)k`k9*5e#J@$1Bg;VU8J03N;F_Y07Wka2AUtbbYq^}rDuM#JL0bxisTj* z0+ZPX8kS~sQHP$D-cA6f2QjORUA$Wd2JC3-1&^;;6A67`a4k-y!PO>Kdbl|wpo{#t zyC?HHp3k|sIeOI1J`Sl@$I;97W9{dW8V{$?8>dG|KgSovi6$ z)`Hh((r)-`uz#EDYtSv{fV+oh++e!n()z#VI4BbYl=`iWAJdUH3WAj4+N^3-jjX^` zVpWOyjssJEc361Nq3F@kmjZGs3NcSJy7fnB$TluDS+mT#x7jjugrPeQQV0PiOcxC3 zzfm|dOrdm0NRbGS%nRqQpz3}EVonoiYjYKziHK} z&J7>^mhiihcF%h8JXc0r?`p5i<(T(JjFWXIX}SX#-#z}Sn9zus^M!dpH33I-n^6xT zsJ{Vl03TGcBqba=Fb7Fr+39)4=<)dTil%N;j7w2+Uy)t*7Q4SOK*H6bh%XH2&^DF- zr6FFKvBmFPY>PepfsX=KFCe^dgri(2l^h+pH}4dB=X;C2CZBJbd`^v}k>}}oExLS# zMCZ9d?pVQvL}*Mw$II`C{9lS?^1?j%B|k|MFx3M4LSTL`Gejt&0U~V9d(u=gs_5g! zb3FdpfFlGsk87*Tm3-ne@c!{N>@1($;FH*EG-5XO4+Ru66Jv6wE~~^f4;i?}qT(EVuSt4am&Of~A@B0D zk$d|kzWuICN0>@>@lpXqVlhnF0WU&v_Kba!=N7Aw%C`MRK5hzHepY85?;C^obCT49 zNuk+qJk;EuEA&Quf5Dsk{Y)Nt5?f3_C-^l3fL~BWRajI4^&s{NN>7mAT{vQTMoZ@* z{?%TY>EvZsq@BJe#kmS9fYd!t<$JEqjV*tfNXnHBVvCPhZhobtV-C{sjUqVc)XUla zE9QUWU;CFH#DBhH!g`z^GCbWiB`8T+T>G@H_9S0RdEUFK`DKl3UBSO~F*-_-9ZVk{ z^ckOb1^v!`6d@+N-~l@fRAFK5U&TPy|F8euNmmK_8a=E%xIE{U^QTsPYO1C`WH@=N zRaHkH`e!8tY>?^-ofzJu5X*@PB{*PY9T=h{c~(Qsym=OeeJK6oWdoi8#ee;2pvu-J z|ESx>9NX7og8u4MaWh@O>on=MKMJ_K>pp?1k9aA6JP?sqSJ78eS82`o{Okb->cqFv zeE-{Xm>OBJL)<*X^!fvr^# z!JE)+tG=h^!IUE3mTNTJy{TRQ)A^8g$n@lVS))$UEk!D4ODV8Bg+Y=>rfPsy@^=2! z62JCET^o7k0jg^U=ZcDNG56?X^hG|Qo@z4DRE6^{}rNplZbdlGG=amI)HpbL85>* zEX#)}2y0=j#BItG>|<^h$;0Q+ha=(=CQoo1f5kiHeBymKR=Xeficy7i#koM# zJ~82*t3>|zU#6x$8JL=|w?WPi_ipn7JmN%jSp(yV|1+W$Tbs145n zX6GIF)U-z>ob26IwZF#40es+uT>ilOzBD(ErX<*)-53sM(dn!qx9{@j&#>S;yJ#uF z$w6!ZT`oo{w3Uqh+)z>F%KCwaZGPC&v?dN7+}~$dVW{V$)HY|-Y+YBm>|IoqyE_NV z%V%|TJ?>{T-|i#~6TcFbLV!!wCG^DJA%)KR0P!*iOwW*b`t9OPtAlC!+2N`W+sxc8Mko>RZ%>Ag#vOY&Q+xJ}Dc52fTEAa@=H6 zLcRoe^^r+sh5V#{%AXClW+ojyf@R6GP~5|;Svq534Q1#0*DqBc{6fnOiu%XMkjzg$7RH=sJSEi}-qTtRh{cK6_>;uT% zz4n7Wusi9f4q8}UgzU@OT7H=HkW1mVL6s2~J0}gLC>#c`X$NEd`lFa&e)V%2KH6g8 zC(KWjk*M3%oD~T>U2Od4)MC5s{nI~)J4|d$LsZkR zkZt9+Z?PBJzN@c|9IYKNuL_Ep=6`52b+3( zADtt*c#Cd;N#I)&s{7AaF?_u_QbSF< zq)`0PkTey82=N+G>qd0>6Y7Y*_%ce^J69dzA2JAiO#DvwITSQu6}=cy2l7&fUe;vyg3JSfm8{d>5&{qM7l`labN z6k;}dLPJ&})tI6Ao71;`Q2IXS2fYnw3b!@8w&x{JtCdw$QQnw{TaA7?^^WxL+FDzl zAQOezd(@Mh=;QYs=ifU5zbtW{CoqMTBOE%=o0CXszi#fQFBANKm7RM$)M@+2$GL+< z?dl}-po8QraxRuq61765oQZ@ahs@}(A(bMD94Z@I5(znvQWO;`B!^LG9K(!58i(KK z);`bf^ZVzwzkR*-wXbEy%zWqmUiWoh*Y$aS%*N*k9XVwmaOSvM$?p0M3B4|EIy40} z?^UfE&Y@y0L=%`0(s6G*Fgfrb|M>r}2^puN%#VrcQ~HWe6Wk|n)p@`XyR|LQ|6^N} z>y&l<`^~uV5~^1F$OdI5aSL~+JQO&4>A(I@$9_i=f+%h1baM9N9xWCI=gf#y4&AsIUeJWrMHQv+;y3lILxxxx7Tdj zoUwDA?Y4R9d3n2S8sGFhkbIbPDY5CfXc{l!W>-jzPPP9R=qax4QzT)r&tcvDN zzR+qbB^kdDY8U-lG%4CEAPMhh(33Gc^1(LM;;vP;<6O+1FMq!&Ik0yfNVCJXU8n

@F-&;(>E9A=;XEgUH*I_OV!ykfvNKO5kIugMC z0_fIeBcpTW7YkkM{somcM);!7EWmtiT1Li2NU58u(E}nbP=^#XTpN0PYV^ntDiscwL6U^Mq>$}BvywXnWJ6$0KL^U(iY zeo{>s&6$e$%25)`FGx$3c2(PaW}Cs=XK@K@?|#M@NU!Qo%8~+s8^S`uh3#d>?TGvths~r7Oc*TJ>f2 z4)pewl$3;+UM{8&_M4#&_V%p>9x*&NHa2H=s*W2@*g5~!sA7x@eMR6g&Q@3vgI6`t}-j9gsQiwniP?A@z*B-GGUfv&f*i=3<{H) zJiZKlDhClO{Qhb_MU3}4Il<<_ZRY7u8j(rkkIN>)nBmz_VWGVn9ucvk-hD)KG3FG9 z8y9t^+ud(lVIriwF7Wf#8(mlYJt%)P_L-;G@3FMhyt>!YQfQ*u?Jqh)E&6EW@OZnq ztchsaDX7$Sc69}uU47z@G<^9139I+sPXk=!CTF%cdfbacJ4wO;Q zmvMsXpQxKdawl|GtvXdSSQ@lzo1}~VjjcYQ8vLDUkiN7>8QtxSD6OFsk*?yTgcL8`uNDL@m?} z9W}IR6=c9TRC27|w5R^6nG%|Mc{?g!R-CP`V57Z|G>D z!7`ridk%7C?23yYRDU~n&i?660W8(i5_)1vy<-HkNAYW){-LKezQD>3q~oGvw=0cZg(s?bttg>Z-B5A zciCpet4bjP3&lyr!Q`;X)~)SOC*pmg>D1A?PEJm6TNHjX@9;c9LBl&14}-=%0a@rB zmHxuzD+CO?u&_1S2w*DCHN}5AsqxR2>f^9CcOOOL@`@K8dGa!YTX^XK3;v_VksqqFRy5oc;cc1U98OZ$f!+W%R| zNvdv(vgLyQT*#mip)rvECi5Zq(W(3&n7dAogOp>T^eQP9`9I>Mh0UE!@c zn3r652!a3KI1rEVaSXw&{=&6Ke|Jz&5q^9jfD#=YP0SV6t_`aTBfX(K_1m4Dog#UL zvpf3}eT-Kw&*i#FeucmY+zrq|QPPQxN*6C)d{$Yx+rmQmut1V*_+Rr&f0kcn>l}ct z-n1A^3JX+4hcGk*l}34a&s~-L{QTzy!cPA!_aY^dYDP+KS4~B?U=TS#;Ps7^epECF zHOncCvda!+fPj%YV+3Y#x7|j3f8|+3cKsBH5b0B-GLGk7P&Sb}?tnou;HVHc|iOH`B_k2OreXfBx8)I>%uBvj(u%X#hn zsE~q`&_x)+c=*<+XYdxgs`B1oX&4epUOMkP^iZfOl|fbZ#{8EIvnH6Xgn`;keqIV32>D3CJ$X*-FY^B z*3kc64*<%`>XGw;NZs#i1%$*7^}fGLp#A8h>y9(PA7ac*j~5K&HEZ|}Nn(`Bv8yTu zbHIjn)veK|z8B@@#=tkM;lY9Jd-hy?N?vw!9N}q}CXWNl2YCAe__g1!$?58~YqA~% zLCU*mq1Z)VNJWxiBy2<0C4p*$55%s~+xx+1-0|jgo;h4`z_Weve96K4m+vG!IW)O) z>C&wM0R_S9Wo0dD?H3w|3a*E#(v`u&K6wtq`H}Ud@bD{0YVPWe(?6YC(fRXwOO31W zIomru97*fnqowm3-s&2pFD$&upkbeO*iAyI>OQeKy09HZDM zCBoINXs@^w8$LEi&8x;nMi%Dgbxb8p*YkWlSo`|WPTi&;N5}{D~0!oa;BM+KYmeOb#WGWu6SV2g`CfB>o1uGb6v=vW$xiL9T zpXq{#PzyIMOs`2 z?hW@>$;kW$L%>TpZsNay0;bM5sghYTwmh(e`upo;KO_H&L~hwMlcYz}1+{x3#Q3`Ta3^$_bsM+YM?yQl- zu*taA^Dd3l#RV7Zh@;?i0kQxkOh}eavbG1sJ-7b^ZilbGdk+}~!}t6l+iCk>-*eV9 zbk%9Z%cltxVo;7Op6-b}l>ZeIz*{hjsIp^ZEr0KzcSnWyw;?-{8aLwuzrOuT1g7Ku zMHGJQ)=QuA>93ttLKjM`h7~3j%SNfh-#)t)W8=;Sps5%czyuhfti%&->jVS@s_~^~ z%T=>*!jaR1alqIV97UaQu$k#GqeVqZ=*jDS?@r0KOpk$^qqfDOmh-qdQc?_b{fBOz z#7N90O-&mrkXc>CvlT2PDVZl3xK7}4uMY|cc!_X8?_#lhI1TULtNwU42Rg1Z3Free znapbVjYZFlr0Kmx50*NR+h}BRdY{rRT5>qj)uo6I;0DXn00r`)QcH_*yG#TzI7$5- z9a0iHfxf>>=d1mT;>)d2`t5eY<;#-f1<8$0pBmf8af#jU6JC6{UN&@U1~=$Sco)W$ z6c=}*BU}ab`rW6ZMe01mCxAs49Qi0;(7C8HC&v$d0dx*zOc@k$@u6a(AAdoL~mO!V}1+^Z#1FJolXcl)jfIsSf7PjXg-+1aMgAmoF^98HYYN zL=L}FsTnCa>f*x8I-stnmyAipFdUHx=Bx`YGB=Bh6JYb^{pq(QtkywlY&rB9&Bu-7 zwZ7(`!5W3dVZ{RVmNLT0(;6&($1E-H8T?cR#$Z@j7*%iKym`GULn~#o<=AhxD|iF= zwcy(a&>`8ZYK8SI3n205( zHhM%86%*S5T^<%S33tx`Y()c(!z45LUgacLTfBUE6+*s&o!zaeV~?7!>$^i=hM|)S z2PZ!-!Bk<@EqCR0>%xJj-}H^F8X-UE3Xfp~6=Ntn4;_*O(Bw<)ErYR|g)23mA;Q32 zg%^1!A{lncR*bxGtf4fCIm%{Bf#iVAoe;e7MK}Q;i&A5#AESKKb^JBWUA9A7U=BlB*LXQHFr_X#7lqtv6eb? zMq<~mzt;CrUtqKr7-eKfUQhUzcy+!I;kZoYdVK6|;yX!nMu>*QwdcdsE@*>nY?jl$ zze^Uog!B5AC}|dp^<8@qGtMt-YFwV5|9LF?>C-K^o~p8aN~J8>59IbaWs;HMlk{cHDS* z5^TJWAxM^4X?j!P{rw(zTm{~qDd3Y7tlAw38dn6w{X?+s#7_=AvGv2P)aKu@fPw)p z3TDm8^-A1X3D-(fz&D`B+fSY7^1G1?xI3UYFUZI`_CkXrM>aqZP!}@g1qJW!Uw?h> zk{n!t&lsoVz#nTHxGpz0m(t?<&J<9!hv2^vRwpLi&swIFk4*4+Wo7zR)zzH(#$-Ap zux|ri9oM)Mb+21FIaj-?V^xC2JcKA2G0Q2Gc{1A!H}An}zz+6`@S2GBHI!WpQUUY@ zq%%HWp|}h#VwLdd@tkRKRb_QXoB6;*1SWMeyO5?Kf_$t_B4ib9AVvFIi()Z=`=GE_ z_JUDI$kaHl7{PD`MYy0Af;rpCZeu-rpmu~fo*%MK@y!d=uY`47N_J#qWdGox059TGirM$L>PPV`;BosSj|W28+ceK zUOUd5{65knR7uo;y>|joneoxr5AoP|W1#XP&X9J=B-dlXCY+OFcFieZu&qQ{Qe92$ zB~k+%XIW<`|6X(fp~d&39g>hW-qF@b=Nup%HS9@U#x7nqcTqOxa{=w^jJ35oG`K@3~1pj zcr_-5M0d^oOsu6&d>m#D6NX-EKs_N;;<<}g4?zlv*f`Is=m49=B0-IpS6EnB-_><3 z$~+ipcvoAikL8D|NN%!ON}VEdP_BtiL_!4U#iF9l^quy>$4pLjd9ZQYMxH#e2V33CVS73l}Vq(b1VI?j1OZ zLy8?j8OgILCntw1!5SukU_59Cuv9p<1ydW|+3q`#>;_b{LPkbL`JobhNsT4(S2iNC zNRR+R_j6b5!HVi?0)KN=(a-*uoQW@TOy{XTDYH z1+H8oE>3N01jS#dqk|Ia`399=n4~q81_xz29C2tT`v8gCLp^E9EYMtskx{V_7=4iB zC5?VmZ}nXqsm+>$sA_0zoMN%5R6(npk>|+)#R{je$ukHH=OZGlL5K~Lj&GrI28h;7 zduEdDflz?pBci8Ar;a!FjT)Hn-pk04QByl!TL}Rz+c<|LE2rsnJ>)24DsA5Mcl*h2 z!ytRSu=C8tDEJR}J2o@8*cv!Hr3qbSvEZmejLb0@B$nu zykwjCcu?K1-|8!UhKjm){@233euriR+5QbjT^9ZHlOe7#hHgtv(@U4?QMFNT_nBjb z1iY@t7ZJOuI`A<6x3T7PX6?Bo_n#6v}V!t)-@xCwYS}P%IF>!NSN50*_k|YG%a|mDY80aKa?U^aYOjD5o2_EFc1?y4?z@eVh zP{$tGMz274xc-M95ouu!?Vcb>KYm< z5SU&g8(AkS`!8@@U@`xZClWditknr5W+=HE^in6AYN$qlKod;&nw<&l^qDCIQo+Ez z?L9{_0_zMV4Q%Vh>^EAZy6i_=BQ4$D)%Bbla-sM8hD5d!EX^k7C`rP|Q4Zp|rz9b^ z&6F7Fe1j4UVHG2x5aj1UbBB^^^BTXc0v8+p#SUVH-W+=f?h!(cjda)9CTAR^C*ci* z;Tt93Nb|jWnZmn7MMW)aY^u;e;J>q3Qdn@dN+fpY~jZ1tt3a~yk^go zl9EIu02Fcmb}rA-31`a;o98%|A}W>?I!RE!*^zV6gJPBmIq(yvRN)+%ZT2V}6U`D* zUllCv((#f(^F4bE9UY~yM6u%$J_d0uBdIhA-8jMtl}%2tCtjLSpCXQL_4n7nzB+Pf z{{npv4>=Ux?Q4>B2-u#0RY>h(@_QrQ@5A7=eV(__8$!ZJu8}v^jSn;N1b2gI&BYb! zq_d)8_mmeaso7mtbOpSZyV`;VonTr3y~z-;Us@NqR?Y#AK@x8Zf&W8M;t}%4N!=xI zwD(xj8sx&*dh%)>%wRvt_8YKC-I-X0q^g`;!BESOfOUmd%NL=^^6bxBB#Lu59aFET zMcN^|zEfJ7giJd5(<5oFbp9x*yrLDj=eFJSl4^Y#w*h{f1j?Ce%St_C~aEXEyP zEv;E&K=RBW85y*anJ7w>3~KihuUY4~8vq0|2Z7YV&Z literal 0 HcmV?d00001 diff --git a/docusaurus/docs/protocol/primitives/Pocket_Network_Morse_Probabilistic_Proofs.ipynb b/docusaurus/docs/protocol/primitives/Pocket_Network_Morse_Probabilistic_Proofs.ipynb new file mode 100644 index 000000000..8e89e3877 --- /dev/null +++ b/docusaurus/docs/protocol/primitives/Pocket_Network_Morse_Probabilistic_Proofs.ipynb @@ -0,0 +1,828 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import pandas as pd\n", + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "import seaborn as sns\n", + "import datetime\n", + "from copy import deepcopy\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Data used in this notebook can be found [here](https://drive.google.com/file/d/1Kjd2UMhcNbRB2YfVvXM6i3rJ4kvS0-WK/view?usp=share_link)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Load Data\n", + "output_path = './'\n", + "\n", + "claims_df = pd.read_csv(os.path.join(output_path, 'claims_from_85901_to_86301.csv'))\n", + "proofs_df = pd.read_csv(os.path.join(output_path, 'proofs_from_85901_to_86301.csv'))\n", + "txs_by_block_df = pd.read_csv(os.path.join(output_path, 'txs_by_block_from_85901_to_86301.csv'))\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Proof / Claim Distribution\n", + "\n", + "In this first seccion we calculate the metrics related to the distribution of POKT in Claims and Proofs." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Get successful and failed claims\n", + "failed_claims_df = claims_df.loc[claims_df['result_code'] != 0].copy()\n", + "successfull_claims_df = claims_df.loc[claims_df['result_code'] == 0].copy()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Percentage of failed claims: 0.43%\n" + ] + } + ], + "source": [ + "print('Percentage of failed claims: %0.2f%%' % ((len(failed_claims_df)/(len(successfull_claims_df)+len(failed_claims_df))) * 100.))" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# Get total_pokt up to different coverages\n", + "all_cases = len(claims_df) # Total number of claims\n", + "emp_cdf = list() # Here we will store the empirical CDF\n", + "support = np.linspace(0,50,100) # Granularity in POKT\n", + "for limit_pokt in support:\n", + " # Get all proofs that meet this criteria (POKT lower than limit_pokt)\n", + " cases_here = len(claims_df.loc[claims_df['total_pokt'] <= limit_pokt])\n", + " # Add the fraction of the total proofs that met the criteria\n", + " emp_cdf.append(cases_here/all_cases)\n", + "# Convert to numpy\n", + "emp_cdf = np.array(emp_cdf)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PercentageLimit
025.01.010101
150.03.030303
275.05.555556
390.015.656566
495.018.181818
\n", + "
" + ], + "text/plain": [ + " Percentage Limit\n", + "0 25.0 1.010101\n", + "1 50.0 3.030303\n", + "2 75.0 5.555556\n", + "3 90.0 15.656566\n", + "4 95.0 18.181818" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "table_values = [.25, .5, .75, .90, .95] # Percentiles we want to calculate\n", + "colores = ['grey', 'green', 'yellow', 'orange', 'red'] # For later plot\n", + "# Calculate the limits for each percentile\n", + "limit_rows = list()\n", + "for value in table_values:\n", + " arg_here = np.argmin((emp_cdf-value)**2) # Find closest point in the empirical CDF\n", + " limit_rows.append([value*100., support[arg_here]]) # Convert to percentage and save\n", + "\n", + "table_df = pd.DataFrame(limit_rows, columns=['Percentage', 'Limit']) # Create result dataframe\n", + "table_df # Display" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plots" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAygAAAJCCAYAAAAr7ON5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAABcSAAAXEgFnn9JSAADny0lEQVR4nOzdeXwU9f3H8dc3IQeQhPsSBAREBFREVKhyWEBUKgUvPAqipbVF/XkfrbXiXbEqrVVrRYuoFbywVVQUVMADFREQUO5TbgiQBHJ/f3/M7GaT7G422d1MQt7Px2Meszvznfl+d2Z2dj478/1+jbUWERERERGRmiDB6wKIiIiIiIj4KEAREREREZEaQwGKiIiIiIjUGApQRERERESkxlCAIiIiIiIiNYYCFBERERERqTEUoIiIiIiISI2hAEVERERERGoMBSgiIiIiIlJjKEAREREREZEaQwGKiIiIiIjUGApQRERERESkxlCAIiIiIiIiNYYCFBERERERqTEUoEidZIwZZIyxxhhbzfl29OVrjOlYnXnHmzFmo/u5xnmQ91Q376leLF/FPBONMTcbY74zxuQEHBcjq6sMdYEx5gRjzGvGmO3GmEJ3Gy/xuly1lRfflary6jwfkL9n58SaxOv9UJccSdtaAYpH3IuTS4wx04wxq40x+40x+caYXcaYz4wxDxtjegZZLvACN3DIdZddaYyZ7l74tI2gHJ+GWF/Z4dO4bIhapBLbKtgw1evyS40zGXgM6AXUA3a6Q653RSrPGNPHGPOeMeaAMeaQMeZrY8zFFSxzlnvcv1Nd5QxRjmOAz4GLgdbAAZxtvMfLcomISHj1vC5AXWSM6Qu8CHQNmFwAZAHNgDPc4U5jzFvAZdba/CCrOggcdl8nAo2BFsDxwGhgkjFmBnCDtbaiH+QCYF+Y+eHm1RX7cC5uykoGmrivM4Fg++pAvAoltY8xJh24xn17O/BXa22N+8fLGHM68CmQChThnCdOBV4zxlxnrX0qyDIpwD+BbGBC9ZU2qGuAdGAtMMha+5PH5RGpiw4Bq7wuhNQuuoNSzYwx5+P84HcF9gJ/ALpaa5Ottc1wLnZPBf6CE4BcADQIsbobrLWt3aGFtTYZOAq4EHgfJ2i5HFgaweNEXwSsK9hwQVQf/Ahgrb0g2LbB2Uc+QdNYa2/wqtxSI3UDktzXz9TE4MT1KE5w8jLQCEgDbnbnPewGWmXdhXN+u9tau6VaShnaCe74vwpORLxhrf3aWtvNWtvN67JI7aEApRoZY47F+aFPAVYCvay1f7HWrvGlsdYWWWsXWWv/ABwD/LcyeVhrt1tr37LWnodzF6UAJ2iZZYzRHTORmsH/p4O1NtvLgoRijGmAcye3CLjWWpvjnp+eAL7DuTPRr8wyxwN3AN8CT1ZzkYPxbecauY1FRCQ4BSjV6wEgA+cZ81HW2q3hEltr91lrR1LFx4Osta8Bf3TfdgeurMp6qsIYk2SMGWGM+ZcxZpFbQdVXx2a2MeYyY4wJsWypSl7GmC7GmBeMMVuMMXnGmK3GmOcqqmNjjOlmjHnFGLPDraOz3hjzpDGmVTw+c1UYY1oZY/5mjNnglnGnW4co6D9NQbbNye5n3GqMKShbV8gYk2yMmWCM+cQYs8fdBzuMMf81xpwbplz1jTG3GmO+NMZkuuve7dZxetEYc2EFnyvZGHObMWapcSqAHzDGfGyMOaeC5RKNMVe7afe4+/snY8zrxphB4ZatiDHmCmPM58aYLLc8XxljfhvqOAxYrp6b7lO3TAXGmL3GmFXGmBnGmF9Xogzj3H33acC0sHW9jDEXGGPedY+NfHf8rjFmVJh8/BWZjWO8ceq27TWRV9ptgvMbscdae7DMPN+fKi0C8jTAv3Du3P7WWlsUQR4RMcZ0NsY8Y4xZY4w5bIw5aIxZbIz5szEmI0j6je52HuROuqfMdh5UdpkweXczznlstXHq4OQa51y00BjzULDvqjGmrzHmEWPMAmPMJneZ/e4ydxhj0sLk5y+jMaaZMeZxY8w693NvMsb8wxgTuN07uNvGdw7ZbIx5zAS/uxXs2PidceoVHXSHz4wxl0e6fULk0dEYM9kYs8IYk+1utx+Nc65rH2a5Sm/rSparjzHmDeP8HuUaY9YaYx41xjSuYLkqnUcjKE+lz3fGmO/d/XddkHn9Ao6fN4LMTzLO+c8aYwZXobwdjDHPG+f3xvdb/G/j/EaHbADGhKi47W4/a5xH2cPl2zlg3f2DzG9hjHnAOA2OHDAlv/fPG2N6hFhnTK4zQqw7qs9ljGlgnGukacaYJcb57c0zxmwzxrxd1WPOGDPRVFCnONS+KpMm3Rhzp3GuD/a5ZdtinGuXfqGWqzRrrYZqGIBWOP9EWmBKFOvp6K7DAuMiSJ8K7HbTzw8y/1N33qcx/ryDAsppcYKsg2WmvQYkVLDsWTh1c6y7fEHAvJ+AtiHyPwcnEPSlzcKpr2OBbcBVvnkx/qyDKrH/huPUabFATpnyHgBOqiCvC3Hqu/jSHw7cj0AHYHlA+mJgf5l98EyQPNKBJWWWyyyz7TcGWW6jO+86YKH7Oj9g//nWdXWIbdMI+CQgbaGbb3HAtEdDLDvVnT81yDwDvFCmDPso+T6+Gmp5nIvtD8tss/1l9lXExxDOXc0dbv6+5XcEDG8FpE0GpgekKypTbgv8B0gKsz1eBN4Isnwk544GbtpCIKPMvG/ddZ4dMO037rTHYnwuuaTM9j5Y5v1m4Pgyy3zjbk/f9yO7zHb+WYR5Dy2TV757TAYeDxODLBc4P6fM/rbACqBliDx9acYCWwLKnxcwbyVOncNTcSr8+84Bgd/Rz4DEcN+VgOPLd2wEftdeAExlvmvu/CvKbLNcnDoIgfvv7Fht6wr236CAZX8ZsA0PlNmeG4GOIdZRpfNomXNiue8bVTzfAX93570VZN5dAcvuKbv/cO6I+vZJaiW3ZT9K/4YfouTcfgCnIQrfvI5llvXvhzLTL3Kn5wFNw+R9j5tufZDPNKTMcZKP832xAeseW8GxUaXrjDDljepzAeOCHG85ZY65v1Z0zAeZN9Gd92kk35kQ83tRcl7yHbeBx0Ux8IfKbK+QZYnFSjREdMBeGrADh0exno4B6xkX4TIzAr4sqWXmfVrRAVvFcp6GU1F2CAEXN0BT4P/cE5oF/i/IsoEnjn04j7l1c+cl41yw+L4Q04Is3y5g/UuB09zpCTiByxYCTmgx+KyB5R1Uif23D+cioo87r567vba584MFlIF5ZQGzfNvGnX+sO24I/OCm+wQYCKS48xoBN1FyQr6hTB5/cqfvxalf41suAedxwTHAv4KUbWPA59qKc0GQ5M47DvgyoNyNgizvu5DOA64HGrjTWwPPB3zu3wVZdiohLprc48237JNA84DtcA8lAVi55YFfudMPA78G0tzpBmgJjAJej+aYCZPmr5Sc8O8DGrvTmwAPBnymv4TZHlk4P7a34H4PceqRtImwnAvc9UzDCVgSA7ZnVsA6W7n7fSPQMIbnkd6UBBmfAScEHIvnU/JdWevbN2WW/5QqXNgGLL/WXX420DNgeirQA/gzwS8+/4dznmodMK2+e7z8SIgLTDedb79m4jxKd7o7PQnnd8R3ofKku73nAj0CynUdzkWDBcaHOTb2u8fWnwL2Ywt3vb4yBDs/+5YP9l0bSkljCo/gnO+MOxyH86eUxTk/t4/Fto70e+Z+3k9wg1mc8+0llASPX1MmoCOK86ibZiOhA5Qqne/cY8h3fk4oM29OwPa1OI+RBzu3f1rJ7diYku/aOpwLeuPOOxXnD63AILxjqP1QZnpKwHLlzusB6da4ae4tM/0ESoLff+E0EJTozmsPPOXOK8D9nQ1xbFT6OqOC7RXt5/olTv2/M3zHhTu9Dc73wHdOHBHumA8yb2JF+7+C5dtQ8qfqm8AplPzGt8T5nfIFdyMrs82CliXaFWiI+IC9P+DLcFQU6+kYsJ5xES7zx4BlupSZ9ykl/zrsCDGsisP28P3DsDbIvMATx8cEv8tyvTv/EFCvzLyn3Xl7CPIvJdAz4AtuY/BZAss7qBL77wegfpA05wekaRcmr68I8g+pm+5u34mIIP+wu2l8P3S7A7ch8J47vVL/glDyY5xLQNAUML8FJXexrigz7/SAz/XbEOt/I6C8ZQPtqQQPMFJxfshD/sgADwfkXXZ537H0bIyPf/9+DDG/LSUn+odCpHks4Lvbpsy8qQGf6fooytmPkn+1CwP2X6kLMpy7UJYo/nwJkf/77nrXEPBDHTD/5IDtdGuQ+Z9SxQAF5wfX91kjCugiXG9bd5sWU+Yi3Z3vy3MH0CzI/PsC0izHvWAuk2aaO39OkHmBx8Z9Icr4EiUXwZF+1xKA1eG+w266/7ppJlfDth4UsN5VBD/fDglIc3GZeVU+j7rzNhLkt5ooznc4f1D47qL2DpiegvN7mINzcWuBm8us82N3+j2V3I6+wOYwZa4h3PnNKXlSwxJhgOLO+6c774sQefcLWG/Z65e5hDlHumn+5qZ5O8yxUenrjAi2WZU/VwTrvpXQ3+9w23qi73iO5DsTZJ4vcH4lzPI3uWmWVOYzBRtUB6X6NAt4Xd1N9gbm1zREmiScf0FDDbE2yx13Nsa0DpPuIWttcZDpvsYD6gPH+iYaYwzOYzQA/7TW7iq7oLV2Oc7J32uPWWsPB5n+PiVNFZ8QZL7Pozb0c/6+ehGPW2sLQqR5G+cfouY4/4T47HfHbcLkHc4b1tofy0601u7GuYsCcGKZ2b59thWYEmK9d7vj5jj/1EbibEqO+ftCpPkLofse2e+Owx2j8XAhzj+8uTjlC+YBnH9fk3AC/mAygWerWghr7ZfAAJzH3A65k7/Fafr8bwDGqVd0Kc6dpFnGcb1x6iv5nqn/mwlRJyIUt17AMPfto9baQ2XTWGu/A3zPeV9W2c9XgSycIAKq/l0oxzqtiS3FuavwszBJn7PW7g0yfXbA68ettXlh0pT9ngU6jHOXLhjfd6UpkX/XBuCci/cQ+jsMTvAEJfsW4rSty3g02PnWWjsH+MJ9e2mZ2dGcR8Op8vnOWpuJc/wA/DwgfV+c38PPgQ/KzjdO89+++gGfRFhOH1+/RzOstWvLzrRONwbPVHKdPi+5437GmC5B5o9xx18G5u3Wc/k5zh8noY5jKDnehhhjEkOkqdR1RoSq9Lki5Lt+6hfmM8WUMSYVp1VYcO6OhuLb3ieZKOv7KkARn3nWWhNiaFyVFboVqW4zxswzTuX4/IDKV4EXG+3CrOarENO3BbwODLqOCXj/cZj1hptXXYJ+NmttIc6/URA6oATnh6gct1JfB/ft825lznIDsB3ncR8C0gO8646vM8a8aowZaYxpHskHcoXaZ1Cy38p+rj7u+JMQPxRYa3/AeR44MH1FfOm2hPoRsNYewLnoDsZ3N2mEMeZ9t+LiURHmHQ1fub+x5SuoA/4LlUVl0pf1jQ3eh1LErNNE6DBrbYa1tr61to+1djr4W/p6GueRkhvcRSbhPCefgXNnZTfOY2EfmMq1JNgb5yIenEdXQvnIHZ9ojEkKk65S3IvZue7bD4wx9xljTjfGJFe0rDEmwRhzuTHmf8aptH44oDKsxXkEFsKf+74OMT2wL6ZvKkjTJMR8gEVhjq01OBfPEPl37Qx33AjYFua885ybzn/OiWZbV0Ikvwf+zxqD82g40Z7vfOUNDFB+HjDvC5w/L/oHXMD+DOeO8mGcOoIRcfeBr6L5vDBJP410nYGstZ/jPDYGziO1ZfP2BXPTKM13vCUAK8PsH1+w1pDSfxQHqux1RoWi+Fy+NK2MMfe6FdH3GmMKA84fK91kDQj/HY+lU3COH4APw2zvFQHLRPp9CEoBSvUJ/CesUgd6DATmF+wfuZgzxnTF+RJNwvlnrQXOoxi7Kekx26dhqPVYa7NCTC8MeBt4UdIy4HW4fg/CtqBWTYJ+Npfv84W74Cp3d8gVeAHdnPB3xnzngMBmb/9DyW3xS4GZwG7jtKD0lDGmon8Jq/K5fPutor4qfPutZdhUVV9vKdbaz3Cazc3Hqb/0H+Ant8WSfxtjzoqwHJUVq+0R6hiJlXtw/hS4w1q73RhzHE59l504j5+Mw7m4+hTnAumqSqy7st/lesT+3Doe59/qFjj/aC8EsozT0tVtxphy+blB2xzgFZzHNY/G+Z75OnrdiXMuhDDnPkJ/jworkSZcQFjRseWbH+l3zXfeqehuvO+Cqn6Z5Su9rSsp3OcN9lmjOo9WINrvt+8OSP+AoN93LvrYDfgW4vxJcGqZ+V9U8k+Lpjh1z6D0BXtZ0fQz5Lvb8Ksy089z88/HqUsbyLd/Egi/bwL/XAu6f6pwnRGpqnwu3JawfsSpb9LXTXsY53y+E+cupU+4c0gsBX4fwm3vwLsmkX4fglKAUn0Co8qTqznvk9xxHtGdRCrj3zj/Dm7EuT3czFrb0Frb0jqdGwY23Re2mVcJLszjXYG3fI8Pc2cscJhaZt034lRq/SPOI2f7gS44PYMvMsZMjvHHqbGstY/iXITfhPM4xy6cY3sc8LFxmgSN2T/3MRazpn7LMsaciNNp4+c4FVTBqdxpgJd9j1e6P/KT3fkj41WeeLDWbsa5k3MOzl2hb3F+N8/A+fNlrTHm52UWuwvnYvAwzjHTAacOQTNb0rmr7x/bI+nc5zvvfBXhOafUZ6/itq6OzwNVPI/G0XycIDQNOM0Nik/HuZPpuxtc9i6Lb1zZx7sC2SiWDcd3Id/ZGHNGwHTfY1DvuneMA/n2z85Ijzdr7cY4lT+USn8uN+B8FadhgiU4wUyGtTbdWtvKPX/0DVwkHgUPIvD7UD/C7f1pNBkqQKk+n1DyjG3I/gtizX1u0HdiWmitDfWsfSzzPJqSZ6svs9a+Ya0tW+8mXs/0B/5jHK798kq3bV6L7Ah4XeVbrNbatdbah63T6WcznOeX33Zn32CMGVH1Ipbj22/hHnkJnB/pnQFfuor2d9j51tpt1trJ1tpR1tpWOM/2+54dvwj4fYTliVS8tkdMGGMScIISC1xjrfVduHRyx+vKLLKmzPxIBH6mcNvBN6+QONTvs9YWW2tnW2tvsNb2wfk38wqc5o2bAP8p8yiSrx7Dfe4xszlg+/hUd52mYCL9TkR6bPnOO9Gccyq7rSsjkt+DwM8ak/NoCFF9v91//H2ByM+BM3Fanpof8MeVLxD5uTGmISWPFVb28WZf0+RQ+l/0sqr8m2qtXU/JI8tjAIwxTXCa4ofgj0H59k9z9/PVOFX8XP1wjrci4BfW2veD3OGp6vnDd0coNUyaRiGmx/P7EJQClGpird2J0ywbwOXuI1ARMSZ8R3IVuI6SW5xTo1hPZRwd8Pq7EGmGxCnvDZRcpIR7/KY6/4mrVu6/RL47ZefHaJ3F1tqFOBfjm93JkVaejYSvLsVZ7sVvOcbppM33Ixjq2ftQ6z3aGNM5xHoziLxyKwDW2u+ttb+h5McnltsCAuqWGGOC/mAYpxK5v65KjPOvyAScf2wnWWtXBJlf9vGdsu8jsZiSP3XCdSrnO5cstaErMseMtTbLfQzSV4G6FaUbs/Cd/4Ke+4xTuTdYpdnq1seE6DDSOJV6fRfHi4KlCcL3XWhtjIm03kpYEWzrygj3e+Cb5/+s8TiPBojF+c4fgBDweFfA/K9w6nr+DOf7k4TTP0ilzhXu42C+7/igMEnDzYuE72L9EjcIvQSnZbI9OHUBy/Idb4lAlTvLrAaV/Vy+88du6zSoEUxVr598d2uODpPm9BDTv6Gk8Z5Yfx+CUoBSvf6Ec4KoD7xlKu4JvYkx5k1CR7RhGWMuAR5y3y4HXq7KeqrgQMDrk8rONE5rPn+KR8buP5WvuW9/F6xytzGmO6FbPTpS+Cqi/toYE/aRwrLPdhuntZeg3H/nfCepoJU7q2i6O26L8yx6ML6WhfYQvtJ0oI8oOSnfHSLN7YS4gA63LVy+VoFiuS3A+TOjEOefrjtCpPkjzg9dASV/fsSde956EKffigfKzN7gjk8rM933SML6SPOx1u6npDWq29zHWMqW5SScFs/AeSwiZiL4pz6wRajA/e87/5U797lCtcpW3erjNFcajO/8vI+SRggq8gnOMQHwREXbL/C8E8W2roxb3ScKypbjLEoqXJetD1Dl82gFYnG+8wUj/Si5QPcHKG5g8TnOfv6jO/mzMvUqIuVr9XJ0sD96jDHNgN9VYb2BXsN5DL0JzgWw7zGo6cH+eLBOQw6fum8fDPVHTkAZq7vur0+lPhcl549WJkgrWMaYdjiNjlSFr/W3o4wx5QIRY0xLnA53y7HW5uDUwQS4wxjTPlxGMdneNsp2ijVUbsB5BtvXg+1unIuPLgHzE3HqqNxHSedxjQPmd6Sk7exxQdbfGqdzvVkB6bYCHUKU51MqaBe7Cp8xAdhESTv9pwTM64dza3pPQPkGlVl+kG9eBfmEWr49JR0sfUdJR4gGp9nZTdSMjho7hkm3Mdg+rsS2SQOWuWn349xJaxYwvzHOj9o0YEWZZZfgPAM+iIBO93Bu7wd24jYskjKXSTOVIH0ouPMCOy67jtIdlz0XkG9lO2q8KWDZyb7tgFOB9G7Cd9T4Pk6P2udS+nvYFOciztfrc8h+Hyo6ZsKkCeyo8V5KOmpsTOl+lcJ11Fhue8TgeH/LXffgIPOOd+fl45yHDE4LQFuruJ0CO2pcQOmOGs/D+YfbEoeOGt19tMw9fo7H7SeBkuaBfd+vLQT0R0RJHyIH3W1Qz51+DM4PfDElnbiVK1fAfg16LiGCc0i444vSHTUWAX8A0t15zSlpIMMCN1byuzaYkn5pFrrvkwLmd8K5kP0G+FO027oy3zP3884FjnPn1cP5o8rXT9K3lO/HpMrnUXf+RkL/Vlf5fOema0DJtYTFeQysbC/rdwbMt8DtVfzON8F5xMfiPK450JcXzl3cxVSho8Yg+bzuplsUsK7TwqTvSUlHmT/g1IEL7DOmLU5AMBen2e6qlCmi3/ZYfS6cP6Sz3TTzgK7u9EScprnXUvr6KeJtjXPe9B2TP7r7zrjTB+E0bLQ3zPJtKDnn/uRu2/SA+S1w/jCaCcyu6vbyry/aFWio0sF6BiU9iPqGPPfAKAqYVozzgxZ4gu8YMP8AJZ0p7qL0ycri/AM7DWgapiyfEuMAxV3vLyj5obI4nUf5ekDOxvnhCvrFj8WJA+cZz9yANAcp6XF2G05rQhXmEeFnHRSuLGXSBu6/jmHS+U4i46qybdy0R1HSe7vveMqkpJdh37AmRN6By2SXWebxSMtcJs1UQl/cNAo4Hq17/OyjJAiwOH0ZVHa9CZR0XGdxvmP7KOlt+9VQy5cpj+87V3b7vU6QTr4iPWbCpEnG+Ue3bLkDzxGlzg+RbI8oj/Vfuut9MUyawAvcQwGvFwYrawR5jqb0ue0ApTuM3IzbO3iQZX37b2IV8h1E6f2cj3NhUFCmLP3LLNeBkos533G8P+D9H8KVKyBd0HMJsQtQpuL8k+/7rSj7XXsx2HFd0bGF8yfcQcpvt8DzsQXuinZbV3If/pKSYHd/mfJsAo4JsY4qnUfdZTcS4pxIFOe7gHXMD0j7WpD5p5cp46lRfPfPpCQYsDi/5773mZR0vmyB1pEej2XSnV+mvD9EUK4zcJp69i1T6B47h8qsy8sApVKfCyeID0yfRck5b3eZ9XWszOfCCXLyKb0ffetejVOHLtzyx+N0eupbvgjn2rXsNcJHVd1evkGPeHnAOu1jd8PpWOwVnIg4F0jHOUF9hvMIxfHW2stt6OeqMyhp1q0Rzo/CDzgXNTfj9FI81pavoB531tp3cZoXnoXzY1AP56Txb5w7KnNDLx2T/Gfh/Ps6HSd4S8Zpnu8fOHeoNsQz/5rAWrsN50flMuB/OCfxBjjbYiPwDnAjzn4KdClO87FzcbZTMs7zy5twjq3B1tqb41DeAziB669xfrizcP7B3IHzCNNZ1trbqrDeYmvtWGAszkXyYZzjcTHOD8HlYRa/Hucu53s4fyoYnEcmtuFs0wuttRfbEH0ZRMNam2+tHY3zw/8+zo9Aujt+H7iggvNDTLn1Ff7h5n9LmKQ34px/VuFs5x3ucsOqUlZr7QycuzDP4lS+T8G5CFmCc5z2tE6fEbH2Dc7z4s9Qctc3A+dcvQSnZanjrbULypR3E84/k89T0ixrLk7/QsOstQ/HoaxVdRlOfaLvcPZVDs7F+Fhr7ZVVOa6ttW/j1LG5F6cvl2ycOw15OI+YTMFpKObRgMWqtK0rWa7/4tyNedNdr8E5vz0G9LLWBv1NiOI8WlF5YnG++yTgdbDK74twrgtwx4srU8Yy5f0Mp3GQf+Mc1/VwfttfwPmtDWwYY38Vs3mfkj7AoKQVrHDl+hzoivO44nw378Y4F84/4DzafgXOPvJKpT6XtfafOH+yforz/amHc8fiSZxHR7+vakGstbOB/jjno0ycOzNbcB49PYXSleGDLf8DznFwDU4Hvr7vqsG5ln0d+C3O9zkqvlt0IiIicoQzxkwFrsS5CzbO29LIkcIY8xuclv3WW2uDNkgiUhm6gyIiIiIiVeI2PnCj+/aDMElFIqYARURERERCMsZcaox5wBjT09fqmjGmnjFmAM7jZd1xHp37m5fllCNHPa8LICIiIiI1WmvgLnewxphMnDozviai84GrrLWrPSqfHGEUoIiIiIhIOO/iNCM7CKeluuY4LY+tx6msP1nBicSSKsmLiIiIiEiNoTooIiIiIiJSYyhAERERERGRGkMBioiIiIiI1BgKUEREREREpMZQgCIiIiIiIjWGmhmuRsaYHUADYIvXZRERERERiaGjgUPW2tbRrkjNDFcjY8zBlJSU9M6dO3tdFBERERGRmFm3bh15eXlZ1tqMaNelOyjVa0vnzp27r1ixwutyiIiIiIjETI8ePVi5cmVMnhJSHRQREREREakxFKCIiIiIiEiNoQBFRERERERqDAUoIiIiIiJSYyhAERERERGRGkMBioiIiIiI1BgKUEREREREpMZQgCIiIiIiIjWGAhQREREREakxFKCIiIiIiEiNoQBFRERERERqjFodoBhjTjHG3GmMecsYs9UYY40xNor1NTHG/M0Ys8kYk+eOJxtjGsew2CIiIiIiEkI9rwsQpbuBX8ZiRcaY5sCXQBdgPfA20AO4ATjXGNPPWrsvFnmJiIiIiEhwtfoOCk5AcT8wAmgD5EWxrsk4wclbwHHW2tHW2p7Ak0BX4PHoiioiIiIiIhWp1XdQrLWPBL43xlRpPcaYNsBlQD4wwVpbGDD7NuBS4FfGmNuttbuqWFwREREREalAbb+DEivn4GyLBdbanYEzrLV5wDtAInCeB2UTEREREakzFKA4TnLHi0PM900/sRrKIiIiIiJSZ9XqR7xiqL073hpivm96h2ooi4iIiNQA1lqKLRRbi3XHUPLeummcMc4EwFJ6PuBPY0sSlZtWbpmAdkmDpfOV0Z8/pZezpV7bUusq+9pSPs/Q2yXgdYj1lpSmpJxB11Vu2RDlDJV/wJtwRQ/1uQL3R9h8wnzO4GW0padVsK5gn7XsOoJto2A6tUija6v0sGlqOgUojjR3fCjE/Bx3HNHeNsasCDGrc2UKJSIiEmvFxZb8omIKioopKLIUFBWTX1jmfVExBYXFFBY77wuLLIXFlsJi53VBUTFFxZaCYkuh73WRpajYWaao7GBLvy8sthS74yJrKSpyxsUBaYutpbDIGTvrcMrum1ccEDwUF5cPJHzzbZl0/qAgMPjAvdAv9d7jHSVSRRMGdeb2c7p5XYyoKECRsKZMmQLA+PHj45ZH3yl9AVg4fmHc8qigBO7Yq/zFU7Pd/T/Mo/3f181/oY6/I5m1zgV8XmERuQXF5BUWkVdYTF7g68Ji8gpKXucXlk+X70vnvs4vKvZPC3zvCzqcaZb8wiJ/8FFYrCtvEanZFKA4st1xgxDzG7rjrEhWZq3tEWy6e2ele+WK5q14BiY+3gUm/hJ4nL94yqvAxEeBiaeKiy2HC4qcIb9kfCi/iNyA6bmF7tg/rZjcwiLyCnzjksDjsPval963jOICiZYxYPyvTcBrMDgzA6eBM73kdeC6St6ZMi9CpStblnLLB0lfel7QVflTBS9nYCoTYnrF5Q3Hn2/ANqtqPibIm8B9Fnxd4fMNXLbs/g2mZXpK6Jm1hAIUx2Z33C7EfN/0TdVQFhERCSO/sJiDuQVk5xaSnVdY6nWWOz6UX0hOXhE5eYUcyi8qNe1QfiHZ7vhQfpHXH6fGSEo0JCUmuIPzul6iISnBGdfzjwNeJyaQlGBITHDSJyYY6iUaEo0zrdRgDInu8s78BBITICHBmZYQsIz/deA0/3v88xOMc/Hte29w1pdgDAnGuahLcOebgLHBkOCux+Be7JuS9750gLNeUz6t/zVlAoSAi9LA+c40U/qC15RMKxt4lFw0V60LBZHaTAGKY6k77h1ivm/6smooS42yeLHTgFnv3qE2TfSmLHYfI+sd/7s1IUrgjr3KXzy11t3/XTza/+5jlFTD3cqaprjYcuBwAXtz8sg8VMC+nHz2H8on81ABmYfy2Z9TwP7D+ew/VMCBwwUcPFzA/sMFR0xQkZRoSKmXSEq9BGdICnhdL5Fk//SEUumS3cGXJjkxcFrJ+6SA6cmJJe+TEk2pafUSDcmJCboQFpEaQwGK4wOgGOhvjGkZ2BmjMSYFOB8oAt7zqHyeUYAiR7x1ClBiyVon6NiVlceug3nsysr1v96TncfenDz2ZuezNyeffTn5FNWw555SkxKon5RI/aREUpMTaZDsvnan1Q94n5KUQGq9knGqG2DUT04kNSnBv4xvHJg+pV4iiQkKCEREgqlTAYox5jrgOmCmtfYPvunW2u3GmFeBK4CnjTGXBvQmPwloAbyoXuRFpK7Lzitka+Yhfso8zLYDuWzff5jtB3LZtv8wOw7msv1ALvmFxdVSlgQDaSn1SE9NIj21Hmkp9WiYUo+01HqkJdejQUoiaSn1aJBcj7SUROq74wbJTrqGKYk0TK5H/WRnnFIvgQQFDSIinqvVAYoxZjhwd8CkZHd6YK3T+621s9zXzYHjgDZBVncjTnNOFwI/GmMWAT2AnsAa4OaYFl5EpAay1rI7K4+1u7NZtzuHLfsOsTXzEFv2HWZr5iEyDxXEPM96CYYmDZNp0iCJxg2SadogmSYNndeN6yfRuEESjeon08j/2hkaJCfqsSQRkSNQrQ5QcO5snB5k+ull0lTIWrvHGHMaMBEYCYwCdgJ/B+6x1u6PpqAiIjXN/kP5LNmynxXbDrJuVzbr3KAkO6+w4oUrkJyYQIv0FFqkp9AyPYWWGSk0T/MNyTRLS6FZQ2eckVpPgYaIiPjV6gDFWjsVmFqJ9BNxApBQ8/cB/+cOIiJHjIKiYlbtyOK7zZl8t2U/SzbvZ/2enIoXDCI5MYG2TepzVONUWmc44zaN6tOmUSptGqfSKj2Vxg2SFHSIiEiV1OoARUREgrPWsmFPDgvW7GHBmt18uW4vOZVo/ap5WjKdWqTRsVkDjm7SgKObNqBdk/oc3bQBLdJSVFdDRETiRgGKiMgRIievkHmrd7NgzW7mr97DT/sPV7hMkwZJ9Dq6Mce1zqBzi4Z0apFG5xYNadwguRpKLCIiUp4CFBGRWiy3oIhPV+3mnWXbmPvDTnILQreglZRo6H5UI04+ujEnt29Mr6Mb075pAz2KJSIiNYoCFBGRWqagqJjP1+7hnaXb+XDFDrLCVGrv1jqdAV1b0P/Y5pzasSmpSYnVWFIREZHKU4AiYcWzg0Yf7zpo9JfA4/zFU5093v+V6KBxV1Yur361hVe+2sSurLygaTJS6/Hzbi0Z0LUFZ3ZpTsuM1FiVVEREpFoYa2tWL75HMmPMiu7du3dfsWKF10URkVrku82ZvPjFRmZ9v52CovLn7AbJiQzt3orzTzyK/l2bk1JPd0lERKR69ejRg5UrV6601vaIdl26gyIiUgMVFBXz7rJtTP18I0u3Hig3PzkxgUHHtWBEr6P4ebeWNEjW6VxERI4M+kWTsKZMmQLA+Eo8hlJZfaf0BWDh+IVxy6OCErhjr/IXT8129/8wj/Z/Xzf/hU7+hUXF/HfJNv7+8Ro27T1ULnnrjFR+1bc9l57WnuZpKdVZUhERkWqhAEXC6tEj6rt0FRrdY3Tc86igBB7nL57q4PH+H+3kX1RseXfZNv42Z03QDhRP7diEK3/WkWE9WpOUmFDdpRQREak2qoNSjVQHRUTKKi62vL98B5PnrGbNruxS8xITDL/sdRRXn3EMPds28qiEIiIiFVMdFBGRI8AX6/bw4KwfWLHtYKnpCQZG9mrL9YOP5ZjmDT0qnYiIiDcUoEhY06ZNA2Ds2LFxy2PItCEAzBk7J255VFACd+xV/uKpue7+H1x9+3/trmwefu8H5v64i5en3wXAry59EGPg/BOP4v8GH0uXlmnVVh4REZGaRAGKhJWfnx/3PLLzsytOFN8SeJy/eKqw+vb/3uw8Js9Zw3++3kxRsfN4bcP8XADOO6E1Nw7pStdW6dVWHhERkZpIAYqISJzlFxbzwucbeOrjteV6fW+YkkjbJvV5+opTPCqdiIhIzaIARUQkjr5Yu4e7/7ucdbtLt8zVoVkD7jynG8d+mo7xqGwiIiI1kQIUEZE42JWVy0OzfuDtJdtKTW9UP4nrf96FMf06qMd3ERGRIBSgiIjEUFGx5eWFm/jr7FWlHucyBsb07cDNQ7vSuEGyhyUUERGp2RSgiIjEyPdbD/CHmctY/lPpZoNPbNeIB0eewAnt1JeJiIhIRRSgiIhEKbegiL/NXcO/5q/3t84FkJ5aj9vP6cblp7UnMUE1TURERCKhAEVEJAqLN2dy+xvLWFumF/gLTm7LH847nhbpKR6VTEREpHZSgCIiUgWH84t4/KNVPP/ZBgJumtC+aQP+cuEJ/Kxzc+8KJyIiUospQJGwxowZE/c8PhrzUdzzqKAEHucvnvp55ff/Nxv3cdvrS9m495B/mjFw1c+O4dZhXWmQXIlT60c6/kRERAIpQJGwUlLi/3hKeorXPWd7nb94Kiny/Z9XWMTjH67mXwvWYwPumnRq3pBJF51In45NK59/uo4/ERGRQApQJKzly5cD0LNnz7jlMX35dAAu7Xlp3PKooATu2Kv8xVMb3f3fMfz+/3HHQW6cvoQfd2T5pyUY+E3/Ttw0tCupSVXs02S6m/+lOv5ERERAAYpUYOHChUB8A5TJCycDXgYok92xLhDrpFWTnXGIAKW42PL8Zxt4dPYq8ouK/dM7tWjIYxefxMntm0SX/2Q3fwUoIiIigAIUqcDo0aPjnsfM0TPjnkcFJfA4f/HUgND7f2vmIW59fSkL1+8rNf3Kfh2489zjqZ8cg57gZ+r4ExERCaQARcJKr4bn49ukt4l7HhWUwOP8xVP1y+9/ay1vLf6Jif9bUao3+JbpKTx68UkM7Noidvm30fEnIiISSAGKhLV69WoAunbtGrc8Zq2eBcDwrsPjlkcFJXDHXuUvnvrJ3f9tnf2/Lyefu2Z+z/vLd5RKNvyENjwwsidNGibHNv9Zbv7DdfyJiIiAAhSpwPz584H4Bij3z78f8DJAud8d6wKxTlru7v+2w/nkx13c/uYydmfl+Wenp9TjvpE9GNmrLcbEoTf4+938FaCIiIgAClBERCiylrtnfs9/vtpcanq/Ts346yUn0bZxfY9KJiIiUvcoQBGROi07r5DN+w7xnx9LgpPkegncPuw4rj7jGBIS4nDXREREREJSgCIidVJeYRGT56zh7F3ZENDpYo+jMnhidC+6tlIHiiIiIl5QgCIidc6KbQe45bWl/Lgji7M7O9MSDEwY1IX/G3wsyfUSvC2giIhIHaYARUTqjMKiYp75dB1/m7uGwuKS2yYpSQm8/rt+nNKhqYelExEREVCAIiJ1xNpd2dzy2hKWbj1Qanrz9BSOapxKooITERGRGkEBiogc0fIKi3h23nr+8cla8guL/dOPapTKoxefxNHr1EKXiIhITaIARUSOWAvW7ObP/13Bhj05paZffEo77j6/OxmpSbDOo8KJiIhIUApQJKxjjz027nkMP9brDuq8zl9ibefBXO5/dyXvLtteanqL9BQeGnUCQ7u3Kpl4lMf7Xx00ioiIlGKstRWnkpgwxqzo3r179xUrVnhdFJEjUmFRMS9+uYknPlpNdl6hf3qCgbH9OnLz2V2duyYiIiISUz169GDlypUrrbU9ol2X7qCISK1nreWjlTuZNHsVa3dll5rX6+jGPDCyJz3bNvKodCIiIlIZClAkrBkzZgAwevTouOUxasYoAGaOnhm3PCoogTv2Kn+Jxreb9vHwez+yaFNmqemN6idx57ndGN3n6PC9wc939/8Aj/b/KDf/mTr+REREQAGKVKBp0/g3vXps0/jXc6mgBB7nL1Wxdlc2j87+kdkrdpaaboxTCf6Oc7rRLC2l4hWle7z/q6Gel4iISG2iOijVSHVQRKK3YU8Oz85bx+vfbqWouPT5a9BxLbjjnG4c3ybDo9KJiIjUTaqDIiJ1zrKt+/nnvHW8v3wHZf9XOaldI+44txs/69zcm8KJiIhIzChAkbBmus/Fj/I9Jx8HY2aOAeClUS/FLY8KSuCOvcpfQrHW8tnaPfxz3jo+X7u33PwOzRpw27DjGH5CG4wJU88knC/c/f8zj/b/GDf/l3T8iYiIgAIUqcDeveUvCmNtzd41cc+jghJ4nL+UtSc7j/e+386Mb7awYtvBcvM7tWjINQM6MerkdiTXS4gusyyP9/8aHX8iIiKBFKCISI2QnVfIhyt28N8l2/hs7Z5y9UsATjq6Mb8f2Jmzu7cK3zKXiIiI1FoKUETEMwcOFbBg7W4+WL6DOT/sJLegOGi6gV1b8LuBnenbqWnVH+USERGRWkEBiohUm+Jiy/c/HWDe6t3MW72b7zZnEuRGCQCtM1IZ0esoLujdlm6t1SqXiIhIXaEARUTixlrLut3ZfLVhH1+t38dna/ewLyc/ZPpG9ZM474Q2/LLXUZzWsake4xIREamDFKCISMwUFhXz444svt6wzxk27gsbkAA0T0tmwLEtOPeENgzo2pyUeonVVFoRERGpiRSgiEiV7c7K47vNmXy3ZT/fbc5k2dYDHMovCrtMYoLhlPZNGHhcCwZ2bUH3Nhm6UyIiIiJ+ClBEJCKH84tYvu0AS7fsZ+nWA3y3OZOtmYcrXM4Y6NY6g9OPaUrfTk35WZfmZKQmVUOJRUREpDZSgCIi5RQUFbN6ZxbLth5g2db9LNlygNU7s4I2/VtWYoKhZ9tGnH5MU04/pil9OjSlUQMFJCIiIhIZBSgSVjx7kPeZNmpa3POooAQe5++tomLL+t3Z/mBk2U8HWLntIHmFwZv8Latlegq92zfh5PaN6d2hCT2PakT95FpUj6Sfx/t/Wt0+/kRERMpSgCJhNWvWLO55dG3WNe55VFACj/OvPsXFlvV7clj+0wGWbT3A8p8OsHxbxfVGfBokJ9KzbSN6Hd2YE9s1onf7JrRplFq7+ybJ8Hj/d607x5+IiEgkFKBIWBs3bgSgY8eOcctj3sZ5AAzsODBueVRQAnfsVf7xUVRs2bAnm+U/HeT7nw7wvXtnJDuvMKLlkxIN3VpncEI7JyA5qV1jurRMI/FIq9C+093/rTza//Pc/AceWcefiIhIVSlAkbDmzJkDwPjx4+OWxx1z7gBg4fiFccujghK4Y6/yj17gY1rf/+TcGVm5/WDEd0YSDBzbMp0T2zVyh8Z0a5NeN5r8XeLu/2Ee7f873PwX1t7jT0REJJYUoEhYw4cPj3seTw9/Ou55VFACj/OvHGudx7SWbd3vf0xrxbbIgxFjoHOLNE5s24iebZ2ApPtRGTRIrqOng1M93v9P167jT0REJN7q6BWJRKpNmzZxz6N3m95xz6OCEnicf3jZeYUs3bKfxZsyWez2ObL/UEFEyya4wUhPNxjpeVQGPdo2Ii1FX32/ph7v/941+/gTERGpbrpKkbC2b98OxDdQWbx9MeBloLLYHdeMC8Ws3AK+3rCPz9fuZeH6vfy44yARtO7rf0yrZ9tGnNDWqTtyfJs6fGckUvvc/e9VoLLYzV+BioiICKAARSowa9YsIL51UCbMmgB4WQdlgjv2Jv/cgiK+3ZTJF+v28PnavXz/04GI+hvp0jKNE9s14gT3MS0FI1X0jbv/vaqDMsHNX3VQREREAAUoIp7Yfyifj3/cxUcrdzJv9e4K64+kp9aj19GN6d2+Cb07NKHX0Y1pVF+dH4qIiMiRRwGKSDXZmnmID1fs5MOVO/hmY2bYuySNGyTRr1MzftalOacf05QuLdJIONKa9xUREREJQgGKSBwVFVs++XEX0xZuYv7q3SHT1U9K5PROTTmjc3P6dW5G9zYZCkhERESkTqr1AYoxpj7wB+BSoD2wD/gAuNta+1Ml1zUUuBE4DWgMHAS+BZ6x1s6MXanlSLcvJ58Z32zhla82sTXzcNA0zdNSGNq9JUO7t+JnnZuTmlQH+hwRERERqUCtDlCMManAx0BfYDvwX6AjcBXwC2NMX2vt+gjXdSPwBGCBL4EtwNHAEGCoMeYha+1dsf4McmRZuyubpz9dy7vLtpNfWFxu/jHNGzKsR2uGdm/FyUc31l0SERERkTJqdYAC/AknOPkSONtamw1gjLkZeAx4ARhU0UqMMS2AvwAFwFBr7byAeQOAD4E/GGOejzTgkbqluNgy7cuNPPz+j+SVCUwSEwxnd2/FmL4d6Ne5GcYoKBEREREJpdYGKMaYZOA69+21vuAEwFr7uDHmSmCgMeYUa+23FazudCAFmB0YnLjrmm+MmQ2MAPoAClCklJ0Hc7n19aUsWLOn1PTmaSlcftrRXHZ6e9o0qu9R6URERERql1oboABnAI2Addba74LMfwM4ETgfpx5JOHkR5rk38uJJXfD+99v5w8zvS/Xs3jwtmbuGH8/wE44iuV6Ch6UTERERqX1qc4BykjteHGK+b/qJEazra2A/8HNjzMAgj3gNA9YAC6pW1Nornj3I+3jXg7y/BJVeIiu3gIn/W8mbi7eWmj60eyv+csEJNEtLiVXhJN686kHeRz3Ii4iIlFKbA5T27nhriPm+6R0qWpG19oAx5tfAf4BPjDFfuMu3A34GfA6MtdbmR1fk2mf48OFxz+Pp4U/HPY8KSlCp1Nv2H+bSfy1k875D/mkNkhP58y+6M/rUo1XHpLY51ePj72mvj38REZGapTYHKGnu+FCI+TnuOD2SlVlr3zLGnAu8hvP4mM9BnEryETdZbIxZEWJW50jXITVTQVEx17/6XangpNfRjZk8uhcdmzf0sGQiIiIiRwY9IO8yxtwCzAHm4zwWluaOPwbuA97yrnTemTVrFrNmzYprHhNmTWDCrAlxzaOCErhDxR77cDXfbsr0v7/urC688bt+Ck5qs28mOINXJkxwBhEREQFq9x0UX6tdDULM910xZlW0ImPMIOCvOPVWLrbW+tqJ/d4YcxGwCBhujDnXWvt+Reuz1vYIkc8KoHtFy9ck+fnxf6otK7/CXRTvEkSU6pNVu/jnvHX+9xf2bsetw46LV6GkuhR4fPxleX38i4iI1Cy1OUDZ7I7bhZjvm74pgnWNccczA4ITAKy1RcaYt4BewACgwgDlSDJq1Ki45/HSqJfinkcFJagwxY4Dudzy2lL/+y4t07h/ZNA4VGqbn3l8/L3k9fEvIiJSs9TmR7x8V4uhmsDxTV8Wwbp8wcyBEPN905tEsC45whQWFfN/r37HvhznblJqUgJPXd6bBsm1Ob4XERERqZlqc4DyOU7g0NkY0yvI/Ivc8TsRrGuHO+4TYv6p7nhjpIU7Unz00Ud89NFHcc3j9o9u5/aPbo9rHhWUwB2CmzxnDV9v3Od/f++IHhzXOqK2F6Q2+O52Z/DK7bc7g4iIiAC1OEBxm/z9h/v2KWOMv5ayMeZmnAru8wJ7kTfGXGeM+dEY83CZ1b3tjq8wxvwicIYx5pfA5UAxMDO2n6Lm27RpE5s2RfKUXNXN3zSf+ZvmxzWPCkrgDkHmrN7NU5+u9b8fdXJbLulzdDWVS6rFrvnO4JX5851BREREgNpdBwXgAWAITl8la4wxC3D6PTkd2A1cXSZ9c+A4oGzvg28DrwMXA+8YYxYBG4BjKLmrcpe1dlUcPoPUUDsP5nLTjCVY67zv1KIhD4zsqX5OREREROKo1t5BAbDW5gJnAffj9IcyEidAmQr0ttauj3A9FhgN/Brnr/QuwCigI/AecK619qHYll5qurvfXs5et95JSj2n3knDlNoe04uIiIjUbLX+astaexj4sztUlHYiMDHEPAu84A5Sx63dlcWHK3f6399zfg+Ob5PhYYlERERE6oZafQdFJF6e/2yj//VxrdK57DTVOxERERGpDgpQRMrYm53HW4u3+t//uv8xqnciIiIiUk0UoIiU8fLCzeQVOv11Nk9L4Ze9jvK4RCIiIiJ1hwIUkQC5BUW8tHCj//2V/TqQUi/RuwKJiIiI1DEKUEQC/G/JNvZkl7TcdUXfDh6XSERERKRuqfWteEl8DRkyJO55PDLkkbjnUUEJALDWMuWzkpapLzylHU0bJntVKKkuvTw+/h7x+vgXERGpWRSgSFgdO3aMex4DOw6Mex4VlACA+Wt2s3pntn/q1Wcc41WBpDq18vj4G+j18S8iIlKzKECRsPbu3QtAs2bN4pbH6r2rAejarGvc8qigBABMWZDpnzK4W0u6tEzzqDxSrQ46+58Mj46/1W7+Xb06/kVERGoWBSgS1syZMwEYP3583PIYO3MsAAvHL4xbHhWUgMP5RSxYM9E/5df9dfekzvjSOf4Y5tHxN9bNf6FXx7+IiEjNogBFwhowYEDc87h7wN1xz6OCEvDq1yV1T7q3yaBfp/jdMZIapqfHx9/dXh//IiIiNYsCFAmrazU8djK86/C45xHOrqzB/OX9BMDp++Q3A9QxY53S1tvjj+Ee5y8iIlLDqJlhCSsrK4usrKy45rE9azvbs7bHNY9wZn77DY0a7AGgVUYKw09Qx4x1yuHtzuCV7dudQURERAAFKFKBGTNmMGPGjLjmMWrGKEbNGBXXPELJLSiiX5ff8q8xDwJw5c86klxPX4s6Zf4oZ/DKqFHOICIiIoACFKnj3ly8laJiC0D9pEQuP629xyUSERERqdsUoEidVVxseX7BBv/7i/u0o3EDdcwoIiIi4iUFKFJnzf1xF+v35Pjf//pMNS0sIiIi4jUFKFJnPbegpGnhRvWT6NCsoYelERERERFQgCJ11LKt+/l6wz7/+5YZKR6WRkRERER8FKBInfRcQN2TBsmJpKWoSyARERGRmkABitQ5WzMP8d73Jf1OtMpI9bA0IiIiIhJIAYrUOf/+fKO/aeH2TRvQqH6SxyUSERERER891yJhpaenxz2PNult4p6Hz8HcAmZ8s8X//uozOmJM9eUvNVB9j/d/Gx1/IiIigRSgSFijR4+Oex4zR8+Mex4+07/eTHZeIQAZqfW4uM/RQPXlLzXQAI/3/0wdfyIiIoH0iJfUGQVFxfz7843+91f07UBDVY4XERERqVEUoEhY8+bNY968eXHN4/5593P/vPvjmgfArGXb2X4gF4CkRMO4n3X0lcAdpE76/n5n8Mr99zuDiIiIADF8xMsYkwz8DBgI9AJaAI2B/cBuYAkwD/jCWpsfq3wlvjZt2hT3POZtcgKgu7k7bnlYa0t1zDjipLYBrXf5ArD45S812C6P97/vD4C7dfyJiIhADAIUY0w34HfAr4AmgAmR9JeABfYbY6YB/7LW/hBt/hJfY8eOjXsec8bOiXseX67fy4ptB/3vx/c/JrAEcc9farDBHu//OTr+REREAlU5QDHGtAMewAlMEoDNwCzga+BHYB9wEGiEE7gcD5yGc4flBuB6Y8xLwN3W2q1RfAaRCj03v+TuSf9jm3N8mwwPSyMiIiIioURzB2W1O34OeNla+3kF6ef6XhhjzgTGuMPFQFoU5ZA4+vLLLwHo169f3PJ44ssnALip301xWf/qnVl8smq3//34/p3KlsAdxyd/qeF+dPd/N4/2/xNu/jfp+BMREYHoKsk/C3Sy1v4+guCkFGvtZ9baa4DOOAGO1FArVqxgxYoVcc1jxooZzFgxI27rD7x70q11OgOObV62BO4gddKmGc7glRkznEFERESAKO6gWGuj/rvPWrsd/W0tcbTzYC5vL/nJ//63AzphTKhqUiIiIiLiNTUzLEe0qV9spKDIAtA6I5VfnHiUxyUSERERkXCqHKAYY86q4nLpxpinqpqvSKSy8wp5eWFJM8lXn9mR5HqKyUVERERqsmiu1uYYY6YYYxpHuoAx5kLgB5xmiUXiavrXm8nKLQQgPaUel53W3uMSiYiIiEhFoglQdgJXAyuNMZeES2iMOdoY8z/gNeAoYFoU+YpUqKComH9/vtH//rLT25OemuRdgUREREQkItEEKN1wWuBqBbxqjHnHGHN0YALjuAlYAfwCWAsMttZeFUW+IhV67/vt/LT/MAD1EgxXndHR2wKJiIiISESqHKBYaw+6TQUPAtYAw4EVxpjr3cCkN/AN8FcgBadTxxOttZ9EX2yR0Ky1/CugaeERvY6iTaP6HpZIRERERCIVdY1ha+0C4ETgQZxAZDJOT/JfAb2BL4Be1to/W2vzos1PpCJfrNvLim0H/e9/U65jRhERERGpqaLpSd7PWpsP3G2M2Qc8BhwLWOCf1toJschDvNG3b9+453Fj3xtjur5nA+6eDOjaguPbZFRUgpjmL7XMcTd6m/+NHucvIiJSw8QkQDHGNAWeAH7lTloFHAf8xhiTD9xlrc2JRV5SvXr27Bn3PC7teWnM1vXD9oPMX73b//6aAZHcPYld/lILdfR4/1+q409ERCRQ1I94GWN+hdN08BhgK3C+tfZ49/0+4Hqcuim/iDYvqX55eXnk5cX3ybysvCyy8rJisq7nFpTcPeneJoOfdW4WSQncQeqkgixn8EpWljOIiIgIEF1HjR2NMR8ALwLNgCeBHtbaWQDW2leA44GXgPbAf40xrxljWkdfbKkuL730Ei+99FJc8xj60lCGvjQ06vUczC3gnaXb/O+vGdgJY0wkJXAHqZM+HuoMXhk61BlEREQEiO4RrxVAfWA58Btr7VdlE1hr9wHjjDEvA/8ELgKGGGPutNb+K4q8pZr07t077nmM7z0+JuuZt2o3BUUWgKYNkznvhDaRliAm+Ust1dnj/T9ex5+IiEigaAKUBOAu4FFrbWG4hNbaOcaYnsC9wE3AM4AClFqgNgUoc3/Y6X991nEtSUqM9AahLhDrtC4KUERERGqSaAKUE621ayJNbK3NBe4wxryKghOJscKiYj5ZVVI5fsjxLT0sjYiIiIhUVTQdNUYcnJRZbgkQ/7ZrJSamTJnClClT4ppH3yl96TslukPi202ZHDhcAEByYgL9u7aoTAnQIVmHze7rDF7p29cZREREBIhBK15VYa0t9iJfOXLN/XGX//XpnZqSlhKTFrRFREREpJp5EqCIxNqcgPonQ45v5WFJRERERCQaClCk1tuwJ4f1u0v6AR2s+iciIiIitZYCFKn1Alvv6tY6nXZNGnhYGhERERGJhgIUqfUCH+/S3RMRERGR2k0BitRqBw4V8M3GTP/7wap/IiIiIlKrKUCRWu3T1bsoKnZ6j2+elkyvdo29LZCIiIiIREUBitRqc34oaV74rONakpBgPCyNiIiIiEQrJgGKMaarMeb/jDH9Kkj3e2PMb2ORp0hBUTGfrioJUPR4l4iIiEjtF6ve7A4CjwGLgdODJXCDl6eA14F/xShfibPx48fHPY+F4xdWablvNu4jK7cQcHuPP7Z5VUtQxeXkiDDM4/2/UMefiIhIoJjcQbHW7gDmAH2MMceFSDYGsMCLschTZG7A4139OjejoXqPFxEREan1YlkH5UXA4AQipRhjkoBLgJ3ABzHMU+Js8eLFLF68OK55TFk8hSmLp1RqGWttqf5PhkTVvPAUd5A6ae0UZ/DKlCnOICIiIkBsA5SZwAHgV0HmnQc0BV6x1hbHME+Js5oaoKzbncPGvYf8738eVf0TBSh12ropzuAVBSgiIiKlxOyZGGttnjHmNWC8MWagtXZewGw93lVLjRlT7oZYzH005qNKLxN49+T4Nhm0bVw/mhJEsazUej/3eP9/pONPREQkUKybGZ6K85jXWN8EY0xj4BfAEmvt8hjnJ3GWkpJCSkpKXPNIT0knPSW9UssE1j+J7vEugHR3kDopKd0ZvJKe7gwiIiICxDhAsdZ+CawFLjTGpLqTLwGS0d2TWmn58uUsXx7fuHL68ulMXz494vSZOfks2rTP/z765oWnu4PUSRunO4NXpk93BhEREQHi01Hjizh/R490348B8oFX4pCXxNnChQtZGOdmUCcvnMzkhZMjTj9v9W7czuNpkZ7CiW0bRVsCd5A6adVkZ/DK5MnOICIiIkB8ApRp7niMMaYDcAbwvrV2bxzykjroi3V7/K8HdW2h3uNFREREjiAxD1CstVuAT4GhwG2ocrzE2FcbSh7v6te5mYclEREREZFYi8cdFHACknrA74G9wLtxykfqmB0HctkU0Lzw6Z0UoIiIiIgcSeIVoLwBZLuvX7XWFsYpH4wx9Y0x9xljVhtjco0x24wxLxhj2lZxfR2NMf80xmwwxuQZY/YYY740xtwW67JL5X21oeRJwXZN6kfZvLCIiIiI1DRxCVCstYeAP+HUR/lnPPIAcFsK+xi4G0gD/gtsAa4CvjPGdKrk+s4FVgC/xbnz8xawGOgIXBOzgkuVLVxf8njX6cfo7omIiIjIkSZmHTWWZa39e7zWHeBPQF/gS+Bsa202gDHmZuAx4AVgUCQrMsZ0wwlIsoCh1tovAuYlAL1jWnKpkq/Wl9xB6dupqYclEREREZF4iNcjXnFnjEkGrnPfXusLTgCstY8Dy4CBxphTIlzl40AqMC4wOHHXV2ytXRSDYksUdh3MZf2eHP/7vqp/IiIiInLEqbUBCk7zxY2Addba74LMf8Mdn1/RiowxRwPDgPXW2vdiV0SJpcDWu45qlEq7Jqp/IiIiInKkidsjXtXgJHe8OMR83/QTI1jXIJxg7QtjTD3gApwAKBFYDsyw1mZWvai1V48ePeKex+geoyNKF1hB/vROzTAmVv2fRJa/HKE6eLz/R+v4ExERCVSbA5T27nhriPm+6R0iWFd3d5wNLMCp1xLoQWPMRdbaTyIpmDFmRYhZnSNZvibp169f3PO4qd9NEaX7qlQF+VjWP4ksfzlCdfN4/9+k409ERCRQbX7EK80dHwox31dZIT2CdTVxx+OBbsDlQFPgOOBl9/XMqjZdLNHbm53Hml3+akaqfyIiIiJyhKrNd1BiyReo1QOusda+5r7PBMYYY44DTgUmAHdVtDJrbdDnotw7K92Dzauppk2bBsDYsWPjlseQaUMAmDN2Tsg0XwfUP2mVkUKHZg1iWQJ3HDp/OYLNdff/YI/2/xA3/zk6/kRERKB2Byi+v9NDXak2dMdZlVhXNvB6kPn/xglQBkZcuiNEhw6RPCEXnYEdKt6sCwOaFz79mFjWP4E6uFslUEuP9/9AHX8iIiKBanOAstkdtwsx3zd9UwTr8qXZbK21QeZvdMctIyvakWNgNVw83T3w7grTBLbgdXrM+z+pOH85gp3g8f6/W8efiIhIoJjVQTHGFBljno8g3XPGmMIYZLnUHYfqQNE3fVkE6/I1U9wkxHzfFXF2iPkSR5k5+fy4o+RGmHqQFxERETlyxbKSvHGHSNNG63PgANDZGNMryPyL3PE7EazrC2Av0Nqtb1KW7zZCsP5WjmgzZsxgxowZcc1j1IxRjJoxKuT8rzeW3D1pnpZC5xYNQ6atYgncQeqk+aOcwSujRjmDiIiIAN604tUIyIt2JdbafOAf7tunjDH+q1ZjzM04/Z/Ms9Z+GzD9OmPMj8aYh8usqxCnJ3njrisjYJkhwDjAAs9GW+7aJisri6ysSKrxVN32rO1sz9oecn6p5oU7NY1x/ROA7e4gddLh7c7gle3bnUFERESAKOugGGPal5mUFmRaYF7HAWcD66LJN8ADOE0w/QxYY4xZgNPvyenAbuDqMumbu2VoE2RdjwJnuetbbYxZ6Kbvi9Nh413W2q9jVG6phMAOGvvGtP8TEREREalpoq0kvxHnzoLPhe4QjgGeizJfAKy1ucaYs4A/4PRdMhLYB0wF7rbWhurEMdi6Cowx5+H02jcWGAbkA/OAJ6y178aizFI5Bw4VsHL7Qf/709X/iYiIiMgRLdoAZT4lAcpAYBfwY4i0+cA24H/W2plR5utnrT0M/NkdKko7EZgYZn4BMMkdpAb4ZuM+fO2qNW2YzLEt08IvICIiIiK1WlQBirV2kO+1MaYYeN9aW/axKpEqC3y867SO8ah/IiIiIiI1SSz7QelEZJ0iYoxpbK3dH8O85QgV3/5PRERERKSmiWUrXjdZa/dWlMgY0xSYG8N85QiVlVvA8p8O+N/3Vf0TERERkSNeLAOU640xYeuBuMHJx0CvGOYrR6hFmzIpduufNG6QxHGt0r0tkIiIiIjEXSwDlM+Ae4wxE4LNNMY0wwlOTgSejGG+coRauL7khtypHZuSkKD6JyIiIiJHuljWQfkFTpO8fzfG7LPWTvfNMMY0xwlOegKTrbU3xzBfiaPRo0fHPY+Zo4M36rZwXUmAcnpc+z+JWaNyUhsN8Hj/z9TxJyIiEihmAYq19qAxZhjwOfCiMeaAtfZ9Y0wrnDon3YHHrLW3xSpPib/09Pg/VtUmvXy/mVv2HWLp1pL6J2d0aR7PEsRx3VLj1fd4/7fR8SciIhIolo94Ya3dBQwF9gCvG2MuAj7BCU4eVXBS+6xevZrVq1fHNY9Zq2cxa/WsUtP+t3Sb/3XnFg3p1jqegdIsd5A66adZzuCVWbOcQURERIDYPuIFgLV2ozHmbJxOHGfg9Bz/iLX2D7HOS+Jv/vz5AHTt2jVuedw//34Ahncd7p/2TkCAMuKktnHu/+R+dzw8bCo5Qi13939bj/b//W7+w3X8iYiIQBQBijGmfZjZWcAE4CXgP8AzZdNbazdXNW+pPqNGjYp7HtNGTSv1fvXOLH7cUdKlzoheR8W7BHFev9Ro/Tze/9N0/ImIiASK5g7KRsBWkMYAY9whkI0yb6kmzZrFv++Rrs1K353535KSuycntmvEMc0bxrsEcV6/1GgZHu//ON6dFBERqY2iCRLmU3GAIrXcxo0bAejYsWPc8pi3cR4AAzsOxFpbqv7JiJPiffcEnMbnAAZWQ15S4+x0938rj/b/PDf/gTr+REREIIoAxVo7KIblkBpqzpw5AIwfPz5uedwx5w4AFo5fyJIt+9m87xAAxsAvTqyOAOUOd7ywGvKSGmeJu/+HebT/73DzX6jjT0REBGLcipdItALvnpx+TFNaN0r1sDQiIiIiUt3iVg/EGNMSaOu+/cltglgkpKJiy7vLtvvfjzipbZjUIiIiInIkivkdFGPMBGPMKmA7sMgdthtjfjTG/D7W+cmRY+H6vezOygOgXoLh3J6tPS6RiIiIiFS3mN1BMcYkAK8Bo3Ba79oPbMKpSN8Bp6mkfxhjBgMXW2tVwV5KCWy9a0DXFjRpmOxhaURERETEC7G8g/Jb4AJgNTDCWtvUWnuytba3tbYZcD6wCieA+W0M85UjgLWW95aXPN71y7j3fSIiIiIiNVEsA5SrgIPAIGvtu2VnWmtnAT8HsoGrY5ivHAEO5haSlVsIQGpSAkOOb+VxiURERETEC7EMULoDH1trd4ZKYK3dAcx104r4ZR7K978ecnwrGqaoH08RERGRuijWleQjqVeiuidSSrG1HDhc4H9fPZ0zioiIiEhNFMu/qVcBPzfGNLfW7gmWwBjTHOcxr1UxzFfiqEOHDnHPo2393qwqdFqhzkitx8DjWsQ9z9IGVHN+UqO09Hj/D9DxJyIiEiiWAcqLwN+AucaYm621cwNnGmPOAh4HMoCpMcxX4mjo0KFxz6NJ4dU0cQOUc3u2IaVeYtzzLG1SNecnNcrJHu//STr+REREAsUyQHkaOAc4F/jQGLMbp5lhcJoZboHT/PB7bloRMnPymb96t//9CLXeJSIiIlKnxawOirW2CKcp4duArUBL4FR3aAlsceeNsNYWxypfia+ZM2cyc+bMuK3/3e+3syPxr+xJeowW6Sn07dQsbnmFNsYdpE76YowzeGXMGGcQERERILZ3UHADj8eAx4wxRwO+v8O3WWu3xDIvqR7JyfHtLHHm4q0Y6gNO5fjEBBPX/IJL9yBPqTGSPN7/6Tr+REREAsWtLVc3IFFQUssNHz48buveuCeHxZv304wJAIw6uW3c8gpPTxzWaad6vP+f1vEnIiISKC4BijGmLXAmAXdQgM+ttVvjkZ/UTm8v+cn/+tiWafQ4KsPD0oiIiIhITRDTAMUYcxTwD2AEToX4QNYY8w5wvQKV2mPWrFlA7O+kWGuZ+Z0ToOxNepr26Y0xZmBM84jcBHesf7LrpG/c/e/VnZQJbv66kyIiIgLEMEBxg5MvgaOBQ8CHwEZ3dgfgbOCXwCnGmL7W2m2xylviZ/v27XFZ7+LN+9m09xAA+QnryC728u7JYg/zFs/t83j/L9bxJyIiEiiWd1AewglOXgFusNbuC5xpjGkCTMZpLulB4KoY5i21zMzvSm6ipafUIzkxZg3KiYiIiEgtFsurwnOBDcC4ssEJgLU2E7jaTRO/mtdS4+UXFvPuspI7M00axrelMBERERGpPWIZoKQBC93+UIJy530FNIxhvlLLfLpqF/sPFQCQUi+BxvWTPC6RiIiIiNQUsQxQfqCk1a5w2gA/xjBfqWV8leMBhnZv5VHfJyIiIiJSE8UyQJkMDDDGDAuVwBhzNjAA+FsM85Va5MChAub+sMv//oLeXvV9IiIiIiI1USwryc/Haaf1f8aYGcAMYJM7rwNwCTAaeAr41BjTPnBha+3mGJZFaqj3lm8nv6gYgGYNk+l/bAv4zONCiYiIiEiNEcsAZSNgcfo/ucIdyjLAte4QyMa4LFJDzVxc8njX+ScdRZJa7xIRERGRALG+g2JjuD45wmzZd4ivN5Y08DbqZD3eJSIiIiKlxSxAsdYOitW6pOaIZQ/ybwdUju/UoiEntmsEwNPDve5B2+v8xVNe9SDvox7kRURESqkRj1UZY0YAvay193ldFimtTZs2MVmPtZaZS0oClAtObosxTutdvdv0jkkeVed1/uKpph7v/946/kRERALVlAoAo4B7vC6ElLd9+3a2b99eccIKLNt6gPW7c/zvf9mr5PGuxdsXs3j74qjzqLrF7iB10r7FzuCVxYudQURERIAacgdFaq5Zs2YBMH78+KjW89qiLf7Xp3VsytFNG/jfT5g1AYCF4xdGlUfVTXDHXuUvnvrG3f/DPNr/E9z8F+r4ExERAQUoUoEhQ4ZEvY5dWbm8/u1W//uyfZ88MuSRqPOIjtf5i6d6ebz/H9HxJyIiEkgBioTVsWPHqNfx/IIN5Bc6fZ+0SE9hZJnWuwZ2HBh1HtHxOn/xVCuP9/9AHX8iIiKBakodFKmh9u7dy969e6u8/P5D+by8cJP//W/6H0NqUmKpNKv3rmb13tVVziN6q91B6qSDq53BK6tXO4OIiIgAuoMiFZg5cyZQ9Too//58Izn5RQA0bpDEFad3KJdm7MyxgJd1UMa6Y9UBqJO+dPe/V3VQxrr5qw6KiIgIoDsoEkdZuQX8+/MN/vdX/ewYGqYoJhYRERGR0BSgSNy8vHAzB3MLAUhLqce4n3X0tkAiIiIiUuMpQJG4yC0o4vnP1vvfj+nXgUYNkjwskYiIiIjUBgpQJC6mf72ZPdn5AKQmJfDrM4/xuEQiIiIiUhvUlAoBU4BPvS6ExEZ+YTHPzi+5e3Lpqe1pnpbiYYlEREREpLaoEQGKtfZz4HOvyyGx8dbirWw/kAtAUqLhmoGdPC6RiIiIiNQWVQ5QjDHrK04VkrXWdo5ieamhCouKeWbeOv/7i05pR5tG9T0skYiIiIjUJtHcQekYq0LIkWPW99vZtPcQAAkGfjdQcaiIiIiIRK7KAYq1VhXs64BmzZpFnNZay9OflNw9GXHSUXRo1rDC5Y5tdmyVyhY7Xucvnkr3eP8fq+NPREQkUI2ogyI116hRoyJOu3pnNqt2ZvnfTzirS0TLvTTqpUqXK7a8zl889TOP9/9LOv5EREQC6S6IxMyCNbv9r09o24iurdI9LI2IiIiI1EZxu4NijGkMpAMm2Hxr7eZ45S2x89FHHwEwdOjQCtPOW10SoPQ/tnnEedz+0e0ATBo6qZKli5Xb3bFX+YunvnP3/8ke7f/b3fwn6firyay1WGu9LoaISNwZYzAm6OV7tYlpgGKMaQ08AIwAwlVesLHOW+Jj3759EaXLLSji6w0laQd0bRFxHmv2ral0uWLL6/zFU1ke7/81Ov5qqqKiIvbu3UtWVhb5+fleF0dEpNokJyeTnp5Os2bNSExMrPb8YxYkGGPaAN8ARwE/AbuBlsCXQCegFU5g8iVQEKt8Jb5Gjx4dUbqvN+wjr7AYgIbJifRu3yTiPGaOnlmlssWO1/mLpwZ4vP9n6viriYqKiti8eTO5ubleF0VEpNrl5+ezd+9ecnJyaN++fbUHKbG8i/EnnODkz9baB4wx/wbGWmvPADDGDACewQlSzo1hvlIDzA94vKtf52Yk11P1JhGpvfbu3Utubi6JiYm0atWKhg0bkpCg85qIHPmKi4vJyclh586d5ObmsnfvXlq2bFmtZYhlgHIOsMFa+0Cwmdba+caYs4FVwN3AXTHMW+Jk3rx5AAwcODBsugVr9vhf9z828se7AO6fdz8Adw+8u5Kli5X73bFX+Yunvnf3/wke7f/73fzv1vFXk2RlOS0StmrVikaNGnlcGhGR6pOQkOA/723bto2srKxqD1Bi+XdQW2BJwPsiAGNMim+CtfYn4BPgkhjmK3G0Zs0a1lTwjPyOA7mlmheuTP0TgFlrZjFrzawqlS82ZrmD1EnbZjmDV2bNcgapMay1/jonDRtW3JeTiMiRyHf+y8/Pr/ZGQmIZoBws836/O25bZnpukGlSiwU2L9yuSX06NmvgYWlERKIT+EOsx7pEpK4KPP/V5gBlM9A+4P1yd3yeb4IxpgFwBrA9hvmKx+YHPN41oGsLz5umExEREZHaK5YBysfAicYY3/M9/wNygEeNMX8xxlyP83hXK+D9WGVqjKlvjLnPGLPaGJNrjNlmjHnBGBPVXRpjzLHGmMPGGGuMmROr8h5piostnwXcQRlQyfonIiIiIiKBYllJ/hXgaKA7MM9au88Ycw3wb5ye8CxOp40riFEFeWNMKk5g1Bfnrsx/gY7AVcAvjDF9rbXrq7j6fwEpFaaq45ZvO0DmIafV6MQEw8+6hOv+RkREREQkvJgFKNbapcBlZaa9aoz5HOcxrybAauB/1tpY9YPyJ5zg5EvgbGttNoAx5mbgMeAFYFBlV2qM+bW73L+A38aorEekwNa7Tj66MRmpSR6WRkRERERqu7jX/rPWbrbW/tNa+7C19s1YBSfGmGTgOvfttb7gxM3zcWAZMNAYc0ol19sKeBT4CHg1FmU9ks0L6P+kss0Li4hI7ZOTk8Pjjz/OWWedRatWrUhOTqZJkyb069ePP//5z2zevNmfduLEiRhjSg3p6ekcffTRnH322UycOJGNGzeGzCvY8mWHTz/9NP4fWkSqVSx7kv8Y+MBaO6mCdLcC51lrfx5llmcAjYB11trvgsx/AzgROB/4thLr/RtQH5gAtIuyjEe07LxCFm/K9L8f0LW5h6UREZF4++KLL7jwwgvZsWMHDRo0oG/fvrRq1YoDBw7wzTffsHDhQiZNmsS7777LkCFD/MuddNJJ9OrVC4Dc3Fx27tzJV199xUcffcT999/PDTfcwF/+8heSk5OD5hu4fFmtW7eO9ccUEY/Fsg7KIGBjBOmOA8L3+heZk9zx4hDzfdNPjHSFxpjzgNHAn621a40xClDC+HLdXgqLnWbnGtVP4sR2jb0tkIiIxM2SJUsYPHgwubm53HHHHdx9992l+okpLi7m7bff5vbbb2fr1q2llh05ciQTJ04sNa2wsJDp06dz44038sQTT7Bz505eeeWVoHkHW15EjlyxDFAilQoUxmA9viaNt4aY75veIZKVGWMaAk/j9HT/SHRFO3IMGDAg5LzA/k/O7NKcxISqNS989wCve9D2On/xVE+P9796kJdawFrLmDFjyM3NZeLEidxzzz3l0iQkJHDBBRcwePBgtmzZUuE669Wrx69+9Sv69OnDqaeeyn/+8x9Gjx7NiBEj4vERRKQWqdYAxRiTAfyM2PSDkuaOD4WYn+OO0yNc3wM4wcxZ1tr8aApmjFkRYlbnaNbrha5du4acN79U/ZOqP941vOvwKi8bG17nL55q6/H+H67jT2q+Dz74gOXLl9OuXTvuuit8Q5yNGjWiUaNGEa+7W7du3HjjjTzwwAP8/e9/V4AiItFVkjfGrPcN7qSLAqeVGTYDu3GaAf5vlOWOKWNMH+D/gGnW2k89Lk6NkpWVRVZWVrnpm/ceYuPekthwQNeqV5DfnrWd7Vle9t25HfUdWocd3u4MXtm+3RlEarBZs2YBcPHFF1OvXuz/27z00ksBp45Lfn5U/xGKyBEg2rNMx4DXFueuRlrwpBQA23A6cPxDlPkC+FrtahBivu/B2PJX1wGMMfWA54D9wK0xKBfW2h4h8lqB009MrTFjxgwAxo8fX2r6/IDHu7q0TOOoxvWrnMeoGaMAWDh+YZXXEZ1R7tir/MVT8939P8yj/T/KzX+hjr/awlrLwdxYPKlcvTJS62FM1R7FXbJkCQC9e/eOYYlKHH/88aSkpHD48GE2btwY9u69iBz5ogpQrLX+OzDGmGJgqrX26qhLFRlfO4ahKrL7pm+qYD3tgF7ADuD1Mifvxu74FGPMpwDW2kGVK2bt1rdv36DTY/V4F8CNfW+MavnoeZ2/eOq4G73N/0aP85dKO5hbyEn3fuh1MSpt6T1n06h+1fqq2rt3LwAtWsSnOfmEhASaNGnCjh07yMzMLDf/3nvv5d577y03/corr2Tq1KlxKZOIeCeW92mvAtbGcH0VWeqOQ/2d45u+LML1tXaHYBoTm5bHap2ePXuWm1ZQVMyX6/b630fzeBfApT0vjWr56Hmdv3iqo8f7/1IdfyLg3JkCgt7lCdXM8JlnnhnvYomIB2LZk/yLsVpXhD4HDgCdjTG9rLVLysy/yB2/E24l1tqNQNB73saYQcAnwFxr7ZBgaY50eXl5AKSkpPinLdmyn6w85/GG5MQETj+maVR5ZOU5T+Glp0TankGs+Z4C9Cp/8VSBu/+TPNr/vjpe6Tr+pOZq1qwZALt3764gZdUUFxf775w0bVr+N0XNDIvULTGv6WaMORG4FugPtHUn/wTMB5621kZ6RyMsa22+MeYfwF3AU8aYs621OW4Zbsbp/2SetdbfSaMx5jqc3udnWmtjUQ/miPfSSy8BpeugfL1hn/91n45NaJAc3WE09KWhgJd1UIa6Y9UBqJM+dve/V3VQhrr5qw5KrZGRWo+l95ztdTEqLSO16ufqXr168fnnn7N48WJ+9atfxbBUjhUrVpCfn0+DBg3o2LFjzNcvIrVLTAMUY8wNwKNAIqXvSnRzh6uNMbdZa/8WoywfAIbgNF28xhizAKep4NNxWgwrWx+mOU5HkW1ilH+dtDmg9a4eR2V4WBIRkepnjKlyXY7aavjw4Tz11FO8/vrrTJo0KeYtefkaZDnzzDPj0kqYiNQuUTUzHMgYMxR4Ash3xycDTXDqb/QCHgPygMeNMYNjkae1Nhc4C7gfpz+UkTgBylSgt7V2fciFpcq2ZJYEKEc3DdWImoiIHCnOOeccevTowdatW3nwwQfDpj148CArVoTqDqy8H3/8kcmTJwNwww03RFNMETlCxCxAAW7G6SH+bGvtrdbapdbaA9bag9baZdba24CzgWLgllhlaq09bK39s7W2i7U2xVrbxlp7lbW2XA/z1tqJ1lpjrR0X4bo/ddPXyfonoZQKUJooQBEROdIZY3j55ZdJTU1l4sSJ/OEPfyAnJ6dUGmst//vf/+jTpw/ffPNNhessLCzklVdeoX///uTk5DB27FjOO++8eH0EEalFYnkf9TScOh9fhEpgrf3Sba739BjmK9WosKiYbftz/e+Pblr1/k9ERKT26NWrF3PmzOHCCy/kL3/5C3//+9/p168frVq14sCBAyxatIidO3eSmprK0UcfXWrZt99+m40bNwKQm5vL7t27WbRoEQcPHiQhIYFbbrmFhx9+2INPJSI1USwDlAY49T4qspvQnStKDbf9QC5Fxdb/vp3uoIiI1BlnnHEGa9eu5dlnn+Wdd95h2bJlZGZmkpaWxnHHHcfvfvc7xo8fT7t2pbsoW7p0KUuXOr0DNGzYkMaNG3P66adzxhlnMG7cODp06ODFxxGRGiqWAcoWoJ8xpp61NmgXu26v7f3ctFILBT7e1TI9hdSkRA9LIyIi1S0tLY1bbrmFW26p+GntiRMnRtU8cLTLi0jtFMs6KP/FqaD+gjGmcdmZxpgM4DmgPfB2DPOVarR132H/a1WQFxEREZFYi+UdlIeBC4ArgF8aYz4ANrrzOgDnABnAejet1EKlK8ir/omIiIiIxFYse5LfZ4zpDzwLDAcuDpJsFnCNtTYzVvlKfCUnJ5d6v3lf7JsYTktOi8l6oiiBx/mLp+p5vP/TdPyJiIgEimlvSNbabcD5xphjgDOBo9xZ24DPrLUbYpmfxN/YsWNLvd+yL/ZNDM8ZOycm64miBB7nL54a7PH+n6PjT0REJFBcumt1AxEFI0egLZkldVDaqYlhEREREYmxWPYkv94Y80gE6R42xqyLVb4SX19++SVffvklALkFRezOyvPPi9UdlCe+fIInvnwiJuuqYgncQeqkH59wBq888YQziIiICBDbVrw6Ai0iSNfcTSu1wIoVK1ixYgUAWwMqyCcmGNo0So1JHjNWzGDGihkxWVcVS+AOUidtmuEMXpkxwxlEREQEiNMjXhVoCBR4kK9Uwfjx4/2vtwQ0MXxU41TqJcYmvl04fmFM1hNFCTzOXzw1zOP9v1DHn4iISKBqC1CMMQnAccBZwObqyldip3QTw+oDRURERERiL6oAxRhTVGbSlcaYKytaDPhXNPlK9Vm8eDEAvXv3jksLXgBTFk8BYHzv8RWkjJcp7tir/MVTa93938Wj/T/FzX+8jj8RERGI/g7KFsC6r9sDh4A9IdLm4zQ3/D/g71HmK9WkdIAS2It87FrwUoAinlqnAEVERKQmiSpAsdZ29L02xhQDr1trr462UFIzlXrEK0adNIqIiIiIBIplHZSzgB0xXJ/UMIGPeLVTHRQRERERiYOYNTNsrZ1nrV0Vq/VJzXLgcAEHcwv972P5iJeIiNR8xhg6duxYatrGjRsxxjBo0CBP8o/Gpk2bePLJJznnnHNo3bo1SUlJNG/enHPOOYf//e9/IZfr2LEjxpiQw48//lhumaVLlzJgwABSU1Np27YtEydOpLi4OOj6p0+fjjGG2bNnV/mz7d+/n2bNmnHxxReXml5UVMRrr73GrbfeyoABA2jYsCHGGMaNG1flvAA+//xzzjvvPJo2bUpaWhqnnXYa06ZNC5l+1qxZ3HXXXQwZMoTGjRtHdQxNnTq13D5ISkqiXbt2XHbZZf5H1YM5dOgQjz32GGeccQbNmzcnJSWFdu3acfHFF/P++++HXG7ixIkYY5g4cWLQ+V988QUZGRlhj5NQw9SpUwEYOXIkrVq1Ijs7u0rbpbar8h0UY8y51trQey/y9ZxnrX0v2vVIfAXePUlNSqBFWoqHpREREYFPP/2Us846iyuvvNJ/YRepK664gs8//5yUlBT69u1L69atWb9+PbNnz2b27NncdNNNPP744yGXv/LK4G0CNWrUqNT7gwcPMmTIELKysjj77LNZvXo19957L6mpqdx5552l0mZnZ3PrrbcycuRIhg0bVqnPE+jBBx8kMzOTe+65p9T0rKwsRo8eXeX1BvPmm28yevRoiouLGTBgAM2bN2fu3LlceeWVLFu2jL/+9a/llrniiis4cOBATMvRuXNnzjzzTMDZjosWLWL69Om8+eabvPHGG4wYMaJU+qVLl3L++eezZcsW0tPTOeOMM2jcuDHr16/3L3PxxRfz0ksvkZIS+TXPZ599xrnnnkt2djaPPPIIK1euLDU/OzubN998Ewh+DHXp0gWAP//5z5xyyilMmjSJ++67r1Lb4kgQzSNes4wxXwEPA7OstWVb9ArJGFMPOB+4E+gDJEZRDqkGW8s0MWyM8bA0IiJSE7Rt25YffviBBg3i/9jvDz/8QFJSUszW165dO5588kmuvPJK0tPT/dNnzZrFyJEjeeKJJzjnnHM4++yzgy4faUD07LPPsmfPHqZPn87o0aPJzc3l1FNP5ZFHHuGWW24p9Znuv/9+9u3bxxNPPFHlz7V9+3aefPJJzj//fHr27FlqXlJSEmPGjKFPnz6ceuqprFq1iquuuqrKee3bt4+rr76aoqIi3nzzTS644AIAdu7cyZlnnsljjz3GL37xi3J3Ry688EKOP/54+vTpQ0FBQchtXBlnnnlmqX1SUFDAhAkTmDJlCr/73e8455xzSE5OBpy7Z2eddRaZmZn8/ve/59FHH6Vhw4b+ZZcvX85ll13G66+/7v9skZg/fz7Dhw8nOzubxx57jJtvvrlcmo0bN/rXF+4Y6t27N8OGDeOxxx7jhhtuoFmzZhGV4UgRzSNe44CjgJnADmPMM8aYS40xnYMlNsZ0McZcZox5FqeuyhtAK3c9UsOVbsFL9U9ERMS54O3WrRvt27ePe17dunWjc+eglxhVMn36dK677rpSwQnA8OHDufpqp72fV199Nep8lixZQv369bnkkksASE1N5fLLL2f//v1s2rTJn2716tVMnjyZO++8M6pH2V544QXy8vIYO3ZsuXkNGzZk2rRp/N///R/9+vUjNTW1yvkATJkyhYMHD/LLX/7SH5wAtGrVikmTJgHw2GOPlVvu+eef59Zbb2XQoEHltn+sJCUlMXnyZNLS0ti+fTtff/21f94111xDZmYm48aN4+mnny4VnAD07NmTuXPn0rJlS9566y1mzJhRYX7z5s3jvPPOIzs7m8mTJwcNTirrV7/6FYcOHeLFF1+Mel21TZUDFGvtNKArcCuQCVwDvAKsNsYUGGN2G2PWu+MCYBXwMvAbnKaIbwKOs9a+FO2HkPgr3Umj6p+IiEjoOii+egETJ05k3bp1XHLJJTRv3pyMjAzOPfdc/2MvhYWFPPTQQ3Tt2pXU1FS6dOnCU089FTSvsnVQxo0bx1lnnQXAiy++WOo5/lB1AyJ10kknAbBt27ao1gOQmZlJo0aNSj150KRJE/88n+uvv5527dpx++23Vzkvay3PP/886enpDB8+vOqFjtCsWbMAuOiii8rNGz58OKmpqcyZM4fc3Ny4lyWYhg0b0rVrVwC2bNkCwIoVK5g9ezapqalBHz/zadmyJXfffTcQPMgK9Mknn3DeeeeRk5PDP/7xD2644YaYlH/kyJHUr1+f5557Librq02ibWY4D3gCeMIYMwD4BdAfOBFo5g4Ah4GlwAKcx8HmR5OvVL/N+9TEsIiIVM6GDRs47bTTaNWqFUOGDGHlypV88MEHfPvttyxbtozf/e53/noknTp14pNPPuG6664jOTmZ3/zmN2HXfeaZZ7Jjxw5mz55dqv4BQK9evaIq9/r16wFo3bp1yDSPPvoo69atIyUlhR49ejBq1ChatGhRLl379u358MMP2b9/P40bNwZg1apV/nkAb731Fh9++CH/+9//orqrsXLlSjZs2MDQoUOjvjsSiaVLlwLO40hlJScn07NnTxYtWsTq1as58cQT416eYLKysgD89Ujee8+p9jxs2LAKH5u6/PLL+b//+z8WLVrEnj17aN68ebk0c+fOZcSIERw+fJhnnnmG3/3udzEre1paGn369GHBggWsX7+eTp06xWzdNV3Mmhl2gw5/4GGMaQg0Ag5Ya3NilY9UL99J59VPDvqnxbqJYe86aPSXwOP8xVOdPd7/6qBRjmDTpk3jzjvv5KGHHsIYg7WWq6++mqlTpzJ48GASEhJYs2aN/8J+7ty5DBkyhAcffLDCAGX8+PF06dKF2bNnl6t/EI39+/f7W6D65S9/GTJd2TsdN910E08++aT/8TCf8847j2effZZbb72VRx99lOXLlzN16lROOeUUWrVqxeHDh7n55psZPnw4559/flRlX7BgAQCnnnpqVOuJxMGDB/0V3du1axc0Tbt27Vi0aBGbNm3yJEBZuXKlP9j05e8Lqvr06VPh8k2bNqVjx45s2LCBpUuXMnjw4FLzFyxYwKRJk8jNzeXZZ5+t8JititNOO40FCxYwb948BSix4AYlCkxqud69e2OtZetbH/inxbqJYQUo4imvepD3UYBSa02ZMiWidOPdfbx48WIWL17MmDFjSElJYfny5SxcuLDC5Xv06EG/fv0A54K/Q4cODBw4EIAZM2b4/yGuKH8vdOrUifvuu8//eJMxhptuuompU6eycuVK5syZU+quw+DBgzn55JP57rvv2LhxY0ybFY7U7373O3bv3k3fvn0ZNWpUufkjRozgrLPO4pRTTqFFixasX7+eF154gb/97W+MHz+eZs2alQpsRowYwdlnn83zzz/P888/Dzj/5vsqwj/88MPs2LGDuXPn+pex1pKXl1fpuyDLli0D4Ljjjqv0566swOZvQzWS4KvbUdExGms5OTksXLiQa6+9lqKiIoYMGeJvHWvv3r0AQe92BdOyZUs2bNjAnj17ys37+OOPAbj44ovjEpyAU/cKnLpMdUnM+kGRI9furDzyCkvaa9cjXiIiEolBgwaVa3nL9y9wUlJS0L4vfPO3b98e9/KV9cgjjzBjxgyaNm3KK6+8ErTFyr///e+MGjWK9u3bU79+fXr06MFjjz3GM888g7WWO+64o9wy7777Ls899xzXXHMNd955J9999x39+/dn/fr1PProo9x222107tyZw4cPc80115CWluZf9yeffBJx+Xft2gWU1HGpSwLrIaWlpTFkyBBWrVpFnz59eOml+FR3Pv3000lMTOT111/nmWeeiUseTZs2BWD37t1xWX9NFbc7KHJkmDJlCjl5hcDRADSqn0RGauyaeQToO6UvAAvHV/xPYnz0dcde5S+emu3u/2Ee7f++bv4R/JMuNUtl70z07t271LP6PXv2LNcMbEXKtswU6z4tYq1t27blpqWlpQFO/Y7ExPK9DPjm5+XlxbdwZbz88sv84Q9/oGHDhsyaNavSj9P8+te/5k9/+hOrVq0qd/cnKSmJ8ePHlztmbrjhBlq2bMkf//hHAO644w6ef/557rnnHnr27MnDDz/M+eefz5o1a2jTpk2FZfA9chWvlrEC+fYTOB0eZmRklEuTk5NTbeUJrIeUlJREq1at6N+/P0OHDiUhoeT/eF+9k0gv+H1BX7D6J+eccw4TJkxg3LhxXHvttaSlpTFmzJhoP0opvu26f//+mK63plOAImH16NGD5T8dgC1ONzfx6EF+dA+vf2C9zl881cHj/V/DLzBFohF4YViZedXt3Xff5aqrriIpKYm33nqLvr4/DiohISGBzp07s2vXLrZv317h42nvvfce7777Lm+++Sb169cnJyeHf/7zn4wZM8bfelSvXr3o1KkTTz31FA888ECFZfB1Elkdj1RlZGTQqFEjDhw4wNatW+nevXu5NFu3bgWgQ4cOcS9PpPWQTjrpJF555RUWLVpUYdp9+/axceNG/3LBjB07luzsbK699lquuuoq0tLSgj4aWFW+oNPXwEJdUXPODlIj9evXj9wmJe3OHx3jCvIAN/W7iZv63RTz9VaiBO4gdVK3m5zBKzfd5Awi4ol58+Zx8cUXY63lP//5T1SdBvqaDS7br0ZZeXl53HDDDQwdOtTff8i6desoKCgoVcH9mGOOoUWLFuV6Iw+lZcuWgHNhXR18F+2LFy8uN6+goIDly5eTmprqb+q3JjjvvPMAmD17doXbafr06VhrOfXUU4PeQfGZMGECjzzyCEVFRVx66aV8+OGHMSuv75iKtM7MkUIBilSoVB8oqn8iIiI1hK9n8MLCwiotv3jxYkaMGEFeXh5TpkzhwgsvrHJZVqxYwapVq2jQoIG/YnMof/3rX9m0aRNPPvlkuXmHDh0q9z7Su02+gMHXjHG8+fpaeeONN8rNe/fdd8nNzWXIkCHV0uRxpHr06MHZZ59Nbm4ut912W8h0u3fv5r777gPglltuqXC9t99+O3/605/Iz89n1KhRfPbZZzEp7w8//ABE33R2baMARcKaNm0arCnptiYenTQOmTaEIdOGxHy9lSiBO0idNHeIM3hlyBBnEJFKO+qoo4CqXZCvWrWKc845h4MHD/K3v/2NcePGVbjMe++952+5KdCyZcv8d2HGjx/vD5yC2bx5Mw899BA33XRTqda2unTpQkpKCq+99hoFBQUAvP322+Tk5NCjR4+IPlP//v0B+OabbyJKH6nBgwfTrVu3Ur2xg1MPKyMjg//+97+89dZb/um7du3yN8McycV9dXv22Wdp3LgxL7zwAtdff325oHDlypUMGTKEnTt3MmrUqIjret1///3ccMMNHDp0iOHDh/Ptt99GXVbfNve13FdXqA6KhJWfn+8/UQK0i8MdlOz87IoTxZXX+YunCj3e/9k6/kSqqmPHjpx44oksWrSI0047jR49epCYmMiIESMYMWJE2GUvvfRSdu/eTYsWLfj222+DBijdunXjzjvv9L//+uuvuffee+nQoQMnnXQSDRo0YP369SxevJjCwkIGDRrEX/7yl7D53nzzzTRp0sRfz8SnQYMGXH/99fz1r3+lV69eHHvsscyePZuMjAyuvfbaiLbH8ccfzzHHHMNXX31Fbm5u0DsXEyZM8D+S5Wtyd9asWaXq3ZRt/nrdunVs2rSp3IV806ZNeeGFF7jkkku46KKLGDRoEM2aNWPOnDns37+fm2++OWhLbffff7+/F3pfc8WLFy8uVYaZM2dG1DBAVXTs2JFPPvmE888/n3/84x+8+OKLnHnmmTRu3Jj169fz9ddfY63loosuqnQLYE888QTZ2dk8//zzDBs2jHnz5kUcYJaVnZ3NokWL6NatW53qAwViEKAYY84DRuI085QHLAP+ba3dEO26xXsWKCgKaGI4DnVQREREqurNN9/ktttuY8GCBXz77bcUFxfTrl27CgMU37P9u3fv5sUXXwyaZuDAgaUClGHDhrFlyxa++eYbPv/8cw4cOEBGRgZnnnkmV1xxBVdddVXQlsl85syZw5tvvsmrr75aqhUsnwcffBBrLS+//DJr167llFNO4fHHH/fXLamIMYbx48dz11138c4773DxxReXS7Ny5Uq++uqrUtP27NkTtJ+PSFx44YXMnz+fBx54gIULF5Kfn0/37t257rrruPLKK4Mus27dunJlyMrKKjUt3q249erVi1WrVvH000/z1ltvsXDhQnJycmjevDkXXHABv/71rzn33HMrvV5jDP/617/Iyclh+vTpDB06lAULFtC5c+eKFy5j5syZ5Obmxq2PlZrMWGurvrAxrwCX+t66Y4sTqFxqrf1fdMU7shhjVnTv3r37ihUrvC5KxJ7+579Ysf0gs/KOB+DH+88hNSn0ybcq1MyweErNDEsZxcXF/keGjjvuuBrV2pRIRXbs2MExxxzDkCFDeOedd7wujkRh2LBhfPbZZ2zevNnfPHJ1quy5sEePHqxcuXKltbZqt4wCVPmsa4z5NXAZUARMBf4PuAvnKi8VmGaMaRRtAcVb+QEdNLZMT4l5cCIiIiKx07p1a66//npmzZrF999/73VxpIoWL17Mhx9+yC233OJJcOK1aP4WuhIoBs611v7aWvsPa+3D1tozgBeBdOCCWBRSvJMX8HhXe7XgJSIiUuP98Y9/pEmTJtx7771eF0Wq6L777qNly5b+xgbqmmjqoJwALLTWzg0y7yGcAOaEKNYvNUDgHRQ1MSwiIlLzNW7c2F8BXmqnt99+2+sieCqaOygZwLoQ89YFpJFaLC8wQIlDE8MiIiIiIoGiCVAMTv2Tcqy1vqta1Sys5fILS3ZxPJoYFhEREREJpABCwir1iJeaGBYRERGROIu2H5QrjTHBG7l2mhsONd9aa9VJZA13OL+Idw8f639/dNP4POL10ZiP4rLeSpTA4/zFUz/3eP9/pONPREQkULRBgqk4SUyXk2q0NfMQhTjNCtdLMLRpFJ8AJT0lPS7rrUQJPM5fPJXk8f5P1/EnIiISqMoBirVWj4cd4bZkHuKYxH0AFDVqR2JCfOLK6cunA3Bpz0srSBkv092xV/mLpza6+7+jR/t/upv/pTr+REREIPo7KHIE27LvMN3r7QRgf9NjK0hddZMXTga8DFAmu2NdINZJqyY7Y68ClMlu/gpQREREAAUoEsaWfYf4OK8zAL+MYwX5maNnxm3dEZbA4/zFUwM83v8zdfyJiIgEUoAiIW3JPMRhkoH4dtLYJr1N3NYdYQk8zl88Vd/j/d9Gx5+IiEggBSgS0pZ9h2mXsB+AdnHspHHW6lkADO86PG55VFACd+xV/uKpn9z939aj/T/LzX+4jj8RERFQgCIhWGvZvO8QA5O2A9A+jndQ7p9/P+BlgHK/O9YFYp203N3/XgUo97v5K0AREREB1FGjhLAnO5/svEL/+2OaN/SwNCIi4jVjDB07diw1bePGjRhjGDRokCf5R8NX9lBD69atQy6bmZnJDTfcQIcOHUhJSaFDhw7ceOON7N+/P2j6pUuXMmDAAFJTU2nbti0TJ06kuLg4aNrp06djjGH27NlV/mz79++nWbNmXHzxxaWmb9q0iVtuuYUBAwbQrl07UlNTSUtL4+STT+bBBx8kJyenSvl9/vnnnHfeeTRt2pS0tDROO+00pk2bFjRtZmYmf/jDHxgyZAgdOnSgQYMGNGjQgB49enD77bezZ8+eSuU9derUcvsuKSmJdu3acdlll7F48eKQyx46dIjHHnuMM844g+bNm5OSkkK7du24+OKLef/990MuN3HiRIwxTJw4Mej8L774goyMjLDHV6hh6tSpAIwcOZJWrVqRnZ1dqe1xpNAdFAlq496Sk1S9BEPjBskelkZERKS8Tz/9lLPOOosrr7zSf2FXWa1ateKcc84pN71Ro0ZB0+/Zs4d+/fqxdu1aOnXqxMiRI1mxYgV/+9vfeP/99/nyyy9p2rSpP/3BgwcZMmQIWVlZnH322axevZp7772X1NRU7rzzzlLrzs7O5tZbb2XkyJEMGzasSp8H4MEHHyQzM5N77rmn1PTvv/+exx9/nNatW9OtWzf69+9PZmYmCxcu5E9/+hOvvvoqCxYsoEmTJhHn9eabbzJ69GiKi4sZMGAAzZs3Z+7cuVx55ZUsW7aMv/71r6XS//TTT/zlL3+hadOm9OjRg379+pGVlcWiRYt49NFHeeWVV/jss8845phjKvWZO3fuzJlnngk423HRokVMnz6dN998kzfeeIMRI0aUSr906VLOP/98tmzZQnp6OmeccQaNGzdm/fr1/mUuvvhiXnrpJVJSUiIux2effca5555LdnY2jzzyCCtXriw1Pzs7mzfffBOAK68s35d5ly5dAPjzn//MKaecwqRJk7jvvvsqtS2OCNZaDdU0ACu6d+9ua4PXvtlsO9zxrp3w50ftbQ88Hte8Tn/udHv6c6fHNY8KSuAOUid9cLozeOX0051BaoyioiK7cuVKu3LlSltUVOR1cWoMwHbo0KHUtPz8fPvDDz/YTZs2xT3/H374wa5du7bUtE8++cQC9sorr6z0+jZs2GABO3DgwEotd8UVV1jAXnDBBbagoMA//frrrw9alkmTJlnATp8+3Vpr7eHDh23Pnj1t48aNbX5+fqm0t99+u61fv77dsGFDpT+Pz7Zt22xKSoodMWJE0HnLly8vN/3AgQN28ODBFrC33HJLxHnt3bvXZmRkWMC++eab/uk7duywXbp0sYD95JNPSi2zf/9+u2jRonLfrcOHD9sxY8ZYwF544YURl+Hf//530O2en59vx48fbwHbpk0bm5eX55+3ceNG26RJEwvY3//+9zY7O7vUst9//73t2bOnfz+Xdc8991jA3nPPPaWmz5s3z6alpVnAPvbYY0HL6zvunEvw8IYNG2YbNGhg9+zZU2HaeKjsubB79+4WWGFjcM2sR7wkqMA7KCn1Ej0siYiI1FRJSUl069aN9u3bxz2vbt260blz57jnE8727dt59dVXSU5O5umnn6ZevZIHUR599FFatGjByy+/zK5du/zTlyxZQv369bnkkksASE1N5fLLL2f//v1s2rTJn2716tVMnjyZO++8M6pH2V544QXy8vIYO3ZsuXlt2rShR48e5aZnZGT4H1f6+OOPI85rypQpHDx4kF/+8pdccMEF/umtWrVi0qRJADz22GOllmnUqBGnnHIKCQmlL0FTU1N56KGHKl2GUJKSkpg8eTJpaWls376dr7/+2j/vmmuuITMzk3HjxvH000/TsGHpx9h79uzJ3LlzadmyJW+99RYzZsyoML958+Zx3nnnkZ2dzeTJk7n55puj/gy/+tWvOHToEC+++GLU66ptFKBIUBv3HPK/Tqmnw0RERMoLVQfFVy9g4sSJrFu3jksuuYTmzZuTkZHBueee63/spbCwkIceeoiuXbuSmppKly5deOqpp4LmVbYOyrhx4zjrrLMAePHFF0s9xx+qbkC0PvjgA4qLi+nfvz+tWrUqNS8lJYXzzz+foqIi3nvvPf/0zMxMGjVqhDHGP833CFVmZqZ/2vXXX0+7du24/fbbq1w+ay3PP/886enpDK9kwxtJSUkAJCdH/kj3LLcVwosuuqjcvOHDh5OamsqcOXPIzc2NWxnCadiwIV27dgVgy5YtAKxYsYLZs2eTmppa7vGzQC1btuTuu+8GygdZZX3yySecd9555OTk8I9//IMbbrghJuUfOXIk9evX57nnnovJ+moTXXlKUBv2BNxBSdJhIiIilbdhwwZOO+00li9fzpAhQ+jYsSMffPABgwYNYseOHVx00UVMmjSJHj16MGjQILZs2cJ1110X0QXZmWee6a+n0blzZ6688kr/0KtXr4jLuHPnTu655x5++9vfctttt/HGG2+Qn58fNO3SpUsB6N27d9D5vunLli3zT2vfvj27d+8uVYF+1apV/nkAb731Fh9++CGTJ08mNTU14rKXtXLlSjZs2EDfvn0rtZ5Dhw7x4IMPAlQqsAm3PZKTk+nZsye5ubmsXr26wnUVFBT4A8vKBlfhZGVlAfjrkfiCx2HDhtGsWbOwy15++eUYY1i0aFHIyvtz587lF7/4BYcPH+aZZ57h2muvjVnZ09LS6NOnDz/++CPr16+P2XprA1WSl3KstXrES0REojZt2jTuvPNOHnroIYwxWGu5+uqrmTp1KoMHDyYhIYE1a9bQokULwLnYGzJkCA8++CC/+c1vwq57/PjxdOnShdmzZ3PmmWdWuZL8jz/+WK4Scvv27Xn99dc57bTTSk3fvHkzAO3atQu6Lt/0wEe3zjvvPJ599lluvfVWHn30UZYvX87UqVM55ZRTaNWqFYcPH+bmm29m+PDhnH/++VX6DD4LFiwA4NRTTw2bLjMzk5tuugmA3bt389VXX7F3715GjhzJrbfeGlFeBw8e5MCBA0D47bFo0SI2bdrEiSeeWG7+r3/9a4qKisjMzOTbb7/lp59+4owzzvA/HhatlStX+i/sffn7gqo+ffpUuHzTpk3p2LEjGzZsYOnSpQwePLjU/AULFjBp0iRyc3N59tlnKzxmq+K0005jwYIFzJs3j06dOsV8/TWVAhQpZ3d2Hofyi/zv9YiXiEh5faf0jSjdwvELAZiyeApTFk/hozEfkZ6SzvTl05m8cHKFy4/uMZqb+jkXk0OmDWFgh4HcPdB59GTUjFFsz9oeUf5e6NSpE/fdd5//8SZjDDfddBNTp05l5cqVzJkzxx+cAAwePJiTTz6Z7777jo0bN8a0WeGyUlJS+P3vf8/o0aM5/vjjqV+/PitWrOD+++/nvffeY9iwYSxZsoQOHTr4l/E1+dqgQfC+wXx1GXz/2gOMGDGCs88+m+eff57nn3/en/cTTzwBwMMPP8yOHTuYO3eufxlrLXl5eZW+m+K7c3PccceFTZeTk1OuXsMll1zCP/7xD+rXj6xj5sDmbyuzPQK9+OKLFBWVXG8MGjSIf//73xXe2ahITk4OCxcu5Nprr6WoqIghQ4b4W8fau3cvQKnjLpyWLVuyYcOGoHdQfHVlLr744rgEJ+DUvQKnLlNdoitPKSew/snehKZ0O65rXPMbfuxwhh/rZSd1w1EnjXXYUcOdwSvDh6uTRjliDRo0yF+vwMf3L3BSUlLQ/lN887dvDx94RatNmzY8/fTTDBw4kJYtW5Kenk7fvn2ZNWuWvxK7r9J2tN59912ee+45rrnmGu68806+++47+vfvz/r163n00Ue57bbb6Ny5M4cPH+aaa64hLS2N+vXr06NHDz755JOI8/FVzq+omeB27dphraW4uJjNmzfz/PPPM3/+fE444YSw/YbEWmFhIdZatm3bxuuvv87WrVs54YQTqtQHTGA9pLS0NIYMGcKqVavo06cPL730UhxKD6effjqJiYm8/vrrPPPMM3HJw9dk9e7du+Oy/ppKd1CknI0B9U/yWhzHwIFnxDU/3z+B3vE6f/HUCR7v/7t1/NVWlb0zMb73eMb3Hu9/f2nPS7m056WVWsecsXNKvZ85emallq9ubdu2LTctLS0NgNatW5OYWP4RYt/8vLy8+BYujD/+8Y/85z//KXeh7CvboUOHgi3m7+gwPT291PSkpCTGjx/P+PHjS02/4YYbaNmyJX/84x8BuOOOO3j++ee555576NmzJw8//DDnn38+a9asoU2bNhWW2/fIVdn8QzHGcPTRR3P11Vdzwgkn0K9fP6666iqWLFlSqlJ/ML5tAc72yMjIKJcm1PYoq02bNlx00UWceuqpnHDCCYwbN461a9eWa10rnMB+UJKSkmjVqhX9+/dn6NChpVoM892difSC3xf0NW/evNy8c845hwkTJjBu3DiuvfZa0tLSGDNmTMRljoRvu4bqBPRIpQBFytkQUP/kmGbqQV5ERKqmbFOykc7z2rHHHguUv4vjq9S+devWoMv5pgc+FhbKe++9x7vvvsubb75J/fr1ycnJ4Z///Cdjxozxtx7Vq1cvOnXqxFNPPcUDDzxQ4Tp9nUuGeqQqnFNPPZXjjjuOZcuWsWHDhgrrO2RkZNCoUSMOHDjA1q1b6d69e7k0ldkevnT9+/fnvffe46uvvuLnP/95xOWPtB7SSSedxCuvvMKiRYsqTLtv3z42btzoXy6YsWPHkp2dzbXXXstVV11FWloao0aNirjcFfEFnY0bN47ZOmuDmnt2EM8E3kFpvuvbiNr/jsaoGaMYNSN2X+YqlMAdpE6aP8oZvDJqlDOISI3ha/637D/4vovUUI9B+aYHqxAeKC8vjxtuuIGhQ4f6+w9Zt24dBQUFpSq4H3PMMbRo0aJcb+ShtGzZEnAurKvCd5cg0rsL4bZHQUEBy5cvJzU11d/UbzzKUFnnnXceALNnz65wO02fPh1rLaeeemrQOyg+EyZM4JFHHqGoqIhLL72UDz/8MGbl9R2LkdaZOVIoQJFyApsYbtK0if/5x3g5tumxHNv02LjmUUEJ3EHqpPRjncErxx7rDCJSab7+MgoLC2O63jfffBMo33zuOeecQ0JCAgsWLCjVGSM4Qcc777xDYmKi/yI4lL/+9a9s2rSJJ598sty8so+PHTp0KOK7Tb6AwdeMcWUcPHiQ7777DmMMxxxzTETL+JoDfuONN8rNe/fdd8nNzWXIkCERV/YvKiris88+A4hbp5w9evTg7LPPJjc3l9tuuy1kut27d/tbd7vlllsqXO/tt9/On/70J/Lz8xk1apT/c0Trhx9+AKhU09lHAgUoUoq1lk17S06OZwz8OUOHDo1rnpOGTmLS0Ng0KVjFEriD1EknT3IGr0ya5AwiUmlHHXUUULUL8ueee44ff/yx3PS33nqLO++8E6BcnxZt2rThsssuIz8/nwkTJpQKjG6//XZ2797Nr371K/+djGA2b97MQw89xE033VSqta0uXbqQkpLCa6+9RkFBAQBvv/02OTk5QXt/D6Z///4AfPPNN0HnT5kyJWh/Gj/99BOXX345WVlZDB8+vFz5Bw8eTLdu3Ur1xg5OU88ZGRn897//5a233vJP37Vrl7/DybIX99OnT+f7778vV4Z9+/bx29/+lvXr13PCCSdwyimnRPCJq+bZZ5+lcePGvPDCC1x//fXlgsKVK1cyZMgQdu7cyahRoxg9enRE673//vu54YYbOHToEMOHD+fbb7+Nuqy+bT5w4MCo11WbqA6KlLIrK4/DBSVN/nVsrjooIiJSM3Xs2JETTzyRRYsWcdppp9GjRw8SExMZMWIEI0aMCLvsK6+8wm9/+1tOPPFEunbtSnFxMStXrvQHLbfddlvQugSTJ09m4cKFvPnmm3Tr1o0+ffqwYsUKli9fzrHHHsvjjz8eNt+bb76ZJk2a+OuZ/H97dx4e49U+cPx7IrIgEUuQUomdUGsbaoslpdRS1dJFi/5Cq3allFLV0toqfd9SSlGlxUtp0aKKVO1LLU3slaBiiyIisSTn98csnUkmyWSdLPfnup5rzHOe55wzc6bp3HM2kyJFijB48GBmzJhB/fr1qVatGps2bcLT09Puzf9q1apFpUqV2Lt3L/Hx8cl6LpYuXUq/fv3w9/enZs2aFC5cmAsXLnDw4EHu3btH7dq1+fLLL5Ple/bsWSIjI5N9kS9ZsiQLFy6kR48ePP/887Rq1YpSpUqxZcsWbt68yYgRI5Kt1LZx40ZeeuklKleuzGOPPUaRIkX4+++/OXToEHfu3KF8+fKsWLEizUn6meHn58e2bdvo3Lkzn3/+OV9//TXNmzfHy8uLv/76i3379qG15vnnn0/3CmCzZs3izp07fPXVV7Rv357Q0FC7A8yk7ty5w4EDB6hZs2aB2gMFJEARSVgO7ypV1IVff14PkKUTvpJ6dY1hxYtvumXPMoB21MD46KjyhUPtMrZ/Uwe1v2nFl2xaBlOI/G716tWMGjWKHTt2cPDgQRITE6lQoUKaAUq/fv3w9vbm8OHDbN68mbi4OLy9vXnuuecYMGAAQUFBNu8rXbo0+/btY+LEiaxdu5Y1a9ZQtmxZhgwZwgcffJDqZOYtW7awevVqvvvuO6tVsEwmT56M1pqlS5dy5swZGjVqxKeffppqj4wlpRTBwcGMGzeOdevW8cILL1ilm5Yz3rNnD9u2bSMmJobixYvTpEkTunfvTv/+/c07rture/fu/Pbbb3z00Ufs2bOH+/fv4+/vz6BBg+jdu3ey64ODgylatCg7d+5k586d3Lx5k2LFilGnTh06d+7MwIEDzZP9s1P9+vU5efIkc+bM4fvvv2fPnj3ExsZSunRpnnvuOf7v//6PDh06pDtfpRRffvklsbGxLF++nKeeeoodO3ZkaMjamjVriI+Pz7Y9VnIzpbV2dB0KDKVUmL+/v39YWJijq5Ki5fvOM+Z7Q9drI98SdChsmJiXdGnErGTa7Mxxm4mZNltz3GZmwoE2Gdu/vYPav4mx/D3y+cstEhMTzUOGatSokatXmxIiqcuXL1OpUiWCgoJYt26do6sjMqF9+/b8/vvvnD9/PtObV2ZEev8W1q5dm/Dw8HCtdca6jCzIX11hxXKJYd9StneGFUIIIUTuVK5cOQYPHsyGDRtszvUQecOhQ4fYvHkzb7/9tkOCE0eTAEVYibTYRV72QBFCCCHynrFjx1KiRAk++OADR1dFZNCkSZMoU6aMebGBgibPz0FRSrkD7wIvAhWBG8BGYLzW+m878/ACOgKdMYz3KQ/cA8KBb4E5WusHWV75XCjCogfFr3RRrpxzYGWEEEIIkW5eXl5ER0c7uhoiE9auXevoKjhUnu5BUUq5AVuB8UAx4AfgAtAX+EMpZe+SByOBZUBP4B/ge2AfUA8IAbYqpfL9eKfERG0VoFSSFbyEEEIIIUQOy9MBCvAehh6P3UB1rXVPrXVj4G3AG1hoZz6xGDbC8NNaN9Rav6i1bgs8BpwHmhvLyteuxMQT/yDR/FyWGBZCCCGEEDktzwYoSikXYJDx6UCt9R1Tmtb6U+AoEKiUSnOnH631x1rr0Vrr80nOnwbGGJ++lDU1z70slxguXcyVYq55fgSgEEIIIYTIY/JsgAI0A4oDZ7XWf9hIX2V87JzJco4YHx/JZD65nuUO8n6ygpcQQgghhHCAvByg1DM+Hkoh3XS+bibLMc1juZzJfHK9iOvWE+SFEEIIIYTIaXl5DE9F4+PFFNJN530zWc5Q4+MP9t6glEppJ8b0byOagyyHeJkmyGfnDvImS7otyfYy0qiBg8sXDvWkg9t/iXz+hBBCCEt5OUApZny8m0K66du2R0YLUEq9CQQBN4FPMppPXmG1xLBxD5Sc2Byoeqnq2V5GGjVwcPnCoTwd3P7V5fMnhBBCWMrLAUq2Ukq1AD4DNPC61vqSvfdqrWunkGcY4J81NcxaiYnaeg5KacMclIiICMNzP79sKzs0IhSAQL/AbCsjjRoYHx1VvnCoK8b2L+ug9g81lh8onz8hhBAC8naAYlq1K6XZ3KZJFDHpzVgpVQfDkC4XYIjWek36q5e3XL4dz72H/y4x7GvsQdmyZQsAwcHB2Vb26C2jAdgTvCfbykijBsZHR5UvHOqwsf3bO6j9RxvL3yOfPyGEEALydoBiWhK4QgrppvOR6clUKVUJ2AyUACZqrf+bserlLZYT5L09/l1i+Jlnnsn2suc8Myfby0ijBg4uXzjUEw5u/zny+RNCCCEs5eVVvEzL/zZMId10/qi9GSqlfIBfAB/gM631BxmvXt5yznIH+VL/ruDl4+ODj49Ptpbd0KchDX1Sasac0JCUP0Yi3yvZ0HA4SsOGhkOIXE4plWy4b0REBEopWrVq5ZDyM6NPnz4opdI8zp+32iINPz+/VK8/ceJEsrKOHDlCy5YtcXNzo3z58kycOJHExMRk1wEsX74cpRSbNm3K8Gu7efMmpUqV4oUXXrA6b2qvlI5y5cqlq5zt27enml+TJk1Svf/IkSO8+uqrVKhQAVdXV8qWLUurVq1YtGhRpurg7OxMuXLl6Nq1K9u2bUvx3ocPH/Lll18SFBRE2bJlcXV1xcfHh06dOrF8+XK01jbvW7x4MUop+vTpYzP95MmTlC9f3q7PV9Jj4sSJAAwbNgx3d/dkn7+CIi/3oOwEbgFVlFL1tdaHk6Q/b3xcZ09mSqkSwCYMK20tAoZnUT3zBOslhv8dNRcVFQWQrUHKoSjDitCOC1JMK1LLl8QC6Yax/R0VpBwyli9BihDptn37dlq3bk3v3r1ZvHhxuu5t3rx5imknT55kz549+Pr68uijj9q8pnfv3jbPFy9e3Or57du3CQoKIiYmhnbt2nHq1Ck++OAD3NzcGDNmjNW1d+7cYeTIkTz77LO0b98+Xa/H0uTJk/nnn394//33baaXLVuWp59+Os2626tKlSo2388qVVJevHTBggUMGDAArTVNmjShRYsWXLlyhcOHD7Ns2TL69u2brjpYvqb4+HgOHz7Mjz/+yLp165g9ezYDBgywuv78+fM888wz/Pnnn7i6utK8eXPKlCnDxYsX2bRpExs2bGDu3LmsWbOGEiVK2F2PEydO0Lp1ay5fvkybNm2oUKECSimra77++msAunfvTrFixazS6tevD8Do0aOZN28e7733HksK4mqPWus8ewAfYZjEvhMoanF+hPH89iTXDwJOAB8nOV8E2GW8ZwVQKJvqG+bv769zo/9bvF/7jl6vfUev17O3nTafnz9/vp4/f362lt14fmPdeH7jbC0jjRoYD1EgbWxsOBylcWPDIXKNhIQEHR4ersPDw3VCQoKjq5NrANrX19fq3P379/Xx48d1ZGRktpd//PhxfebMGatz27Zt04Du3bt3lpbVo0cPDehx48YlS/P19dWGr0/2mTZtmgb08uXLtdZax8XF6Tp16mgvLy99//59q2vfeecd7e7urs+dO5fhul+6dEm7urrqLl26JEs7d+6cBnRgYGCG87eU0ff/119/1UopXbVqVR0eHm6Vdu/ePX3o0KF01yHpa0pMTNQTJ07UgHZ3d9dXrlwxp928eVP7+flpQD/33HP62rVrVvdGRkbqli1bakA3btxYP3jwwCp90aJFNl93WFiYLlu2rAb0kCFDUqyz8ftmmu38xhtvaKWUDgsLS/W67JLev4X+/v4aCNNZ8J05Lw/xAkOAshdoCpxWSq1QSu0BZgLXgNeTXF8aqIFhCJelycCTQALwEPhKKbU46ZGNr8PhIlIY4iWEEEKkpHDhwtSsWZOKFSumfXEm1axZM9Vf5LPK7du3WbfOMPji1VdfzXR+hw8fxt3dnR49egDg5ubGyy+/zM2bN4mM/Hea7KlTpwgJCWHMmDGZGsq2cOFC7t27x2uvvZbZqmebwYMHo5Ti+++/p1atWlZpLi4uNGjQINNlKKUYP348VapUIS4ujs2bN5vTRo8eTUREBG3btmXlypWULl3a6t6KFSvy888/4+/vz969e5k5c2aa5YWFhdG6dWuuXLnCiBEj+OyzzzL9Gnr16oXWmrlz52Y6r7wmTwcoWut4oDXwIYb9UJ7FsDHjYqCh1vovO7My9d0VAl4Geqdw5EsJiZrzFksM+0qAIoQQwg4pzUExjdGfOHEiZ8+epUePHpQuXRpPT086dOhAeHg4YJgDMGXKFKpXr46bmxtVq1Zl9uzZNstKOgelT58+tG7dGjAMmbE1jj8jVq9eTVxcHE888QQ1atTIcD4m//zzD8WLF7ca5mMaMvTPP/+Yzw0ePJgKFSrwzjvvZLgsrTVfffUVHh4eObLITUbs3LmT8PBwWrVqxWOPPZatZTk5OVGvXj0ALly4AEB0dLR5iNVnn31GoUKFbN5bpEgRpk6dar4uISEhxXL+/PNPWrduzdWrVxk1apRdAY09mjVrRsWKFVm6dCnx8fFZkmdekZfnoACgtY4DJhiPtK6dCEy0cb4P0Cdra5Z3RN2K437Cv5P1LOegCCGEEBl17tw5AgICKFu2LEFBQYSHh7Nx40YOHjzI0aNHefPNN83zSCpXrsy2bdsYNGgQLi4u9OvXL9W8mzdvzuXLl9m0aVOyORCmcfwZsXTpUsDw63Vqpk+fztmzZ3F1daV27dp069YNb2/vZNdVrFiRzZs3c/PmTby8vADDHBdTGsD333/P5s2b+fHHH3Fzc8tw3cPDwzl37hxPPfVUqvlcuXKF999/n6ioKIoXL07jxo3p0qULLi4uGSr39OnTvPvuu0RHR1O6dGmaN2/O008/jZNT8t/Bt27dCkDTpk2Ji4tj+fLlHDx4kEKFCtGoUSNeeOEF3N3dM1QPW2JiDLtNuLq6msuPj4+nXr161K5tc9s6sw4dOlCiRAmioqI4fPgwjRo1SnbN0aNHadu2LdevX+fdd99lypQpWVZ3pRSBgYF888037Nq1izZt2mRZ3rldng9QROZFXP+396SspytFXORjIYQQIvOWLFnCmDFjmDJlCkoptNa8/vrrLF68mLZt2+Lk5MTp06fNX+x//fVXgoKCmDx5cpoBSnBwMFWrVmXTpk00b9483ZPkbfn777/Zvn07zs7OvPjii6lem7SnY/jw4fz3v//l9detR5d37NiRefPmMXLkSKZPn86ff/7J4sWLadSoEWXLliUuLo4RI0bwzDPP0Llz50zVf8eOHQA88cQTqV534sQJJk2aZHWuYsWK/O9//yMgICDd5e7atYtdu3ZZnXvsscdYvXo11apVszpv6j1LTEykQYMG5mDNZPz48axfvz5LeleuXr3K3r17Aahbty5gWDkM4PHHH0/z/kKFClG/fn22bdtmM0A5ceIEbdq0ITo6mvHjxyd7T7NCQEAA33zzDaGhoQUqQMnTQ7xE1rBcYthPhncJIYSdmth5mCwwPjftH7zczvtnWeQRhGFUs0m3dJSf8ypXrsykSZPMw5uUUgwfblgkMzw8nJCQEKteh7Zt29KgQQMiIyOJiIjI8fouW7aMxMRE2rdvT5kyZWxe06VLF77//nsiIyO5e/cuf/75JyNGjODevXsEBwfzww8/JLu+Xbt2fPXVV5QsWZKWLVsSFxfHrFmGdv3444+5fPmy1ZwFrXWGhvQcPWrYWSGloWmurq4MGDCA7du3c+XKFW7fvs3u3bvp2LEj58+fp3379lbzYtJSvHhxRo0axZ49e4iOjiY6Oppff/2VJk2acOzYMdq1a8etW7es7jENa5s2bRqxsbH89NNP3Lp1i2PHjvHUU09x/vx5OnfuzN27d20VaZf4+Hj27t1Lly5duH37NjVq1DAPB4yOjgaw2dtli+lzcP369WRpe/fuJTo6moCAgGwJTsAw9woMc5kKEglQhNUSw5VKS4AihBAia7Rq1YrChQtbnatcuTJgmGBva/8UU7ppmfucZBreldrk+P/85z9069aNihUr4u7uTu3atZk5cyZffPEFWmtGjx6d7J7169czf/583njjDcaMGcMff/xBixYt+Ouvv5g+fTqjRo0yT+Z+4403KFasmDnv1PbxSOrq1asAKS6L6+Pjw5w5cwgMDKRMmTJ4eHjQpEkTNmzYYJ64n54hSg0aNGDatGk0btyYkiVLUrJkSdq0acPvv/9OixYtiIiIYE6SzWhN+788fPiQ1atX06FDBzw9PalTpw7r1q2jQoUKREZGsmzZMrvrARAaGmqeg+Tu7k6TJk3Yu3cvVatWZe3atSnONcmM+vXrU7RoUfbt22ez3bNCyZIlAbh27Vq25J9byVgeQaRFD4pMkBdCCHvtSef1wcbD5EXjkR5bkjxfk877c1b58uWTnTPt+1CuXDmbXxpN6ffu3cveyiVx9OhRjh07hqenJ126dEn3/f/3f//He++9x8mTJ4mIiLCa0F+4cGGCg4MJDg62umfo0KGUKVOGsWPHAobVpb766ivef/996tSpw8cff0znzp05ffq0XfuRmXorPDw80l3/sWPH8u2332Zqg0iTQoUKMXr0aHbs2MGmTZt49913zWmm9vX39082nMzV1ZWXX36ZadOmERoamuYwP0uW+6A4OztTqlQpmjRpQqdOnayC5FKlSgH2f+E3BX1JV/oCqFevHtOnT6dTp05MmzYNDw8P3nvvPbvrbA9PT0/AsPlmQSIBiuCcVQ+KTJAXQgiRNWxNkrYnzRFMvSfdu3fP0CRtJycnqlSpwtWrV4mKikpzqeCffvqJ9evXs3r1atzd3YmNjWXu3Lm8+uqrjB8/HjD8Ql+5cmVmz57NRx99lGYdTBstmiaGp4dprkhW9VyllJ+vry9Aiu+P6bwpMLBXzZo17ZqHZFrV68CBA2lem5iYaJ6zktLCC0FBQaxcuZLu3bszfvx4PD09GTJkiN31Tosp6DQtsFBQ5K6/DiLHJSRqLtyIMz/3SzLEy8fHJ1t3kQfDDvKO20UeDDvIyy7eBVbJho7bRR4MO8jLLvJCOFRiYiLfffcdkLm9T0zzK4oWTX00wr179xg6dChPPfUUzz33HABnz57lwYMHVhPcK1WqhLe3t3lieVpM8yVu3LiRbXXPbH6mPU4sl1i2ZKp70h3Ws0qbNm1wdXXlyJEjab6vGzdu5MaNG/j4+KS6MlyXLl1YsmQJTk5ODBs2jEWLFmVZfU3vk71zZvIL6UEp4C7dtF5i2Lek9R+SnFhHfc4zc9K+KHtr4ODyhUM94eD2nyOfPyEyyrQs7sOHDzOVz/bt27l48SKPPvqozXkx9ggLC+PkyZMUKVLEPLE5JTNmzCAyMpL169cnS0s6Ofzu3bt29zaZegeSroxlj9WrVwPQMIt+MEkpv44dO+Ls7MyxY8e4ceOGeY6FSWhoKECWbNZoS6lSpejduzdffvklw4YNY+PGjTbf37i4OPNKbUOHDk1zDstLL71EbGws/fr1o1+/fhQrVowXXngh0/U9fvw4kLmls/Mi6UEp4CItNmgs5+mGu0vWTyITQgghssMjjzwCZOwLuSXT8K5XXnnFakPFpH766SfzPh6Wjh49ygsvvIDWmuDg4FT3Ezl//jxTpkxh+PDhVqttVa1aFVdXV1auXMmDBw8AWLt2LbGxsWnu12HSokULAPbv328zff78+Zw4cSLZ+e+//54xY8YAMHDgwGTpbdu2pWbNmuzbt8/qfEhIiHkDRBOtNfPmzWPWrFkopRgwYIBVeunSpenbty937txhyJAh3L9/35z29ddf88svv+Dm5kafPn3SfsEZNHXqVPz8/Pjll1/o2bOneWUvkwsXLtCxY0fCwsIICAhgxIgRduUbHBzMrFmzSEhI4JVXXuGnn37KdF1N73lgYGCm88pLpAelgIu69e/wrgolko+53bBhA5C9PSlvbXgLcGRPylvGR/klu0Dab2x/R/WkvGUsX3pShEg3Pz8/6taty4EDBwgICKB27doUKlSILl262D3RPT4+3vxrf1rDu/bt28cHH3yAr68v9erVo0iRIvz1118cOnSIhw8f0qpVKz755JNU8xgxYgQlSpQwzzMxKVKkCIMHD2bGjBnUr1+fatWqsWnTJjw9PW0GDbbUqlWLSpUqsXfvXuLj45Nt1rhs2TL69+9P3bp1qV69OomJiYSHh5uDllGjRtGtW7dk+Z49e9a8rLKlkJAQRo4cScOGDalUqRLx8fEcO3aMc+fO4eTkxH/+8x+bmxtOnz6dPXv2sGzZMnbs2MHjjz/O+fPnOXDgAIUKFeLLL7/k0Ucftes1Z4SXlxehoaF07NiRVatWsX79epo3b463tzeXLl1i586dPHz4kJYtW7J27dpkK9GlZtiwYcTExDBhwgS6d+/Ozz//nOFeOa01oaGheHl50bRp0wzlkVdJgFLAXY35d5WUsp7Jd521/GUju8TcT/9kviyugYPLFw71wMHtn4HJrEKIf61evZpRo0axY8cODh48SGJiIhUqVLA7QPnxxx+5ffs2DRo0wN/fP9Vr27dvz4ULF9i/fz87d+7k1q1beHp60rx5c1555RX69u2b6lCgLVu2sHr1ar777jubcywmT56M1pqlS5dy5swZGjVqxKeffprinixJKaUIDg5m3LhxrFu3LtkQo379+uHt7c3hw4fZvHkzcXFxeHt789xzzzFgwACCgoLsKsfk7bffZvPmzYSFhREeHs6DBw/w8fGhV69eDBkyJMUNI4sXL87u3buZMmUKK1euZP369RQrVoxOnToxZswYmjVrlq56ZETFihX5448/WLRoEStWrODw4cPcunWLkiVL0q5dO3r16sWLL76Yao9aSsaPH09MTAzTp0+nc+fObNmyhcaNG6c7n99//50LFy4wePDgZMFmfqe01o6uQ4GhlArz9/f3DwsLc3RVzCb88CdLdhs2ZerbzI/3O9vXjSyEEPlVYmKiechQjRo1ct1qU0Kk5vLly1SqVImgoCDWrVvn6OqITHjjjTeYP38+x44ds3uYX1ZK79/C2rVrEx4eHq61znRl5a9uAXfl9r871drqQRFCCCFE3lGuXDkGDx7Mhg0bOHbsmKOrIzIoKiqKJUuW0KtXL4cEJ44mAUoBd+W25RAv12Tpv/zyC7/88ku21uGdX97hnV/eydYy0qiB8RAF0h/vGA5HeecdwyGEEFlk7NixlChRgg8++MDRVREZNHXqVAC79r/Jj2QOSgF31bIHxSN5D0pkZGS21+G3yN+yvYw0auDg8oVDXXVw+/8mnz8hRNby8vJKtjKVyFtCQkIICQlxdDUcRnpQCrDERG01Sb6MDPESQgghhBAOJgFKAXbj7n0eJv67SIKtIV5CCCGEEELkJAlQCjDLCfJFXApRzFVG/AkhhBBCCMeSAKUAu3rbeg+UjKz1LYQQQgghRFaSAKUAs+xBKeMhw7uEEEIIIYTjSYBSgF25nfou8kIIIYQQQuQ0CVAKsCsxlps0Sg+KEEIIIYRwPAlQCrCrsou8EEIIIYTIZWTZpgLMcohXSnugBAUFZXs9pgZNzfYy0qiBg8sXDlXfwe0/VT5/QgghhCUJUAqwK1a7yNse4uXn55ft9Qj0C8z2MtKogYPLFw5V1sHtHyifPyGEEMKSDPEqoB4mJHL9TtqT5KOjo4mOjs7WupyKPsWp6FPZWkYaNTAeokC6fcpwOMqpU4ZDiFxOKZXsR6uIiAiUUrRq1coh5WeFZcuW0axZMzw8PChWrBhPPPEE8+fPR2ud4j1xcXFMmDCB6tWr4+bmxiOPPMLrr7/O33//bfP6iIgIOnXqRJEiRfD29mbw4MHEx8fbvHb37t04OTkxb968DL+mhw8fUqNGDQICApKlbdiwgXHjxhEUFISXl5dd7deqVSuUUikeGzduzFA9IyIiePPNN6lUqRKurq6ULl2aJ598kunTp6d4z4MHDwgJCSEgIABPT0+KFStG9erVU33/7X1NxYoVo27duowfP57bt2+neO/x48d56623qFGjBkWLFsXT05M6derw9ttvc+HChRTv8/PzQylFRESEzfSRI0eilMLb2zvV99vWARAVFYW7uztvvfWW3e9DbiU9KAVUdOx9LDaRp0wKk+TXrFkDQHBwcLbV5bU1rwGwJ3hPtpWRRg2Mj44qXzjUbmP7t3dQ+79mLH+PfP6ESK/t27fTunVrevfuzeLFi9N9/4ABA5g7dy4uLi48+eSTFC1alF27dtG/f3927txpM8/4+HjatGnDnj178PHxoWvXrkRERLBo0SLWr1/Pnj17qFy5svn6hIQEOnbsyIkTJ2jfvj1Xrlzh888/58GDB8ydO9cq78TERAYOHEjDhg3p169ful+Pybx58zh16hQbNmxIlvbKK69w69atDOXbvXt3ihUrlux8+fLl053Xzz//zPPPP09cXBwNGzakSZMmREdHc+zYMebNm8eoUaOS3XPjxg3atWvHwYMH8fHxMQ9DP3PmDIsWLeL1119Pd13at29PuXLlAPj777/ZtWsXH330EatWrWLXrl2UKFHC6vpp06Yxbtw4Hj58SNWqVenYsSMPHz7kwIEDfPrpp3zxxRfMnz+fV155JV31GD58OCEhIZQpU4YWLVoke58PHz7MkSNHqFKlCs2bN7eZh4+PD/3792fOnDkMGzaM6tWrp6sOuYrWWo4cOoAwf39/nRscufCP9h29XvuOXq/rvL8xxetOnjypT548ma11WX9yvV5/cn22lpFGDYyHKJAurjccjrJ+veEQuUZCQoIODw/X4eHhOiEhwdHVyTUA7evra3Xu/v37+vjx4zoyMjLbyz9+/Lg+c+aM1blt27ZpQPfu3Tvd+a1atUoDukSJEvrAgQPm85cuXdJ16tTRgP7222+T3Tdu3DgN6CeffFLHxMSYz8+cOVMDOjAw0Or6lStXakB/8sknWmvD56tdu3ba2dlZX7p0yeraOXPmaKWU3r17d7pfj0l8fLwuU6aMrlu3rs30119/XU+fPl1v27ZNb9682WadkwoMDNSAPnfuXIbrZen48ePazc1Ne3t76507d1qlJSQk6P379ye7JzExUbdu3VoD+v3339cPHjywSj979qy+du2a3XUwvaZt27ZZnf/rr7+0n5+fBvTbb79tlfbZZ59pQHt6euo1a9Ykq9/8+fO1i4uLVkrptWvXJivT19fX5vs4ZMgQDehy5crpsLAwm/V9//337fqsX7x4UTs5OekePXqkep090vu30N/fXwNhOiu+M2dFJnLkvQBlc9hlc4DSduZ2R1dHCCFyDQlQbLMVoDhaZgKUtm3bakBPnjw5WZrpi3v9+vWtzt+7d08XL15cA/rQoUPJ7qtbt64GrAKesWPHakBHRUWZz3377bca0L/88ov53PXr13XJkiV137590/1aLC1dulQDesaMGWleu3v3bocEKB06dNCA3rBhg933rFixQgP6hRdeyJI6pBSgaK31119/rQFdpUoV87mIiAjt6uqqlVJ669atKea7aNEiDejSpUvrO3fuWKXZClAGDRqkAe3j46NPnDiRYr72BihaGz7bhQsX1pcvX07z2tQ4MkCROSgFlNUE+VT2QImJiSEmJiZb6xIVE0VUTFS2lpFGDYyHKJDiogyHo0RFGQ4h8qCU5qAsXrwYpRQTJ07k7Nmz9OjRg9KlS+Pp6UmHDh0IDw8HDHMlpkyZYp7LUbVqVWbPnm2zrKRzUPr06UPr1q0B+Prrr63G40+cODHNuh88eBDA5vyLwMBAnJycOHz4MOfPnzef37lzJ7du3aJKlSo0aNAg2X3PP/88AOvWrTOf++effwCshgqZ/m1KAxg7diyJiYl88sknadY9NQsWLEApxYsvvpipfLLLhQsX2LRpE5UrV6Zjx4523zd//nwABg8enF1VMzO1reV8ktmzZ3Pv3j26d+9u/tzZ0qdPHx5//HGuX7/O119/neJ1WmsGDhzI559/Tvny5dm+fTs1atTIkvq//PLLPHjwIEPDHnMLmYNSQFntgeKR8h4oK1asALJ3Dkq3Fd0AR85B6WZ8lDkABdJvxvZ31ByUbsbyZQ6KyIfOnTtHQEAAZcuWJSgoiPDwcDZu3MjBgwc5evQob775pnkeSeXKldm2bRuDBg3CxcUlzTkYzZs35/Lly2zatCnZuPz69eunWbfY2FiAZHMMAFxcXChWrBi3b9/myJEjVKxYEYAjR44A0LBhQ5t5ms4fPXrUfM5076lTp3jssccAOHnypFXagQMHWLBggXkOQkbdvn2bHTt2ULVq1QzNC0nLV199RXR0NE5OTlSvXp1nn33W/BrstX37dhITE2natCkPHz7k+++/Z+fOnSQkJFCnTh169uyZrE0ePHjA77//jrOzMwEBARw9epT//e9/XL16lfLly9O1a1fq1auXZa/T9MOsq+u/P+Ca5vPYM7fk5Zdf5sCBA/z88882J6xrrXnrrbeYO3cujz76KFu3bqVq1apZVPt/g+4NGzYwevToLMs3J0mAUkDZsweKEEIIkRlLlixhzJgxTJkyBaUUWmtef/11Fi9eTNu2bXFycuL06dN4e3sD8OuvvxIUFMTkyZPTDFCCg4OpWrUqmzZtonnz5un+tdjb25tLly4RGRlJrVq1rNJu3LhhXsUpMjLSfN7Um1KhQgWbeZrOW97ToUMHxo4dy5gxY1i0aBFXrlxh1qxZlC9fnnr16qG1ZtCgQdSpUyfTqy/t2rWLhIQEnnjiiUzlk5KPPvrI6vnIkSMZP34848ePtzsPU+9ZsWLFaNGiBXuS/Dgzbtw4Vq1aZdVL8ddffxEfH0/ZsmWZNWsW48aNIzEx0Zw+ceJEhg4dyqxZszLyspIx9YDVrVsXgPv373P8+HEAHn/88TTvb9SoEWCY2G7L4MGD2bBhA76+vmzdutVqUYWsULlyZUqXLs2+ffuIj4/HzS3vfc+TIV4F1JUY+4Z4CSGEEBlVuXJlJk2aZF4GVSnF8OHDAcMX1ZCQEHNwAtC2bVsaNGhAZGRkikuxZpWWLVsC2AxsFi5caP635TDnO3fuAFCkSBGbeRYtWjTZPfXq1SM4OJiffvqJsmXLUrduXc6fP8/MmTNxc3Nj0aJF7N27l88//5xChQqZ74uLi0v3azL13GTVUCGTli1b8s0333D27Fnu3r3LyZMnmTx5Ms7OzkyYMIHPPvvM7rxMw9oWLFjAiRMn+Pbbb7lx4wYnT56kV69e3Lhxg27dulktGWy6Jzo6mnfffZc333yTs2fPcv36db766ivc3d0JCQlJcXigvS5dusTMmTP59NNPAcMqb6bytWEusdXnNSWmXrDr16/bTDf1xsyZMyfLgxOTGjVqcO/ePXNglddID0oBdfmWZYCS9yJrIYRwuE1N7LvONHzwzAI4uwDa/AKFPSBiOZwMSft+355Q0/Clnl+DoEwgPGb8xfq3bmnPoXLU8EUMQ00KFy5sdc70haxw4cI2539UrlyZP/74g6ioqGzdLHjkyJGsWrWKFStWULFiRQYNGkSRIkVYvXo1EyZMwNnZmYcPH+LklPnfcufNm0fbtm0JDQ3F3d2dnj17EhAQwM2bN3n33Xfp1asXLVq0IDExkfHjxzN79mxu3bqFr68v06ZNo0ePHnaVc/XqVcD2sLXMmDRpktXz6tWrM3bsWB5//HHat2/PxIkT6d+/P+7u7mnmZer5ePjwIfPmzTO/thIlSvDNN99w8uRJ9u/fz5w5c5g8eXKyezp06GAViLz++uvEx8czcOBAPv74YwYOHJiu12ZrPolSirFjx6Z7qWB7NWvWjJ07dxIcHMyOHTuoUqVKlpdRsmRJAK5du5bleecE6UEpoK7GWG7SKD0oQgghsp6teRCm/R3KlStn1WOQNP3evXvJ0rJSo0aNWLRoEW5ubkyfPh1fX1+8vb158803adOmDZ06dQKsv+yb6nb37l2beZrmtXh4eFidV0rRs2dP5syZw8yZM80bKI4fP564uDjzxoQhISFMmTKFvn378sMPP+Dv789LL72U4lChpEz7myQtP7u0a9eOxx9/nJs3b7J371677jG9h8WKFeOFF15Ilt63b18AQkNDk91jmW6pT58+gGEfkzNnzthdfzDsg9K7d2/69OnDgAEDmDlzJqdOnTIHR2D4DJh6Ae35wm8KFEuXLm0zfeHChXTo0IGoqCiCgoK4ePFiuupsD09PTwBu3ryZ5XnnBOlBKYDuPUzgRux98/MyqUySF0IIkYL09kxUDTYcJn4vGo70aLvF+nnLNem7P4el1vuQFT0TmdWrVy9at27NypUrOXXqFG5ubrRt25ZnnnmGFi1aAFC7dm3z9aYJ4Sl9oTSd9/X1TbPso0eP8sUXXzBt2jTzRoEzZsygVatW5rkUrVu3pnz58syYMYOlS5emmWfx4sUBsn31TUvVqlXjwIEDRNm5GqHpvalYsaL5S78lU6+Z6Uu+5T2W6ZaKFClCmTJluHr1KlevXk3XhPMxY8bY7Mmz5OLiQq1atQgPD+fAgQMpzkEyOXToEJDyYg0uLi6sXr2aDh06EBoaylNPPcVvv/1m1/Axe5mCVS8vryzLMydJgFIAXYux/lUqpV3khRBCiPyufPny5nkxJnFxcRw+fBgPDw+rFbtMK0WZvoAmZTpvmlydmkGDBlGjRg2GDBkCGFbgioqKolevXuZrPDw8qFmzpnlieVpMcx9u3Lhh1/VZwTQ/xDT/Ji2mJXwtl1i2ZKq7Za9J8eLFqVSpEufOnbN5X2JiormnwNZO91mhY8eOhIeH89133/Hss8+meu23334LGBZISIm7uzvr1q0jKCiIffv20a5dO7Zt25ZlAYXpfcrKoCcnOf7nC5HjLFfwKlnUBVfn5F3sQgghRG7n4uICGOYmZKWFCxcSGxvLq6++ajWvolmzZhQvXpyzZ8/aHHa1atUqADp37pxq/suWLWPHjh3897//xdnZ+rfipMPHYmNj7e5tMgVQpmWMs9u1a9fYsWMHkPLSy0k1bdqUUqVKcfnyZZv1NA3tSrrPTJcuXQDDMsVJ7dmzh/v37+Pu7p7lCwSYDBw4EFdXV/73v//x22+/pXjdN998w/79+yldujSvvfZaqnl6eHiwceNG6taty+HDh+nYsaN5mGBmnThxAldX12Qr1OUVEqAUQJZ7oJTxkN4TIYQQedMjjzwCZPwL+YEDB5Kd++GHH3jnnXcoXbo0H3zwgVWai4sLgwYNAgxfWC2/TH766accPXqUwMBA8zKztsTExDBq1Ch69OhBmzZtzOc9PT2pUKECP/74o3mI1h9//MHx48ethpmlpmnTphQqVIj9+/fbdb09du3axdq1a0lISLA6HxERQbdu3YiNjaVLly7Jhj19/vnn1KxZk3fffdfqvLOzMyNGjDBvVGhazhlgy5Yt5k0+33jjDav7hg0bhouLC59//rnV0sTXr19n2LBhgGF+iuXeJVnJz8+PqVOnorWma9eu/Pjjj1bpWmsWLVpEcHAwSikWLFhgV29OiRIl2Lx5M9WrV2f37t106dKF+Pj4NO9LzdmzZ4mOjiYgICBPLjEMMsSrQLLeRT71D25OTLTz8fDJ9jLSqIGDyxcO5e7g9veRz58QGeXn50fdunU5cOAAAQEB1K5dm0KFCtGlSxfzL+6peeKJJ6hSpQq1atWiaNGi/Pnnn4SFhVGqVCl+/vlnm5Oc33vvPbZs2cKuXbuoVq0aLVq0IDIykr179+Lt7W21RLEtH3zwAbdv32bmzJnJ0saMGcOgQYOoW7cuDRo0YOvWrTg5OfHOO+/Y9X54eHjQokULtm/fzsWLF23Olfjwww/Ny9yalk0+dOgQTZr8uyrdmjVr8DH+bTp16hR9+/alXLlyNGzYEC8vLyIjIzl48CDx8fHUrl3bvMu7pevXr3Py5Embc1NGjRrFtm3b2LJlC9WrV6dJkyZcv36dPXv2kJCQwOTJk80LCZj4+fnxxRdfEBwcTMuWLXnyyScpXrw4u3btIjo6moYNGzJ16lS73qeMGjp0KPHx8YwbN46uXbtSrVo16tevT0JCAvv37+fChQu4ubmxZMkSunbtane+ZcuWZcuWLbRo0YKtW7fSo0cPvv/++2S9a/Yy9TI988wzGbo/V9Bay5FDBxDm7++vHe2Tn49r39Hrte/o9XrU/w47ujpCCJGrJCQk6PDwcB0eHq4TEhIcXZ1cA9C+vr5W586dO6cBHRgYaHV+0aJFGtDvv/++3XmZ9O7dWwN627Ztdt1z+vRp/eyzz+pSpUppJyenVMtNavjw4bpBgwbay8tLu7q66mrVqukRI0boK1eupHrf3bt39fjx43WVKlW0i4uLLleunO7Tp4++cOFCqveFh4frwoUL648//thmemJiov7444/1o48+qgsXLqwfe+wxvX79ertei8myZcs0oKdNm2Yz3fT+pnacO3fOqs4DBgzQDRs21N7e3trZ2VkXL15cN2nSRM+cOVPfvXvXZjnvv/++BnTv3r1tpt+/f19PnTpV165dW7u5uWlPT0/dpk0bvW7dulRf37Zt23T79u3NbVarVi09ceJEfefOHbveH5PAwECbnzN7hIWF6TfffFNXrVpVFylSRBctWlTXqlVLDx8+XEdGRqZ4n6+vb7L319KZM2e0j4+PBvSLL75o9fcnrffTUps2bXThwoX15cuX0/vSrKT3b6G/v78GwnQWfGdW2rjxjMh+Sqkwf39//7CwMIfWY8TKw3x/yLAB0uA2VXm7XfaM1xRCiLwoMTHRPGSoRo0auWK1KSHsde/ePXx9fSlTpox540ZRcFy8eBFfX1+ef/55VqxYkam80vu3sHbt2oSHh4drre0bk5gK+atbAF21mCRfJo0hXqGhoVZrkWeHD0M/5MPQD7O1jDRqYDxEgXTsQ8PhKB9+aDiEECILuLq6MmHCBI4dO8b69esdXR2Rw6ZPn46Tk1OyzTXzGglQCiCrOShpTJKPjIwkMjIyW+sTGhlKaGT2BkFp1MB4iALpaqjhcJTQUMMhhBBZpH///lSvXj3ZJH+Rv0VFRfHll1/Sr1+/bFvNLKfIJPkCKD2T5NNaIi8rbHltS9oXZW8NHFy+cKikG9/ltC3y+RNCZC1nZ+ccW2pY5B4+Pj7ExcU5uhpZQnpQCpi4+wncjv93vfi0AhQhhBBCCCFykgQoBczVmH97T5SC0sVcUr1+9+7d7N69O1vrNGv3LGbtnpWtZaRRA+MhCqQTswyHo8yaZTiEEEIIAUiAUuBY7iJfupgrzoVS/wiEhYWR3auOrQhbwYqwzK00kckaGA9RIEWuMByOsmKF4RBCCCEEIAFKgWM9/0R2kRdCCCGEELmLBCgFjPUKXjL/RAghhBBC5C4SoBQwV2Ps3wNFCCGEEEKInCYBSgEjQ7yEEEIIIURuJgFKAZOePVCEEEIIIYTIaRKgFDBXLVbxkh4UIYQQQgiR20iAUsBY9qCUkUnyQgghhBAil5EApQC5c+8hsfcTzM9liJcQQgghhMhtJEApQCx7Two5KUoVTX0XeYAmTZrQpEmT7KwWw5oMY1iTYdlaRho1MB6iQKoxzHA4yrBhhkOIXE4phZ+fn9W5iIgIlFK0atXKIeVnhWXLltGsWTM8PDwoVqwYTzzxBPPnz0drbfP6Vq1aoZRK8di4cWOyeyIiIujUqRNFihTB29ubwYMHEx8fbyN32L17N05OTsybNy/Dr+nhw4fUqFGDgICAZGkbNmxg3LhxBAUF4eXlZXf77d+/nx49evDII49QuHBhvLy8aNGiBYsWLUrxvUqJo+uwffv2ZO3m7OxMuXLl6Nq1K9u2bUvx3ocPH/Lll18SFBRE2bJlcXV1xcfHh06dOrF8+fIU67F48WKUUvTp08dm+smTJylfvnyqn62UjokTJwIwbNgw3N3dOX/+vN3vRW7l7OgKiJxjPbzLFScnleY9derUyc4qAfBinRezvYw0auDg8oVD+Tm4/V+Uz58QGbV9+3Zat25N7969Wbx4cbrvHzBgAHPnzsXFxYUnn3ySokWLsmvXLvr378/OnTtTzbN79+4UK1Ys2fny5ctbPU9ISKBjx46cOHGC9u3bc+XKFT7//HMePHjA3Llzra5NTExk4MCBNGzYkH79+qX79ZjMmzePU6dOsWHDhmRpr7zyCrdu3UpXfqtXr6Znz54kJCTQsGFDWrRowbVr19ixYwe///47W7ZsYdmyZXbnlxvqAFC2bFmefvppAOLj4zl8+DA//vgj69atY/bs2QwYMMDq+vPnz/PMM8/w559/4urqSvPmzSlTpgwXL15k06ZNbNiwgblz57JmzRpKlChhdz1OnDhB69atuXz5Mm3atKFChQooZf0d7euvvwZsf+7q168PwOjRo5k3bx7vvfceS5YsSdd7ketoreXIoQMI8/f3146y5tBF7Tt6vfYdvV53+fx3u+6Jj4/X8fHx2Vqv2/G39e3429laRho1MB6iQLp/23A4yu3bhkPkGgkJCTo8PFyHh4frhIQER1cn1wC0r6+v1bn79+/r48eP68jIyGwv//jx4/rMmTNW57Zt26YB3bt373Tnt2rVKg3oEiVK6AMHDpjPX7p0SdepU0cD+ttvv012X2BgoAb0uXPn7Cpn5cqVGtCffPKJ1trw+WrXrp12dnbWly5dsrp2zpw5Wimld+/ene7XYxIfH6/LlCmj69atazP99ddf19OnT9fbtm3Tmzdv1oAODAxMMb8HDx7oMmXKaEAvW7bMKi08PFyXLFlSA3rr1q1219HRdTB9bpKWmZiYqCdOnKgB7e7urq9cuWJOu3nzpvbz89OAfu655/S1a9es7o2MjNQtW7bUgG7cuLF+8OCBVfqiRYtsflbDwsJ02bJlNaCHDBmSYp0Buz53b7zxhlZK6bCwsFSvs0d6/xb6+/trIExnwXdmGeJVgFjvIm/fCl7ffPMN33zzTXZVCYCnvnmKp755KlvLSKMGxkMUSFufMhyO8tRThkOIPKhw4cLUrFmTihUrZntZNWvWpEqVKlmW3xdffAHAyJEjadSokfm8j48Pn376KQDTpk3LdDmHDx8GoHfv3gA4OTnRp08fHj58SFhYmPm66Oho3nvvPfr06ZOpodWrVq3i6tWrvPbaazbTv/rqK0aOHEmrVq3w8PBIM78TJ05w9epVatSowcsvv2yVVqtWLXr16gUYhl/ZKzfUwRalFOPHj6dKlSrExcWxefNmc9ro0aOJiIigbdu2rFy5ktKlS1vdW7FiRX7++Wf8/f3Zu3cvM2fOTLO8sLAwWrduzZUrVxgxYgSfffZZpuoP0KtXL7TWyXrn8hoJUAqQyxnYA6Vhw4Y0bNgwu6oEQHDDYIIbBmdrGWnUwHiIAqlKsOFwlOBgwyFEHpTSHBTTePuJEydy9uxZevToQenSpfH09KRDhw6Eh4cDhvH8U6ZMoXr16ri5uVG1alVmz55ts6ykc1D69OlD69atAcPwF1tj8lNz8OBBAJtzHwIDA3FycuLw4cOZHs//zz//AFgN+TH925QGMHbsWBITE/nkk08yVd6CBQtQSvFiFg0fdXW17wfNUqVKZUl5jq6Dk5MT9erVA+DChQuAIXg0DbH67LPPKFSokM17ixQpwtSpU83XJSQk2LwO4M8//6R169ZcvXqVUaNG2RXQ2KNZs2ZUrFiRpUuXpjjPKS+QOSgFSEb2QMnu4ARwcHACEpwUcFUd3P4SnIh87Ny5cwQEBFC2bFmCgoIIDw9n48aNHDx4kKNHj/Lmm2+a55FUrlyZbdu2MWjQIFxcXNKcg9G8eXMuX77Mpk2bqFKlCs2bNzenmcbkpyY2NhbA5lwBFxcXihUrxu3btzly5IjNHqKvvvqK6OhonJycqF69Os8++6zN60znTp06xWOPPQYYJkRbph04cIAFCxYQEhJCmTJl0qx7Sm7fvs2OHTuoWrVqsrkwGVW5cmWqVKnCyZMn+fbbb616MI4fP87SpUspUaIE3bp1y5LyckMdYmJigH8Do61btxIfH0+9evWoXbt2qvd26NCBEiVKEBUVxeHDh61650yOHj1K27ZtuX79Ou+++y5TpkzJknqDIZAPDAzkm2++YdeuXbRp0ybL8s5J0oNSgFhNkpclhoUQQmSzJUuW0L9/f8LCwli+fDlHjhyhT58+XLt2jbZt23L27FlOnz7NmjVr2LhxIz/99BMAkydPTjPv4OBgxowZAxiClcWLF5uPZ599Ns37vb29AYiMjEyWduPGDW7fvp1iOsBHH33EF198wezZsxk6dChVq1blww8/THZdhw4dUEoxZswYrl69yrFjx5g1axbly5enXr16aK0ZNGgQderU4a233kqz3qnZtWsXCQkJPPHEE5nKx1KhQoX4+uuv8fLy4pVXXqFRo0a8+OKLtGnThrp161KhQgV+/fVXSpYsmWVlOrIOV69eZe/evQDUrVsXgCNHjgDw+OOP21VXU4BsGt5n6cSJE7Rp04br168zfvz4LA1OTEyrt4WGhmZ53jlFelAKkCsx6R/itWDBAsDwP4Ls0mSBYaztnuA92VZGGjUwPjqqfOFQm4zt395B7W8aa75HPn95jr3zBExtu2CB4fjlF/DwgOXLISQk7ft79oThww3/DgqCwEAYP97wvFs3iIqyr3wHqFy5MpMmTTKvSKSUYvjw4SxevJjw8HC2bNliDhQA2rZtS4MGDfjjjz+IiIjIlmWFTVq2bMny5ctZvHixeSUnk4ULF5r/bfo13fK+4OBgmjZtio+PDxcuXGDVqlV89NFHTJgwAU9PT4YOHWq+vl69egQHBzN//nzKli0LGN6H7777Djc3NxYuXMjevXv57bffrIYOxcXF4e7unq7XdPToUQBq1KiRrvvS0qxZM0JDQ+nWrRuHDh3i0KFDgKGn6amnnqJy5cpZWp4j6hAfH8+RI0cYOnQot2/fpkaNGuYhhNHR0QBWn9XUmHrBrl+/nizNFPwEBAQwadKkTNU5JTVr1gRsB0h5hfSgFBBaa65kYIiXEEIIkVGtWrWicOHCVudMXyQLFy5sc/6HKT0qrcArk0aOHImzszMrVqzgnXfe4fz581y/fp158+YxYcIEnJ0Nv+E6OVl/VZo0aRK9evWicuXKuLu7U716dcaOHcvatWsBmDhxInFxcVb3zJs3j+XLlzNgwABGjBjBnj176NmzJzdv3uTdd9+lV69etGjRgsTERMaNG4eXlxdFihTBz8+PlStX2v2arl69CtgetpYZ3333HQEBATz66KPs3buXO3fucOrUKfr06cPMmTNp06YN9+7dSzujXFaH0NBQ87wld3d3mjRpwt69e6latSpr165Nca5JZtSvX5+iRYuyb98+Ro8eneX5A+aepGvXrmVL/jlBelAKiFtxD7j/MNH8vKyHDPESQohMSW/PRNIFEV58Mf374GzZYv18zZr03Z/DbM2DMO3hUK5cOZtfAE3p2f2Ft1GjRixatIh+/foxffp0pk+fbk575plnKFy4MGvXrrX7y367du14/PHHOXDgAHv37rUKvpRS9OzZk549e1rdM378eOLi4sxlh4SEMGXKFIYNG0br1q2ZO3cuL730EtWrV7drXo1pbxF7Vsay1+nTp+nduzdlypRh/fr15vapVq0a8+bN49KlS6xfv56FCxcm2zckt9fBch8UZ2dnSpUqRZMmTejUqZNVYG2afG/vF35ToJh0pS8w9KhNnz6dTp06MW3aNDw8PHjvvffsrrM9PD09Abh582aW5puT8nwPilLKXSk1SSl1SikVr5S6pJRaqJRK9+wwpVQJpdRnSqlIpdQ942OIUsorG6qeoyx7T1ycnfAqUjiVq4UQQojMS9r7YG9aTunVqxdnzpzh008/5c0332TYsGGsW7eOdevWmb+MpjUp2lK1atUA+3p/jh49yhdffMHEiRMpV64cADNmzKBVq1bMmjWLLl26sGLFCooWLcqMGTPsKr948eJA8mFpmbF8+XIePHjA008/bXNjyh49egDw22+/ZVmZOVWHmjVrmuctLViwgKlTp9KtW7dkvX6mVb0OHDiQZp6JiYnmOSspBZVBQUGsXLkSZ2dnxo8fz3/+85901TstpkDVy8srS/PNSXm6B0Up5QZsxTCJIAr4AfAD+gKdlFJNtNZ/2ZlXaWA3UBX4C1gL1AaGAh2UUk9qrW9k9WvIKVZ7oHi6JtuhVAghhCiIypcvz3DTHB+juLg4Dh8+jIeHR7pWszQtG1y0aNE0rx00aBA1atRgyJAhgGEFrqioKPOeHmDoCalZs6Z5Wea0mOY+3LiRdV9XLl68CPwb/CRlOm+5ZHJWc3Qd2rRpg6urK0eOHCE8PBx/f/8Ur924cSM3btzAx8cn1V6vLl26sGTJEnr16sWwYcPw8PCgb9++WVJf0/tg75yZ3MjxP19kznsYgpPdQHWtdU+tdWPgbcAbWJjazUmEYAhOvgdqGPOqA/wXqA58mpUVz2nWmzTK8C4hhBB5n4uLC2DYTyUrLVy4kNjYWF599VW7J6pfu3aNHTt2AGkv0b9s2TJ27NjBf//7X/NcF5O7d+9aPY+NjbW7t8n0S79pGeOsYOrdSan3wLQ5YnYuaODoOpQqVcq80eawYcNITEy0eV1cXBzvvPMOAEOHDk1zDstLL73EvHnz0FrTr18//ve//2VJfY8fPw7Yt9x2bpVnAxSllAswyPh0oNb6jilNa/0pcBQIVEolX4A6eV4+wEvAfeAtrbXlX7pRwDWgl1Iq44uTO9jVGMsJ8hKgCCGEyPseeeQRIONfyG194f3hhx945513KF26NB988IFV2q5du1i7dm2yDfgiIiLo1q0bsbGxdOnShQoVKqRYZkxMDKNGjaJHjx5We1R4enpSoUIFfvzxR/MQrT/++IPjx4/bPcysadOmFCpUKNM7qlvq2rUrYBg+9cUXX1il7dmzh1mzZgHw/PPPW6W9++671KxZk88//9xhdchKU6dOxc/Pj19++YWePXuaV/YyuXDhAh07diQsLIyAgABGjBhhV77BwcHMmjWLhIQEXnnlFfNS25mxb98+wLDhaF6Vl4d4NQOKA2e11n/YSF8F1AU6AwfTyOtpDMHaDq31FcsErfU9pdQ64HWgI7A4k/V2COs9UGQFLyGEEHmfn58fdevW5cCBAwQEBFC7dm0KFSpEly5d6NKlS5r3P/HEE1SpUoVatWpRtGhR/vzzT8LCwihVqhQ///xzsknOp06dom/fvpQrV46GDRvi5eVFZGQkBw8eJD4+ntq1azN//vxUy/zggw+4ffu2zZ3Dx4wZw6BBg6hbty4NGjRg69atODk5mX+VT4uHhwctWrRg+/btXLx40Wag9OGHH7JhwwYA7twx/LZ76NAhmlgsm71mzRp8fHwAQ2/QyJEjmTFjBm+99RazZ8/G39+fS5cusXv3bhITE+nfvz9BQUFW5URFRXHy5EmbS+3mVB2ykpeXF6GhoXTs2JFVq1axfv16mjdvjre3N5cuXWLnzp08fPiQli1bsnbt2mTzWFIzbNgwYmJimDBhAt27d+fnn3+2ucKdPbTWhIaG4uXlRdOmTTOUR26QlwOUesbHQymkm87XzaK8Xrczr1zJeg6K9KAIIYTIH1avXs2oUaPYsWMHBw8eJDExkQoVKtgVoAwfPpzt27fz+++/ExcXR8WKFRkxYgSjR4+2uaN748aNGTBgAHv37mX//v38888/FC1alPr16/PCCy8wYMCAVIeEHT9+nP/85z9MmjTJZvDw1ltvERMTw5w5c1i/fj01a9bk448/TtdE/X79+rF9+3a+++47Ro0alSz97Nmz5r04TGJiYqzOJV1Bbfr06TRt2pS5c+dy8OBBTp48iYeHB4GBgfTr14+XXnrJ7vrlljpkRMWKFfnjjz9YtGgRK1as4PDhw9y6dYuSJUvSrl07evXqxYsvvpiheb7jx48nJiaG6dOn07lzZ7Zs2ULjxo3Tnc/vv//OhQsXGDx4MG5ueff7ntJaO7oOGaKU+hQYDszSWifrR1NK1QMOA4e01qkO81JKfQ90A4ZqrZMtpaCU6oph0vz3WuvudtQtLIWkKv7+/q5hYSklZ59nZ+/k8IWbAMzqWY9uDVLufrYkGzWKfE82ahRJJCYmmocM1ahRI1esNiWEve7du4evry9lypQxb9woCo433niD+fPnc+zYsXQFtrak929h7dq1CQ8PD9daZ65g8nYPimmdubsppMcaH+1ZDDwr88qVZr/SkKibcVy5fY/6Fb3svi87AxMTxwUm5ho4uHzhUI4KTEwkMBFCZCFXV1cmTJjAwIEDWb9+PZ06dXJ0lUQOiYqKMq8MltngxNHkZ6FsoLWubesAzjqqTuW93HncryTP1PWhvJd9K5IIIYQQIu/p378/1atXTzbJX+RvU6dOBeCjjz5ycE0yLy8HKKZVu4qkkG5ahNye3YqyMi8hhBBCCIdxdnbm5MmTWbqal8j9QkJCzHOp8rq8HKCcNz6mNJnCdD4yh/MSQgghhBBCZFBeDlCOGB9T2g3JdN6eGWJZmZcQQgghhBAig/JygLITuAVUUUrVt5Fu2q1nnR15bQQSgRZJN2NUSrli2EslAcj87jlCCCGEEEKIFOXZAEVrfR8wbU86WyllmieCUmoEhj1LQrXWBy3OD1JKnVBKfZwkryjgO8AFmKOUslzdbBrgDSzVWl/NnlcjhBBCCCGEgLy9zDDAR0AQ0BQ4rZTaAfgCjYFrGDZXtFQaqAH42MhrGIYNMboDJ5RSB4DaQB3gNJBsrxUhhBD5j+Uma4mJibIPihCiQEpMTDT/OyObT2ZGnv6rq7WOB1oDH2LYw+RZDAHKYqCh1vqvdOR1HQgA/ouhJ6UbUBz4DxCgtb6RlXUXQgiROymlcHFxASA2NjaNq4UQIn8y/f1zcXHJ8QAlr/egoLWOAyYYj7SunQhMTCX9BjDEeAghhCigPDw8iI6O5sqVKwAULVpUelKEEAVCYmIisbGx5r9/Hh45v095ng9QhBBCiKxWqlQpYmNjiY+P59KlS46ujhBCOISbmxulSpXK8XIlQBFCCCGSKFSoEBUrViQ6OpqYmBju37/v6CoJIUSOcXFxwcPDg1KlSlGoUKEcL18CFCGEEMKGQoUKUaZMGcqUKYPWGq21o6skhBDZTimV43NOkpIARQghhEhDbvgfthBCFBQy408IIYQQQgiRa0iAIoQQQgghhMg1JEARQgghhBBC5BoSoAghhBBCCCFyDQlQhBBCCCGEELmGBChCCCGEEEKIXEPJuu45Ryl129XV1aNKlSqOrooQQgghhBBZ5uzZs9y7dy9Ga+2Z2bwkQMlBSqnLQBHggoOqYIqMzjqofOE40vYFl7R9wSTtXnBJ2xdcjm77R4G7Wutymc1IApQCRCkVBqC1ru3ouoicJW1fcEnbF0zS7gWXtH3BlZ/aXuagCCGEEEIIIXINCVCEEEIIIYQQuYYEKEIIIYQQQohcQwIUIYQQQgghRK4hAYoQQgghhBAi15BVvIQQQgghhBC5hvSgCCGEEEIIIXINCVCEEEIIIYQQuYYEKEIIIYQQQohcQwIUIYQQQgghRK4hAYoQQgghhBAi15AARQghhBBCCJFrSIAihBBCCCGEyDUkQCkAlFLuSqlJSqlTSql4pdQlpdRCpVR5R9dNZI5SqpFSaoxS6nul1EWllFZKpbm5kVKqj1Jqn1LqjlLqhlLqJ6VU05yos8g8pVQRpdSzSqmvlFInjf9dxyqljiilJiiliqVyr7R9HqeUGmH8b/60UuqWUuqeUipSKbVEKfVYKvdJ2+cjSqlSSqmrxr/7Z9K4Vto+D1NKbTf9/z2F4+kU7suz7S4bNeZzSik3YBvQBIgCdgB+QABwDWiitf7LYRUUmaKUWgt0TXpea61SuScEGArEAZsBN6AtoIDntdZrs6GqIgsppYKB+canx4E/AU+gKeABnAACtdZXk9wXgrR9nqeUug4UBY4CfxtP1waqAw+A57TW65PcE4K0fb6ilFoMvIahDc9qraumcF0I0vZ5mlJqOxAIrAbu2Lhkptb6WJJ7QsjD7S4BSj6nlPoIGAfsBtppre8Yz48AZgKhWutWjquhyAyl1GgMX1T2G48IwDWlAEUpFQT8AkQDT2qtTxvPPwlsB+4ClbTWN7O77iLjlFK9MQQjIVrr4xbnfYANQAPgO631yxZp0vb5hFKqGXBQax2f5PxbwGzgClBBa/3QeF7aPp9RSrUFtgBfAv1JIUCRts8fLAKUSlrrCDuuz/PtLkO88jGllAswyPh0oCk4AdBaf4rh17dApVQjR9RPZJ7WeqrWeoLWep3W+rIdt4wwPn5k+oNlzGc3MBfwAv4v62sqspLW+mut9RuWwYnxfBQw0Pj0OePfABNp+3xCa70zaXBiPD8HOAuUBfwtkqTt8xGllDswDwgHZqRxubR9wZTn210ClPytGVAcwy8rf9hIX2V87JxzVRKOYvyfWhvj01U2LpHPQ/5wxPjoCpQCafsC5oHx8T5I2+dT7wOVgTf5t72TkbYvmPJLuzs7ugIiW9UzPh5KId10vm4O1EU4Xg0MX1qvaa0v2kiXz0P+UNn4+AC4Yfy3tH0BoJR6FUNbnzYeIG2fryil6gJvA4u01juUUn6pXC5tn//8n1KqFJAInALWaq3PJ7kmX7S7BCj5W0Xjo60PqOV53xyoi3C8VD8PWutYpdRNoIRSykNrHZNjNRNZaajxcaPW+p7x39L2+ZBSahSGyfFFgVrGf18CXtJaJxgvk7bPJ5RSTsAC4Cbwjh23SNvnP+8leT5DKfWh1vpDi3P5ot1liFf+Zlpq9G4K6bHGR48cqItwvLQ+DyCfiTxNKdURw7jiB8B4iyRp+/ypPdAbeB5DcBKJITg5aHGNtH3+MRh4AhiltY6243pp+/zjN+BVoApQBEMvyTjgITBJKTXU4tp80e4SoAghRD6glKoJLMWwhOQorfWRNG4ReZzWOsi4Yl8JoCWGYV2hSqlxjq2ZyGpKqYrARxhW3lzs4OqIHGZcDGep1vovrXWc1vqU1noK8KzxkonGuSf5hgQo+Ztp1a4iKaQXNT7myu49keXS+jyAfCbyJGXYdHUjhi+qn2qtP0tyibR9Pqa1vqm13gF0BA4CHyqlnjAmS9vnD7MBFwwT4+0lbZ/Paa03AwcwrMrV2Hg6X7S7zEHJ30wTpyqkkG46H5kDdRGOl+rnQSlVFMMfuX9y65hUkZxSqiSGTbh8gUXASBuXSdsXAFrrB0qpFUAjDCv07EfaPr/ohGHuyVylrLa5cjM+ljfulQHwonHZeWn7guE08DjgY3yeL9pdApT8zTTEo2EK6abzR3OgLsLxTgL3AG+lVHmt9d9J0uXzkMcopYoBP2PY8+J7oJ+2vfuutH3Bcd346G18lLbPP7wwbNZni5tFmilokbYvGEoYH03zSvJFu8sQr/xtJ3ALqKKUqm8j/Xnj47ocq5FwGK11HLDV+PQFG5fI5yEPUUq5Aj8AAcAmrFdusiJtX6CYvqSeBWn7/EJrrWwdQCXjJWctzkcY75G2z+eUUt5AC+PTQ5B/2l3Z/rFN5BdKqY8wrPSwC2intY41nh8BzMQw4a6V42oospJSKh5wNf6Py1Z6EPALEA08adphVin1JLANiAMqaa1v5kyNRUYopQoB/wO6ATuAp7XWqa3YIm2fTyilmmFYeWez1jrR4nxhDPMTQjD8elpDa33BmCZtn08Z90E5hyFAqWojXdo+j1NKNQXKAOssf4Qytv1SDJty/6i17mqRlufbXQKUfE4p5QZsxzB5KgrDlxlf4/NrQBOt9V8Oq6DIFKXUM1gvJxuAYRWnvRbnPtRab7C4JwTDXhl3MfwBcwGeMt73vNZ6bfbWWmSWcUnJEOPTNcDtFC4dqbU2DfmRts8HlFJ9MMw1uo5hQnw0UBp4DMMY9Higt9Z6ZZL7QpC2z3fSClCM14QgbZ9nWfw3fxlDL8lNDN/jGmEYzhcGtNFaX01yXwh5uN0lQCkAjEvPvQu8DDyKYXfpjcD4FHYZFXmExR+u1PRNuiyl8b5BGDZ3uw/swRDI7Mr6WoqsppSaCLxvx6WVTMM9LO7tg7R9nqWUqgQEYxjKVRlDcHIfiMAwrOM/WuszKdzbB2n7fMWeAMV4XR+k7fMkpVQtDHvgNMbwHa4EhvkmxzH0pH9hHNZl694+5NF2lwBFCCGEEEIIkWvIJHkhhBBCCCFEriEBihBCCCGEECLXkABFCCGEEEIIkWtIgCKEEEIIIYTINSRAEUIIIYQQQuQaEqAIIYQQQgghcg0JUIQQQgghhBC5hgQoQgghhBBCiFxDAhQhhBBCCCFEriEBihBCCCGEECLXkABFCCGEEEIIkWtIgCKEECLPUUq1UkpppdRiR9clLcZ6Rji6HkIIkVdIgCKEEMKKUsrP+KV6exbll2eCidxAAhohREEnAYoQQgghhBAi15AARQghhBBCCJFrSIAihBDCTCk1EThnfBpoHG6kkw7RUkr5K6WWKaWilFL3lVJ/K6WWKKVqJMlvMbDN+LR3kvwmWlz3jFJqoVLquFLqtlIqVil1RCk1Vinlmk2vVSulIpRSLkqpD5RSZ5VS8Uqpv5RSk5RSbincV0opNV0pddp4/Q2l1EalVLt0ll/H+L49UEq9opTqo5TSxmTfJO/V9sy+XiGEyCucHV0BIYQQucphYDXQHbgCbLRI+x1AKdUWWAe4A38A24GawKtAN6VUR631Dot7ygHtgbOmPCzKMvnKmN+fwFGgOBAATAbaKqXaaa0Tsug1WlIYXm9b4FdjndoC44GmSqn2luUqpcoDvwGVgfPAWsAbCALaK6VGaK1npVmoUk8CGwA3oKvW+ielVHPga6A3EAussrjlROZephBC5B1Ka532VUIIIQoMpZQfhl6UUK11qyRpRTEEGmWBQVrr2RZpw4FPgYtANa11vPF8Kwy9KF9rrfukUGZXYLPWOs7inAfwLdAJ6K21XmKRlmaedrxO0/8ALwKBWuu/jOe9ga1AHWC41jrE4p51xvp8C/TVWt83nm8ObAJcgce11oeTlBOptfYzPm+PISh6AHTWWlsGbcmuF0KIgkaGeAkhhEiPHhiCk92WwQmAsefgIFABQw+M3bTWP1gGJ8ZzMcBw49OuGa5x2iaZghNjudeAUcang0znlVKVMQQnd4DBpuDEeM/vwFygEDAwpYKUUj0x9D7dAVolDU6EEELIEC8hhBDp08L4uCyF9KVAI+N1KV1jk1KqGtARqAoUxfAjmjImV0t3Te23POkJrfVGpdQ/QBWllI/WOgpobkzeqLW+YSOfb4AR/PseWVFKvQnMBiKBdlrrM1lSeyGEyGckQBFCCJEejxgfI1JIN50vb2+GSikFzMDQW6JSuMzD3vzS6R9jT40tkUAJDK85isy99grAF0A80FprHZmRygohREEgQ7yEEEJkpYxMbOyJoefhIvA8hi/4LlprhWFOB6QcuOQmqb32qxgm4bsBM5RS8gOhEEKkQP5ACiGESI9LxkffFNL9jI9/pyPPbsbHAVrrDUnSKqcjn4wooZTySKEXpaLx8VKSx4y89vtAZwwrdz0PJCqlXs6mlcmEECJPkx4UIYQQSZkmf9v6Ecu0fPBLKdzbK8l1aeUHhmFUYOhBSapHCvdkpWRlGPc0KQn8ZZx/Av8ukfy0UsrLRj62XruZcRGATkCoscxvlFKFbFz6APkBUQhRgEmAIoQQIqnrGL4kV7HxBXolhv1Rmiul+lsmKKWGAI9j6EFYbZFk6nmw2sTRwinjY3/jfBRTfi34dzWt7PS+cWllU7mlgenGp+aVyowrfW3AMB/mM6VUYYt7ngQGAAmW9ySltb4LPIMhiHkJ+FoplfT/xZeAsikEQUIIke/JPihCCCGSUUr9iGFIUhhwCEMvyE6t9aIkGzUexBBg1AQaYFg+13KjRlN+R4C6wH5jngnAj1rrH5VS1Y1lFAXCMWzUWB7DqlkzgZEk2RckC/dBOW8srw2GOSIPjP/2MubfTmv90OKe8hiCi0oYJtHvxrBRYysMSwy/rbX+1EY5SetfDMMmmM2AJRj2VEk0pv0HGIxhL5pdGCbWn9RaT0cIIQoA6UERQghhSzCGZXNLAS8D/wcEAmitfwWeAL7DsDrV8xh2i1+KYZNCW0OcumPYdb0y8Joxv4bG/E5h6HlZB5QGugDFgDe01tndg6KN9Q8BHsMwBOsWhh3sn7EMTox1/RvDa58JPASew7Cs8q9A+6TBSYqFan0H6IAhAHkN+MqiJ+Vd4HMMw7x6YnivnsnwKxRCiDxGelCEEEIUSLJjuxBC5E7SgyKEEEIIIYTINSRAEUIIIYQQQuQasoyhEEKIPE8pFYxhUr09PtFan8jO+gghhMg4CVCEEELkB82B3nZeuxg4YdypXgghRC4jk+SFEEIIIYQQuYbMQRFCCCGEEELkGhKgCCGEEEIIIXINCVCEEEIIIYQQuYYEKEIIIYQQQohcQwIUIYQQQgghRK4hAYoQQgghhBAi15AARQghhBBCCJFrSIAihBBCCCGEyDUkQBFCCCGEEELkGhKgCCGEEEIIIXINCVCEEEIIIYQQuYYEKEIIIYQQQohcQwIUIYQQQgghRK4hAYoQQgghhBAi1/h/YoP+Ok0cIuQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Plot the CDF\n", + "\n", + "plt.figure(dpi=150)\n", + "plt.title('CDF and Thresholds for % of samples below given value')\n", + "lengend_names = list()\n", + "plt.plot(support, emp_cdf)\n", + "lengend_names.append('CDF')\n", + "\n", + "for row, c in zip(limit_rows, colores):\n", + " plt.vlines(row[1], ymin=0, ymax = 1.0, linestyles='-.', colors=c, lw=0.75)\n", + " lengend_names.append('limit %d%% (%0.2f POKT) '%(row[0], row[1]))\n", + "\n", + "\n", + "plt.ylabel('P (total_pokt < X)')\n", + "plt.xlabel('total_pokt')\n", + "plt.legend(lengend_names)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzMAAAJCCAYAAAD0oplmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAABcSAAAXEgFnn9JSAADUaklEQVR4nOzdd3gURR/A8e8EQgpJ6E0QQhEQEJAmSofQBUGaBSTwxkaRXkSRiIICIlhQkCKgKChNARWkSpESkJbQBAKo9F4SSjLvH3t7ueTukksulxD9fZ5nn0t2d8rObTY7u1OU1hohhBBCCCGEyGq8MjsDQgghhBBCCJEWUpkRQgghhBBCZElSmRFCCCGEEEJkSVKZEUIIIYQQQmRJUpkRQgghhBBCZElSmRFCCCGEEEJkSVKZEUIIIYQQQmRJUpkRQgghhBBCZElSmRFCCCGEEEJkSVKZEUIIIYQQQmRJUpkRQgghhBBCZElSmRFCCCGEEEJkSVKZEUIIIYQQQmRJUpkRQgghhBBCZElSmREiBUqpcKWUVkqtz+B0Qy3pRmdkup6mlAq2HJdWSgVnQvrRlrRDMyN8GtPMq5T6WCl1VCl126b8cmdUHv4LlFJtlVJrlVKXlVLxljKenNn5yqoy428lrTLrOm9JO1OvifeTzPwe/mv+TWUtlZn7nM3JlnSJVUr9pZT6USnVWSmlHIQNdRL2hlLqH6VUhFJqhlKqu1Iqpwt5cRSXoyXcI4WRhaSirBwtoZmdf3H/UEplA9YAfYFSwB3grGWJz8Ss2VFKPWO5rsQopa4opZYrpR5NIYx5jRuUUfl0ko8OwA9AIyAQuIBRxtcyM19CCCGSlz2zMyBS5azNz7mAopalDRCqlGqvtb7tJOwFIM7ycw6gEFAEqA78D/hUKTUBGKu1vpdCPm4CN5LZnty2/4qzTtYHADlT2Ccm/bMjsrCmQFXgLtBYa70pc7PjmFKqHzDZ8mssxrneGmislKqvtY5wEKY88Drwh03YzDLE8rkIeEFrfSszMyPEf9QF4BBwMrMzIrIOeTOThWitC5sLxg1xJeBXy+aWwLvJBK9pEz4vRkW2PPAKsA/jxuNt4FellE8KWfnANi8Olg/cOc5/A2dlA3yQ0j5a6wWZmHVx/3nE8rn3Pq7IBJFw/emDcT3JDSwA/LA5723CKGAakA14UWsdl3SfDGaW82ypyAiRObTWn2qty2utX8jsvIisQyozWZTWOl5rHQm0Bf60rH5ZKeXS2zZtOKS1ngY8Cnxo2dQQ+Di98yuESDN/y+f9/MbzcYwKTITWeorWOk5rfQPjYUk8UFcp5ZckTE+gPvCJ1npnxmbXoaxQzkIIIZKQykwWp7WOBb63/BqI8bYltXHEaa0HASssq/6nlCqbTllMkVIqj1Lqf0qp75RS+5RSlyx9gk4opb5RStVOJmyiDmxKqSZKqRVKqfOWOA4opUYppXxTyENLpdSvlnb+N5RSe5RSQ5VS3ul8uGmmlKpuKaPTyugEfkwp9aFSKo+T/ZOWTQel1Cql1DlldG4OT7J/AaXUu0qpP5RSVy3ld0wpNVMpVTGZfBVTSk1SSkUqpW5a8vaPUmqnZX3NFI6rkFLqI6XUcUuaZ5VS8y1NkJILl0sp9ZZSapdS6pqln8YRpdTnSqlSyYVNIV4/pdSbSqkoS5znlFI/KaWauBA2j1JqtE2e7iilziil9iqlproSh01cs5VSGgi3rGqgkumbppTyVUr1V0ptUUYHdvNvaK5Sqmoy6Vg7aSulAiz536eUuq5c75Cc3/J51Hal1voKRrORbEBemzQLAhOAU8BIF+J3mVKqoVLqe6XU35Zz8YJSao1Sqocy+h/Z7mvteG2zep1tOacy7eZKqcXK6M94x3IOHLP83Q1WSuVNsr+3MgYd+EIZfY1OW8KdU0qtVEo9q5R9f0ib47TmUSlVWSn1reVvL0YZ177ByuYBl1KqjlJqqSWdWKXUfqVU72TSsD03ApVS7ymlDlniv2CJ67HUlJGDNOoopb62nKuxyrj2bFdKDVNKBSQTLlVlnYZ8dVZKbVDG/6Obyrie9Ul6DjkIl6brqAv5SdX1TimVXyUMYlHJwfbXbc7zPg62P27ZdlvZP4hwJb/1lVLLLOdJjOW8GaOMa4zTwW2Ug07plr+TC5b1r6WQbk/LfteUUv4Otley/L0dUUrdUsb/+72WvOV3Eme63Gc4iNft41JKFVZK9VVK/WDJx1VLef+pjD7RaTrnlFLrVQp9oB19Vw72CVZKTVbG/cENS5kfVMb//OJpyZtDWmtZ7uMF40ZGG1+V0316mfsAT9isD7VZH+xCWjVs9h/tYLu5LdxTxwjcAy5htLk318UDr6UQdj1Gm/d4y3LZ8mnGsRbI5kL62hL2ruXnDcBYM42M+D4dfH/RwHMYHb81cAWj/5OZ3/1AQAplM9GmLC9ZyjncZt8Qy3Gbcd7BeEJt/n4box9B0jSqWOJL+v3Zlv3sJGGCbba1xug7pDH6Ytl+71eBKk7KpiLGjbC5bwxGR23z91igg5Ow0ZZ9Qh1sywvssonnrk25xAOvOgsPFANO2ISNsylrc53L5xDwEXDG5nu4Y/ndXAbb7FsUo7mo7fd3JUle+qZQHoMw2qqb37d53K5cO1pY9t2RZH1uS9r3AD+b9fMs+7dJ52vJhzbHbF4HbMt/DRBos/+DNuVp7nPJtpxTkfZbNnGY5/P1JOsaJgnTMMn2q0nOYw18B3g5SM82bEuMvwHz+mD79/etZf8wS1nEJzk3NPB+CufGAOCgzblxNcm51TMNf2teGOe4bT6uJ/m+DgIl0qOsXfj+wkm4Xo6zOYcukfh6+wvg4ySOtF5Hg232sft7I43XO2CvZbvd/0+MJupm+MUOtr9h2bYhDX+HfZOcg1csx66BKKC/5efo5L6HJOs/xcE1xkH4dZb9vnSwbWiS7/KmTb408A/waArnRpruM5LJr1vHBcy2Sf8ucJGE+xen50ZyZW3Ztt6yLdyVvxkn258n8f/0WOCWze/XgGapPb8cppUekcjiuQXXKjPjbU6O8jbrQ23WB7uYnnljaXcBs4krPJ2P8SXLcVYHcljWKaAkRqfgeIx/cMldZC5bLlJjgfyWbUEY/YDMfNv9w8Vopmd70/CgZb0fRiXR9qZufUZ8nw6+P/Mmf7pN/vyB3iRUcBxVPs20zH/y7wMFLNt8sNwkYPQVMC8wXwAPY7kgA8WBKSRcKGskSWO1ZdtOoDagLOtzAA9h3CAPSRIm2KbMLwGbzHgx+nKFYPxT0cBvDo4rEDhm2f4X0ArLzR5G5ep3Ei6cVRyEj8b5DdZim7AvA76W9SUs2+5Yvg+78MAMy/rjQBObMsxmCf8KTm4aXTxnHJ5/lvi3knDT8DwJf0elgGUk3Ji1TKY8rgOngXaAt2VbMcDfhTwGkXDT1gvjRjUnCZWWDTb7NrOsW5jO15E+NufVNKCwZX1OjJsn8x/8fCfhzbAN05B2CRJukiYCD9hsywXUxfg7qp4kXC1gquWcD7JZnxd4jYRKg6Ob0YY2eb4MzAeK2/yNjLXZPtxy7n4MFLTskwf4koQKSdlkzo0rGH+rnYDslm0Pk3DDcxeolsq/tXcs285azpm8lvXelmMzHyrsxKYyl9ayTsXf2RXL5yckXC+DgDdJuHH90EF4d66jwTbfVXCSbWm+3pFQWVyaZH0OS15vWc6LiySpMJNwbQ9PZTk+YfP9rDLPK4xre0dLWuYDsOhkvof1SdbXsimj8k7SLm7zHTVKsu1/JFznRpBwfciGce+xxrL9FEkeDuLmfUYK5eXucb0JDMboQ23+bXphVIC/toS5gc3fSUplbdm2PqXvP4XwTS1ldRfj4UAwxn2dAsph3G9pjGtc8dSUmcO8uBuBLJ5dSOHm1/KH9Ldln0QXJNJWmVll2f8vB9vMuG6Q+Amx7fKlB8rAfHIxI7nycfZHhzE6kQZ+dbAt0vxjxPHTz5dt4l/v6e8zyb62399sJ/uYb1yOpFA2E5NJx7yIj01mH2f/FM1/3o+nogyCbfJ1AJsn9jb7tLHZp1iSbcMs6+8AlRyEDcSoUGhguYPt0TiujNj+U3FU8c0GbLTZJ2n4KMv6Z9P5/De/R4fnH9DFJk92T7kwbiLMys6+ZMrD4QODVORzoE0+Ykh4wh4DPGbZxw+jKdpVHPxzdSNtP4zrnwa+cbJPX5v82d3o2mxrmIb0O1vCHkrn776jJd4/HWxraJPnVVgeJCTZ5zebfaY7OafNG+U3kzk3NNDESbkftmxfkUz4pH8rwZbz4xbO374GkvA2ol0GlHW4zbHOdbKPWQG7m/T8xb3raLBN2sFJtqX5egc8RcJNuO29QX3L+tXAZsvP1Wy2+5BwbW+QynI0K0GROHiDhTH0uXms0cl8D+sdbDPfDjosY4yRETXGG3Jlsz6QhIeSzZ2EzQ5EWPbpn8y5Ee4kvNP7DBfKLE3H5WLcy3H+951cWa9P7niTC49RmTKvCy8lE/4Hyz6TU1tmSRfpM5NFKaVyK6P9/VrgAcvqj7TW7s47ccnymVx745wYQzs7Whz233CT2ZenbjL73MbBiEkWP1g+K9uuVEpVBipYfn3XSdlNx6gsZjZnI9WZx1bGUftgi3iMJyN2lNEfojHGjUVyo9DNtXyGJGkzfsXyWSSZsMmZqLV2NBT1zxj/vCFhlClTF8vnQq31/qQBtdbXMd5WArRUSuVyMS/PWD5PYTyxThpvHMbNjDNXLJ9pLYu0Msvjd631qqQbtTHU+tuWXysppZKWp+kXrfUfac2E1vpDoCvGMMsK42boF6Ce1nqbZbdRGG+LXtda/6OMfhiTLP0eblvaUifbdtyJpiRcs8Kd7PMZxpsnMJptpqcrls9A5cKcXalgXvtKK6UKJ7PfOG25O0hipc3P7yXdaDmn11h+rZx0u43NWus1SVda/nYnWH5tkYq/tVCMitQvWus9jnaw/B0vtfza3GbTFctnepe1rdFO1k/AqJxnBzqYK9PhOpocd653GzCu/7mBajbrG1k+11oWLPk31caoqMZiPAhxiTL6KZnxTNAOporQWq/DeCiUFl9ZPp9XymE/r26Wz3lJ/h46YJTBH1rrlXahsF4nv7X82tzRPqThPsNFaT0uV7hy/5Te6mO0zLiA0WLBGfPvwVl5u0wqM1mIStwp9TLGE5Dqls1fA2MyKCtva62Vk6VdWiJUSpVSSn2gjE6WV5RScTbH+pNlt2LJRBGpjdGTHPnH8pm0glbD8nkPJxdXSwVnfcpH4FGXtNZ/Otn2j83PziqSf2qtzznZVsfy6QVEKaOzut2CcVMKRkU2n0345ZbPOUqpiUqpBslUqhzZ5mil5R/Lecuvth3Hc5Dwz2J1MvGaQ5Z7kfifeHLM82F9Mv8wfsM4Xxwxy+J9SwfTFsoYstjTzHwnVx7rSJhnqoaTfTa7mxGt9TytdTWtta/WOkhr3VJb5pexVKIGYdwcTVVGx/SVGE3ALmDcSAQCHymlxjtOwSnzmE5prQ87yVscCTduzsogrbZjHEMRYJsyOoqXd3JjkoilQjdEGZ3NzymjM7t57bMdIjq56992J+vNuawuaa2PpbBPcg+i1rqwLTV/a+Z1p5mza47lutPDsl8Jm7BpLmsXnXJ2vdVaX8No9gaJzyF3r6MOuXu908YAHOYDCtvKivnzWoxrg7PtWxxVSJLxKMaDDDAqUs6sT0Wctr7CeJJfHGhgu0EpVR2jaR8k3CSbzO/n4RTOt7cs+5XAsbTcZ7gircdl7lNFKfWZMgYyuKYSBn7QGA9xIPnrR3ozyzsX8E8y5T3dsp+z8naZTJqZtdhOsngb44L+B0ZtfZ3jIKlm/iFeTKf4UqSUao9xI2M7v801EjqO5cD4R5vcU7jryWwzbz6Tnu8FLZ8XUrhg/5XMtozgyrGB0dbcEWcVGUh4q+eF8WbNFbaVlaFAGYwnfQMtS5xSajfGE6EvtNbJvdly5dhsjysvxhNdSP6Nme13VtDpXomZ+zmNV2sdq5S6iOOymoDRhr0z8KJl0UqpSIybmBla60Mu5iU1XM33BYx8OyuP5M4TtyilvDD6EWiMOWXilVL/wxjS+Vegldb6nuXtwz5gsFJqhrOKiQMploGFeV64ek64RGt9RSn1LPANRlv1TyybriqlfsNoH75Aa33XNpwyRo1cQ+IbjVskdOKHhHPN6fXP8nTeEfNvKLV/Z0klV66221wtV/O6k5Pkr+sm6zUnrWWdCimdQ+Z222N19zrqTHpc79ZhPPRsDIxXxshktTHOiQiM/4uxQD2lVHbLg6RGNmFTo4DNz/843SuNrR201ieVUhswmlh2I3GlyHx7sUNrfTBJUPP78bUsKXH23aTlPiNFbhwXyhiJ7iMSXk5ojGa85j2NH0Z3BE+9xXTELG9vXPt7SPVoeUnJm5ksRCeeWLGE1rq61josHSsykPAU6Giye6UTpVQ+jNE4fDCeEjXE6HCcS2tdSBsTTXbKiLz8iyU3GaH5j/JsMm/bki7RZmCt9RWtdWOgHkZTh80YF/XqGE+5jlhuPP71tNZ3tdZdgKoYzVTWYtyYVsLooBmplBqUeTlMkScnrXwF4wbqA5umMu0tnx9bbqDQWp/BeMusMNr7Zxla69UYg5a8AMwBjmA8mWyD8eT1D6VU0STBvsSoyERjXOfyaa1zaq0LWq59tvun15uH+4F53Rnn4jWnoW3gNJa1J7l1HfUw881ZXWVMNVAH4wHhb1rre9qY3uF3jHmialnerJvDbbtzb5Ha5lCuMt9OdLRUzLC85TX/z3zlIIz5/Sxw8bsJ9lDek5Pq41JKPYwxSJIXxhQdtTAGrcmjEybqHmju7sG8J2WW9zZX/x7cTVAqM8JKKVWDhFr0+gxKthXGU4PLGMO0btD2fSiSayvuDvNJdH7L63xnMvKfYkY7Y/nM7077c631Jq31MK11XYy2yU9hPGH3A2YppVx9WpkSc5hUSP61ue02V984mPs5/b6VUj6k0DxEa71Haz1Ka90EoyxCMJqnZQMmKKWquJgfV5n5dloeypj/wMy3x97AOEn7AYz+GkdJ3OfInBsj6YOTI0m2uyLFMkiy3SNloLW+qbX+SmsdqrUua0lvGMaTb9u3CCilHsQY+QmMQSMWaq0vJYnSU9e+1EruGmi7zdVyNa87aW5ekpqyTqWUrvfmdttjTZfrqAPpcb3biPGAKSdGJcW2iZnJtqlZXYzKzk2cN1905rzNzw843cu9/6kLMfotBZHwwKMZxhupuyT0e7Hl9vmWAdJyXB0x/q8cAJ7RWu/QWt9Jsk9aryHmm6bk3mQ56yOX4eUtlRlha5TlMw7j6WhGeNDyeUhrfcvJPiEeSjvC8pkd482CHUvzmIYeSv9+YPaTyIYxV4XbtNaxWusfgactq3xJp86Hlgv1XsuvyU1AaZ4z8RhDvLrCPB8aJNP+vj6paEZgefK5BmM+ndsYT8fS+3w2851ceTQkId870jn9lHyM8Q/6FQcPKsC+iUFamhyYZVBMOZnwVxkdrs3mMxlSBlrrv7XW4zFGHQRjoALTgzY/Oxt4wVPXvtRq5MK2eJwfR1LmdSdEpXKiQWdSKOvUeFApVdrRBqVUIAn9VCNsNqX7dRTS53qnjT4eZl4bk7jzP0l+tt2+KQ1N9f4g4Y1Mw2T2S25bsnTigSG6Jfn8WWt9wUEw8/uprpTK6AFaXJLG4zKvIXu088Gf0noNuZwkDUecTZhrlndhy0Nyj5PKjEAplU0pNRF40rJqunbe4Ty9XbV8lnX0T00ZM5en98hDAGit92I80QB4w1JxSaonGdtxLkNprY+Q8BZujEphNCJlM6u2Uiq7kzIz2d64ujvKnq35ls+OyvHM1gEYfXkAftJaX026jxMLLJ/Fge4O4vXCGNPfIctbG2duk/CENT3LAhLK43GlVDMH+cpOQsfW/drBiEieopRqgzGS0NeWpkG2jls+ayVZX9vy6azDuiO/ktDPL9zJPi+T8LTY0VPONEvhu4eEvwXb7972vLR7W2e5cXZ6vmWwukqphklXWq7ZZtPJldrocO6KWRhPfvOTMNKeQ0qpHJa/afP3tJR1ao10sn4QRmX7HsZQvIB711EXpMf1zqystMUYuOAiYDuK3HaMNzGPk1AZS3UTM8ubRTPcIEctHpRS9XHy8DAVzCZZzZRSD5HwJsNhB3mMJlhXMPpwfJjcYBFKKS+lVG4385dWqT0u87t+xNExKaVakvaKo3l+NHf0tlEp1RjjfHFkHWDeQ05KoeVLav8eHJLKzH+UMjyklHoJ40mO2a5yDdAvA7OyCuOfTl5gntnO2fIPrLNle3Kd7tz1huWzEfCNUqqYJX1fpdQrGHPcXPFg+veDvhhzB5UFtiqlnrKtWCqliiqluiml1pB4iOdiGH1i3lRKPWq5aTbDVCbh7d5Nkh/ZJrU+x7gR9gZ+Vkq1NCtVyhgxayVGe/rbpOJmUBvDB/9opqGUetG8cVJKFceo7DxO4hGmbJ1QSr2nlKpte8OllCqDMXmkP8a57nBoUDcsImFUuO+UUs9Z2sajlCpp2W7+0xnqILxHWG6ypmA0lRnoYBdzKNMRSqmKlmtSB4xJOzXGZJ8usbzxCbf8+qxSaqrZtFEp5a+M4Z4nW7Yv0FrvtI/FLcOUUj9b/k6sDz+UUj6W69gQy6oVNmEOACctP89SxqhFZrjHMW6OPTHUfVpcBRYppTqaf+dKqfIYx1Meo6L+VjLhE9Fa2zY5HKqUmmt7o255UFJVKfUWxk1RVZvgaSnr1LgKdFdKfaSUym+JO1ApNYKEY5yitU7awT2t19GUpMf1zqxgVMd4Q5toxEbLG5hNGG/RqyQJk1qjMP5+KwE/Wm7Kze/0aYzr0eVkwrviV4ymTNkxBoLws8S53NHOlkp2f8uvzwArlFKP2ZSjl1LqYWX0aYwk4cFuRkvVcZEwOl5FYIpZKVBK5VRKvYzRdC2tgzl9h/H/Kh/wrc29kZ9SqjuwhISpPBKx9IF8BaPSXxf4TSnVxPy/ZImnlFLqFaXUDoxJc92j3ZyoRhbPLqRikkUHYUPNsBhtWc2JLS+SMKGduVzDuLHPnkx8yU4a5cYxvp8kL1dImNn+GMabGYdlQAoTClr2aZhcGWLM4WKb/iUSZgv/jYSZtJ2m4Ynv0+b7i05mn2CbfAentmxs9q2DMQeHGdc9jNHybpG4bKY7SdsMcxHjn6q57jbQ0dU8J9kv2rJPqINtlTBG8DHjiSFhtnSN0W6+YxrizQfstonnDgmTrcVjXHQdhk9SFnGW8yjGZl08SSZjS+U5k9w5XhTYn6TcLyfJj90s8imVh5vn+iRLvD2cbM+B0dzLzKPtueZ0ktcU0vwwSXnb/i1rjCfUgU7Cmvs0dOM7sj2WiyTM2q0xJlUtnCTck0nyd9OyaIwb4ybO8kUK1zXLPqGkfA1xen7ZnBsDSJjYLxbjGm1bzi+m4W9NYQyUYVtGtzCuO0n/P9Vxt6xT83eGUdmwPYds8/MrRidrR3Gk+jpqCRdssy3YQbxpvt5ZwvuR+Lrcy8E+w2y2XwWyufG33z/J8V4mYXTSfTbbD6bmfEyy38QkaUx1IV+vJCmHWMv3cydJXM+nNk+48PfoYtml6rgw3jInLWvzfI0A+uDkGpDScWG8NbWN+woJ16slJEwi6yx8O4x7SzP8HUt5xyaJ9w13ykxrmTTzvyQ/CRNb+mJUbnYCMzGa1BTRWo/RllGFMpLWejjGqDTbMS7S3hhP48ZijFuf3BCP6ZH+mxg3FWsx/vB8MJ6aDse4mUjaoe5fR2u9GeOJ4mCMCtwVjM7rcRhl8TXwPAlPt8AYXrMtxk3rVox/4gEYF9IojKfylbTWCz2Q3/0YT6PCMSof9zC+t6PAVKBiWtLVWl/E6JQ9CuPmLd4S9y9AU631Z8kEb4bR0X0jxsSbZt+PPzFGraqptZ6c2jy5mO+/MZqPDMT4LmIw3gSdwhgFp7rW+mNPpO2I5S1DX4x/cl862kcb/QFCMN5+nsZ4GnkY4xgGpyVdrfVAjHb/izCGsg/AeLO7DqPJaFPtfBhjd3wBvIRxY7Ef4+bVHNhkI8bfTTVtjNZmm9/lGP2wVmD8zWXH+Gf/JcZ3ZjdRZSa5jNEc8H2Mt0k+GDf5yzAqGtOTCeuQNryFMYLmZxjXmTiMTsWXgS0Yw50/Ybk+mdJU1qnM2zCMJ/ibMCpddzCuM/2AFtoYAcxRuLRcR13Jj1vXO228ubSd/NLRvEG26zZqY16mNLFc5xpizBF3GeOeIxrjwWFtEkbWupLWNLBveuWsKZZtvqYC5TAmvtyDUbHJjfHgIAJj0IimpHMz1FRK7XGZ59NejOPJhlFhfB2jcu1sXpwUaa1HYfTb2YrxkCUbxvn3Ckaf2GTPEa31UoypG97GuL+7gVHetzHKfwbGqJYTHMfgOmWpPQkhhBBCWCmlojFGJOqhtZ6dubkR/xZKqXkYLS5maa3/l9n5EVmfvJkRQgghhBAep4zRBs2RLn9Jbl8hXCWVGSGEEEIIkS6UUqOVUn2UUsVtOtnnVEp1wWjy6YvRjHdpJmZT/Iu4PF+CEEIIIYQQKaiMMazwJ8BdpdR1jL4S5gP0v4FOOvXz2AjhkFRmhBBCCCFEepmEMXDPE0ARjKkXrmMM8LEc+FQbc9IIkS5kAAAhhBBCCCFEliR9ZoQQQgghhBBZklRmhBBCCCGEEFmSVGaEEEIIIYQQWZJUZoQQQgghhBBZklRmhBBCCCGEEFmSDM18H1NKnQH8gVOZnRchhBBCCCHS0YPALa11YXcikaGZ72NKqWs+Pj6BpUuXzuysCCGEEEIIkW6OHj3K7du3r2utg9yJR97M3N9OlS5dukJkZGRm50MIIYQQQoh0U7FiRaKiotxufSR9ZoQQQgghhBBZklRmhBBCCCGEEFmSVGaEEEIIIYQQWZJUZoQQQgghhBBZklRmhBBCCCGEEFmSVGaEEEIIIYQQWZJUZoQQQgghhBBZkswzI4QQQqQzrTUyKbUQ4r9AKYVSKtPSl8qMEEIIkQ7i4uK4ePEi169f586dO5mdHSGEyDA5cuQgMDCQfPnykS1btgxNWyozQgghhJvi4uI4efIksbGxmZ0VIYTIcHfu3OHixYvcvHmT4sWLZ2iFRiozQgghhJsuXrxIbGws2bJlo1ChQuTMmRMvL+mWKoT494uPj+fmzZucPXuW2NhYLl68SMGCBTMsfanMCCGEEG66fv06AIUKFSJXrlyZnBshhMg4Xl5e1uveP//8w/Xr1zO0MiOPjYQQQgg3aK2tfWRy5syZybkRQojMYV7/7ty5k6EDoEhlRgghhHCD7T9taVomhPivsr3+SWVGCCGEEEIIIVIglRkhhBBCCCFEliQDAAghhBAepLUm5m5cZmcjVfy8s2XqJHhCCOEqqcwIIYQQHhRzN44Kb63M7GykStTo5vjncO8WIWllSClFUFAQjzzyCN27d+d///tfon3Cw8N5++23E4UJCAggd+7cPPzwwzzxxBOEhoYSHBzsMD1H4ZNat24dDRs2TNPxCCHuT1m6MqOU8gNeB54BigOXgF+AkVrrv12MIzvwJlATeBgoAHgDp4BfgXFa6xNOwmYDXgN6AmWAG8A6YJTW+kDaj+z+4OxpojyxE0II4aru3bsDxsSiR48eZfPmzWzatIk1a9bw7bff2u1fpUoVqlatCkBsbCxnz55l27Zt/Prrr7zzzjv069eP999/nxw5cjhMzzZ8UoULF06XYxJC3D+ybGVGKeULrAVqA6eBH4BgoAfwpFKqttb6mAtR+QKjMCoie4GdQA6gKvAq8LxSqonWOiJJ+l7A90B74AqwAsgPdARaK6Uaaa23u3eUmUdrTcepv7PzxGW7bTVK5OH7Vx6XCo0QQqRS9RK58bpPr53xWrPzxJV0j3f27NmJfv/1119p1aoV8+fP5/nnn+fJJ59MtL1du3aEh4cnWnfv3j3mz59P//79mTRpEmfPnmXevHkO03MUXgjx75WVBwB4E6Mi8ztQVmvdRWv9GDAI4+3KLBfjiQXqAnm01nW01p201k8BpYD3gSBgqoNwPTEqMkeA8lrrjlrrhkAnwB+YZ3nrkyXF3I1zWJEBiDhxOcu1/xZCiPuBl1Jk87o/l4yqZDVt2pRu3boBsHTpUpfCZM+ena5du7Jp0yYCAgL45ptv+PHHHz2YSyFEVpElKzNKqRxAH8uvvbXWN8xtWusPMd6wNFBKVU8pLq31Pa31Zq31vSTr44CRGJWd6kqppFM6D7R8DtVan7UJtwj4EaPZ2VOpO7L7U/USuakZnIfqJXJndlaEEEL8Czz66KMAnDp1KlXhypcvT//+/QH4+OOP0ztbQogsKEtWZoA6QC7gqNb6DwfbF1o+27iZjgbiLJ93zJVKqZIY/WtiMJqXeSr9+4L5JPF+bRohhBAia7l+/ToAPj4+qQ77zDPPALBlyxbu3LmTwt5CiH+7rFqZqWL53OVku7m+cloTUEaHkGFATmCd1jrGQfr7tdZ3PZG+EEII8W+ktWb58uUAVK6c+n+TDz/8MD4+PsTExBAdHZ3OuRNCZDVZtTJT3PL5l5Pt5voSqYlUKTVOKTVbKbUYoy/MGOAAEObJ9JVSkY4WoHRq8i+EEELcr+Li4jhy5Ag9e/bk999/x8fHhx49eqQ6Hi8vL/LkyQPA5cv2fTvffvttlFJ2S2hoqLuHIIS4D2XVDuoBls9bTrbftHwGpjLeDiSuQOwFumqtj2dQ+kIIIcS/iqORLwMDA5kzZw6lS6ftmZ3W2mnczoZmrlu3bprSEkLc37JqZcYjtNZlAJRS+YHqGG9mdiqlXtRaz/FguhUdrbe8nangqXTTw+3bt4G0tXu2df220X460McT9b/rlk+pW2aIu5by9vZAeVva2RMo36UQWYU5z4yXl5d10synn37a+nYlteLj461vZPLmzWu3XYZmFuK/JatWZszRy/ydbM9p+bzuZHuytNYXgJVKqa3APuBzpdRarbU57IpH089KvvrqKwDCwpK2xEudpl81BWBr2Fa38+QgdsunJ+IWdtZayru5B8q7qSXurfJdCpFVJJ1nxl2RkZHcuXMHf39/goOD0zVuIUTWk1X7zJy0fBZzst1cf8KdRLTWV4FlgB8Jd8QZlr4QQgghEluwYAFgNBvLnj2rPpMVQqSXrFqZ2WP5rOZku7l+bzqkdcHyWcBB+pWUUt4eTl8IIYQQwMGDB5k8eTIA/fr1y9zMCCHuC1m1MrMZuAqUVkpVdbC9o+VzWTqk1cDyedRcYRkQ4ADGG5vWHk5fCCGE+E+7d+8e8+bNo169ety8eZMXXniBVq1aZXa2hBD3gSz5flZrfUcp9SnwBjBFKdVMa30TQCk1EGN+lw1a651mGKVUH6APsERr/brN+tbAZa31Fts0lFL+lvgbAGeAX5Jk40NgOjBeKbVFa33OEu5poC3wJ/BDOh62EEKILC5ea4jP7Fw4Fm8ZISyzLV261Dp/TGxsLOfPnyciIoJr167h5eXFoEGDeO+99zI3k0KI+0aWrMxYvAuEAE8AR5RSGzHmdXkMOA/0TLJ/fqAcUCTJ+prAKKXU38BujDc+hYGqQF7L75211jeShJsFtALaAweVUmssaTQAYjCGdL7n9lEKIYT419h54kpmZ+G+t2fPHvbsMVpz58yZk9y5c/PYY49Rp04dQkNDKVEiVVPICSH+5bJsZUZrHauUagS8DjwHtAMuAbOBkVprZxNaJrUYY8zeehgVm7wYlZE/gWnAJ1rr0w7Sj1dKdQL6YVScnsSYX2YRMEprHZXmgxNCCCGyOJ3KNz3h4eFuDansbnghRNaUZSszAFrrGOAty5LSvuFAuIP1e4FBaUw/DqO52YdpCS+EEOLfz887G1Gjm2d2NlLFzztbZmdBCCFckqUrM0IIIcT9TimFfw75dyuEEJ4gV1fhlhw5cqRLPAE5AtIlHiexezBuYSe7B8s7QL5LIYQQQiSQyoxwywsvvJAu8ax+YXW6xOMkdg/GLew08WB5r5bvUgghhBAJsuo8M0IIIYQQQoj/OKnMCLf8/vvv/P77727HM+n3SUz6fVI65Mhh7JZFZIiDk4zFEyZNMhYhhBBCCKQyI9wUGRlJZGSk2/EsiFzAgsgF6ZAjh7FbFpEhTiwwFk9YsMBYhBBCCCGQPjPCTWFhYekSz9awrekSj5PYPRi3sNPcg+W9Vb5LIYQQQiSQNzNCCCGEEEKILEkqM8Itu3btYteuXW7HM2PXDGbsmpEOOXIYu2URGeLPGcbiCTNmGIsQQgghBFKZEW6Syoywc3SGsXiCVGaEEEIIYUMqM0IIIYQQQogsSSozQgghhBBCiCxJKjNCCCGEEEKILEkqM0IIIYRId0opgoODE62Ljo5GKUXDhg0zJX13nDhxgk8++YQWLVpQuHBhvL29yZ8/Py1atODHH390Gi44OBillNPl4MGDdmH27NlD/fr18fX1pWjRooSHhxMfH+8w/vnz56OUYuXKlWk+titXrpAvXz46deqUaH1cXBzfffcdgwcPpn79+uTMmROlFKGhoWlOC2Dz5s20atWKvHnzEhAQQK1atZg7d67T/VesWMEbb7xBSEgIuXPnduscmj17tt134O3tTbFixXj22WeT7Qd869YtJk6cSJ06dcifPz8+Pj4UK1aMTp068fPPPzsNFx4ejlKK8PBwh9u3bNlCUFBQsueJs2X27NkAtGvXjkKFCnHjxo00lUtWJvPMCCGEEOI/Yf369TRq1Iju3btbbwJd9fzzz7N582Z8fHyoXbs2hQsX5tixY6xcuZKVK1cyYMAAPvzwQ6fhu3fv7nB9rly5Ev1+7do1QkJCuH79Os2aNePw4cO8/fbb+Pr6Mnz48ET73rhxg8GDB9OuXTuaN2+equOxNWbMGC5fvsyoUaMSrb9+/TpdunRJc7yOLFq0iC5duhAfH0/9+vXJnz8/a9asoXv37uzdu5cPPvjALszzzz/P1atX0zUfpUuXpm7duoBRjhEREcyfP59FixaxcOFC2rZtm2j/PXv20KZNG06dOkVgYCB16tQhd+7cHDt2zBqmU6dOfPXVV/j4+Licj02bNtGyZUtu3LjBuHHjiIqKSrT9xo0bLFq0CHB8DpUpUwaAt956i+rVqzN+/HhGjx6dqrLI6qQyI4QQQogMUbRoUQ4cOIC/v7/H0zpw4ADe3t7pFl+xYsX45JNP6N69O4GBgdb1K1asoF27dkyaNIkWLVrQrFkzh+FdrTxNmzaNCxcuMH/+fLp06UJsbCw1a9Zk3LhxDBo0KNExvfPOO1y6dIlJkyal+bhOnz7NJ598Qps2bahUqVKibd7e3nTr1o0aNWpQs2ZNDh06RI8ePdKc1qVLl+jZsydxcXEsWrSIp59+GoCzZ89St25dJk6cyJNPPmn31qVDhw48/PDD1KhRg7t37zot49SoW7duou/k7t279OrVixkzZvDKK6/QokULcuTIARhv5Ro1asTly5d59dVXmTBhAjlz5rSG3b9/P88++yzff/+99dhc8dtvv9G6dWtu3LjBxIkTGThwoN0+0dHR1viSO4eqVatG8+bNmThxIv369SNfvnwu5eHfQJqZCSGEECJDeHt7U758eYoXL+7xtMqXL0/p0qXTLb758+fTp0+fRBUZgNatW9OzZ08Avv32W7fT2b17N35+fnTu3BkAX19fnnvuOa5cucKJEyes+x0+fJjJkyczfPhwt5rTzZo1i9u3b/PCCy/YbcuZMydz587ltdde4/HHH8fX1zfN6QDMmDGDa9eu8dRTT1krMgCFChVi/PjxAEycONEu3MyZMxk8eDANGza0K//04u3tzeTJkwkICOD06dNs377duu3ll1/m8uXLhIaG8tlnnyWqyABUqlSJNWvWULBgQRYvXsyCBQtSTG/Dhg20atWKGzduMHnyZIcVmdTq2rUrt27dYs6cOW7HlZVIZUYIIYQQGcJZnxmzH0N4eDhHjx6lc+fO5M+fn6CgIFq2bGltenPv3j3Gjh1L2bJl8fX1pUyZMkyZMsVhWkn7zISGhtKoUSMA5syZk6jfgbO+DK6qUqUKAP/8849b8QBcvnyZXLlyoZSyrsuTJ491m6lv374UK1aMoUOHpjktrTUzZ84kMDCQ1q1bpz3TLlqxYgUAHTt2tNvWunVrfH19Wb16NbGxsR7PiyM5c+akbNmyAJw6dQqAyMhIVq5cia+vr8MmcKaCBQsycuRIwHGFzNa6deto1aoVN2/e5NNPP6Vfv37pkv927drh5+fH9OnT0yW+rEKamQm3VKtWLV3iCasWli7xOIndg3ELO6U9WN5h8l0K8W92/PhxatWqRaFChQgJCSEqKopffvmFnTt3snfvXl555RVrv5dSpUqxbt06+vTpQ44cOXjxxReTjbtu3bqcOXOGlStXJuovAVC1alW38n3s2DEAChcu7HSfCRMmcPToUXx8fKhYsSLt27enQIECdvsVL16cVatWceXKFXLnzg3AoUOHrNsAFi9ezKpVq/jxxx/delsSFRXF8ePHadq0qdtvXVyxZ88ewPG9Q44cOahUqRIREREcPnyYypUrezw/jly/fh3A2u/lp59+AqB58+YpNt167rnneO2114iIiODChQvkz5/fbp81a9bQtm1bYmJi+Pzzz3nllVfSLe8BAQHUqFGDjRs3cuzYMUqVKpVucd/PpDIj3CKVGWGnjFRmhBBpM3fuXIYPH87YsWNRSqG1pmfPnsyePZsmTZrg5eXFkSNHrJWANWvWEBISwpgxY1KszISFhVGmTBlWrlxp11/CHVeuXLGOxPXUU0853S/pG5QBAwbwySefWJuomVq1asW0adMYPHgwEyZMYP/+/cyePZvq1atTqFAhYmJiGDhwIK1bt6ZNmzZu5X3jxo0A1KxZ0614XHHt2jVrJ/5ixYo53KdYsWJERERw4sSJTKnMREVFWSumZvpmBaxGjRophs+bNy/BwcEcP36cPXv20KRJk0TbN27cyPjx44mNjWXatGkpnrNpUatWLTZu3MiGDRukMiOEEEKI9DNjxgyX9guzVNp37drFrl276NatGz4+Puzfv5+tW7emGL5ixYo8/vjjgFE5KFGiBA0aNABgwYIF1ifPKaWfGUqVKsXo0aOtTayUUgwYMIDZs2cTFRXF6tWrE73NaNKkCY8++ih//PEH0dHR6ToUs6teeeUVzp8/T+3atWnfvr3d9rZt29KoUSOqV69OgQIFOHbsGLNmzeKjjz4iLCyMfPnyJaoEtW3blmbNmjFz5kxmzpwJGG8JzE7+7733HmfOnGHNmjXWMFprbt++neq3K3v37gWgXLlyqT7u1LIdMtjZABBmX5SUztH0dvPmTbZu3Urv3r2Ji4sjJCTEOkrYxYsXARy+RXOkYMGCHD9+nAsXLthtW7t2LQCdOnXySEUGjL5iYPS9+q+QPjPCLTNmzHD5H3Ryas+oTe0ZtdMhRw5jtywiQ6ysbSyeULu2sQgh/pUaNmxoNwKZ+XTZ29vb4dwi5vbTp097PH9JjRs3jgULFpA3b17mzZuXqJ+L6eOPP6Z9+/YUL14cPz8/KlasyMSJE/n888/RWjNs2DC7MMuXL2f69Om8/PLLDB8+nD/++IN69epx7NgxJkyYwJAhQyhdujQxMTG8/PLLBAQEWONet26dy/k/d+4ckNAn57/Ett9UQEAAISEhHDp0iBo1avDVV195JM3HHnuMbNmy8f333/P55597JI28efMCcP78eY/Efz+SNzPCLRUrVkyXeLpUTN9x7JPE7sG4hZ0SHizvdJ7vQIiMlNo3HtWqVUvUlLdSpUp2Q+emJOkIVek9Z0h6K1q0qN26gIAAwOiPki1bNqfbb9++7dnMJfH111/z+uuvkzNnTlasWJHqJj3/+9//ePPNNzl06JDdWyVvb2/CwsLszpl+/fpRsGBBRowYAcCwYcOYOXMmo0aNolKlSrz33nu0adOGI0eOUKRIkRTzYDb78tQIYbbM7wmMySeDgoLs9rl582aG5ce235S3tzeFChWiXr16NG3aFC+vhGf9Zj8ZVysHZgXRUX+ZFi1a0KtXL0JDQ+nduzcBAQF069bN3UNJxCzXK1eupGu89zOpzAi3mE0Z3DXg8QHpEo+T2D0Yt7BT3oPlPUC+SyH+zWxvIlOzLaMtX76cHj164O3tzeLFi6mdhjfGXl5elC5dmnPnznH69OkUm8j99NNPLF++nEWLFuHn58fNmzeZOnUq3bp1s46iVbVqVUqVKsWUKVN49913U8yDOWFnRjTrCgoKIleuXFy9epW//vqLChUq2O3z119/AVCiRAmP58fVflNVqlRh3rx5REREpLjvpUuXiI6OtoZz5IUXXuDGjRv07t2bHj16EBAQ4LB5YlqZFVRz8Ij/gvvnyiCEEEIIcZ/bsGEDnTp1QmvNN99849YEjuZQy0nnLUnq9u3b9OvXj6ZNm1rnZzl69Ch3795N1Hm/ZMmSFChQwG4WeWcKFiwIGDfhGcG8wd+1a5fdtrt377J//358fX2twyPfD1q1agXAypUrUyyn+fPno7WmZs2aDt/MmHr16sW4ceOIi4vjmWeeYdWqVemWX/OccrWPz7+BVGaEW+bOnWsdxcUdIXNDCJkbkg45chi7ZREZYk2IsXhCSIixCCFEGpgzut+7dy9N4Xft2kXbtm25ffs2M2bMoEOHDmnOS2RkJIcOHcLf39/aaduZDz74gBMnTvDJJ5/Ybbt165bd766+xTIrF+bQz55mzmWzcOFCu23Lly8nNjaWkJCQDBkm2lUVK1akWbNmxMbGMmTIEKf7nT9/ntGjRwMwaNCgFOMdOnQob775Jnfu3KF9+/Zs2rQpXfJ74MABwP3hxrMSqcwIt9y5c4c7d+64Hc+NOze4cedGyjumLXbLIjLEvRvG4gk3bhiLEEKkwQMPPACk7eb90KFDtGjRgmvXrvHRRx8RGhqaYpiffvrJOoKVrb1791rf7oSFhVkrWY6cPHmSsWPHMmDAgESjjpUpUwYfHx++++477t69C8DSpUu5efOmy/1Z69WrB8COHTtc2t9VTZo0oXz58mzfvj3R+rCwMIKCgvjhhx9YvHixdf25c+esQ1e7UhHIaNOmTSN37tzMmjWLvn372lUgo6KiCAkJ4ezZs7Rv397lvmnvvPMO/fr149atW7Ru3ZqdO3e6nVezzM0RDP8LpM+MEEIIIf4TgoODqVy5MhEREdSqVYuKFSuSLVs22rZtS9u2bZMN+8wzz3D+/HkKFCjAzp07HVZmypcvz/Dhw62/b9++nbfffpsSJUpQpUoV/P39OXbsGLt27eLevXs0bNiQ999/P9l0Bw4cSJ48eaz9Ykz+/v707duXDz74gKpVq/LQQw+xcuVKgoKC6N27t0vl8fDDD1OyZEm2bdtGbGyswzcivXr1sjYLM4cpXrFiRaJ+QkmHDD969CgnTpywu+nPmzcvs2bNonPnznTs2JGGDRuSL18+Vq9ezZUrVxg4cKDDEeveeecdVqxYASQM8bxr165EeViyZIlLgx6kRXBwMOvWraNNmzZ8+umnzJkzh7p165I7d26OHTvG9u3b0VrTsWPHVI+ENmnSJG7cuMHMmTNp3rw5GzZsSPPgSjdu3CAiIoLy5cv/Z+aYAanMCCGEEOI/ZNGiRQwZMoSNGzeyc+dO4uPjKVasWIqVGbMvwvnz55kzZ47DfRo0aJCoMtO8eXNOnTrFjh072Lx5M1evXiUoKIi6devy/PPP06NHD4cjtJlWr17NokWL+PbbbxONBmYaM2YMWmu+/vpr/vzzT6pXr86HH35o7QuTEqUUYWFhvPHGGyxbtoxOnTrZ7RMVFcW2bdsSrbtw4YLDeVRc0aFDB3777Tfeffddtm7dyp07d6hQoQJ9+vShe/fuDsMcPXrULg/Xr19PtM7To9lVrVqVQ4cO8dlnn7F48WK2bt3KzZs3yZ8/P08//TT/+9//aNmyZarjVUrxxRdfcPPmTebPn0/Tpk3ZuHEjpUuXTnVcS5YsITY21mNz2NyvlNY6s/MgnFBKRVaoUKFCZGRkhqd96849Kry1EoCawXnI5qWIi9fsiDYu5lGjm+OfI7t1jhl3J1kz55jZGpbyhHBpiN3y6Ym4hR1zjpnmHihv8ymcCxMHCpFR4uPjrc2WypUrd1+NuiVESs6cOUPJkiUJCQlh2bJlmZ0d4YbmzZuzadMmTp48aR1SOiOl9lpYsWJFoqKiorTWbs3zIVdcIYQQQoj/qMKFC9O3b19WrFjBvn37Mjs7Io127drFqlWrGDRoUKZUZDKTVGaEEEIIIf7DRowYQZ48eXj77bczOysijUaPHk3BggWtAyn8l0ifGSGEEEKI/7DcuXNbO/eLrGnp0qWZnYVMI29mhBBCCCGEEFmSVGaEEEIIIYQQWZI0MxNu6datW7rE82u3X9MlHiexezBuYaexB8v7V/kuhRBCCJFAKjPCLT4+PukST6BPYLrE4yR2D8Yt7Hh7sLwD5bsUQgghRAJpZibcsn//fvbv3+92PPP3z2f+/vnpkCOHsVsWkSGi5xuLJ8yfbyxCCCGEEMibGeGmrZbJCytVquRWPJO3TgbgmUrPuJslR7FbPj0Rt7BzaLLxGeyB8p5sifsZ+S6FEEIIIZUZ4aYuXbqkSzxLuixJl3icxO7BuIWd+h4s7yXyXQohhBAigVRmhFsC06kPQ5HAIukSj5PYPRi3sOPnwfIuIt+lEEIIIRJInxnhlsOHD3P48GG341lxeAUrDq9Ihxw5jN2yiAzx9wpj8YQVK4xFCCGEEAJ5MyPc9NtvvwFQtmxZt+J557d3AGhdtrXbeXIQu+XTE3ELO/st5V3UA+X9jiXu1vJdCiGEEELezAghhBDCA5RSBAcHJ1oXHR2NUoqGDRtmSvruMPPubClcuLDTsJcvX6Zfv36UKFECHx8fSpQoQf/+/bly5YrD/ffs2UP9+vXx9fWlaNGihIeHEx8f73Df+fPno5Ri5cqVaT62K1eukC9fPjp16pRo/YkTJxg0aBD169enWLFi+Pr6EhAQwKOPPsqYMWO4efNmmtLbvHkzrVq1Im/evAQEBFCrVi3mzp3rcN/Lly/z+uuvExISQokSJfD398ff35+KFSsydOhQLly4kKq0Z8+ebffdeXt7U6xYMZ599ll27drlNOytW7eYOHEiderUIX/+/Pj4+FCsWDE6derEzz//7DRceHg4SinCw8Mdbt+yZQtBQUHJnl/OltmzZwPQrl07ChUqxI0bN1JVHv8G8mZGCCGEEP8J69evp1GjRnTv3t16E5hahQoVokWLFnbrc+XK5XD/Cxcu8Pjjj/Pnn39SqlQp2rVrR2RkJB999BE///wzv//+O3nz5rXuf+3aNUJCQrh+/TrNmjXj8OHDvP322/j6+jJ8+PBEcd+4cYPBgwfTrl07mjdvnqbjARgzZgyXL19m1KhRidbv27ePDz/8kMKFC1O+fHnq1avH5cuX2bp1K2+++SbffvstGzduJE+ePC6ntWjRIrp06UJ8fDz169cnf/78rFmzhu7du7N3714++OCDRPv//fffvP/+++TNm5eKFSvy+OOPc/36dSIiIpgwYQLz5s1j06ZNlCxZMlXHXLp0aerWrQsY5RgREcH8+fNZtGgRCxcupG3bton237NnD23atOHUqVMEBgZSp04dcufOzbFjx6xhOnXqxFdffZWqOfg2bdpEy5YtuXHjBuPGjSMqKirR9hs3brBo0SIAunfvbhe+TJkyALz11ltUr16d8ePHM3r06FSVRZantZblPl2AyAoVKujMcPP2XV1i2HJdYthy3fHzzbrLtC264+ebretu3r6rtdZ6+vTpevr06W6n99j0x/Rj0x9zOx4nsVsWkSF+ecxYPOGxx4xFiPtIXFycjoqK0lFRUTouLi6zs3PfAHSJEiUSrbtz544+cOCAPnHihMfTP3DggP7zzz8TrVu3bp0GdPfu3VMd3/HjxzWgGzRokKpwzz//vAb0008/re/evWtd37dvX4d5GT9+vAb0/PnztdZax8TE6EqVKuncuXPrO3fuJNp36NCh2s/PTx8/fjzVx2P6559/tI+Pj27btq3Dbfv377dbf/XqVd2kSRMN6EGDBrmc1sWLF3VQUJAG9KJFi6zrz5w5o8uUKaMBvW7dukRhrly5oiMiIuz+tmJiYnS3bt00oDt06OByHr788kuH5X7nzh0dFhamAV2kSBF9+/Zt67bo6GidJ08eDehXX31V37hxI1HYffv26UqVKlm/56RGjRqlAT1q1KhE6zds2KADAgI0oCdOnOgwv+Z5Z9yyJ6958+ba399fX7hwIcV9PSG118IKFSpoIFK7eb8szcyEEEIIkSG8vb0pX748xYsX93ha5cuXp3Tp0h5PJzmnT5/m22+/JUeOHHz22Wdkz57QIGbChAkUKFCAr7/+mnPnzlnX7969Gz8/Pzp37gyAr68vzz33HFeuXOHEiRPW/Q4fPszkyZMZPny4W83pZs2axe3bt3nhhRfsthUpUoSKFSvarQ8KCrI2mVq7dq3Lac2YMYNr167x1FNP8fTTT1vXFypUiPHjxwMwceLERGFy5cpF9erV8fJKfMvq6+vL2LFjU50HZ7y9vZk8eTIBAQGcPn2a7du3W7e9/PLLXL58mdDQUD777DNy5syZKGylSpVYs2YNBQsWZPHixSxYsCDF9DZs2ECrVq24ceMGkydPZuDAgW4fQ9euXbl16xZz5sxxO66sRCozQgghhMgQzvrMmP0YwsPDOXr0KJ07dyZ//vwEBQXRsmVLa9Obe/fuMXbsWMqWLYuvry9lypRhypQpDtNK2mcmNDSURo0aATBnzpxE/Q6c9WVw1y+//EJ8fDz16tWjUKFCibb5+PjQpk0b4uLi+Omnn6zrL1++TK5cuVBKWdeZzbguX75sXde3b1+KFSvG0KFD05w/rTUzZ84kMDCQ1qkcWMXb2xuAHDlyuBxmhWU0yo4dO9pta926Nb6+vqxevZrY2FiP5SE5OXPmtA5odOrUKQAiIyNZuXIlvr6+dk3gbBUsWJCRI0cC9hWypNatW0erVq24efMmn376Kf369UuX/Ldr1w4/Pz+mT5+eLvFlFVKZEUIIIcR94fjx49SqVYv9+/cTEhJCcHAwv/zyCw0bNuTMmTN07NiR8ePHU7FiRRo2bMipU6fo06ePSzdvdevWtfYrKV26NN27d7cuVatWdTmPZ8+eZdSoUbz00ksMGTKEhQsXcufOHYf77tmzB4Bq1ao53G6u37t3r3Vd8eLFOX/+fKLBAQ4dOmTdBrB48WJWrVrF5MmT8fX1dTnvSUVFRXH8+HFq166dqnhu3brFmDFjAFJVCUquPHLkyEGlSpWIjY11acqHu3fvWiuhqa2IJef69esA1n4vZkWzefPm5MuXL9mwzz33HEopIiIinA5MsGbNGp588kliYmL4/PPP6d27d7rlPSAggBo1anDw4EGOHTuWbvHe72QAACGEEELcF+bOncvw4cMZO3YsSim01vTs2ZPZs2fTpEkTvLy8OHLkCAUKFACMG8OQkBDGjBnDiy++mGzcYWFhlClThpUrV1K3bt00DwBw8OBBuw7WxYsX5/vvv6dWrVqJ1p88eRKAYsWKOYzLXG/bfKxVq1ZMmzaNwYMHM2HCBPbv38/s2bOpXr06hQoVIiYmhoEDB9K6dWvatGmTpmMwbdy4EYCaNWsmu9/ly5cZMGAAAOfPn2fbtm1cvHiRdu3aMXjwYJfSunbtGlevXgWSL4+IiAhOnDhB5cqV7bb/73//Iy4ujsuXL7Nz507+/vtv6tSpY22i5q6oqChrJcBM36yA1ahRI8XwefPmJTg4mOPHj7Nnzx6aNGmSaPvGjRsZP348sbGxTJs2LcVzNi1q1arFxo0b2bBhA6VKlUr3+O9HUpkRQgghMkDtGbVd2m9r2FYAZuyawYxdM/i1268E+gQyf/98Jm+dnGL4LhW7MOBx48YzZG4IDUo0YGQDo/lL+wXtOX39tEvpZ4ZSpUoxevRoaxMrpRQDBgxg9uzZREVFsXr1amtFBqBJkyY8+uij/PHHH0RHR6frUMxJ+fj48Oqrr9KlSxcefvhh/Pz8iIyM5J133uGnn36iefPm7N69mxIlSljDmMPk+vv7O4zT7Hthvg0AaNu2Lc2aNWPmzJnMnDnTmvakSZMAeO+99zhz5gxr1qyxhtFac/v27VS/pTHfCJUrVy7Z/W7evGnXD6Nz5858+umn+Pn5uZSW7ZDBqSkPW3PmzCEuLs76e8OGDfnyyy9TfGOSkps3b7J161Z69+5NXFwcISEh1lHCLl68CJDovEtOwYIFOX78uMM3M2bfnk6dOnmkIgNGXzEw+l79V0gzM+GWhx56iIceesjteFo/1JrWD3lqIsTWyISZGeiB1sbiCa1by4SZQvyLNWzY0NoPwmQ+Xfb29nY4P425/fTp5Ctp7ipSpAifffYZDRo0oGDBggQGBlK7dm1WrFhh7aBvdkh31/Lly5k+fTovv/wyw4cP548//qBevXocO3aMCRMmMGTIEEqXLk1MTAwvv/wyAQEB+Pn5UbFiRdatW+dyOubAAykNrVysWDG01sTHx3Py5ElmzpzJb7/9xiOPPJLsvCzp7d69e2it+eeff/j+++/566+/eOSRR9I0x45tv6mAgABCQkI4dOgQNWrU4KuvvvJA7uGxxx4jW7ZsfP/993z++eceScMc5vv8+fMeif9+JG9mhFsaNGiQLvGYTw09w5NxCzuPeLC8R8p3KbKu1L7xCKsWRli1MOvvz1R6hmcqPZOqOFa/sDrR70u6LElV+IxWtGhRu3UBAQEAFC5cmGzZsjndfvv2bc9mLhkjRozgm2++sbupNvN269Yth+HMSScDAwMTrff29iYsLIywsLBE6/v160fBggUZMWIEAMOGDWPmzJmMGjWKSpUq8d5779GmTRuOHDlCkSJFUsy32ewrafrOKKV48MEH6dmzJ4888giPP/44PXr0YPfu3YkGLHDELAswyiMoKMhuH2flkVSRIkXo2LEjNWvW5JFHHiE0NJQ///zTbpSx5NjOM+Pt7U2hQoWoV68eTZs2TTRymvnWx9XKgVlBzJ8/v922Fi1a0KtXL0JDQ+nduzcBAQF069bN5Ty7wixXZxOy/htJZUYIIYQQ94Wkw++6ui2zmS0Ukr4dMjvs//XXXw7Dmettm6Y589NPP7F8+XIWLVqEn58fN2/eZOrUqXTr1s06ilbVqlUpVaoUU6ZM4d13300xTnOiT2fNupJTs2ZNypUrx969ezl+/HiK/TOCgoLIlSsXV69e5a+//qJChQp2+6SmPMz96tWrx08//cS2bdto3Lixy/l3td9UlSpVmDdvHhERESnue+nSJaKjo63hHHnhhRe4ceMGvXv3pkePHgQEBNC+fXuX850Ss4KaO3fudIvzfnf/XhlcoJTyU0qNVkodVkrFKqX+UUrNUkrZP9pxHkdupdRzSqlvlVLHlVJ3lFLXlVLblFL9lFLeTsLNVkrpZJZX0u9I718LFixwaTz1lLRf0J72C9LvjzlJ7JZFZIjf2huLJ7RvbyxCCHEfMYdMTvpmwLyhddYUy1zvqLO7rdu3b9OvXz+aNm1qnZ/l6NGj3L17N1Hn/ZIlS1KgQAG7WeSdKViwIGDchKeF+fbB1bcWyZXH3bt32b9/P76+vtbhkT2Rh9Rq1aoVACtXrkyxnObPn4/Wmpo1azp8M2Pq1asX48aNIy4ujmeeeYZVq1alW37Nc9HVPj7/Blm2MqOU8gXWYrQhCgB+AE4BPYA/lFKuDuEwGJgHdAEuA4uB7UAVYDKwVinluKeaYSUwx8FyKHVHlDXlzZvX2j7THQ/lfYiH8rrf98ZJ7JZFZIjAh4zFEx56yFiEECINzPlI7t27l67xLlq0CLAfcrhFixZ4eXmxcePGRBNjglFBWbZsGdmyZbPeMDvzwQcfcOLECT755BO7bUmbsN26dcvlt1hm5cIc+jk1rl27xh9//IFSipIlS7oUxhxCeeHChXbbli9fTmxsLCEhIS4PZBAXF8emTZsAPDZBasWKFWnWrBmxsbEMGTLE6X7nz5+3jnI3aNCgFOMdOnQob775Jnfu3KF9+/bW43DXgQMHAFI13HhWl2UrM8CbQG3gd6Cs1rqL1voxYBBQAJjlYjw3gfFAsNa6mtb6Ga11E+AR4CRQ15KWM+9rrUMdLK73wMvCmjZtStOmTd2OZ3zT8Yxvmj5DKzqI3bKIDPHoeGPxhPHjjUUIIdLggQceANJ28z59+nQOHjxot37x4sUMHz4cwG7OkCJFivDss89y584devXqlagSNXToUM6fP0/Xrl2tb0gcOXnyJGPHjmXAgAGJRh0rU6YMPj4+fPfdd9y9exeApUuXcvPmTSpWrOjSMdWrVw+AHTt2ONw+Y8YMh/OV/P333zz33HNcv36d1q1b2+W/SZMmlC9fnu3btydaHxYWRlBQED/88AOLFy+2rj937px18s+kFYH58+ezb98+uzxcunSJl156iWPHjvHII49QvXp1F444baZNm0bu3LmZNWsWffv2tatARkVFERISwtmzZ2nfvj1dunRxKd533nmHfv36cevWLVq3bs3OnTvdzqtZ5unVpzkryJJ9ZpRSOYA+ll97a62t4/1prT9USnUHGiilqmutkz0ztNbvOVl/RCk1HPgGeBYYkT65F0IIIURmCA4OpnLlykRERFCrVi0qVqxItmzZaNu2LW3btk027Lx583jppZeoXLkyZcuWJT4+nqioKGsFZ8iQIQ77PkyePJmtW7eyaNEiypcvT40aNYiMjGT//v089NBDfPjhh8mmO3DgQPLkyWPtF2Py9/enb9++fPDBB1StWpWHHnqIlStXEhQU5PJEjA8//DAlS5Zk27ZtxMbG2r0R+frrr3nxxRepUKEC5cuXx9vbm1OnTrFz505u375NxYoV+eKLL+ziPXr0KCdOnLC76c+bNy+zZs2ic+fOdOzYkYYNG5IvXz5Wr17NlStXGDhwoN2Idb/88gvPPvsspUqV4pFHHsHf35+///6bXbt2cePGDYoWLcqCBQtSHIDAHcHBwaxbt442bdrw6aefMmfOHOrWrUvu3Lk5duwY27dvR2tNx44dUz0S2qRJk7hx4wYzZ86kefPmbNiwweXKaFI3btwgIiKC8uXL/2fmmIEsWpkB6gC5gKNa6z8cbF8IVAbaAO5Uc/dYPh9wI45/tSVLlqC1psWT9v8E/LyzuXxx6bbEGM3jq/aeGA7RHCnEM0MtiiS2WMr7CQ+Utznqi4eGzRRC/PstWrSIIUOGsHHjRnbu3El8fDzFihVLsTLz4osvUqBAAXbv3s2qVauIiYmhQIECPP3007z66quEhIQ4DJc/f362b99OeHg4S5cuZcmSJRQqVIjXXnuNt99+O9mO2qtXr2bRokV8++23iUYDM40ZMwatNV9//TV//vkn1atX58MPP0z2TY8tpRRhYWG88cYbLFu2jE6dOiXabg4BvXXrVtatW8f169fJlSsXtWvXpkOHDrz00kv4+Pi4lJapQ4cO/Pbbb7z77rts3bqVO3fuUKFCBfr06UP37t3t9g8LCyNnzpxs3ryZzZs3c+XKFQICAqhUqRJt2rShd+/e1oEMPKlq1aocOnSIzz77jMWLF7N161Zu3rxJ/vz5efrpp/nf//5Hy5YtUx2vUoovvviCmzdvMn/+fJo2bcrGjRvT1GxuyZIlxMbGemwOm/uV0lpndh5STSnVH5gEfK+17uxge2tgObBEa/20G+k8CSwDTmqtSyTZNhvoDnwCKCAbcBxYprW2fw+dtvQjK1SoUCEyMjI9okuVW3fuUeEtY4jJmsF5yOaliIvX7Ig2OpZFjW6Of47szJgxg8Nnb/Dddft+DDVK5OH7Vx53qUJjTibnmcnazInqMm8iuP+UlZbybu6B8q5tiXurfJfi/hEfH29ttlSuXLn7etQtIZI6c+YMJUuWJCQkhGXLlmV2doQbmjdvzqZNmzh58qTbE4mmRWqvhRUrViQqKipKa522V1EWWfXNTHHLp+OxDhPWuza2n3P9LJ8/JLNP3yS/j1NKfQ7001q71MNQKeWstuKZ3mzpKF5rbt5xfJgRJy4TczcO/xxZ9TQTQggh/t0KFy5sba62b98+HnnkkczOkkiDXbt2sWrVKkaOHJkpFZnMlFUfH5nvWh3PQmV06gdwbRYoByxDK4cAV4D3HezyB/AKUBbwB0oBvS379wImpDXtrKp6idzUDM5D9RK5MzsrQgghhHDRiBEjyJMnD2+//XZmZ0Wk0ejRoylYsKB1IIX/Enlk7oBSqh7wEaCBnlrrf5Luo7X+KMmq48BnSqkNwC6gj1LqQ631qZTSc/Z6zfLGxn5WqfuUl1Jk81IQn9k5EUIIIYSrcufOzcWLFzM7G8INS5cuzewsZJqs+mbGHL3M2fwv5qxVqZ7SVilVCaNZWQ6MpmJLUhNeax0J/IhRUWyS2vSFEEIIIYQQrsmqlZmTls9iTrab60+kJlKlVElgFZAHCNda289O5Zojls8iaQwvhBBCCCGESEFWrcyYQyZXc7LdXL/X1QiVUkWAXzEqIB9prd1pOJrH8nkz2b2EEEIIIYQQaZZVKzObgatAaaVUVQfbO1o+XRpjUCmVB1iJMXrYl8CAtGZMKeUDtLb8uiut8QghhBBCCCGSlyUrM1rrO8Cnll+nKKXMPjIopQZiTJi5QWu902Z9H6XUQaXUe7ZxKaX8gRXAI8B3wIs6hcl3lFLllVLdLBUX2/UFgPnAgxhvjzan9RiFEEIIIYQQycvKo5m9izF08hPAEaXURox5ZR4DzgM9k+yfHyiHfT+WMcDjQBxwD5jpaJJHrXWoza+FgbnAR0qpCEt6DwDVMYaD/gvonFKl6N+g1ZNt+fTjTW7HM7f93HTIjdPYPRi3sPO4B8t7rnyXQgghhEiQZSszWutYpVQj4HXgOaAdcAmYDYzUWjubUDMps39LNks8zoTa/HwYmIwxtfwjQD7gtmX9Mow+N5ddTD9Ly5svH9e0r9vxlM1XNh1y4zR2D8Yt7AR5sLzLyncphBBCiARZtjIDoLWOAd6yLCntGw6EO1gfSuKKiivp/oMb/Wr+TU6dPEEhr+ucjU/z/KQAbIjeAECD4Abpka2ksVs+PRG3sHPWUt6FPFDeGyxxN5DvUgghhBBZvDIjMt+GdWup4X2VFbcfdiueYauHAbA1bGt6ZCtp7JZPT8Qt7Oy2lHdzD5T3MEvcW+W7FEIIIYRUZoSbmjZvwbTPf3c7ns9af5YOuXEauwfjFnZqerC8P5PvUgghhBAJpDIj3FKocBEu6pwp75iCakWcTRmUHjwZt7CT14PlXU2+SyGEEEIkyJJDM4v7x9kzp8mn3J8bdNfpXew67alpeXYhU/5koEu7jMUTdu0yFiHEfU8pRXBwcKJ10dHRKKVo2LBhpqTvjtDQUJRSKS4nT55MFC44ODjZ/Q8ePGiX1p49e6hfvz6+vr4ULVqU8PBw4uPjHeZr/vz5KKVYuXJlmo/typUr5MuXj06dOiVab35fzpbChQunKp3169cnG1/t2rWTDb9nzx66detGsWLF8PHxoVChQjRs2JAvv/zSrTxkz56dwoUL89RTT7Fu3TqnYe/du8cXX3xBSEgIhQoVwsfHhyJFivDkk08yf/58nA1iO3v2bJRShIaGOtx+6NAhihYt6tL5lXQJDw8HoH///vj5+dmdf/8F8mZGuOXXlb9QO4f7fWZ6regFeKrPTC/Lp/SzyBA7LOXtiT4zvSxxS58ZIUQarF+/nkaNGtG9e3dmz56dqrB169Z1uu3QoUNs3bqVEiVK8OCDDzrcp3v37g7X58qVK9Hv165dIyQkhOvXr9OsWTMOHz7M22+/ja+vL8OHD0+0740bNxg8eDDt2rWjefPmqToeW2PGjOHy5cuMGjXK4fZChQrRokWLFPPuqtKlSzssz9KlSzsNM2PGDF599VW01tSuXZt69epx9uxZdu/ezbx58+jRo0eq8mB7TLGxsezevZsff/yRZcuWMWXKFF599dVE+588eZLWrVuzf/9+fHx8qFu3LgULFuSvv/5i5cqVrFixgqlTp7JkyRLy5MnjKEmHDh48SKNGjThz5gyNGzemWLFiJJ0iZM6cOQB06NCBgICARNuqVq0KwLBhw5g2bRpvvvkmc/9j0xhIZUYIIYQQGaJo0aIcOHAAf39/j6d14MABvL290y2+sLAwwsLCHG7r0qULW7dupWvXrnY3oiZXK0/Tpk3jwoULzJ8/ny5duhAbG0vNmjUZN24cgwYNSnRM77zzDpcuXWLSpEmpPh7T6dOn+eSTT2jTpg2VKlVyuE/58uVTXflLTt26dVMV39q1a3nppZcoXbo0P/74Iw8/nPAA9c6dO0RGRqY6D0mPSWvN6NGjCQ8PZ9CgQXTo0IGCBQsCcPXqVRo0aEB0dDRPP/0006ZNI3/+/NawJ0+epFu3bmzYsIGWLVuyadMmsmdP+RY7KiqKxo0bc/bsWV577TU++ugjh/uZlZkPPvjA6dvGIkWK0L17d7744guGDx9OhQoVXCyJrE+amQkhhBAiQ3h7e1O+fHmKFy/u8bTKly+f7JP+9HLt2jWWLVsGQLdu3dyOb/fu3fj5+dG5c2cAfH19ee6557hy5QonTpyw7nf48GEmT57M8OHD3WpON2vWLG7fvs0LL7zgbtY9pm/fviilWLx4caKKDECOHDl49NFH3U5DKcXIkSMpXbo0MTExrFq1yrpt2LBhREdH06RJE7777rtEFRmA4sWL8/PPP1OhQgW2bdvGxIkTU0wvMjKSRo0acfbsWQYOHOi0IpMaXbt2RWvN1KlT3Y4rK5HKjBBCCCEyhLM+M2afgvDwcI4ePUrnzp3Jnz8/QUFBtGzZkqioKMDoszB27FjKli2Lr68vZcqUYcqUKQ7TStpnJjQ0lEaNGgHGk25H/Q7SYtGiRcTExFCzZk3KlSuX5nhMly9fJleuXIne8JjNli5fTpiPu2/fvhQrVoyhQ4emOS2tNTNnziQwMJDWrVunPdMetHnzZqKiomjYsCGPPPKIR9Py8vKiSpUqAJw6dQqAixcvWt+MfPTRR2TLls1hWH9/f8aNG2fdLy4uzmk6+/fvp1GjRpw7d44hQ4a4VPlxRZ06dShevDhff/01sbGx6RJnViDNzIQQQghxXzh+/Di1atWiUKFChISEEBUVxS+//MLOnTvZu3cvr7zyirXfS6lSpVi3bh19+vQhR44cvPjii8nGXbduXc6cOcPKlSvt+myY/Q7S4uuvvwaMp+LJmTBhAkePHsXHx4eKFSvSvn17ChQoYLdf8eLFWbVqFVeuXCF37tyA0SfH3AawePFiVq1axY8//oivr2+a8x4VFcXx48dp2rRpsvGcPXuWUaNGcfr0aXLlysVjjz1G27ZtyZEjR5rSPXLkCK+//joXL14kf/781K1blxYtWuDlZf+Mfe3atQA88cQTxMTEMH/+fHbu3Em2bNmoXr06nTp1ws/PL035cOT69esA+Pj4WNOPjY2lSpUqVKxYMdmwLVu2JE+ePJw+fZrdu3dTvXp1u3327t1LkyZNuHDhAq+//jpjx45Nt7wrpWjQoAFfffUVW7ZsoXHjxukW9/1MKjNCCCGEuC/MnTuX4cOHM3bsWJRSaK3p2bMns2fPpkmTJnh5eXHkyBFrJWDNmjWEhIQwZsyYFCszYWFhlClThpUrV6a6z4Yzf//9N+vXryd79uw888wzye6b9A3KgAED+OSTT+jZs2ei9a1atWLatGkMHjyYCRMmsH//fmbPnk316tUpVKgQMTExDBw4kNatW9OmTRu38r9x40YAatasmex+Bw8eZPTo0YnWFS9enO+//55atWqlOt0tW7awZcuWROseeeQRFi1axEMPPZRovflWLj4+nkcffdRasTONHDmS5cuXp8tbm3PnzrFt2zYAKleuDBgjqAHUqFEjxfDZsmWjatWqrFu3zmFl5uDBgzRu3JiLFy8ycuRIuzJND7Vq1eKrr75iw4YN/5nKjDQzE0IIITJEbRcX0wzL79ctv893MbxtZ/AQ4B2b39unIv2MV6pUKUaPHm1tYqWUYsCAAYBxUzt58uREbzOaNGnCo48+yokTJ4iOjs7w/M6bN4/4+HiaN29u7SyeVNu2bVm8eDEnTpzg1q1b7N+/n4EDB3L79m3CwsL44Ycf7PZv1qwZM2fOJG/evNSvX5+YmBhrJ//33nuPM2fOJOpjobVOU7OivXv3AjhtHufj48Orr77K+vXrOXv2LNeuXeP333+nVatWnDx5kubNmyfqx5OSXLlyMWTIELZu3crFixe5ePEia9asoXbt2uzbt49mzZpx9erVRGHMpnXjx4/n5s2b/PTTT1y9epV9+/bRtGlTTp48SZs2bbh161aqj98UGxvLtm3baNu2LdeuXaNcuXLWJokXL14EcPgWzRHzPLhw4YLdtm3btnHx4kVq1arlkYoMGH3FwOh79V8hlRkhhBBC3BcaNmxoNwJZqVKlAGPwAEfz05jbT58+7fH8JWU2MUuu4//HH39M+/btKV68OH5+flSsWJGJEyfy+eefo7Vm2LBhdmGWL1/O9OnTefnllxk+fDh//PEH9erV49ixY0yYMIEhQ4ZYO6q//PLLBAQEWONObp6UpM6dOwfgdCjhIkWK8Nlnn9GgQQMKFixIYGAgtWvXZsWKFdZBCVLTTOrRRx9l/PjxPPbYY+TNm5e8efPSuHFjNm3aRL169YiOjuazzz5LFMacX+fevXssWrSIli1bEhQURKVKlVi2bBnFihXjxIkTzJs3z+V8AGzYsMHaZ8rPz4/atWuzbds2ypQpw9KlS532jXFH1apVyZkzJ9u3b3f4vaeHvHnzAnD+/HmPxH8/kmZmQgghRIZI7fxIYZbF9IxlSY3VSX5fksrwGato0aJ268x5NQoXLuzwBtPcfvv2bc9mLom9e/eyb98+goKCaNu2barD/+9//+PNN9/k0KFDREdHJxqswNvb2+FQ0P369aNgwYKMGDECMEbZmjlzJqNGjaJSpUq89957tGnThiNHjlCkSJEU82C+BQkMDEx1/keMGME333zj1mSdpmzZsjFs2DA2btzIypUref31163bzO+3QoUKdk3afHx8eO655xg/fjwbNmxIsamhLdt5ZrJnz06+fPmoXbs2Tz75ZKIKdb58+QDXKwdmBTHpiGcAVapUYcKECTz55JOMHz+ewMBA3nzzTZfz7IqgoCDAmAj1v0IqM8IthQoV5uLJu27HU61ItXTIjdPYPRi3sJPXg+VdTb5LIf7NHHUAd2VbZjDfynTo0CFNHdC9vLwoXbo0586d4/Tp0ykOr/zTTz+xfPlyFi1ahJ+fHzdv3mTq1Kl069aNkSNHAsaT/1KlSjFlyhTefffdFPNgTnppdnpPDbNvS3q9EXMWX4kSJQCclo+53qxEuMrVuXPM0c0iIiJS3Dc+Pt7ax8bZoBIhISF89913dOjQgZEjRxIUFMRrr73mcr5TYlZQzcEj/gukMiPc0rRFS/ptcf+pzGetP0t5p7TH7sG4hZ2aHizvz+S7FEJkvvj4eL799lvAvbllzP4gOXPmTHa/27dv069fP5o2bcrTTz8NwNGjR7l7926izvslS5akQIEC1k7zKTH7d1y6dMljeXc3PnMOGdthqW2ZeTff4KS3xo0b4+Pjw549e4iKikp2MspffvmFS5cuUaRIkWRHyGvbti1z586la9eu9O/fn8DAQHr06JEu+TXLydU+Pv8G99djDiGEEEIIDzGHEr53755b8axfv56//vqLBx980GE/HldERkZy6NAh/P39rZ22nfnggw84ceIEn3zyid22pB3fb9265fJbLPOtQ9IRwlyxaNEiAKql0xtzZ/G1atWK7Nmzs2/fPoeVrg0bNgCky8SZjuTLl4/u3bsD0L9/f2sfnqRiYmKsI9b169cvxT43zz77LNOmTUNrzYsvvsj333+fLvk9cOAA4N5w41mNVGaEW3795Wdqe7s+kokzvVb0oteKXumQI4exWxaRIXb0MhZP6NXLWIQQIg0eeOABIG0377bMJmbPP/98osktk/rpp5+s86TY2rt3L506dUJrTVhYWLLztZw8eZKxY8cyYMCARKOOlSlTBh8fH7777jvu3jWaey9dupSbN2+mOB+KqV69egDs2LHD4fbp06dz8OBBu/WLFy9m+PDhAPTu3dtue5MmTShfvjzbt29PtH7y5MnWyShNWmumTZvGpEmTUErx6quvJtqeP39+evTowY0bN3jttde4c+eOdducOXP49ddf8fX1JTQ0NOUDTqNx48YRHBzMr7/+SpcuXawjnJlOnTpFq1atiIyMpFatWgwcONCleMPCwpg0aRJxcXE8//zz/PTTT27n1SzzBg0auB1XViHNzIRb7ty5gzfOZ7l11fU7qW+vm4rYPRi3sHPXg+WdhnbdQghhCg4OpnLlykRERFCrVi0qVqxItmzZaNu2rcud+GNjY61vEVJqYrZ9+3befvttSpQoQZUqVfD39+fYsWPs2rWLe/fu0bBhQ95///1k4xg4cCB58uSx9osx+fv707dvXz744AOqVq3KQw89xMqVKwkKCnJYwXDk4YcfpmTJkmzbto3Y2Fi7iTPnzZvHSy+9ROXKlSlbtizx8fFERUVZKzhDhgyhffv2dvEePXrUOhS1rcmTJzN48GCqVatGyZIliY2NZd++fRw/fhwvLy8+/vhjhxNNTpgwga1btzJv3jw2btxIjRo1OHnyJBEREWTLlo0vvviCBx980KVjTovcuXOzYcMGWrVqxcKFC1m+fDl169alQIEC/PPPP2zevJl79+5Rv359li5dajciX3L69+/P9evXeeutt+jQoQM///xzmt/2aa3ZsGEDuXPn5oknnkhTHFmRVGaEW1q3fYohEe73mfmq/VfpkBunsXswbmHnCQ+W91fyXQoh3LNo0SKGDBnCxo0b2blzJ/Hx8RQrVszlysyPP/7ItWvXePTRR5PtPwHQvHlzTp06xY4dO9i8eTNXr14lKCiIunXr8vzzz9OjR49kmyOtXr2aRYsW8e233zrsEzJmzBi01nz99df8+eefVK9enQ8//NDpnDdJKaUICwvjjTfeYNmyZXTq1CnR9hdffJECBQqwe/duVq1aRUxMDAUKFODpp5/m1VdfJSQkxKV0TIMGDWLVqlVERkYSFRXF3bt3KVKkCF27duW1115zOnlnrly5+P333xk7dizfffcdy5cvJyAggCeffJLhw4dTp06dVOUjLYoXL84ff/zBl19+yYIFC9i9ezdXr14lb968NGvWjK5du/LMM88k+6bOmZEjR3L9+nUmTJhAmzZtWL16NY899liq49m0aROnTp2ib9++dhXTfzOltc7sPAgnlFKRFSpUqBAZGZnhad+6c48KbxmVlJrBecjmpYiL1+yINjqWRY1ujn+O7C7vJ4QQ/1bx8fHWZkvlypW770bdEiI5Z86coWTJkoSEhLBs2bLMzo5ww8svv8z06dPZt2+fy00N01Nqr4UVK1YkKioqSmvtVmbliivcsn7tGmpkP5XyjikY+utQhv46NB1y5DB2yyIyxB9DjcUThg41FiGEEOmicOHC9O3blxUrVrBv377Mzo5Io9OnT1tHSMuMikxmksqMcMtfp05SKNsNt+P57cRv/Hbit3TIkcPYLYvIEOd+MxZP+O03YxFCCJFuRowYQZ48eXj77bczOysijcaNGwfg0vxC/zbS/kcIIYQQ4j8sd+7cdiN0iaxl8uTJTJ48ObOzkSnkzYwQQgghhBAiS5LKjBBCCCGEECJLksqMEEIIIYQQIkuSyowQQgghhBAiS5LKjBBCCCGEECJLksqMEEIIIYQQIkuSyowQQgghhBAiS5J5ZoRbGjRqzMxZO9yOZ1zIuHTIjdPYPRi3sFPVg+U9Tr5LIYQQQiSQyoxwy4PFS3A2/qDb8TQIbpAOuXEauwfjFnYKebC8G8h3KYQQQogE0sxMuOXSxYsEqVi34zl88TCHLx5Ohxw5jN2yiAxx7bCxeMLhw8YihBBCCIFUZoSbflr+I/VyHHc7nheWvMALS15Ihxw5jN2yiAzx+wvG4gkvvGAsQoj7nlKK4ODgROuio6NRStGwYcNMST89zJs3jzp16hAYGEhAQAA1a9Zk+vTpaK2dhomJieGtt96ibNmy+Pr68sADD9CzZ0/+/vtvh/tHR0fz5JNP4u/vT4ECBejbty+xsY4fHP7+++94eXkxbdq0NB/TvXv3KFeuHLVq1bLbtmLFCt544w1CQkLInTu3S99fw4YNUUo5XX755Zc05TM6OppXXnmFkiVL4uPjQ/78+Xn88ceZMGGC0zB3795l8uTJ1KpVi6CgIAICAihbtmyy5e/qMQUEBFC5cmVGjhzJtWvXnIY9cOAAvXr1oly5cuTMmZOgoCAqVarEoEGDOHXqlNNwwcHBKKWIjo52uH3w4MEopShQoECy5e1oATh9+jR+fn706tXL5XK4H0kzM+GWx+vUZe7Xu9yOZ2T9kemQG6exezBuYaeSB8t7pHyXQoi0W79+PY0aNaJ79+7Mnj071eFfffVVpk6dSo4cOXj88cfJmTMnW7Zs4aWXXmLz5s0O44yNjaVx48Zs3bqVIkWK8NRTTxEdHc2XX37J8uXL2bp1K6VKlbLuHxcXR6tWrTh48CDNmzfn7NmzfPrpp9y9e5epU6cmijs+Pp7evXtTrVo1XnzxxVQfj2natGkcPnyYFStW2G17/vnnuXr1apri7dChAwEBAXbrixYtmuq4fv75Zzp27EhMTAzVqlWjdu3aXLx4kX379jFt2jSGDBliF+bSpUs0a9aMnTt3UqRIEUJCQgD4888/+fLLL+nZs2eq89K8eXMKFy4MwN9//82WLVt49913WbhwIVu2bCFPnjyJ9h8/fjxvvPEG9+7do0yZMrRq1Yp79+4RERHBhx9+yOeff8706dN5/vnnU5WPAQMGMHnyZAoWLEi9evXsynn37t3s2bOH0qVLU7duXYdxFClShJdeeonPPvuM/v37U7Zs2VTl4b6htZblPl2AyAoVKujMcPP2XV1i2HJdYthy3fHzzbrLtC264+ebretu3r6bqv2EEOLfKi4uTkdFRemoqCgdFxeX2dm5bwC6RIkSidbduXNHHzhwQJ84ccLj6R84cED/+eefidatW7dOA7p79+6pjm/hwoUa0Hny5NERERHW9f/884+uVKmSBvQ333xjF+6NN97QgH788cf19evXresnTpyoAd2gQYNE+3/33Xca0O+//77W2ji/mjVrprNnz67/+eefRPt+9tlnWimlf//991Qfjyk2NlYXLFhQV65c2eH2nj176gkTJuh169bpVatWOcxzUg0aNNCAPn78eJrzZevAgQPa19dXFyhQQG/evDnRtri4OL1jxw67MPHx8bpRo0Ya0KNGjdJ37ya+Hzl69Kg+f/68y3kwj2ndunWJ1h87dkwHBwdrQA8aNCjRto8++kgDOigoSC9ZssQuf9OnT9c5cuTQSim9dOlSuzRLlCjhsBxfe+01DejChQvryMhIh/kdNWqUS+f6X3/9pb28vHTnzp2T3c8Vqb0WVqhQQQOR2s37ZWlmJtxy48Z1/Ljjdjynr5/m9PXT6ZAjh7FbFpEhYk4biyecPm0sQogsydvbm/Lly1O8eHGPp1W+fHlKly6dbvF9/vnngNG0p3r16tb1RYoU4cMPPwSMp/C27ty5w6effgrAlClTEj09HzhwIJUrV2bDhg3s3LnTun737t0AdO/eHQAvLy9CQ0O5d+8ekZGR1v0uXrzIm2++SWhoKLVr107zcS1cuJBz587xgpMmvDNnzmTw4ME0bNiQwMDANKfjjoEDBxIbG8vs2bN54oknEm3z8vKiRo0admG+//571q1bR6dOnQgPDyd79sSNkUqVKkX+/PndzlvJkiV5++23AVi6dKl1/YkTJxg6dChKKZYuXUq7du0ShVNKERYWxrRp09BaExYWxs2bN1NMr2/fvnz88ccUKVKE9evXU6FCBbfyX7RoURo1asSSJUs4e/asW3FlFqnMCLcsXbSQxj5H3Y6n/YL2tF/QPh1y5DB2yyIyxG/tjcUT2rc3FiFEluSsz8zs2bNRShEeHs7Ro0fp3Lkz+fPnJygoiJYtWxIVFQUYfTvGjh1r7XtSpkwZpkyZ4jCtpH1mQkNDadSoEQBz5sxJ1H8gPDw8xbybFQ5H/UUaNGiAl5cXu3fv5uTJk9b1mzdv5urVq5QuXZpHH33ULlzHjh0BWLZsmXXd5cuXARI1VzJ/NrcBjBgxgvj4eN5///0U856cGTNmoJTimWeecSseTzl16hQrV66kVKlStGrVyuVw06dPB4ybf08zv1vb/i9Tpkzh9u3bdOjQwXreORIaGkqNGjW4cOECc+bMcbqf1prevXvz6aefUrRoUdavX0+5cuXSJf/PPfccd+/eTVPTy/uB9JkRQgghxH3h+PHj1KpVi0KFChESEkJUVBS//PILO3fuZO/evbzyyivWfi+lSpVi3bp19OnThxw5cqTYZ6Ru3bqcOXOGlStX2vUjqFq1aop5M5+aJ+0TAZAjRw4CAgK4du0ae/bssb552rNnDwDVqlVzGKe5fu/evdZ1ZtjDhw/zyCOPAHDo0KFE2yIiIpgxY4a1z0RaXbt2jY0bN1KmTJk09WNJycyZM7l48SJeXl6ULVuWdu3apfqt3Pr164mPj+eJJ57g3r17LF68mM2bNxMXF0elSpXo0qWL3Xdy9+5dNm3aRPbs2alVqxZ79+7l+++/59y5cxQtWpSnnnqKKlWqpNtxXr9+HQAfHx/rOrP/kSt9YZ577jkiIiL4+eefHXbG11rTq1cvpk6dyoMPPsjatWspU6ZMOuU+oYK+YsUKhg0blm7xZhSpzAghhBDivjB37lyGDx/O2LFjUUqhtaZnz57Mnj2bJk2a4OXlxZEjRyhQoAAAa9asISQkhDFjxqRYmQkLC6NMmTKsXLmSunXrpvopdIECBfjnn384ceIEDz/8cKJtly5dso5mdeLECet68y1NsWLFHMZprrcN07JlS0aMGMHw4cP58ssvOXv2LJMmTaJo0aJUqVIFrTV9+vShUqVKbo9CtWXLFuLi4qhZs6Zb8Tjz7rvvJvp98ODBjBw5kpGpGMzFfCsXEBBAvXr12Lp1a6Ltb7zxBgsXLkz09uPYsWPExsZSqFAhJk2axBtvvEF8fLx1e3h4OP369WPSpElpOSw75pu1ypUrA0bzwgMHDgA4bAKXlNls0WximFTfvn1ZsWIFJUqUYO3atYkGjEgPZpO77du3Exsbi6+vb7rG72lSmRFCCCEywkoX+zU0t9ys/TkDjs6Axr+CdyBEz4dDk1MOX6ILlB9g/LwmBAo2gEcsN4+/tU+5T1vzrclv96BSpUoxevRo69CxSikGDBjA7NmziYqKYvXq1daKDECTJk149NFH+eOPP4iOjvbIUMym+vXrM3/+fGbPnk2LFi0SbZs1a5b1Z/MpPcCNGzcA8Pf3dxhnzpw57cJUqVKFsLAwpk+fTqFChQCjHL799lt8fX2ZNWsW27Zt47fffiNbtmzWcDExMfj5+aXqmMw3QunVXMlUv359wsLCeOKJJyhSpAinTp1i4cKFvPvuu7z11lsEBQXRr18/l+Iym9bNmDGDgIAAvvnmG1q0aMH58+d55513+Prrr2nfvj2RkZHWt0tmmIsXL/L666/Tq1cvBg0aRK5cufjhhx/o27cvkydPpkyZMvTu3TvNx/nPP//w7bffWvtMvfrqq9b0tTGQU6Lz1Rnz7dqFCxccbjff8nz22WfpXpExlStXjs2bN3PgwAGHTSLvZ9JnRgghhBD3hYYNG+Lt7Z1onXnz5u3t7bC/irn9tIcHBxk8eDDZs2dnwYIFDB06lJMnT3LhwgWmTZvGW2+9Ze1g7uXl/q3VtGnTmD9/Pq+++ioDBw5k69atdOnShStXrvD666/TtWtX6tWrR3x8PG+88Qa5c+fG39+f4OBgvvvuO5fTOXfuHOC46Zw7Ro8eTdeuXSlVqhR+fn6ULVuWESNGWDvIh4eHExMT41Jc5huVe/fuMW3aNJ599lny5MlD2bJl+eqrr6hZsyZXr17ls88+cximZcuWTJkyhVKlSpEvXz569uxpnZfmvffeS/WxNWrUyNrXqmjRogwePJi7d+8yYsSIVA+v7Ko6deoAxtvFo0fd76fsSN68eQE4f/68R+L3JHkzI4QQQmSE1L7xKBNmLKbgZ4wlNZqsTvx7/SWpC5/BHPXbMEcAK1y4cKI3EUm3375926N5q169Ol9++SUvvvgiEyZMSDRRY+vWrfH29mbp0qWJKgZm3m7duuUwTrMfTtJRwpRSdOnShS5duiRaP3LkSGJiYqxpT548mbFjx9K/f38aNWrE1KlTefbZZylbtqxL/YDM+WMyapSyZs2aUaNGDSIiIti2bZtLk6eaZRgQEECnTp3stvfo0YMdO3awYcMGuzDm9qRCQ0Pp3bs3f//9N3/++Weq+p+Y88wopfDz86NMmTK0bds2URx58uSxNpM8f/6802aGJrNS6Wx0tVmzZtG/f39+/vlnQkJC2LhxY4pxplZQUBAAV65cSdd4M4JUZoQQQghxX0jurUZ6vPFwV9euXWnUqBHfffcdhw8fxtfXlyZNmtC6dWvq1asHQMWKFa37m53d//rrL4fxmetLlCiRYtp79+7l888/Z/z48dZJGz/44AMaNmxo7fvRqFEjihYtygcffMDXX3+dYpy5cuUCEjdz87SHHnqIiIgIl9+kmWVTvHhxa/NDW2bTQrNCYBvGdrstf39/ChYsyLlz5zh37lyqKjPDhw9PsRKWI0cOHn74YaKiooiIiEix4rFrlzH5uLMKaI4cOVi0aBEtW7Zkw4YNNG3alN9++82lJmyuMiu2uXPnTrc4M4pUZoQQQgghXFS0aFEGDBiQaF1MTAy7d+8mMDAw0chl5ohZ5s1qUuZ6s+N4cvr06UO5cuV47bXXAGMkstOnT9O1a1frPoGBgZQvX97aaT4lZl+NS5cuubR/ejD7s5j9hVJi9t+wHZbalpl327cxuXLlomTJkhw/ftxhuPj4eOsbCNtw6alVq1ZERUXx7bff2s0xk9Q333wDGIM/OOPn58eyZcsICQlh+/btNGvWjHXr1qVb5cMsp/SsIGWUzH/MIYQQQgiRAXLkyAEYfSnS06xZs7h58ybdunVL1Am/Tp065MqVi6NHjzocqWrhwoUAtGnTJtn4582bx8aNG/nkk0/sJn9M2oTt5s2bLr/FMitb5tDPnnb+/Hk2btwIOB+uOqknnniCfPnycebMGYf5NJuXJe203rZtW8AY2jmprVu3cufOHfz8/NJ98ANT79698fHx4fvvv+e3335zut9XX33Fjh07yJ8/v9OJS02BgYH88ssvVK5cmd27d9OqVSuXJtp0xcGDB/Hx8bEbqS8rkMqMcEvOgABitHfKO6agSGARigQWSYccOYzdsogM4VfEWDyhSBFjEUKINHjggQeAtN+8R0RE2K374YcfGDp0KPnz57fOBG/KkSMHffr0AYybW9sbzw8//JC9e/fSoEED69C8jly/fp0hQ4bQuXNnGjdubF0fFBREsWLF+PHHH63NxP744w8OHDiQqKlbcp544gmyZcvGjh07XNrfFVu2bGHp0qXExcUlWh8dHU379u25efMmbdu2tWt69emnn1K+fHlef/31ROuzZ8/OwIEDrZNGmkNgA6xevdo64erLL7+cKFz//v3JkSMHn376aaLhnC9cuED//v0Boz+N7dww6Sk4OJhx48ahteapp57ixx9/TLRda82XX35JWFgYSinraG0pyZMnD6tWraJs2bL8/vvvtG3bltjYWLfyevToUS5evEitWrWy3LDMIM3MhJvad+jEG2+tdDueJV082Sn1/u7w+q/jyQ7GS+S7FEKkXXBwMJUrVyYiIoJatWpRsWJFsmXLRtu2ba1P8pNTs2ZNSpcuzcMPP0zOnDnZv38/kZGR5MuXj59//tlhB+4333yT1atXs2XLFh566CHq1avHiRMn2LZtGwUKFEg0rLMjb7/9NteuXWPixIl224YPH06fPn2oXLkyjz76KGvXrsXLy4uhQ4e6VB6BgYHUq1eP9evX89dffzns2/HOO+9YhwY2h5retWsXtWsnDDW+ZMkSilgeNB0+fJgePXpQuHBhqlWrRu7cuTlx4gQ7d+4kNjaWihUrMn36dLt0Lly4wKFDhxz2pRkyZAjr1q1j9erVlC1bltq1a3PhwgW2bt1KXFwcY8aMoVatWonCBAcH8/nnnxMWFkb9+vV5/PHHyZUrF1u2bOHixYtUq1aNcePGuVROadWvXz9iY2N54403eOqpp3jooYeoWrUqcXFx7Nixg1OnTuHr68vcuXN56qmnXI63UKFCrF69mnr16rF27Vo6d+7M4sWL7d7aucp8e9W6des0hc9s8mZGCCGEEP8ZixYtol27dhw7doy5c+cyc+ZMp31akhowYABBQUFs2rSJpUuXcufOHQYOHEhUVJTTyRF9fX1Zt24dI0eOxN/fn6VLl3LixAlCQ0PZtWtXsvOGHDhwgI8//pg333zTYUWjV69evPfee8TFxbF8+XKKFy/ODz/84PKbGcA62ei3337rcPvRo0fZtm0b27ZtIzIyEjDeFpnrtm3blmgkuccee4xXX32VBx54gB07dvDdd9+xf/9+qlatysSJE9mxY4e1r46rvL29+emnnxg3bhz58+dn5cqV7Nu3jwYNGrBs2TJGjBjhMFzPnj1Zu3YtjRs3Zu/evaxatYqCBQsSHh7Ob7/95rH+MraGDRvG3r17eeWVV9Bas2LFClauXElAQAADBgzg0KFDifo9uerBBx9kzZo1FClShGXLltGtW7dEE4OmxjfffIO3tzehoaFpCp/ZlDmpj7j/KKUiK1SoUMG8eGSkW3fuUcHyxqVmcB6yeSni4jU7oo0OYlGjm+OfIzur167jk7V/sufeA8nul5J3NrwDwMgGrs8K7Lp3LJ+eiFvY2Wcp70c8UN7vWOJOxezRQnhafHy8tdlSuXLl7otRt4Rw1e3btylRogQFCxa0TqIp/jv++usvSpQoQceOHVmwYIFbcaX2WlixYkWioqKitNau174dkCuucMupUycp7OX+kI4bTmxgw4kNKe+Yttgti8gQ5zYYiyds2GAsQggh0oWPjw9vvfUW+/btY/ny5ZmdHZHBJkyYgJeXF6NHj87srKSZVGaEW7o8+zwr77g/EsjqF1az+oXVKe+Yttgti8gQTVbbT9SXXlavNhYhhBDp5qWXXqJs2bJ2AxiIf7fTp0/zxRdf8OKLL3psVLeMIAMACCGEEEL8h2XPnj3DhmcW948iRYoQExOT2dlwm7yZEW6J2L6NCtnOuB3PpN8nMen3SemQI4exWxaRIQ5OMhZPmDTJWIQQQgghyOKVGaWUn1JqtFLqsFIqVin1j1JqllKqaCriyK2Uek4p9a1S6rhS6o5S6rpSaptSqp9SyukkKkqpbEqpAUqpfUqpGKXUeaXUd0qprDfjUBodPBBFyeyOZ+VNjQWRC1gQ6V7Hs2RitywiQ5xYYCyesGCBsQghhBBCkIUrM0opX2AtxhBVAcAPwCmgB/CHUsr5WIeJDQbmAV2Ay8BiYDtQBZgMrFVK+TtI3wv4HvgQKAasACKBjkCEUqpW0jBCCCGEEEKI9JNlKzPAm0Bt4HegrNa6i9b6MWAQUABIfhaqBDeB8UCw1rqa1voZrXUT4BHgJFDXklZSPYH2wBGgvNa6o9a6IdAJ8AfmKaWkT5IQQgghhBAekiUrM0qpHEAfy6+9tdY3zG1a6w+BvUADpVT1lOLSWr+ntR6mtT6ZZP0RYLjl12cdBB1o+RyqtT5rE24R8CNQBnB9OlchhBBCCCFEqmTJygxQB8gFHNVa/+Fg+0LLZxs309lj+XzAdqVSqiTwMBCD0bzMU+kLIYQQQgghnMiqlZkqls9dTrab6yu7mY7Z7ybpcF1m+vu11nc9mL4QQgghhBDCiazap6O45fMvJ9vN9SXcTKef5fMHT6avlIp0sqm0K+GFEEIIIYT4L8qqb2YCLJ+3nGy/afkMTGsCSqlXgBDgCvB+RqcvhBBCCCGESF5WfTPjUUqpesBHgAZ6aq3/8WR6WuuKTvIRCVTwZNppdetOHADxOpMzIoQQQggh/rOy6psZc/Qyu/lfLHJaPq+nNmKlVCWMZmU5gH5a6yUZmX5WUePd1VR4ayULTvgSda+Q2/H1r92f/rX7u58xx7FbFpEhyvU3Fk/o399YhBD3PaUUwcHBidZFR0ejlKJhw4aZkn56mDdvHnXq1CEwMJCAgABq1qzJ9OnT0drx072GDRuilHK6/PLLL3ZhoqOjefLJJ/H396dAgQL07duX2NhYh/H//vvveHl5MW3atDQf07179yhXrhy1atlPkbdixQreeOMNQkJCyJ07t8vf344dO+jcuTMPPPAA3t7e5M6dm3r16vHll186LStnMjsP69evt/vesmfPTuHChXnqqadYt26d07D37t3jiy++ICQkhEKFCuHj40ORIkV48sknmT9/vtN8zJ49G6UUoaGhDrcfOnSIokWLJntuOVvCw8MB6N+/P35+fpw8edJhGllFVn0zY5Z6MSfbzfUnUhOpZZSyVUAeIFxr/UlGpn+/81IQ6JOd67fvWdcdj8sLGOu9VNrjfqbSM+5mL7nYPRi3sBPswfJ+Rr5LIUTarV+/nkaNGtG9e3dmz56d6vCvvvoqU6dOJUeOHDz++OPkzJmTLVu28NJLL7F58+Zk4+zQoQMBAQF264sWLZro97i4OFq1asXBgwdp3rw5Z8+e5dNPP+Xu3btMnTo10b7x8fH07t2batWq8eKLL6b6eEzTpk3j8OHDrFhhP0Dr888/z9WrV1MV36JFi+jSpQtxcXFUq1aNevXqcf78eTZu3MimTZtYvXo18+bNczm++yEPAIUKFaJFixYAxMbGsnv3bn788UeWLVvGlClTePXVVxPtf/LkSVq3bs3+/fvx8fGhbt26FCxYkL/++ouVK1eyYsUKpk6dypIlS8iTJ4/L+Th48CCNGjXizJkzNG7cmGLFiqFU4puwOXPmAI7Pu6pVqwIwbNgwpk2bxptvvsncuXNTVRb3k6xamTGHTK7mZLu5fq+rESqligC/AkWAj7TWb7uQfiWllLeDEc1SnX5WoJSiwgOBiZqWecVbKjbZstv9IaXG9dvGS6xAH090MzJfkEkXpgxx11Le3h4o7+uWuAPluxQiKypatCgHDhzA399Zw4b0c+DAAby9vdMtvkWLFjF16lTy5MnDr7/+SvXqxlR2p0+fplmzZsyZM4fmzZvz7LOOpqaDDz74wKU3RYsXL+bAgQO8//77DBs2jPj4eFq2bMnMmTMZNWoURYoUse47bdo0du/ezZYtW/DySltjm9u3bzN69GgqV65Mq1at7LZ36NCBhx9+mBo1anD37l2aNWuWbHz37t2jV69exMXFMW/ePJ577jnrtgMHDlC3bl2++eYbwsLCaNSokUt5vB/yAFC+fPlEFVatNaNHjyY8PJxBgwbRoUMHChYsCMDVq1dp0KAB0dHRPP3000ybNo38+fNbw548eZJu3bqxYcMGWrZsyaZNm8iePeXb8qioKBo3bszZs2d57bXX+OijjxzuZ1ZmkjvvihQpQvfu3fniiy8YPnw4FSrclz0bUpRVm5ltBq4CpZVSVR1s72j5XOZKZEqpPMBKjNHDvgQGJLe/1vo4cADwA1q7m35WopQim1fCUvLKLkpe2eVWRQag6VdNafpV03TKpV3slkVkiLVNjcUTmjY1FiFEluTt7U358uUpXrx4yju7qXz58pQunX6Dgn7++ecADB482FqRAeOG8MMPPwRg/Pjxbqeze/duALp37w6Al5cXoaGh3Lt3j8jIhMFPL168yJtvvkloaCi1a9dOc3oLFy7k3LlzvPDCCw63z5w5k8GDB9OwYUMCXXiQdPDgQc6dO0e5cuUSVSIAHn74Ybp27QoYTcBcdT/kwRGlFCNHjqR06dLExMSwatUq67Zhw4YRHR1NkyZN+O677xJVZACKFy/Ozz//TIUKFdi2bRsTJ05MMb3IyEgaNWrE2bNnGThwoNOKTGp07doVrbXdW7+sJEtWZrTWd4BPLb9OUUqZfVRQSg3EmN9lg9Z6p836Pkqpg0qp92zjUkr5Y0x8+QjwHfCidq0h5YeWz/FKqYI28T0NtAX+xH5I53+dK/5FueJfNOUdUxBWLYywamHpkCOHsVsWkSFKhxmLJ4SFGYsQIkty1mfG7B8QHh7O0aNH6dy5M/nz5ycoKIiWLVsSFRUFGE/cx44dS9myZfH19aVMmTJMmTLFYVpJ+8yEhoZan8LPmTPHYR+C5OzcadxSOOqr0aBBA7y8vNi9e7fb/Q8uX74MkKjZkfmzuQ1gxIgRxMfH8/77SQdcTZ0ZM2aglOKZdGrG6+Pj49J++fLlS5f0MjsPXl5eVKliTD946tQpwKhomm9GPvroI7Jly+YwrL+/P+PGjbPuFxcX5zSd/fv306hRI86dO8eQIUNcqvy4ok6dOhQvXpyvv/7aab+s+11WbWYG8C7G0MlPAEeUUhsx5nV5DDgP9Eyyf36gHEYzMltjgMeBOOAeMNPRWwatdWiSVbOAVkB74KBSao0ljQZADNBVa32Pf7kr/s66DaWO5yoyIBWZDFbGg+UtFRkh/tWOHz9OrVq1KFSoECEhIURFRfHLL7+wc+dO9u7dyyuvvGLt91KqVCnWrVtHnz59yJEjR4p9RurWrcuZM2dYuXIlpUuXpm7dutZtZh+C5Ny8acy64KhvQ44cOQgICODatWvs2bPH4ZunmTNncvHiRby8vChbtizt2rVzuJ+57vDhwzzyyCOA0dnbdltERAQzZsxg8uTJ1mZNaXHt2jU2btxImTJl7PrupFWpUqUoXbo0hw4d4ptvvrFr4vX111+TJ08e2rdvny7p3Q95uG5pAm1WotauXUtsbCxVqlShYkWHA9ZatWzZkjx58nD69Gl2796d6K2fae/evTRp0oQLFy7w+uuvM3bs2HTJNxiV/gYNGvDVV1+xZcsWGjdunG5xZ5Qs+WYGQGsdCzQC3sGY76UdRmVmNlBNa33MxajMq1I24Dmgu5MlafrxQCdgEPAP8CTG251FQA2t9bY0HJYQQgjxnzV37lxeeuklIiMjmT9/Pnv27CE0NJTz58/TpEkTjh49ypEjR1iyZAm//PILP/30EwBjxoxJMe6wsDCGDx8OGBWb2bNnW5d27dqlGL5AgQIAnDhhP7bPpUuXuHbtmtPtAO+++y6ff/45U6ZMoV+/fpQpU4Z33nnHbr+WLVuilGL48OGcO3eOffv2MWnSJIoWLUqVKlXQWtOnTx8qVapEr169Usx3crZs2UJcXBw1a9Z0Kx5b2bJlY86cOeTOnZvnn3+e6tWr88wzz9C4cWMqV65MsWLFWLNmDXnz5k23NDMzD+fOnWPbNuOWr3LlygDs2WN0ra5Ro4ZLeTUr02YTQ1sHDx6kcePGXLhwgZEjR6ZrRcZkjmK3YcOGdI87I2TZygyA1jpGa/2W1rqM1tpHa11Ea91Da/2Xg33DtdYq6RsWrXWoZX2yi5P047TWH2qtK2mt/bTW+bXWnbTWUR465PtO8IVtBF9wv95We0Ztas9Ie5vfFGK3LCJDrKxtLJ5Qu7axCCH+lUqVKsXo0aOt/TCVUgwYYHRjjYqKYvLkydZKBUCTJk149NFHOXHiBNHR0R7NW/369QEcjlg2a9Ys68/mU3rbcF999RVHjx7l1q1bHDp0iDFjxpA9e3beeustu34PVapUISwsjJ9++olChQpRuXJlTp48ycSJE/H19eXLL79k27ZtfPrpp4maL8XExKT6mPbuNcYpKleuXKrDJqdOnTps2LCBUqVKsWvXLhYsWMC6devw8vKiadOmlCpVKl3Ty4w8xMbGsm3bNtq2bcu1a9coV66ctRnjxYsXARKdq8kx365duHDBbtu2bdu4ePEitWrVYvTo0W7l2Zny5csDjitTWUFWbmYmhBBCZB2uVsS3bjU+Z8wwll9/NUbwmz8fJk9OOXyXLmCpABASAg0awMiRxu/t28Pp066lnwkaNmxoNwKZedPp7e3tsL9KqVKl+OOPPzh9+rRH5pUxDR48mIULF7JgwQKKFy9Onz598Pf3Z9GiRbz11ltkz56de/fu2Y0qlvQGtGzZsowYMYIaNWrQvHlzwsPDeemll/Dz87PuM23aNJo0acKGDRvw8/OjS5cu1KpViytXrvD666/TtWtX6tWrR3x8PCNHjmTKlClcvXqVEiVKMH78eDp37uzSMZ07dw5w3HTOHd9++y09evSgdu3afPvtt1SsWJF//vmHDz74gIkTJ7Ju3Tq2bNnict+W+yUPGzZscDjgUZkyZVi6dKnTvjHuqFq1KkeOHGH79u0MGzbM2scmPZlvqM6fP5/ucWcEqcwIIYQQ4r7gqN+GOUdG4cKFHd4smttv377t0bxVr16dL7/8khdffJEJEyYwYcIE67bWrVvj7e3N0qVLXa4YNGvWjBo1ahAREcG2bdsSVdSUUnTp0oUuXbokCjNy5EhiYmKsaU+ePJmxY8fSv39/GjVqxNSpU3n22WcpW7asS/2AzLlbXBkhzFVHjhyhe/fuFCxYkOXLl1u/n4ceeohp06bxzz//sHz5cmbNmmU3L8v9ngfbeWayZ89Ovnz5qF27Nk8++WSiSrg5sICrlQOzUpl0xDMw3tRNmDCBJ598kvHjxxMYGMib/2/vzuPkqsrE/3+eTshKh0ACEmBIRmSNIrKDyCIgDhGcKAo4IKLoaMQRcECdEVxgvu4QN9SfiA5u4AaIcRkQCaCJSgIoYQmCBDBBCEnIvvb5/XFvJZXuqvRS93Z3pT/v1+u+buouzz11btHUU+eecz7ykS6XuStGjRoFwJIlSwqN21tMZiRJ6g3dbfFoP3rfGWd0f+LY227b/PWNN3bv/F62pblSejqPSpHOOussjjvuOH74wx8yd+5chg0bxvHHH8+kSZN41ateBdBph+9qe+65J/fccw8LOmstI3sk7Ktf/Sqf+cxn2HnnnYFsDpFjjz2Wq666CoDjjjuOXXfdlc997nN897vf7TTmdtttB3R8NK4R119/PevWreO1r31tzUlC3/zmN/Pzn/+cO++8s7RkpqwytJ9npp7K6Gb33HNPp8e2tbVt7GNTLwE94YQT+OEPf8gb3/hGLr30UkaNGsV//Md/dLncnakktaNHjy4sZm8ymZEkSeqiXXfddWM/nopVq1Zx33330drayoEH1pvPu6PKUMsjR47s5Eg4//zz2XvvvTd+iV26dCkLFizYOGcKZC0s++yzz8ahrDtT6auxaNGiLpe5M08/nXVbriRK7VW2Vw8zXbS+LsOrX/1qhg4dyv3338+DDz64xckof/WrX7Fo0SLGjRu3xda0U089leuuu46zzjqLCy64gNbWVs4999xCyluph6728elv+v5nDkmSpF4wZMgQIJuvpkjXXnstK1as4Oyzz96s78uWPPfcc9x1110AnSZA3/ve97jrrrv40pe+1GGW+JUrV272esWKFV1uxaq0IFSGfi5CpdWoXqtEZaLKMvs39XUZxowZs3HS0wsuuIC2traax61atYpLLrkEgPe///2d9rk588wz+frXv05KiXe+85386Ec/KqS8Dz30ENC1Icr7I5MZSZI0IOyyyy5Az7+81/pyfPPNN3PJJZcwduxYPv7xj2+27/e//z033XRTh8kQn3jiCSZPnsyKFSs49dRT2W23+nO2LVu2jIsvvpg3v/nNm80BMmrUKHbbbTd+9rOfbXxM7N577+Whhx7q8qNuRx55JIMGDdr45b4Ir3/96wG48847+epXv7rZvpkzZ258JO60007bbN+HP/xh9tlnH7785S/TqJ6WoUif/vSnmTBhArfeeiunn376xhHOKp566ilOPvlk5syZw6GHHspFF13UpbjnnXceV111FRs2bODf/u3fNg5P3og//vGPQDb5azPyMTNJkjQgTJgwgf3335977rmHQw89lIkTJzJo0CBOPfVUTj311E7PP+SQQ9hjjz3Yd999GTlyJA888ABz5sxhzJgx/PKXv+zQgXvu3Lmce+657Lzzzhx44IGMHj2aefPmMWvWLFavXs3EiRP5xje+scVrfvzjH2fp0qU1Z3z/0Ic+xPnnn8/+++/PK17xCm6//XZaWlo2/trfmdbWVl71qldxxx138PTTT9dMqi6//HKmTZsGwPLlywGYPXs2h1eNznfjjTcyblw2J/mBBx7If/7nf/K5z32OKVOm8JWvfIX99tuP+fPnM2PGDNra2njXu97FCSecsNl1FixYwCOPPFJzeOLeKkORRo8ezfTp0zn55JP58Y9/zM9//nOOOuoodtxxR+bPn8/vfvc71q9fz9FHH81NN93UYRS/LbngggtYtmwZl112GW984xv55S9/WXOkv65IKTF9+nRGjx7NkUce2aMYfc1kRpIkDRg/+clPuPjii7nrrruYNWsWbW1t7Lbbbl1KZi688ELuuOMO7r77blatWsXuu+/ORRddxAc/+MGN/U+qHXbYYbznPe/hD3/4A3/6059YvHgxI0eO5IADDuBNb3oT73nPe7b4WNpDDz3EF7/4RT7xiU/UTDSmTJnCsmXLuPrqq/n5z3/OPvvswyc/+cluDULwzne+kzvuuIMf/OAHXHzxxR32P/bYYxsnhaxYtmzZZtvajyT32c9+liOPPJKvfe1rzJo1i0ceeYTW1laOOeYY3vnOd3LmmWd2uXz9pQw9sfvuu3PvvffyrW99ixtuuIH77ruPF154gR122IHXvOY1nHXWWZxxxhk1h3vuzKWXXsqyZcv47Gc/yymnnMJtt93GYYcd1u04d999N0899RTve9/7GDZsWLfP7w8ipdTXZVAdETFnv/3222/OnDm9fu2Va9ez32W/BuCQCdszqKX2f2iVCTOfGLvpP6ANbYk/PZF1JnvwEycxYkjnOXNlwsyZ55Uxv0Hll5u+mzthQKlMmHlSCfVd+RWuD+fBkNpra2vb+NjS3nvv3S9G3ZK6as2aNYwfP56ddtpp4ySaGjj+/d//nW984xv85S9/6VYSXEt3/xZOnDiRBx988MGUUkMXtmVGDalOYhpRThKzMXqJsdVBGUlMhUmMJBVq6NChXHbZZbz3ve/l5z//Oa973ev6ukjqJQsWLNg4QlqjiUxf8ucjSZKkAexd73oXe+21V4cBDLR1+/SnPw3AFVdc0cclaYzJjBoyeuXTjF75dMNxrpl9DdfMvqaAEtWMni/qFX+9JlvKcM012SJJKszgwYN55JFHCh3VTP3f1KlTN/b9amaFJzMRcU5ENGcPInXb6JV/Z/TKvzccx2RmK/LYNdlSBpMZSZJUpYw+M98CroqI7wHXpJTuL+Ea6iee3OGgQuLcevathcSpE73E2Org1SXW963eS0mStEkZj5ldQ5YkvReYHREzI+IdETGyhGupj7W1DKatpfGcuHVoK61DWwsoUc3o+aJesU1rtpShtTVbJEmSKCGZSSm9CxgHvAv4E3Ao8P8B8yPiaxFxcNHXVN8ZtWoBo1YtaDjO9Q9cz/UPXF9AiWpGzxf1iieuz5YyXH99tkiSJFHSAAAppRUppWtSSocD+wNfAdaTJTh/iIh7I+LdETGqjOur9+yw4kl2WPFkw3GmzpzK1JlTGy9Q7ej5ol7xyNRsKcPUqdki9SPVE961tbX1YUkkqe9U//3ryUSgPVX6aGYppQdSSv8B7AKcBdwJvJwswZkfEd+MiGI6XkiS1MsigiFDhgCwYsWKPi6NJPWNyt+/IUOG9Goy05uTZm7D5p0XIt92LvC2iLgROC+ltKQXyyRJUsNaW1t5/vnn+cc//gHAyJEjO539WpK2Bm1tbaxYsWLj37/WXu7bWnoyExGHA+8E3gyMADYAPwW+BtwFvAH4IDAZWAm8tewySZJUpDFjxrBixQpWr17N/Pnz+7o4ktQnhg0bxpgxY3r1mqUkMxGxPXA2WRKzH1krzFPAp8mGa36m6vAfRMSPgHuBk8sojyRJZRo0aBC77747zz//PMuWLWPt2rV9XSRJ6jVDhgyhtbWVMWPGMGjQoF69duHJTER8l6y1ZSiQgF+StcL8IqVUs2dkSml9RPwJOKfo8kiS1BsGDRrETjvtxE477URKiZRSXxdJkkoXEb3aR6a9Mlpm3gI8A1wL/H8ppa4OdXUjMK+E8kiS1Kv6+n/ukjRQlJHMvAm4OaW0vjsnpZRuAW4poTySJEmStkJlDLUykmyizC2KiMMjws7+kiRJknqkjJaZb+fL7zs57h3A24HrSiiDesnSYTsXEuf0iacXEqdO9BJjq4PxJdb36d5LSZK0SW/OM9NeC9kAAWpii7YdX0icC4+4sJA4daKXGFsd7FNifV/ovZQkSZv05YxeLwaW9uH1JUmSJDWxQlpmIuKydpsOqLGt+pp7A0cDtxZxffWd3Z+/B4AnxxzcUJwTrjsBgNveelvDZaoRPV+XEVsd/Cav7+NLqO8T8ti3eS8lSVJxj5l9jOyRscjXB+TLljwL/FdB11cfWTlk+0LiHDP+mELi1IleYmx1sFOJ9X2M91KSJG1SVDJzbr4Osvll7ga+WefYtcB8YGZKaU1B11cfWdi6RyFxLj3m0kLi1IleYmx18LIS6/tS76UkSdqkkGQmpfS/lX9HxDnAL6u3SZIkSVLRCh/NLKV0XNEx1X/ttug+AJ7e4YCG4ky+YTIAN55+Y4Mlqhk9X5cRWx3cmdf30SXU9+Q89o3eS0mS1LdDM2srMLitmCcFFyxbUEicOtFLjK0OVpVY3wu8l5IkaZOGk5mIuJ2s0/85KaWn89ddlVJKxzdaBkmSJEkDTxEtM8eSJTMjql53lZNmSpIkSeqRIpKZf87Xf2/3WpIkSZJK03Ayk1Kat6XXkiRJklSGlr4ugCRJkiT1ROHJTES8KCKOjogXtdu+R0RcHxEPRMQvIuLwoq8tSZIkaeAoo2XmQ8Bvge0qGyJiFHA38CZgP+C1wG8iYs8Sri9JkiRpACgjmTkWeDClNLdq29uAFwE/APYGLgKGAx8o4fqSJEmSBoAyJs3cFZjRbtskYD1wQUppITA1Is4Bjinh+upFT29/QCFxbjy9zBndnS2+Vx1dYn3f6L2UJEmblJHMtAIrKy8iYhBwBDArT2QqHgZeV8L11YvWDxpaSJxxreMKiVMneomx1cHwEut7nPdSkiRtUsZjZvOBfapeHwVsC9zR7rjBwNoSrq9etO3q59h29XMNx5k2dxrT5k4roEQ1o+eLesXfp2VLGaZNyxZJkiTKaZmZAZwZERcAvwGuABJwS7vj9mXTRJtqUmOXPw7A8mE7NhTn8jsvB2DSXpMaLlON6Pm6jNjq4IG8vnctob4vz2NP8l5KkqRykplPAm8APp+/DuC3KaXfVw6IiAlko5p9s4TrqxfNH/3SQuJcN/m6QuLUiV5ibHVwRIn1fZ33UpIkbVJ4MpNSmhMRRwHvB8YCs4DPtjvsJOB+4Kair6/etXbwyELi7DVmr0Li1IleYmx1MKrE+t7LeylJkjYpo2WGlNJs4Jwt7P868PUyrq3eNWLNIgBWDt2hoTjTn5gOwDETyhjgbnq+dvC8XvGPvL5fVEJ9T89jH+O9lCRJJSUzGjh2WvYoAE8MPayhOB+87YMAzDxvZsNlqhE9X5cRWx3cl9f3SSXU9wfz2DO9l5IkqeRkJiJ2JxsXt+74vSmlO8ssgyRJkqStUynJTES8HbgU2L0Lhw8qowySJEmStm6FJzMRcS5wTf7yAWAusKzo60iSJEka2MpombkIWA+cllL6WQnxJUmSJImWEmLuCdzZG4lMRAyPiE9ExNyIWB0R8yPi2ojYtZtxjomIj0bEtIh4LiJSRDzRyTnfzo+rt7y7oTcnSZIkaYvKaJlZBCwsIe5mImIYcDtwOLAAuBmYAJwLvC4iDk8pPd7FcF8AXt7DovwaeKbG9kd6GE+SJElSF5SRzNxMlkxsk1JaV0L8io+QJTIzgNeklJYDRMRFwOeBa4Fjuxjr/4AfAX8CngbmdKMcn0op3dGN4yVJkiQVoIzHzP4LWAF8KyK2LyE+ETEEOD9/+d5KIgOQUroS+DNwTEQc1JV4KaVLUkr/k1L6P7KWJUmSJEn9XBktM58HHgTOBCZFxCyy1o62GsemlNI7enCNVwLbAY+llO6tsf/HwP7AKcCsHsRXF60cUky+evT4owuJUyd6ibHVwU4l1vfR3ktJkrRJGcnM26r+vR3w6i0cm4CeJDOV/i2z6+yvbN+/B7G76w0R8Uay+XL+BtySUnq4F67bLzw7aq9C4nzmxM8UEqdO9BJjq4NXlFjfn/FeSpKkTcpIZo4rIWZ7lck4n66zv7J9fC+U5X3tXn86Ir4KvD+ltL4rASKiXh+dPRoqmSRJkrQVKzyZSSlNLzpmDdvm65V19q/I160lluFessEHbidLnnYG/gW4ApgCrAUuLPH6/cIuS/4CwPzRL2soztk3ng3AdyZ/p+Ey1Yier8uIrQ5+n9f3kSXU99l57O94LyVJUjktMwNCSukL7Tb9Dbg6IqaTPeZ2fkRcmVJ6qguxJtbanrfY7NdwYUvUFoMKidM6pMy8s8zY6mCbEuu71XspSZI2KS2ZiYgxwFnAocBY4Dcppc/k+yaSPUJ1W0qpXuvKllRGLxtRZ//IfL2sB7EbklKaExE/A04Djge+3dtl6E3PbFdMrnX1pKsLiVMneomx1cEhJdb31d5LSZK0SSnJTES8CbiG7HGwIOvo//eqQ3YFbgTOAb7bg0s8ma93q7O/sn1eD2IX4dF8Pa6Pri9JkiRt9QqfZyYijgC+D6wHPkDWMhPtDvsN8ALwhh5e5v58fWCd/ZXtf+5h/EZVxitescWjtgI7v/AgO7/wYMNxpkybwpRpUwooUc3o+aJe8acp2VKGKVOyRZIkiXJaZv6LbE6ZE1NKswEiNs9lUkobImI28NIeXuN3ZMnQHhFxQErpvnb7T8vXt/Qwfo9FxFBgUv6y3tDRW41h64p5km/2gjKraqu/Df3LohLre7b3UpIkbVJ4ywxwJDCjkshswTP08DGslNJa4Mv5y69ERKWPDBFxEdn8MtNTSrOqtp8fEQ9HxCd7cs1qEbFPRJydJy7V23cErgf+iaz16HeNXkuSJElSbWW0zIwAnuvCcY1OHX8FcAJZ8vRoRNxFNq/MYfn1397u+LHA3tRIoCLiPOC8/OU2+XpcRMysOmxKVYK2M3Ad8IWIuCe/3i7AQWRDZz0NvDmllBp6h5IkSZLqKiOZ+TtQc6jhisieO3sp2XDGPZJSWh0RxwEfBt4C/CuwiGz0sEtTSvUm1KxlN7IkqNqQdttGVf17LjAVOBx4GTAGWJNvvwX4QkppcTeuL0mSJKmbykhmfgW8JyLOSCldX+eY88gexfp+IxdKKa0CLsuXzo79GPCx7u6rc/x8BsCEmJIkSVJ/VkYy8ymylpLrIuIVZEMwA4zMX08GLiF7NOuqEq4vSZIkaQAofACA/PGuScBC4GKyTvCJbISxe4CPAEuAU1NKzxZ9fUmSJEkDQymTZqaUZkTE3sA7gBOBCWSJ09PArcDXU0ovlHFtSZIkSQNDKckMQEppGVkn+allXUOSJEnSwFVaMqOB4Znt9i0kztWTri4kTp3oJcZWB4eUWN9Xey8lSdImhSczEXEkcBywL9lcMolsyOQHgd+mlP5Q9DXVd1ZvM6rzg7rgwHEHFhKnTvQSY6uDHUqs7wO9l5IkaZPCkpmI2B+4FnhFZVO7Q1J+3B+Bd6SUHizq2uo7w9YtBRpPamYvyOYjLSepqcx16hfhXrEor+8ykprZeWyTGkmSREHJTEQcAtwOjARWAL8E7iMb0SyAsWRJzklkE1HOiIhjU0r3FnF99Z2dX3gIgCfGtp9ztHumTJsCwMzzZjZcphrR83UZsdXBn/L6PqmE+p6Sx57pvZQkSQUkMxExCPgeWSLzTeADKaWldY4dBVwJvB34fkTsl1JKjZZBfefZ1j0LifPpEz5dSJw60UuMrQ4OKLG+P+29lCRJmxTRMvN64CXADSmld27pwDzJOS8iWsnmnTkF+FkBZVAfWTl0h0LiHDPhmELi1IleYmx18KIS6/sY76UkSdqkiEkzTwHagP/qxjkfztf/WsD11YeGrF/BkPUrGo4z9/m5zH1+bgElqhk9X9Qrls7NljLMnZstkiRJFNMycxDwSErpb109IaX0eEQ8nJ+rJrbLkgeAxvvMvPXGtwJl9Zl5a762n0WvmJHXdxl9Zt6ax7bPjCRJopiWmXH07GfvucAuBVxfkiRJ0gBURDKzHfBCD85bChQzSYkkSZKkAaeIZGYwWZ+Z7mqjhEk7JUmSJA0MRSQzkiRJktTrimoZOScizikoliRJkiR1qqhkJnp4nhNmSpIkSeqRhpOZlJKPqkmSJEnqdSYikiRJkpqSo4mpIWsHjygkzp5j9iwkTp3oJcZWB60l1vee3ktJkrSJyYwaMn/0ywqJ853J3ykkTp3oJcZWB0eWWN/f8V5KkqRNfMxMkiRJUlMymVFDdlo6l52Wzm04ziW3XsIlt15SQIlqRs8X9Yp7L8mWMlxySbZIkiThY2Zq0JD1KwuJ8+iiRwuJUyd6ibHVwbIS6/tR76UkSdrEZEYNeXqHAwqJc+PpNxYSp070EmOrg6NLrO8bvZeSJGkTHzOTJEmS1JRMZtSQscseY+yyxxqOc/n0y7l8+uUFlKhm9HxRr/jL5dlShssvzxZJkiRMZtSgbdcsZNs1CxuOM+3RaUx7dFoBJaoZPV/UK+ZPy5YyTJuWLZIkSZjMSJIkSWpSJjOSJEmSmpLJjCRJkqSmZDIjSZIkqSk5z4yaQkqJVes2dNg+fJtBREQflEiSJEl9zWRG/V5KidO+NoNZ8xZ32Hfw+O350buPMKGRJEkagHzMTP3eqnUbaiYyAPfMW1yzxUaSJElbP1tm1FQOGj+algjaUmLWvCV9XRxJkiT1IZMZNWThti8uJM6lR1/apeNaIhjUEtDWreg9KpN66KUl1vel3ktJkrSJyYwasnzYjoXEmbTXpELi1IleYmx1sGuJ9T3JeylJkjaxz4waMnjDGgZvWNNwnAXLFrBg2YICSlQzer6oV6xakC1lWLAgWyRJkrBlRg3abfF9ADwx9rCG4ky+YTIAM8+b2WiRakXP12XEVgd35vV9Ugn1PTmPPdN7KUmSTGbUoEUjdy8kzgWHX1BInDrRS4ytDva+oLzYF5QYW5IkNR2TGTVk6fBxhcQ546VnFBKnTvQSY6uDCSXW9xneS0mStIl9ZtSQlrb1tLStbzjOsjXLWLZmWQElqhk9X9Qr1i3LljIsW5YtkiRJ2DKjBu2+aBbQeJ+ZE79zIlBWn5kT87X9LHrF7Xl9l9Fn5sQ8tn1mJEkSJjPqh1JKrFq3YePrlWs3bOFoSZIkDVQmM+pXUkqc9rUZzJq3uK+LIkmSpH7OPjPqV1at21A3kWkdOpiW6OUCSZIkqd+yZUb91kHjR9MSm7KXloAIsxlJkiRlTGbUb7VEMMimGEmSJNXhY2aSJEmSmpLJjCRJkqSmZDIjSZIkqSnZZ0YNaYtBhcTZdsi2hcSpE73E2OpgcIn1va33UpIkbdLUyUxEDAc+DJwB7A4sAn4FXJpS+ns34hwDHAscmi9jgXkppQmdnDcI+A/g7cBLgOXAb4GPppQe6ubbaUpPjjm4kDi3vfU2AFauXV9IvHbRS4ipuo4vsb5v815KkqRNmjaZiYhhwO3A4cAC4GZgAnAu8LqIODyl9HgXw30BeHk3r98C/AiYDCwBppElQacBkyLiuJTSH7sTU5IkSVLXNXOfmY+QJTIzgL1SSqenlA4DPgDsCFzbjVj/l8c7CZjYxXPeTpbIPArsk1I6LaV0LPAmYATwvYho2mSxq3ZYPo8dls9rOM5VM67iqhlXFVCimtHzRb3i4auypQxXXZUtkiRJNGkyExFDgPPzl+9NKS2v7EspXQn8GTgmIg7qSryU0iUppf9JKf0f2aNqXXFRvr4kpfSPqlg/AX5G9tjZ67sYq2mNWv0Mo1Y/03CcG+bcwA1zbiigRDWj54t6xbwbsqUMN9yQLZIkSTTvY2avBLYDHksp3Vtj/4+B/YFTgFlFXzwi/hnYF1hF9nhZreufml//J0Vfvz95YuxhhcSZed5MoKw+MzNLiKm6Tiqxvmd6LyVJ0iZN2TLDpv4ts+vsr2zfv+TrP5BSWtcH15ckSZIGvGZtmdk9Xz9dZ39l+/hmuH5EzKmza4/uFKovjF6ZvdUlI3ZrKM41s68B4C0vfVujRaoVPV+fV0JsdfDXvL5fUkJ9X5PHPs97KUmSmjeZqUw2sbLO/hX5unUrvX6/MXplNgK2yYw2esxkRpIk9Y5mTWa2KimlmiOo5S02+/VycSRJkqSm0Kx9Ziqjl42os39kvl62lV5fkiRJGvCaNZl5Ml/Xe7apsr3xCVD65/UlSZKkAa9Zk5n78/WBdfZXtv+55Ou/NCK26YPrS5IkSQNesyYzvwNeAPaIiANq7D8tX99SxsVTSn8DHgKGA5N6+/qSJEmSmjSZSSmtBb6cv/xKRFT6qBARF5HN7zI9pTSravv5EfFwRHyyoGJcma8/ExE7VV3nDWQTZv4VuLmga0mSJElqp5lHM7sCOAE4Eng0Iu4im9flMOA54O3tjh8L7A2Max8oIs5j07i9lcfGxkVE9XTjU1JK1ZN0XgucDEwGHo6I3+TXOAZYBZyVUipjOntJkiRJNGnLDEBKaTVwHHA52Xwv/0qWzHwbODCl9Hg3wu1GlgQdxqb+LkOqth0GjGp3/TbgTcAHgPnA64CXAT8BDk4p/aEHb0uSJElSFzVzywwppVXAZfnS2bEfAz7W3X2dxNxA9rjZlZ0du7VaMmLXQuKcd2CZkyA6wWKv2qPE+nayTEmSVKWpkxn1vSUj6o1O3T2VZGbl2jKezPMLcK96icmMJEnqHU37mJkkSZKkgc1kRg2ZsPAPTFjYePegw685nMOvObyAEtWMni/qFb8+PFvKcPjh2SJJkoSPmalBS4ftXEic0yeeXkicOtFLjK0OxpdY36d7LyVJ0iYmM2rIom3HFxLnwiMuBMrqM3NhCTFV1z4l1veF3ktJkrSJj5lJkiRJakomM2rI7s/fw+7P39NwnBOuO4ETrjuhgBLVjJ4v6hW/OSFbynDCCdkiSZKEj5mpQS1pQyFxlq9dXkicOtFLjK0O1pdY38u9l5IkaRNbZiRJkiQ1JZMZSZIkSU3JZEaSJElSUzKZkSRJktSUTGYkSZIkNSVHM1OfSimxat0G2lICYOXaYkZHkyRJ0tbPZEZ9JqXEaV+bwax5i1kw9AUADr7itj4ulSRJkpqFj5mpz6xat4FZ8xbX3Nc6dDAt0csFkiRJUlOxZUYNeXKHgwqJc9JOX6IlYJuWkQC0BEQUlc3cWlAcdcmrS6zvW72XkiRpE5MZNaStpZiP0NBBIxlUWlNMa0lxVdM2JdZ3q/dSkiRt4mNmasioVQsYtWpBw3GeWn0bT64q61f36/NFveKJ67OlDNdfny2SJEnYMqMG7bDiSQCWDh/XUJxHV94ABLsPP7GAUrU3NV+fUUJsdfDI1Gw9oYT6nprHPsN7KUmSTGbUoKe3P6CQOEds98kSHzO7saS4qunoEuv7Ru+lJEnaxGRGDVk/aGghcYYPGltiMtNYq5G6qcFWui0a572UJEmb2GdGDdl29XNsu/q5huMsWPN75q/+XQElqmVavqhX/H1atpRh2rRskSRJwpYZNWjs8scBWD5sx4biPLTiW0Cwy7BXFlCq9i7P15NKiK0OHsjre9cS6vvyPPYk76UkSTKZUS9KKbFq3YaNr1eu3bCFoyVJkqQtM5lRr0gpcdrXZjBr3uLCY7dPioZvM6jACTclSZLUX5nMqFesWrehbiLTOnQwyxqIffAVt23+evz2/OjdR5jQSJIkbeVMZlSqSqtJdevJQeNH01KVaLQEzH++e4lHS+RJ0Jr1HfbdM28xq9ZtYMQQP96SJElbM7/tqVTtW00AWiIaHoY5Ithvl1ba0qZtbSkxa96ShuJKkiSpeTg0swpXaTWppXXoYIqaTibypKiytPhYmSRJ0oBiy4wKV6vVpKIl6PW+LCllrTZr1m96JM1BAiRJkpqfyYxKEREM6ge5QkqJR59dxoo1G5h89a83bneQAEmSpOZnMqOGLB86tpA4uww9spA47a1at4Fb7n9Fh+0OElCiXUqc0NLJMiVJUhW/yakhC1v3KCTOxNZzC4lTy5duPxPIRlEDHCSgbC+7tLzYl5YYW5IkNR2TGQ0YDhAgSZK0dTGZUUN2W3QfAE/vcEBDce5e9CEAjtrhUw2WqKOvn30FANfc9fnCY6uGOydn66NvLD725Dz2jSXEliRJTcdkRg1ZO3hEIXFaB/9TIXEqqifr/NvCXQqNrU607lle7D1LjC1JkpqOyYwa8uyovQqJ8/JR7y0kTsXmk3W+HYBDJhR6CdXzis+UF/szJcaWJElNx0kztdXorck6JUmS1D/YMqOG7LLkLwDMH/2yhuLMXPJxAA4f/dEex6g3Wef7Xv0JAK6+46PZDJoq1+/PztZHfqf42Gfnsb9TQmxJktR0TGbUkCHrVxYSZ9n6pwuJU2uyznHbFRNbXbTs0fJiP1pibEmS1HR8zEySJElSUzKZkSRJktSUTGYkSZIkNSWTGUmSJElNyWRGkiRJUlMymZEkSZLUlExmJEmSJDUlkxlJkiRJTclJM9WQ+aNfWkicw0dfWkicWq6+o7zYquGI68qLfV2JsSVJUtMxmVFD1g4eWUic1sG7FxKnlgUvlBdbNYzaq7zYe5UYW5IkNR0fM1NDRqxZxIg1ixqO8+yae3l2zb0FlKijfcfdy77jyomtGv4xPVvKMH16tkiSJGHLjBq007JHAXhi6GENxbl/2dUAnDj0Gw2Xqb23HJrFvvTm4mOrhvs+mK1Pmll87A/msWeWEFuSJDUdkxk15Jnt9i0kzkHb/WchcWr55t3lxVYNh1xdXuyrS4wtSZKaTlM/ZhYRwyPiExExNyJWR8T8iLg2InbtQaztI+ILETEvItbk66kRMbrO8d+OiLSF5d0Nv8EmsHqbUazeZlTDcXbYZm922GbvAkrU0RPP780Tz5cTWzXscGC2lOHAA7NFkiSJJm6ZiYhhwO3A4cAC4GZgAnAu8LqIODyl9HgXY40FZgAvAR4HbgImAu8H/iUijkgp1esY8mvgmRrbH+nym2liw9YtBWg4oVm0LquuMhKaCWOy2CY0vWTR7GxdRkIzO49tQiNJkmjiZAb4CFkiMwN4TUppOUBEXAR8HrgWOLaLsaaSJTI/BU5PKa3PY30ReB9wJfC2Oud+KqV0R0/ewNZg5xceAuCJsY31mZn1wucAOHFs8f1a3nFUFts+M73kT1OydRl9Zqbkse0zI0mSaNLHzCJiCHB+/vK9lUQGIKV0JfBn4JiIOKgLscYBZwJrgSmVRCZ3MfAccFZE7FRU+SVJkiQ1rimTGeCVwHbAYymlWmPu/jhfn9KFWK8lq4e7Ukr/qN6RUloD3AIMAk7ueXElSZIkFa1ZHzN7eb6eXWd/Zfv+BcV6+xZivSEi3kiW8PwNuCWl9HAXritJkiSpAc2azFSmdH+6zv7K9vG9EOt97V5/OiK+Cry/3SNrdUXEnDq79ujK+ZIkSdJA1KyPmW2br1fW2b8iX7eWGOte4N3AXsAI4MXAe4ElwBTgs124tiRJkqQeataWmT6XUvpCu01/A66OiOlkj6adHxFXppSe6kKsibW25y02+zVcWEmSJGkr1KwtM5XRy0bU2T8yXy/r5ViklOYAPyNLFI/vyjmSJEmSuq9Zk5kn8/VudfZXts/r5VgVj+brcd04R5IkSVI3NOtjZvfn63rTgFe2/7mXY1Vsn69XbPGorcDqbbrSLalz22+zVyFxavnbwvJiq4Yd6v2nVIADS4wtSZKaTrMmM78DXgD2iIgDUkr3tdt/Wr6+pQuxfgW0Aa+KiJ1SSs9WdkTEULK5ajYAv+hKwfJzJuUv6w33vNV4ZrtiuvQcvN3FhcSp5drflRdbNRxydXmxry4xtiRJajpN+ZhZSmkt8OX85VciotKvhYi4iGxOmOkppVlV28+PiIcj4pPtYi0AfgAMIevAX53gfQbYEfhuuyRnn4g4O09cqNq+I3A98E9kLT6/a/zdSpIkSaqlWVtmAK4ATgCOBB6NiLvI5oI5DHiObKLLamOBvandj+UC4HDgjcDDEXEPMBF4KVn/l4vaHb8zcB3whfzY54BdgIPIhnB+GnhzSik19hb7v51feBBovIXmnheykazLaKF5+yuz2LbQ9JI/TcnWZbTQTMlj20IjSZJo0pYZgJTSauA44HKyOWL+lSyZ+TZwYErp8W7EWggcCnyJrIVmMrAd8EXg0JTSonanzAWmAo8ALwPeBBxMlvh8HNg/pTS3Z++subSkDbSkDQ3HWZ9Wsj7Vm+qnMcOHrGT4kHJiq4Z1y7KlDMuWZYskSRIQA6DxoGlFxJz99ttvvzlz5vT6tVeuXc9+l/0agEMmbM+gluj1MpRhQ1viT08sBuCej5zAiCGDNu4bvs0gIraO9ylJktSfTZw4kQcffPDBevMtdlUzP2YmNeTgK27b/PX47fnRu48woZEkSWoSTfuYmfqHnZbOZaeljT9Rd//Sr3D/0q8UUKKO3nLYV3jLYVnsloDWobVz+HvmLWbVusYfmRvw7r0kW8pwySXZIkmShC0zatCItYsLifPs2vsKiVPLvjtvih0R7LdLK21VT1e2pcSseUtKu/6A8+yd5cW+s8TYkiSp6ZjMaMCJCAZVP0nW1mdFkSRJUgN8zEySJElSUzKZkSRJktSUTGYkSZIkNSWTGUmSJElNyWRGkiRJUlMymZEkSZLUlExmJEmSJDUl55lRQ55t3bOQOC9vnVJInFq+/8fyYquGAz5dXuxPlxhbkiQ1HZMZNWTl0B0KibPT0FcUEqeWhxaUF1s1vOiY8mIfU2JsSZLUdHzMTA0Zsn4FQ9avaDjOsvVPsmz9kwWUqKNx2z3JuO3Kia0als7NljLMnZstkiRJ2DKjBu2y5AEAnhh7WENxZi65HIATx36j4TK1N+XYLPalNxcfWzXMeGu2Pmlm8bHfmseeWUJsSZLUdExm1JCF2764kDgTt31bIXFq+ens8mKrhpdeWl7sS0uMLUmSmo7JjBqyfNiOhcTZZdgrC4lTy71PlRdbNew6qbzYk0qMLUmSmo59ZtSQwRvWMHjDmobjrNqwkFUbFhZQoo5GD1/I6OHlxFYNqxZkSxkWLMgWSZIkbJlRg3ZbfB/QeJ+Zuxd/GCinz8wHXpPFts9ML7lzcrYuo8/M5Dy2fWYkSRK2zEiSJElqUiYzkiRJkpqSyYwkSZKkpmQyI0mSJKkpmcxIkiRJakomM5IkSZKaksmMJEmSpKZkMiNJkiSpKTlpphqyvmVoIXGGt4wpJE4ti1eWF1s1DB9XXuxxJcaWJElNx2RGDXl6hwMKiXPUDp8qJE4tV95aXmzVcPSN5cW+scTYkiSp6ZjMSFVWrt2w2evh2wwiIvqoNM0jpcSqdRs6P7AO61mSJPWEyYwaMnbZYwAsbN2joThzln0LgImt5zZcpvbe8Ios9k/v7Tz2wVfctvnr8dvzo3cf4RftLUgpcdrXZjBr3mIA3rfTDwD40rNndjlGl+v58suz9aWX9qiskiRp6+IAAGrIiLWLGbF2ccNxnlt7L8+tvbeAEnW077h72Xdc/dgtAa1Da+f198xb3FCLw0Cwat2GjYkMwGEjH+CwkQ90K8Y98xbz/Iq1rFy7fuOSUup44PTp2SJJkoQtM2rQk2MOLiTOsWO+WEicWv7nF1uOHRHst0srbVXfndtSYta8JaWVqZm1f6Ss+tG8g8aP5gvpagAOmdB5rOp67lKr2G2bHyNJkgY2kxmJLKEZVP2EU1ufFaVfa/9IWXstEQxq6fojeS0paxVbtmZ9h32VVrERQ/wzJUmSavNbghqyw/J5ACzadnxDcR5Zfj0Ae297RsNlau/kl2Wxf/GX4mNv7Wq1wtRLZFqHDqYl4ORt8vpe13l9d9YqVt3qM3ybQcTUqdmLCy/s3huRJElbJZMZNWTU6meAxpOZJ1f/BignmTnixVlsk5nu6awV5qDxo2mpegSsJbLk5IjBeX13IZmBLbeKVT96dvD47fnRDTcQYDIjSZIAkxlJdbTv2F+tdehgBrdEKaO8VQZkaP/o2T3zFrN+Q6KlBdaszfY5pLMkSQObyYykTtVrhSlD+0fPqh87e+DvLwAw+bJfAw6dLUnSQGcyIwnY8ihl3e3Y36jqR88cJECSJNXjNwBJnfaP6UvVLTUjhw4CspYih86WJEkmM5I67R/Ti40yNVVaaiqPk1U/8lbdggT2o5EkaSAxmZG0md7sH1OELk22KUmStkomM1InBtov/73dP6Yn6o14BvajkSRpIPH/9lIn/OW//+lssk1JkjQwmMyoIYtG7l5InL1HvrmQOLX84oHux97af/nf0shljfrFuhLv5fGbYm9pss2B1pomSdJA1bzfxtQvLB0+rpA4uw8/sZA4tcx4rPuxt+Zf/sseuWzG+hLv5SFdi21rmiRJA4PJjBrS0pa1XLS1NPZRWte2AoBtWkY2XKb2hm2TxV69rnuxt9Zf/sseuWwYeX1Twr1cncce1jH21t6aJkmSOvL/7GrI7otmAfDE2MMainPHogsAOHHsNxotUgf/fXIW+9Kbi4vdTL/8b+mRsjJGLvvv4RcAcOmqEu7l1Dz2hzrG7qw1rZkTUEmSVJvJjBqyZMSuhcR58YhTColTy+0PFxO7s1/+n1+xlhFDBm3c1h++LHf2SFkZI5fdvq7Ee3nUlmNvqTWtmRJQSZLUNSYzasiSEbsVEmePEacWEqeW3z5STOzOfvnvD1+Wa7XC9PZkmL9dX+K9PKp7sX30TJKkrZv/F5e6of0v/y2pe601ZUoJ3vS1GTy4YGnN/c02GWYRfPRMkqStm8mMGjJh4R+AxvvM3LrwnUA5fWYuf30Wu8g+MxXdba3pK61DBzO4JXrli/rlw/P6LqHPzOWfymPX6DNTj4+eSZK09TKZkRrUndaa3jBiyCAm7jJqs20DoRWmq5qx75MkSarNZEYqWK3Wmt5k4rJlzdD3SZIkdU1LXxegERExPCI+ERFzI2J1RMyPiGsjottDbEXE9hHxhYiYFxFr8vXUiBi9hXMGRcSFEfGXiFgVEc9FxA8jYt+G3piaXuSjhPXF4pfuzrW/P4NbgtahtX/bqbTWrFy7fotLSn2UvUqSNIA1bctMRAwDbgcOBxYANwMTgHOB10XE4Smlx7sYaywwA3gJ8DhwEzAReD/wLxFxREppUbtzWoAfAZOBJcA0YCxwGjApIo5LKf2xsXcpqTcU0fdpv3Gj8hacTdt8RE2SpHI1bTIDfIQskZkBvCaltBwgIi4CPg9cCxzbxVhTyRKZnwKnp5TW57G+CLwPuBJ4W7tz3k6WyDwKvCql9I/8nDcCPwa+FxH7VmJJ6t8a7fv04IKlTPzorzfbVivB6SoTIUmSOteUyUxEDAHOz1++t5LIAKSUroyIc4BjIuKglNKsTmKNA84E1gJT2iUfFwNnAGdFxCUppWer9l2Ury+pJDL59X8SET8DTgVeD/ykZ+9SUl/qTt+nOfOXdhjmGWonOF3VSCJUi8mRJGlr1JTJDPBKYDvgsZTSvTX2/xjYHzgF2GIyA7yWrO/QXdVJCUBKaU1E3ELWCnMy8G2AiPhnYF9gFdnjZbWuf2p+fZMZqUl1GNa5jpftOqpD0lMvwemqRhKhWopOjvozEzdJ2lz7SbUrtoa/l82azLw8X8+us7+yff+CYr29XazKOQ+klNY1eP1+ry2lzebmqFb5/rah4aG7UkFxakUuL7Y6qnSEL+Velhi7aBN3GZX9t9NNKWWJzOp1df6j66Gik6P+7J/HjuSH/z4wEjdJ6kxK8Oavz+BvC1d02Lc1jNjZrMnM7vn66Tr7K9vHlxSryOsTEXPq7NrnscceY+LEiV0JU6iUYP6z2dN787dw3LYtawBY3ja0oeutb3kGgJvbzmwoTi2zr8xiP7Wo+NjqaPaQvL7XlnAvX8hjf8R7qfrmA7t+qq9LIUn938+AiV/atk9+/HnssccA/qnROM2azGybr1fW2V9JPVtLilXk9bekbc2aNSsefPDBpxqM0zMtg/YlWmKb0ePqHtJoElMxuG3nQuLU8tSi8mIXZd2SBQBsqa6bxVNrS7yX2zUWe2uq5/7Ouu4d1nPvsa57h/Xce9YtWQCpLT30/IaH+qgI/0T979Jd1qzJzFYlpdT7TS9dkLUYbWDtwnn9snxbk0rrnHVdLuu591jXvcN67j3Wde+wnntPpa776/fQrmrWSTMro5eNqLN/ZL5eVlKsIq8vSZIkqQeaNZl5Ml/vVmd/Zfu8kmIVeX1JkiRJPdCsycz9+frAOvsr2/9cUqzKOS+NiG0avL4kSZKkHmjWZOZ3wAvAHhFxQI39p+XrW7oQ61dkAw+/KiJ2qt4REUPJ5orZAPyisj2l9DfgIWA4MKnB60uSJEnqgaZMZlJKa4Ev5y+/EhGVPipExEVk87tMTynNqtp+fkQ8HBGfbBdrAfADYAhwdURUD4rwGWBH4LsppWfbFePKyjHVSVBEvIFswsy/Ajc38DYlSZIkbUGkHkzq1h9ExDDgDuAwYAFwF9m8LocBzwGHp5Qerzr+Y8BHgf9NKb2tXayxwExgD+Ax4B5gIvBS4NE81qJ257QAPwYmA4uB3wBjgWOA1cBxKaU/FPiWJUmSJFVpypYZgJTSauA44HKyMar/lSyZ+TZwYHUi04VYC4FDgS+RtdBMBrYDvggc2j6Ryc9pA94EfIBsjrbXAS8DfgIcbCIjSZIklatpW2YkSZIkDWxN2zIjSZIkaWAzmZEkSZLUlExmJEmSJDUlkxlJkiRJTclkRpIkSVJTMplRBxExPCI+ERFzI2J1RMyPiGsjYte+LluziYiDIuJDEfHTiHg6IlJEdDqEYES8LSL+GBHLI2JRRPwiIo7sjTI3m4gYERH/GhHfjIhH8s/sioi4PyIui4htt3Cu9dxNEXFR/nl+NCJeiIg1ETEvIq6LiJdt4TzrugERMSYins3/hvy1k2Ot626IiDsqf5vrLK+tc5713EMRsWNEfC7/m70qr7/ZEfHZOsefEhHTI2JpvtwREZN6u9zNICKO7eTzXFkuq3FuU36mHZpZm8knI/0tcDibJiOdQDYPT4fJSLVlEXET8Pr221NKsYVzpgLvB1YB/wcMA44HAjgtpXRTCUVtWhFxHvCN/OVDwAPAKOBIoBV4GDgmpfRsu/OmYj13W0QsBEYCfwb+nm+eCOwFrAPekFL6ebtzpmJdNyQivg28lazOHkspvaTOcVOxrrslIu4gm/D6J8DyGod8PqX0l3bnTMV67pGIOAj4NTAGmMOmv9n7AbullAa3O/4C4CpgPXAbsAZ4DTAceF9K6cu9VvgmEBH7AB+qs3sQcFb+71enlH5bdd5UmvUznVJycdm4AFcACfg9sG3V9ovy7Xf0dRmbaQE+CHwCOAXYGVid/WdX9/gT8npeCOxZtf0Isj/gi4HRff2++tMCnAN8Hdi33fZxwOy8Pr9vPRdW368EhtXYPiWv02eAwdZ1oXV+fF6HX8/Xf61znHXds/q9I6+3CV083nrueV3vSPbD6Arg1Br7D233em+yJGY1cETV9r3y+l8HvKSv31ezLMC/5J/dJ8kbNPLtTf2Z7vMCuPSfBRgCLMk/0K+osf/+fN9BfV3WZl26kMz8Iq/jC2rs+0K+7wN9/T6aZcn/EKe83odYz6XX91/zutvfui6sTofn9ToH2LOTZMa67lkddzeZsZ57XtdX5/UzpZvHT62x78J835f6+n01ywJ8L6+zT7bb3tSfafvMqNorge3IHmG4t8b+H+frU3qvSANHRAwHXp2//HGNQ6z/7rs/Xw8le6TBei7Xuny9FqzrgnwUeDHwbjbVbwfWde+wnnsur7uzyFplvtXF0yr9YqzrBkXESDY99v6dqu1N/5ke3PkhGkBenq9n19lf2b5/L5RlINqb7Ev3cymlp2vst/6778X5eh2wKP+39VyCiDibrG4fzRewrhsSEfsDHwC+lVK6KyImbOFw67px74iIMUAbMBe4KaX0ZLtjrOeeO5isH+PdKaVVEfEvwIlkfTPmAj9MKc2vHBwRo4Hd85cdfmBNKT2V9+EbHxGjUkpLy34DTe4NZP0d700pPVi1vek/0yYzqlb5o1Hrw1y9fXwvlGUg2mL9p5RWRMQSYPuIaE0pLeu1kjWv9+frX6WU1uT/tp4LEBEXk3X8Hwnsm/97PnBmSmlDfph13UMR0QJcQ/bo7yVdOMW6btxH2r3+XERcnlK6vGqb9dxz++XrZ+sMjvP/IuIdKaUf5K8rdb04pbSiTsyngbFk30v+UucYZSod/7/TbnvTf6Z9zEzVKkPYrqyzv/LHpLUXyjIQdVb/4D3osog4GXgHWavMpVW7rOdinEQ2+MJpZInMPLJEZlbVMdZ1z70POAS4OKX0fBeOt6577k7gbGAPYATZL9X/Tdbx/BMR8f6qY63nnts+X58KvBZ4L7AT2YipnyPrH/a/EXFAfpx1XZCIGEc2kMgG4Aftdjd9PZvMSNrq5ENTfpdsSMmLU0r3d3KKuimldELKhhjfHjia7NGy6RHx331bsuYXEbuTjSw5PaX07T4uzlYvpXRZSum7KaXHU0qrUkpzU0r/D/jX/JCP5f0K1JjKd87BwGUppatTSs+llOallC4GfgRsA1zcZyXcep1JNizzrSmlZ/q6MEUzmVG1yvj6I+rsH5mv+10T41ais/oH70GnIpvc9VdkX7KvTCl9od0h1nOBUkpLUkp3AScDs4DLI+KQfLd13TNfIRtd8t3dOMe6LlhK6f+Ae4DRwGH5Zuu556rn8Kk1AEBl2zHtjreuG1fvETPYCurZPjOqVunouFud/ZXt83qhLAPRFus/H4lkNNnzw/3yD0pfi4gdyCb7Gk/2P8b/rHGY9VyClNK6iLgBOIhs1Js/YV331OvI+sp8LWKz+XWH5etd84keAc7If2m1rsvxKFnH9XH5a+u55yrfHVamlJ6rsf+JfL1Tvq7U9fYRMbJOvxm/l3QiIvYFXkGWtNxU45Cm/0ybzKha5VGcA+vsr2z/cy+UZSB6hGxyqh0jYteU0t/b7bf+tyAitgV+SdbJ9KfAO1M+SH471nN5FubrHfO1dd1zo9n0C3V7w6r2VRIc67oclX4elS/S1nPPVUYkGx4RQ6sGZanYIV8vh6zVNyKeJOug/grg7uqDI+KfyDr/z3Mksy06O1//NKVUq19M03+mfcxM1X4HvADsUdUBr9pp+fqWXivRAJJSWgXcnr98U41DrP86ImIocDNwKPBrNh9RazPWc6kqX7AfA+u6p1JKUWsB/jk/5LGq7U/k51jXBYuIHYFX5S9ng/XciHyY6/vJ+jLWStQr26qHYZ6Wr0+jI+u6E5E17b4lf1nrEbOt4zPd27N0uvTvhazTaSJLbEZWbb8o335HX5exmReymejTFvafkNfzQmDPqu1H5OcuBkb39fvoTwtZp8af5vV2JzCiC+dYzz2r61eSjULU0m77NmSjb20gGxHnn6zrUup/Ql6Xf62z37rufp0eSdbRf1CNur47r8+brefC6vsted39GRhXtf0A4Pl835uqtu9NNqrcauDwqu175vW/DnhJX7+v/rqQDc6SyIZdbtnCcU39mfYxM7V3BdmH+kjg0Yi4i6z/wWHAc8Db+7BsTSciJrH5sMBD8u0zq7ZdnlKaBpBSui0ivkA2P8p9EXFrfs6JZL9mnZtSWtIbZW8i5wOT838vBK5u18+g4j9TSgvBem7AnmR9kRZGxCyyLx9jgZeR9SlYDbwtpfRU5QTruvdY1z2yF9ln+pmImE3WV2k8Wd+vYcAc4J3VJ1jPPZdS+n5EvIZsWPcHI+L3ZEMyH0k2ceM3Uko/qjr+kXxOqyuBu/K6Xgu8Jj/vP1JKf+3t99FEKh3/v59Saqt3UNN/pvs6m3LpfwvZH4hPAH8le45yAdkf+936umzNtgBvI/u1Y0vL2+qcdw/Zc9qLyfqCHNnX76c/LsDHulDHCZhgPTdc1/8M/A/ZL9bzyb5ULAceAL7IFn4hta4Lqf8JbKFlxrruUZ3uC1xNNhLfs2S/9C8BZpA9kTDcei68zoMsQazU3XLg98A5WzjnFLKW92X5cifwur5+L/15IUsOF+V/M/bv4jlN+ZmOvPCSJEmS1FQcAECSJElSUzKZkSRJktSUTGYkSZIkNSWTGUmSJElNyWRGkiRJUlMymZEkSZLUlExmJEmSJDUlkxlJkiRJTclkRpIkSVJTMpmRJEmS1JRMZiRJkiQ1JZMZSdJWLyKOjYgUEd/u67J0Ji/nE31dDklqBiYzkqSGRMSE/Av4HQXFa5rEoz8w+ZE0kJnMSJIkSWpKJjOSJEmSmpLJjCSpxyLiY8Df8pfH5I88pfaPiUXEfhHxvYhYEBFrI+LvEXFdROzdLt63gd/mL89pF+9jVcdNiohrI+KhiFgaESsi4v6I+K+IGFrSe00R8UREDImIj0fEYxGxOiIej4hPRMSwOueNiYjPRsSj+fGLIuJXEfGabl7/pXm9rYuIf4uIt0VEynePb1dXdzT6fiWpGQzu6wJIkprafcBPgDcC/wB+VbXvboCIOB64BRgO3AvcAewDnA1MjoiTU0p3VZ2zM3AS8FglRtW1Kr6Zx3sA+DOwHXAo8D/A8RHxmpTShoLeY7Uge7/HA7/Jy3Q8cClwZEScVH3diNgVuBN4MfAkcBOwI3ACcFJEXJRSuqrTi0YcAUwDhgGvTyn9IiKOAv4XOAdYAfy46pSHG3ubktQcIqXU+VGSJNURERPIWmemp5SObbdvJFlS8iLg/JTSV6r2XQhcCTwN7JlSWp1vP5asdeZ/U0pvq3PN1wP/l1JaVbWtFfg+8DrgnJTSdVX7Oo3ZhfdZ+R/m08AxKaXH8+07ArcDLwUuTClNrTrnlrw83wfOTSmtzbcfBfwaGAocnFK6r9115qWUJuSvTyJLoNYBp6SUqhO8DsdL0kDiY2aSpDK9mSyRmVGdyADkLRKzgN3IWna6LKV0c3Uik29bBlyYv3x9j0vcuU9UEpn8us8BF+cvz69sj4gXkyUyy4H3VRKZ/Jy7ga8Bg4D31rtQRJxO1qq1HDi2fSIjSQOdj5lJksr0qnz9vTr7vwsclB9X75iaImJP4GTgJcBIsh/oIt+9Z7dL2nXXt9+QUvpVRCwG9oiIcSmlBcBR+e5fpZQW1YjzHeAiNtXRZiLi3cBXgHnAa1JKfy2k9JK0FTGZkSSVaZd8/USd/ZXtu3Y1YEQE8DmyVpioc1hrV+N10+K8BaiWecD2ZO95AY29992ArwKrgeNSSvN6UlhJ2tr5mJkkqS/1pOPm6WQtGk8Dp5ElA0NSSkHWBwXqJzn9yZbe+7NkAwwMAz4XEf74KEk1+MdRklSm+fl6fJ39E/L137sRc3K+fk9KaVq7fS/uRpye2D4iWuu0zuyer+e3W/fkva8FTiEbwew0oC0i3lLSCG2S1LRsmZEkNarSsb3WD2SVIZfPrHPuWe2O6yweZI9yQdYy096b65xTpA7XyOeM2QF4PO8vA5uGlX5tRIyuEafWe98oH+DgdcD0/JrfiYhBNQ5dhz9OShqgTGYkSY1aSPaFeo8aX7Z/SDb/zFER8a7qHRHxH8DBZC0TP6naVWnR2GxCzSpz8/W78v4zlXivYtOoYmX6aD4cdeW6Y4HP5i83jtiWj3g2jaz/zhciYpuqc44A3gNsqD6nvZTSSmASWcJzJvC/EdH+/93zgRfVSZgkaavmPDOSpIZFxM/IHouaA8wma135XUrpW+0mzZxFlozsA7yCbMjh6kkzK/HuB/YH/pTH3AD8LKX0s4jYK7/GSOBBskkzdyUbPezzwH/Sbt6VAueZeTK/3qvJ+rSsy/89Oo//mpTS+qpzdiVLRP6ZbICAGWSTZh5LNizzB1JKV9a4Tvvyb0s2IekrgevI5qxpy/d9EXgf2Vw/vycbNOCRlNJnkaStnC0zkqQinEc21PAY4C3AO4BjAFJKvwEOAX5ANkrXacDOZMMyH9w+kcm9EbiJrA/MW/N4B+bx5pK16NwCjAVOBbYF/j2lVHbLTMrLPxV4GdljYC8A/wNMqk5k8rL+ney9fx5YD7yBbCjq3wAntU9k6l40peXAv5AlK28FvlnVQvNh4Mtkj5qdTlZXk3r8DiWpidgyI0lSF9RqMZEk9S1bZiRJkiQ1JZMZSZIkSU3JoRwlSQNORJxHNmBAV3wqpfRwmeWRJPWMyYwkaSA6Cjini8d+G3g4pRSdHShJ6l0OACBJkiSpKdlnRpIkSVJTMpmRJEmS1JRMZiRJkiQ1JZMZSZIkSU3JZEaSJElSUzKZkSRJktSUTGYkSZIkNSWTGUmSJElNyWRGkiRJUlMymZEkSZLUlExmJEmSJDUlkxlJkiRJTclkRpIkSVJTMpmRJEmS1JT+f2ECvcO72TALAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Plot the PDF \n", + "\n", + "plt.figure(dpi = 150)\n", + "lengend_names = list()\n", + "plt.title('PDF and Thresholds for % of samples below given value')\n", + "\n", + "sns.histplot(data=claims_df, x=\"total_pokt\", bins = 128, stat=\"density\", element=\"step\")\n", + "lengend_names.append('PDF')\n", + "for row, c in zip(limit_rows, colores):\n", + " plt.vlines(row[1], ymin=0, ymax = 0.3, linestyles='-.', colors=c, lw=0.75)\n", + " lengend_names.append('limit %d%% (%0.2f POKT) '%(row[0], row[1]))\n", + "plt.legend(lengend_names)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzAAAAIiCAYAAAAXYS0/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAABcSAAAXEgFnn9JSAABt4ElEQVR4nO3dd5yU1b348c/ZTpMmKnZFJILB+jNiCUgIGnshMcm1IHojN2pUzDXRSxKjJt7kRi7EEr2JJYkxGhvGGiHWUEwUhQgRERUELFgoLtv3/P6Y2WXLLNtmdneWz/v1mtezc855nnOew7jOd59TQowRSZIkScoGOZ3dAEmSJElqKQMYSZIkSVnDAEaSJElS1jCAkSRJkpQ1DGAkSZIkZQ0DGEmSJElZwwBGkiRJUtYwgJEkSZKUNQxgJEmSJGUNAxhJkiRJWcMARpIkSVLWMICRJEmSlDXyOrsBaloI4X2gJ/BuZ7dFkiRJSqNdgE0xxh1ae2KIMWagPUqHEMKGwsLCPkOGDOnspkiSJElps3z5csrKyjbGGLdp7bk+gena3h0yZMjwxYsXd3Y7JEmSpLQZMWIES5YsadMoI+fASJIkScoaBjCSJEmSsoYBjCRJkqSsYQAjSZIkKWsYwEiSJEnKGgYwkiRJkrKGAYwkSZKkrOE+MJIkSUq7GCNumN79hRAIIXRonQYwkiRJSouqqio+/vhjNm7cSHl5eWc3Rx2koKCAPn36MHDgQHJzczNenwGMJEmS2q2qqoqVK1dSWlra2U1RBysvL+fjjz+muLiYXXfdNeNBjAGMJEmS2u3jjz+mtLSU3Nxctt9+e3r16kVOjtOtu7vq6mqKi4v54IMPKC0t5eOPP2a77bbLaJ0GMJIkSWq3jRs3ArD99tvTt2/fTm6NOkpOTk7tv/eaNWvYuHFjxgMYw2JJkiS1S4yxds5Lr169Ork16gw1/+7l5eUZX7zBAEaSJEntUvcLq8PGtk51/90NYCRJkiQpyQBGkiRJUtYwgJEkSZKUNQxgJEmSJGUNAxi1X4xQXtz4leEJXJIkSek2ceJEQgg8++yz3aKe7sh9YNQ+McLtR8O7LzbO2+VQmPQkhNDx7ZIkSVK35BMYtU/FptTBC8C78xP5kiRJque6667jX//6F4ccckhnNyXr+ARG6fO1uyCvCCpL4U9ndHZrJEmSuqzBgwczePDgzm5GVvIJjNInrwjyixJHSZKkLubdd9/lO9/5DnvvvTc9evRgwIABHHzwwfz4xz9mw4YNjco///zzjB07lj59+rDNNttw3HHHsWTJkkbl1q1bxw033MDRRx/NbrvtRmFhIQMHDuSYY45h1qxZKdvS1ByY3XffnZAcfv+b3/yGkSNH0qNHD3bYYQfOP/981q1b1+5+yHYGMJIkSer2XnjhBUaOHMkNN9xARUUFJ5xwAocffjjr16/nqquu4q233qpX/pFHHmHs2LFs2rSJY489lsGDB/P444/zxS9+kffff79e2fnz5/Od73yHN954g2HDhnHKKacwbNgwnnrqKY4++mhuv/32Vrf38ssv54ILLmDw4MF85StfIcbI//3f/3HiiSdmfKf7rs4hZJIkSerWPvnkE0477TTWrVvH//zP/zBlyhRycjb/HX/evHnsuOOO9c6ZPn06DzzwACeffDIAVVVVnH766TzwwAPcfPPNXH311bVlhw0bxrx58zj00EPrXeOVV15h7NixXHrppXzta1+jd+/eLW7z73//exYtWsSwYcMA+Oijjxg1ahQvvPACzzzzDGPHjm1tN3QbPoGRJElSt/ab3/yGtWvXcswxx/Dd7363XvACMGrUKLbbbrt6ad/4xjdqgxeA3NxcrrjiCiAxtKyuPfbYo1HwAnDAAQdwwQUXsGHDBp555plWtfmaa66pDV4Att12WyZPnpyy/q2NT2AkSZLUrc2ePRuA888/v8XnjB8/vlHa3nvvDcB7773XKK+qqoq//vWvzJ07l/fee4+ysjIAli1bVu+Yqfq3JgYwkiRJ6tbeffddAIYMGdLic3beeedGaX369AGoDU5qrFq1iuOPP56FCxc2eb2NGze2uO7W1r+1cQiZJEmS1EDDYWZbct5557Fw4UJOO+00XnzxRdatW0dVVRUxRm699VaAVk+8b039Wxt7RpIkSd3aLrvsAsDy5cvTfu3i4mJmzZrF9ttvz7333sshhxxC3759awOQhqubqf0MYCRJktStjRs3DoD/+7//S/u1169fT3V1NYMHDyY3N7deXkVFBQ899FDa69zaGcBIkiSpWzvvvPPYdttteeKJJ5g+fXqj4Vzz58/nww8/bNO1t9tuO/r27ctrr73GnDlzatOrqqr43ve+xxtvvNGutqsxAxhJkiR1awMGDOC+++6jT58+XHrppQwZMoTTTz+dE088kaFDhzJq1CjWrFnTpmvn5eVx+eWXU1lZyejRoxk/fjxf//rX2Wuvvbjlllu44IIL0nw3MoCRJElStzdmzBgWLlzI5MmTiTEyc+ZM5syZQ9++fbn66qtbtUJZQ1deeSW//e1vGTlyJHPmzGH27Nnst99+zJ8/n4MPPjiNdyGA0NoVEdRxQgiLhw8fPnzx4sWd3ZSmlRfDT5M7137zfsgvgopSuHtCIu3KNVDQq/PaJ0mSMq66upqlS5cCiV3pXUFr69Paz8CIESNYsmTJkhjjiNbW5adLkiRJUtYwgJEkSZKUNQxgJEmSJGUNAxhJkiRJWcMARpIkSVLWMICRJEmSlDUMYCRJkiRlDQMYSZIkSVnDAEaSJElS1jCAkSRJkpQ1DGAkSZIkZQ0DGEmSJElZI6+zGyBJkqTuLcZISUVVZzejVXrk5xJC6OxmKAUDGEmSJGVUSUUVw3/4l85uRqssufpoehak56tySUkJ1113Hffccw8rV65kwIABHHPMMVxzzTXstNNOKc+58847ufnmm1myZAkFBQUceuihTJ06lcMOO6zJeubMmcNPfvIT5s+fT3l5OcOHD+fCCy/krLPOavKcJ554gmnTpvGPf/yD8vJyhgwZwplnnsmll15Kfn5+u+89ExxCJkmSJGVIaWkpY8eO5ZprruGzzz7jpJNOYpddduGOO+7ggAMO4K233mp0ziWXXMI555zDa6+9xrhx4zjkkEOYNWsWX/ziF5k5c2bKeh544AFGjx7Nk08+yciRIznmmGNYtmwZZ599Nt/97ndTnvOzn/2MY489lqeffprhw4czfvx4PvzwQ773ve9x7LHHUlFRkc6uSBufwEiSJKnD3HLGQRTmdc2/oZdVVjP5rpfTes1rr72W+fPnM2rUKJ566il69+4NwLRp07jsssuYNGkSzz77bG352bNnM2PGDAYOHMi8efMYOnQoAPPmzWPMmDGcc845jBkzhn79+tWe88knnzBp0iSqqqp44IEHOPXUUwH44IMPOOKII7j++us5/vjjGTNmTO05//jHP7jiiivIz8/nkUce4eijjwZgw4YNnHzyycyePZtf/OIXXHHFFWntj3Tomp8eSZIkdUuFeTkU5ed2yVe6A6vy8nJuvPFGAG666aba4AVgypQpjBw5kueee46XX94cNE2bNg2AqVOn1gYvAKNGjWLy5MmsW7eO2267rV49v/nNb9iwYQMnnXRSbfACsP322/Pzn/8cgOuvv77eObfeeisxRiZOnFgbvABss8023HLLLYQQmDZtGlVVXW/ukgGMJEmSlAFz5sxh/fr1DBkyhAMOOKBR/oQJEwB45JFHgMRcmaeffrpe3pbK13jssceaPOe4446jqKiI2bNnU1paWpteEzTVfSpTY++992bHHXfko48+Ys6cOc3eZ0czgJEkSZIyYOHChQAceOCBKfNr0hctWgTA0qVLKSsrY9CgQey8887Nlm9JPQUFBey7776Ulpbyxhtv1KYXFxcD0L9//5RtGzhwYL1rdyUGMJIkSVIGrFy5EiBlMFI3fcWKFS0q36tXL/r168enn37Kxo0bgcSclfXr17eqHoBBgwY1SqsRY6xNT5Xf2QxgJEmSpAz47LPPAOjZs2fK/F69egHUBiPNld/SOa2pB+CLX/wiAL/97W8blX/ggQdqg6K653QVBjCSJEnSVubb3/42ffr0Yf78+Zx11lksW7aMdevW8ac//Ynzzz+fvLzEYsU5OV0vXOh6LZIkSZK6gZpVxzZt2pQyv2YeSp8+fVpUfkvntKYegF122YUHH3yQfv368fvf/569996b/v37c/rppzNkyBAmTZoEND1HpjO5D4wkSZKUAbvuuisAq1atSplfk77bbru1qHxxcTHr1q2jf//+tcHINttsQ9++fVm/fj2rVq1i+PDhzdZTY9y4cbz11lvcc889vPbaa+Tm5nLYYYdx2mmncc455wAwYsSIVt1zRzCAkSRJkjJgv/32A2DBggUp82vSR44cCcCwYcMoLCxk7dq1rF69mp122mmL5evW8/zzz7NgwYJGAUxFRQWvvfYaRUVF7L333o3a0L9/f/7jP/6jUfq8efPIycmpnSvTlTiETJIkScqAww8/nL59+7J8+XJeffXVRvn3338/ACeccAIAPXr0YOzYsQDcd999zZavcdxxx9XLr+vRRx+ltLSUcePGUVRU1KJ2P/bYY7z11lscc8wx7LLLLi06pyMZwEiSJKnDlFVWU1pR1SVfZZXVab3XgoICLrzwQgAuuOCC2rkoANOmTWPRokWMHj2agw46qDZ9ypQpAFx77bUsW7asNn3evHnceuut9OvXj3PPPbdePeeddx7bbLMNDz/8MA8++GBt+ocffsjll18OwGWXXdaofS+//DIxxnppc+fO5ZxzzqGoqIhp06a19dYzyiFkkiRJ6jCT73q5s5vQoaZOncrs2bOZO3cuQ4cO5cgjj2TFihW8+OKLDBo0iNtvv71e+XHjxnHxxRczY8YM9t9/f7785S9TXl7OrFmziDFyxx130K9fv3rnDBgwgNtvv52vfe1rTJgwgTFjxjBw4EBmz57NunXrmDJlCmPGjGnUttNOO42qqir23Xdf+vfvz7Jly3j55ZcpKiri/vvvZ9iwYRnsmbbzCYwkSZKUIUVFRTzzzDP84Ac/oGfPnsycOZMVK1YwceJEFixYwJ577tnonOnTp3PHHXewzz77MGvWLObNm8e4ceN4/vnnOfnkk1PWc9ppp/H8889z9NFH88orr/D444+z1157ceedd3L99denPGfy5MnstNNO/P3vf+eBBx5g7dq1/Pu//zuvvfZa7bC0rig0fGykriOEsHj48OHDFy9e3NlNaVp5Mfx0x8TP37wf8ougohTunpBIu3INFPTqvPZJkqSMq66uZunSpUBiInrDvUNijJRUVHVG09qsR34uIYTObkbWaO4z0NCIESNYsmTJkhhjq5c5cwiZJEmSMiqEQM8Cv3YqPRxCJkmSJClrGMBIkiRJyhoGMJIkSZKyhgGMJEmSpKxhACNJkiQpaxjASJIkScoaBjCSJEmSsoYBjCRJkqSskdUBTAihRwjh6hDCGyGE0hDCmhDC7SGEnVpxjX4hhG+GEP4YQng7hFAeQtgYQngxhHBxCCF/C+fmhhAuDSH8M4RQEkJYG0L4Uwhhn/TcoSRJkqS6sjaACSEUAU8DPwB6Aw8D7wLnAK+EEPZs4aW+C/wBOB34FHgQ+DuwHzAdeDqE0DNF/TnAfcA0YGfgMWAxMAF4KYRwSFvvTZIkSVJqWRvAAFOBQ4F5wN4xxtNjjF8ALgMGAbe38DrFwM+B3WOMB8YYvx5j/BLweWAlcESyroYmAacAy4DPxRgnxBjHAF8FegJ/CCHktfnuJEmSJDWSlV+wQwgFwIXJtxfEGD+ryYsxTgshnA2MDiEcFGN8eUvXijFe10T6shDC94G7gW8AVzYoMiV5vDzG+EGd8x4IIfwZOBE4CXigFbcmSZLU/cQIFZs6uxWtk98TQujsViiFrAxggMOBvsDyGOMrKfLvB0YCJwBbDGCasTB53LFuYghhD2AfoITE0LFU9Z+YrN8ARpIkbd0qNsFPd2y+XFdy5Roo6NXZrVAK2TqEbL/kcUET+TXpI9tZT808mvebqP+1GGNFBuuXJElSlispKeGHP/whe++9N0VFRey4445MmjSJ1atXN3nOnXfeySGHHELv3r0ZMGAAxx57LHPnzk1Z9vXXX+dnP/sZRx11FNtuuy35+fnssMMOnHrqqbzwwgspz7nqqqsIITT7ev7559PSB+mUrU9gdk0eVzWRX5O+WzvruTh5fDiT9YcQFjeRNaQl50uSJGWNr90FeUWd3YrUKkvhT2ek9ZKlpaWMHTuW+fPnM3jwYE466STeeecd7rjjDh599FHmz5/PnnvWX3vqkksuYcaMGfTo0YPx48dTWlrKrFmzeOqpp7j//vs5+eST65UfN24cq1evpnfv3hx66KEMGDCAJUuW8NBDDzFz5kymTZvGJZdcUu+c/fffn7PPPjtlm1evXs3s2bPp2bMnBx54YDq7Iy2yNYDpnTw2NZiyOHns09YKQgiTgXHAOuC/O7p+SZKkbimvCPK7aACTAddeey3z589n1KhRPPXUU/TunfgaOW3aNC677DImTZrEs88+W1t+9uzZzJgxg4EDBzJv3jyGDh0KwLx58xgzZgznnHMOY8aMoV+/frXnfO5zn+O6667jq1/9KkVFm/v21ltvZfLkyXz3u99l/PjxDB8+vDbv5JNPbhQI1fje977H7NmzOeWUU2rb25Vk6xCyjAohHAnMACIwKca4JpP1xRhHpHoByzNZryRJkjKnvLycG2+8EYCbbrqpXjAwZcoURo4cyXPPPcfLL2+esj1t2jQApk6dWhu8AIwaNYrJkyezbt06brvttnr1zJ49mzPPPLNe8AJw/vnnM378eKqqqrjvvvta1OYYI3/84x8BOPPMM1txtx0nWwOYmlXHGu3PklQz42pjay8cQtiXxJCxAuDiGONDHVm/JEmSuoc5c+awfv16hgwZwgEHHNAof8KECQA88sgjQGKuzNNPP10vb0vlW2K//RJTt9esadnf45999lneffdddthhB8aNG9fiejpStgYwK5PHnZvIr0lf0ZqLJlcXewroD1wVY7yhI+uXJElS97FwYWJB26bmkdSkL1q0CIClS5dSVlbGoEGD2Hnnxl8zG5ZvibfeeguAHXbYoUXl77rrLgC+8Y1vkJub2+J6OlK2BjA1yxs3NauoJr3F/7ohhMHALGAwMCPG+OMW1L9vCCE/HfVLkiSpe1m5MvE371TBSN30FStWtKh8r1696NevH59++ikbNzY/0Gf58uU8+uijAJx44onNli8tLeWBBxI7gHTV4WOQvQHMHGA9MCSEsH+K/Jpnbi16vhZC6A/8hcSqX3cAl26pfIzxbeBfQA/guPbWL0mSpO7ns88Ssw569kw966BXr8Ssg5pgpLnyqc5pSmVlJRMnTqSsrIzTTz+dgw46qNn2/vnPf2b9+vWMGDEi5ZC3riIrA5gYYzlwY/LtTSGE2l2GQghTSOy/8lyM8eU66ReGEF4PIVxX91ohhJ4kNqP8PPAn4N9jjLEFzZiWPP48hLBdneudSmITyzdpvPyyJEmSlHHf+c53+Nvf/saee+7JzTff3KJzaoaPdeWnL5C9yygDXEtimePDgGUhhBdI7LvyBWAtMKlB+W2BYSSGiNX1E2AUUAVUAreFEBpVFmOc2CDpduBY4BTg9RDCX5N1jAZKgDNijJVtvDdJkiRluZpVxzZtSr3zRnFxYueNPn36tKh8qnNS+clPfsKvfvUrtt9+e/7yl78wYMCAZtv68ccf8+STT5KTk8O//du/NVu+M2VtABNjLA0hHAVcAXwTOBn4BLgT+EGMsalNJhvqnzzmJq/TlIkN6q8OIXyVxGaXk4DjSez/8gDwoxjjkhbWL0mSpG5o110Te5+vWpX6a2lN+m677dai8sXFxaxbt47+/fs3GcDccsstTJ06lb59+/Lkk0+y1157tait9957LxUVFRx11FFNzsHpKrI2gAGIMZYAP0y+mit7FXBVivSJNAhOWlF/FYmhZNOaKytJkqStS80SxgsWLEiZX5M+cuRIAIYNG0ZhYSFr165l9erV7LTTTlss39A999zDBRdcQM+ePXnsscfYf//9W9zWbBk+Blk6B0aSJEnq6g4//HD69u3L8uXLefXVVxvl33///QCccMIJAPTo0YOxY8cCpNx4smH5uh5//HHOOuss8vLyeOihhzj88MNb3M633nqLefPm0aNHD0477bQWn9dZDGAkSZLUcSpLoaKLvipL03qrBQUFXHjhhQBccMEFtfNXAKZNm8aiRYsYPXp0vRXCpkyZAsC1117LsmXLatPnzZvHrbfeSr9+/Tj33HPr1TNnzhwmTJhAjJF7772X8ePHt6qdNU9fTjrpJLbZZpvW3WQnyOohZJIkScoyfzqjs1vQoaZOncrs2bOZO3cuQ4cO5cgjj2TFihW8+OKLDBo0iNtvv71e+XHjxnHxxRczY8YM9t9/f7785S9TXl7OrFmziDFyxx130K9fv3rnHH/88ZSUlLDHHnswc+ZMZs6c2agdRxxxBOedd17KNv7hD38AsmP4GBjASJIkSRlTVFTEM888w3XXXcfdd9/NzJkzGTBgABMnTuSaa65JOWF++vTp7L///tx4443MmjWLgoICxo0bxw9+8AMOO+ywRuXXrVsHwNtvv83bb7/dZFtSBTB///vfeeONN9huu+1a/eSmsxjASJIkKbPye8KVazq7Fa2T3/Rmkq3Vo0cPrr76aq6++uoWnzNx4kQmTpzYorIt28IwtUMOOaRd53cGAxhJkiRlVghQ0Kv5clILOIlfkiRJUtYwgJEkSZKUNQxgJEmSJGUNAxhJkiRJWcMARpIkSVLWMICRJEmSlDUMYCRJkiRlDQMYSZIkSVnDAEaSJElS1jCAkSRJkpQ1DGAkSZIkZY28zm6AJEmSurcYIyWVJZ3djFbpkdeDEEJnN0MpGMBIkiQpo0oqS/jC3V/o7Ga0yovffJGe+T3Tcq2SkhKuu+467rnnHlauXMmAAQM45phjuOaaa9hpp51SnnPnnXdy8803s2TJEgoKCjj00EOZOnUqhx12WKOyr7/+Og8//DBPPvkk//znP1m/fj0DBw7ksMMO49JLL+XII49MWcdjjz3G3LlzefHFF3nppZdYv349o0eP5tlnn03LfWeKAYwkSZKUIaWlpYwdO5b58+czePBgTjrpJN555x3uuOMOHn30UebPn8+ee+5Z75xLLrmEGTNm0KNHD8aPH09paSmzZs3iqaee4v777+fkk0+uV37cuHGsXr2a3r17c+ihhzJgwACWLFnCQw89xMyZM5k2bRqXXHJJo7b927/9G+vXr8/g3WeGAYwkSZI6zPQx0ynMLezsZqRUVlXGJc9ektZrXnvttcyfP59Ro0bx1FNP0bt3bwCmTZvGZZddxqRJk+o98Zg9ezYzZsxg4MCBzJs3j6FDhwIwb948xowZwznnnMOYMWPo169f7Tmf+9znuO666/jqV79KUVFRbfqtt97K5MmT+e53v8v48eMZPnx4vbaddtpp7LPPPhx88MFUVFQwfvz4tN57pjiJX5IkSR2mMLeQwrwu+kpzYFVeXs6NN94IwE033VQbvABMmTKFkSNH8txzz/Hyyy/Xpk+bNg2AqVOn1gYvAKNGjWLy5MmsW7eO2267rV49s2fP5swzz6wXvACcf/75jB8/nqqqKu67775G7bvtttv47ne/y5gxY+jTp0/7b7iDGMBIkiRJGTBnzhzWr1/PkCFDOOCAAxrlT5gwAYBHHnkESMyVefrpp+vlbal8S+y3334ArFmzpnWN78IMYCRJkqQMWLhwIQAHHnhgyvya9EWLFgGwdOlSysrKGDRoEDvvvHOz5VvirbfeAmCHHXZoecO7OAMYSZIkKQNWrlwJkDIYqZu+YsWKFpXv1asX/fr149NPP2Xjxo3N1r98+XIeffRRAE488cTWNb4LM4CRJEmSMuCzzz4DoGfP1Msx9+rVC6A2GGmufKpzmlJZWcnEiRMpKyvj9NNP56CDDmpd47swAxhJkiSpm/nOd77D3/72N/bcc09uvvnmzm5OWhnASJIkSRlQs+rYpk2bUuYXFxcD1K4A1lz5VOek8pOf/IRf/epXbL/99vzlL39hwIABrW98F2YAI0mSJGXArrvuCsCqVatS5tek77bbbi0qX1xczLp16+jfv3+TAcwtt9zC1KlT6du3L08++SR77bVXu+6hKzKAkSRJkjKgZgnjBQsWpMyvSR85ciQAw4YNo7CwkLVr17J69epmyzd0zz33cMEFF9CzZ08ee+wx9t9///beQpdkACNJkiRlwOGHH07fvn1Zvnw5r776aqP8+++/H4ATTjgBgB49ejB27FiAlBtPNixf1+OPP85ZZ51FXl4eDz30EIcffni6bqPLMYCRJElShymrKqOssou+qsrSeq8FBQVceOGFAFxwwQW181cApk2bxqJFixg9enS9FcKmTJkCwLXXXsuyZctq0+fNm8ett95Kv379OPfcc+vVM2fOHCZMmECMkXvvvZfx48en9T66mrzOboAkSZK2Hpc8e0lnN6FDTZ06ldmzZzN37lyGDh3KkUceyYoVK3jxxRcZNGgQt99+e73y48aN4+KLL2bGjBnsv//+fPnLX6a8vJxZs2YRY+SOO+6gX79+9c45/vjjKSkpYY899mDmzJnMnDmzUTuOOOIIzjvvvHpp11xzDY899hiweQnnBQsWcOihh9aWeeihhxg8eHAaeiJ9DGAkSZKkDCkqKuKZZ57huuuu4+6772bmzJkMGDCAiRMncs0116TctHL69Onsv//+3HjjjcyaNYuCggLGjRvHD37wAw477LBG5detWwfA22+/zdtvv91kWxoGMMuXL+fFF1+sl7Zx48Z6aWVl6X0qlQ4hxtjZbVATQgiLhw8fPnzx4sWd3ZSmlRfDT3dM/PzN+yG/CCpK4e4JibQr10BBr85rnyRJyrjq6mqWLl0KJCai5+TUn6UQY6SksqQzmtZmPfJ6EELo7GZkjeY+Aw2NGDGCJUuWLIkxjmhtXT6BkSRJUkaFEOiZ3/Tu8lJrOIlfkiRJUtYwgJEkSZKUNQxgJEmSJGUNAxhJkiRJWcMARpIkSVLWMICRJEmSlDUMYCRJkiRlDQMYSZIkSVnDAEaSJElS1jCAkSRJkpQ1DGAkSZIkZY28zm6AJEmSurcYI7GkpLOb0SqhRw9CCJ3dDKVgACNJkqSMiiUlLD3woM5uRqsMW/AyoWfPtFyrpKSE6667jnvuuYeVK1cyYMAAjjnmGK655hp22mmnemX//Oc/88ADD7BgwQLee+891q9fT//+/Tn44IP59re/zfHHH9/o+ldddRU//vGP66X17t2bfv36sc8++3DYYYcxceJEdt9995TtS3V+Q8888wxjxoxp1X1nigGMJEmSlCGlpaWMHTuW+fPnM3jwYE466STeeecd7rjjDh599FHmz5/PnnvuWVv+d7/7HQ8++CAjRozgC1/4An369OGdd97hiSee4IknnuCKK67gpz/9acq69ttvP/bff//aej/44ANefPFFZs2axTXXXMPFF1/Mf//3f1NQUNDs+Q3tsMMO7eqHdDKAkSRJUofZ6YYbCIWFnd2MlGJZGasvuiit17z22muZP38+o0aN4qmnnqJ3794ATJs2jcsuu4xJkybx7LPP1pb/r//6L2699VYGDhxY7zovvvgi48aN47//+7/5xje+wec///lGdZ188slcddVV9dIqKyu55557uOSSS/jf//1fPvjgA/7whz+kbGuq87siJ/FLkiSpw4TCQnK66CvdgVV5eTk33ngjADfddFNt8AIwZcoURo4cyXPPPcfLL79cm37AAQc0Cl4AvvCFL3D66acTY+SZZ55pcRvy8vI444wz+Nvf/kbv3r25++67+fOf/9yOu+p8BjCSJElSBsyZM4f169czZMgQDjjggEb5EyZMAOCRRx5p0fXy8/MBmhwCtiWf+9znuOSSSwD45S9/2erzuxIDGEmSJCkDFi5cCMCBBx6YMr8mfdGiRc1e65///Cf33nsv+fn5fPnLX25Te77+9a8DMHfuXMrLy9t0ja7AOTCSJElSBqxcuRKAnXfeOWV+TfqKFSsa5T3yyCM88MADVFRUsHLlSubOnUt+fj6//vWvGTJkSJvas88++1BYWEhJSQnvvPMOe++9d5uu09l8AiNJkiRlwGeffQZAzyaWY+7VqxcAGzdubJS3cOFCfvvb33L33Xfzt7/9jcLCQm644QbOPPPMNrcnJyeH/v37A/Dpp582yv/xj39MCKHRa+LEiW2uMxN8AiNJkiR1MVOnTmXq1KmUlpby5ptv8qtf/YpvfetbtfvEtGUeDCQ2FQVSbtLZ1DLKRxxxRJvqyhQDGEmSJCkDalYd27RpU8r84uJiAPr06dPkNYqKith333256aabyM3N5YYbbuCGG27gsssua3V7qqura5+8DBgwoFG+yyhLkiRJW7Fdd90VgFWrVqXMr0nfbbfdWnS9muFjDz/8cJvas3jxYsrLy+nZsye77757m67RFRjASJIkSRmw3377AbBgwYKU+TXpI0eObNH1tt12WwDWrl3bpvbce++9QGJIWF5e9g7EMoCRJEmSMuDwww+nb9++LF++nFdffbVR/v333w/ACSec0KLrPffccwBtWoXs9ddfZ/r06QBcfPHFrT6/KzGAkSRJkjKgoKCACy+8EIALLrigds4LwLRp01i0aBGjR4/moIMOAhJPVn7961+nnDMza9YsLr/8cgDOOeecFrehsrKSP/zhDxx55JEUFxdz1llnceyxx7bntjpd9j47kiRJUtaJZWVUd3YjmhDLytJ+zalTpzJ79mzmzp3L0KFDOfLII1mxYgUvvvgigwYN4vbbb68tW1xczLe+9S0uueQSDjroIHbeeWeKi4t54403eP311wG49NJLOe2001LWNXPmTN555x0ASktLWbt2LS+99BIbNmwgJyeHyy67jOuuuy7t99jRDGAkSZLUYVZfdFFnN6FDFRUV8cwzz3Dddddx9913M3PmTAYMGMDEiRO55ppr6m1yud122/Hzn/+cZ599lsWLF/PSSy9RXV3N4MGD+frXv87555/PmDFjmqxr4cKFLFy4EEjsMdOvXz++8IUvcPjhhzNx4sQWLxbQ1YWataDV9YQQFg8fPnz44sWLO7spTSsvhp/umPj5m/dDfhFUlMLdExJpV66Bgl6d1z5JkpRx1dXVLF26FIBhw4aRk1N/lkL1pk0sPfCgzmhamw1b8DI5TWxAqcaa+ww0NGLECJYsWbIkxjiitXX5BEaSJEkZFXr0YNiClzu7Ga0SevTo7CaoCQYwkiRJyqgQAsGnGUoTVyGTJEmSlDUMYCRJkiRlDQMYSZIkSVnDAEaSJElS1jCAkSRJkpQ1DGAkSZIkZQ0DGEmSJElZwwBGkiRJUtbI6gAmhNAjhHB1COGNEEJpCGFNCOH2EMJOrbzO6BDCj0IIj4UQ1oYQYgjhnWbOuTNZrqnX5HbdnCRJkqRG8jq7AW0VQigCngYOBd4DHgZ2B84Bjg8hHBpjfKuFl5sB7NfGpvwFeD9F+tI2Xk+SJElSE7I2gAGmkghe5gHjY4yfAYQQpgDXA7cDY1p4raeA+4B/AKuAxa1ox3/HGJ9tRXlJkqStSoyRyvLqzm5Gq+QV5BBC6OxmKIWsDGBCCAXAhcm3F9QELwAxxmkhhLOB0SGEg2KMLzd3vRjj5XWuvUPaGyxJkrQVqyyv5v8ufq6zm9Eq35oxmvzC3M5uhlLI1jkwhwN9geUxxldS5N+fPJ7QcU2SJEmSGispKeGHP/whe++9N0VFRey4445MmjSJ1atXN3nOnXfeySGHHELv3r0ZMGAAxx57LHPnzt1iPXPmzOHYY49lwIAB9O7dm0MOOYTf/e53LW7n888/T05O4snTeeed1+LzOlpWPoFh83yVBU3k16SP7IC2nBpCOA3IBd4GHokxvt4B9UqSJGWdr5y/L7n5XfNv6FUV1Txx62tpvWZpaSljx45l/vz5DB48mJNOOol33nmHO+64g0cffZT58+ez55571jvnkksuYcaMGfTo0YPx48dTWlrKrFmzeOqpp7j//vs5+eSTG9XzwAMPcPrpp1NdXc0Xv/hFtt12W/76179y9tlns2jRIn7xi19ssZ1lZWV861vfSuetZ0y2BjC7Jo+rmsivSd+tA9pyUYP3Pwsh/Aq4OMZY2QH1S5IkZY3c/Bzy8reeoVnXXnst8+fPZ9SoUTz11FP07t0bgGnTpnHZZZcxadIknn322drys2fPZsaMGQwcOJB58+YxdOhQAObNm8eYMWM455xzGDNmDP369as955NPPmHSpElUVVXxwAMPcOqppwLwwQcfcMQRR3D99ddz/PHHM2bMmC2284033uDcc8/lN7/5Tdr7IZ26ZvjbvN7J46Ym8ouTxz4ZbMMrwGRgb6AnsCdwAbAO+DbwPy29UAhhcaoXMCT9zZYkSVJHKC8v58YbbwTgpptuqg1eAKZMmcLIkSN57rnnePnlzVO2p02bBsDUqVNrgxeAUaNGMXnyZNatW8dtt91Wr57f/OY3bNiwgZNOOqk2eAHYfvvt+fnPfw7A9ddf32Q7Fy9ezM9//nPOPfdcDj/88HbcccfI1gCm08UYZ8QYb40xLosxlsQY344x3gwcCZQDF4YQdunkZkqSJKmTzJkzh/Xr1zNkyBAOOOCARvkTJkwA4JFHHgESc2WefvrpenlbKl/jsccea/Kc4447jqKiImbPnk1paWmj/Bgj3/rWt+jbty8/+9nPWnN7nSZbA5iaVcd6NpHfK3nc2AFtqSfGuBj4M4nheV9q4TkjUr2A5ZlsqyRJkjJn4cKFABx44IEp82vSFy1aBMDSpUspKytj0KBB7Lzzzs2Wb0k9BQUF7LvvvpSWlvLGG280yv/Vr37F3Llzuf766xkwYEBLb61TZWsAszJ5bPwvWz99RQe0JZVlyePgTqpfkiRJnWzlysRX1lTBSN30FStWtKh8r1696NevH59++ikbNyb+Tr9hwwbWr1/fqnpqrF69miuuuIKjjjqKM888s8X31dmyNYBZmDymDmc3py9qIj/T+iePxVssJUmSpG7rs88Sg4Z69kw9aKhXr8SgoZpgpLnyWzqnNfXUuPDCCyktLeVXv/rVlm+ki8nWAGYOsB4YEkLYP0V+zQDAR1LkZVQIoRA4Lvm2qWWeJUmSpE7z4IMPMnPmTL7//e8zbNiwzm5Oq2RlABNjLAduTL69KYRQM+eFEMIUEvu/PBdjfLlO+oUhhNdDCNe1t/4QwudCCGcmg5W66YOAe4BdSDwlmtPeuiRJkpSdalYd27Qp9cK5xcWJwTp9+vRpUfktndOaejZs2MBFF13E0KFDufLKK1t2M11Itu4DA3AtMA44DFgWQniBxL4vXwDWApMalN8WGEaKeSkhhPOAmu1G85PHwSGE+XWKfTvGWPNEZQfgd8CMEMJLyfp2BA4isXTzKuBrMcbYrjuUJElS1tp118TWhatWpd66sCZ9t912a1H54uJi1q1bR//+/WuDkW222Ya+ffuyfv16Vq1axfDhw5utZ8GCBaxZs4bdd9+do48+ul7Z999/H0isbDZmzBh22GEH7rnnnpbfdAfI2gAmxlgaQjgKuAL4JnAy8AlwJ/CDGGNTm1ymsjOJwKeuggZp29T5+Q1gOnAo8HlgIFCWTH8EmBFj/LQV9UuSJKmb2W+//YBEwJBKTfrIkSMBGDZsGIWFhaxdu5bVq1ez0047bbF83Xqef/55FixY0CiAqaio4LXXXqOoqIi99967Xt4777zDO++8k7Jt77//Pu+//35t0NOVZOUQshrJ/Vd+GGPcK8ZYGGMcHGM8J1XwEmO8KsYYYowTt5C3pdezdcqviTFeGmMclayzIMbYJ8Z4UPJaBi+SJElbucMPP5y+ffuyfPlyXn311Ub5999/PwAnnHACAD169GDs2LEA3Hfffc2Wr3HcccfVy6/r0UcfpbS0lHHjxlFUVATAmDFjiDGmfN1xxx0AnHvuucQYmwxwOlNWBzCSJEnKLlUV1VRWVHXJV1VFdVrvtaCggAsvvBCACy64oHYuCsC0adNYtGgRo0eP5qCDDqpNnzJlCgDXXnsty5Ytq02fN28et956K/369ePcc8+tV895553HNttsw8MPP8yDDz5Ym/7hhx9y+eWXA3DZZZel9d46U9YOIZMkSVL2eeLW1zq7CR1q6tSpzJ49m7lz5zJ06FCOPPJIVqxYwYsvvsigQYO4/fbb65UfN24cF198MTNmzGD//ffny1/+MuXl5cyaNav2CUm/fv3qnTNgwABuv/12vva1rzFhwgTGjBnDwIEDmT17NuvWrWPKlCmMGTOm4246w3wCI0mSJGVIUVERzzzzDD/4wQ/o2bMnM2fOZMWKFUycOJEFCxaw5557Njpn+vTp3HHHHeyzzz7MmjWLefPmMW7cOJ5//nlOPvnklPWcdtppPP/88xx99NG88sorPP744+y1117ceeedXH/99Rm+y44VXCir6wohLB4+fPjwxYsXd3ZTmlZeDD/dMfHzN++H/CKoKIW7k1vxXLkGCno1fb4kScp61dXVLF26FEhMRM/Jqf838hgjleXpHZ6VaXkFOYQQOrsZWaO5z0BDI0aMYMmSJUtijCNaW5dDyCRJkpRRIQTyC3M7uxnqJhxCJkmSJClrpD2ACSGcHUIoSvd1JUmSJCkTT2DuANaEEG4IIeyXgetLkiRJ2kplIoD5DYm5NRcAC0II80MI54YQnMktSZIkqV3SHsDEGL8FDAa+BfwDOAT4PxJPZW4JIRyc7jolSZIkbR0yMok/xlgcY/xNjPFQYCRwE1BJIqh5MYTwSghhcghhm0zUL0mSpI5Td7nh6ursWi5Z6VH33z3Ty09nfBWyGONrMcbvADsCZwDPA/uRCGrWhBBuCyEclOl2SJIkKTNCCBQUFABQXFzcya1RZ6j5dy8oKMh4ANOR+8DkA32SL4CQTDsHmBhCeAg4L8a4rgPbJEmSpDTo06cPH3/8MR988AEAvXr1anYzQ2W/6upqiouLa//d+/Tp08wZ7ZfxACaEcCjw78DXgJ5AFfAgcAvwAnAq8D3gFGATcFam2yRJkqT0GjhwIMXFxZSWlrJmzZrObo46QVFREQMHDsx4PRkJYEII/YEzSQQuw0k8bXkX+Bnwmxjj+3WK/zGEcB/wCnBsJtojSZKkzMrNzWXXXXfl448/ZuPGjZSXl3d2k9RBCgoK6NOnDwMHDiQ3Nzfj9aU9gAkh3EXiqUohEIEnSDxteTzGmHJWV4yxMoTwD+DsdLdHkiRJHSM3N5ftttuO7bbbjhgjMcbObpIyLISQ8TkvDWXiCcw3gfeB24H/izGubOF5DwErMtAeSZIkdbDO+GKrrUMmApivAg/HGCtbc1KM8RHgkQy0R5IkSVI3kYmlIXqR2Lxyi0IIh4YQnLAvSZIkqcUyEcDcCZzXgnLnAndkoH5JkiRJ3VRnLs6dQ2KSvyRJkiS1SGcGMHsCGzqxfkmSJElZJi2T+EMIP2yQtH+KtLp1DgO+CMxKR/2SJEmStg7pWoXsKhLDwULyuH/ytSUfAlemqX5JkiRJW4F0BTDnJI+BxP4vfwNua6JsObAGmB9jLEtT/ZIkSZK2AmkJYGKMv635OYRwNvBE3TRJkiRJSoe0b2QZYzwq3deUJEmSJOjcVcgkSZIkqVXa/QQmhPA0iYn7Z8cYVyXft1SMMX6pvW2QJEmStHVIxxCyMSQCmJ513reUG1lKkiRJarF0BDB7JI+rG7yXJEmSpLRqdwATY1yxpfeSJEmSlC5O4pckSZKUNdIewIQQtg8hfDGEsH2D9CEhhHtCCK+FEB4PIRya7rolSZIkdW+ZeALzfeAZoG9NQghhG+BvwFeB4cAxwF9DCEMzUL8kSZKkbioTAcwYYEmM8Y06aROB7YE/AsOAKUAP4LIM1C9JkiSpm8pEALMT8FaDtOOASuCSGOOyGON0YCEwOgP1S5IkSeqmMhHA9AE21bwJIeQCo4CXY4wf1Sn3OrBzBuqXJEmS1E1lIoBZA3yuzvsjgN7Asw3K5QHlGahfkiRJUjeViQBmHjAyhHBJCOHzwLVABB5pUG4fNm9+KUmSJEnNykQAcx1QBlwPvAocDjwbY5xbUyCEsDuJ1chezED9kiRJkrqpvHRfMMa4OIRwBHAxsC3wMvA/DYodTWIS/8x01y9JkiSp+0p7AAMQY1wAnL2F/FuBWzNRtyRJkqTuKxNDyCRJkiQpIzLyBKZGCGFXYDBQ2FSZGOPzmWyDJEmSpO4jIwFMCGES8ANg1xYUz81EGyRJkiR1P2kPYEII5wC/Sb59DXgD2JjueiRJkiRtfTLxBGYKUAlMiDH+OQPXlyRJkrSVysQk/qHA8wYvkiRJktItEwHMJ8BHGbiuJEmSpK1cJgKYh4HDQwj5Gbi2JEmSpK1YJgKYK4Fi4I4QQv8MXF+SJEnSVioTk/ivB5YA3wCOCyG8DKwCqlOUjTHGczPQBkmSJEndUCYCmIl1fu4LjN1C2QgYwEiSJElqkUwEMEdl4JqSJEmSlP4AJsb4XLqvKUmSJEmQmUn8kiRJkpQRmRhCBkAIYSBwBnAIsC3w1xjjz5N5I4AhwOwY46ZMtUGSJElS95KRACaE8FXgN0BvIJCYrL+6TpGdgIeAs4G7MtEGSZIkSd1P2oeQhRBGAXcDlcBlJJ7AhAbF/gqsB05Nd/2SJEmSuq9MPIG5ksSeL1+OMS4ACKF+/BJjrAohLAD2zUD9kiRJkrqpTEziPwyYVxO8bMH7wOAM1C9JkiSpm8pEANMTWNuCcv0zULckSZKkbiwTAcxqYMSWCoTEmLJ9gbczUL8kSZKkbioTAcyTwLAQwte3UOY8YBfgsQzUL0mSJKmbysQk/v8Gvgn8LoRwAInlkgF6Jd+fAlxOYpjZ/2agfkmSJEndVNqfwMQYVwHHAR8B/wnMIbEPzATgJWAqsA44Mcb4YbrrlyRJktR9ZWQjyxjjvBDCMOBc4MvA7iSCpVXALODWGOP6TNQtSZIkqfvKSAADEGPcCExPviRJkiSp3TIxiV+SJEmSMiLtT2BCCIcBRwH7kNjrJQKfAEuAZ2KML6a7TkmSJElbh7QFMCGEkcDtwAE1SQ2KxGS5vwPnxhiXpKtuSZIkSVuHtAQwIYT/BzwN9AKKgSeAV0msRBaAbUkENkcDXwDmhRDGxBhfSUf9kiRJkrYO7Q5gQgi5wB9IBC+3AZfFGDc0UXYbYBowCbg7hDA8xhjb2wZJkiRJW4d0TOI/CdgLuDfG+O9NBS8AMcYNMcbzgPuAvYET0lC/JEmSpK1EOgKYE4Bq4MpWnHNF8nhyGuqXJEmStJVIRwBzELA0xvh2S0+IMb4FvJ48t81CCD1CCFeHEN4IIZSGENaEEG4PIezUyuuMDiH8KITwWAhhbQghhhDeacF5uSGES0MI/wwhlCTP/VMIYZ8235QkSZKkJqVjEv9g4G9tOO8N4Ii2VhpCKCKxcMChwHvAw8DuwDnA8SGEQ5OBUkvMAPZrZf05JIbCnQKsAx4jsVjBBOC4EMJRMca/t+aakiRJkrYsHU9g+gLr23DeBmCbdtQ7lUTwMg/YO8Z4eozxC8BlwCASSzq31FPJ6x0NjGjhOZNIBC/LgM/FGCfEGMcAXwV6An8IIaR9nx1JkiRpa5aOACaPxByY1qqmjU+AQggFwIXJtxfEGD+ryYsxTgMWAaNDCC0aohZjvDzG+JMY41MkNt1siSnJ4+Uxxg/qXOsB4M8kFjY4qYXXkiRJktQC6QhgOsPhJJ78LG9iL5n7k8eMrHIWQtgD2AcoITF0rEPrlyRJkrZW6RridHYI4ew0XaslauarLGgivyZ9ZIbrfy3GWNEJ9UuSJElbpXQFMKGN57V1E8tdk8dVTeTXpO/Wxut3aP0hhMVNZA1pTaMkSZKk7q7dAUyMsTOGofVOHjc1kV+cPPbppvVLkiRJWyVXyeoCYowpVz5LPpkZ3sHNkSRJkrqsbA1galYd69lEfq/kcWM3rX+rE2OkpKKqUXqP/FxCaOsIRkmSJGWbbA1gViaPOzeRX5O+opvWv1WJMTLhlnm8vOLTRnkH79af+yaPMoiRJEnaSmTrMsoLk8cDm8ivSV+U4fr3DSHkd0L9W5WSiqqUwQvASys+TflkRpIkSd1Ttj6BmQOsB4aEEPaPMb7aIH9C8vhIJiqPMb4dQvgXib1gjgNmdmT93V2MkZLKktr3m+oEKLeccRCFeTmUVVYz+a6XO6N5kiRJ6kRZGcDEGMtDCDcC/wXcFEIYH2MsBgghTCGx/8pzMcbab7ghhAuBC4GHYoxXpKEZ04BfAz8PIcyNMX6YrOdU4ETgTeDhNNSzVYkxctYTZ/Hq2lc3p1XnA9cAUJgXKMrP7ZzGSZIkqdNlZQCTdC0wDjgMWBZCeIHEvitfANYCkxqU3xYYBgxueKEQwnnAecm3NUPCBocQ5tcp9u0YY92NM28HjgVOAV4PIfw1WcdooAQ4I8ZY2fbb2zqVVJbUC14aKq8qoyg/mz+2kiRJao+s/SYYYywNIRwFXAF8EzgZ+AS4E/hBjLGpTSZT2ZlE4FNXQYO0bRrUXx1C+CpwMYlg6XgS+788APwoxrikFfUrheljplOYW8iG0lK+vbSss5sjSZKkLiBrAxiAGGMJ8MPkq7myVwFXtTavmWtWkRhKNq2156p5hbmFFOYVUpAbAQMYSZIkZe8qZJIkSZK2QgYwkiRJkrKGAYwkSZKkrGEAI0mSJClrGMBIkiRJyhoGMJIkSZKyhgGMJEmSpKxhACNJkiQpa2T1RpZSi8QIFZvqp+X3hBA6pz2SJElqMwMYdW8xwu1Hw7sv1k/f5VCY9KRBjCRJUpZxCJm6t4pNjYMXgHfnN34qI0mSpC7PAEZbj6/dlXhJkiQpazmETFuPvKLOboEkSZLayScwkiRJkrKGAYwkSZKkrGEAI0mSJClrGMBIkiRJyhoGMJIkSZKyhgGMJEmSpKxhACNJkiQpaxjASJIkScoaBjCSJEmSsoYBjCRJkqSsYQAjSZIkKWsYwEiSJEnKGgYwkiRJkrKGAYwkSZKkrGEAI0mSJClrGMBIkiRJyhoGMJIkSZKyhgGMJEmSpKxhACNJkiQpaxjASJIkScoaBjCSJEmSsoYBjCRJkqSsYQAjSZIkKWsYwEiSJEnKGnmd3QCpNcqqyimryqW8qqqzmyJJkqROYACjrHL5898j5FQSq/OASQDEGDu3UZIkSeowDiFTl1eQW7DF/JLK0g5qiSRJkjqbT2DU5YUQan++cP8LKcgLFJeXMWNVZSe2SpIkSZ3BAEZZpSA3n4LcQHlOBAxgJEmStjYOIZMkSZKUNQxgJEmSJGUNAxhJkiRJWcMARpIkSVLWMICRJEmSlDUMYCRJkiRlDZdRVtYrKa9iU/7mJZV75OfW2ztGkiRJ3YcBjLLekT+bU+/9wbv1577JowxiJEmSuiGHkCkr5edCTuH7KfNeWvEpJRVVHdwiSZIkdQSfwCgrhRAo2O7PEPOYcdT/UpBbRFllNZPvermzmyZJkqQMMoBR1goBCJUU5udSmJvb2c2RJElSB3AImSRJkqSsYQAjSZIkKWsYwEiSJEnKGgYwkiRJkrKGAYwkSZKkrOEqZOqeyjcBucmjJEmSugsDGHUjcfOP/7MXhLLOa4okSZIywiFk6j4qS5vO22445BV2XFskSZKUET6BUfd06m3Qo2jz+7zC5M6XkiRJymYGMOqe8gohv6j5cpIkScoqDiGTJEmSlDUMYCRJkiRlDQMYSZIkSVnDAEaSJElS1jCAkSRJkpQ1DGAkSZIkZQ0DGEmSJElZwwBGkiRJUtYwgJEkSZKUNQxgJEmSJGUNAxhJkiRJWcMARpIkSVLWyOoAJoTQI4RwdQjhjRBCaQhhTQjh9hDCTm24Vv8QwowQwooQQlnyOD2E0K+J8neGEOIWXpPbfYOSJEmS6snr7Aa0VQihCHgaOBR4D3gY2B04Bzg+hHBojPGtFl5rW2AesBfwFjATGAFcDHwlhDAqxvhJE6f/BXg/RfrSFt+MJEmSpBbJ2gAGmEoieJkHjI8xfgYQQpgCXA/cDoxp4bWmkwheHgROjzFWJq/1S+AiYBowsYlz/zvG+GxbbkCSJElS62TlELIQQgFwYfLtBTXBC0CMcRqwCBgdQjioBdcaDHwDKAe+XRO8JP0nsBY4I4SwXbraL0mSJKltsjKAAQ4H+gLLY4yvpMi/P3k8oQXXOoZEP7wQY/ygbkaMsQx4BMgFjm17cyVJkiSlQ7YOIdsveVzQRH5N+sg0XWvSFq51agjhNBJBztvAIzHG11tQryRJkqRWytYAZtfkcVUT+TXpu3XAtS5q8P5nIYRfARc3GI4mSZIkqZ2yNYDpnTxuaiK/OHnsk8FrvUJiAYGnSQQ5OwBfAa4Fvk1iTs2lLaifEMLiJrKGtOR8SZIkaWuRrXNgOl2McUaM8dYY47IYY0mM8e0Y483AkSSClwtDCLt0cjMlSZKkbiVbA5iaVcd6NpHfK3nc2MHXIsa4GPgziadbX2rhOSNSvYDlLTlfkiRJ2lpkawCzMnncuYn8mvQVHXytGsuSx8GtOEeSJElSM7I1gFmYPB7YRH5N+qIOvlaN/slj8RZLSZIkSWqVbA1g5gDrgSEhhP1T5E9IHh9pwbWeBKqBIxtuVhlCKCSxl0wV8HhLGpY857jk26aWZpYkSZLUBlkZwMQYy4Ebk29vCiHUzFMhhDCFxJ4tz8UYX66TfmEI4fUQwnUNrvUe8EegALg5hFB3ZbafA4OAu2KMH9a51udCCGcmgxXqpA8C7gF2IfFkZ07771aSJElSjWxdRhkSyxWPAw4DloUQXiCxV8sXgLUkNp+sa1tgGKnnpVwCHAqcBrweQngJGAHsS2I+y5QG5XcAfgfMSJZdC+wIHERiueVVwNdijLF9tyhJkiSprqx8AgMQYywFjgKuIbGHy8kkApg7gQNjjG+14lofAYcAN5B4EnMK0Bf4JXBIjPGTBqe8AUwHlgKfB74KHEwi2PkxMDLG+Ebb7kySJElSU7L5CQwxxhLgh8lXc2WvAq7aQv4nwHeSr+autYYWblIpSZIkKX2y9gmMJEmSpK2PAYwkSZKkrGEAI0mSJClrGMBIkiRJyhpZPYlfapfyTfXf5/eEEDqnLZIkSWoRAxhtvX6xV/33uxwKk540iJEkSerCHEKmrUteIWw3PHXeu/OhYlPqPEmSJHUJPoHR1iUEOOZnUFm2Oa2yFP50Rue1SZIkSS1mAKOtTwiQX9TZrZAkSVIbOIRMkiRJUtbwCYy6nBiBmE9pRSTGSFlF7OwmSZIkqYswgFGXEmNk04rJVJfsznlLN3R2cyRJktTFOIRMXUpJRTXVJbunzNtlYC75uR3bHkmSJHUtPoFRl3XxV3rSqyC/9n1+LgT3aJEkSdqqGcCoy8rPhYI8AxZJkiRtZgCjJsUYKaksaZTeI6+HT0IkSZLUKQxglFKMkbOeOItX177aKO+A7Q7gt8f81iBGkiRJHc5J/EqppLIkZfAC8MqHr6R8MiNJkiRlmk9g1KzpY6ZTmFtIWVUZlzx7SWc3R5IkSVsxAxg1qzC3kMK8ws5uhiRJkuQQMkmSJEnZwwBGkiRJUtYwgJEkSZKUNQxgJEmSJGUNAxhJkiRJWcNVyNS0GOkRIzkVpeTEanIqy+lRXU2JG1hKkiSpkxjAKLUY+d17H3BAWTn89rTa5L8DCwoLIcbOa5skSZK2Wg4hU2oVJYngJYUDy8qgoqSDGyRJkiT5BEYtsORL/0VuQU+qyjcx/K8/6ezmSJIkaStmAKNmVecWkJNXSHVVZWc3RZIkSVs5h5BJkiRJyhoGMJIkSZKyhkPIJLVbjJGSysYLO/TI60Fw2W1JkpRGBjCS2iXGyFlPnMWra19tlHfAdgfw22N+axAjSZLSxgBGUqs0fNpSUlmSMngBeOXDVyipLKFnfs8Oap0kSeruDGAktdiWnrYATB8zncLcQsqqyrjk2Us6tG2SJGnrYAAjqcW29LRlr3570aegj8PFJElSRhnASGqTmqctNQpyCwxeJElSxhnASGpSqvkuNQpzCynMK0x1Wnrqraiql9YjP9cASZIkGcCoaTFCCYWUVgbycgOVlYFNsZAelHV209QBmpvvksl6J9wyj5dXfFovffjgbbhv8ijqxjAGNZIkbX0MYJRSjJEJ5T/i5TgMHq+bcwcHh6X8NsbOapo6SHPzXQpyCzJTb0VVo+AFYMl7Gxjxo7/USzt4t/7JoMYgRpKkrYUBjFIqqahOBC8pvBSHUVJRTa8ObpM6T3vmuzTc4LLh5pYNh4ttKt/88y1nHERhXg5XPbKYFR9vanTtl1Z8SklFFT0L/FUmSdLWwv/rq1lXHryGHkUFlJSW89OXduzs5mwWI4VEqChLjHerLK/N2lQJVGx+StQjD/9K3w7tme8y5k9j6r2vu7llU8PFauvNy6EoP5frTvk8ZZXVtellldVMvuvlNrVHkiRlNwMYNasgN1KQC1W56R821nCSeGmDv9Zv4Uyu/ORT9iqvgHu+mUzKB74PwMF/rAAqaksfvEMu953Y0yCmgxTkFrBXv714c92bjfLqbm7Z1HAxgGHb96EwLwdIBJ9F+bkZbbMkScoOBjDqNKkmicfqfOCaZs/NqapIBC91FFLBsLCSpXHXRuVfer+Kkkromd/eVqslQghcccgVlFdtfirW3OaWNcPFahTm5bQo4Kw75Ayc2C9JUndnAKPMKm8wbyG/JzXLSG1pkjhAfm7LPp7lo79HQX5PAvCjGCkjv7aOsiqY/FRLn+oonUIIjYadxQjE/ETQESvrBR81w8Va6+BrZ9d/78R+SZK6NQMYZdYv9qr/fpdDYdKT0ODLZc0k8dKKyHlLNwAQaOEX0Nx8yCtIngNF9TJdLa2ltrTnS7quv2nFZKpLdufga55v17UK83IYtn0fln6wsVGeE/slSere/D+80i+vELYbDh8uaZz37nyo2AQF9dcwq5kkHl2euVN0xJ4vZZVQXbJ7yry6811aIoTAj04Y7sR+SZK2QgYwSr8Q4JifQWWdDS8rS+FPZ3Rem7RFHb3nyy+/MYI+hT1r37d0vktdTuyXJGnrZACjzAgB8ouaL6cupz17vrRYqCTkbF6EIYS2LdEsSZK2PgYwkuppz54vLXX5898j5FTWvh/afy+uOOQKaOm8J0mStNUygJGUETFGyirrvK9ueg3rZZ++SVlVGYW5PrWTJElbZgAjKe1ijPzgT+tY+l5FyvwL97+QgrxARXU5N756U9rrd28YSZK6LwMYSWlXVkmTwcsuA3PpVZCf0YDCvWEkSeq+DGCU9SqqK6Bq85flgtw8nEvRdXz3uG0oyNv875GfS0YCCfeGkSRp6+D/zdWpanZmL62IiTkTFa3fB+bWhbdSUecL8c59duLf9vkmBjFdQ0FeqBfAZIp7w0iStHUwgFGnqbsz+3lLN7Tq3Lycpvf/WLVxNeVVlRTkNj1pXN2Te8NIktT9GcCo02wqr2pyZ/bBVZ+Ql7sNTT1FqTsE6ZS9ToHcPCqqq3jozYcy0NLuJ8ZISWVJ7fu6P0uSJHVlBjBqm4oSKC+G8k1tvkQsLa39+cx37qBHnXksoaoKKi6DguZ3gM/LySXm+FFuqRgjZz1xFq+ufTWt16y7ZHJbhgJKkiS1hN/61CY9bzoEQln7LhI3f8kdu9cHFIXNAcz6TfmswS/BmVBSWdJk8LJXv70oyG0+aKyruSWTuwqXVpYkqXswgFHLbekpx3bDobW7t1eWNpnVt2cF71dVAJndEX5rN33MdApzN/dxQW5Bq7/UN7dkckunpJRV1Q+IE+1KX4Dh0sqSJHUPBjBquTrf80on3E7PwjrBRV4htOOL4Fs7fYkehYVQWcYe7z7Zjka2U8Mhcfk923VfXV1hbiGFrQ08t6A9SyZf8syl9d4P7b8XVxxyBe0JYlxaWZKk7sf/c6tt8gohvyhtl6vOyaU6J48QqpovnEm/2Kv++10OhUlPdusgJp1au2Ryfm4eO/XeidWfrW6Ut+zTNymrKqMwt+2fM5dWliSp+zGAUZcVKyqIueU178jJibV/zc+pKm/6xNbKK0wMgftwSeO8d+dDxSYo6JW++lQrEPi3fb5JRdXmFQAqqsu58dWb0leHSytLktStGMCo4yWHaYXKLa9g9tGvfkVVdSJg2X+P9fTtmaFJ4iHAMT+DyjpzMCpL4U9nZKa+LJfuFccCwT17JElSixnAqOMlh2n1ioXAHfWyQm5Oo+K5ObHJ4KWszw4tXkK5uqyM6mRAFAoLCHXnVoSQ1iFx3VW2rDjWUq5MJklS9jGAUcfY0jAtIFIzxGfzl8e+p55KdU4BobwElt0OwLv7nwGFmwONmJPXzPyUzU8HVl10ET2qE0PP8nfdjR3+68p65zYKarqJdG5ama4Vx7oKVyaTJCn7GMCoY6QYplWycQPcVye/obw8Qk4uoXrzt+KYmwetGG4UyytTplesXMG7559fL61w6FC2n/pf3SqIycSmlTXas+JYZ3JlMkmSspv/l1bHaThMK3fLE/FzqyqpAnKq6wQhVZXEys3vQ17LP8ID/+M/6FWYx6d3/Z7KDz9slF+2bBmxrJxQ2H32nmnvppVbmu/S2hXH2qLu3jDp2hfGlckkScpuBjDqMJFIWZ3Vw8qry9jSRpXDl/y6Udr6mX+mus6X2Nxtt6XXl75MAKrilieTl+YWkJObT9FZ51JUXV770CdWVPDRL3/ZqnvJRq3dtLIrzHepuzdMOvaFqeHKZJIkZS8DGHWISOSnL17Hm+verE2rqi4Afl6vXHXIpbRoIEWlHze6RnFpLtUN0qo++oh/vbCSGHKpogq2T2aUlxNzqfe05siXdq39+cBtyrhrv4+3qu1dWrtpZWfNd2lqb5h07AvTEk7slySpazOAUYcoqyqvF7w0lFvzV/UQWL3jaHJi/S+RkUhVZaTn3olysbySkvlzEqdUV0EO5LD5nLW//CV51Ykp/Hvs8VXe7rVjvest2FBISXWgZ279pzaxrCwRJFWW0Xg9tK6vPRP2tzRcrCPnuzTcGybd+8I0x4n9kiR1bQYw6jAxQnUs4PyR51OQk8+m0kqeX5nMDPWXNK4OdT+akfeWraOkePO365xYxbbJn3d8fz4AlQEW71A/7AjAd96+j009t2XbE8ZTHnO4aMnAJtu46qKLEuflRHYdU9Pu2OpBSzFGSiqqGqVn8q/57Zmw39xwsY6Y71JXU3vD1J0TA+mbF+PEfkmSsof/R1aHiDGy4P3vsKFsz81BS0vPrY71gheA6pBDRW5P8qtSb4a5eodR5MU6q5eFHHaorqaaxvNkQl4++TvtTMXqVanrLyklFPZuun0NgpUY4au3zGPJexsalR0+eJvkX/M3p7U1qEn1tOWVD1+F2PiL/559h1BdnU9pE5tOllXErFgeue6cGEjfvBgn9kuSlD0MYNQmJZWwqc6X4R55Wx5SVFIJG8r2TJm3c9ka8kPLdnPfYY8+dZ7WHESIdaf0V0H13wHY9fODyCePGCMrXvsEgH/NeY9ycmDAdsnyyTpDoP8ZZxArN3+Bj2XFsOQnAGyqKiGnIhEoJYKVzV9yY4yc+ZtXeP39z1rU/iXvbWDEj/5SLy1VUNNQIlgprZf2rVnf4o1Pl9ZJCWx65ztUl9UfLgewCDjr7x+1qI1dbXnkpubEQHrnxWxpYr/zYiRJ6joMYNQmh/+hHNi8otjBO+Ry34k9W/Sl7sovfEiP/BxiZRXrHnyA/FhJCEe1rOIQyMmpW0edL5wRamb5V+VUk0M1EMnrHaj8rJqGf6WvqqyG3Jza64b8zUsKx8rN9zb2z8dQkpNDjLBpxWSqS3ZvUVN3G9iTq04YUfv+qkcWs+Ljxk+MUgU1LXNGG87Zsl0G5tKrMHTol/NIJJZveaWzbwyZQFVuoObfsO68mEwNK6ur4byYdD5JkyRJrZPVAUwIoQdwBfB1YFfgE+BJ4AcxxsZ/rt3ytfoDVwEnAzsA7wMPAVfFGNc1cU4u8B1gErAX8BnwDPCjGOO/Wn1DXVSsrqa6KpJDNb3y11Bc0fgv/C+9X0VxcRk985vf2T4vVpCfWCKMgphqo8lIrN78RKa6umVPZ+q6q/yJzW92ge3DAI7PPZKyKhL/skBJVSC3qmYt5UhuzuallUtjCT0jlFBIrM4nkkOsLmgyeAn5HzH9q4dTVGdflT6FPQhh85yc6075fL0hStB0UNMeO/TN4Zwxfdr0FT6dT1taEphA5JO7/kDlBx80e7287bdnwBn/BgRinW7M1LCyLc2LSRV0OtlfkqSOkbUBTAihCHgaOBR4D3gY2B04Bzg+hHBojPGtFl5rW2AeiSDkLWAmMAK4GPhKCGFUjPGTBufkkNhH/hRgHfAYsC0wATguhHBUjPHv7bvLzhPr7Kmy9B8fkEceVVSx13bzqCaPi/a/gPzcAsqqIpOfSgxtWnXRRfSoTjy5iEDOsL0YdPl/EkKgrLKMmi+U6x5+mPLqVIFL4syGE/ZbKpccBoRt+CQ2nnvyQfyE6pxqQvXmJzajX9qpXpneBas4YIdfEoD86sh75T9lSdwdljWu66LRUFCUR0V1Jf/3r9shVPL9vz1Yr8yu2+zKFYd8v15aaLC0WeEOD1LUY02L7m+7noP42t5fo+4X8/zcvHpBYiSSV1VBqK4fOISC/EblUgUXsZoUs4Qaa/56LQ9MWqrygw/48Pppte+3OziHD/s1DhaWffomG8o31Nvzpi1PZVLNi4Gmg86XVnzKx8Xl9CzY/BnzqYwkSemXtQEMMJVE8DIPGB9j/AwghDAFuB64HRjTwmtNJxG8PAicHmPisUAI4ZfARcA0YGKDcyaRCF6WAUfGGD9InnMacD/whxDCPjXXyjZVTUz2DgFyqSQ/QFFeSP0lGLh9XA7vbLsaZl2SuF4sAK5Nec2cvn0JyaFcqSbs1yjokUvOFr4MhhAYlft5qursFlNFFbMqE3FkBZXkhGp2rPyMNXmNJ+V/Vr4zL6z8eaP0hoZUv0v5rx+l5s63b+KL9MoNK/mP2d9u9noNgxqA7Xtuxzc/9002f+mO5FbFxk+06gWCTQcNdZ9epCO4SPf1cvv3p9fYL1E3yAi5IXG/MbJx9iyqPv203jlfeamayjp9V5kL945OBA8Nn8rs0ntnvn/AZfXSCnO2vJFnbbkG73967NBGk/3/477FQIqhZtv35t5zDqj379YjPyetQU3o0aPNi0DEksbLbDe8XkvLSZLUUUJsZvfyriiEUAB8CPQFDowxvtIgfyEwEjg4xrjFZYRCCIOBVUAlsGtNIJLMKwTeBQYAO8YYP6yTtwTYBzglxjizwTUfBk4EJsQYH2jHfS4ePnz48MWLF7f1Em32/gfvcej/LgBgypDX6VlQREVVJX9Z/yQAF+9/MUUFhZRsKmfSXxNfov9xwJv0KsqjpHQTRy0panLS/g92X0hBfs03z5iclJ/4IlRdvXnSff0J+ySCl1Z+X6qMVTxZOa9eWozQq7QvB67cN1EmVPHbgbtRUjmo0fm78T5X5d1ZL62QCua8PpCq6s2NqftFmgBPHJzDJ31a1tjtegziG3t9tfZLboyRnJhXb37Furv/QNWHHzZxha4rt39/+oz7cu2/YyQSq+r/znl70VpKihvPUerVt4A9DxiUPA+qy+o/4Sl++q+NgponmggmU9nhk8ikWfWfruRXtX7gWQRu+fzJvNN3cIvK77luNb944aZ69RRWlbd5wFvhPp9j97vuqr8UeXNi5J0zzqTsX41Huhbusw+73/X7xPVaWi4DDJAkKX1ijFSWN9wOHPIK0vtHtdYYMWIES5YsWRJjHNF86fqy9QnM4SSCl+UNg5ek+0kEMCcAza2DegyQA7xQN3gBiDGWhRAeIfG05VjgToAQwh4kgpcSEkPHUtV/YrL+NgcwnaluYFs9569UVlVRFYADEt/UKzeVUVkVqSqthOSWjxtCDpUhsC63sOkVx6o+ID8/p/ZLz5o311O2qfF+KUCKCfutl2pYWQiwqcd6/jZsTm3a3nE+1eQxctXnyKkdZhbp0yOyevdjIEBOdRV7rHwcgN4nnULMyafmizQNvkif8GL9pwO17Rk0iL5fO732/fo/3Uv44H3WcUO77rNeHfWeZqT+og9Qnt+btdvuR92v7EW989hjZONAbrOmr5fyKUpeLrHmF2OEt179kJKNqZ6wNf53Ll5fTmVFFTk5OanP6/F5QlHdX8aRLy18lZyq4nqXbSqYfH9A4Ken1191LFVQk0rdQCcAk/85k4qczb9OI3DLyJNZ07txX77VbydOPeGn9dJSBTWppAp0yv71OksPOrjZNrdU2b/+1aLrtbRcW2U6QGqKT6AkdTcxRh78nwW8/9b6RnmDh/TllO8emHW/z7I1gNkveVzQRH5N+sg0XWtSg2vVnPNajDHVLOXW1N81lW1esrciL7GvSHWAnOrEt/JVv7uVvCooy8mHPb8FwJcWNA5aLtjhJYqSSyR/tLqYUFHBW/9s/j+SnMJAaUVZs+VaYj/2prrOsLIFvE4xja/du7yAvOpKApu/KG8qgTdfSyw/nBuqGdwr0RfL/vEOlTH5n0/PPQk96n+R7v/pUvKqGtdR9enHfHLrzfUTC1JEOilU5hbyaf9hNPeMIIYcmP/O5oRG7dtcLjToh7JN8Pr8ZpaE3sL16tXbhFQxaW5hYNDOfRLXqY588HZi4vzSucu3eF7Drvhou88RYv22HfQuVOfUT1u065uUFjT+9yneJnDDac3/e/Qq68mRr+9H3dW/8wpz2XGv/jVxI1958yNK166tzY8EHu2/JxvyGg5KSx3UpDKwooRvffjPmmd17LL6WQoqWraEdyrl+b15d6cx1DS6qeu1tFxaffQObx9zZGbrSCFnu+0ZePkVtf+OH//8Oqo/bDw8sl45SerCqioiK95ZWvP35npWv7kLleXV5Bd2kQ3fWihbh5BNAy4F/jfGOCVF/n7Aq8CCGONBzVzrQRJzWS6OMf4yRf5JJCb1PxhjPC2Z9h1gBvBQjPHUFOf0JTGx/5MYY9Pbvm8u39QYsc8VFhbmDBkypLlLpF1lRQVvf5KeAEKSJEld016DehHaOeKlLZYvX05ZWdnGGOM2rT03W5/A1MzAbmr92ZoxJH0ydK101r8l1WVlZcVLlix5t53XaZOc3Nzh1eSQ369lY/vVdhXr3gOwrzPMfu449nXHsJ87jn3dMeznjlPT1//6uGJJJzVhF5r+Lr1F2RrAdCttmbzUERJPhqoo/2hFl2xfd1LzFM6+ziz7uePY1x3Dfu449nXHsJ87Tk1fd9XvoVvSssH3XU/N4OueTeT3Sh4b70CXnmuls35JkiRJLZStAczK5HHnJvJr0ldk6FrprF+SJElSC2VrALMweTywifya9EUZulbNOfuGEPLbWb8kSZKkFsrWAGYOsB4YEkLYP0X+hOTxkRZc60mgGjgyhLBd3YzkRpYnAFXA4zXpMca3gX8BPYDj2lm/JEmSpBbKygAmxlgO3Jh8e1MIoWbOCSGEKST2X3kuxvhynfQLQwivhxCua3Ct94A/AgXAzSGEugsb/BwYBNwVY2y4Dfq0mjJ1A58QwqkkNrF8E3i4HbcpSZIkqYGs3AcGIIRQBDwLfAF4D3gB2C35fi1waIzxrTrlrwJ+BPw2xjixwbW2BeYDQ4DlwEvACGBfYFnyWp80OCcHuJ/EHjKfAn8FtgVGA6XAUTHGF9N4y5IkSdJWLyufwADEGEuBo4BrSKwhfTKJAOZO4MC6wUsLrvURcAhwA4knMacAfYFfAoc0DF6S51QDXwUuA9YAxwOfBx4ADjZ4kSRJktIva5/ASJIkSdr6ZO0TGEmSJElbHwMYSZIkSVnDAEaSJElS1jCAkSRJkpQ1DGAkSZIkZQ0DGEmSJElZwwBGjYQQeoQQrg4hvBFCKA0hrAkh3B5C2Kmz25ZtQggHhRC+H0J4MISwKoQQQwjNrl0eQpgYQvh7COGzEMInIYTHQwiHdUSbs00IoWcI4eQQwm0hhKXJz2xxCGFhCOGHIYTeWzjXfm6lEMKU5Od5WQhhfQihLISwIoTwuxDC57dwnn3dDiGEgSGED5O/Q95spqx93QohhGdrfjc38TqmifPs5zYKIQwKIfwi+Tu7JNl/C0II/9NE+RNCCM+FEDYkX8+GEI7r6HZngxDCmGY+zzWvH6Y4N2s+0+4Do3pCCEXAM8ChwHvAC8DuJDb6XAsc2ppNQrd2IYSZwEkN02OMYQvnTAcuBkqAp4Ai4EtAACbEGGdmoKlZK4RwHvDr5Nt/Aa8B2wCHAX2A14HRMcYPG5w3Hfu51UIIHwG9gEXA6mTyCGBvoAI4Ncb4aINzpmNft0sI4U7gLBJ9tjzGuFcT5aZjX7dKCOFZYDSJjag/S1Hk+hjjPxucMx37uU1CCAcBfwEGAovZ/Dt7OLBzjDGvQflLgP8FKoHZQBkwHugBXBRjvLHDGp8FQgifA77fRHYucEby57ExxmfqnDedbPpMxxh9+ap9AdcCEZgL9K6TPiWZ/mxntzGbXsD3gKuBE4AdgNLEf3ZNlh+X7OePgKF10keR+KX9KdCvs++rK72As4FbgX0apA8GFiT78277OW39fThQlCL928k+fR/Is6/T2udfSvbhrcnjm02Us6/b1r/PJvtt9xaWt5/b3teDSPwxtBg4MUX+IQ3eDyMRuJQCo+qk753s/wpgr86+r2x5AV9JfnZXknyIkUzPus90pzfAV9d5AQXAuuSH+IAU+QuTeQd1dluz9dWCAObxZB9fkiJvRjLvss6+j2x5JX/5xmS/F9jPGe/vN5N9N9K+Tluf9kj262JgaDMBjH3dtj5ubQBjP7e9r29O9s+3W1l+eoq8S5N5N3T2fWXLC/hDss+ua5CedZ9p58CorsOBviSGJ7ySIv/+5PGEjmvS1iOE0AMYm3x7f4oi9n/rLUweC0kMV7CfM6sieSwH+zpNfgTsCUxmc/82Yl93DPu57ZJ9dwaJpy93tPC0mnku9nU7hRB6sXlI++/rpGflZzqv+SLaiuyXPC5oIr8mfWQHtGVrNIzEF+21McZVKfLt/9bbM3msAD5J/mw/Z0AI4UwSfbss+QL7ul1CCCOBy4A7YowvhBB230Jx+7r9zg0hDASqgTeAmTHGlQ3K2M9tdzCJeYl/izGWhBC+AnyZxFyLN4A/xRjX1BQOIfQDdk2+bfRH1Rjju8k5ebuFELaJMW7I9A1kuVNJzF98Jca4pE56Vn6mDWBUV80vilQf4Lrpu3VAW7ZGW+z/GGNxCGEd0D+E0CfGuLHDWpa9Lk4en4wxliV/tp/TIITwnyQm7/cC9kn+vAb4RoyxKlnMvm6jEEIO8BsSw3ovb8Ep9nX7TW3w/hchhGtijNfUSbOf22548vhhEwvc/DSEcG6M8Y/J9zV9/WmMsbiJa64CtiXxveSfTZRRQs3k/d83SM/Kz7RDyFRXzXKzm5rIr/kF0qcD2rI1aq7/wX+DFgshHAucS+Lpyw/qZNnP6XE0iQUUJpAIXlaQCF5erlPGvm67i4D/B/xnjPHjFpS3r9vueeBMYAjQk8RfpP+LxOTxq0MIF9cpaz+3Xf/k8UTgGOACYDsSK53+gsR8r9+GEPZPlrOv0ySEMJjEYiBVwB8bZGdlPxvASOp2kstI3kVi+cf/jDEubOYUtVKMcVxMLAfeH/giiWFjz4UQ/qtzW5b9Qgi7klgR8rkY452d3JxuL8b4wxjjXTHGt2KMJTHGN2KMPwVOTha5KjlPQO1T850zD/hhjPHmGOPaGOOKGON/AvcB+cB/dloLu69vkFhCeVaM8f3Obkw6GMCorpr173s2kd8reewSjw+7oeb6H/w3aFZIbLj6JIkv1tNijDMaFLGf0yjGuC7G+AJwLPAycE0I4f8ls+3rtrmJxKqQk1txjn2dZjHGp4CXgH7AF5LJ9nPb1d1jJ9Uk/pq00Q3K29ft19TwMcjSfnYOjOqqmay4cxP5NekrOqAtW6Mt9n9yBZF+JMYDd5lfIl1JCGEAiQ24diPxP8PvpihmP2dAjLEihHAvcBCJ1Wr+gX3dVseTmPtySwj19rwtSh53Sm6+CPD15F9U7evMWEZi8vng5Hv7ue1qvjtsijGuTZH/TvK4XfJY09f9Qwi9mpgH4/eSZoQQ9gEOIBGozExRJCs/0wYwqqtmmM2BTeTXpC/qgLZsjZaS2DBqUAhhpxjj6gb59v8WhBB6A0+QmCj6IPDvMbmIfQP2c+Z8lDwOSh7t67brx+a/RDdUVCevJqixrzOjZt5GzZdn+7ntalYS6xFCKKyzsEqNAcnjZ5B4uhtCWElikvkBwN/qFg4h7EJiAv8KVyDbojOTxwdjjKnmuWTlZ9ohZKprDrAeGFJnEl1dE5LHRzqsRVuRGGMJ8HTy7VdTFLH/mxBCKAQeBg4B/kL9lbDqsZ8zquZL9XKwr9sqxhhSvYA9kkWW10l/J3mOfZ1mIYRBwJHJtwvAfm6P5JLUC0nMTUwVnNek1V0y+bHkcQKN2dfNCIlHuN9Mvk01fCx7P9MdvXOmr679IjFxNJIIZnrVSZ+STH+2s9uYzS8SO8LHLeSPS/bzR8DQOumjkud+CvTr7PvoSi8SExMfTPbb80DPFpxjP7etrw8nsXpQToP0fBKrZlWRWMlmF/s6I/2/e7Iv32wi375ufZ8eRmKyfm6Kvv5bsj8ftp/T1t/fTPbdImBwnfT9gY+TeV+tkz6MxGpwpcChddKHJvu/Atirs++rq75ILLASSSyRnLOFcln3mXYImRq6lsQH+TBgWQjhBRLzCb4ArAUmdWLbsk4I4TjqL+FbkEyfXyftmhjjYwAxxtkhhBkk9i95NYQwK3nOl0n81eqcGOO6jmh7FrkQOCX580fAzQ3mDdT4bozxI7Cf22EoiblFH4UQXibxhWNb4PMk5giUAhNjjO/WnGBfdxz7uk32JvGZfj+EsIDE3KPdSMzlKgIWA/9e9wT7ue1ijHeHEMaTWIJ9SQhhLonlkw8jsZnir2OM99UpvzS559Q04IVkX5cD45PnfSfG+GZH30cWqZm8f3eMsbqpQln5me7sCMpX13uR+KVwNfAmiXGR75H4Bb9zZ7ct217ARBJ/1djSa2IT571EYtz1pyTmdhzW2ffTFV/AVS3o4wjsbj+3u6/3AH5C4i/Ta0h8kfgMeA34JVv4S6h9nZb+350tPIGxr9vUp/sAN5NYQe9DEn/RXwfMIzHyoIf9nPY+DySCwpq++wyYC5y9hXNOIPGEfWPy9TxwfGffS1d+kQgIP0n+zhjZwnOy5jMdkg2WJEmSpC7PSfySJEmSsoYBjCRJkqSsYQAjSZIkKWsYwEiSJEnKGgYwkiRJkrKGAYwkSZKkrGEAI0mSJClrGMBIkiRJyhoGMJIkSZKyhgGMJEmSpKxhACNJkiQpaxjASJK6vRDCmBBCDCHc2dltaU6yne90djskqasygJEktUsIYffkl+5n03S9rAk2ugIDHklbGwMYSZIkSVnDAEaSJElS1jCAkSS1WQjhKuDt5NvRyeFMseEQsBDC8BDCH0II74UQykMIq0MIvwshDGtwvTuBZ5Jvz25wvavqlDsuhHB7COFfIYQNIYTiEMLCEMKVIYTCDN1rDCG8E0IoCCH8OISwPIRQGkJ4K4RwdQihqInzBoYQ/ieEsCxZ/pMQwpMhhPGtrH/fZL9VhBD+LYQwMYQQk9m7NeirZ9t7v5LUVeV1dgMkSVntVeAB4DTgA+DJOnl/AwghfAl4BOgBvAI8C3wOOBM4JYRwbIzxhTrn7AAcDSyvuUadumrclrzea8AioC9wCPAT4EshhPExxqo03WNdgcT9fgn4a7JNXwJ+ABwWQji6br0hhJ2A54E9gZXATGAQMA44OoQwJcb4v81WGsIo4DGgCDgpxvh4COEI4LfA2UAxcH+dU15v321KUtcVYozNl5IkqQkhhN1JPIV5LsY4pkFeLxKByPbAhTHGm+rkXQpMA1YBQ2OMpcn0MSSewvw2xjixiTpPAp6KMZbUSesD3A0cD5wdY/xdnbxmr9mC+6z5H+YqYHSM8a1k+iDgaWBf4NIY4/Q65zySbM/dwDkxxvJk+hHAX4BC4OAY46sN6lkRY9w9+f5oEkFTBXBCjLFuUNeovCR1dw4hkyRl0tdIBC/z6gYvAMknDy8DO5N4gtNiMcaH6wYvybSNwKXJtye1ucXNu7omeEnWuxb4z+TbC2vSQwh7kghePgMuqglekuf8DbgFyAUuaKqiEMLpJJ5efQaMaRi8SNLWyCFkkqRMOjJ5/EMT+XcBByXLNVUmpRDCUOBYYC+gF4k/yoVk9tBWt7Tl7mmYEGN8MoTwKTAkhDA4xvgecEQy+8kY4ycprvN7YAqb+6ieEMJk4CZgBTA+xvhmWlovSVnOAEaSlEk7Jo/vNJFfk75TSy8YQgjAL0g8bQlNFOvT0uu10qfJJz2prAD6k7jn92jfve8M/AooBY6KMa5oS2MlqTtyCJkkqTO1ZSLm6SSeXKwCJpAIAApijIHEnBJoOrDpSrZ07x+SWCSgCPhFCME/OEpSkr8QJUmZtCZ53K2J/N2Tx9WtuOYpyeN/xBgfa5C3Zyuu0xb9Qwh9mngKs2vyuKbBsS33Xg6cQGLlsQlAdQjhmxlaWU2SsopPYCRJ7VUzOT3VH8Vqlkf+RhPnntGgXHPXg8QwLUg8gWnoa02ck06N6kju6TIAeCs5/wU2LwF9TAihX4rrpLr3WslFCo4HnkvW+fsQQm6KohX4B0lJWxEDGElSe31E4kv0kBRfsP9EYn+YI0II36qbEUL4DnAwiScQD9TJqnlyUW+TyzreSB6/lZwPU3O9I9m8Glgm/Si5dHRNvdsC/5N8W7vSWnKlssdIzMeZEULIr3POKOA/gKq65zQUY9wEHEciyPkG8NsQQsP/d68Btm8iSJKkbsd9YCRJ7RZC+DOJIU+LgQUknqLMiTHe0WAjy5dJBCCfAw4gsTxw3Y0sa663EBgJ/CN5zSrgzzHGP4cQ9k7W0QtYQmIjy51IrPp1PfBdGuyLksZ9YFYm6xtLYo5KRfLnfsnrj48xVtY5ZycSwcceJCb5zyOxkeUYEksoXxZjnJainobt701ik9DDgd+R2FOmOpn3S+AiEnvxzCUx8X9pjPF/kKRuyCcwkqR0OI/EssADgW8C5wKjAWKMfwX+H/BHEqtrTQB2ILGE8sENg5ek00jsWr8ncFbyegcmr/cGiSc3jwDbAicCvYHzY4yZfgITk+2fDnyexBCv9cBPgOPqBi/Jtq4mce/XA5XAqSSWjf4rcHTD4KXJSmP8DPgKiQDlLOC2Ok9irgBuJDGM7HQSfXVcm+9Qkro4n8BIktQC7ngvSV2DT2AkSZIkZQ0DGEmSJElZw2UXJUlbnRDCeSQm/bfEf8cYX89keyRJLWcAI0naGh0BnN3CsncCr8cYQ3MFJUmZ5yR+SZIkSVnDOTCSJEmSsoYBjCRJkqSsYQAjSZIkKWsYwEiSJEnKGgYwkiRJkrKGAYwkSZKkrGEAI0mSJClrGMBIkiRJyhoGMJIkSZKyhgGMJEmSpKxhACNJkiQpaxjASJIkScoaBjCSJEmSssb/B7waVdLi36bmAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Plot a descriptive distribution of the proof for the largest blockchains\n", + "\n", + "data_use = claims_df.loc[claims_df['chain'].isin(['0021', '0009', '0027', '03DF', '0004'])]\n", + "\n", + "plt.figure(dpi = 150)\n", + "sns.histplot(data=data_use, x=\"total_pokt\", hue=\"chain\", bins = 128, stat=\"density\", element=\"step\")\n", + "plt.show()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Block Size Composition in Bytes\n", + "\n", + "Here we analyze the impact of proofs in a block. \n", + "Block size and proof size is obtained from [here](https://docs.google.com/document/d/1QcsPfhj636zBazw2jAay8H6gdBKXcIMmohY0o321hhQ/edit#).\n", + "The data extracted from this document is:\n", + "1. A proof of $1\\times 10^6 $ relays weights `1884 bytes`\n", + "2. The largest possible claims weights `401 bytes`\n", + "3. The block contains:\n", + " 1. Header `653 bytes`\n", + " 1. Amino Overhead `11 bytes`\n", + " 1. Validator size: `num_validators * 223 bytes`\n", + " 1. Evidence size: `NumOfEvidence * 484 bytes` (we dont know the `NumOfEvidence`, we will use 1000)\n", + "\n", + "\n", + "Also @Olshansk noted that the proof size grows following $\\mathcal{O}(\\log{}n)$, where $n$ is the number of relays in a claim.\n", + "\n", + "Finally we know that the raw block size is `800 KB` lower than reported size (json structures if I recall correctly).\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "proof_1M_r = 1884\n", + "largest_claim = 401\n", + "num_proof = 1000 # Made-up number, replace with real value if we find it...\n", + "proof_size = 484\n", + "num_validators = 1000\n", + "validator_size = 223\n", + "header_size = 653\n", + "amino_overhead = 11\n", + "\n", + "# Given the previous iformation we can create the following function\n", + "def relays_to_proof_size(relays, proof_1M_r = 1884):\n", + " '''\n", + " Numeber of relays to proof size approximation\n", + "\n", + " We expect the size of the proof to scale in O(long(r)) whith respect to the\n", + " number of relays (r). \n", + " If we know the size of the proof for 1e6 relays (proof_1M_r), we can scale \n", + " down/up from there. \n", + " '''\n", + " \n", + " return (np.log(relays)/np.log(1e6))*proof_1M_r" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Unnamed: 0heighttotal_proofnum_proofsmean_proof_relaysblock_sizenum_sendnum_claimnum_stake_validatornum_unjail_validatornum_dao_tranfernum_begin_unstake_validatormean_proof_sizeworst_case_claim_sizetxs_block_size
008590110384.293090131710384.293090290587811113550.00.00.00.01.660924e+065433552447958
118590210772.454001133710772.454001294769314913330.01.00.00.01.692838e+065345332489773
22859039957.29816513089957.298165289308520513270.02.00.00.01.642085e+065321272435165
338590410390.594052134510390.594052298896414313720.02.00.00.01.696348e+065501722531044
448590510925.201945133710925.201945294874613813130.00.00.00.01.695405e+065265132490826
................................................
395395862969803.14561713469803.145617301664420813930.00.00.00.01.686927e+065585932558724
396396862979202.84609713459202.846097297548527113000.00.00.00.01.674083e+065213002517565
397397862989708.81919613449708.819196296602325512820.00.00.00.01.682648e+065140822508103
398398862999672.45134713369672.451347298685228213510.00.00.00.01.671949e+065417512528932
399399863009500.22099013539500.220990300863128713270.00.00.00.01.689908e+065321272550711
\n", + "

400 rows × 15 columns

\n", + "
" + ], + "text/plain": [ + " Unnamed: 0 height total_proof num_proofs mean_proof_relays \\\n", + "0 0 85901 10384.293090 1317 10384.293090 \n", + "1 1 85902 10772.454001 1337 10772.454001 \n", + "2 2 85903 9957.298165 1308 9957.298165 \n", + "3 3 85904 10390.594052 1345 10390.594052 \n", + "4 4 85905 10925.201945 1337 10925.201945 \n", + ".. ... ... ... ... ... \n", + "395 395 86296 9803.145617 1346 9803.145617 \n", + "396 396 86297 9202.846097 1345 9202.846097 \n", + "397 397 86298 9708.819196 1344 9708.819196 \n", + "398 398 86299 9672.451347 1336 9672.451347 \n", + "399 399 86300 9500.220990 1353 9500.220990 \n", + "\n", + " block_size num_send num_claim num_stake_validator \\\n", + "0 2905878 111 1355 0.0 \n", + "1 2947693 149 1333 0.0 \n", + "2 2893085 205 1327 0.0 \n", + "3 2988964 143 1372 0.0 \n", + "4 2948746 138 1313 0.0 \n", + ".. ... ... ... ... \n", + "395 3016644 208 1393 0.0 \n", + "396 2975485 271 1300 0.0 \n", + "397 2966023 255 1282 0.0 \n", + "398 2986852 282 1351 0.0 \n", + "399 3008631 287 1327 0.0 \n", + "\n", + " num_unjail_validator num_dao_tranfer num_begin_unstake_validator \\\n", + "0 0.0 0.0 0.0 \n", + "1 1.0 0.0 0.0 \n", + "2 2.0 0.0 0.0 \n", + "3 2.0 0.0 0.0 \n", + "4 0.0 0.0 0.0 \n", + ".. ... ... ... \n", + "395 0.0 0.0 0.0 \n", + "396 0.0 0.0 0.0 \n", + "397 0.0 0.0 0.0 \n", + "398 0.0 0.0 0.0 \n", + "399 0.0 0.0 0.0 \n", + "\n", + " mean_proof_size worst_case_claim_size txs_block_size \n", + "0 1.660924e+06 543355 2447958 \n", + "1 1.692838e+06 534533 2489773 \n", + "2 1.642085e+06 532127 2435165 \n", + "3 1.696348e+06 550172 2531044 \n", + "4 1.695405e+06 526513 2490826 \n", + ".. ... ... ... \n", + "395 1.686927e+06 558593 2558724 \n", + "396 1.674083e+06 521300 2517565 \n", + "397 1.682648e+06 514082 2508103 \n", + "398 1.671949e+06 541751 2528932 \n", + "399 1.689908e+06 532127 2550711 \n", + "\n", + "[400 rows x 15 columns]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Get estimation of block size and components for each block\n", + "\n", + "# Convert the mean number of proof relays to bytes and multiply by totoal number of proof in each block\n", + "txs_by_block_df['mean_proof_size'] = relays_to_proof_size(txs_by_block_df['mean_proof_relays'])*txs_by_block_df['num_proofs']\n", + "# Get the worst-case size used by claims by multipliying the observed claims by the largest proof size, for each block\n", + "txs_by_block_df['worst_case_claim_size'] = largest_claim*txs_by_block_df['num_claim']\n", + "# Get the raw block size\n", + "txs_by_block_df['block_size'] = txs_by_block_df['block_size'] - (800 * 1024) # Raw block size, this is the one that matters\n", + "# Get the size that was used for txs only\n", + "txs_by_block_df['txs_block_size'] = txs_by_block_df['block_size'] - header_size - amino_overhead - (num_validators * validator_size) - (proof_size * proof_size)\n", + "\n", + "\n", + "txs_by_block_df # display" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The block TXs portion is composed of:\n", + "\tProofs : 67.06 %\n", + "\tClaims : 21.64 %\n" + ] + } + ], + "source": [ + "avg_txs_size = txs_by_block_df['txs_block_size'].mean()\n", + "avg_proof_size = txs_by_block_df['mean_proof_size'].mean()\n", + "avg_claim_size = txs_by_block_df['worst_case_claim_size'].mean()\n", + "\n", + "\n", + "avg_proof_consumption = (avg_proof_size/avg_txs_size)*100.\n", + "avg_claim_consumption = (avg_claim_size/avg_txs_size)*100.\n", + "\n", + "print('The block TXs portion is composed of:\\n\\tProofs : %0.2f %%\\n\\tClaims : %0.2f %%'%(avg_proof_consumption, avg_claim_consumption))\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plots" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAGoCAYAAADB3ZMFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABWAElEQVR4nO3dd5yddZX48c+ZO5MeEkhCAgQIvQVCiQ0VxYoo2FfUVVm7a111V3fdYtnm6s+1r6uuvYOo2BBRqkoJkpBGCT0kkN5Im7n3/P64904mkyn3JnPnzkw+79crr5l57vM83zMPQ3LPnO/5fiMzkSRJkqSB1NLsACRJkiSNPCYakiRJkgaciYYkSZKkAWeiIUmSJGnAmWhIkiRJGnAmGpIkSZIG3JBLNCLiaxGxKiIWDdD9joiIKyNiaUQsiYhZA3FfSZIkSb0bcokG8A3gvAG837eAT2TmScDjgVUDeG9JkiRJPRhyiUZmXges63osIo6JiCsi4taIuD4iTqzlXhFxMtCamb+t3HtLZm4d+KglSZIkdTXkEo1efBl4Z2aeBbwf+GKN1x0PbIiIyyLitoj4REQUGhalJEmSJABamx1AfyJiAnA2cElEVA+Prrz2EuCjPVz2cGY+l/L391TgDOBB4IfAxcD/NTZqSZIkaf825BMNylWXDZl5evcXMvMy4LI+rl0OzM/MewEi4qfAEzHRkCRJkhpqyE+dysxNwH0R8XKAKJtT4+W3AJMjYlrl62cASxoQpiRJkqQuhlyiERHfB/4EnBARyyPiDcCrgTdExAJgMfDCWu6VmUXKPR2/i4iFQABfaUzkkiRJkqoiM5sdgyRJkqQRZshVNCRJkiQNf0OqGfy8887LK664otlhSJIkDRfR/ylScwypisaaNWuaHYIkSZKkATCkEg1JkiRJI4OJhiRJkqQBZ6IhSZIkacCZaEiSJEkacCYakiRJkgaciYYkSZKkAWeiIUmSJGnAmWhIkiRJGnANSzQi4oSImN/lz6aIeE+jxpMkSZI0dLQ26saZeSdwOkBEFICHgZ80ajxJkiRJQ8dgTZ16JnBPZj4wSONJkiRJaqLBSjQuAr7f0wsR8eaImBcR81avXj1I4UiSJElqpMjMxg4QMQpYAZySmY/2de7cuXNz3rx5DY1HkiRpBIlmByD1ZjAqGs8D/txfkiFJkiRp5BiMROOV9DJtSpIkSdLI1NBEIyLGA88GLmvkOI1Q3LSJh97212y/665mhyJJkiQNOw1NNDLzscyckpkbGzlOIzx2441sufpq1n/7280ORZIkSRp23Bm8F7ljJwAd69c3ORJJkiRp+DHR6EVxY7kIE4WG7WkoSZIkjVgmGr0obdta+aTY3EAkSZKkYchEoxe5c2flY3uTI5EkSZKGHxONXmR7OcHIUqnJkUiSJEnDj4lGL6qVjNyxo8mRSJIkScOPiUYvdk2d2tnkSCRJkqThx0SjFyYakiRJ0t4z0ehFNcEo7XTqlCRJklQvE41euOqUJEmStPdMNHqR7U6dkiRJkvaWiUYvStWKhqtOSZIkSXUz0eiFzeCSJEnS3jPR6EXnPhomGpIkSVLdTDR60VnRaG8nM5scjSRJkjS8mGj0YrdKRrHYvEAkSZKkYchEoxddE4000ZAkSZLqYqLRi67JRbZ3NDESSZIkafgx0ehNR5fkomiiIUmSJNXDRKMXWSrt+rzDREOSJEmqh4lGL7JLFcNEQ5IkSaqPiUZviiVi1Kjy5yYakiRJUl1MNHqRxSIxZkz5cxMNSZIkqS4mGr0pFonR5YqGy9tKkiRJ9THR6EUWi7SMGl3+3OVtJUmSpLqYaPSmo4MYXU40XN5WkiRJqo+JRi+yVOpMNOzRkCRJkupjotGDzIRikRYTDUmSJGmvmGj0pLJZnxUNSZIkae+YaPSguspUddUp99GQJEmS6mOi0ZNKotE5dcrlbSVJkqS6mGj0oLOi4fK2kiRJ0l4x0ehJ59Spao9GezOjkSRJkoYdE40e7NGj4dQpSZIkqS4mGj2p9miMctUpSZIkaW+YaPQg95g6ZUVDkiRJqoeJRk+6TZ2yR0OSJEmqj4lGD7Lb8rb2aEiSJEn1MdHowa7lbUft9rUkSZKk2pho9KRbomFFQ5IkSaqPiUYPOisabW2Vr0vNDEeSJEkadkw0etJtZ3CKLm8rSZIk1aOhiUZETI6ISyPijohYGhFPauR4A2XPHg0rGpIkSVI9Wht8/88AV2TmyyJiFDCuweMNjM5Eozx1ipI9GpIkSVI9GpZoRMQk4BzgYoDM3AnsbNR4A2lXj0Z1Hw0TDUmSJKkejZw6dRSwGvh6RNwWEV+NiPHdT4qIN0fEvIiYt3r16gaGU7vORKO1FVpaSCsakiRJUl0amWi0AmcC/5OZZwCPAR/sflJmfjkz52bm3GnTpjUwnDpUE41CCxQKYEVDkiRJqksjE43lwPLMvKny9aWUE48hr7P5u9BKWNGQJEmS6tawRCMzHwEeiogTKoeeCSxp1HgDqrKcbRRaCCsakiRJUt0averUO4HvVlacuhf4qwaPNyC6VjQoFMiSy9tKkiRJ9WhoopGZ84G5jRyjEbJ7RaNoRUOSJEmqhzuD96SzolEoVzRMNCRJkqS6mGj0YFdFo1CuaNgMLkmSJNXFRKMnncvbVioaNoNLkiRJdTHR6EFnM3hreXlbKxqSJElSfUw0elKdOtXSAq1WNCRJkqR6mWj0YPcN+wpu2CdJkiTVyUSjB7stb9ta2LUKlSRJkqSamGj0pOvyti0ubytJkiTVy0SjB3ssb2uiIUmSJNXFRKMnlYpGuGGfJEmStFdMNHrQmVgUCuWVp0w0JEmSpLqYaPSk1GXDvtZWKxqSJElSnUw0etC5b4YVDUmSJGmvmGj0pFSEiF0b9pVc3laSJEmqh4lGD7KjWF7aFsob9lVWoZIkSZJUGxONnpSK5f4MADfskyRJkupmotGDPSsa9mhIkiRJ9TDR6EEWu1Q0CjaDS5IkSfUy0ehJl0QjCi5vK0mSJNXLRKMHWewydcqKhiRJklQ3E42edG0GL7S6vK0kSZJUJxONHuzeDN4CHS5vK0mSJNXDRKMn3Za3taIhSZIk1cdEowflikb50bhhnyRJklQ/E40eZKlIFFrLX7hhnyRJklQ3E42edBTLq03hhn2SJEnS3jDR6EGWSlCtaLi8rSRJklQ3E42edHSUV5uismGfzeCSJElSXUw0epClErSWKxpRcHlbSZIkqV4mGj0p7qpouGGfJEmSVD8TjR5kR7G82hRWNCRJkqS9YaLRg92Wt61s3GdVQ5IkSaqdiUZPui5vW90h3KqGJEmSVDMTjR7strxtixUNSZIkqV4mGj3ZbXnbSkXDvTQkSZKkmplo9KDr8rZUplC5O7gkSZJUOxONnhQ7OisZ1aZwEw1JkiSpdiYaPciOYmclo/OjiYYkSZJUMxONHnRd3nZXRcNmcEmSJKlWJho92W1522pFw+VtJUmSpFqZaPTA5W0lSZKkfWOi0ZOOLs3grS5vK0mSJNWrtZE3j4j7gc1AEejIzLmNHG+gZLFLM3i1omGiIUmSJNWsoYlGxbmZuWYQxhk4xS7N4FY0JEmSpLo5daoHu1c03LBPkiRJqlejE40EroyIWyPizT2dEBFvjoh5ETFv9erVDQ6nNrlbRcMN+yRJkqR6NTrReEpmngk8D3h7RJzT/YTM/HJmzs3MudOmTWtwODUqFndNmWpxwz5JkiSpXg1NNDLz4crHVcBPgMc3cryBksViZxN4dfUpKxqSJElS7RqWaETE+IiYWP0ceA6wqFHjDZTMrDSD755oWNGQJEmSatfIVaemAz+JiOo438vMKxo43sCobszXOXWqWtFwwz5JkiSpVg1LNDLzXmBOo+7fKNUpUtHSbcO+khUNSZIkqVYub9tdNdHoXtHoMNGQJEmSamWi0U1n07cVDUmSJGmvmWh011tFw2ZwSZIkqWYmGt10JhSdq05Vdgbv6GhWSJIkSdKwY6LRTTWh6FzWtvqx5KpTkiRJUq1MNLqrJhQFN+yTJEmS9paJRjfV1aWixQ37JEmSpL1lotFdsTJ1qtoM3lreasQN+yRJkqTamWh005lQFMoJRrRUHlHRZnBJkiSpViYa3VUrGpXVpqoJhxUNSZIkqXYmGt3kHs3gleVtrWhIkiRJNTPR6KZzedtKb0bn8rZWNCRJkqSamWh0V11dqtKbsWt5WysakiRJUq1MNLqp7pcR1WZwKxqSJElS3Uw0uutMNKrN4G7YJ0mSJNXLRKObPZa3rVY0SiYakiRJUq1MNLrrvmFftaLRYaIhSZIk1cpEo5vs3gze0gIRVjQkSZKkOphodNPZDF5d3hagULCiIUmSJNXBRKO7bhUNqPRpWNGQJEmSamai0U21cmFFQ5IkSdp7JhrdlarL2xY6D0WhQFrRkCRJkmpmotFNZ+WipUui0dICVjQkSZKkmplodFetaLTuSjRobbWiIUmSJNXBRKObzh6NQreKhjuDS5IkSTUz0egmKxv2UehW0ajuGC5JkiSpXyYa3ZXKCcWeFY2OZkUkSZIkDTsmGt10NoPvVtEoWNGQJEmS6mCi0V1Py9u2FHZNqZIkSZLULxONbnZVNHZt2BetBZe3lSRJkupgotFNtXIRhS6PpqVAlpw6JUmSJNXKRKO7Yg/N4IUCdDh1SpIkSaqViUY3vS5va0VDkiRJqpmJRnfVjfladj0al7eVJEmS6mOi0U0WS9DaSkTsOujytpIkSVJdTDS6K3bs1p8BLm8rSZIk1ctEo5vsKO6ZaLQWOpvEJUmSJPXPRKObLBZ3bwSH8vK2RffRkCRJkmplotFdsYeKRqGwq0lckiRJTRURMyLiBxFxT0TcGhG/iojjmx3X3oqIp0fE2c2OY6CZaHSTxSK0tu5+sGBFQ5IkaSiI8oo9PwGuycxjMvMs4O+B6c2NbJ88HTDRGOmyp2ZwKxqSJElDxblAe2Z+qXogMxcAN0TEJyJiUUQsjIhXQGe14NqI+FlE3BsR/xkRr46ImyvnHVM57xsR8aWImBcRd0XECyrHx0TE1yvn3hYR51aOXxwRl0XEFRFxd0T8VzWeiHhORPwpIv4cEZdExITK8fsj4iOV4wsj4sSImAW8FfibiJgfEU8dpOfYcK39n7JvIqIAzAMezswXNHq8fdZDM7gVDUmSpCFjNnBrD8dfApwOzAGmArdExHWV1+YAJwHrgHuBr2bm4yPi3cA7gfdUzpsFPB44Brg6Io4F3g5kZp4aEScCV3aZpnU6cAawA7gzIj4HbAP+EXhWZj4WER8A3gt8tHLNmsw8MyL+Gnh/Zr4xIr4EbMnMT+7boxlaGp5oAO8GlgIHDMJY+6ynZnArGpIkSUPeU4DvZ2YReDQirgUeB2wCbsnMlQARcQ9wZeWahZQrJFU/yswScHdE3AucWLnv5wAy846IeACoJhq/y8yNlfsuAY4EJgMnA3+o7Ms2CvhTlzEuq3y8lXJyNGI1dOpURMwEng98tZHjDKgemsEptFjRkCRJGhoWA2fVec2OLp+XunxdYvdfvGe367p/3dd9i5V7BfDbzDy98ufkzHxDD9dUzx+xGt2j8Wng7yj/RxwWys3g3SsarWTJREOSJGkI+D0wOiLeXD0QEacBG4BXREQhIqYB5wA313nvl0dES6Vv42jgTuB64NWVcY4Hjqgc782NwJMr066IiPE1rIi1GZhYZ6xDXsMSjUoDzarM7GkOXdfz3lxpupm3evXqRoVTs3IzePdVp1qgw0RDkiSp2TIzgRcDz6osb7sY+A/ge8DtwALKycjfZeYjdd7+QcrJya+Bt2bmduCLQEtELAR+CFycmTt6u0FmrgYuBr4fEbdTnjZ1Yj/j/hx48UhrBo/yf6sG3DjiP4DXAB3AGMo9Gpdl5l/2ds3cuXNz3rx5DYmnVg+99W20r3qUoy+7rPPYyn/5MJt/9zuOv+H6JkYmSZK0h2h2ACNFRHwD+EVmXtrsWEaKmioalaW7nh8RNVdAMvPvM3NmZs4CLgJ+31eSMVRkqbhHRSMKLdDR0aSIJEmSpOGn1sThi8CrKHfg/2dEnNDAmJqrx+VtW8nSsGkzkSRJUp0y82KrGQOrpkQjM6/KzFcDZwL3A1dFxB8j4q8ioq2G668ZFnto0EszeIsVDUmSJKkeNU+FiogplBtb3gjcBnyGcuLx24ZE1iQ9NoO3FqxoSJIkSXWoae3eiPgJcALwbeCC6oYnwA8jornd2wOto0iMGrXboWhxZ3BJkiSpHrVuEvKVzPxV1wMRMTozd2Tm3AbE1TRZKkEPFQ13BpckSZJqV+vUqX/t4difejg2/HV07NEMHi0FKJWcPiVJkjSAImJWRCzq4fg1EVH3L7Mj4sMR8f59iOfCiPjg3l6v3fVZ0YiIGcBhwNiIOINdazUfAIxrcGxN0WMzePXrYhFaGr2ZuiRJkpohMy8HLm92HCNFf1Onnku5AXwm8KkuxzcD/9CgmJoqix3lCkZXla+zVHJXHEmSNCLN+uAvPw2cPsC3nX//fz7/Pf2c0xoR36W8yNBi4LVdX4yIV1J+3xnALzPzA5Xj5wH/DhSANZn5zG7XvQl4CfCSzNzWfdCIeBfwVsqbSy/JzIsi4mJgbma+IyLmdzn9BOA8YB7wOWA20AZ8ODN/1t9D2F/1mWhk5jeBb0bESzPzx4MUU3N1FHdVMCo6v+7ogNGjmxCUJEnSiHUC8IbM/ENEfA346+oLEXEo8HHgLGA9cGVEvAj4A/AV4JzMvC8iDup6w4h4B/Bs4EWZuaOXcT8IHJWZOyJicvcXM/P0yr0uAP4O+CPwEcqbUL++cs3NEXFVZj62t9/8SNbf1Km/zMzvALMi4r3dX8/MT/Vw2bDWYzN4YVdFQ5IkaSSqofLQKA9l5h8qn38HeFeX1x4HXJOZqwEqlY9zgCJwXWbeB5CZ67pc81rgIcpJRnsf494OfDcifgr8tKcTIuI44BPAuZnZHhHPAS7s0gcyBjgCWFrj97pf6W/q1PjKxwmNDmTI6K0ZHEg37ZMkSRpo2c/X9VpIeQrYTOC+Ps57PuWk5QLgQxFxatcXI2IC8CPgTV22dgjgpZl55z7GuF/ob+rU/1Y+fmRwwmm+nprBO7+2oiFJkjTQjoiIJ2Xmn4BXATdQfvMPcDPw2YiYSnnq1Csp90jcCHwxIo6qTp3qUtW4Dfgf4PKIeG5mrug+YES0AIdn5tURcQNwEXv+Yv1rwNcz8/oux34DvDMi3pmZGRFnZOZtA/EQRqKallCKiP+KiAMioi0ifhcRqyPiLxsdXDNksbhHM/iuioZ7aUiSJA2wO4G3R8RS4EDKSQIAlUrCB4GrgQXArZn5s8pUqjcDl0XEAuCHXW+YmTcA7wd+WUlSuisA34mIhZQTk89m5obqixFxJPAy4PURMb/yZy7wMcpN4LdHxOLK1+pFrRv2PScz/y4iXgzcT7mD/zrK8+hGlmIfzeAlEw1JkqSBkpn3Ayf28NLTu5zzfeD7PVz7a+DX3Y59uMvnv6Fcgehp3HbgKT0c/wbwjcqXvf1C/i29HFc3tW4KUU1Ing9ckpkbGxRP02WxuGczeLWi4e7gkiRJUk1qrWj8IiLuALYBb4uIacD2xoXVRD01g3fdsE+SJEnDRkR8AXhyt8OfycyvNyOe/UlNiUZmfjAi/gvYmJnFiHgMeGFjQ2uOckWjW6HHioYkSdKwlJlvb3YM+6taKxpQnj83KyK6XvOtAY6n6bJYJLpNnbKiIUmSJNWnpkQjIr4NHAPMp7xBCpTXOB5xiUZPzeC0lCscVjQkSZKk2tRa0ZgLnJyZ+7qBypCWpRJkdu4EXhWt5cdkoiFJkiTVptZVpxYBMxoZyJBQ2fm7+9SpakXDqVOSJElSbWpNNKYCSyLiNxFxefVPIwNrhs6KRbdm8GriYUVDkiRp4ETE5Ij46wG616yIWNTLa9dUNtyr954fjoj370NMF0bEB/f2+uGu1qlTH25kEENFFkvAnhWNKFjRkCRJaoDJwF8DX2xyHA2RmZcDI+6X87WqdXnbaytbsR+XmVdFxDjKW7ePLMXK1KnuzeCdFY3SYEckSZI0OD486dPA6QN81/l8eON7+nj9P4FjImI+MB54EHgW5Sn71wLnAFOArwOjKM/GeWlm3t3L/Voj4rvAmcBi4LWZubXrCRHxSuAfgAB+mZkfqBw/D/h3yu9x12TmM7td9ybgJcBLMnNb94Ej4l3AW4EOYElmXhQRFwNzM/Mdle+x6gTgPGAe8DlgNtAGfDgzf9bH8xpWapo6VXmwlwL/Wzl0GPDTBsXUNLumTnVrBu+saHQMckSSJEkj2geBezLz9Mw8DlgJvB34CvAvmfkI5Tfvn8nM0ykvULS8j/udAHwxM08CNlGulnSKiEOBjwPPoJxUPS4iXlTZjPorlJOYOcDLu133DuAFwIt6SjK6fC9nZOZplZh3U/keTwf+iXKC8UfgQ8DvM/PxwLnAJyJifB/f37BS69SptwOPB24CyMy7I+LghkXVJNlbM3ihumGfFQ1JkjRC9V15GCzvpLwI0Y2Z+f3KsT8BH4qImcBlfVQzAB7KzD9UPv8O8C7gk11efxxwTWauBqhUP86hvH3DdZl5H0BmrutyzWuBhygnGe19jH078N2I+Cm9/EI+Io4DPgGcm5ntEfEc4MIufSBjgCOApX2MM2zU2gy+IzN3Vr+obNo38pa67bUZvJpoWNGQJElqoJlACZgeES0Amfk94EJgG/CriHhGH9d3f386EO9XFwKzKrH15fnAFyhP27ql2ybXRMQE4EfAmzJzZfUw5SrK6ZU/R2TmiEgyoPZE49qI+AdgbEQ8G7gE+HnjwmqO3prBO6dSlaxoSJIkDaDNwETo/EX214BXUv6N/nsrx48G7s3MzwI/A07r435HRMSTKp+/Crih2+s3A0+LiKkRUaiMdS1wI3BORBxVGfOgLtfcBrwFuLwy9WoPlaTo8My8GvgAMAmY0O20rwFfz8zruxz7DfDOiIjKfc7o43sbdmpNND4IrKac0b0F+BXwj40Kqml6aQbvrGh0WNGQJEkaKJm5FvhDZVnaduD6zLyBcpLxxog4CfgLYFGlmXo28K0+bnkn8PaIWAocCPxPt/FWUn5fezWwALg1M39WmUr1ZuCyiFgA/LDbdTcA7wd+GRFTexi3AHwnIhZSTkw+m5kbqi9WFlV6GfD6iJhf+TMX+BjlJvDbI2Jx5esRo9ZVp0rV+WbVOW0jUe/N4FY0JEmSGiEzX9XDsc3AiZUvl1Jenaq/+9zf5Zrurz29y+ffB77fwzm/Bn7d7diHu3z+G8oViJ7u3w48pYfj3wC+Ufmyt1/wv6WX48NenxWNKPtwRKyhnCHeGRGrI+KfBye8wbWrGbz78rbViob7aEiSJEm16K+i8TfAk4HHVbvwK/Pk/ici/iYz/7vRAQ6q/ioaNoNLkiQ1VURMAX7Xw0vPrEzFavT4X6D8/rirz2Tm1xs99nDTX6LxGuDZmbmmeiAz742IvwSuBEZUotFfM7jL20qSJDVXJZk4vYnjv71ZYw83/TWDt3VNMqoqfRptjQmpifprBreiIUmSJNWkv0Rj516+Niz11gze+bUVDUmSJKkm/U2dmhMRm3o4HpR3LhxRemsGt6IhSZIk1afPRCMzC329PuKUqj0avTWDW9GQJEmSalHrhn37hc7la3ttBnd5W0mSJPUvIk6sbMx3W0QcU8d1X42IkxsZ22CpacO+/UY/zeCUTDQkSZL2NxHRmpn1zqF/EXBpZv5rPRdl5hvrHGfIMtHoorNi0eKGfZIkaf9y6jdP/TQDv2zs/IWvW/ie3l6MiFnAFcCNwNnALcDXgY8ABwOvBhYDnwNmU1719MOZ+bPKtd8Gxldu947M/GNEPB34MLCmcs2twF9mZvYSw/3Aj4DnAduAV2Xmsoj4BrAdOAP4Q0R8C/gSMA64B3h9Zq6PiNO7HweeBLwHKEbEMzPz3B7GHV8ZdyZQAD6WmT+MiGuA9wOHAh+tnD4WGJWZR0XEWcCngAmV7/HizFzZ2zNuJhONLjqbwa1oSJIkDZZjgZdTfoN+C/Aq4CnAhcA/AEuA32fm6yNiMnBzRFwFrKK839v2iDgO+D4wt3LPM4BTgBXAHyhvsHdDHzFszMxTI+K1wKeBF1SOzwTOzsxiRNwOvDMzr42IjwL/QjmZ+Fb345n5noj4ErAlMz/Zy5jnASsy8/kAETGp64uZeTlweeW1HwHXRkQb5aTrhZm5OiJeAfxb5dkNOSYaXfXSDG5FQ5IkjXR9VR4a7L7MXAgQEYuB32VmRsRCYBblN/sXRsT7K+ePAY6gnER8vlJRKALHd7nnzZm5vHLP+ZX79JVofL/Lx64bUl9SSTImAZMz89rK8W8Cl/R2vMbveyHw/yLi48AvMvP6nk6KiL8DtmXmFyJiNuUqzW8jAsqVkCFZzQATjd301gweEdDSQlrRkCRJGmg7unxe6vJ1ifJ71SLw0sy8s+tFEfFh4FFgDuUFjrb3cs8i/b/nzV4+f6yf6/ZaZt4VEWcC5wP/GhG/y8yPdj0nIp5FudpzTvUQsDgzn9SouAaSq0511UszOFCualjRkCRJGmy/Ad4ZlV/hR8QZleOTgJWZWQJeQ/m3+3vrFV0+/qn7i5m5EVgfEU+tHHoNcG1vx2sZMCIOBbZm5neATwBndnv9SOALwMszc1vl8J3AtIh4UuWctog4pcbvcdA1rKIREWOA64DRlXEuzcx/adR4A6GzotG9GZzydCorGpIkSYPuY5T7Jm6PiBbgPso9FF8Eflzpq7iCfas+HFjpwdgBvLKXc14HfCkixgH3An/Vz/H+nAp8IiJKQDvwtm6vXwxMAX5aybFWZOb5EfEy4LOVaVutlJ/N4hrHHFTRSwP+vt+4/ETGZ+aWSuPKDcC7M/PG3q6ZO3duzps3ryHx1GL9JZfwyD/9M8deczVtM2bs9tqdZ57F5Je/nOl//8EmRSdJkrSHaHYAw11l1am5mbmm2bGMNA2raFSWENtS+bKt8qcxWc1AqSxvu0czOEBrK1lyZ3BJkiSpFg1tBo+IAuW1i48FvpCZN/VwzpuBNwMcccQRjQynX51Tp1r3fCzR0tLZwyFJkqThJSJ+AhzV7fAHMnNWg8edAvyuh5eemZlrGzl2szU00cjMInB6Zc3jn0TE7Mxc1O2cLwNfhvLUqUbG069qM3hvFY2iFQ1JkqThKDNf3KRx1zLwGyEOC4Oy6lRmbgCuprwxyZDVZzN4SwtpRUOSJEmqScMSjYiYVqlkEBFjgWcDdzRqvIFQXVWqx+VtWwtgRUOSJEmqSSOnTh0CfLPSp9EC/Cgzf9HA8fZdH83g0VKwoiFJkiTVqJGrTt0OnNHviUPIrp3Be95Hw4qGJEmSVBt3Bu8iix0QUV5hqrtCgSy6YZ8kSdJwEBEvioiTmx1HfyJiVkQs6uecQyPi0gaNf2FENGSjOBONrjqKPS5tC9WKhomGJEnSUFKZpt+TFwFDPtGoRWauyMyXNejel2fmfzbi3g1d3na4yVKx56VtwYqGJEka0ZaeeNKnGfhlWOefdMfS9/T2YkT8LbAjMz8bEf8NzMnMZ0TEM4A3AL8A/oHyDui/zMwPVK7bAvwv8Czg7RHxAuBCoAO4Eris8vXTIuIfgZdm5j09jH8s8CVgGlAEXg48CvwMOJDyhtP/mJk/i4jxwI+AmUAB+Fhm/jAizgI+BUwA1gAXZ+bKXr7fnsYrdnl9FvBtYHzl0Dsy84+V47/IzNkRcTHlJGo8cBzwSWAU8BpgB3B+Zq7rZfx3AW+tPKclmXlR5X5zM/MdETG/y+knUF4xdh7wOWB25Xl8ODN/1tP9uzPR6Kqj90QjCjaDS5IkDbDrgfcBnwXmAqMjog14KnAX8HHgLGA9cGVEvCgzf0r5TfZNmfm+yoZ4/wecmJkZEZMzc0NEXE75zXlfU46+C/xnZv4kIsZQnu2zE3hxZm6KiKnAjZV7nQesyMznA0TEpEqsnwNemJmrI+IVwL8Br69jvIO7vL4KeHZmbo+I44DvV55Ld7Mp90KPAZZR3njwjEqy9lrg072M/0HgqMzcUV0dtqvMPL3yvV0A/B3wR+AjwO8z8/WVa26OiKsy87FexuhkotFFFnufOoXN4JIkaQTrq/LQQLcCZ0XEAZR/G/9nym+snwr8HLgmM1cDRMR3gXOAn1KuAvy4co+NwHbg/yLiF5SrIP2KiInAYZn5E4DM3F453gb8e0ScA5SAw4DpwELg/0XExyknMNdHxGzKb/p/GxFQrnT0Vs3obbyup7UBn4+I0yvf4/G9hH91Zm4GNkfExsqzohLjaX1827cD342In1J+jj3FeRzwCeDczGyPiOcAF0bE+yunjAGOAJb2MQ5gorGbLHb03AiOFQ1JkqSBVnkjex9wMeXfnt8OnAscC9xPuZrRk+2ZWazcoyMiHg88E3gZ8A7gGfsQ1qspT206qxLf/cCYzLwrIs4Ezgf+NSJ+B/wEWJyZT9qH8br6G8pTt+ZQrnZs7+W8HV0+L3X5ukTf7++fTzlZuwD4UESc2vXFiJhAeXrYm7pM/wrKU8/urOP7AGwG312xVN6YrwcubytJktQQ1wPvB66rfP5W4DbgZso9FlMrDd+vBK7tfnHlzfGkzPwV5TfqcyovbQYm9jZopSKwPCJeVLnP6IgYB0wCVlWSjHOBIyuvHwpszczvUP6N/5nAncC0iHhS5Zy2iDilzvG6mgSszMwS5Z6L3hrd6xYRLcDhmXk18IHKWBO6nfY14OuZeX2XY78B3hmV0ktE1Lx9hYlGF1nsIAq9T52yGVySJGnAXU95o+c/ZeajlH+Lf33lN+ofBK4GFgC39tKEPBH4RUTcDtwAvLdy/AfA30bEbRFxTC9jvwZ4V+XaPwIzKPdRzI2IhZT7He6onHsq5f6E+cC/AP+amTspV1E+HhELgPnA2X18rz2N19UXgddV7nUi0G8fRB0KwHcq39dtwGczc0P1xYg4kvL38vqImF/5Mxf4GOUpXbdHxOLK1zWJzBzA+PfN3Llzc968eU0bf8UHPsjWefM49ndX7fHag69/A6WtW5n1g+83ITJJkqQeRf+nSM1hRaOLLBZ73BUcsKIhSZIk1cFm8C7KU6f66tEw0ZAkSRpuIuILwJO7Hf5MZn59JIw31MavMtHoqlgiemkGt6IhSZI0PGXm20fyeENt/CqnTnVRnjrVc+4VhQKUTDQkSZKkWphodNXR+9QpCi1kh4mGJEmSVAsTjS76agaPQitpRUOSJEmqiYlGV6ViH83gLWBFQ5IkSaqJiUYX2dF7okGhlSy5M7gkSZJUCxONLrJYhNbemsFboKNjkCOSJEmShicTja46OoiWXh5JoWBFQ5IkSaqRiUYX5YpGLz0aLQUrGpIkSVKNTDS6yFKR6GUfDVqtaEiSJEm1MtHoqqPY687g0eLO4JIkSVKtTDS66HNn8NYCmGhIkiRJNTHR6KqvZnArGpIkSVLNTDS6yFKp92ZwKxqSJElSzUw0ushiR+/N4C0FyLQhXJIkSaqBiUZXfTWDV49b1ZAkSZL6ZaLRRbkZvOdEg5bCrnMkSZIk9clEo6uOjvLGfD2ISgKSHSYakiRJUn9MNLroqxmcQuVRlUw0JEmSpP6YaHSRxd53Bq8ed+qU9mert66mvdTe7DAkSdIwYKLRVUdH783gbZVEo903Wdo/XXH/FTzjkmfwtqveRmY2OxxJkjTEmWh0kcViZ9N3d9FaqXR0dAxiRNLQ8bWFXwPgppU3cef6O5scjSRJGupMNCoyE4rFzqbvPVQSjTTR0H7o/o33s3TdUt506psAuG75dU2OSJIkDXUmGlXVjfh63UejDTDR0P5p0dpFAJx/1PmccOAJzHtkXpMjkiRJQ52JRkW1ybvXZvBqRaPdREP7nyVrlzCmMIZZk2Zx4kEncveGu5sdkiRJGuJMNKoqlYp+m8E7bAbX/mfp2qUcf9DxtLa0csJBJ7Bm2xrWblvb7LAkSdIQZqJR0blsrc3g0m5KWeKOdXdw0kEnAXDcgccBsGzDsmaGJUmShjgTjarOqVM2g0tdLd+8nC3tWzh5yskAHD7xcAAe3vJwM8OSJElDnIlGRWdFo79mcHs0tJ9Zsm4JQGdFY/q46RSiwPLNy5sZliRJGuJMNCqyo59m8DYrGto/LV27lNaWVo6dfCwArS2tzBg/w4qGJEnqk4lGVbHSDF7o+ZF0rjplM7j2M0vXLuW4ycfRVmjrPHbYhMNYsWVFE6OSJElDXcMSjYg4PCKujoglEbE4It7dqLEGQufUqX6Wt7UZXPuTzGTpuqWd/RlVh0441IqGJEnqUyMrGh3A+zLzZOCJwNsj4uR+rmmeajN4Lz0aNoNrf/TIY4+wYceGzv6MqsMmHMbqbavZ3rG9SZFJkqShrmGJRmauzMw/Vz7fDCwFDmvUePsq+1l1ymZw7Y+WrK00gk/ZPdE4dMKhQDkRkSRJ6smg9GhExCzgDOCmHl57c0TMi4h5q1evHoxwelRtBu916lS1GbzdHg3tP5asW0IhChx/4PG7HT943MEArN7WvP9nJUnS0NbwRCMiJgA/Bt6TmZu6v56ZX87MuZk5d9q0aY0Op3c2g0t7WLp2KUdNOooxrWN2Oz5tbPn/1dVbTTQkSVLPGppoREQb5STju5l5WSPH2ldZLJU/6XXqlD0a2v/01AgOMG1cJdGwoiFJknrRyFWnAvg/YGlmfqpR4wyYakWjteepU7jqlPYzq7auYs22NZx40Il7vDaxbSKjC6OtaEiSpF41sqLxZOA1wDMiYn7lz/kNHG+f9NsM3mYzuPYvi9YsAuDUqafu8VpEMG3sNCsakiSpV738+n7fZeYNQDTq/gOt/2bwSqJhRUP7iUVrFlGIQo8VDShPnzLRkCRJvXFn8CqbwaXdLFqziOMOPG6PRvCqaWOnOXVKkiT1ykSjot9m8EIBIqxoaL9QyhKL1i5i9tTZvZ4zbdw01mxbM4hRSZKk4cREoyL7awavvmaiof3Ag5seZPPOzT32Z1RNHTuVLe1b2Nq+dRAjkyRJw4WJRlU/zeAAtLXZDK79wqK15Ubwvioa1U37rGpIkqSemGhU7GoG7z3RiNZWp05pv7BozSLGto7l6ElH93rO1LFTgfIyuJIkSd2ZaFR1NoP3l2jYDK6Rb+GahZx00Em0tvQ+lfDgsVY0JElS70w0KvprBgcrGto/tJfauWPtHX1Om4JdFQ0TDUmS1BMTjYqam8Ht0dAId/f6u9lZ2tlnIzjAAaMPoLWl1URDkiT1yESjqqZmcCsaGvmqO4KfMvWUPs9riRamjJlioiFJknpkolFRWzN4m4mGRrxFaxYxefRkZk6Y2e+508ZOY812Ew1JkrQnE42qUv8VDXs0tD9YtHYRp0w9hYjo99ypY6eydtvaQYhKkiQNNyYaFbUvb+uqUxq5tnVs454N93DKlL6nTVVNGTuF1VtXNzgqSZI0HJloVNgMLsG9G++llCVOOPCEms6fOnYq63esp1ipCEqSJFWZaFRVm8Fb+ngkNoNrhLtnwz0AHHvgsTWdP3XsVEpZYv2O9Y0MS5IkDUMmGhWdU6f6rGjYDK6Rbdn6ZbS1tHHExCNqOn/a2GmAe2lIkqQ9mWhU2QwusWzDMo6adFSfO4J3NWXsFMBEQ5Ik7clEo6KmZvC2NrLdZnCNXMs2LOOYycfUfH51d3AbwiVJUncmGhVZ7IBCoc8lPcuJxs5BjEoaPFt2bmHlYys5bvJxNV9TrWis3e4St5IkaXcmGlXFYt+N4ECMGkXutKKhkem+jfcBcPTko2u+ZmzrWCa0TXDqlCRJ2oOJRkUWS302goNTpzSyPbT5IQCOnHhkXddNHTvVREOSJO3BRKOq2FFjRcOpUxqZlm9ZDsBhEw+r6zoTDUmS1BMTjYps7+hzsz6woqGRbfnm5UwdO5WxrWPrus5EQ5Ik9cREoyKLRWhr6/OcGDXKREMj1kObH+LwiYfXfZ2JhiRJ6omJRkUWO/rcQwMqFQ2nTmmEWr5lOTMnzKz7uiljp/BY+2Nsbd/agKgkSdJwZaJR1VHsP9EY1QbFYrn6IY0gO4s7efSxR5k5sf5Eo7qXhkvcSpKkrkw0KrJYrGHVqVHlc50+pRHm4S0Pk+ReTZ2aNnYaAGu3mWhIkqRdTDSqapk6Narcw2GioZFm+ebyilP7UtFYvc3dwSVJ0i4mGhW1rjoF2KehEae6tO3e9mgANoRLkqTdmGhU1DR1apRTpzQyPbT5IcYUxnRWJ+px4OgDaYkWEw1JkrQbE42KWledAisaGnmWb17OzIkziYi6ry20FDhozEH2aEiSpN2YaFTVsOpUixUNjVB7u7Rt1bSx06xoSJKk3ZhoVNQydQorGhqBMrOzorG3poydYjO4JEnaTT/vrPcf2dHebzO4FQ2NRGu3r2Vbx7Z9SjSmjp3KXevvGsCoNCLcey0s+RlMnAGPeyOMO6jZEQ0bCx7awE9ue5jxowu85omzmDFpTLNDkqS6mWhUdRSJUaP7PMUeDY1E1aVt92YPjaqpY6eybts6SlmiJSyUCrjm43DNv8OoCdC+FeZ9DS7+JUw5ptmRDXk/uPlB/uEnCxnV2kJHMfnWHx/gO298AnMOn9zs0CSpLr4jqChPnepvHw0rGhp5Ope23ceKRkd2sHHHxoEKS8PZwkvLScacV8Hf3Qtvuho6dsB3Xw47H2t2dEPajfeu5R9+spCnHjeNef/4bH73vqcxeXwbf/WNW1i1eXuzw5OkuphoVJRXnXIfDe1/Htr8EEFw2ITD9voe1WVxbQgXW1bDL98Lhz8BLvwstI6GQ0+Hv/gWrLsHfvexZkc4ZG1vL/L+SxZw5JTxfOHVZzJhdCtHThnP1173OLbs6OCff7q42SFKUl1MNKo6ioQVDe2Hlm9ezsHjDmZ0oe+pg31xd3B1+v1Hy1WLCz8PhbZdx496Kpx1MdzyVVh/f7OiG9L+99p7Wb5+G//+4lOZMHrXL76Omz6Rd557LFcsfoQ/P7i+iRFKUn1MNCpq2rCvWtEw0dAIsq8rTsGuRMO9NPZza++B275bbvyedvyerz/tAxAtcO0nBj+2IW79Yzv5yvX38txTpvOkY6bs8frrn3IUU8aP4lNXuuiCpOHDRKMiO9r7nzpVrWg4dUojyPLN+7aHBjh1ShXX/Gd5qtRT3tvz6wccWk5CFnwP1tw9uLENcV++/l4e29nBe599Qo+vjx/dytuefgw3LFvDn+4xoZc0PJhoVNWwYZ8VDY002zu2s2rbqn1acQpgXOs4xraOZdXWVQMUmYadVXfAwkvg8W+CidN7P+8pfwOF0fDHzw5ebEPcmi07+MYf7ueC0w7lhBkTez3vL594JNMmjuZ/rr1nEKOTpL1nolFRz6pTJSsaGiFWbFkB7NuKUwARwfRx03l066MDEZaGo2v+A0aNh7Pf3fd5E6bBaS+H2y+BresGJ7Yh7kvX3MOOjiLvftZxfZ43pq3AXz7hSK67azX3rN4ySNFJ0t4z0aioZ9UprGhohHho80PAvicaADPGz+DRx0w09ksrF8CSn8IT3wbj9+wv2MPj3wId2+C2bzc8tKHukY3b+faND/DiM2ZyzLQJ/Z7/qiccQVsh+PafHhiE6CRp3zQs0YiIr0XEqohY1KgxBlRHsd+dwa1oaKTp3ENjH3s0AKaPm84jWx/Z5/tomMmEK/4Bxh4ET3pHbdfMmA1HPqW8AlWp2Nj4hriPX3EHCbynn2pG1bSJo3nBaYdy6a3L2bKjo7HBSdI+amRF4xvAeQ28/4CqaeqUPRoaYR7c9CAT2iZw0JiD9vleM8bPYM22NXSUfPOzX1nyM3jgBnjGP8LYybVf94Q3w4YHYdlVDQttqLv1gfX85LaHedNTj+Lwg8bVfN3rzp7Flh0d/PS2hxsYnSTtu4YlGpl5HTBsJuBmRw1TpwoFKBRcdUojxgObH+DwiYcTEft8r+njp1PKkitP7U92bIYr/wmmzy7vkVGP458H46bCbd9pSGhDXUexxEd+vpiDJ47mr59+bF3Xzpk5iRNnTOSSW5c3KDpJGhhN79GIiDdHxLyImLd6dRM3++ro6HfDPihXNaxoaKR4aNNDHHHAEQNyr+njyisNPfKY06f2C5nwy/fDpuVw/iehpf+/P3fTOgrmXAR3/hoe2/+S0/++6i5uX76Rf77gZMaP7vuXXN1FBC+fezgLHtrAnY9sblCEkrTvmp5oZOaXM3NuZs6dNm1a8+KoYcM+KPdp5E4TDQ1/7aV2VmxZwRETBybRmDF+BoB9GvuDTLj63+D2H5Q34TvySXt3n9NfDaV2uP1HAxvfEPfdmx7gC1ffw0WPO5wXnHboXt3jRacfSlshuGTeQwMcnSQNnKYnGkNBZkKx2O/UKahWNJw6peHvkS2P0JEd+7yHRlW1ouHKUyNcsR0ufwdc9wk4/S/Licbemn4yHHrmfjN9qlRKPvmbO/nQTxbx9BOm8dEXzt7re02ZMJpnnjidn9z2MO3F0gBGKUkDx0QDoFhe9aSmqVOjRpE7TDQ0/D2wubw85pEHHDkg9ztg1AGMbR3r1KmRbOs6+M5LyonBOX8HL/w87Gt/z+mvglWL4dElAxPjELVtZ5F3/uA2Pn/1Mi563OF85bVzGdW6b/8Ev/Ssmax9bCd/WLb/TT2TNDw0cnnb7wN/Ak6IiOUR8YZGjbWvsqOySk4/O4MDtIwZQ+7Y3uCIpMZ7cNODAAPWo+GmfSPchofgq8+EB2+EF/8vPOND+55kAJz8QogWWHzZvt9riNqwdScXfflP/GrhSv7+eSfyHy85lbbCvv/ze87xU5k4ppWfL1g5AFFK0sCrrwOtDpn5ykbde6BlR6WiUcvUqbFjKG0z0dDw99DmhxjbOpYpY2rYYK1Gbto3Qm3fCN9+MWxdC6/7BRzxhIG794SDYdZTYdGP4dwBSl6GkPZiiTd+cx5LV27my6+Zy7NPnj5g9x7dWuC5p8zgN4seYXv7bMa01dmQL0kN5tQpgGK5olHL1KmWMWMpbd/W6Iikhntw84McMfGIAVnatmr6uOlOnRqJfv0BWHcvXPS9gU0yqma/tHz/lfMH/t5N9pmr7mbeA+v55F/MGdAko+qCOYeyeUcH197VxFUbJakXJhrs2oCvuvN3X1rGjCGtaGgEeHDTgwPWCF41Y/wMVm9bTXvJldlGjPtvgAXfh6e+F2Y9pTFjnHQBtLSWqxojyD2rt/Cla+/hZWfN5MI5e7e6VH/OPmYKB40fxc8XrGjI/SVpX5hoQOcGfNWdv/sSY8dS2m6ioeFtR3EHD21+iKMnHz2g950+fjpJsnbb2gG9r5oks7wh3wEz4anva9w44w6CY54Ji34CpZGzgtInrriTMW0FPvi8Exs2RluhhefNnsHvlq5i686Oho0jSXvDRIMuFY0aEo1yRcOpUxre7t94P8Uscuzk+nYk7o+b9o0w910LK/4MT/tbaBvb2LFmv7S8+d/ymxs7ziBZtmoLVyx+hNc/eRZTJ4xu6FgXzDmUbe1Frlq6qqHjSFK9TDSob+pUjBltRUPD3rINywAGPNE4dHx5esiKLU7jGBH+9EWYMB1Ou6jxY53wPCiMhkUjY/Wpr//hPka3tvC6s2c1fKzHzTqIgyeO5hdOn5I0xJhoUN/UqXIzuImGhrdlG5bRGq3MOmDWgN730AnlRGP5luUDel81wWNrYdlVMOeV0Dam8eONOQCOfRYs/fmwnz61s6PELxeu5LzZM5jS4GoGQKEleN7sGVx712oe2+H0KUlDh4kGdU6dGuvUKQ1/y9YvY9akWbQV+v+Zr8e4tnFMGTOFh7c8PKD3VRMs+SlkEU592eCNefKFsHkFPHzr4I3ZADcsW82Gre0NawDvyXmzD2FHR4lr7nT1KUlDh4kG9SUaMWYsuXMnWdlNXBqOlm1YNuDTpqoOm3gYyzdb0Rj2Fl0GU4+H6bMHb8zjz4OWtnKSM4z9fMFKJo1t46nHTRu0MR9/1EFMGT+KXy1y8z5JQ4eJBvVXNADS6VMapra2b2X5luUcM/mYhtx/5oSZVjSGu00r4IE/wOyXDe4GemMnw9FPh6WXl1e8Goa2txe5cvEjPG/2DEa1Dt4/sYWW4DmnzODqO1axvd1fhEkaGkw06NKjUVMzeDnRsE9Dw9XitYsBOHnKyQ25/8yJM1n52Er30hjOFv8ESJj9ksEf++QXwoYHh+3mfb+/YxWP7SxywSBOm6o6/9QZbN1ZdPM+SUOGiQb1Lm9bXuKxZJ+GhqlFaxYBMHtqY6bEzJwwk1KWXOJ2OFv0Y5hxGkw9bvDHPvH5EAVYcvngjz0Afr5gBVMnjOaJR08Z9LGfePQUJo1t44pF/r8naWgw0aDOROOAiQCUNm1qaExSoyxcs5DDJhzGQWMOasj9Z06cCWCfxnC17t5yM/ZgNoF3Ne4gOOqpsORnw2761Obt7fzujlW84LRDKLQM4pSzirZCC885eTpXLX2UHR1On5LUfCYa1Le8bWHSJACKJhoaphatWcSpU09t2P0Pm3AY4BK3w1Z1H4tTmjBtquqkC2HdPbBqSfNi2Au/XfIoOztKXDDnkKbF8LxTZ7B5ewd/XLa2aTFIUpWJBvVt2NeZaGzY2NCYpEZYs20NKx9b2bBpU1DeHXxUyyge2vRQw8ZQAy26DA5/Ikw+vHkxnHQBEMNu+tTPF6zgsMljOfOIA5sWw5OPncrE0a382tWnJA0BJhrUN3WqM9HYaKKh4WfxmnIjeCMrGoWWAkdOOpJ7N97bsDHUIKuWwqrFMPulzY1jwsFw5Nnl6VPDxPrHdnL93Wt4wZxDiMFcqaub0a0FnnnSwVy55FHai8N740NJw5+JBiYa2n8sXLOQQhQ48aATGzrOUQccxX0b72voGGqART+GaIFTXtTsSMqrT61eCqvvanYkNfn1okfoKCUXnDb4q01197xTD2HD1nZuundds0ORtJ8z0aC+Ho0YM4YYNYrihg0NjkoaeAvXLOTYyccyrm1cQ8c5evLRLN+ynJ3FnQ0dRwMoExZeCkedU64oNNtJF5Q/Lh0eVY3LFzzM0dPGc8qhBzQ7FJ52/DTGjSq4eZ+kpjPRAEr1JBoRtE6fTsejjzY6LGlAlbLEwtULOXVa46ZNVR11wFGUssQDmx5o+FgaICtug/X3NX/aVNUBh8LMx8PioZ9oPLppOzfdt44LTju0qdOmqsa0FTj3xIO5cvEjdDh9SlITmWgAuW07tLXVlGgAtM2YQftKf1Ok4eW+jfexuX0zc6bNafhYR006qnNMDROLfgwtbbsqCUPBqS+DRxfCI4uaHUmffnn7SjJpyiZ9vblwzqGs2bKT6+528z5JzWOiQXmX75axY2s+v/WQGbQ/YqKh4WX+qvkAnD7t9IaPNWvSLMBEY9goFcurTR37LBjbvBWT9jD7ZeXkZ/73mh1Jn362YAUnH3IAxx48odmhdDr3hIM5aPwoLr3VZaYlNY+JBlDatpWWMWNqPr/tkEPpeHQVWXRDJA0fC1YvYPLoyRx5wJENH2ts61gOm3AY92y4p+FjaQDcew1sXgFzXtHsSHY3fgqc8Dy4/YdQbG92ND1atmozCx7awEvOPKzZoexmVGsLLzr9MK5asor1j9krJak5TDQoT52KsfUkGjOgWKRjzZoGRiUNrAWrF3DatNMGbQ75CQeewNJ1SwdlLO2j+d8tVzJOOL/Zkezp9FfD1jVw95XNjqRHl8xbTmtL8KIzhlaiAfCys2ays1ji8gUrmh2KpP2UiQaVqVNj6pg6NWMGAB32aWiY2LhjI/duvHdQpk1VnTjlRB7Y9ABb27cO2pjaC9vWw9JfwKkvh9bRzY5mT8c+CyZMh3lfa3Yke2gvlvjxnx/m3BMPZuqEoffsTj70AE459AC+d9ODZGazw5G0HzLRAHLbtjqnTh0CQPsjjzQqJGlA3b76doBBaQSvOvmgk0mSO9ffOWhjai8svBSKO8qVg6Go0AqPeyMsuwpW3dHsaHZz7Z2rWbNlBy8/a2azQ+nVxWfP4s5HN3PDMivwkgafiQblikaMq72i0VapaLSvNNHQ8LBg9QJaooXZU2cP2pjVTQGXrF0yaGOqTqUS3PJ/MP1UOGTwktC6zX09tI6BG7/Y7Eh2860bH2DqhNGce+IQ2HekFxeefihTJ4zmq9e7MIOkwWeiAZS2batr6lTLAQcQ48bR4cpTGibmr57PCQee0PCN+ro6eNzBHDTmIO5YN7R+C60u7r6yvPv22e+AIbD/Q6/GT4U5F8GCH8CWobFc6+IVG7nurtX81ZNn0VYYuv+Ujm4t8LonHcm1d63mrkc3NzscSfuZofu34yDKbdtoqaMZPCIqe2lY0dDQVywVWbh6IadNO21Qx40ITppyEovWDO09EPZrf/g0TDp86GzS15cnvh2KO+GPn212JAD877X3Mn5Ugb98QuNXcdtXr37ikYxtK/C53y9rdiiS9jMmGpQrGlFHRQMqm/bZo6FhYNmGZWzt2Dqo/RlVZx58Jss2LGPjjo2DPrb68eCN8OCf4Elvh0Jtm5U21bTj4bRXwM1fho0PNzWUB9du5ZcLV/KqJxzBpHFD/9kdNH4Ur3/KLH6+YAWLHvb/RUmDx0QDKG7eTGHixLquaT1khqtOaVhYsHoBMDgb9XV31vSzAPjzo38e9LHVh0y48p9g/MFwxmuaHU3tzv378uaC1368qWF8/Io7aCsEb3jK0U2Nox5vPucYJo1t4xO/cXEGSYNnv080sr2d3LqVlkkH1HVd24xD6FizhtzpRkga2m5+5GYOHncwMycO/so4s6fOZlTLKG599NZBH1t9WHgpLL8ZnvnPMHro7GbdrwNnlRvDb/sOPNKcKXk33buWXy5cyVufdgwzJtU+5bbZJo1t46+ffgzX3rWaa+8aGn0ukka+/T7RKG7aBEDhgEl1Xdc6Yzpk0r7Kv7A1dJWyxM0rb+aJhzxx0Dbq62p0YTSnTjvVRGMo2bEFrvqX8ipTQ3VJ2748/YMwdjL84j3lVbMGUUexxEd/sYRDJ43hLeccM6hjD4SLnzyLo6eO559+uojt7cVmhyNpP2CisbGSaNRd0ahs2rfq0QGPSRood6+/m/U71vP4GY9vWgyPm/E4lqxbwobtG5oWg7q46l9g0wp43iegZRj+EzDuIHjOv8HyW+DP3xjUob98/b0sXrGJDz3/ZMaOKgzq2ANhdGuBf33xbB5ct5XP2xguaRAMw39lBlZpU7kxrnBAfYlG68HTAeh41ERDQ9dNK28C4AmHPKFpMTx95tMpZYnrHr6uaTGo4t5r4JavwhP/Go5o3s/EPptzEcx6Klz5z7BucPaHuPORzXz6t3dz/qkzOP/UGYMyZiOcfcxUXnLmYXzp2nuY/9CGZocjaYTb7xON6tSpljoTjbbp5Q2a2k00NIRd9/B1zDpgFjPGN++N0clTTubgcQfz+wd/37QYBGxdBz99O0w5Fp7xj82OZt9EwIu+WK7I/PgNUGxv6HDb24v8zQ/nM3FMKx974eymTEMcSP9ywSlMP2AM7/r+bWze3thnJ2n/tt8nGh2r1wDQOnVqXde1TJpEjB5Nx6OrGhGWtM/Wb1/PvEfm8ewjn93UOCKCZx/5bK5ffr3Tp5olE376NtjyKLzkyzBq8DZubJjJR8AFn4WHb4Xf/nNDh/rXXy5hycpNfPylpzFlwuiGjjUYJo1t4zMXnc7y9Vv5wI9vp1TKZockaYQy0VhdThRap02r67qIoHX6dKdOacj6/YO/p5jFpicaAC8+9sXsLO3k5/f+vNmh7J/++Dm46wp4zr/CYWc1O5qBc8qL4Alvgxu/CDd9uSFD/HzBCr5z44O8+ZyjedbJ0xsyRjPMnXUQf/+8k/jVwkf4L5e8ldQgJhqrVlGYNImWMfUvU9h28MFOndKQlJn86K4fccykYzjxoBObHQ4nHHQCc6bN4TtLvsPOoktCD6oHb4SrPgwnXQBPeEuzoxl4z/03OOF8uOIDsOAHA3rre1Zv4YM/vp0zj5jM3z73hAG991DwxqcexaufcARfuvYe/ueae5odjqQRaL9PNNofXUXrwfVVM6qsaGio+vOqP7Nk7RJeddKrhsx88rfNeRsrHlvBJXdd0uxQ9h/r7oMfvAoOPBIu/Hy5t2GkaSnAS78KRz4ZfvIW+OPny1PF9tG6x3by+m/cwui2Ap971Zm0FUbeP5cRwUcuPIUXnHYIH7/iDv79V0spOo1K0gAaeX9z1mnnA/fTdsSRe3Vt64zpdKxaRQ7AP2rSQCmWivzXLf/FtLHTeMHRL2h2OJ3OPvRszj70bD7z58/w0KaHmh3OyPfYWvjeX5R30n7VJeW9J0aqUePh1ZfCSRfClR+CH7223Py+l7bu7OAt357Hyo3b+cpr53LY5LEDGOzQ0lpo4TMXncFrnngkX77uXl791RtZsWFbs8OSNELs14lGaccOdj7wIKOPPnqvrm+bPp3cuZPihg0DG5i0D74w/wssWbuE9819H+Pahk7Tb0TwkbM/Qmu08rfX/S3bOnwz0zBbVsE3ng8bHoSLvgtTj212RI3XNgZe/k149kfhzl/D5+fCzV+pe0WqLTs6uPjrt3DrA+v51F/M4awjD2xQwENHoSX46AtP4b9edhq3L9/Isz91LV+4ehnbdrqpn6R9s18nGpt/8xtob2fc3L1rjnQvDQ0lm3Zu4iN/+ghfWfgVXnrcSzn/qPObHdIeZoyfwb895d9YsnYJH7rhQ5RycHd23i88sgi+9lzY8AC86kcw6ynNjmjwtLTAk98Nb74aDj4ZfvV++Mzp8IfPwOZH+r38oXVbeeWXb+TWB9bzmYvO4AWnHdr4mIeIiOAv5h7Or9/9VJ587FQ+8Zs7efLHf8+nfnsXD63b2uzwJA1TMZSm/cydOzfnzZs3KGO1r1rFPec9j9HHHsus73ybGDWq7ntsmz+f+y96JTP/54tMPPfcBkQp9a+j1MGP7/oxX5j/BTbs2MDFsy/mXWe8i9aW1maH1qtvLv4mn5z3SV538ut439z3DZk+kmGtY0d5M77ffRTGTIK/+BYc8cRmR9U8mXD3b+GPn4X7rweinHSd+Pzyx4NP6dwZvVhKLvvzcj72iyVkwn+/4vQRtcLU3rjl/nX877X3cNXS8sqMcw6fzHmnzOBJx0xh9qEH0DoCe1aGMf8C1ZDV0HciEXEe8BmgAHw1M/+zkePVY+1Xv0ru2MFhn/zEXiUZAKOOPRYi2L5kiYmGmuKPD/+RT8z7BMs2LGPu9Ll84PEfGBKrTPXntSe/luWbl/PNJd8kSd571nsptBSaHdbwtGUVLLwEbvrfchXjuOfAC78IE/ZukYsRIwKOf075z+q7YPFlsOjHcMUHy6+PmcTGw57GL+McvvnwYdy5PjnjiMl85hVncMSUoTPlsFkeN+sgHjfrIB5at5VfLlzJL25fwcevuAOA8aMKnHnkgZxxxIHMmTmJ02ZOZtrE4b+/iKSB17CKRkQUgLuAZwPLgVuAV2bmkt6uGayKxs777+feC1/IAS94AYf++7/t073uveBCWsaP58jvf8/fyqrhdhZ3sm77Ouavns+ld17KTY/cxMwJM3n/3PfzjCOeMax+BktZ4j9u+g9+cOcPmDNtDq+f/XrmTJvDgWMOpCVG8G9LS8Vy30BxJ5Q6oGM77NwK7Y/t+ti+bffPSx27r6S0cwtsXA4r5sPqpeVjh82Fc/8BjnnGyFxdCiiVkp3FEh2lpL2jxM5iia07i2zd2cG2nUW2tRfZurPItp3FzuPVVZSqT2/bpnWsXLmcJY9uY+ljEyhS4LhYzrtbf8zzp6wiDjsDDj0DDjoKDjgMJkwvb3DYNg4Koxr3bDMr/4338mNxJ+x8rPynfWuXj5Wfo44d5e9h9EQYcwCMPgBGTSg30lf/9PP9rdq8nZvvW8dN967j5vvWcfeqzVQXqTp00hhOrSQdR00dzyGTxnDwAWMYP6rAmLYCo1tbGvr3U2aWH2H18+ojJTv/1yn1ck57sbTbz8y2nUUe6/L59vYiY9oKTBzTxoQxrUwc08qE0a2MG1Vg3Kjyx0Z/f/0Ymf/Da0RoZKLxJODDmfncytd/D5CZ/9HbNYORaGy68koefu/7aBk7lqMv/xlthxyyT/db961v8+i//zsHnP88DvvUpwYoSml3a7at4fzLzt+tgfrgcQfz2pNfyytPfCWjCntXlWu2zOQX9/6C/zfv/7F2+1oAguA5s57DJ5/2ySZHN4B+9Fq46zflN4MD0ZcSLTBhBhx8Unl61EkXwsFDv5K1Nz7y88V876YH6SjlgC29evDE0RwzbQJzZx3Is48Zx6ksI1bcBiv+DA/fBpuW93xhtEBUKm8RdL6/6+3zmpKEodSnFOXlgqvf53n/AXP/qtezH9vRweIVm7h9+QYWLN/I7cs38MDanvs5IqC1JSqjxK7Hxa7cJojOz7smCQnlR0XPicJQUWgJClH+Ht5yztG89zmDtveKiYaGrEYmGi8DzsvMN1a+fg3whMx8R7fz3gy8ufLlCUAztiidCqxpwrj7A59tY/hcG8dn2xg+18bwuTbOcHm2azLzvGYHIfWk6d2imfll4MvNjCEi5mXm3GbGMFL5bBvD59o4PtvG8Lk2hs+1cXy20r5r5EToh4HDu3w9s3JMkiRJ0gjXyETjFuC4iDgqIkYBFwGXN3A8SZIkSUNEw6ZOZWZHRLwD+A3l5W2/lpmLGzXePmrq1K0RzmfbGD7XxvHZNobPtTF8ro3js5X20ZDasE+SJEnSyDCCF6uXJEmS1CwmGpIkSZIG3H6VaETEeRFxZ0Qsi4gP9vD6xRGxOiLmV/68sRlxDjcR8bWIWBURi3p5PSLis5XnfntEnDnYMQ5HNTzXp0fExi4/r/882DEORxFxeERcHRFLImJxRLy7h3P8md0LNT5bf27rFBFjIuLmiFhQea4f6eGc0RHxw8rP7E0RMasJoQ4rNT5X3xdI+6Dp+2gMlogoAF8Ang0sB26JiMszc0m3U3/YfVNB9esbwOeBb/Xy+vOA4yp/ngD8T+Wj+vYN+n6uANdn5gsGJ5wRowN4X2b+OSImArdGxG+7/V3gz+zeqeXZgj+39doBPCMzt0REG3BDRPw6M2/scs4bgPWZeWxEXAR8HHhFM4IdRmp5ruD7Ammv7U8VjccDyzLz3szcCfwAeGGTYxoRMvM6YF0fp7wQ+FaW3QhMjohDBie64auG56q9kJkrM/PPlc83A0uBw7qd5s/sXqjx2apOlZ/DLZUv2yp/uq/k8kLgm5XPLwWeGRExSCEOSzU+V0n7YH9KNA4DHury9XJ6/gfwpZWpEpdGxOE9vK761frsVb8nVcr+v46IU5odzHBTmV5yBnBTt5f8md1HfTxb8Oe2bhFRiIj5wCrgt5nZ689sZnYAG4EpgxrkMFTDcwXfF0h7bX9KNGrxc2BWZp4G/JZdvx2ShqI/A0dm5hzgc8BPmxvO8BIRE4AfA+/JzE3Njmck6efZ+nO7FzKzmJmnAzOBx0fE7CaHNCLU8Fx9XyDtg/0p0XgY6PqbiJmVY50yc21m7qh8+VXgrEGKbaTr99mrfpm5qVr2z8xfAW0RMbXJYQ0LlfnYPwa+m5mX9XCKP7N7qb9n68/tvsnMDcDVwHndXur8mY2IVmASsHZQgxvGenuuvi+Q9s3+lGjcAhwXEUdFxCjgIuDyrid0m4N9IeX5xdp3lwOvrazk80RgY2aubHZQw11EzKjOwY6Ix1P+/9k3Fv2oPLP/A5Zm5qd6Oc2f2b1Qy7P157Z+ETEtIiZXPh9LeVGTO7qddjnwusrnLwN+n+7I26danqvvC6R9s9+sOpWZHRHxDuA3QAH4WmYujoiPAvMy83LgXRFxIeWVU9YBFzct4GEkIr4PPB2YGhHLgX+h3FRHZn4J+BVwPrAM2Ar8VXMiHV5qeK4vA94WER3ANuAi31jU5MnAa4CFlbnZAP8AHAH+zO6jWp6tP7f1OwT4ZmX1xBbgR5n5i27/fv0f8O2IWEb536+LmhfusFHLc/V9gbQPwr/fJUmSJA20/WnqlCRJkqRBYqIhSZIkacCZaEiSJEkacCYakiRJkgaciYYkSdIgi4ivRcSqiFhU4/l/ERFLImJxRHyv0fFJA8FEQ9KwExEfqvxje3tEzI+IJ1SOfzUiTt7He38jIu6LiLd2+fpldVz/9Ig4ey/HPqby/WzZm+slDSvfYM+NF3sUEccBfw88OTNPAd7TuLCkgbPf7KMhaWSIiCcBLwDOzMwdlV2lRwFk5hsHaJi/zcxL9/LapwNbgD/We2Fm3gOcbqIhjXyZeV1EzOp6LCKOAb4ATKO8h8+bMvMO4E3AFzJzfeXaVYMcrrRXrGhIGm4OAdZk5g6AzFyTmSsAIuKaiJgbERdWKgPzI+LOiLiv8vpZEXFtRNwaEb/ptutvX54VEfMi4q6IeEHlXtdFxOnVEyLihoiYA7wV+JvK2E+t7D7844i4pfLnyZXzn9YlxtsiYuKAPSFJw9WXgXdm5lnA+4EvVo4fDxwfEX+IiBsjoqZKiNRsVjQkDTdXAv8cEXcBVwE/zMxru55Q2dH3coCI+BFwbUS0AZ8DXpiZqyPiFcC/Aa+vYcxZwOOBY4CrI+JYyjsxXwy8JyKOB8Zk5oKI+BKwJTM/WRn/e8B/Z+YNEXEE8BvgJMpvIt6emX+IiAnA9r1/JJKGu8rfA2cDl0RE9fDoysdW4DjKFdOZwHURcWpmbhjkMKW6mGhIGlYyc0tEnAU8FTgX+GFEfDAzv9H93Ij4O2BbZn4hImYDs4HfVv4RLwAraxz2R5lZAu6OiHuBE4FLgH+KiL+lnKzsMX7Fs4CTu7xxOKDyhuIPwKci4rvAZZm5vMZYJI1MLcCGzDy9h9eWAzdlZjtwX+UXLccBtwxifFLdTDQkDTuZWQSuAa6JiIXA6+j2Rj8ingW8HDineghYnJlP2psh9wwht0bEb4EXAn8BnNXLtS3AEzOze8XiPyPil8D5wB8i4rmVudiS9kOZuamyEMXLM/OSKP924rTMXAD8FHgl8PVKX9rxwL1NDFeqiT0akoaViDihsgJL1enAA93OOZJyQ+XLM3Nb5fCdwLRKMzkR0RYRp9Q47MsjoqXSqHl05V4AXwU+C9xSbdIENgNd+y2uBN7ZJbbTKx+PycyFmflxyr+VPLHGWCSNABHxfeBPwAkRsTwi3gC8GnhDRCwAFlP+RQaUp1yujYglwNWUF6xY24y4pXpY0ZA03EwAPhcRk4EOYBnw5m7nXAxMAX5ambK0IjPPryxT+9mImET5779PU/7HvD8PAjcDBwBvrVYnMvPWiNgEfL3LuT8HLo2IF1JOMN4FfCEibq+MeR3lhvH3RMS5QKkSw6/reAaShrnMfGUvL+3R6J2ZCby38kcaNqL8sytJgvK+GcAvalneNiIOpTyF68RKD8dAxbAlMycM1P0kSWoGp05J0u42Ah+rbtjXm4h4LXAT8KGBSjKqG/YBjw7E/SRJaiYrGpIkSZIGnBUNSZIkSQPOREOSJEnSgDPRkCRJkjTgTDQkSZIkDTgTDUmSJEkD7v8DPsOFC8203OgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_df = pd.melt(txs_by_block_df, id_vars=['height'], \n", + " value_vars=[\"block_size\", \"txs_block_size\", \"mean_proof_size\", 'worst_case_claim_size'])\n", + "plot_df['Size [bytes]'] = plot_df['value']\n", + "plot_df['Component'] = plot_df['variable']\n", + "sns.displot(data=plot_df, x=\"Size [bytes]\", hue=\"Component\", kind=\"kde\", height=6, aspect=1.5)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzgAAAJBCAYAAACK1hA/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOydd5gT1frHPyfZylaWpfdeRaqAgoIIVuzXXrDca7lescvv2lDsvV67oNgrgopKEUSK9CK9LW2p23s2yfn9MckmM5lsg2VZfD/PkyfJmTkzJ5Mp53vecpTWGkEQBEEQBEEQhGMBR203QBAEQRAEQRAE4XAhAkcQBEEQBEEQhGMGETiCIAiCIAiCIBwziMARBEEQBEEQBOGYQQSOIAiCIAiCIAjHDCJwBEEQBEEQBEE4ZhCBIwiCIAiCIAjCMYMIHEEQBEEQBEEQjhlE4AiCIAiCIAiCcMwgAkcQBEEQBEEQhGMGETiCIAiCIAiCIBwziMARBEEQBEEQBOGYQQSOIAiCIAiCIAjHDCJwBEEQBEEQBEE4ZhCBIwiCIBxVKKXqKaXGK6XWKaWKlFLa9+pV222rLZRSo33HIK2222JFKTXb17ZxtVH/cKOUSvO1Z3Rtt0UQhOohAkcQBCGIoM50dV6ja7v9xwhfAA8CXQAN7PO9SsNVUEoNPcT/ro1SKlkptcv3/dvyGqiUilNKbfatO0MppQ7nARAEQRCqT0RtN0AQBOEoY1+Y8nggroJ1ig5/c/5eKKW6AOf4vl6qtf6yklVdhP9fUoBIDIGUGWYdj9Y6Wyn1T+An4AKl1JVa60/CrP8c0B7IBa7XWutKtlMQBEGoYUTgCIIgBKG1bmJX7nOfeaS8dYTDwnG+94wqiBu01vOBcP/dbOAUYL7WemgF25mmlHoPuBF4TSn1m9Y63bK9EcAtvq93aK13VLadgiAIQs0jLmqCIAjC0UQ933t+LbbhLmA7UB94N3iBUioJ+MD39Qet9YQj3DZBEAShAkTgCIIgHAJKqad9cRhrKlgvUSmVb43VUUqN85XN9n2/RCk1RymVqZQqUEotVUrdppRyVrD9hkqpx5VSy5VSOUqpYqXUVqXU+0qp7uXUa6GUekkptca3vxKlVLpvvy8ppfpX7YiUbTdGKXWHUmq+UirL157tSqmP7JIF+I8DMNFX1NoSIzPRWqem0FrnAddjxP+cpZS6MWjxa0ALDFe3f4XbhlJqgFLqE6XUNt9vL/D9/jlKqYeUUi0OpY1KqRFKqWlKqQPKSMSwRin1oFIqxmbdhb5j+L8Ktjnct55XKdWumu2KUkqNVUqt8v3mLKXUdKXUmdXZXtB2L1RK/aCU2qeUcvnef1BKXVCJug2UUg8rpf70XVfFykgk8KtS6hafaK1KWx7wHSePUurm6v8qQRBqDK21vOQlL3nJq4IXMA6jw6st5W0Br2/Z4HLq3+xbJxuItdnubOAZ32cvRgfa498n8DMQHWbbpwFZQeu6MCwg/u8lwDU29Y737ce/ntv33RtUNrEax6o5sNrSnuyg7x7gP5Y69wB7gZygdfYGvV45hP9utv8YV7He6756uUBr4IKg33B5OfWutRzD4qDf5X+NrmJbRvvqpQG3Bm0/CyO2yL/dZUD9MHVzgHrl7ONz33q/VvP4Pgn87vtcajknNTCugvohy4GooHb5zwvrtfEpEBlm2yMt53gpcNB3TvrLzrfUSbP7jzAGhf3nRBFwQXXPSXnJS141+xILjiAIwiGgtd4G/OL7+s9yVvUvm6S1tktG0Au4D6MD1VhrnYLhIvUQRofqdOApayWl1HHAFCAZw52qG4aAisfolP8Po5P4vlKqn6X6C759LAMGYXQSU4AYoBOG6CjXMmXTHifwDdADo0N9FRCvtU7GCMr/AaOj+ErwqL7W+nltxDaN8RXt1Fo3CXqN4chzP7AFSAA+Bt7ylX+ttf7MroJSqh6GlUf56nTQWsdorZMwElX0w0hQsL+abWoIvAx8DbTSWtcHEjFigkqA3sD7ljpfYIiNRODSMO1OxRBwAG9Xs223AidgiPkEX9ta+doK8IhS6twqbvNJjDZrYDzQwHeOpvqWAVzuW2ZCKdUb+B7jHF8DnIUh8FKBWIz/4gUgr6JGKKWigS+Bf2OI9ZFa6++q+FsEQThS1LbCkpe85CWvuvAijAXHt+w837JCINlmeV8Co8XHhdsu8FGYfY8nMPrczLJspm/Zk+W0/RXfOpMt5YW+8kGH8ThdGvR7RtosjwAW+pavtlk+2rcs7TC2aTbVsOD46g7GbC3YB6SWs/4JvvXygYjD+BtGB7VhNuCwWeeGoHX6W5a95CtfEGb7d/uW7yWMNaQSx1djZJSzLncAc3zL/yqn/jhLeXMC1inb8xtDoPithE0ty+b6lm0Ekqrwe9IIsuAASUFt3AX0OFz/q7zkJa+aeYkFRxAE4dD5AaPjEwtcbbPcb71ZoLVeXc52HgtT/hyGS0wEcJG/UCnVBjgVw7Xs+XK2+5Hv/TRLLE+2771pOXWrit9CsEBr/at1odbaDTzq+9rDZ4E6atFa/wGsCCp6SGt9sJwq2b73KKBBDTXrca2116Z8AsZ5CHCZZZnf+jQwzDH3xxl9oLUOO99QBez0tcGEr62P+752r8J/fhHGOV8MPB1mnccxLFeRwMX+QqVURwxxCvBfrXVOJfdpQinVDEMonQKsB07UWv9VnW0JgnDkEIEjCIJwiGitPQSybZnc1JRSccAVvq/vlLOZnVrrzWG2nwss9X0NdjM7yffuANYqpfbavTDid8CYxye40/2D7/1DpdQLSqlTfC5Wh4K/fTPKWec3DKtI8PpHJb6EEH2Ciq5TSpX37NyC0RGOBP5USt2vlOpVUZKIKuDG6HCH4BMSs31f+1mWbcA47hB6jg4hMKmqKWtcFZmttdZhls3FaHtI28rBv95i3zUQgtY6C1his90Tfe8eYFol92elCzAfI3X5AuAkLSnBBaFOIAJHEATh8PAeRgfuOKXUwKDyyzBiOLIxYiHCsbuC7fuXNwoqa+Z7dwCNy3mlBtUJFjD3YXR64zFSI88GcpVSS5RSjyqlmlfQJjv87Qv7e7TWxRiB3tbfc1Thy3T2su/rrxid5YEY7ly2+MTuZcA2jBiop4HlGMd1ui9r16GIyINa65JyltudJ378VpyrLNnW/Nngpmsjpqy6VPSfZ5TTNjsqPJd8+K1Wwdv1z4l0UGtdUMn9Wbkf4z/ch+FuGW6SWEEQjjJE4AiCIBwGtDEZ5BTf1+D0wf7R8o+1fXKBQ8FvFdintVaVfKUFtTlba30qMAR4FpiHIdL6Ag8Dm5RSlx/mNtcl3seIv9iG4S71rK/8MaVUl3CVtNYrMUb/L8Kw2v2F4b54GkbSh/W15Jr3HUZnvT5wCYBSqj4B167yLIx1jXCWpKrwFUZsT2PgzcNohRMEoYYRgSMIgnD48I+QX6KMeW+OAwb4yirKTFWRtcS/PDj71l7fe6rPFa5aaK3/0Frfr7UejJGN7TyMNM+xwAdKqcZV2Jy/fWHnefFZD/yuctXNJlaj+OY3GUkgcD4fIyHEGowscxPL6/BqrV1a62+11jdprY/DyH52M0bK4pbAh9VsWqpSKqqc5Xbnib9NpQQyrPmF91UYv2cvAYFeXcKew74sZFX9zys8lyzLD/e18RNGZrkSjOM0SUSOINQNROAIgiAcPmYAmzFiXa7EnFygosDklkqp9nYLlFIJGFYVCMQbgGFxAcOSc0gTKfrRWhdrracAF/qKYggEa1cGf/uGl7POUIzgcYDFVWrgEUAp1RYjsQPAa1rr2WCIFow5btwYwjWsq5oVrXWG1vptDLcngN5KqeokIYjAsLjZtVthBMOD+TwJ5h2MOXQGK6W6EjhHJxxCcgE/p/jaYMcQAv95uLZZKYutCTcZp1IqmaBYnaBF833vh3RtaK1/whD8xRjpqD9VSkWUX0sQhNpGBI4gCMJhwhdg7bfU3Iox6guVd/15KEz53RjWFDfGHDP+/W0iEFT+REUzsiulUoI+R1QQLB/sTmeXsSscn/veBymlRtq0IQLD/Q2MlMFHVUYqXwd9AkZc0ibg/4KXa62XYkzICoarWldL/egKdlHd4xrMA2H+u2sxrEMQJt5La72dQND9WxgB9IeaXMBPK18bTPja+l/f17UVZBIM5huMcz6GgDC08l8gGiOddPC1sRlj0lGAJ5VSiZXcZwha61+AczH+u0uAz5VSkdXdniAINY8IHEEQhMPLBAyXlh4YsQ7ZlJ9cwE8OcK1S6hXfpIsopRKUUv8lIAje8MX6BPMfjDlXOgELlVLnBQeQK6WaK6WuVkrNJNAxB8OtZ5NS6kGlVO/gUWmlVE+MSSoBCjDmMKks3wB/+j5/qZS6wt8Z9FlGvsGYVBSMJAdHG7djWEG8GPOgFNqs8xiGC180MMHitnSZUmqeUuompVQ7f6FSyqmUOp1AuuMFvgxgVaUQw6L2qS8JAkqpGKXUv4A3fet8r7VeVM42/K6UJ/veDzW5gJ8cjFiVf/rPQaVUS+AzYJhvnQcruzGt9W6MOZwAxvoSXyT7tpuslBoP3Otb/qLWeo9lE2MwLC8dgXlKqTOCzkWnUqq/UuotpdRplWjLdOAcjON/Eca5XZ6roCAItUltT8QjL3nJS1514UU5E33arDvJvy6Gi1NltjsbQ4BojM51JsbotX8704GYMNs4CdgTtK4bI0tZYVCZBt4NqtPGssyNkeWqJKisBLi4GseqOUZgffB2soK+e4Dbw9QdTS1N9IkhEv3H7NkK1u1DYBLK+23a73/5M8YFTxa6G+hSxd9QdlyAf/vOEe07T1xB214BNKhgWw4Ck1lq4KLDdHyfJDC5psvXtuBjMb6C+uNslkVhDBAEnzuZluP5KWEmJ8WIo8oOWtfl+z+Cj9n5ljr+YzPaZnunYAwoaGAqEHW4zlN5yUteh+8lFhxBEITDz1dBnytKLlCG1vp+jBTDfwAKoxO2AmMk+gxtpNq1qzcPo3N+D4ZbTjZGsgAPsA7DGnMlcEdQtd0YbjcvAQsxBFI8htBZC7yBMWP715Vtf1B7dmPERdzl23YRRnrqnRjir6/W+tWqbrcm8blRTcRwBVxHeHdBALTWy4CnfF8fDXJVmwJcg2HJW4lh1UgC8oBFvu1211qvr25btdZvAKdjzG/k9b3WY1j6BmmtM8qpjjbmy/nW9/VwJBfw48KIvfovsAHDwpUDzATO1lqXe0zt0EayhksxMr1NwxDhCb73acCFWusrdJj4IW1MNtsReAIjXXcRRozcbuAX4CZgVhXaMwc4A+P/PAeYXAm3REEQjjBK68ORSVEQBEHwo5R6DbgNww3pxArWHQc8AszRWg+t+dYJAiilVmO4UT6ltf5vResLgiDUJcSCIwiCcBjxBTNf4/v6ZnnrCkJtoJQaiiFuvBxbc98IgiAAInAEQRAOGz5XlVeARAx3rMokFxCEI4ZvTqOXfV+/1kETvwqCIBwrSC53QRCEQ0QpdQdGfEsjjBgOgLu0MW+KINQ6SqnPMZJRNMF49ucBY2u1UYIgCDWEWHAEQRAOnWSgNUZigBXApdUJzheEGqQJRmrwAowJaYfqw5MaWhAE4ahDkgwIgiAIgiAIgnDMIBYcQRAEQRAEQRCOGUTgCIIgCIIgCIJwzCACRxAEQRAEQRCEYwYROIIgCIIgCIIgHDOIwBEEQRAEQRAE4ZhB5sGpoyil9gL1MCYTFARBEARBEIRjgZZAoda6SXU3IGmi6yhKqdzo6OiE9u3b13ZTBEEQBEEQBOGwsGXLFkpKSvK01onV3YZYcOouO9u3b99tzZo1td0OQRAEQRAEQTgsdO/enbVr1x6Sh5LE4AiCIAiCIAiCcMwgAkcQBEEQBEEQhGMGETiCIAiCIAiCIBwziMARBEEQBEEQBOGYQQSOIAiCIAiCIAjHDCJwBEEQBEEQBEE4ZhCBIwiCIAiCIAjCMYPMgyMIgiAIglDDaK2RydWFvxtKKZRSR3y/InAEQRAEQRBqAI/HQ0ZGBnl5ebhcrtpujiDUClFRUSQkJNCgQQOcTucR2acIHEEQBEEQhMOMx+Nhx44dFBcX13ZTBKFWcblcZGRkUFBQQKtWrY6IyBGBIwiCIAiCcJjJyMiguLgYp9NJ48aNiYuLw+GQ0Gfh74XX66WgoIB9+/ZRXFxMRkYGjRo1qvH9isARBEEQBEE4zOTl5QHQuHFjkpKSark1glA7OByOsvM/PT2dvLy8IyJwZChBEARBEAThMKK1Lou5iYuLq+XWCELt478OXC7XEUm2IQJHEARBEAThMBLcgRO3NEEwXwcicARBEARBEARBEKqACBxBEARBEARBEI4ZROAIgiAIgiAIgnDMIAJHEGqYtJw0rvv5Ou787U5yXbm13RxBEARBEIQQPB4PDz/8MO3btycqKgqlFKNHj67tZlULSRMtCDXMpLWTWLJvCQCDmw/mok4X1XKLBEEQBEEQzLzyyiuMHz+eZs2aceGFFxITE8PgwYNru1nVQgSOINQwWSVZtp8FQRAEQRCOFiZPngzA3LlzadeuXe025hARFzVBEARBEARB+Juza9cugDovbkAEjiDUOMH53o9E7ndBEARBOBpJS0tDKcXQoUMpKipi7NixtG7dmujoaDp06MAzzzxjek4Gr2/HuHHjUEoxceJEU3mbNm1QSgHwxhtv0KNHD2JjY2nbti3PPvts2T6WLVvGqFGjSElJIT4+nvPOO4/t27cflt+Xm5vLmDFjaNmyJTExMXTt2pWXXnoJr9cbUs/fXq01r732Gscffzz16tWjV69eZetkZGRw77330rFjR2JiYkhJSeGMM87g119/DduetWvXcuWVV9K0aVOioqJo3rw511xzDRs2bDCtN3r0aJRSbNu2DQClVNkrLS0NgAMHDjB27Fi6detGfHw8SUlJdOrUiWuuuYZFixZV+5jVFOKiJgg1jEbbfhYEQRCEvyMul4uRI0eydu1ahg4dSkFBAXPmzGHs2LHk5eXx+OOPH5b93Hnnnbz99tsMGzaMtm3bMmfOHO6//34KCgoYOXIkI0eOpEuXLowYMYJly5YxZcoU1qxZw+rVq4mNja32fktKSjj11FPZsmULp556Ki6Xi5kzZ3LXXXexcuXKEEHm5+abb2bChAmccsopdO3aFZfLBcDu3bs5+eST2bp1K61ateL888/nwIEDzJgxg19++YUXX3yRO++807StmTNnMmrUKIqKiujduzdDhw5l/fr1TJo0ie+++46ffvqJIUOGAJTF2Xz99dcUFBRw7bXXlm0nPj6evLw8BgwYwLZt22jZsiUjRowgIiKCHTt28Pnnn9OuXTtOOOGEah+vGkFrLa86+ALWdOvWTQtHP7fPvF33mNhD95jYQ7+14q3abo4gCIJQw3g8Hr127Vq9du1a7fF4ars5Rw3btm3TgAb0KaeconNycsqWLV68WDudTl2vXj2dl5dnWv+UU06x3d4jjzyiAT1hwgRTeevWrTWgmzVrpjdv3lxWvm7dOh0dHa3r1aun27Rpo998882yZSUlJfrUU0/VgP7ggw8O+ff17NlTHzhwoGzZ5s2bdbNmzTSgv/vuO9v2pqam6r/++itku+ecc44G9BVXXKFLSkrKyufOnavr1aunnU6nXr58eVl5fn6+bty4sQb066+/btrWiy++qAHdokULXVRUZNsOKx988IEG9LnnnhtyPu/fv1+vXr26wmNTlWuiW7duGlijD6GfLC5qglDDiAVHEARBCEZrTU5RaZ17aX14nmEOh4O3336bxMTEsrJ+/fpx5plnUlhYyJIlSw7Lfh577DHat29f9r1Lly6cddZZFBYW0qJFC26++eayZVFRUYwZMwaAOXPmHPK+n3/+eVJTU8u+t2/fnoceegiA119/3bbO/fffT/fu3U1lW7du5YcffiA+Pp7XXnuNqKiosmWDBw/m5ptvxuPx8MYbb5SVf/nll+zbt49Bgwbx73//27S9O++8k759+7Jr1y6++eabSv2WAwcOAHDqqaficJilQ8OGDenRo0eltnMkERc1QahhROAIgiAIweQWuzn+0fCxE0crKx8ZSVJs5CFvp3Xr1nTu3DmkvFOnTgDs2bPnkPcBMHLkyJAyfwB9ecsOdf8pKSmMGDEipPzyyy/nlltuYf78+Xi93hCxcO6554bU+eOPPwA444wzSElJCVl+9dVX8+KLLzJ37tyyMv/nK6+80rZ9V111FUuXLmXu3Llh1wmmb9++ADz33HM0btyYs88+m4SEhArr1SZiwRGEmkaH+SwIgiAIf0NatGhhW+7vNJeUlByW/TRv3jykLD4+vsJlh7r/1q1b25YnJSWRnJxMUVERWVmh00a0atUqpCw9PR0wEhHY4S/fvXv3IdUpj+HDh3PnnXeSnp7O5ZdfTkpKCgMGDODBBx9k69atldrGkUYEjiDUMGLBEQRBEIQAVstFdbHLSFbZ/RyuNhxOYmJiqlzHny2upuu8+OKLrFu3jmeeeYZhw4bx119/8cQTT9ClS5dKu7odScRFTRBqGBE4giAIQjCJMRGsfCTURepoJzHmyHYb/fEm+fn5tst37tx5JJtTaXbs2GFbnpubS3Z2NrGxsSQnJ1dqW82aNQMIm77an8Y52CJVnTqVoXPnztx3333cd999FBcX8/rrr3Pvvfdyyy23cNFFF1VpWzWNCBxBqGGCgzIPV4CmIAiCUHdRSh2WWJZjndTUVCIiIti2bRtut5uIiEC3tbS09LAkA6gJMjIymDlzJsOHDzeVf/755wAMGjQIp9NZqW35Uzj//PPPZGdnhwijjz/+GKAs5bP/84QJE/jss8+49dZbQ7ZpV6eqxMTEcM899/Diiy+yZ88e9u/fT6NGjaq9vcPN0WefE4RjDLHgCIIgCELViYqKYtCgQWRmZpqyhLndbu6+++6yiSmPRu655x4yMjLKvm/bto3HHnsMICSzWXm0a9eOs88+m7y8PMaMGUNpaWnZsgULFvDmm2/idDpN27zkkkto3Lgxf/zxB++8845pe6+++ipLliyhefPmlba6TJ48mYULF4aUL126lH379hEfH19pi9SRQiw4glDDmASOWHAEQRAEodI8/PDDnH766dxxxx188cUXNGnShKVLl1JYWMi1117Lhx9+WNtNDGHgwIG4XC46dOjAqaeeSmlpKTNnzqSwsJCrrrqKCy+8sErbe/vttxkyZAgfffQRc+bMYdCgQRw4cIDZs2fj8Xh44YUX6NWrV9n6cXFxfPLJJ4waNYqbbrqJd955h06dOrF+/XqWL19OfHw8n332WaVjfmbPns0rr7xC8+bN6d27N4mJiaSnpzN37ly8Xi+PPvqoKX310YBYcAShphFNIwiCIAjV4rTTTmPKlCn079+fZcuWMWfOHAYOHMjixYvDZgmrbaKjo5k1axZXXHEFCxcu5JdffqFly5Y8//zzTJw4scrba968OYsXL+buu+8mIiKCb7/9lqVLlzJ8+HB++eUX7rrrrpA6w4cPZ/HixVx++eXs2rWLr7/+mr1793LVVVexZMmSKrmnjR49mrvvvptmzZqxaNEivvnmG7Zt28ZZZ53FjBkzbPdf26i6OKKslKoHjARGAYOB1oAH2Ax8A7yotbaNSFNKjQZuBboBLmAh8LjWen45+zsJeAAYCEQBa4HXtdYflVOnBTAeOB1IAXYAnwFPaa2Lq/Bzw21/Tbdu3bqtWbPmUDcl1DA3Tb+J+enG6XXjcTcyps+YWm6RIAiCUJN4vV42bNgAGIHZR2PGLuHwk5aWRtu2bTnllFOYPXt2bTfnqKIq10T37t1Zu3btWq1197ArVUBdveKuAL4DrscQNlOAuUBb4FFgsVIqJNJJKfUyMAHoAcwAFgEjgN+VUufb7UgpdREwBzgDWAX8DHQEPlRKPR+mTgdgOTAayAC+B5zAw8AMpVR01X+yUFeRJAOCIAiCIAhHjroqcEqBd4BuWutuWutLtNZnAJ0xhEUX4OXgCkqp04AxGILjeK31+b46J2OIpAlKqWRLnRTgAwxxcrHWeqjW+mLf9jcDdyulhtq0byKQCryqtT5Oa32pr23fAScB/3eoB0CoO0iSAUEQBEEQhCNHnUwyoLX+EAiJKtNa71FK/RuYD1yolIrSWrt8i/0Ogo9rrTcF1VmglHoLuB24AXghaJM3AonA91rrb4Pq7FNK3Qd8C9wNzPYvU0qdgCFi9gP3BdVxK6VuAc4BbldKPa61dlf3GAh1BxE4giAIglD3ePrpp1m/fn2l1n3+eVunHqGWqJMCpwJW+t6jgQbAHqVULHCqr/xrmzpfYwicUZgFztnl1PkRKAZOU0rFBMXV+OtM1VqXBFfwCaO5vrYMJkgYCccwOsxnQRAEQRCOWn7++edKz7Uzbtw42rRpI67oRwl11UWtPNr53kuBTN/nzhiC54DWepdNnWW+956W8uMty8vwWYb+AmKATpWpU8G+hGMUseAIgiAIQt1j9uzZaK0r9TpaM7r9XTkWLTj+FFU/B1lQWvne7cQNWusCpVQ2UF8plaC1zlNKJQJJ5dXzlffDyOK2qjL7CipvXe6v8KGUCpcmrX1l6gu1j8yDIwiCIAiCcOQ4piw4SqmzMOJoSoGHghbF+94Ly6le4HtPsNQpr561TmX2ZVdHOIYxZVETC44gCIIgCEKNcsxYcJRSXYCPAQXcq7VeWUGVOkG4HOA+y063I9wcoRqIi5ogCIIgCMKR45iw4CilmmPMT1MfY5LPVyyr+Cf9rFfOZuJ873mWOuXVs9apzL7s6gjHMDIPjiAIgiAIwpGjzgsc31w1v2LEtEwA7rFZbYfvvUWYbcQByUCW1joPQGudC+SUVy+ofHtl9xWmjiAIgiAIgiAIh4E6LXCUUvHANAxXrW+Bf2r7IfINQAnQ0GftsdLH977KUr7Ssjx435FAD4xU0RsrU6eCfQnHKOKiJgiCIAiCcOSoswJHKRUNfA+cAPwCXK619titq7UuAmb5vv7DZpWLfe9TLeU/WpYHcw5GiugZQXPgBNcZ5WtjcJsbA0OALGCeXVuFYw9xURMEQRAEQThy1EmBo5RyAp9hTJg5F7jQNy9Nebzoe39QKdUxaFuDgJuAbOB9S533gFzgPKXUhUF1GgHP+r4GTwyK1noRhnhpBDwTVCcC+B8QCbyqtS6t8IcKxwRiwREEQRAEQThy1NUsarcBF/g+HwT+p5SyW+8erfVBAK31DKXUKxjz5KxQSk0HooARGJnXrtNaZwdX1lpnKqWuB74EvlZKzQYygNMwYnZe1FrPttnvdcACYIxS6lRgLdAfYxLS+cBT1frVQp1E5sERBEEQBEE4ctRVgVM/6PMFYdeCcRgCCACt9R1KqRUYAmkE4AJmAOO11vPtNqC1/kYpdTLwIDAQQxStBV7XWn8Yps4mpVRv4DHgDF8bdwDjgSeDJiAV/g7o4I8icARBEARBEGqSOumiprUep7VWlXil2dSdqLXup7WO01rX11qfGU7cBNWZ51uvvq9e/3DiJqjOTq31dVrrplrraK11R631w5Z4HeFvgIgaQRAEQRCsjBs3DqUUEydOPORttWnThjDeTH9L6qTAEYS6hCQZEARBEARBOHLUVRc1QagzSJIBQRAEQRBqkpkzZ1JaKvmr/IjAEYQaRgSOIAiCIAg1Sfv27Wu7CUcV4qImCDWMuKgJgiAIAqSlpaGUYujQoRQVFTF27Fhat25NdHQ0HTp04JlnnjE9J4PXtyNcDEtwPMobb7xBjx49iI2NpW3btjz77LNl+1i2bBmjRo0iJSWF+Ph4zjvvPLZv337Iv3Pnzp3cfvvtdOrUidjYWFJSUujXrx+PPvooubm5FdbfvHkz48aNY9CgQTRp0oSoqChatGjBNddcw8aNG23r2MXgBB+/goIC7rrrLlq2bElsbCx9+vRh6tTA9I9fffUVAwYMIC4ujsaNG3P77bdTVFR0aAeiFhGBIwiCIAiCIBwxXC4XI0eO5N1336Vfv34MGzaM3bt3M3bsWB566KHDtp8777yTe++9l9atW3PaaaeRkZHB/fffz7hx45g3bx5DhgwhPT2dESNG0LRpU6ZMmcLw4cMPqWM/d+5cevbsyWuvvUZpaSmjRo3ipJNOIicnh3HjxrF169YKt/Hee+/x2GOPUVBQQP/+/Tn33HNJTExk0qRJ9O/fn1WrVlWpTS6Xi+HDh/PJJ58wcOBABg4cyMqVK7nggguYMWMGL730EldccQUJCQmcfvrpeDweXnvtNW688cbqHoZaR1zUBKGGERc1QRAEwYTWUJxT262oOjFJcBgydS1YsIBTTjmFbdu2kZiYCMCSJUsYOHAgL730EmPHjiU+Pv6Q9/Pll1+yevXqMvet9evX06tXL55//nk++ugjXnjhBW6++WbAEAFnnnkms2bN4vPPP+e6666r8v4yMzO56KKLyM7O5rnnnuOuu+7C4QjYEhYsWECzZs0q3M7555/PTTfdRNu2bU3lEyZM4Prrr+eOO+5g1qxZlW7XggULOPXUU9m6dStxcXEATJw4keuuu45bbrmFjIwMFixYQL9+/QBIT0+nd+/efPrpp4wfP5527dpVel9HCyJwBKGGERc1QRAEwURxDjzTurZbUXXu3w6xyYe8GYfDwdtvv10mbgD69evHmWeeyQ8//MCSJUvCuqVVhccee8wUm9KlSxfOOussvvvuO1q0aFEmbgCioqIYM2YMs2bNYs6cOdUSOO+99x4HDhzgjDPO4J577glZPmjQoEptZ+DAgbbl1113He+//z6zZ88mJyeHpKSkSm3P4XDw5ptvlokbgGuuuYZ7772XzZs38+CDD5aJG4BmzZpx5ZVX8tJLL/H777+LwBEEIRSx4AiCIAhCgNatW9O5c+eQ8k6dOgGwZ8+ew7KfkSNHhpT5O+vlLavu/mfMmAHATTfdVK36weTn5zN16lRWrFhBZmZmWYa0PXv2oLVmy5Yt9OnTp1LbatOmTdmx9eNwOGjdujUHDx6skWNR24jAEYQaxiRwxIIjCIIg/M1p0aKFbXlCQgIAJSUlh2U/zZs3Dynzu76Vt6y6+9+5cydw6BnNZs2axWWXXcaBAwfCrpOXl1fp7dn9VqjZY1HbiMARhBrG5KImFhxBEAQhJslw96prxFTOJaoiguNSDgWv11vt/RyuNhxu8vPzueSSS8jMzOThhx/msssuo3Xr1sTGxqKU4oorruCzzz6r0oBpRb/1aD0Wh4IIHEEQBEEQhCOJUoclluVYJyoqCjA6/Xb4LSZHCy1btmT9+vVs2bKF4447rlrbmDt3LhkZGVx88cU8+uijIcsrk4VNkDTRglDjSJIBQRAEQag6qampREREsG3bNtxut2lZaWkpc+bMqaWW2XPaaacB8M4771R7G1lZWYC9G9/mzZtZtmxZtbf9d0IEjiDUMJJkQBAEQRCqTlRUFIMGDSIzM5M33nijrNztdnP33Xezbdu2WmxdKDfeeCOpqalMmzaNl19+OWRQc+HChezfv7/cbfiTAXz77bemGJzs7GxuuOGGsmQDQvmIwBGEGkYEjiAIgiBUj4cffhiHw8Edd9zBiSeeyIUXXkj79u357LPPuPbaa2u7eSZSUlL46quvSEhI4M4776R9+/ZceumlnHvuuXTs2JFBgwaRnp5e7jb69evHiBEj2LFjB506deKCCy7gggsuoG3btqSnp3PeeecdoV9TtxGBIwg1jLioCYIgCEL1OO2005gyZQr9+/dn2bJlzJkzh4EDB7J48WLatGlT280LYejQoaxcuZKbb74ZrTWTJ09m3rx5JCUlhczLE47vv/+eBx54gIYNGzJt2jSWLl3KZZddxsKFC0lOTq75H3EMoKTDVTdRSq3p1q1btzVr1tR2U4QKGPXdKNJy0wA4s+2ZPHvys7XbIEEQBKFG8Xq9bNiwAYDOnTsfk1mqBKEqVOWa6N69O2vXrl2rte5e3f3JFScINYzJLU3GEwRBEARBEGoUETiCUMPIPDiCIAiCIAhHDpkHRxBqGEkyIAiCIAh1j6effpr169dXat3nn3+e1NTUGm6RUFlE4AhCDSNJBgRBEASh7vHzzz9Xeq6dcePGicA5ihCBIwg1jFhwBEEQBKHuMXv27NpuglBNJAZHEARBEARBEIRjBhE4glDDiIuaIAiCIAjCkUMEjiDUMOKiJgiCIAiCcOQQgSMINYxJ4IgFRxAEQRAEoUYRgSMINYzMgyMIgiAIgnDkEIEjCDWMuKgJgiAIgiAcOUTgCEJNo8N8FgRBEARBEA47InAEoYYRC44gCIIgCMKRQwSOINQwInAEQRAEQRCOHCJwBKGGkXlwBEEQBEE4Ghk9ejRKKWbPnl3bTTmsiMARhBpGLDiCIAiCIAhHDhE4gnAEEYEjCIIgCIJQs9RZgaOU6quUGquU+lYptUsppZVSYXuP/uUVvGZZ6gytYP2F5eyvhVJqglIqXSlVrJTaqJR6VCkVcziPg3D0Y3JLE30jCIIgCIJQo9RZgQM8BDwFXAA0r8T6H5bzOuhbZ26YulvC1PvRbmWlVAdgOTAayAC+B5zAw8AMpVR0JdorHCOIi5ogCIIgQFpaGkophg4dSlFREWPHjqV169ZER0fToUMHnnnmGdOgYPD6dowbNw6lFBMnTjSVt2nTBqUUAG+88QY9evQgNjaWtm3b8uyzz5btY9myZYwaNYqUlBTi4+M577zz2L59+yH9xr/++ourrrqKdu3aERMTQ8OGDenVqxd33HEHe/bsCVl/3bp1jB49mpYtWxIdHU3jxo257LLLWLNmTci6EydORCnFuHHj2LFjB1dccQUNGzYkNjaWfv36MXXq1LDt+uCDD+jVqxexsbE0adKE0aNHs3fv3kP6rUczEbXdgENgAbAKWOx7pQFhhYPWerRduVIqGbjM9/XjMNX/CFc/DBOBVOBVrfUY334igC8xBNn/AeOqsD2hDmMSOJJkQBAEQfib43K5GDlyJGvXrmXo0KEUFBQwZ84cxo4dS15eHo8//vhh2c+dd97J22+/zbBhw2jbti1z5szh/vvvp6CggJEjRzJy5Ei6dOnCiBEjWLZsGVOmTGHNmjWsXr2a2NjYKu9v6dKlDB48mOLiYnr27Ml5551HYWEhW7du5ZVXXuH888+nadOmZetPnjyZyy67jJKSEnr16sXAgQPZuXMnX375JVOnTmXatGmcfPLJIftJS0ujf//+JCQkMHz4cHbs2MGCBQs4//zzmTZtGiNHjjStP3bsWJ555hkiIyMZNmwYSUlJTJs2jd9++43jjz++6ge2DlBnBY7W+png736lXg3+gSGMFmqtNx1qu5RSJwAnAfuB+/zlWmu3UuoW4BzgdqXU41pr96HuTzj6MWVREwuOIAjC3x6tNXmlebXdjCqTEJlwKP2tMhYsWMApp5zCtm3bSExMBGDJkiUMHDiQl156ibFjxxIfH3/I+/nyyy9ZvXo17du3B2D9+vX06tWL559/no8++ogXXniBm2++GTBE15lnnsmsWbP4/PPPue6666q8v1dffZXi4mKef/557r77btOy9evXk5SUVPY9LS2Nq666isjISH744QdOO+20smU///wz5557LldddRWbN28mKirKtK0PP/yQu+++m2effRaHw3DGevnll7nzzjt5/PHHTQJn4cKFPPvssyQlJfHbb7/Ru3dvAPLz8znvvPPKtfrUZeqswDmMXOV7n3SYtne2732q1rokeIHWep9Sai5wKjAYmH2Y9ikcxYiLmiAIghBMXmkeJ312Um03o8rMu3weiVGJh7wdh8PB22+/XSZuAPr168eZZ57JDz/8wJIlS8K6pVWFxx57rEzcAHTp0oWzzjqL7777jhYtWpSJG4CoqCjGjBnDrFmzmDNnTrUEzoEDBwBMYiV438G8/PLLFBQU8Nprr4Wsf8YZZ3DLLbfw6quv8uOPP3LBBReYlrdt25Ynn3yyTNwA3HbbbTz22GMsXLgQl8tVJorefPNNtNaMGTOmTNwAxMfH89prr9GjR49j0rukLsfgHDJKqVbAEKAU+KKcVTsqpZ5SSr2jlHpSKXWWUircsfPb+paFWe4v71n1Fgt1Eh3msyAIgiD8DWndujWdO3cOKe/UqROAbaxKdbC6agG0a9euwmXV3X/fvn0B+Pe//83s2bNxu8M76vz6668AXHjhhbbLhwwZAsCiRYtClg0dOjTEqhMREUHbtm0pLS0lIyOjrHzuXCO8/LLLLsNKt27dxEXtGOVKQAHTtNYZ5ax3ou8VzGql1EU2bm2tfO+7wmzLX966Si0V6ixiwREEQRCEAC1atLAtT0hIAKCkpMR2eVVp3jw0B5Xf9a28ZdXd/7333ssff/zB7NmzGTZsGPHx8QwaNIizzz6b0aNHh7iohWtHMAcPHgwpq8rxS09PBwxRaUebNm1YsWJFuW2oi/zdBU5F7mk5wHPAN4BfyPQCngAGAr8qpXpprXOC6vidRgvDbLPA955QmQYqpULTaBi0D1MuHGWIwBEEQRCCSYhMYN7l82q7GVUmIbJSXZcKCXatOhS8Xm+193O42hBMYmIis2bNYt68eUydOpXZs2cza9Yspk+fzlNPPcXcuXPp2LEjEGj7tddeW+42BwwYcETafqzxtxU4Sqk+QDcgG7CNsNJaL8dI9xzMLKXUYOA3DPe2WzHSVQuCLaYkA8egn6sgCIJQNZRShyWW5VjH74aVn59vu3znzp1HsjmVQinF4MGDGTx4MAD79+/njjvu4LPPPuOBBx7gyy+/BAwrzJYtW3jhhRdo0KBBjbWnadOmpKWlsX37drp27Rqy/FDTYh+t/J0loN9685U1GUBFaK09gD+L2+mWxf6rsF6Y6nG+90qlT9Fad7d7YczNI9QBxIIjCIIgCFUnNTWViIgItm3bFhLPUlpaypw5c2qpZZWnUaNGjBs3DjDmyPEzYsQIAL777rsa3b8/lscvrIJZv379MemeBn9TgaOUclLx3DcV4XdZa2op3+F7t3eQDJQfm5JZKBex4AiCIAhC5YiKimLQoEFkZmbyxhtvlJW73W7uvvtutm3bVoutC+Wtt96ybdNPP/0EQMuWLcvK7r77bmJjY7nnnnv49ttvQ+qUlJTw9ddfs2tXuJDuyuHPFPfyyy+zcuXKsvKCggL+85//HLP9kr+lwAGGYwiT7cDcam6jvu+9wFLuP3v6hKnnL19Vzf0KdYxj9eYhCIIgCDXNww8/jMPh4I477uDEE0/kwgsvpH379nz22WcVxq8cad566y3atWtH9+7dufjii7nsssvo1asXd955JzExMTz88MNl63bo0IHPPvuM0tJSLrroIjp27Mi5557L5Zdfzsknn0yDBg34xz/+YZtkoCqceOKJ3HPPPWRnZ9O/f3/OOOMMLr30Utq3b8/GjRsZNWrUof7so5K/q8Dxu6d9rKvf+7zI925NB/2j732UUio6eIFSqjFG3E4WUPeiC4VqIS5qgiAIglA9TjvtNKZMmUL//v1ZtmwZc+bMYeDAgSxevJg2bdrUdvNMjB8/nuuvvx6lFDNnzmTq1KkUFRVx4403smLFCk46yTz30XnnnceqVau49dZbUUoxffp0fvzxR/bv38+oUaP48ssv6dat2yG367nnnuPdd9+la9euzJ49m9mzZzNixAgWLFhASkrKIW//aEQdK6PLSqliIFprXe4Uu0qpesA+jGxnXbTWG8pZ9w7gG631zqAyBfwLeB1wAv211kst9f4ATgJe0Vrf4SuLwJhr50LgUa31uCr+RGvb1nTr1q3bmjXhkqwJRwt9J/XF5XUB0KthLyaddbjmlBUEQRCORrxeLxs2GN2Lzp07S9Yr4W9PVa6J7t27s3bt2rW+mPNqUWezqCmlzgYeCiqK8pUvDCobr7X+ETPnY4ibxeWJGx93AM8rpZYB24AY4DigLeAFbreKGx/XAQuAMUqpU4G1QH+gHTAfybr2t0IsOIIgCIIgCEeOOitwgIZAaHJwc1lDm+Vl7mmV2McLwEigO0ZK6Uhgj6/uq1rrxXaVtNablFK9gceAM4ALMJIPjAeerGrWNqFuIwJHEARBEAThyFFnBY7WeiIwsRr1zqrCuq8Br1V1H766OzEsOcLfHR3msyAIgiAIRy1PP/0069evr9S6zz//PKmpqTXcIqGy1FmBIwh1BbHgCIIgCELd4+eff670XDvjxo0TgXMUIQJHEGoYk8A5RpJ6CIIgCMKxzuzZs2u7CUI1kbQeglDDBIsaL95abIkgCIIgCMKxjwgcQahhxIIjCIIgCIJw5BCBIwiCIAiCIAjCMYMIHEGoQawWG0kyIAiCcOxjzAlu4PWKa7IgBF8HwddHTSECRxBqEKugERc1QRCEYx+lFFFRUQAUFBTUcmsEofbxXwdRUVFHROBIFjVBqEHEgiMIgvD3JCEhgYyMDPbt2wdAXFwcDoeMKwt/L7xeLwUFBWXXQUJCwhHZrwgcQahBQiw4InAEQRD+FjRo0ICCggKKi4tJT0+v7eYIQq0TExNDgwYNjsi+ROAIQg0iLmqCIAh/T5xOJ61atSIjI4O8vDxcLldtN0kQaoWoqCgSEhJo0KABTqfziOxTBI4g1CSiZwRBEP62OJ1OGjVqRKNGjdBayyCX8LdDKXVEYm6siMARhBpELDiCIAgC1F5HTxD+jki0myDUIBKDIwiCIAiCcGQRgSMINYhkURMEQRAEQTiyiMARhBpEXNQEQRAEQRCOLCJwBKEGEUEjCIIgCIJwZBGBIwhHEHFREwRBEARBqFlE4AhCDSIuaoIgCIIgCEcWETiCUINIkgFBEARBEIQjiwgcQahBxIIjCIIgCIJwZBGBIwg1iMyDIwiCIAiCcGQRgSMINYhYbARBEARBEI4sInAE4QgigkcQBEEQBKFmEYEjCDWIJBkQBEEQBEE4sojAEYQaRGJwBEEQBEEQjiwicAShBpEsaoIgCIIgCEcWETiCUIOIi5ogCIIgCMKRRQSOINQgIYJG9I0gCIIgCEKNIgJHEI4gYsERBEEQBEGoWUTgCEINIi5qgiAIgiAIRxYROIJQg0iSAUEQBEEQhCOLCBxBqEHEgiMIgiAIgnBkEYEjCDWICBpBEARBEIQjiwgcQTiCiIuaIAiCIAhCzVJnBY5Sqq9SaqxS6lul1C6llFZKhe09KqXG+dcJ83q6nLonKaV+UkplKqXylVKLlFLXVNC+FkqpCUqpdKVUsVJqo1LqUaVUzKH8bqFuIS5qgiAIgiAIR5aI2m7AIfAQcF416s0DNtuUL7VbWSl1EfAFhhj8HTgIDAc+VEr11FrfY1OnA7AASAX+AuYC/YCHgeFKqeFa65JqtF2oY4QkGRCBIwiCIAiCUKPUZYGzAFgFLPa90oDoStR7T2s9sTI7UEqlAB8ATuAirfW3vvLGwB/A3UqpH7TWsy1VJ2KIm1e11mN8dSKAL4ELgP8DxlWmDULdRrKoCYIgCIIgHFnqrIua1voZrfXDWuupWuu9NbSbG4FE4Hu/uPHtex9wn+/r3cEVlFInACcB+4PWQWvtBm4BSoHbfYJHOMYRFzVBEARBEIQjS50VOEeIs33vX9ss+xEoBk6zxNX460y1uqH5hNFcoD4w+DC3VTgKCRE0om8EQRAEQRBqlL+jwDlVKfWyUuotpdSDSqm+5ax7vO99mXWB1tqFEV8TA3SqTB1Lec8qtFmoq4ToG1E4giAIgiAINcnf0U3qasv38Uqpb4DRWut8f6FSKhFI8n3dFWZbuzCSB7TGiAcCaFWJOvjqVIhSak2YRe0rU1+oXSTJgCAIgiAIwpHl72TB2QzcA3QH4oGWwJXAbuAiYJJl/figz4Vhtlnge0+wqVeVOsIxiiQZEARBEARBOLL8bSw4WuuPLUUFwKdKqd+A1cD5SqmBWuuFR7514dFad7cr91l2uh3h5ghVRJIMCIIgCIIgHFn+ThYcW7TWe4AJvq9nBC3KD/pcL0z1ON97nk29qtQRjlFE0AiCIAiCIBxZ/vYCx8cm33tTf4HWOhfI8X1tEaaev3x7UNmOatQRjlHERU0QBEEQBOHIIgLHoL7vvcBSvtL33sdaQSkVCfTASBW9sTJ1LOWrwiwXjiUki5ogCIIgCMIR5W8vcJRSCrjA99Wa2vlH3/vFNlXPwUgRPUNrXWxTZ5RSKtqyr8bAECALmHco7RbqBmLBEQRBEARBOLL8LQSOUqqhUurfSqkES3k88CYwANgLfGup+h6QC5ynlLowqF4j4Fnf1xeCK2itF2GIl0bAM0F1IoD/AZHAq1rr0sPw04SjHEkyIAiCIAiCcGSps1nUlFJnAw8FFUX5yoOzoI3XWv+IEdj/OvC0UmoxsAdoiOEu1gDIBi7WWptSO2utM5VS1wNfAl8rpWYDGcBpQDLwotZ6tk3zrgMWAGOUUqcCa4H+QDtgPvBUdX+3ULeQeXAEQRAEQRCOLHVW4GAIlAE25QMs64AhSp4BBgKdgBMBD7ANmAi8pLXebbcTrfU3SqmTgQd99aMwBMvrWusPw9TZpJTqDTyGkZntAozkA+OBJ7XWJZX/mUJdJkTQiL4RBOFQObARtsyErqMgKVw+G0EQhL8vdVbgaK0nYoiTyqybB4w9hH3NA86sYp2dGJYc4W+MuKhVk21zIXMrHHcxRMVVvL4g/F1wl8DEs6DgAKz6Ev71W223SBCE6rJzESyZAN3Og85nVLy+UGnqrMARhLqISeCUFkNkTO015mhl3xr48Bzjc+YWGPFY7bZHEI4m9qw0xA1A+jIoyobY5NpskSAI1UFr+Og8KC2ElZ/C2B0Qk1TbrTpm+FskGRCE2iJsFrVF78LTLeGj842bnBDg5/8LfJ73Su21QxCORpTT/D0rrVaaIQjCIVJaaLz87JHZQw4nInAEoQYJ66L20z3gccHW32Djz7XQsqOYoszDu73dS2HZJHBZp7kShDpIqeU8FoEjBJObDks+kPOiLlCUZf4eEW2/nh1uF6z+GtL+qHQVr1fz1+4cXG5v5fdThxEXNUGoQWxjbqwWm4wtR6YxdQW3q/p1vR7Dxa1xd3A4jWDsD84ETwns/BPOe/3wtVMQagNXofm7dGQFP16v4fJ0cCNExMI5L0KvK2q7VUI4irLN3z2Vmz3kqWnraLnmba7Kn2AU3DADWvavsN7dX63ku+W76d4skR/+MxhjGshjF7HgCEINYidwdEmeucAZWbmNbfwVfrzH6MAfy3gOQeBMOh/eHgKfXmIIyR/vMsQNwPJJh6V5glCriAVHCEfBfkPcALiLYPItsPzj2m2TEB6rBae0qMIqszfs5+05WwPiBgyPkArwejXfLTeSBa9Jz2XJ9qwKatR9ROAIQk1iZ8ApPGgucDhDV7KStw++vBoWvwvf3nR42na0Ul2Bk7Mbtv1ufN48A3J2Qdrcw9cuQThUvB5joCLtj+rH3lldLSspcHKLS9mdXXEHSqjDFBwMLdsw7ci3Q6gcxdnm76WFtqsFM2313tDCworduvNdbtP3Ipenwjp1HRE4glCD2FpwrDej0uKKN7RuCrh96+1bbaSKPVax/rZKmu2xCke7B7v37+F7XOtobaT63jpbjnkwKz6FT/8BE8824u+qQzVc1HZnFzHoyZmc9PQsvl9hO+VbeHL3GOmoK9GJEmqZwozQsrw9R74dQuUIseBULHCsQgWASnia5RaZn6MRjmPbPQ1E4AhCjWJNMgCgiywPIavLmg1e68jcsfzQslpwXPmVq+dPnetn7vOh65TkVK9NdZVtc+Hjiw3XRq/NiN2elTDpApj+8OHN5rdhmpHq+6PzYO13h2+7dZ0ptwU+T/53pauZ7iPW6yFnJ3hsOj1BPP/LBgp8I7ZjPl9R6f3iccMHp8O3/4TPLq98PaF2sA7ygGH9F45OrDE4lRA4BSVuQl1DKhYrORaB4/Ic+wNPInCEuo/XAz/dB59cAgc31XZrTNhbcCyjNpXowO9PW2suyK0hgbN/vXEcf/5v7Y28Wy04JTbHZ88qw7d8y6yA33K+ReDk2zzY/06j0H+8ZIiMzdMN18aNv4SuM3O8cQznvQLb55W/vaoIoMm3BD5/fX3l6/2dsAryMHy5ZCe9x0/njs+XG0LH2gnyuiG3fKvMlgOVHCSwsmclZG83Pu9cCMW51duODUu3Z3L1+3/yv9mbD9s2q4zWsHMxbPnt8N7vaiv1v939LX+vWFGPVqoRg1NQ4iYRi5tqJZIF5BaJi5og1D3WTYVFb8OmX+CneytfT+safxDZZlGzpkEuqbjTEJW50fTdlbXT9H1vTjGlh2NE5oc7jOO48A1Y9/2hb6+qlBYFkgL4sQrAPSvhnVPg+38b1ofX+xsdr8p0GK0jZscqOxfBjHHmskybbH0Zm+0/B6M1fHktPNcB/vom7C63HSzgxg+XMG7KmlDfciulRTDvVfjzbXvL0t+BiMpN8nvf16vILixl8op0Fm3LDHVRA8jaVu424qOrmTDVak3NTa/edmy4fuIS5m46yLM/b2D1rlqyrKbNhfdPM5KTrPz08Gxz9dfwTBv45B8VWtbwuGHTDNi/7vDs2y4Gx+s+/Kn38/bCV9fBlP/Yn49C5bDeJytxLPNLPDRQFq+PSgjY3GKzBaeo9Ni/74rAEY44Wmt2ZxfZum+FxV0S3mox/9XA58r6tacvR798HLw7rEZH9W1d1Kz7s7NQBOP1kFhg7sAUZwZGbN//YxsDn5rJsOdnU2jnn1sVdiwIfF707qFtqzrY/RfWoOp1U0EH3dBzdhpzCVVK4FT+v960L4/nflnPip3Zla5T2+QWlxquCPvXhi60O7bBZeGugw3TYO1kw/2lHGvMS9M3MmPdPibOT8PjqCAz4JIPYPpDMO0+Iy7FR5XuCXWdSsx5YZ2vYvOBfHuLbwVxOAkxZoFT6dFbawesAktRVfC7zDjxsGDFX4dtu1Vi06+Bz+t+OPTtuUvgmxuM47bpV9gys/z1578Kn1wE/xtoWM8PFTsXNTj8Ls0zH4M138Kyj2Dh/w7vtv9OhIvB8XrDDiYUutykYBkUtW7HBmsMTqH/HpD2B8x6ArK2V6rJdQkROMKRw10Cf7zMF28+ypCnZ/CvSUsr16EpzIRXjocXu8DCN0OXR9Yzf69ETIvrk8tROTshfTlFSz6p5A84PGhrIGhFLmpZaUR4zVYNd5AFZ/wPRmd2V1YRE+enHY4mGqiauT1orXl15iZumrSEDXst/5WdALH+n3ZuiDv/rKTAqVxqTK9X88v7DzN6/giWv397nTDnb9yXx6AnZ9J3/HR2bN8auoL12HpKzTFJdgHKALuXmL+HuWanrAw8kHO8seXX+eW/QRWNuJTpa/cx8KmZ3PLxUrzeCu4LxbmGW93qr3G7PXzy53Y+nJ9WOxPYZWyBz6+EXx8qfyTV6npZCYFzMN9cJybCae+nn1m+BScuyixw9uVWIrEJhIrewyRw/NbmaFzMiLqHfy05C+bXwhxVwW6tBzeGXy+IzAIXr8/axK9rbLJZrbeIpB0Ly9/YzEcDn+1iBqtKuGu4gjicn//ay2szN5FZUMkMliuCnpmzxleycXWU9BVGHOOsJw6/x0dIDE6RYdV752R4sSv89mRIlYISNw2UReC48uwTD+UfKCu3xuAUl3oMi9/HF8Pvz8LkWw/llxyViMARjhy/PggzHuGy/S9xtmMh09fuY9P+SviGr/gkMAL189gys39ucal9x7OiB1VhJlEFgRGtvEU1Nz+KtrnpaGsnuyJBdiB0ZE+HGd1Zs7uKPvKuwkCnv5r+9Zv25vLuj/NYl145N5P5WzJ4cfpGflmzj/u/WWVeaPeAtgpAG4FTuv1P1m2uxISplbTWpR3I4TbXBzRUuVzH96StX1qpeuWiNcx+Gr68xpiAtCrsXwe/PQV7V4dd5eUZGylweXB7NfNX2MyVZP3t1u/hxJ8zqnLrBZGnLQInXMcriDGfL2dfbgnT/trL10t3lb/ynGeMxAjf3MD836bwwHd/8ciUNUxaWAujkL/81+jYzn8VNvwYfj2rALceVxusQsTl8YZaNIFtaxexfEf4/6XEIvz2VlbgWEXx9vnGeVhRx70CsgqNjvQlztm0dfg6378+UKm6LreXHRmF5BRWMrtieRTsD2pUWqUmGX7yp3U8/+tG/jVpKev3Wu6Zyz4yfy/PddAqhg9HfJOdixqUa8FZk57DzR8v5YXpG3l06jE+x5qfRe8aLrc/3FX+eoWZ8PFFRhzj78/CriX263m9hhvvSz1gw8+VaoLL7SXjoEV4lhbA6q8C9/k5z1h2o8kqLCXF6qIGFOfsJy/YDW3FZ/BCJ6NNBQfJLTZ7dxS6PIZl3u2L+9l+CKnrj1JE4Ag1x5rJxqhcSZ4xJ8mid8oWnes0XKH+2l2JTvEWi9tZ2u+s3JnNwCdn0nv8r7gyLJ2aAxvK3Zx7vfkGtDnf7Avv8erKj2RVgF71RWhZVV3UbPyzHb4HltUlrcRtCL5N+/J4fdam8MHF7hKjs/1MG3ihi2Gmtj4EKxEb4fFqtr53Nf9cfBYZ715ASWmoi9za9FxenbmJzT4x++mfO8qWhbh/VeCiNnvdHlwHQgWOc/8aovJ2hpQD7EodEvhSUedcayg4yMZtlnPqEDt0gJEyefZTsPZ7czativC4jcQPc542RtvCpBWftzkgIhpom+No/e3Wzqvv2P+2YT83friEn1b7zgfreZAXOnJt9e8OMcBkby9fXLoKAi4TwLS/KnCpWRAY7Y+d92zZZ781EzD2V9PxPZ5Swz3Sz8K3wq+bv9/8vRKp3vfnmdfJKy61FTjxmX9xzft/mjs4QVjvE5W24FjPmZWfGefhpAvDuwx7SuGXB+Cr0cZ9f+FbRga2nYvLVsn2iZN2yrKNCjpY46asoevDP3Pyc78x4KkZLN2eZVwflbTMhhBswdGeSqXcDhbfb84OGlTJ3GZc48GUNylzjuV+Fd+own1XSPA1Fuwmmm9jbfLxzdKAVe77Fem4w8RyZha4eOO3zfy2Yb/t8v25xbzx22YWbKl4MKPG0Nro2P/5dkjAvtbasIhmbTcmxiw4AEveh0wba7efXx4wu/0dCBMrtW6KIRZydsJnl5qXLf8EXugaEh/85ZKd5GdbBGlpEey1DPoFkVXowuPVNLC6qAFXvvoTJzwx04jTA5h8s+HKXbAf5r8a4qJWVOoJvd4q4f1SlxCBIxweCjNh88zAQ3v7AvjqWvj1AdK/e4j8WS+YVm+ojAeSbXzD6q+NDt2Gn40L0BpP8Ne3PPvLegpdHkpK3ag8izXDxuIRTN4Kc9raZgQecgUlboa/MJt+j083dcTzikt96RmrQN4+e4FTbH4Y796/n9/WGw+NQpebB75bzf1frwp0Vmx+T1Sh8cDan2vuABWUeHB7vNzw4RKe/3Uj57z6Byutx1hrIzh/9lNGQL+7GJZMCBU4dlnILBzIOMjp7tkADNZL2bX6d9Py4lIP105YxIvTN3Ljh4sN1yNLwheTm6LdSL/vplvi9vDwRz8TpYPEpzImSXXgpb3DvsP16964oE0dZM7GA/aWP6/XmJ/kufa0Wfig5YdW0uKy8E0j+NauY7P4vcDnnX8a71nb4Z2hlLw5jHd/WmAv+DM2Q47vXMzfG/Yh2zQpINQbqezQFUIsOJZjXZSJy+3llo+XMmPdPu7+cqVxDlr9+vP2GKJ88fvG7y0tZk+2ucMcrywd6HdPhec7wsovjPNPWSa33We+xvfklNMBtz6UtU2HbOXnxv5e7ln9zm9lSF9u/u51U+hyG+4fVqyj65VILrLfIkTyit22LmoNVS71Sg6EjRcrsJzv1vuGidw9hrvdl9dAWpjMeqUFsOJjAB7/YS0nPT0r0PHf8JMhQNd8B+8MhZ/vN8p+DIyWZ/kGkNyYz4Nb3p0RdjLSrQfyjfgun3ouLvUyY+k6eLkHPNfR2F9VKbB01jPKz8JpdZ00/c+bZ4RWyNgcPjOWZSBub1Ye+ZV5xpQWG89au/M6+Fpt0iPw2WZQIhgH3rLMXGvSc2HXUvjuFpg6BoqNe9K4KWt47pcN3DBxse02/vvdap77ZQPXfPAn6RVMKKu15s+tGezIOMwJCtZ8a3Tsp91ncmdfuDWD016cQ7/HZ7D444fMdcIlzti1JDTxhE/Uvz1nCyc+NZO35/gE7jbzc6/sHuV2wfe3Ql66McAb5H3w4OS/SFaWAcjSotD7ctBASOb+XdzsnMKZzkUhzY0uzaao1MOXS3aGnnNbfgtNMmD3DKxkZse6gggc4dApLTayWn18YSAIOWiEtdn6CUSuMLuBtVV7Ac3yHdnmbRUcNFLMbvoFzxdXM+vHL0I73uumsmiz0fluSA6RWB4KVgtOcMfOVUj8rjmmxU31AXIKjZvIhHnbSMsoxKuNGzbA2nVr2PFUf9Ke7MuyFctg/Y8w/7WyG39YtsxEe21GVC1pomO8hdz26TK8Xs2H87fzyZ87+GLJTl6a7rsZ2mS3iik5CF5PyAhvek4Ru7KK2JFpPDiKSj2MnrCIXVlBD5L960JTAu9fGzoiWwmBk7nf/HCIXm/uZCxJy+KAr41pGYUczC9BASrogZrldzUpybd/EPtc1Nam59I2aMS3NL4ZtD253Pbd5bqZbB1f9n3uqo1c+8Ei/jXJxtVgy8yy49Il2/zASsgMP6pWxs5Fhgvlmm/hw1GQbRmhtcZceL3w2xOQvpzofctoseAhLn93YWiiiH2WAGyLGPDjDup8NVY2nR+fxWZnZiGvzdxE2s4d5uWFmezILKS41BAMRaUeNu/PJy/T8p8seB1e6Wl0WH8eC/NeDunQxGPTwfG6jcx3hRnGaHkQnj0rzT/RxsIwbfUehjw7iye+NF+/xc4E8/dSD3x3ky998i6YHeTmYdcpzN9vdOa+vt4QoVVxFUr7w/TVfWAjJzwxg77jp7M23bIda2falc8vf1liWrQ2rIW+gPNQC47b1oID0MOxjZnr9nPq87O5edLSMmsuhHZmwrqorfzCiHec/6phadxZjuVym2FJf++PbezOLuKer4z/0L0t6JgEd5j2rirr+Pld1CIwt2vbts2c8dLv7MkJPX9C4vWAgdvfMp4P3lLDYlQVvJ5Q0VnBNAMZFsu+Ch6tsbt3aW94jwLLwNVfW7Zz/cTFaK3RWvPazE3c+cWKUBHw2aXGs/aDM8yTIGtt6hzvjm5fftt8FOVnMyvqbpZG38yFjt+JmnYHvHeq0blfOtFICEIgxs5rY2XzeDVzNxnHstSjWbUrO2SdH1alc8pzv/Ho1DW8OWcLl76zkNNenMPW6qYwtyM4CYovvum75bu47J2FbDlQQFMyOP6gJU4q3ACI5doGIHc3+SVunpq2nvScYp6att6wClnv7f4+xy6LEAlyn3fgJcF6n3QVoK3nZND9KGXWfYyN/JwejrSQpqVgXB8H8kpCXZm97lALjssTmkSkEq7EdQkROMKhs/FnyPZ1ltb/YDvzfLQylyWpQhqRzbo9ueaHb9rcstSkTq+LU5fcFLq/4mxGxhoPhxYqdMRBBz84Jt8Kz7Y1/GMBdi0m0hKwH61KyZz1OiybxILN5k6I1pqDvz5Pd7WN7iqNPpOHwedXGPFEv1pGgqxsn2+XJBqda44viKeYApeHxWmZvDwjcAP8YN42Y8QwJzSw16ndUHAgpCMYlbWFBp+M4NPIx00C4n/BrhS7bEbgDm4M/Id+XPkVus/lHDQLnNS0HwyXkbQ/4I+XSduRZlqenlOMoziHGVH3siz6Ju6M+Ir9uUVG6ueXutkH2vo6dCt3ZtNeBfZXEN8WWg6wbdeGc77l7JIn+dY7hCwCAifCF1Q/d9PBUB/+cix/DfM3BFK+HtgIb58MH55LVuZBPv1zB5MWbse9ZXagQmGGMQIe7NMfYROXEmThO9O5mLxiN2kHLR0aqzUojNuL/1xw4CUVG/FdmEmxy83Tb39A29m3sXfGG+blRZlsO2juPGfku8g+aOkcbZllfhD+9S3pQR3SCNzEqjAunt5S23gA926zgMwqLC0bqffz5LR17MwsMgYZgoi0PMVC3DI3TjPef/4/wyXzs8vNVqA/XjI6c399Az/ebXQcffERK9as4eepX1BQGGZE2jJQEFGcSVzJAQpcHu792izaQlzUgHFfLghYhrU2BOMHp8ObJ8KupSGWltziUlMq2RJn4Nw+zrGNifPT2HqwgJ/X7OWdOVv5fNEOvlu+K8QyYCcgSz1e3DMeDU3THo60eSzfYHbvKShxs3F3mDgQKLuW/YMa1mDpJiqTvBI3Yz5bEVJ1s028Zod8c2zc10t3cftny+3TThfnmv/3wswQoa0Pbgrr5geECK+C4MGIcKPf4dzULMInURWyaFsmS7ZnsWBrBi9M38h3y3cz9tuga8NVEHCDO7De3AkvzjFEvY+PtgQs1+UJnN7pn9PGsY9I5eHFqLfomm6xhO1ZaRLLsYSeH7szC01xXgfyQte57dPlbM8oZMK8NJ792fjtLo+Xp6aV43HhdhmW4rcGG9dleckSbITX8h1ZfLUk8Ly9NOI3opTFcpG13XBp2zLLXG53zHLTybAk/li/Jy80nbrf4m51rw8SKwkU4lCWNpcWkXfQEn8YZOltsMvGSuijvi8uJ7PABbvN90gObgq5hxWWekIGW8WCIwhgPGT9N25rxzhnZ6XmeOjo2IXbq/nLF5y+Jj2Hqd9/Wand93MYQqC5snmYZm032ndwUyDby9rJkLmN0gx7f9u2Sx6DKbcxOuMlU3lGgYvemdPsG7Hys3LbWLLV3r3DehuOVqVE4mbyit0hc9ks37Y3dOTXT246+/NKGKDW8VLkG1zvnMZDzokkZK3hROdaro8ItHtpWtCNzE7geN2hZnYwWXEKXW6+WrKT2z5dxpuzt6C1piDL/MCJcWXC0gnw0fkw4xFOWHqPafnenCL6ZEyhvWMPEcrLmIjvqPfHU3gWvR/eIuYTWSt35dAuSOBk12sDLU8IWd2NkxXe9qzRbQBFTpAFJzkoOHPjfmsGt2z7/QPRuhgO+jok0+41BNm2OXz20t3897vVPDT5L3asshy/9GXmrEpWa16YjFT+zFmrd+UwYd42XOkWC87+0A5TkctjjO4DDcglQtm4bXlK+GL+Bh4ofoFznAsZqCzbLcpi635zh3NPThH13Nm27Qw0eAP5+wLXla31JojC3TYpgctGHDXjIz5gZtTdHFzybaBpLg87M43ttnWYOx5xnhyicRGN0cnYvM9iOck/YFiZ/elsN/xkvgasFrL9ayBrG5s3raP1lyM5Y+m/WPD69aEZHz1u29isbg4jfmtNiAUntPPgLM0jLcMnKhe8Dn/6Yni0B7b+RmZuLhFlFmqNqzDXcA/zsSkm4IbUXaWZtv3C9I2M/XY1S79+ng9y/8XdEV/iv/tYBc7OzEKGPzGViLwqZEnTHlJ2mzuF+/NKyN2/I0wFKMkx/ju/BccqxBv5LI+L0jJDBiDs4gmdXnPH8p6vVjJlZTpjvrC4Dv75tiFu3x0WGICzua+uWb2UPuOn89WSnWzYm8d7c7earJMl62dwlXM6cb5z3ORKGW702/+cLM6Bj86Dd4bBwc0hAypJvgGpzxbtYPLywP8wf0tGQOxbrerBFqeg/Xu0Yo27WWBZOdb4loUVJBbI3Ep6kAtqsnWSSWDbbvNAl9XyWB5L0sLE5rldxhxFP95l3B92LDCeue4S+/g1m4QOV747n1VBYrePsrHQ/fqA4dI26UKz5cMuMUNuekg2svV7c0MHL/zWe6toKthvuL7l7iFJ2VhiSwuIscSSlhZkGx8qiE/zW3Ay8kuMZ08w3lKSC83Hp8jlCT1ng+5RfktiXUYEjlA1stLg25sM//bPLjNGOq0uVFlp4TvlQXRSxkiFP/vPqzM30bl4Zdj1dcMugbqlxsPBTuAotOFLvdYyUeX+tfy1pvz5FkaUTOcsR6DTMnflehJUmA6bx2UaUZq0II2Tn/2NmyYtYe6KNUTnbLW34NiUxVHEZ4t2hgRnz1tubm+at3HgS/YOeq96lC+ix3OBcx4PR07iZGfgBn2rM/D7Nx/ID/iLh8sEs93GJO+7ye/NKWbY87P59tvPuGX9aOrPuIulaRmU5Nj8z9PuL+vMdypczoTIZ/g9agzXOn9hT04xJxWab/qt1ryJc/mH9m0CIwWmx03TrV9zVURgXon9US2h5QC8ypwCN9eRxIZ9gVHuYAtO8MN54z6LwKkowNg/KhYUSHyDwy9gNA1ybM6t4E6MJQZm9bp1FGvzfDHRuDiYX0L23u18+s7T7PrpedxbzcIpb8eqkPTB+/MCHZDg+JsSbT4283//lWYqTIdCe9mz19wRSs8pNkRrBdRPn1v2OT7c9eLj12mTQ8oiD67FiYe+aiNXR8ygvWMPyT/dzMvT1+P1atIyCuiqtvNi5P+4N8Ic13ac3siC6NtYEn0LJzlW89gXc80bLy0IDSQOdomzuhICn/7wK/u+f4T6Ph/50wp/YtG6NPNKe1fapnjvpgyBE0uxaeTbzoKTSCF7c4qNQaLpD5sX7l7GMzuv5K/oGzjNsZRfou7n5bTzTZ2S+e7OZZ/t3FaakMG4iA9p69jHfyImc3fEVwDss1iGPvlzB0lF4YVJOJrtNV/L+3KLSfWGP1927dxBoctdFoMTYsEhMBCzK9tsydxyILRDaE2fH4txHWw9UGAeLJp2nyEa05cb82iB7f/R1L2LUo/m3q9XccW7C3n8x3Xc/LHPSrR7Kf3/uIHHIydwV8TXxu8NFjjBArbxcYHPvgGJ4plPG/eO9GXk//JoiAXH3+H9afUeoiKMrllvtYmfov6P/I+vgsJMSrItne59gft9SW7g92SRwF5dP7Be3l7bDrLWmiJ3BZ3YzDR2ZQaOfUjcCLAn3biGoijFgRfnvjXwvxPJ+t/pvDjxc+ZuCm8ZyAqXDS/td/N1Csb/92ofeLJ5aLay7Quwklx6MMh6qenpKCehANp8DdpacHaXJcjw89fuHPIyzAJPZ+/AnZ8RGqM3/WF4bzi81idkQAKA7B1Eec3nfU52BrnFpfzrvfLn+PNbcDIKXGirBQdoVmQWd0WlNhPA+t3jPKXM/GsX5/9vPtNW7wmxptcVROAIVcMZDau/NB7s2TuMYGlrEoCsNNuHB8AMT++yzx19Asc/wrJkzUY6OQIjV0U6KI2qM5qZDa8u+3qc2orCa2/BAdy7V5C11Dzr+s71S9m+peIZo5+MfL/sQbn+z1/LX9k3UlKcl8W8nyYxNOc7Nq5dwSdfGpYoW4GjQsvsOoUxlLB+Q6C9B3QSO3RQpp1F79Bnf/jA2mICx8/j1YYPe3GOudPd5DibmkH4bvKfLdpBVN4O3ol8ke6O7VwWMZvs5d/jybd5cFncPoY5V9LKcYD/RnyK3rWUjjqt/H1acRVQNPd17it5zVS809kCouPZm9DDVJ5Jkkm8BMfg1A+y4GzaZ3lQl5dNB9Bpc0M6CRrFKY6V3OqcQpIn1Jd746YN7M4uwu3xUpBtvia+nbOIAsyWzrZqL402fELS2714yvE/Hor8mHqYR9sT3JlM+NXs2x3cYW0UFH+zW6eSH5Sy+XhX6IMvmIyDe4jGRV+1gWhc7M0qINZdcUxKm6wFdFXb+T7qQT6OfKrcdbu5QlNdOzzFnONYwEmOwGhyNC5mzprO18t2kXawgGcj3+ZC5x80tkmgkKLySVBFfBL1lG1H/6NJ75kL0pcbWb3y9xuZviwUbPqdE/LM7iALfw1YbEs9XrYvsbfsdnOk8X8Rn7Au5nqKJwW5w9kM+iRQRHp2EYWb54cmS9jwIyk6mxhVyntRL9DZsSskZuXnvHZln5uqTFLJwYmHq5zTeSHyTZ6NfMdkzftPxGRGOeazN7fYNDq7YmeWyf2zsnQtWmaKgdyfV0KqDgiwXzz9TOs/8+1cuj38C+/ONUaTU5XZgtMkSHzvygrcE71ebWvBibVcG41UNhG4ucjxOzn++7/1HuUfyLCxqDVQeSQT6CiC8XzKL3HDL4HEIzf4rON5Je5ABzo4dqLdKYHPe4zYo5jFgQkx4zdNMQZugvBbcIpLvWUJGx6OnEQ3x3aStv5AwQfn8fhEy6BdkABYvCbQgc3UCewPFjjeUr74fUVIoHlOUSlOuzjRYEpy2LdvLwkUcoVzJqc6loescnB/Otc7p7Ex5lq+jXqYq9Luh/1rqL9/IWO23czcieW7c789ZwvfLd+Fp7QEvrjacEmb/1roimsnG3F13lL47FLzNAw75oes3soRuOZaq30k21lNggkerLUmLwIoziYvz3zOTl6RTsZe8yDJhj++Yc+zA7DvAQClhYyPnGCz/VAvhtzsDL5cvJO1W8tPgZ+i8nDg5TTvfJRNsozWpeZpFAwLjo3AydsLr/ZmyDd9SNg9l1s+Wca4KXUzfXhExasIQhCJTY3Abv8o9qrPQ9MYZ6XZmsTTdQqzvH04zWncILs6jJtCWkYBmQUuTnAEOt57dX0GlbzGIMdaTnSs4cYrrmPMBxmsjlY4lCZRFdJO7QkrcA78/gFNc83CK23dYpoHxey4o+sTURLaKU1WBfRybGGBtzuNM5eYrpJ9Otncwdq9DOo1IPKjC3nLmQdO43fO8RwPhBE4NmXxQQ/qpmTwaORETnMsw1EaWDtdN2CvTglUsiYKsBCB17c3Q1GtSc/leNeWshbk6DgWMZARhJ9bZdX6DWzz7ObnVbt4OfJ/JmtW/O4/KCq2UWthiFal9Nn2TsUrWinJJ3/LfCwRLGyhBQCro3rRjBVl5Qd0IhuCBE6wBSdJFeLAixcHm4Jd1LSGzPLn0VGrvoB2w0xlMaqUD6OeCVMDDu7cyKI3x9A0TnF8xjbigg5XQ+9BEp3m0bqOahfHb/0CZZcZLIjlS+bDhYH018EuR8EWnP3UJ1J7ygT0SY7yLZh5Wfv5IPITTnKuYZW3La9mPYWDMG1pewpsMwL+u5cs572oDTRXFQepBg9iBHNXxNcs0x1NZac6lvPb+hPp20hzpo1wscPu/+iRO8c8nLfiE/NkhRb+GfFTaLszZjF30z8Z0rEhd3+5kkvX/kRrXxKwnIQOJOUZnaORjqVE+vz8k7b/YsS3Newc2tEGElQhkxZuJzdnJv+u1K8zs83bmCwdX2ZpOsmxmn9F/Eh3R/jO0G0Rk5nqGkROUSnJ9aLweDWrd+VwoqPyAsetHUQoL3EU0Udt4k/dFYCD2bkk60Anbbz7ahIpZJDTuBenkEssxbwS+QYNVQ4NLPN5tFb76KM28pduy+4ggbM3t9iURhwgkXzilNmC04hsRjqX8EDkp/AT7MjeS9M23TDbSf3uXvaDcO3UHpZpc+KKPdlFdDy4wXb9vTnFdGgUb85g1n5YINFOUWaoG7cNscpFFKW4iKS41EsyefR2BDrccQdXMd5hjlXz7l3D+S/PonurVFqlbWWwrzyLBHKpRwlRZa6bE35eyK/b3Lw/un/gd+UU2ycksVC0dyMPRnzMpRGz7du+fwVjI4yMY70cWwnW4U6luSfiSz70nE5J0KBbMP44nEZp2zlp3ZQK2+PnzVce58YxjxoWLxsLTku1n4V0A+B4Vf4AFhDwyNA6bNxSaVbogEhDy6BLl8JlFZoPUq2TdYahIDeTeQcOUp/y42Hrk8dzkW9zkXOu7fKO3jTT90KXB+3ONCU1nb5kDTnrn+LinJ1EAx9HPUWb4k+5oE/zSrX1aEMsOELV6RmU533pxBA3je0bVtpmJknzNmGjN3Ch9HZsZnLUgzgObmJtei4DHQFBstDbFY2D+d4ePO++lBnFnSkglk06UP94tcUkcH7wBALOm+auCNl/46IttAha39EufAauJmSSSD7XRwTM4B/W/w8DSv7Hs6WXBFZMXwZ/vo2zNPCgbqYyuTzCMCfbj9+EioJ4jI5uV7WdX6LvY6RzaUgA4h7dgP0kh22zlXqqhMGphWU+/GvSc0zuaSu87fl8R2K525i/ci1jPl/BwMzJ9HWYR4Wa5SwjsqRyE2f66VX8Z9nnfF1xnBYArgLcmeYRsvfcZ7ImL45JC7czYU9r07JMd7QpyDU4BgegMVncE/EFI9PfDGSkKsysOCseGClIKyDYLexE51quKvmC4ZmfhzzQOqmdZR1hP+c655NQWnGgZxdlPh7BAmdQw0Bcwn6dbBJ4x5frogHti9dwktMYrevp2Eaz7HImOD3hn2inkT0ojqJKiRsrk9yn4dbGY6i1Yz8XOM2ifZhzBev35hlpaw+BPkEdxeoy1LGS8d8uodDlZu7aHfRzBDq8r5ScU/bZ+p+6lkwi68WBtum9Eyhk4758mnqqbj0BKCTG5Ir0StT/yhU3AJ0duzhObSvLpLZ5fz4FLk+VLDjzvd3LPp/iDFgRijLN4nWfrk8GgXtMA3K5zvkzI51LTZ13Pyc51/Bt9Djej3yOXZkB8R9svWmcGE2DuCha2iSYaaSyOT/oHGo1/0EmT7ak6vcLzTBu1O1thN7u7ND0vfUoJhK34WLodpnvH6mdIDnovrS+nAlgg0gk8JuDrZnhcGg3nn3r+GzRTnIyAu5rGToRUOzyNigr66x2MHP9ftbtCdyH9uYU06wS160nc1tYcQNwQ8G7ocH7QUQpD62VIR4SKaCz2oHd07Fk3S8VtiWYUTmf8f2yNOP+bTNA1UoF/uOejkpMBO0pYe32PUb/JShxQIEOZEnruOl9hjmWl7W/HsUhQvtwUpyfxfaMQpP3gR2pKpezg9zrAYgLeHx0d2wjioC1rrjUgyff/N/HuDJpkfWnqeyslqX0aVWfuogIHKHqdDkHrzN85zTugL0bzB/eHmzULfAE+Wj1cmzlNu/H/LH5IAMdgQ7AQm83U92PfTOUr/QGUl/2c2wwPeRWNzij3GZ3cuymaZALhKPtkLDrXhUxg8XRt5rKugw6E4BVOij95u5l9kH7PrSNmLETPcc1NIaC/+GcQ2KYGIY9OoX9Ojnsvuz4OP+frI2+jjciX8a1fbEp+HCF7sAG3arc+s1UBg3J4o6Ib0KWtXKn0bQ0MDI5x9PTtLxI1cNr54/n41PP8Er9BldhLhH5gU7HpSUP8bj7auZsPMBDk/9iqae9af3WytxxySO2rBMN8FbUS9wW8T3Xeifj+tY3bl7O/Bevus8PiWUpj1+8/SteCWw7oiOcgf9nh7dh2Lqd1U5TOungoN4mjuyyz/t0fZOLXkX4J+D107UoTLwWQLPerI+r3G8Nx5+6K196Tgm7vKfaSu7BdGL2le9adySIVS7a5Szkke/X0NOzhmhlHP88HctHuX3YmtDXtl7Un69RP9feNTZRGR3aNqr8eUrs8OKghEizK1IYvvEMZpE3EK8zNfpBmn5xJmyeWTZPVvCkm+XdZ/70dmGO9/iy7ycHWRXyDwSE90GdSCkRHNQBgZOqcrgvsuJEMkOcf+ENEoRbgjKotW8YT8OE6DACJ4sOFqH2j0KLwEn7Az44E+a9YrvvkMlHgUyLCxLAz1H3sy56NElLXgkRP2tyotDNAu7Yesn7tvuykhQU3zLYEd6yHkwPh+HuF9wBzlXGMV/mDVhEB/ierxPmBYLND2RklJ2DIcQH4j2Tcip27bbitcx11VbtZYBaxx/Rt/NL9Fhuc04OqaOLKjHIFERLxwGyVk+3TTAAVoETGNzZHNfbbnUA3vxiqinBQLGOZKNuWfa9+74pTIh6jlN8573VehPMNm9jLnM9GHZ5ZSjMzWJbRoFtcodgOqmdxARlq93a5lJ2X/Q9xT77ZaIqKhNm1zp/4dait4lwmY93qsolV9czld3Zovx5BY9mROAIVScmkRX1BoVdbGd6zY5sxMeeEeQSz+ueC0zLTnasYvmqFXR2BEy/I866iE6NAx2zhVsNYbIySFxcEfEb9XwjJ9oZjW49hK3eJpX7DcoBrU80Ff3pDSQx6OvYVNaBATgQ0YSux/VHKVjlbRuoVJRpzNIejoadQ4rsBM69rje5zjmNTir0QerHEDhVH0mJUh7Odi7iiax70EFZXdZ4W7NbNyDHckML5lznAhbH/LvMBabEEWsSLcerwKjYZM9JZAV1pu/33Ey/kjf51H1qyHazdRwrvO1DygGW9RrPHa6AuMzN2keDoGxL6aSY1i8lggM6qez7j56Bli0qssNYMaLWfwfjkozUvGGY5zmObzzhxbCVyZ6TKrVe03DB/j4+9pzGM6WXlX0PtlB2duwgZ8EkI/PPGwM4c93/lWV2ahgUqG1YcMzuNuVhtfAMKaeTpROa8Wa2fZpuP16t+N1zHD96QrPdAbjrNeF9z1lh6zuU5q2olzi5aGbYdQ4X2+uH3tOyU/tCj4vKvvd1bOSrpbsYEtSpX+DthpsIHs04rcr7TKD6AqeIaECxL8w9YcuA8Wz3NmKjtzkvlF7C1x6zxTop6y/45b8s35mNAy/tgtrwh7eHdXOs97Zki7cp95f+k9lBAqeHI42GZAOQuz9w//K3KyNI4FiTCpTHVelPGrEYs54gbV8GFzl+Z4RjCafFbOCFood4K+rlkDqt1P6QKQlC2Lc6JF6jODq17LOdwNHWYHegleMAEcrLcRteNQWTF+hozn5zKR9tD/wvymYuMzuSyjqxmiHOSgocFRrP5EwwBkf8roMAA3wu4JNXBFIdFx5IC7/htoGBh675oRNL2lGgo9mljWP5R5NrTDG3Fzl/54vo8WUDeFdGhF7THVQVsvj5aJq9FG+m/TPYL3CceOgRFNS/PLJP2O0l5Kwne19g4G6frk+6TglZ7yrndBqSTV8VfhLo/3nOY49N3apw4OABtDZnAPUT/Ox2Bnl8ZOs4Tl1/Hie9s42fPYFBqIudcznZsYpHIz/kEm9oDGHbekW0dJq9bzocmBWyXl1BBI5QZYpLPbyYYe1E2rPF25QLo99h6ik/kouRl/8l98UcVxwI+o1RpVyeH8iiVRTTiOEnDqJ7s6SQ7a3wdrDdj+ownHbNG/Ont6up/AfPANZ5W4ZWSGgGDbuwJ8KI41jjbc1Mj/2ozgGdyLx+r5IYG0X7hvHkEs+24GxmPvJ0rMk6BaDbDwtZT4PJogBQr3gvj0ROYrAzvFvCHt3A1JEPpjKWnSjlQbkDrkybdAs0Dl5zX1BOLTP5J4zhZ23fqd1HfR4rvZo86rE24UR+dPUmk0RW6FAhs9bbmgN2bXZG0X7kzaZkCqmeAyZ3vX02D4zrXPeyWzdgjbc1n3uGhiyvihXDSgYJzPH2qnC9eZ7uPFF6BbO9vUL+3+ow09uHNz2jGO26j3+UPMy77rPLlvVybKXpb3cYk5MeWE/vvN/KMmQlewLCaZ+ubxKdVaVFmBg3gAMFLqa5jidXW6OjAkzz9uea0v/jKfeVtsu9CU3Yopuz1tvadjlAf8dGWjlqfn6GNa6mZZ0zP8m9RkHzgGXG6CTpstFbgLleI1HHHG/Pcq1udiSoQhLJJ8UmM1VF5PvcZvZhL3BKul7MKa6XGOl6jnRS+ckzwJy4BeDAetbu2E8zddAkDBZYLOhrva05w/U0w13Pk6ab0q5Lb3brgPvTIJ87VXRRIPbSHy94kMA9y2pdKY8Oni1G2t7fn+XS9WN4Ieot3o16keu33E73khW2dQY4qjfavKVer7LP7dQe2qvdnOj4i35qPdG4qHewArHhm1QSINMn6H7JalrldnRy7KIJGbRVe03X3hZv+G119sWyBnfgIxoYg3ALg56H7R17aEgWLreX75bvBq83xPXXTykR6FYBwd/FEX7gLZjX3BcwouRZTip+hTf0JaTpwIDjSKfZzbSpyqQpActXNC5bq9yvHnvLqJ9WecvYuSXg3h58v2vpEzit1P6ywVCPVizQ4ZPrdFNppO8MWIT2UZ+9Qee6n+GO5cyL/g8vRr0VdltzPMdzMMwzu7J4Cg3hao3B+d1zHGNK7SP3dunAfeiboIGNYY7lPBkZ3poY48qiU4xZ4Khdf0Ju9VxoaxsROEKV+WXNXv7wHsfzpf8o1wUJjIdb45YdaJJivshLIuJZnBBwUTrfGRhRK215IihF8+TQjtNa3YoN3hahO+p2Hl2aJrLYa7aYfOA+02ReLiO5FTicvN3+DW533cY1rrGkWzo3ZW0rGU+PPoa15/gWyQDM9fYMWW+htxsbtbltutWJIetdFvESg0teqfDGbSW9nBicZY7utuXhKNGR7NCNePainvS7/GF+bv6fwEKbNgNkJnalwfA72BrXy365TuQ77xCOK36Xsw7chgfDRSG5RdeQddfq1hzA5sYf15CkelHEJyXb7sMTm4rLEjIM8Jdux0klr3K260myCI0rCrbgVJUsncB8b3dKtTPsOiu87biy9AHe9ZyDF0eVYqXs2EETtuhmgEJ1HMFi3YWNukW519vVzul0UjtJLApYQjNV/UP67eHQKLZnFFJKBL95w7t75PtGGNN1A1w2x8+RYMzV8YPV6tbjIjakhFr+AIrOeo339Lls9jazXV5dluYmkGcVa53OhKYBa0V3xzaOV1voGJQo4feye4HiAfcNIYMc5ZFAIW1UOZMX+ji75EnmeczXeKFP4BRFh4oqV2QiCYnJBMf75VOP9z1nhq57YDNnOAJutrt1A7ZYjm22jvNtS5EQE8HbV/cjIyVw/xrmXMEHkc/ycOSksjI7C063CuKDwtHVVX5yjEPd/sKg50ZHx25mRt/Lp1FP8nX0YyyKvpUzD35Q/gaCMlNm+Cymf3nbVLxj5TSllH468j3mR9/OuIjAgN86b0uTq5mVtmqPEdcS5AHhaGUMQu3SDU1C1C8AV61eBa8ez4077rXd5l5SyY4t333Zjvne7hQRw24asmZPHtt0+SLvraFuXrr0eP49rD3t1J6QuNPSmBQ+9Iwsdxvd9FZ2bgiIp3lB1sdUlUtrtdfkqraHBmwoCh972s2xnax9gfNov65va4VxKF1u3BFA/+O6MahLq7Jr1Y6KBifjfS6Ewem5/2pxGdeU/h+zvb3ItBnA2hkkcOZ5e5S1P0J5yx20wuvGWWyTdMKfWr2OIQJHqDKfLzJGc173XMA1pWP5w9Odie6RtkJCxzXm7pGdaJpkjtlpEBfF3qb2MRhxnYYC0MxG4GgcvO4+P7RSpzPo1Die2bpXmQ/pPE931kV0Yb3X5kadbJTFpTRhivdEMkgi3WaUpkRH4k1oTvuGxk2kV0ujU27nsrTc257Pov8RKDj+CnRUqPvXpoIY9tKA/JC8YEHYTJRqWHCSbVefGvcPvFHGTbu8EXU/W3VTPDjp1iyRM3o04Yx/Pg63LIBLJsEVn0O8b+Qtvglc/gXc9Dsp//kNImPJaWgfd5FRlnnI3MFr1/n4kHXDWnDqGf9Bi0aNQpcBJNlnc7nupDZEOh0h++7dKrlsf34yo5vzD/ejjHbdx0JvV1Z621Ee2cSTRz3+0m3DrrPaso29h+iW8HbpWfh/y7m9jM5mETFs12GOC0Zw+6/R9xPpyjYKHJG4U7uSpSvvolZZJta7lrSDhjvNa+7zbUUnGPFPYMSLBI8qApDYgvpJRtumei0CJ7UT24e/yYOl15mK9zgaE3vCNaztdrdvItcAxc7QB/0fFlGAMxpumA7/mIhOMt+vdngasNs6yNGwMzQJDGYkqiLuC5qHZ2N0D/ZHBM7Jud6eDCp5nf+LDU2Lu93biDtdt/Ba0P0rURWa3NN2hrEAZen4ENFc6Esxntw49P5WGt+cpHqh/8mXCaM5vfRFk8vNRxFP8GBkIKPcFm8z9ljuhYY7nEHXJok4HIqe/QMjwxc453Gqc4Wpjl/gHOoIdnWZXoUBpJ9yWocdPEgKF6MShgzf780l3jxvmR2pHSHefE07lOYUZ8BCOMvb2zw9gIWGKtcUB0VsfeKa+t2tlcmr4Uznn0RRSo89X5Wb2W27twGbPeH3aUeujjVdk/klbrbp8l3Ge2x+mwv2vMJV6mdOcQTcAD2pXeE/y5g69Ge2V7CNSOVhcFHAjWqJtxMlQfOLzYm+i1sjAum1d3obkVZon80NoLvabnIpNKzgVb+H6nbDeOPKPrw3+gTyI8K7lo8vvSrUshpEgs/1OFjgeGL821Ns0qEDvsH3Wi8Ovq+k23QIjkjoei4EzUFYlxCBI1SJtIMFLNgaMCv/4T2Oq0ofYJx7NFkxoRfawJ5d6dAoIcQa41AKT/vTTDciP05fdrPm9UM76kmxkfzoHWgOhGt/KsQmUy8qgsSUJpzveox7Sm/iltI7uPbEtvzgHRA6euwTOI0SAkLCrlO6XTdicKdGKGU8/E7sYHSAVur2ISPIK3V7djY9A854Gk68Hc54Eh0uDz5QUF4WscbdyXeYb6pdO3WkbdOGtgKmJKUTjn/N4n/17+NC16OmZdNTrw5Zf5NujlKUCTdjn92g27kQkwQ3zoAL3oF/L4TOZxij2JHGfmOadTNllfETLtZjwHFdcCnzDXytbkMBMaE39jjjxty2mf3D1ZHcgkinuSMy6vhmPDKqOz2ah3akzuphjCC+5L6INz3nMqvNnSTftZhX7rmJq666kctcD3Ge63HucN1KkY6ydTFq28jY7no7V0cfq/ShCRzd93rOK32Sy10PcErJi3ziMeI5lIKR3ZrQIM44TnZJIRYnhRnh7H0Vndq1CXFR8+A0YtCqyG8xw/nNczzfeIbwTNYw/tptuE5s1i14pc3/4OwXQ+oEi/g/vIGR6ryIFDjrORomGOfRTt3YFANHl7M5vmUyH3tG8Ik7MBCyOsmw6vRpXZ9MS6cjPbkvOMzJIL6zDkTEN4KWJ0D3C1BNzcJ7l27Ie56AGyDDHzb+gJhESAm4WZ4U5Ea6pskFDO1sPmf2U5/UbkOth4Lp3r585x1iiplJpJC2QQJntW5r29FOSGkUMtJb6BMdzVuFCnSV1Jz4qAiUZVP146KIa96FNUFxhA0tc9HM8/YIEVNxjkBGqeN9gzzBws+Ovb5YuQwbi2p12apawr/m8OcJr1a47hrdmkdKr63UdjcWp4SK22oSfF4uDUp77tJOplotlY27Q2xyudv7xdOf7bp8ofRIyxWBLy1OoEnQ8zZY4JztXMQvUffxL+cPlMcub0Pm748u1/JgZZG3C/XjzQN6aRXExDoProdF79B0/iOMjfy8rDyzXhto0J51GZ5Qq6qPjDCiIyu6OUuUeWAj2HVxp25IgdtBaUScbf1oVcqJBYE5sPbpZIoadLNd14r/Gi1WMaizXygrL4i0fx5M8/RnqncQRWHSZwOc7FzN51HjTRkmvTGBe8hGG48WvwVn9IlteO+afvzm6VWp9puIiIWx2+HSSeZ5neoQInCEKhET6eSfQ9qSEhdF6wbmm9nBWJuRcF+HNdkymlji9tKiccOQwNfC6EaQYmynebJZAKTERXH5Ca3w4mBM6b/xaGVkKTvx9rJ1ujRJZKtuxteeU8gljp4tktijmvChxxJEnmTcFBolBG7g+0kOcS/ZrptwevfATbpdapzvdyt+tmTLWu1tR7+2DWDgLTByPMSGGbXxmeFdYW6wADTsQmGkuf61gzuSGBMRYvnI1vFcM7gTpHbk/Gvvomn741kf6wuibH0SG9pcE7L5Td7mtEqpR2xUGLer5JZw/KW2v6Fto8QQa0aRM562jZJJjY+mZ4uA0GibGkeb1Diclsk//e5XITFFvvOlQ0v7B6NKbEFKnPlh0NZ3HibFhorlU7s24oV/HM/5J/XklFve4NTR43BEx9EsOZbTujXmtK5Gx2GydzBdSyZwsuvlkG38csfJTLntJJJPHYP2C4M4swBba3FH6dwpNLlEeaj4huyN68wCb3fTiGWDuGjioiN455p+XD2wNfVahPqO37TvwtD4MeWAwXdycseGIS5q21NOggb2sWwAxDUizSbgXjfrw52RD3J36S0U60i+WRZw04po3gv63wBR5n0Fd04ed1/Fna5bDMvZeb9Dl7NM19/dpbcwwX06K/o9C02Oo3FiDDcMbsujnmt5rPRq3lH/oMkoY6bxXi2TQ0ZVXQmtICbZVDbdaxnFD/YlTzC7z+zWqSz0duOH3u/APz6Ek+4ILGwaaoXM1fU40Op0HhnVneFdAudDn1bJdG/bIqQD5h9pDR6cSVBFtHYEXNS26Sahll1nFJExcSHXfZGv89mpQ6j7UlRKaxwORWKM+ZqoFxVB39b12RLGdaj4jBd5x3N2mXupn15NohjZrTHDOjfknyf77vMVTBJs56IWjl88/cjU8RQld2RMk0lM9Qxkric00cHqxKHQrBeejmeVWWjCWay3eJvxkWcE40uv5C33OWEtNDM9vcmjHlstx+R3z3F0L36fO1238Lb7bD51D2OCO3wyEj9ZjsA97RX3Rcz19GCapz9nu57iUavgSmgacs4Gs0ensFq3ZYdF4BQTZUp203Bf0NwnLU8weUxM9/Q1uTG1dVTsErlLN2Tx9uzQ66ccFnq7cWJ7s+VvDykUWwYxP3KPqHBbacq4Vjbuyw+ZDNnPjDAWulduPp9B933Psjj7xDD+zn+eqpxVZq9OoWPPQbzmPp+l3o7luqC+5R7FySUv8UL376BBYFAkqaHZ8+Aq1/9xdsmT3FZ6O6DKrLHhCM4wC5iey1a3eAhYcO4c0YnTujVmme5oOyhZLk16QFQ5fZQ6gAgcoUo0SYrhgbO7seD/TmXidSdwRlDnv+mQ0I60P9WksgwlutweWjeI4yH3ddzlupkt3qaU6Eicwx/AP+xodVHr17p+mej5zdubU1wvk3HDImNSNR/tG5kvyA6N4nnmop68Zk3128gY1WqUGLjo3URwwDJy2ax9d4Z3DXRelFIM62x8/9B9elkWk+XOnpzUoz3XntjGVD94tnArjVPLGTFs2JmcdoG5NfKpx5COqWzYlxfSxqSGzTm5k3FDa5Ycy6QbB9Llnulw0+9w9XckpzYOsUxs0i3o2Kh6rktdmyayyuKSpeIa8uudJ7Pw/07l21tO5KZT2nFC2xSeu7gnSimclhnYS4lgSMfUkN9CnHFMurdsaJ+aObEZKXHmG3XbhsZ/bu3MATRLiuWivi14ZFR3ujUL7Whd1j/YKqOwm6PI6VD0bJHMmacOQ108AfrfCNdOhQZGx3J/VEvWW9wzU5u2CW17edRrQGp86API31Hp27o+48/vQdvu5gQPW73GjE23lo5hmTNoRL33VVC/NYPaNwixBB5ofzEMuCl8W059gMh2g0OKY5Ibc0KbwEhk2QzuQJtUX6c93twRyyPQmXcRyfYWo2jSdxSndjceyg2DBM4u3ZBH3deS1/nCsrKHzunG8nFn85//vsj1D75Dz3aG1bRzkwTyHJb/M6lFyGh4LnFm621w5sTG3ULWBWjX/0zofj44guo164WVbz2DaZBcnyZJMbw/uj8//GcwT114HO9f25/OTRJMfvBgDCpYj0kChbQLCrxP003I0ZZORWwKCTFRIRacAmJonhxL+zbt8FrO24gU43y0iv56UU76tq4f0pkHWJ16FtEDrifSGXrdxcTX551r+jHhuhMCVu96KZAUPk7Db8XMJxa3Cj9CDYaVoX/Jmxy85ndiUtvwn9Lbubr0vyHuo/nNjfOyYWIMt5aO4eySJxhcYm/N2aKboXHwvudsnnZfYZpDDWB5zADOLnmSf5beDUCaRUT84B1IAbF85x3CU+4r+a/7n8yMNQucEh0R0uFt3KQFcb6Box26MVeX/pdbSu9kk27BQas1K7WTYTEPwzxHPzSOENdUD07b/xCAlieQEhdFlNPo3mWSyBklzzCrCqP4m3QLFqVlhgxAlseGyK50bWr+fRpHiGX/I0/FAmdhbiqvztzEnI0HcBNh68L1azjxldwKR71kJjZ7yDbub6fvWGZ4LNfZ8VfYbm4/9RnetREvuC/hItejTPCEn44ij1h26Ma0amE+11Lqmy04W7zNWKPblA0kFJfjomaHo15ASNq5qO3UjWiaFFN2/Y84rkXI1BsVklg3J/cMRgSOUC2iI5y0TY1j3LnduXZQax47rzt9+g6ElhYTfLy9ad3t1aTGR+HFwbfekxnueoH/tJlC9Amjy9apFxVhcm0bfWIbWqQEOge7dEPqNzePXjZJNI+EtGkQx4V9mnPrmf34qvOLuBv3hBP+BS0M60uwixqEuhZ179E7RJwN843WHiCZi13jeDn2VnrfNZk3r+pLfLS5c2Dnoja8a0OGdEzl5OPKif1o2IW25/6X3TEdKVKxZJz2Ckopzj2+WUhHR8XbuHM5I4xR54homibFhIzybNLN6di4esHnXZsm0rCzeYQ/Jslw44twOohwOvi/M7vy5U2D6OfrEBcNHlu27lTPQAa0TeGdq/vRtJmlg+QTOI0SY+xHtZJalLlr+WnTwHhQWTtzyfUiw1uofPRsWcX4gO7nw9kvQKMucM33cM7LfN751ZAR79jU8B0/24xhYQROY8v5nNKul3lbujWtG9TjqUv60/PeaXDKWJ975DMAxEVH0KBll7JR1P06mciup0Of0eR1vZQ/vV24pOShgCtK0+Oh99U0P/k68qLNVrSkVj0Z0C40Tg2gte8/sFpF8oNG1/u0SubbW0/i6Yt64nQY11SwwPGTYBGqcdER1I+LIsIZeFxFOh3Ep5jvLRH1W0JsqCvIf9T9xgflgKH/F1jQ8zK8vjicD32jyilxUXRpYiP8Q9zZUnnFfaHp/+nRPInLT2hF/bgoWqXUo9TSqd+sDXHWv3ObsrIOjnR6qkDGpg3eluRg6XjVSyEhJnTwJSkxibeu6osjIpI8p8XSmmhc74mx5vtRvegI+rSuz1abrFzFTU9AKUWDeKPdL7sDQpPhD4esD0BTeze1AzopqAOucEWb/5cVFuGSphvjwUlqfDTdmwc6yRssbqFJHY37TsOEaEqJYI1uSy5xIXN3eLUKEQBWa7ErpRNrdBu8vm6QNVao14irQs6Fk/r2Mn0vjG/FWm2+nus3bEaXpvZWq+gIJ6V9rvf9mJZw3D/KdVFbHn8yTRJjQkRCDCVss8usppzQrA9KKZoEWXH2U5+PPRWkMb94Amsju/OFeyjTvX1xub2mgH071vniWxd7O1HUqLfJIusnOMU/wEUjh+NtG5RdtN8NcMHbpnV+2JvEi9MD6ZeDBwX89Dr5PLKiLJb++Cbgi3vt164xW3VoIhL/wMOeUss2e10e4koNkKlS6NEsiYQY41raYJe0qGzbxrO4c2PLPcRtngjUmvnQ6qJWnFR+XKiKC1xPdi5qu3UqHYPa8MT5x7EnNfzUHrYk2SRzqmOIwBEOiSZJMTx6Xg+uGdTGKOhjseLEB0Yxbx0aMNk+cUEPlFKM7GZ0UmIiHYw9J/Rh+fCobnRrmsh/Tu3AiR1SGdIhtWx+nHOPb1bWUfJzds9mJPhExsmdGhIV4UApxc2ntOeqK64l4pa5cNZzZVYiawcrJNFASuiNZkDbFGIjjQ7tJt2CouOugTj7jp+dBefx83sw6YYBJEaUk4GlYWciYhNofv9iYh/YTuvBlwBwSb+WRvxCMHYCJ4gmSaFiYbtuHHoTrgLnn32OucBhH2TuJ/akW6DTGeg2Qxj+n7f54qZBxEY5adbC0tmPCxr1jrIRYDajSm1T7QVO06SKky00SoixFRaVIqk59LsOZ4pZzCRERxCVFD570Ey7rGNxqWUdy2CaJJnbFtfELOj3OJry4+1DuLBPCyJi4mHY/xnukUHJLbq0bcWtpWP43D2UG1z30CI1GZwR1PvH21zqephFuivnux7jf/VugasnG5aLpOYk3LOC5f2fZ3r0CKa2Gku3409gQFt7X/I2ZQLHLDqC3a062ZxvDW2OfWJM5SZVbdTY3HmJbtAaThtX9n2Kx3igb4ofAGNWwe0roE1QsG1UPRz//pM7k1/hEfdoAAa1b4DDYeOC0qw3Hl8SjxIdyS2uO8gikcaJ9ueO06GIc7hNZVPvPYcpt53Ezaeb//+yzFEp7Vml29lYcOqTEBMZMrBxYpcWHOdzB42ub7kufJ0T6zURF+WkUUIMruTQ+1p0e8M64ncBfdN9LmNctzJz4ARoZnPOQkgczrOll/JQ6Wguco2jRyvjWo50KqIizF2Nid6zeKD0ekqIZL6nG7N9adhjo5xc0q8l15/UlvjoCN73nFlmIfncPZQuzRvY/i7rXEAbdAuKMf83VoEY18TspvmDdxDa3yXqeSlXDO3FrizzpMvnDjBnhEyu34C9SeY5VZo2a0HXpuZz/aI+LejSJIFHRnUnctSL8K858O8/jevUxkXNoxUzPb3ZntiHVj6X6GCceO0tOC36QbRx37QO9m2KChMo3vg4OPle6HEhL7V8lfvd/yoTfV4cfOMJteb6udA1jnNLxnOV6790aJxI0+TQQangOLht3sbEx0TgOO1h45zqfiGMeAx6Xkphn38BhkudVUQUWNw2vSqCfw3vTv3+l5p3Vj/wPLm0f0v227jN+0VIyABa/TbsTjGLgI3e5pQmtcHhUHRsZBxXq+im81m4VQQLPN1Y5Isj7GQdPPSa7wVeggdrQl3UYpqUH9QfEdTfyLSJcSv0WXfLflpcFFddMTrs9gpsBOSxIHAqPz23IFSG7hfArw9AUZYRpFY/4Cd808ntKfV4SYiJ5JyeRufkuYuPZ8iqdI5vkUS7hqEd2tO7m2NgIpwOptw2mA178zjOJqg8JS6Kr24ZxOK0LM7qUfGknzGRThJjIsgtNm5AIZ2LoODi4Dpn92zK10t34VCBLFd2lJdkICRTWkQsuIuMOXr8rh9KQUTgQd2jeRJdhvWHWT8G6oWxkvlpmhTL857BZbPUb/c2wk1EiDtBlQj6XwHIqWCehNhkuOILFJhvpZZYFuoF3PYSk+vDAcsEiEnNyS02Z/9Jrmd0yKyj1dbMfeHo1iyR3zcG5l+YyQCG86fxpf+NFda3xpc1iI+CxPDnhDu5HUURHYnN3hQorJdKw/hQa5O1k4LDydqkk+mW8ztFRDHimv+GWA2tnNGjCa/N6sMsbx+SYiPLRL3Toejbuj5Lt2exUbek6YhzDLcjP5Gx9D77n3D2P8uKujZNpHWDemzPCGSWSoiJoL7/GJRjwbHLilgZC044Gqckm77HN2oNjVvCmc/xy+w5PJ1lJF+4YUhbU8fHRFQcnXsPgWlGEPKonmH+t5gkXBd+wPcfv86XnqGs9iWVaFzOOfZj1Ol0KzGyMa31tqZrSj3DGpwTZs6bPtfQxZtIToadwIkIneQ3aFQ4JrEBBGd/9WUbtAoBv0Wzfes2YJkypmk7I6bGL3BKiOJ772DOa9Mv7G+kYSfT18mek0gnlfYN45hw3QlMW72Hrk0TiZhknqTwv/fcT67LwdSt/+aeyRtMy2IinTw8qhtXDGjFaS+6ucz1EB0cu5niOZFVvsEMpRSvXNaLN2dvoVVKPX7e2L8sdffW2OPYN+AR3mvUkzkbDzBpoZHy1xrD1KRNV5gf6Hhu003Zdf43tHSnGZYV4OK+LZg4Pw2AxonRNK9v7giqZr0Z0GcATPm2rKxVi1Z0jQjcWx3KGNQyWZODXR4tFpw33OfyqvtCSoji7Hqx1ItysmibZVLg6ERuOGsk/PS6ubzv6MDvs5ybEfENIboDBE862v+fcPbzZV/tBnuecl/JBam7ceTvM7K+BU16WkQMq3zznHVoFE+fVvWJi3JS4AoM3r3uOY+hzhXE4mJM6W1cFxMBzfvAv2ab9lPv3Oc4ZfUwthd7sQq6egn1IT8wAasjNonoyAhDIM17JbBiUJKR6AgnQ04cDL/NKSsrVZFl0xM48Zp/aFwjSgaOIfeHxTjw8qFnJG+7z6FnitEv6dgogWU7stmgW5Kt40hWBRCdBBe9x4Q/tvPEr1vL2u1/JpVx4u2w3kjssDppKASmo+PTfw6k0/RGsDvogkztCObLwkRkfAOg/GduqnXALLWTMSCxdxUZOoEGQROHroobxKDSReAKuk6PARe1OitwlFJ9gRHACb5XcwCtQyPAlFIO4CRgFDAc6AREAbuA6cAzWuttNvWGAr+V04w/tda2M14qpVoA44HTgRRgB/AZ8JTWutiuzjFBVD24/HNY8gF0O990806qF8kDZ5v9QJPqRXL1wPCT/NkRE+nk+JbJYZd3aZJIlyaV77wHW4GirLNgh7nIHxnVjeNbJtOhYbzthKR+7AROmVWn56Uw6wkoyYHBdxnZndZMhn7XgSO8cTUi0SLcgq0eNtSvF8k8Rx8+dg+nr2MT491XEeV00K7hIQQQWtMzlRe0Xh5W61PQb3Emt4QDwcGVChKaEhNpP9t1qAWncgKna9MEk8CZlHwzw+tHgzMKhv63wvr1LQ+zBvHRRoBpz0th9VfGQ/ivr8uW33nGcbBxN5gETgMaxIemo21iY4Xq8q8P2f77RyR1GEib9hUnM+jeLIm7RnRi6sp0/j2sg8nlcuyZXXjk+zV0bZrIucdX/EBzOhT3n9GFWz9ZVlZW6PIEtmkR27lBctba4QLjWraSUEkLTueeA8hfEEO8KiZTx5OU6hMnA/5Fo6b/IOX7v+jfMJ5L+4V3KQG4YXBbUuOjSYiJKLMo2xHbZQRj3S5TWUI54jK9zQVMXbuUlmo/D5TewI/+Y2QXc+GIgF5X8FATB3smWQZ6YuuTGBNRlnK7jJKgzoi2dNZ8QtMalxYXZbS3b5uUEIGT6hOb1k5uw/hyrqN2Q43fU5yDt3k/3jnrfLIKXfRskUxSbCSXneAbqOl/faAjeupDNEpOpBHQukE7Pl66j7V7chl/njnzVYdG8fxzSFvenQuLPV3o27q+6V59Xq/mnNerOftziznhyX8w09OHDBI4pVd/Hh9qiLXm9WP5dNEOPF7NgK5tIOiSa9CiE7DWtM8mxw2FIFfIy05oyZSV6ZS6vbx/rS+pzLAH4LcnDAvzkLtJtGQkjE5uQv+g/7hni+TyXWUtFpwN3paU+FyWkupFlg1y/F/pDTzln6Rx1Cv06tgXfrJsq3tg0mbr/S81Pgoan2AWOJY4tIY2VuTopCY4bl8O7mIjScdrhsWqqFEvo1fjo0OjeGIinZzatTFTVwbiynbqxpzki5NyE0F8dPgBjFZNGrA9L6DUHz+/Bxf2aU69z97CNM9ltO/5bk3+YXkOqUbm35cT3RRdZPxfEZitKkTG0K73MPp+/xaFblXmduy3hPhdukuI4t+lt3N9/EKGXzIGouK4ZGBHXp+7i5yiUm46xca9rNUAOPNZ2L+OJY4LYF/gx6TERZGUYOmvpLRHo1B2A6TKSXRcsqloi7cp7R2GAMz3ZWe1ZndEKbj8c9595xW+yGzPwxGTONlpTGC7rNllDGrQGRb+L7B+mCkZ6hJ1VuAADwHnVXLddsDvvs97gVmAB0MY3QRcoZQ6S2v9R5j6WwC7ZVvsVlZKdQAWAKnAX8BcoB/wMDBcKTVc6/9v77zDpCjSP/6pzQssOecsiKKACIIIgjkjZj3TmU7PcKYz3ul5eqc/9czpzGcWTIg5oAgGBEGCZJCc07Lssql+f/TMbHdP98zs7MxOz/T7eZ59ZqdjdU91dX3rDaX3OO2bEXQeavylCXsqazoHc6q7My7b9FO7CI2ighiFmUP7FBI9hU3h6lmwdbkxopeVDXuFT8QXfnJbJyyKi5pSinZNCrltyx9Dy/q1bxSYN6YOnPI8jL8QUMZLPx7MFgMIxeAAcOQ9sH1VjchpvTdk53L9EXtx2tOGNeqqMTUuW3aB42QxcGJvmyUrp1lnI4lAjNgtOKGRs5OfgeP+Y1jmTAKH3MJQgoIQDVowtLu1vNlZisFdw7PYZTVsTpejr4m5fGDcJ/O9CjK4a3M+uto525AbR+/TlpaN8ti8y+jsH7OvyWpj+z17dGzLklXGPToqBosqOIseJ7q0b8NH+/6bnAXvkTP4QkZn1+w3oHMzPrwytuvKzc7ilEHxuWPY4/PM/OWIfhw27xrKK6q59RiTa1N+EXQ5GH43tTN9T4BGrRneEyoO6gc/1MzrQYPmFOXnEpYAo9zU46u2CZxso066WXAGdWnG85VHcWHOJwA81uhK/hy4lga2zriTla3mgM3g/I9g+bdk9TuJfRq7DPYMuxrKSwwxZMpOl5udxbuXD6O0oooGeeHdkWsP34u1O8pYtL6YG450FvOGIFPM0kbndk9Fzb3o264xk68fxY7SCvr99rNF4KgmnbALHHub2KdtY6bdNJqcLFUTA3bIDdBzDDTtUtNeHXgp/PS0Yflp0pHeTeC+cf35YfkWLjnEocNrxpapyuye1bQwN/QbvlU1ihJdwL9OGUjDvU8Kfzf1PT6Uyh/CBxRaNMyHToNh9ms1C20CoKXDb929VUOjc5xbaAzcnPxfWPo1VQMvRj21juB4XTDm45h92loEDhjCJkjDfPfne98OTZiyuEbgjB3QwagX+TYBUBD4rhQc/zBMvNqIsRv8R+t2ra0uhdUNWsN24/8cwl3E83Ky2LtTa340Wcw6Bqar6Nm6ZuBhavW+0HoUY3oY/ZwmDXL55oZRLN9cEpoMPIxAYhc1dTnmete0MDc8W1nj9qj8ItizM/w4uopC28DKDRWX8k7+HQA80OAaLhvag0FdHNyJm3Tg66Yns2TLFm6rvJDL9fv8prvQqt0A2P+AGoGjssO9NNKQhAkcpVRnYJfWemuU7ZoBRVpr91mmYuN74FdgeuBvBeDWEmsMS82/ga91YAhdKZUPPAWcD7yqlOqpta5w2P87rfX5tSjbixji5hGt9dWBc+UAbwFjgZuBO2pxPCGJlJsEzutVo7mj/XRjlOv4hyPsFRuOFhzzsgbNwzv50Whkt+BEn5CtbeMCi1tRndzTgvQ7GVr1hdwCx1ilmLDNW2IROC17GZngpv8X1syEgy4H4MBuzXn+/APYuHMPJw2oGWWyj1bHasHpZ8uu1rxhbC5SQRwtOEGCL659TzWsOU06Q48xRsfi638GdugJOXn075jHyxceyNSlm8kKZOsLBe97CKUUr1w0hDOf+YE9ldWceaDJQmJ7Ud912jAGLyhmWI+WjlnuAPKysyivqnZcF41jTrkAuCDqdqmgc4sGfHvDoWzYWWZJnQ7AORNg7gT4faphKTQF8ec2tInawubs3O3wWjI/952HWAVTgMYOMThgxENdlj2OgspyttGIpR1qxgqrbU2WU2yYhbb7GH+RaNjCSM7hgFLKUdyAIcgeP2ug47og9pgpuyDr1LwBnQDKRsB3prmasnMCFiLDeePY/s5xc2GCWynoYMvgdcx9MOZ2Q7wGOG1wJ04bHNl6CIR5CZgD45s2yA1Z2qvI5oPq4Tw84JgaC/rQK+CHxw0r0JH3WI4TNrl2o7zwctsEgJOLWveWtjao/2nQ/zQaAWcdOIdXf1zJyQM6hCwdo/aK/D4qimDBOfWATvx3yjIqqjR/Oaw3DYMdedN9Nb6b2uyB5xmWnIIm4e+hZl0tXxvn1DxHH1cPYUT2XOOLKSvZgd2aWwROcD6+XrYYwmybwGzaII8BnaNnQ7Nb85oU5lqEKWAMWkYYPLEfY6buzcSRH3H83s34u80qF7Zvbk2Gv5sqjbin/2tcAM07GclpfnzKiKWubb/EgyTSgrMco2P/xyjb3YfxRqrTubXW95q/RxpJ01ovBcJmw9Na71FKXY4hOjoDw4Bv7NvVBqXUgRjucBuBG03nqlRK/Qk4DrhKKfVPrXWly2GEeqR3myLmrzNGSvaQB3+aZoyOFtRdBER0UYsXe8xNbvSOvP1llxCBo1SYi0OtMWfdK2wWPpKVkwcHXRG22+g+4a5E9s5cLEkGALq1tM3dUla7x9IucBxdrE560vCPb9vfuKZmXWDcc4Zf9pA/hTY7pHerUMpvL9OnbWN+vOUwyquqrTFATa1WzdYtWnDRiMjXk58bv8Cpbzo1L2TV1tLoGwZo26TA0TWP3AIYcLbxZ8cedF7YjA55Rl2+q+Icbs99xRgYGH1bzTbDr4Y546F4nSUjlf2ZCAqJ7CxF585duGWxEWP2l1Y156y2KZw6W3rrgSsO7cHjXy+lMDebPx7sMvLc/VCjM/z7tJAYuOLQnvy6ege7y6u44YjazV0Vhr0THiuN2xmusLNfZ3W/S6n4ouZ5alqYx8E9WzK8ZwumLd3ClaN7Wfs6R/wT+hxjjLbbXIrs7q0tGuVD217Q5zij3Rl8UZi7pF3g5GQpTo3g4nn32H3569F9LIMXhXlGjOqkX9c57tMoggtqt5YN+fr6UazdXsYBXUxC335vzeVWyj0JRpZVCOS32YuijTkUl1XyVtVIhmfNoX/BJjqd+Uxom8FdrR37oCdAe9tzvGVXfE445va9Q9NCwzJYbbMmNWoLZTtwoyAn/Jls1K4XtIk+2OnkLhkSb0MvM/4yhEQKHOdJJNy39QRa61Kl1CJgMOAeGRw7wamwJ9rd0LTWG5RSU4DRwMHA5AScT6gjd520D+OenAbAw2fsb5j+EyBuwFnMREw8EAsNmtckJABoE2X0lPBgaHuWn5TRqBWc8gLMf99I310HGtrM9q1dMlzZyc5SlkQTR/SLnLTBjt1FLdtpsCU7F7rashHte4rxl6bk5WSFZcei/QDY6xhY+BEc9OeIsWRBCnKzay0qU8UDp+4fco987CyXTlVdsacNbtCcE3t04Jlvl/HClqMZctBRHDF0gDXLUUETuOqXgBtYTdsVNg+OyT3okkO68+PyrTTMy2bcoJrO8YjeLXnz5yhJQzzGdYfvxcjerenasoHVgmpGKTjBOmdO0wZ5vHlpLdPnJoNRfzX+tu2GL2rCfgvzsg2L6R+HsLO0kia2toasrPB2JYB9UKswN9u4B2e8Cru3Oo7Qd2vZMGRRzVLw6JkD2MchmY8ZJ8vsHcf3oyAnm0b52bz0/e+WddGSonRs1oCOtmQOYS5q9u+ROOKf8NltoLJRI//K/tu3MGXxZirJ4YqKazhnUGf+2alm0tqBXawW1G6mxBZmtuyyxuPFSrsmhTx8xv58Nn8DFw7vaiw0x9OB1ZPBgZzsrDDLt31KATcKbRbJvJysMDftTCEVMTgtgdiHwJJMIAFBcNhxvctmvZRS/wJaYOSq+Q74RGt7ZCcAwai3mQ7rgstHA/0RgeMJBnVpxhfXjqS0vIp9OiT2QXcUM3XUNygFZ70B05+FfcbFZEpWtjGFvrVIwpB09jnZ+Ksj9hd6hxhjcACeOfcAbn5nDj1bNwpl+IsVuwtLjlOaYb+gFJz5umsHyonuLRuyqTg9QhIP7NacL649hLKK6qgdv7gJs+A0pzAvm8+vHcmuModObpCs7LCBGXvK7YYmV7ARvVox8/bDyclSljp8zD7tOHH/DcxatZ1/nBh98MQLZGUpDnRJYZ5OtLBNYlwdGCBTSrn/7i7YrTGVZiupy7PZqiif+07pz6fz1nPO0C4M7xm5o+1Gq6J8HjhtP7TWtRY4jkSy4ERj6BXQ4QDDUtasKwM6V1vifDo0tYqpRvk53HlCP57+ZimnHNDJIhxOHtCBd34xktxc7xITFgvBBBkh7AInyylOSQEajnsIMMRveWnNb+poKXbAHmO3T/vG4QNVGUKdBI5Syj7NbVuHZeZz7YWRVWxeXc6bYM4EWgObgGku2wwL/JmZo5Qap7VebFsenBRjtcuxgstrlzpMSCrmAMJEEjUGJ166jzL+YqRrC2sj3qxhdF/hdKMgN5tn/jCIt2es5ozBnWIOVgcY2r0FX18/KiHlGNQ1/TtadaYW/tt3j92Hw//zLVrD346ro8tjPdCzdZKtn3YLTqExopydVftOrluSgSBOnc2sLMXDZyTJOiVExP779KpDXbPPEbd/56Yx7XfSgA6W2Ma64BQ6UJAbR2c6TODUYoAuKwu61FjpBtgysLZ3mLvnvGFdOW9Y17DlNx/Tl6wsReOCXI5zidmKC6dkAo07ws5Ad7HjgXDi48b0G50OBAxLzI5SI6YoLyerJlV/FApsdWxA5/BENplCXS04k7GORx8Z+HMjIEFxjjasZ5RSnYCHAl//5pDZbAfwf8AEavKv7A/cDQwFPlNK7a+1NjtLBnvK4TlfDUoCnzG1XEopNzEYPkGL4D0iZVGrR04a0IGnv13G8s0l3HZs3+g7pClH9GvLEf1iy9aVSB4/ayD/nDSf4T1bckiv+EY9/UrP1kV8dd0oI91vBozC15lsm4tVYfwdkDAXtUjpigVPcN+4/jzw+UKO2bcde7evm6U92C4N69GSg+O0xiSaSPHSrtTFRc3G/jaB07wWg32tivK5/9T9om9YW4ZeDuMDyVK6BFwOT3ocXjvdmER77FNGBjsTZjHcpnF+zPe1Qa612z8gRuGbjtRV4LxMTRfuPIy0yVNdti0H1mLEpri5b9UbSqmGwDsYLnPvaa2fsm+jtf4F+MW2+Cul1MEY8+OMAC4H/pXk4gppSlKSDMRBQW42n//lELbuLqd1UWymbCF2ju3fzjULkxCdbi0bhnzdfU/TztbvpgxPtcWeZEDwPjFnX4uBjGmX6mLBsdGsYR6j9mrF5IWbaNM4PyypQErY+0RjMtDtK+GwO4xl3UfBtb8ZGdbsWdawukaHTQgdgd0V1nhHseC4YE6drJQ6DyOd8oV1LVSyUUrlAm9jzE3zHXBWbfbXWlcppe7FEDhHYhU4wckJGoTtaBB8ixe7rLefq5/T8oBlx/v+HD4nKUkG4iQnO0vEjSB4nYLGxhxTv7wKB1xoZN2LE3sAuFMaYEHwPJHSRMfBo2cOYOqSLQzq0qxWrsxJIysbjrgrfHkEV99Ck6tfrAkGALaVWJMj2LPDZRIJiyzSWmelibjJAl4CjgZmAcdrreNJehB0WbMPjwTn93GbOS64/HeX9UIGkbQYHEEQMpd9xsEf3oG+x9XpMHk5Wdx8dB+aNsjl0pHdY578VhA8hd1iU8csp0UFxsTDESex9TjmuaNqY8E53WQdPGNwp/hcBtOEVGRRSzWPYiQWWAQcqbXeHudxgna9Etvy2cCJgNvsZMHlv8Z5XiGNSEoWNUEQhBi5dGQPLjmke0Z3ZIQMx27ByfPINAcpxJwoqFNzN4ehcAZ2bsYDp+7Hyq27uSCYpjpDSajAUUrlY4iHQzAsG27yWGutxyTy3LGglPonRszMSuBwrfXGOhxuXODTHk80CfgbcLxSKt+cuEAp1QbDrW0b7rFKQgbhJRc1QRD8iYgbIa2xCxrHNMr+4vxhXZi+fCutivIZOzD2rHdKKcYNcnMwyiwSJnCUUh2AL4FeRJ/Is957eEqpvwC3Ysx1c5jWemWUXVBKXQNM0FqvMi1TwCXAXzCu40nzPlrrn5RSU4HhwL3ANYH9coAngFzgEa11Rd2vSkhHUpFkQBAEQRDqm0tHdufpb5YBcOy+cSY8sLukNetat0JlAIO6NGfaTaPJ8vO8a1FIpAXn/4DeGHPJPIjhAhZTIH08KKWOBW43LcoLLP/BtOwurfUkpdT+1KSmXg7c6jKi9azW+jvT92uA+5VSMwP7FQD7At2AauAqrfUMh+NcAHwPXK2UGg3MBwYD3THuj2Rd8wkSgyMIgiD4lT8f2pP1O8oo2VPF7fHOc5WdayTe+PFpGHBOrebZymRE3EQmkQLnSAzXr8O01mUJPK4brYAhDsuH2LYBaEqNVemgwJ8TkzGyqgV5ADgC6IeRsSwXWAe8gmGFme50EK31YqXUAOAfwFHAWIx7cxdwj8N8O0KGIi5qgiAIgl8pKshNzMSx+4wz/gQhRhIpcPKBL+pJ3KC1fhF4McZtJxPdbc5pv0cxkhLUmoBb2wXx7CtkDl6ZB0cQBEEQBMEvJCxNNDAHY9JMQRACiJgRBEEQBEGoXxIpcO4FDlFKHZjAYwpCxiEuaoIgCIIgCMkjkS5qMzGSC3yplHoQ+BxYjRGMH0YsWcwEId0RFzVBEARBEIT6JZECZwVG2mQF3Bb4c0Mn+NyC4EkkyYAgCIIgCEL9kkiR8S0yR7sgWJA00YIgCIIgCPVLwgSO1npUoo4lCJmCo5gRfSMIgiAIgpA0EplkQBAEG+KiJgiCIAiCUL+IwBGEekaSDAiCIAiCICSPhLmoKaX+VovNtdb6rkSdWxC8ilhwBEEQBEEQ6pdEJhm4g5osak4Ee3Uq8L8IHCHjkSQDgiAIgiAI9UsiBc4FLsuzgE7A4cBw4HHg5wSeVxA8i8yDIwiCIAiCUL8kMovaS1E2+YdS6kbgb8AziTqvIHgZETOCIAiCIAj1S70mGdBa3wesBu6pz/MKQqoQFzVBEARBEIT6JRVZ1OYAB6fgvILgCcSqIwiCIAiCkDxSIXB6kNjYH0HwLJJFTRAEQRAEoX6pN4GjlGqmlHoA2B/4qb7OKwipRJIMCIIgCIIg1C+JnAdnWYTVjYAWGCmiS4GbE3VeQfAyYsERBEEQBEGoXxLpKtY1wroKYBXwDXCv1np+As8rCJ5FxIwgCIIgCEL9ksg00amI5xGEtENc1ARBEARBEJKHiBJBSCLioiYIgiAIglC/JFXgBBILNEvmOQTBy8g8OIIgCIIgCPVLwgWOUuoYpdSnSqldwGZgs1Jql1LqE6XUMYk+nyB4GcmiJgiCIAiCUL8kVOAopf4DTAQOBxoAO4Edgf+PACYqpR5M5DkFwcuIi5ogCIIgCEL9kjCBo5Q6Hbga2ARcBTTTWjfTWjcHmgJXAhuBq5VSpyXqvILgZRzFjOgbQRAEQRCEpJFIC87lQBlwiNb6Ma31juAKrfVOrfXjwEhgT2BbQfAl1VSnugiCIAiCIAgZSyIFzn7AV1rrRW4bBNZ9BeyfwPMKgmdxdFGTGBxBEARBEISkkUiBkweUxLBdSWBbQch4JIuaIAiCIAhC/ZJIgbMUGKmUaui2gVKqAYab2tIEnlcQPItYawRBEARBEOqXRAqct4DWwHtKqV72lUqpHsA7QCvgzQSeVxA8i6SJFgRBEARBqF9yEnis+4ETgTHAfKXUTGBFYF0XYBCQDfwMPJDA8wqCZxEXNUEQBEEQhPolYQJHa12qlBoF/Au4EBgc+AtSCjwP3Ky1Lk3UeQXB0zhliRYLjiAIgiAIQtJIpAUHrfUu4Eql1F8xLDbtA6vWAjO01rsTeT5B8DpiwREEQRAEQahfEipwggSEzJRkHFsQ0gkROIIgCIIgCPVLIpMMCIJgw9EdTfSNIAiCIAhC0kioBUcplQ+cgZEKuh2Q77Kp1lqPqeO5BgGHAwcG/joEDqyi7Hc+cDmwN1AO/AD8U2s9LcI+w4FbgaEYc/jMBx7TWr8cYZ+OwF3AkUBzYCXwOvAvrXVZTBcppD1iwREEQRAEQahfEiZwlFKdgS+AHkBEkUFixrBvx8jaFjNKqYeAqzESHnwGFGCIpCOUUqdord9z2GccRlrrLOBbYDNGpriXlFL9tdbXO+zTE/geaAnMxXDXOwD4GzBGKTVGa72nNmUX0hMnC44IHEEQBEEQhOSRSAvOI0BP4CvgYWAZsCuBx7fzPfArMD3wtwJ3ixFKqcMwxM0W4CCt9eLA8oOAycALSqnJWuvtpn2aY2R+ywbGaa3fCSxvA3wHXKeU+lBrPdl2uhcxxM0jWuurA/vkYMwVNBa4Gbgj3gsX0hvJoiYIgiAIgpA8EhmDMwZYDByltZ6otZ6ntf7d7a+uJ9Na36u1/lvgXOtj2OXawOc/g+ImcJzvgaeApsAfbftcBDQG3g+Km8A+G4AbA1+vM++glDoQGA5sNG2D1roS+BNQAVwVEDxChiMuaoIgCP7k102/ctjbh3HKB6ewafemVBdHEHxFIgVOOTAz0JH3FEqpQmB04Ot4h02Cy463LT82wj6TgDLgMKVUgcM+E+1uaAFhNAVoBhwcW+mFdEZc1ARBEPzJWwvfYsPuDSzctpAvVn6R6uIIgq9IpMCZhuGi5kX2wnBf26S1Xu2wfmbgs79t+X629SG01uUY8TUFQO9Y9olyLiEDcRQzom8EQRAynpKKEsf/BUFIPokUOH8H+iqlLk7gMRNF58Cnk7hBa10CbAeaKaWKAJRSjYEmkfYzLe8S67lc9nFFKTXP6Q8jmYPgccRFTRAEwZ9U6+rQ/xJ7KQj1S8LiQLTWM5VSRwCvKKXOwchStgaodtneNcVyEmgU+NwdYZsSjDicIqDYtE+k/YJDMkW1OJfTPkKm4mTAkRedIAhCxlNt6v6YxY4gCMkn0YHuhwOtga64x5gojG5ffQqctEVr3c9pecCKs3c9F0eoJWLBEQRB8Cfmwaxq57FeQRCSRCLnwbkBw01tD/AuyU8TXRuC5WgQYZuGgc9i2z7B/XbGsE8s53LaR8hQJMmAIAiCPzFbbcSCIwj1SyItOH/CEAFDtNYLE3jcRLAy8NnRaaVSqiGGe9o2rXUxgNZ6p1JqB0YcTkdgvsOuweOZ016vBAa4nctlHyFDcbTgiIuaIAhCxiMCRxBSRyKTDLQFvvGguAFYiGFZaqWU6uCwfmDg81fb8tm29SGUUrnAPhipohfFsk+UcwkZiFhrBEEQ/IkkGRCE1JFIgbM0wcdLGFrrUuCrwNdTHTY5JfA50bZ8km29meMwUkR/obUuc9jneKVUvnkHpVQbYASwDZgaW+mFdEZc1ARBEPyJJBkQhNSRSEHyFHCoUqprAo+ZSB4MfN6mlOoVXKiUOgi4FCNN9HO2fZ7FcLs7USl1smmf1sB9ga8PmHfQWv+EIV5aA/ea9skBngBygUe01hV1vyQhHfHDSN6sjbN49bdX2VXulTA8QRCE+kWSDAhC6khkmujHlVI9gClKqduBz7XWaxJ1fDtKqWOB202L8gLLfzAtu0trPSlQvi+UUg8DVwOzlFKfB/Y5HCOz2wVa6+22a9qqlLoQeAsYr5SaDGwBDsOI2XlQaz3ZoXgXAN8DVyulRmPE7wwGumNMiPqvuC9cSCv8mEVtQ8kGzvvkPKp1NTM2zODBUQ9G30kQEkxFVQVZKovsrOxUF0XwKZYYnGoROIJQnyQyi1pV8F8ClhCllNvmWmtd13O3AoY4LB9i28Z80muUUrOAP2MIm3LgCwwhNM2loBOUUocAtwFDMUTRfOAxrfVLLvssVkoNAP4BHAWMxUg+cBdwj9Z6T6wXKaQ3ji5qGW7BeWPhG6EX++e/f57i0gh+5LMVn3HTlJvoVNSJl49+mSb5TaLvJAgJxiJwxIIjCPVKIrOorcJxWsMwgvPg1Amt9YvAi/Wxn9Z6KnB0LfdZhWHJEXxMpltrnKjSVdE3EoQkct031wGwbMcyXpz3IlcPvDrFJRL8iCQZEITUkUgXta6xbquU8mQyAkFINH5MMqBwtdwKQr0zd/PcVBdB8CmSZEAQUke9Cg2l1ACl1IPA6vo8ryCkCj/OgyMCR/ASmf68Cd7FkmRABI4g1CuJdFFzRCnVCTgbOAfoS4Jc1AQhXcl0C06WGGgFD5Hpz5vgXWSiT0FIHUkROEqpIoz5Zs4BDsEQNQpYA7wJvJ6M8wqC1/Cji5ogeAnpWAqpQpIMCELqSGQWtWyMjGF/AI7HmAQz6KuigVHAFC3+AoKP8KWLmnv2REGod2RAQUgV5rqX6e2+4E32VO1hza41dG3c1XfeFXW+WqXUYKXUI8Ba4APgNAzh9AGGFWc6gNb6WxE3gt/wY+fKb42o4G3ktSOkCnNGSbEkCvWN1ppzPz6XE987kb9P+3uqi1PvxN0TUUrdppT6DfgBY16ZVhiTW14OtNNaj9VaT8CYa0YQfIkf58GRJAOCl5COpZAqJMmAkEpmbpzJ/C3zAXhvyXupLUwKqIuL2j8wXM/WA08Ar2qtVySiUIKQyWS6VUcEjuAlMv15E7yLJBkQUsnOPTtTXYSUUldfEgW0BY4EDldKNa1ziQQhg3CMwcnwDpc9Bkde7EIqyXSLqeBdJMmAkErs7uJ+exfXReAMAR4HtgAHA08B65RSE5RSJyulchNRQEFIZ8RFzeqHLgj1TaYPKAjexVz3/Na5FFKPfbCxqtpf7+K4BY7WerrW+kqgPXAiMB7DZW0s8DaG2HkaaJOIggpCOiIWHP81qoK3kI6lkCrMdS/TB7YE72G34FTqyhSVJDXUOd2R1rpSaz1Ra306hrvaxcAUoFng/x4ASql/K6X2r+v5BCGd8ONLze9mccFbZPqAguBdJAZHSCVZti6+3wYbE5rPVWu9U2v9nNZ6FNAVuBVYgBGrcwMwQyn1m1Lq9kSeVxC8ih/nwbHjt1EjwVv47XkTvIMIHCGl2PL9+M1dPGkTVmitV2mt/6W17gccADwCbAT2Au5I1nkFwetk+ohyWAyOz0aNBG+R6c+b4F1E4AipJMxFrdpfg431MiOf1nqm1vovQAfgWOCN+jivIKQaXyYZsMfg+GzUyIss3LqQF+e+yMbdG1NdlHon0583wbtY5sGRLGpCPWMfbPSbwKnLPDi1RmtdDXwc+BOEjMePSQb87vfrNcoqyzjvk/MoqSjho+Uf8dbxb6W6SPWKdCyFVGGueyK0hfrGbsHx22BjvVhwBMGvZLqYcUIsON5ibclaSipKAFi8fXGKS1P/SMdSSBVmtzRpB71BRXUFFdUVqS5GvWBv+/w22CgCRxCSiB9d1PzeqHqN6mp/xwFk+vMmeBdz3ZN6mHoWb1vMmLfGMOrNUczbMi/VxUk6duu13xL+iMARhCTiRxc1e6MqI5epxfx7+FLgZPjzJngXc9vnx2fPa3y8/GO27dnGzvKdfLTso1QXJ+nY65zfBhtF4AhCMnHoW2V6hyusURWBk1Lsv4ffOlp+u17BO0iSAW9RWlnq+H+m4vd3sQgcQUgifpwHx96o+i1zi9ewv9T89pLL9AEFwbtIkgFvYW4L/DDw4fd3sQgcQUgivnRR87nFwGvYO1Z++z2kYymkCkky4C3MLlp+aAfDBI7E4AiCkCj82LkKSzIgL/aUYr//fnixm/Hb9XqZ+6ffz4CXB/CvH/+V6qLUC5JkwFv4TXBKDI4gCEnDjy5q9heH38ziXsPvFrVMt5imC2WVZbzy2ytU6kreWPhGKHV5JmN+1vz23HkRv7kMSgyOIAj1SqZ3uPzeofYafnvJ2TsufujIpAN7qvaE6l61rqassizFJUo+FoEjSQZSjt8tOH4bbBSBIwhJxJfz4CAual7C/pLL9PoXdr0ZPqCQLoQJTx/8Ln6zGHgd38Xg+HzKBhE4gpBE/JhkQFzUvIXfLDhiQfQmYdn8fBAP4DeLgdfxXRa1aonBEQQhSThacDJc4Pg9a5fX8FuSAfuoZaY/b+mC34SnuEp6D79NvGpvC/022CgCRxCSiGPnKsPfc36fd8Vr+K1j6TeXvHQhTGhneEyK3567dMBs0fDDe0nSRAuCkDT86KJm71D6bdTIa/ito+W3600Xwn6X6sz+XewCLtMFXTpgFjV+GPiQNNGCICQPRwNOZjes0sH0Fn6Pwcn05y1d8H099EGH2uuY24JMr3/gv2fOjggcQUgiMg+O/8ziXsN3MTjSsfQkYQMfGW7R8Hvn0ov4LouapIkWBCFZiIua/8ziXsNvSR/EguNNwoR2hruoSZIB7+G3iVf9LrJ9I3CUUqOUUjqGv7+Z9rkjyrb/jnC+4Uqpj5RSW5VSu5RSPymlzq2fqxW8gh/nwfF77n2v4bekD36zWKULfutsiauu9zC/m/zwe/jdgpOT6gLUI+uBl1zWZQPnBP6f4rB+KrDEYfkMp4MppcYBb2IIyG+BzcAY4CWlVH+t9fW1KLeQxvhx9NjvgY1ew28jyX6cUDId8JtlLSzJgA861F7HkiY6w10kwX+DCnZ8I3C01guA853WKaWOxhA4q4DJDps8q7V+MZbzKKWaA89jiKZxWut3AsvbAN8B1ymlPtRaO51HyDD86KLm90bVa/jdgpPpgi5d8Fu7IELbe1jSRPtg4M3vFhzfuKhFIWi9eVXX/W14EdAYeD8obgC01huAGwNfr6vjOYR0wSmLWoZ3uMSC4y385irjt5ijdMFvMTh+G1hIB/zuoua3Ouh7gaOUagicGPj6vwQc8tjA53iHdZOAMuAwpVRBAs4leByx4PivUfUafhM4dteTTH/e0gW/tQt+e+7SAUuSAT+6qPlssNE3LmoROBloCPyitZ7vss1opdT+QAGwGvhYa+0YfwPsF/icaV+htS5XSs0FDgB6A7/WpeCC93FMMpDhHS6/dWS8jt86WnbLgN9e6l7FbzE4fot9SwcsaaIz3III4SLOb1M2iMCpcU+LZL35g+37XUqpCcD5WutdwYVKqcZAk8DX1S7HWo0hcLogAifjcXyJZ/h7TtJEewu/ucpIFj9v4rfRZL8NLKQDvp/oM8OfOTu+FjhKqXYY2c2qgNcdNlkCXA98DPwONAMOAe4DxmEkEhhr2r6R6f/dLqctCXwWxVjGeS6resSyv5Ba/Oii5rcOtdfx28SXTvVPa41SKkUlEsB/6bvt7Xymt/vpgLkO+uH38HuSAV8LHOBMDJHyidZ6vX2l1voV26IS4DWl1NfAHOAkpdRQrfUPyS+qkJb4MMmA/cUhAie1+M1l0On5qtJV5Ci/v+5SS5hFI8NjIPz23KUDlixqPvg9/F4H/Z5kIBb3tDC01uuAFwJfjzKt2mX6v4HL7g0Dn8Uxnquf0x+wtDZlFlKDLy04NjO438ziXsNvI+dOL3G/vdi9iN+zqGX6c5cOWLKoZXj9A7Hg+FbgKKX6AgMwRMl7cRxiceCzXXCB1nonsCPwtaPLfsHlv8dxTiHN8KPAkRgIb+G3tMmOFhwR2SnHb6PJkmTAe/g+i1qGP3N2fCtwqEkc8I7W2i1eJhLNAp8ltuWzA58D7TsopXKBfTBSRS+K45xCmuGYRS3DX3RhSQZ81qh6Db/FRDkJOL9lD/IifsuiJkkGvIe57fPD7+H3JAO+FDjKiDY9K/C11nPfBPYPJhewp4OeFPg8xWHX4zBSTX+htS6r7XmF9CPTX+JOhHWofdaoeg2/WXCcrk/qYOrxW2fLbiHI9OcuHbDE4GR4/QOx4PhS4AAjMNI0rwG+ctpAKdVKKXWFUqrItrwR8CQwBFgPvGPb9VlgJ3CiUupk036tMbKvATyQiIsQvI8f58ERC4638FssgKPAkTqYcuwdykyvh34bWEgHzKIz09/DEF7nKqorUlSS1ODXtDLB5AKvae3a6jQEHgP+rZSaDqwDWmG4nrUAtgOn2N3btNZblVIXAm8B45VSk4EtwGFAU+BBrfXkRF6MkF5kuoua30eNvIbfXGWc6pvfgmu9SJhFI8NjIPyWNS4dMP8mfngv+f1d7DuBo5TKp8Z9zJ4G2swW4F5gKNAbGIYxX85y4EXgP1rrNU47aq0nKKUOAW4L7J8HzAce01q/lIDLENIEXyYZ8HnmFq/ht5ec0/OV6decDvitHvpt/ql0wGxF9EUWNXvCHx+45ZnxncDRWu8BmsewXTFwUx3OMxU4Ot79hczAj0kGJIuat/BbR8vpJe63F7sX8VuaaL9ZTtMB8+CHHyxqfhtUsOPXGBxBqBfEgiMv9lTjtyxqTs+XZFFLPXZBk+kdTPv1aXTGDy54Hb9nUfObN4UIHEFIIpkuZpzwe6PqNfwmOCWLmjfxW7ILJzGT6dfsdSxZ1DJ8oAfEgiMCRxCSiYO+yfRRPL83ql7DbwLHqb5JHUw99sGeTBedTs9ZplutvI75/md6Owj+S81uRwSOICQRP7qohaVHzXBfe6/jN4HjNIDgtxe7F/Fbmmin68v0wS2vY/5NMr3+gXhTiMARhCTix3lw7KPlEv+QWvxmUXNMEy11MOX4LW2yowXHB51qL+P7GByftYMicAQhiThacDJ8FM/vZnGvYe/wZ3r9EwuON/F7FjW3ZUL94TcLTliCGZ+1gyJwBCGJZLq1xgm/uUR5nbDYBx9acDL9mtMBu/DM9N/Eqe2XtjC1+G2iT789c3ZE4AhCEvGji5rd9cRvZnGv4bfYB6dnzm++514kzJKY6e2gJBnwHH6z4IS9i33WDorAEYR6xm8uQn4zi3sNv1nUxILjTfzmuipJBryH7wROtb/iL+2IwBGEJOLHLGp+m+/C69hH8TL9Jec0Sp7pnel0wG/tgsyD4z38VgfFgiMIQtJwdFHL8FE8+/WJi1pq8ZsFx9FFTepgyglLH5/h7lpiSfQefsso6bfrtSMCRxCSiB8tOH5zRfE6fovBcexYSh1MOX4bPfdjBk2vY69zmf57yDw4giAkjUwXM06Epab02aiR17DXwYzvWDqliZY6mHL8NvAhaaK9hdO9z/R2we/vYhE4gpBExEXNf42q1/DbS85xok+fjVx6kTALToa7qDkmGfDhgJdXcGoXMl1w+j3hjwgcQahnMv0lFxbU7rNG1Wv4zS1DLDjeRGLBMv+avYwfLWoSgyMIQtLw5Tw4Pk9N6TX89pKTGBxv4jsXNadsfhn+7HkZETj+s2SLwBGEJOLHQFO/pSX2On4bOfejr3064Ld66FTnMr3t9zIicETgCIKQQCSLWuaP1Hodv3UsxUXNm/gtBkdc1LyFH9N2+816b0cEjiAkEccRu8zWN75vVL2G39LziouaNwkT2tWZXQ8dLQYZLuq8jB8Fp9/jYUXgCEI94zsLjgiclOK338Pp+cr0a04H/FYPHbOoiYtayvBjFjW7oKnUlb6qgyJwBCGJiIua/0aNvIbfsqg51Te/+Z57kbB6mOHtoAhtb+HHGBynOpjp12xGBI4gJBE/zoPjt5Far+O330M6lt4kbD6mDB/4EAuOt/Bj8hE/XrMZETiCkET8aMGxX5+fGlQvIjE4md+ZTgf8luyiLhaDyupKbvzmRk6deCqzNs5KcMn8iR8Fp9M1+8maLQJHEJJIpjegTtg7k9K5TC32OujHjmWl9s9L3av4LYtaXZIMvL3obT5e8TELti7gks8vSXTRfIlkUTPwU1soAkcQkojMg5P5LxGvE+YalOG/h6NbhojslCNCO/a2/6uVX4X+L60sTViZ/IwfY3D83haKwBGEeibjXdRsL3E/NaheRDqWmS/q0gG/xeDUZT6mTB8ESwUicAz81BaKwBGEJOLHJAN+sxh4Hb/F4Dg9X37yO/cqfsui5uSOFmvbn+n3JhX4Mk20wzX7qS0UgSMIScRvSQbcRi0zXdR5Gb8Fd/vR1z4d8NvAR10sBpn8jkgVdbGopSt+vGYzInAEIYn4TeC4vcD91Kh6Db+lifa737lXCRPa1ZkttOskcGRAKOE4tXuZfp/9nlEyJ9UFEIRMxrEBzeA21e0FnulWAy/jt4k+/e537lVEaEduB3fs2cFdP9xFRVUFm0s3J7NovsSP7YLTYKqfXNRE4AhCEvGdBcclDWpldSV52Xn1XBoBfOga5FAH/fRS9yp+i8FxGkiIlCb6kZmP8OmKT5NZJF/jxxgcSRMtCELycDTgZO6LXVzUvIffYnCcXJ+k/qUev82P5SRmIj17by16K5nF8T2OgjPT20Kfu+uKwBGEJOK3eXDERc17+M41yKFj6aeXulex/y6Z3ibUZR4cIfH4MfmIH93yzIjAEYQk4jsXNZdOi7gIpQ6/xeA4pon2kVuGVwmzJEZw18oE/Ggx8DJ+nAdH0kT7CKXUZKWUjvB3lMt+5yulflJK7VJKbVVKfaSUGhblXMMD220N7PeTUurc5FyZ4FUc58HxocDx06iR1/CbBcfvmYO8it9iwRIZ8yH1t+74UeD4PU20X5MMTAB2OSxfY1+glHoIuBooBT4DCoDDgSOUUqdord9z2Gcc8CaGgPwW2AyMAV5SSvXXWl+fmMsQvI6jmMlcfSMuah7EbxN9+t0tw6vYY6MyPU10Ii04FdUVZGdl17VIvsaPAsfvgz1+FTjXa61XRNtIKXUYhrjZAhyktV4cWH4QMBl4QSk1WWu93bRPc+B5IBsYp7V+J7C8DfAdcJ1S6kOt9eREXpCQPvjRguMns7jXsHe0Mv2l7vfMQV7Fby5qjkkG4rzmiuoKCiioa5F8jR9jcBzddX30LvaVi1ocXBv4/GdQ3ABorb8HngKaAn+07XMR0Bh4PyhuAvtsAG4MfL0uWQUWvIWji1oGx0CIi5r3EAuOv0YtvYokGYi/7a+orqhrcXyPH5M+OKbM99FgjwgcF5RShcDowNfxDpsElx1vW35shH0mAWXAYUopGY7xAZJkwEAETurwWwyOuKh5E7+liU6oi1qVCJy64sd2wTFlfoY/d2b86qL2R6VUC6AaWAS8p7VeadtmLyAf2KS1Xu1wjJmBz/625fvZ1ofQWpcrpeYCBwC9gV/jLL+QJvhN4Lhdm58aVa/htyxqYsHxJn6b6DORMR9iwak7fozBcUyZn+GizoxfBc5ttu/3K6Xu0lrfZVrWOfDpJG7QWpcopbYDzZRSRVrrYqVUY6BJpP0Cyw8AuhCDwFFKzXNZ1SPavkLqcexMZvB73a3x9FOj6jX8ZsFx6jj7yS3Dq/itHiayQ+2nuIlk4UuB4/N4RL+5qH0L/AFDHDTAsNLcClQC/1BKXW3atlHgc3eE45UEPots+0Taz76PkMH4zYLj6qImI+gpw28xOH7PHORVwpIMZHgWNccOdR2SDAh1I5Fpu9MFv1uzfWXB0Vr/zbZoEXCPUupn4FPgDqXUM1rr0vovnTNa635OywOWnb3ruThCbXE04GSuwHFzf8r00VovI1nUpP55gTCh7cMsaq7tY5ROpwicuuPHdkEm+hTQWn8G/IyRFW1IYHFwnpwGEXZtGPgstu0TaT/7PkIG42jByeAYCHFR8x5+s+A4umX46KXuVcIsOBleD2uTZGBP1Z6IxxKBU3f86KLm94k+ReDUEEwD3S7wGUw60NFpY6VUQwxBtE1rXQygtd4J7Ii0n2n573UprJAe+M1FzU28SQczddjrW6a/4Pw4UpsO2H+DTP9NatOhLq2M7DQiWdTqjh8Fjt8He0Tg1NAs8BmMkVkI7AFaKaU6OGw/MPBpTxQw27Y+hFIqF9gHI1X0ojqVVkgLZB6cyMuF5GN3f8n038LvfudeJcxV0o8xOC7PXllVWcRjiQWn7vgtBkdr7TiYmukDC2ZE4ABKqVbAiMDXmQCBOJyvAstOddjtlMDnRNvySbb1Zo4DCoAvtNaRWzQhI8hka40Tri5q0sFMGX5zDRILjjfxXQxOLZIMlFVG7g74adQ9WSRyXqJ0QBL++EjgKKWGKaVOUkpl25Z3Bd7FiI35wDbnzYOBz9uUUr1M+xwEXApsB56znepZYCdwolLqZNM+rYH7Al8fqPMFCWlLJjeqboLOT6kpvYa9U5XpnX2/u2V4Fd8J7VokGYgmcMSCU3ccsytmcFsok277K4tab+AFYL1SaiaGOOkCDMKwqswDLjbvoLX+Qin1MHA1MEsp9TmQBxwOKOACrfV22z5blVIXAm8B45VSk4EtwGEYMTsPaq0nJ+UKBc/h6KKWwVYdt8Yz0zszXkVrLRN94o+X+vwt81lZvJLRnUaTl52X6uKEERaDk+EjybWxGOyujDQbhQicROB07zO5LXSzFvppsMdPAudH4EmMLGmDMWJuSoBZwNvAk07pobXW1yilZgF/xhA25cAXwF1a62lOJ9JaT1BKHYIxoehQDFE0H3hMa/1SYi9L8DKSZMAg0zszXsWPnX3H2bszvP79vvN3Tv/wdAAu6X8JVw64MsUlCidMaGdwOwi1e/bEgpN8/GbBcWvzROBkIFrr34DL49z3ReDFWu4zFTg6nvMJmYNjhz+D3+tuI5TiopYanDr7mW5Ncwpez/T6N3PDzND/09dPT2FJ3LHXu0zuXELtLAZRkwxIFrU647cYHLcBhEx/7sz4JgZHEFKB3yw4kkXNW/gyNaqDqMv0UUvzCL9XrzUsBifDs6g5tfOuWdTEgpN0/JZFzU3IeLV9SAYicAQhifhtok9XC46PGlUv4eSmkMkvdfBnmmhzB9irnWG/ZVFz6mC6DW5FmwdH2s+647fBHld3cbHgCIKQEBw91PwncPzUqHoJP86D4FQHK6orMnpgwdwB9qo7k++yqNVmHhyx4CQdv8UjSppoETiCkFTERS3yciG5OI4iZ3BHH1xiH9AZ3ZmxuKh5NN7IbzE4Ts+Za5IBmegz6bi1C5mKW13zU10SgSMISSRdXNS01jwx6wn+8vVfWLp9adzHkdSU3qI2naxMwU1MZ/KL3eKiJhYcT1CrJANiwUk6jlnUMtia4VbX/FSXfJNFTRBSgRfFjBOTV03mydlPArCqeBXjTxgf13HERc1b+C2wFiK/2AsprOfS1A9mUePVDkxYDE6m18NaJBmIFoPjVdGaTvgtBkcsOGLBEYSkki4uahMWTwj9v3DbwriPI36/3sLxpe7D4G7I7E6iJQbHox0YseC4P3uSZCD5+K0tdBvoKa8qr+eSpA4ROIJQz3jRqpMov32x4HgLx5d6hqfn9b2Lmkev094GZPqgR23i3yQGJ/n4zUVNLDgicAQhabi9zLxowUlUQ+/HzqWX8VvmIPBnHUyHGBx7e5jJo+dQyyQDEoOTdHw30aebq65H24dkIAJHEJKEm5DxpMBJUKfXtXPpo0bVS9RmLo5Mwa3jnMmdRLMLk1ezqPktBieRSQbERa3uOMYjZrDI9mM7aEcEjiAkCVcLjgdd1BJlwZHMLd7Cj5NeurngZbLINj9f1brac7+xW4C3F9vCROHUwYw7yYC0n3XGb+66boOW5dUSgyMIQh1Jp5HyRI36it+vt/Bb5iDwZ6py+/PltefNrV1Ipzaytji6RLnUzagxOBkszusLv7nriouaCBxBSBquLmoeHLVMWAyOywvcT5lbvITfMgeBP2Nw7OLNa9fq1uZlcgezNhYDicFJPjLRp4FYcARBqDsubacXG9VE+ceLi5q38KVrkA8FTrpacDLZmihpor2F37KoybtYBI4gJI10SjJgf4HGa3ERFzVvIR3LGjK5DtqvzWsdYrffxG/1MN4kA5lcd+sLv7nr+nE+MDsicAQhSaSTi5q9oY/XjC2jRt7C7ffIZDc1t06L1zr9icTrLmoitN2XgcyDUx/4zV1X3sUicAQhaXhRyLiRKAuOpIn2FtKxrCGT66D92rx2rX6MwXEa4HKz6kgWteQjFhwDP8XDisARUkJZZRm3fncrl39xOauKV6W6OEkhnVzU7I1hogWOnwIbvYTb75HJvud+dFGzZ0H02rW6ZlFLo0Gg2hJrh3pP1Z6ox/KaYE1H/BaD48d20I4IHCElvDD3BT5Y+gFT1kzh79P+nuriJIV0mgfH7gOecAuOjxpVL+H2e3hRZCcK8zXnqJzQ/5lcB8MsOB67VlehnckWnBjTREeLvwHv/Z5BPlr2Eed+fC7vLXkv1UWJitPvkcntoNu1+cmCkxN9E0FIPP/77X+h/6evn57CktQ/XmxU7S4S8VpcXOcgqcrc+Acv48eOpfma87LzqKw06p5XO4mJwOtJBtxGyjPZRSjWJAPR3NPAe78nGHXunz/+k+LyYhZsXcCRXY+kMKcw1cVyxdGCk8HtoNsz5ydvCrHgCKnBe338hJMuSQacfMDjtuC4zSKfwZ1LL+Mag5PBM3ibRXZ+dn7o/0x28/F6kgE/ZlFzevacrndn+c6ox/La7wmwu2I3xeXFgCHSduzZkeISRaY28xJlAm79j8rqSs/1QZKFCBwhJXjRipFoXF3UPHbte6r2hJUpboHjYsHx4gvaD7h2LDM4e5DdghMkk+ug1+fBcatvmSxwYk0yEIsw8NrvCeGxQ153ffJbFjWzwM7LyrOs82J9SgYicAQhSXhNyLixu3J32LK4XdTckgx4/OWXqfhx5Nx8bRYLTga/1MMEjsesVW4j5ZnsIhRrkoEd5ZkhcGJJlpBKYrWoZQqWdjAn37LOi/UpGYjAEVJCunT+60K6uKg5+YAnIsmAXwK8vYzfs6iZX+yZXAe97qLmS1fJGC0G2/dsD/3furC147G89ntC+DvC64NYTr+HX9rBguwCyzqv/1aJQgSOkBK81slPBuniolZakRyB45fOpZfxexa1/Cx/1EHPu6j50FXSMYtaFBe11g1cBI7HLHKQfhYcv7mouVmywXvtQ7IQgSOkhEzuYEXDa9eeLAuOX9yDvIzbyLlfXIMsItuDncREYbfgeC3rli+z+Tl0np1Ez/ay7aH/XQWOB9tPu6Apq4qe7jqV+G2iT3NdswscseAIglAn0mUeHKcYnHhH41wDvDO4c+ll3OqaX1yD/CKyvW7BERc192UWFzUXgePFzFfplmTAd2miTdeWlZVFTpb/XMZF4AhCknCNwUkDC068DaD52sx+v37Kve8lXDuWPnTN8JpVI1ForT0fg+NHF7WYkwzE4KKm0Z7rjNsFjddd1Bwn+vSYaEwk5mvLVtmWTGpeF6OJQgSOkBIyuWEJ4ipkPHbpiXRRMwdt+qFz6XX85hqktbY8d36w4FTq8GfLaxZTv2fzi7TMnEWtVYNWrsfzWv0VC463MV+bQlk8KvzyPhaBI6QEe+c/E7OZpE2SASeBE2+aaB9OsuhlXDuWGeoaZL9eP8yD4/Rsee1a/Sa0wSXJQJQsas3ym7kez2u/aVmlNeYmHWNwMnmg1VzXslU2uVm5oe9+8agQgSOkBHvDkokPXDq7qMXrbmAJbDQFeFfqyowerfUqfnMNsl+X2U3Sax3EROF0XV4boXUTMn7pYAZxul6zi1qT/CYMajMIwBIzAd4bJHJKE6215p8//JOx749l6pqpKSqZM45pojNYYJsHsbJUli9jYkXgCCnB3slPpHn7oRkPMfb9sXy18quEHTOReO2lvrsiPMlAvA2gZfbkbOvsyV7rdPkB1xgcj4nNal0dNiIc73HM+OGl7vRc2UWP0yBGfZIuFpwde3Ywb8u8hLTRsbioaa0tAqdpflP+PeLfXDPwGl466iXLtl4T6E5poqesmcKbC99kyfYlXPbFZSkqmTN+y6JmFthZKisuC87UNVP5dvW3CS9bfSECR0gJdoGTqADFOZvm8Nzc51iyfQlXf311Qo4ZL2ntohan4DRfs18nF/MS6dCx3LFnB8e/ezyHvnUo09ZOq9Ox7NdbkONPC4552X9m/IeDXjuI2767rT6LZSEdhPaOPTs4asJRnPHhGTzz6zN1Pl4sHeriimLLvWmS34S2Ddvyx33/yL4t97Vs67UBIqckAz+s+yFFpYmOUx30Uv1LNOZ3cZbKIje7RuBEG+zZUrqFv377Vy774jL+Pu3vFhGeTvhG4CilGiilTlJKPaeUWqiUKlNKlSilZiul/qaUauSwzx1KKR3h798RzjdcKfWRUmqrUmqXUuonpdS5yb3K9MHesCRK4MzaNCshx0kEXhMybiTSRU0mF/MWrhN9esiK+NDMh1hZvJJdFbu49PNL63SseGJwqnU1szfNZsKiCbz626usLl5dpzLUN5EsOBXVFTw/93mqdBXvL32flTtXJuScm0s3s2Drgpi3T4ckA8/NeY5dFbsAeGzWY3U+XiwCZ0dZTcdRoWic17jmu1KWUXevtZ9OSQa81K7Y8ZsFx5JkwFaXIllwNpdu5rSJp/HR8o9C3x+e+XDyCppEcqJvkjGcBfw38P9vwAdAY2AYcCdwplJqpNZ6o8O+U4ElDstnOJ1IKTUOeBNDQH4LbAbGAC8ppfprra+vy4WkOxXVFWENS6JG951cAJRSCTl2bUmXeXASmSY6XoGzp2oPT81+iipdxZl7ncljsx5j5c6V3Db0NvZqvldcZRHSw4Lz8/qfE3Ys+/VGyqK2u2I3by58kzcXvsmaXWtCy1/77TXeO/E9y4inl3G04ARGaO1uf1vLttK5cec6nW918WpO+/A0isuLuW7QdZy/z/lR90kHgbNh94aEHi+WJAPmDGpFeUVkZ2Vb1udk5VjEqpcIm+izsszTg3p+i8GJlCY6Ul169bdX2Vha0w3u37I/Z/Q5IzmFTDJ+EjgVwDPAQ1rr34ILlVLtgEnAAOAhDCFk51mt9YuxnEQp1Rx4HsgGxmmt3wksbwN8B1ynlPpQaz057itJc/ZUhlsHEmXBcUpeYO9o1xfpkmTAKQYnXsHpNtEnRG5U/2/6//HmwjcBeGHuC6Hl906/l+ePfD6ustQn36/9nsdmPcbQdkO5csCVqS5OiHToWCbyeYgocExuGdPXT+f6b65na9nWsGOsLF7Jp79/yswNMxnUZhDHdj82YeVLBpFc1JIRe3PzlJspLi8G4Jlfn6mTwPFSBzPRA2GxJBkwZ1Brmt80bPvcrFxKMX5Drwuc8qrysEGBquqqMNGWKvyWRS3MghPBRW3NrjX8ferfKcwttFhmz+57NjcccINnfsPa4huBo7V+CXjJYfk6pdQVwDTgZKVUnta6LuaEizAsQ+8HxU3gPBuUUjcC7wDXAZPrcI60xknMJErg2F8qpRWlKRM4bnhN4CTSRc3cqGarbHKyckIuNG5+v0u3L+XtRW87rpu+fjrF5cUU5RXFXIbdFbu5Y9odFFcUc/vQ22nfqH0triA+Lvn8EgB+3fQrIzqMYP/W+yf9nLGQDrEPiSSSi5rZleuxXx6ziJsslWXZ9+YpNwMwftF4ejfrTa9mvZJV5Drj5KIWXGa34NQ1jqOiusLiBlxcURzTfq710EPpyhUJFjgxuETFInCCeC1JhlOSAXvmtz1Ve2iQ1aA+i+WK3+bBMde1bJVNjqr5bexi+eV5L/Pj+h/DjnH6XqenrbgBH8XgRGF24DMfaFHHYwWH+8Y7rJsElAGHKaUKHNb7gkQLnMrqSv7x/T+4+LOLWbxtsWVdKnPzp7OLWrxpu83iLdbMLQ/8/EDEDveP68Ib3kg8O+dZPl7xMd+t+Y57frynVvsmgu/XfV/v53TDra75ReC4pYneXLo59H+/Fv34dNynnN337LDjaTQTl01MQkkTR20sOHW16NhT/xblxjbwkA7pyu0Cp67PiKOLmj0GxxS83Ti/sX1z66i7xyw4jmmibYN3qc7eZyaW3yOTMF9bWAyO7bd7f+n7Yft3KupE18Zdk1a++sA3FpwodA98VgDhPgswWim1P1AArAY+1lo7xt8A+wU+Z9pXaK3LlVJzgQOA3sCvdSl0uuIkOuoSg/P+kvddLQC7K8Pdr+qLdHFRc4zBiXO00NyoBnPvB4/v9IJetn0ZU9ZMCX3vVNSJdSXrLCPN3635jsO6HBZzGZ6b+1zo/29Wf1Or8icED/28biOUmTpyGWuSAXO7cNOBN9G2YduwrFVBFm1dlOBSJpZIE33an+26Dvi8v8TaEbKP2LuRDq6Sdhe1ssoyGuTGb32IJWtXbSw4XsuiZq9LZVVlYdfnJYHjtyxqdguOWSzbBxuL8oooqSixLBvRYUTK4pcThQgcg2A+4U+01k6mhD/Yvt+llJoAnK+13hVcqJRqDDQJfHVLxbMaQ+B0wacCJ9ExOBMWT3Bdl4i5NeLFVch4qAMMziIwXguOXeBEc7H4cuWXof97N+vN+OPHo5Ri4tKJ3PLdLQBMXTu1Vski6ttCZhduXhKwrh1LD7kGJfL3itWCY447C3Zi3QTOzI0zqaiusNRlL1GpI7io2Tqhde1w2q2psR7PNQan2jtC227B2V25u04CJ6YkA7Y5cOx4OYuakwXHKfGAV/BbFjXLuxj3iT6rqqssFu0gIzqOSG4B6wHfu6gppY4B/ohhvbndtnoJcD3QD2gEdALOBtYA44D/2bY3p5p2Mx0EZXJMtn2l1DynP6BHLPt7kWTG4NhJ5QhSOs+Dk4g00bGkOTULnMO7HB4SMQe1Pyi0fH3JepZuXxpzGer7/npplNJOOrgG2X+vunQ6YonBqdbVlt+sMKcQMKyHjXLDZgugtLKUeZvnxV2mZONowQksK62wuahVxF9XK6orwmJuyqrKYhIprjE4Hq6HTslXakMsQe1mC06T/CbYMbefExZNCCV38AJOMTiJthgmEr9lUYvoomYawNxUuinMOtiuYTsGtx2c/EImGV8LHKVUH+AVQAE3aK1nm9drrV/RWj+gtZ6vtS7RWq/WWr8GDAa2ACcppYbWf8nTm0S7qEUKDvWiBScdBE4iXNSyVXZEgbO+ZD3zttR0HMd0HhP6v2VhS/o27xv6/smKT+IqD8ATs57g8i8u57ctv0XfOA7sHSEv/b7p4Bpkpy7PrL3D7JRFzZ7OtkGOMUqvlHL97X5a/1PcZUo2jvPg6MC1JtCC49a5jqUTmw710H5v6ure7CTeIsXgOFlwzC6AX636imsnX1unMiUSJwuOvS300uCP3yw45rYsUprotbvWWvb7+0F/58WjXvRccqZ48K3AUUp1AD4BmgEPaq1jnslIa70OCOayPcq0apfpfzfbdsPAZ0xDMVrrfk5/QOxD2h4j4WmiI3gupbSBdfNQ81iSgV3lu8KWJSJNtEI5msW11jw+63EOH394aF3nos70bNrTcqxjuh0T+v+DpR/E/TJ6cvaTTFkzhRu+vSGu/aNh7wglyxoZD24j5F5yDbJTl2fW7HoXVv8CL3X772V2Qzql1ymOx/WywHGyjFZWOWdRq8u93blnp+PyWI6ZDrFgYQKnjhacWILao8XgNC2wLpuxwS30t/6JyYLjIRc1v8XgxJom2jwH2D4t9uGU3qfUS+bR+sCXAicwV81nGHEwL2C4odWWYLqudsEFWuudQHBIpqPLfsHlv8dxzoygPi04KXVRSwMLzp6qPY7xNolwUQuLwQl0xGZtmsVTs5+y7De68+iwGJtjux9LljKaqHUl65i+fnpcZQry+87kPHJ2t5+6dowSSTq4qCUyMNl8XW71z/x7KZQlTue8fufRvmF7inKLuHz/y0PL52+Z77mBiSCRsqjZxVydBE65s8CJpb6nQ0bJhFtwYrAYRMui9qf9/kTLwpah7xXVFZ4ZQIlF4HjdguMlgZ1o7N4UsVhwMkXYBPGdwFFKNQI+BvbGmJPmYh1fK9ss8FliWx50cxvocO5cYB+MVNHeTs2TRJwa6LqM9KSbwPESbm4niUgT7eaitmLHCss+BdkFjOs1LuxYrRq0Ynj74aHvHyz9IK4yJRt7R8hLAsfNUuOlkctEWhliEdjm36tBbgOLsG7VoBUfj/uYb07/hrP61Mz5XFxezMbdNbN7ewlHF7XqGnc8M8kQOGLBCUdr7dj+2wcWollw9mu1H5PGTrIs80ocTibE4HhJYCcaewyO2d3RPKC8tqRG4HRo1KF+CldP+ErgKKXygfeBA4FPgTO1rn0Lq4w34tjAV3s66GBr5OTrcBxGqukvtNbeefLrGScxU5dRqUgvyZTG4KTBqKWTexrEH4NjN4ubG9Vgp8v8Us9W2Xx08kd0bdLV8Xgn9Dwh9P93a76Lq0zJxt4RsqfbTCWuLmoe6ljaBWKdYnBqK3Bywj2Js1QWudm5NMlvQuvC1qHli7cvDtvWC9TXPDhuLmqxWDrSIQbHXu/qYsFxuy5z219RXWFpK5wEDhhJMMyTNLoJzfrG7nWRji5qXmoHE02YBcclZb7ZRa1do5BDUkbgG4GjlMoGXgdGA1OAk7XWrsPUSqlWSqkrlFJFtuWNgCeBIcB6DCuQmWeBncCJSqmTTfu1Bu4LfH2gjpeT1jiJmbq4qEXqUHrRgpMoy05ZZRmXfX4ZJ753InM3z43rGLsqnAVOwtJEO/j9mt0yTup5Eq0atHI9Xp9mfUL/79izI6o4jCbM6lLP3Aiz4KRw7iU7sXS0UonWOrkWHFP9q9bVVFVXOaaIdqNXs16h/+2TCHsFR4FTVY8WnBgys7lmUfOQwEmkGIxlYMHcDoK7wFFKUZRX0w1xG5Sqb+zv8fKqck+7qPl5os+wSbfNFpxdmWvB8dM8OH+mxuqyGXjCZV6N67XWmzGSATwG/FspNR1YB7TCcD1rAWwHTtFaW3ozWuutSqkLgbeA8UqpyRgZ1w4DmmIkNJicyAtLNxKdJjpSg59KE7mrwElQ5/Ll+S8zda0xs/i1k6/ls1M+q/Ux3Dot8f4e5mvLUlkWv9+gaNpRHtnv3Iz5xV6lqyitLI3YKbWnsbVTUlFiGclKBIkOTk4kbi5qXhm5LKsqC3tOEilw7BNRVlRXRLXgmOnZtGfoGVuyfUnc5UomTi5qwblxEplFzTUGJwZB79bmeamDGWbBqaOLWrTlZoGTm5UbSlfuRFFeEdv2bAM85KJmSxZUVlVGdnW2ZZmXBI7fkgw4TbodJDgoUlVdxbqSdaHl7RtmVgyOnwROM9P/Y123gjswBNAW4F5gKNAbGAZUAcuBF4H/aK3XOB1Aaz1BKXUIcFtg/zxgPvCY1vqlOl2FxyguL+aDpR/QrXE3hnUYFtM+TmbreC0G4G6FcDtXveE6z2diBM7Hyz8O/W9upGqDWRw2yW8SeulWVldSratDQf6xYn6JuE30aX6xN8kLn/vBjFnggFHfIgmcaKObuyp20aygWcRtaouXXdTc6ppXXuxOHaBkxeBAQOCYfq9InUpIfwtOfbioZWwMThJc1MzL7XPgRJrI2NwOekbg2AbBKqsrqcQqtr3koua3NNERLTiB/pZ9DpxMSzLgG4Gjtb4DQ7zEun0xcFMdzjcVODre/dOFh2c+zJsL3wTg7ePfpk/zPlH2SKwFp6q6KuKLKJNd1CK9EGPF/LJsUdDCIj4qqitqnQvfYsHB5qJWHS5w3NwyguRl55GfnR+qH8XlxbRp2MZ1+2gv/2SIDy+7qHndNSglAqcyPhe1pduXUlldGWYVSjWOE30mIwanDlnUvO4qWa2rw6xddbHg1FbgRGsHzQLHCzE4WuuYBiW9lGTAzzE49pT5wTTy60vWh5Y1zW8atT1MN3wTgyMkh6C4AXjm12di2sfRghNnbERJZeQOa0oFjtvLO0Hv9KwEPL5m61fzguaWdfGIzogWHAeB4zR7tx3L6GUUF7Ro65Phv+5lC455XhjLco8IHKdOZKIEjj2LHxhiwBKDE8VFrXuT7iErZnl1OauKV8VdtmQRdEcz45ZFrS4j6nXKouZ1V0mH+5KoemjGPLhltohFawe9ZsGJ1ePCSxYcp/exVwR2MjDHgdnbwuDvt61sW2hZi4IW9Ve4ekIEjhA3dt/vWBveRM67UlLuYYGTZAuO3X0snmu1WHAKrQ1cPKLTHoPjJHDsrhnRaJTbyLG8TnjCglOx2zMvTq9nUUu4BQfrqGXUGJwoI5YFOQV0Luoc+u5FN7X6suC4PVuxHDMdXSXrZMGJ4bmL14LjBYET6/va6zE4XmkHk4Fl0mOXiT6DcV1Awl23vYAIHCFuzOZNiDwfjRnHNNGV8QmcaCP2KU0TXc8uaubRmFgxvyztFpx4UkXbJ1q0BDYGjmceCY5F4DTOq0lEEO3lHksMTqKxd4QqdaVjXEQq8LprULJd1JxSldfGggPQo2mP0P/Jmiy2LjgmGQgsS1YWNXNbEYtLpmsMjotlp75xFDh1cDWNJalCrQROrscETozvay8JHN/F4NgsOE4Jf7aWbQ0tE4EjCCZWFq+0fN9StiWm/RIZgxNtRN6LLmqJ6lzaO9bxCBxzh79pflOyVU0WnGS4qNnnSoiWZABqN3rpBQtOss4TD24vcK+MXCZb4ACWOlhZXWk5fiw+5+bAW/ugjhdIxTw4bRrUxMHFcsxYXLZSidNAWLLnwTG76tYmm2S0Qb36INZ3g5dc1NJB4GitWbRtUUJcqWOZE8zcZ2iWLwJHEEKs2mn1R1+za01MnXenwMN4BU60Dq2XghyDaDQXfXYRq4tX1+k45hFAsI7GxIr5/jXKbWSxuIz9YCyfrahd6uloLmr2uR9qHYMTTeBEi8FJhgUnDQWOV17sTp3jRE70CYTVwdpacNo1rJn8zjzrt1dwEjjBOX/s7V9ZVVncv73ZgmNO9BGLK5fXY3AS7qKWxCQDXrDgxOq+7KX3r9NvotGesWaDEcc87oNxHPXOUXVOJhEpTXTw97MIHLHgCEINdgtOSUVJTA+lk3k77iQDXrbgRBid/HHdj7w478W4j12tq8PutdmfNlbML8uivCJrppXqSu764a5adYgizUNiFzgF2QUU5BREPWajPFMMTh2TCCQjyYDTRIdeyaTm9SxqyUwy4CpwahGDA1aB40ULjpOLGhjXmigBWVVdZRkcSJQFxyv1MOEuajG4J6ezwElHC046pCp/bNZjgGHde3X+q3U6VkQLTsBdfOsecVETBEfsAgdg9a7oVolEuqhFa+y96KIWZOn2pXEfu7i8OKxzUFcXtaK8IoufLhgv4drMsRNxcrGqilq5ZZjLFSRdXNS8Mtmn1ydYTLSLmt1FEggLrq3NRJ9gs+DsWuupEV9wtuAElyfq/tqfq7YN24b+j0UIuAXde6UeOlka6vIMx2Kxqk02ydrEIdYH6ZZkINIz67XnOUht57bbWrbVMgBjSROtlONEn+Y+gz0GNxMQgSPEjd1FDYwOQDScXiZ+s+BA/JNzAmGuXpAAF7U8q4takCXbYp/B3Z57356asrYpoqF2L/eoSQjqIckAeMdFzeujlokWOObOSjCeLJKLWmFu5Ik+Ibwz74UYCDORBE6i0h+brcUKRavCVrU6ntdd1BwHKZJgwTG3j7WZDyxdLTheETiR6plX6qD9nmZnZbtsGc5vW35jzFtjOGL8EXy35jsgcsp8pzTRYsERhADVutpxTog1xWui7uvkoranOkkxOB7MohZkw+4NcWcRchI4dc2iZn6Jmlm8PfbUuJZGNSs7zCy+o9wkcGJIMAC1yyAUTcAs37GcD5d96Hj/4iXRnaNEko6uQYmy4ASzDEZ0UYvBgtO8oLnFsrluV/wDE8nAzUWtpLzEsQ2qq8ApyiuiYW7D0Pe6TPTpmXro4GbqtCxWoiUZ0FonzUVtzqY53PvTvczeNDu2wsZBzC5qHonBiVTPvFIHt5RakzRFm+duZ/lOHv3lUV5f8Dp/n/Z3KnUlGs1NU4z56cMGG53SREuSAUEIZ+PujY7z2azZFV3gODV6O/bsYNKySbUWJNFGyiuqK1w7AIlmS+kWJi6dyMbdG40FUSzfldWVMWWe21y6mUdmPsKHyz4MLbMnGIDaCxyttdVFLbfI8fdbsr0OFpxs9yQD0V7qQcwxONFiaKK+/DfP4eYpN3PVV1fFdO5YcOowesWC49WO5dayrVz91dX8d85/w9YlyoIT7CDUNcmAUop2jbwbh+NmwdlZEf/EnGHHMmVQa5zXmMKcGstXJsTgOL2TKnVlXKnyIfr1llaWWn632kz0WVZV5lquiuoKrvr6Kl757RWu+uqqpA3wxZxkwCMxOJHq2YKtC7js88v4v+n/l1J3NbvAiTZY9/gvj/PMr89wz4/38NvW30LLg+/YSION5dXl7K7Yban34qImCAHcZvSOJHCCjYfb6M9NU27ihm9vqFU5YnE5qo9Gtqq6iks/v5RbvruFcz8+l4qqiphSoMbipvafGf/hv3P+y81TbuaXjb8AzgLHHDAYC7srd1saQbOQMFObWCH7PDiRsqjF6qJmfrlHS2IRq/vGzI0zE5JwQGvtCxe18qpyVu1clbD5fR795VG+WvWV47qEJRnIMl5vYfPg1DLJAFjd1OriWpoM3AZw6jIxpx3zc9c4v7HlvmWCwHG7hngtsa5TBATeCfb2O5o1225dd3OTXL9rPZtLNwPGIMKsTbNiKG3tWLVzFR8s/SCmbfdU7YnqpVBZXcmLc1/khbkvxO2qHo1I9exfP/2LqWun8vL8l/ly5ZdJOX8sBH+3ING8DF5b8FrE9Za2kKyw+NpNpZss35sWNI2hlOmFCBwhLtxm9F6yfUnYg6m1YTYd+eZIXpr3UsRJwiavmhzyIY2FWDqp9WEm/37d9yzcthAwRN78rfNjGg2KpbNkfpn8Z8Z/AOeO/q+bfuXRXx4NayjdsHeAinKL6NGkR9h2y7Yvi9kKZo+BsAc2ml/ssSYZqNVEn7WIsXG691XVVTGnOwejbiXKDSgZuM6DU13FfdPv48ovr2T5juURj1FSUcKpE0/lmHePYfjrw7nz+zvrHIA9ftF41/UJEzhOFpyqCovrUSwWHLAmGvCawHG14OxxHgyIZ8DHInBsFpw6TfTpkfgHV4ETZz13S6oQ7Oyb35ENcxtaLN1ONMhpEEqaAe7t4PrdVuvinE1zYipvrGwp3cKZH53J16u+jnmfaO5sr8x/hQdmPMCDMx7k7UVv17WIjkSqZwu2Lgj9/7/5/0vK+WNhc5n1vR0pK2o0b43yqvLwwUZbHQt5mmAIaHM7mSmIwBHiYt6WeaH/B7cdHPp/Xck6Tn7/ZDbtrhkdmL1pNpOWTWLbnm3c//P9UQXH/dPvj7lDHUuHti6+1LEyYdEEy/e5m+fGZMFZvyuyu4u9gxqMcXKy4ICRR/+8j8+LyUfa/JIsyC4gNzuXawZdQ8PchnRt3DW0rry63NViZ8ceA2FuNGdsmMGExTX3KWYXtVxTmmiHF/u6Xev4euXXlFaW1ioA195Rraqu4uyPzuaoCUfxr5/+5bjPtDXTeGTmI6FkGm4doGgWnE27N7n+Rgu3LuSKL6/g8VmPx+Uysbp4NY/MfIQf1v3gKnC++P0L/jf/f0xePZmHZz4c8XifLP+EZTuWAUZHcPyi8dw3/b5alytItFHl2gic95a8x8WfXczXK40Ol/2lDtYsarsrdlOpa9qWWC047RvWTPbpOYHj4q6UNAuOg4tatHoay8SXyUBrzbuL3+XZOc9GFCtuoi9eC45revZA/axN/A0YbWkscTh298mgxT9RvL3o7VrHL0arbw/MeCD0/6O/PBpx23jrS6yWwnizuSYC+8Dk9rLtrtvO2RxZuK4vWU91tS2jqc2CY64rmeieBiJwhDgxP2Bje47lgDYHhL5vLN1o8a1ftG1RrY69dMdSvvj9i9D33RW7ueSzSzj0rUP5dvW3lm1jEjhV8QuciuoK1pesj9iwbi7dzORVky3L5m2elxAXNXtmtI2lGznu3eN4avZTrvusLF7J83Ofj3jciUsncvZHZ4e+B93TRnUaxZTTpzBx7ESLyFm6fSmTlk3imV+fiSgiIk30aSfmJAOmF3t5dbnlJbRjzw5O/uBkrvr6Km797tZajQjbg8VnbpwZEu6vL3g9rEO0aucqrvjqCv4757/cNvU2Pv/9c87/5HzHY0cSOOMXjWf026M5YvwRjta2e368h29Xf8tTs5/ih3U/hK2fs2kOl39xOS/MfcHx+DdNuYn/zvkvl39xOSt2rnDcZumOGrfDaC9LJ1eyCYsn8P3a71332Vm+k1um3MJNU24K6xB9tdLZNc287+RVk6N2jDbt3sSd0+7kh3U/8Ncpf+WL37/g2snXhtY7zYNjTnIBsVtwzC5qyYrBeXbOs1z2xWW1HnV3GwxyaxvjETjm+IDG+Y0t961aV0ftGMZqwdlatpVvV3+bMLfib1Z/w9+m/Y2HZz4csc1MtAXH1UUtsNwc19i6QeuYjmlOtuLmqrth9wbL91mbZjlOJ/Dl71/GlWgl0jPvRqQBTfuzZG83q6qrQpaG5+Y8xyFvHhLyYqgNsQqcVMYM2WNwIllwoiWQWLNrjWWwRykV0YKTiQkGQASOEAe7ynexYseK0Pd9W+7LM0c8w9l9azrMP637iY+Xf8yzc551fRgjxWB8v66mIX1p/kt8v+57Npdu5sGfHwwrSzSivdB3le9i2ppp/LrpV8vyssoy/vjpHzl8/OHc8t0tlpfW8h3Lufqrq7nos4s4/cPTLaPCAHO3zI1ptCnSzOibdm9yTLv9+87fox73uTnPhbb7cNmHHPrWoVw3+TrKKsvYuHsjf5v6N8t9MYuIYEPYo2mNu9qrv73KTVNu4tFfHg2N3ldUVfDSvJd4a+FbITcZ+zwkEQVOHDE4YB29/HTFp6GO3Oe/fx5aHkwRHIl1JetYvmM5F316EUeOP5J3F79rWT9r4yzL97cWvRXqTE5fP53rv7neVUC4dYy01tz5/Z2A0Zl7fcHrlvXlVeXM3Dgz9N3Jz/rO7+9kypopPDjjwbAR2vKq8tDzVlFd4epKambj7o3sLN/J4m2LOfmDkzn7o7NDwrqkosS1U3PXD3e5+te/+turTFw2kUnLJnH3j3eHlmutY/Jzv/KrKzlt4mks3LrQdZsZG2eEnrvSylL+MvkvlvVOaaLtnTqzJSIS5iQD60rWsWbXGh6f9TjT10933P7b1d/y5y//zPtL3o/p+D+t+4mHZz7M1DVTufaba13dzkoqSnh2zrN8vPzj0DK3bd06sPFYJcxxeF0bdw27b7sqdvHK/Fd4fcHrjoIrlhiciqoKLvrsIq748grO/ujsuF0Vl+1YxvHvHs8ZH57BPT/eE1r+wjznAQFIfAxOtOuduaHmGd+/1f4xHTMeC05xeTHLti8Lfa+oquDsj87mmsnXcOnnl9Yqi+fm0s1xWYQiiYZvVn0TtizYdlZUV3DWR2cx5u0x3D71dh6a+RDb92zn+bnPW/ofsRDrwNe6knVh7+3NpZt5ctaTYYOricYucEorS10HDux9FTvrStZFTBMNVjGciSmiAXKibyIIVuZvmR+yThTlFtG5cWeyVBZn9TmLV38zZt9dumMpN357o+P+w9sPp0FuA07f63Qu+uwix22CL4Bd5bt4YtYToeVLdyxlfcn60IiqeZSyILvAcbTI3sCuL1nPsu3LOLDdgTw882H+N/9/oQbw7oPv5oQeJwDwxOwnQg36h8s+ZFPpJnKzcjm006GMXzTekrnEzoodKyxlUyhHi47baPC9P93LK7+94nr8aOyp2sN1k6/jXyP+xR3T7mBP1R4++/0zCnMK2b/1/mGCzDw6GGSvZnuFOqM/b/g5tPy9Je9x84E38+CMB3lz4ZsAfL3qax4Y+UBYDEQk3/JYBU5hTiE5KidU5uLyYloWtgTc5/7p07yPxY3SiXeXvMtL818KdcjWLrOKyZ83/MywDsNC3+3Z5CKNCrp1jMz+3mBYM0Z2HEmWymKflvuEdejtndStZVtDsV4Abyx4gwGtB4S+xzLRrhOLti7i7h/vDl3jU7Of4pYht/Ddmu9CHejGeY15+vCnOeejc6jSVawqXsW0tdMY0XEEWmumrJnCu4vfpX2j9hYL7MfLP+aP+/yRvZrvxfIdy2PKtAiwYucKTpl4Cj2b9uSqAVdxaOdDLevtAtROfk4+4C5wCrILYp5rwhyDs6FkAxd8cgHrStbxwtwX+HDshxYLz4fLPuSWKbeg0Xy35jsGtRlEx6KOEY9vjrNbX7KeT5Z/wvE9jg/b7t6f7uXdJYYQb1nYksFtB7sKnES6qJnrfs+mPcMEzn0/3cfHKwzRla2yOW2v0yzrI8WCBfl1868hQb5o2yKemPUE1x1wXa3Lev/0+10HHh6Z+QjLdizjon0vYp+W+4SWx2rBKasso7K60pKQpbi8GIWyLHN1yUOjtbYMYgxsMzDqNUFssYhO75NfNv1Cz2Y9AZi/dX7I3XjelnlMWTOFUZ1GxXT+r1Z+FZNXgp1Vxavo3qR7KG27mcmrJ4ctW7J9Cf1b9eeHtT8wf8t8wHjnmJm6dipdm3R1Pee6Xet4d8m7dCrqxJjOY2J2bdtduZuNuzeyaNsi3lj4Bkd1PYoPl33ItLXTyFJZvHz0y8zeOJuivCJO6nmS4zVFYseeHYxfNJ6uTboypvMYyzona/72su20adjGsqyqusrRsm9m7a61YZNuZ6ksSx/px3U/htZnqouaCByh1szdMjf0/94t9w65gnQq6kTrBq0tpk87Tx72JAd3ODjqOVbsXMHm0s1hDRvA1DVTGdd7HOt2rbN0WO4feT9fr/qavs378sbCN0Iv5dLKUhZvW8yOPTtoXticcz46h+LyYjo26hjWIXx53suc0OME5myaw0vzXrKsCzYITkkQFIqTep7EJys+MXzS0aHGGYwGxmkUyclFbXvZ9jqJmyALty3k5A9Otix7f+n7vL80fFS5IKcgbFm/lv1cj/3c3OcsAaHfrfmO8z853/J7RLLg5GXl0atpr6jXAIZ5vVFeo5Df+qriVdz1w11s2r3JdQS+f6v+lFaWhmJHnIg2MeqMDTNC/1dWV9Zq9PLz3z/ngk8u4IFRD1heHnbrxZLtS0Kuguf0PSesI/zLxl84/t3jKcor4rExj4WVwS6IVu5c6VomN5EN8I8f/mFJNvD2ore5cfCNFgvEyI4j2aflPozsODLktvbukncZ0m4Il395ueWFaeexXx7j0TGPRhWdTizZvoRrJl/Di0e9aBFz5lFwO7lZuZzS65TQ/0HMdT/W+BuADo060Cy/Gdv2bEOjQ8/tnqo9fLbiM87tdy5gtBG3fndr6D5X6Sq+Wf2Nxbptp6KqIixo+5bvbmF18WqO7HYk3Zt0B4zBnqC4AXh38bsMbjvY1UXNzY2ptLKUV397lenrp3Nx/4vp18L9OQejPTJnXOrVrBfZWdnkZ+eHRpiD4gYMF8xYBY65Pv68/mfLupfnv8xRXY+iZ7OeFJcX06KgRdQOZVBouxF0nf5h3Q+8dNRL7NV8LyA2C86y7cv40xd/Ym3JWu45+B6O73E8U9dM5c9f/Zm8rDxePvrl0PEiCYG7f7zb0vaY63QkzALqzu/vpF+LfvRt0deyjd1FDeDL37/k1N6nAuFJB2797lbO2fschrQdElFoBWOZ4uHKr67k6G5Hc98h1ri9GRtmOLYZQYETaQBx2tppHNPtGBrmNgwlstFas6VsCy0KWnDDtzeELNmFOYV0KuoUc3l/2/obN025iZKKEovVplpXc85H54S+N8prxOFdDo/5uGAkCQrGoZr7QltKtzgLnD1WgbNsxzIu+tR5UNjM7zt/t4jzYB9taPuhIXd687tRLDiCEGDu5hqBs0+LmlEwpRQHtj3QMl+LneDL2on9W+3P2l1r2VhqCKQX577IGwvfCNvuju/v4KlfnwoLkhvWYRgjO40ErCM+n//+OZOWTQoTGE6j3Qu3LeTrlV9zx/d3xOy3e83Aazi006F0b9qdtSVrQ4222bVHKeU4L86OPTvYXbHb0tmK9IJ2onlBc7aWbSVH5fDasa8xcdnEWmeDcXJlitTxeebXZ8KW2V9IbgLnmoHXcGDbA2uVlrIorygkcG789saoQfz9W/VnXK9xvDz/ZYa2G8ot390S87mCzNk8h7LKMgpyCpi7eW6tUz//vOFn/vL1X+jSuAubSjfRoVGHkMXLCTdRGxyNfmX+K2Gj9Ut3LGXNrjV0aNQBiOy+mJ+d7+oPb8+kVlldydj3x1pGwkd3Hg3A2F5jQwLn61VfM2HxhIjiBoyR2oVbF1pEf22o1tVc8eUV/HvEvzmo3UFUVFe4xvZ9ccoXFOUVhZ4pNytirO5pYKSaPrb7sY6/0We/f4ZG07FRR56f+3xYuzFlzRTO7ns2ldWVFJcX06ygGS/Pe5nXFrzGST1PYu8WezuKkSdmP8H7S99n4tiJ5Gbl8sXKLyzrgx2i2lpwfl7/c8iCsGzHMt4/8X3Kq8u5f/r9bN+zncO6HMahnQ4NdRzNE/02yW9Cq8JWgHH/nFxoFm1bxIMzHmT2xtlkqSyGdxgeUwyO2UoMxm/+5OwnWbRtEetK1tG6QWuO7XYsVw+8mkpdSbWuJj87n2d+fYbVxau5ZtA1Mad+L6ko4fIvL2f88eNpVtDMVeAEs1UVlxdz5VdXhlyKH5rxEGM6j+HayddSWV1JZXUlr/72KqM6jWLT7k3s3WJv13Ob24CeTXvG7ap7yeeX8Om4Ty3vDicLztS1U5m5YSYD2wwMi7fbWb6TJ2Y9wZM8yY2Db+Scvc8J2x8Mq6R5YLO2fLz8Yy7Z9xJ6NuvJyp0refW3Vxm/aLxj3X1uznOUVpZGjDP5dvW3HPLmITTKbcSRXY+kSX4Tvlr5FSt2rqB/y/78urnGhau0srRWccAvznsxprb+gyUf0LtZb5ZtX0a7Ru3o1bRXVIuwOcnOlV9eyS/n/sKd39/pmlXSHIdTUV3B5V9cHpbe2YlPVnxi+R4UOJfse0lYvDBkbgyOCByh1szbXDMKazbzAxEFTmFOocWVw87ANgNp27Bt6OF8af5LrtvaG/JrB11r6UwX5tZ0XmLN2R/kqq9rJoHMUlmc2vtU147p42Me55COh4S+79Nin1Bnz/zCVriPPP66+Vc+Xv4x7Rq249L+l/LN6nC/5Ejce8i9LNq6iL4t+tK3RV96NuvJqp2rLOb/7k26s6Vsi6tf/rHdjw1b1qKwBe0atouaCKFTUSfHLGtOqSn3brE3f9z3jzFclRXzyz2Wl89+LfejU+NO3H2wEf8Rj8CpqDb81f8x/B9RXQLcmLlxpsUdpS5MWDzBcSRyyuopHNf9OOZsnhMxZmX/1vvX6jrM4mZg64EhV5aDOxxMy8KWbC7dTGV1ZdQsbEHeWviWxdVpVMdRji4qQaacPoWfN/zMdd9cR7Wupri8mCu+vIL2DdszpssYx07z2J5jw1w6zPPgmKmNwAE4seeJjgJn9qbZETtj09dNZ3PpZq748grmb5lveaYen/W4JZmHnTW71jB381wGtB7ApGWTLOt+3vAz5318nuvz6ZZK1lwfl+9YzrIdy/h61dehwaRPVnxCz6Y9eXzM4zz969OhDHUAvZr2CllRGuQ0cMzmWKWrLAkwft7wM/nZ+Y5lCYrBiuoKx3tobgs37t7IC/NeYGf5Tj5Z8QnZKpsRHUeE7svakrUc0+0Yx/M4sXH3RiYsnsChnQ61WGuDA0ZgDHL8fdrfeXfxuxarzMbSjVz2xWUWC8+7S94NWdj2arZXTGUY1GZQzOUd1XGUZeBu+57tLNy2kP4t+3Pv9Hv5dvW3lt+jbcO2offkeZ+c5+ixEESjuXf6vWRnZXNmnzMt63ZX7OahGQ+Fvo/pPCZqHJ2TtXjS8kmckHUC53x0jkXQ52XlMbDNwFDbtLJ4Jf/+6d8Rjx9kV8Uui2gALOLGDbPLsx1zXYjE5NWTmbJmSqgd6tO8D/87+n9h3hCzN83m1d9e5aB2B1mWV+pKPlz2YcSU+T+u+5G2DdrStUlXPl3xqcW9t3+r/hza6dCY2t+gwNm31b4M7zCcqWumWtZnqgVHkgwItWJr2VZLYLx9lN+cMtpO18ZdLbn8AU7rbbgyNC9ozoX7XOhoJs/NyuWJMU+ELQ8ysPXAUNxMkILscJcrN9o0aMOf9vtT2HKF4u6D7+a2obfxxrFv8Moxr3D6Xqdbrsfubje682jHAHd7oxeMIQG4+LOLeWfxOzw+63HeXPhm1HmA7Nfas2lPzu13buje52bl8vDoh3n2iGcZ12scJ/c6mReOeoGrB14dtt+A1gPo27wvZ/Q5w/FcdgFr55COhzBp7CT+b+T/hWWkss+eHDxnPDjFCLnRLL9Z1JiHWFm0bREXfHIBE5dOjGn7WLNyxcPWsq2OncBXfnuFY989lks+v4SJy2rK2aKghWW7w7scTsPchhHP4TQA0b9Vfx4f83hIKORk5VjqYKyWrYnLJlo61yf0PCHC1sbEc4d1OYwr9r/CsnxtyVqLhXJQm0Gc1vs0Tu51MjcMDp8o2M2/3B5TFY0+zfvELIoGth4YSm9eXl3O6LdGh6xXdkFiFpK3Drk17PmetnYaP6//OcxKVlFdESaezbFCsY64f73q67BO1pLtSzhywpG8s/gdyyiy+fmNNumuGbOlx1wHgwJn3uZ5MccGTVg8gZKKEnaW77SIvunrp/PivBdjLhMYaYnHvj/Wssz8Tvto+Ue8s/gdR5ezSC6r5ji5SAxsHVv8DcCYLmN44zirR8PS7Uv5YOkHvL7gdUvnN0tlcdfwuyzbxhKf9+yvzzJvyzxemPtCKMvkf+f8N+RVkZeVx/UHXG8ZEBvWfpjlGH/a70+O8TEfLfuIx2c9bqk3zfKb8d8j/hvXoFcsnNb7NJ45/BlLefdqtldYPyRezIMsC7YuCLOOzN40mz9++kc+Xv4xf5v2t7D9b55yc8TjPzvnWU56/yTeXfyuZdDghB4n8Ooxr3Jc9+NiKmeWqat/51rhLgAAKK1JREFU5YArrYPBOYVhv2GmIAJHqBX52fncffDdnNnnTIZ3GB7WIepY1NF1VKp703D3tFuG3MKzRzzLhBMm0CS/SViDn62y+efwfzKi4wiLpQSMl23/Vv25++C7w3yzI3VEujbuysiOI0Pfrxl0DUd2PdKyjUJx1/C7Qg1Iv5b92K/Vflw98GpGdRxFtybd+OfB/wxrKPu36s9LR79E/1b9LcuzVBbXDbqODo06cMMBN3DhPhc6lu3uH+927TC+fPTLfHv6t9x98N3cMuQW2jZsy8X7XmwRS+bzDWk3hDuG3cGdw+6keUFzxvUax74t9w1tc+7e5/Ly0S/z1vFv0aVxF8dzurmpNc5rzFUDruKBkQ+glOKorkfxxnFvhDpARblF7Nty37Dc+3ELnLzYBU7/Vv1rFfzZrUm3iOtLK0tZWewe2xKkSX4TJp08ieeOeI73T3w/VAdzVA6HdT6MU3ufSvcm3enWpBv3HHxPqO40ym3EC0e6Z3iKxu87f3eMJ7pr+F1cNeAqslU2rQtbM6rTKA7rfFjEYz06+lHLszO602iePuxpi/8/wEk9T3Lc3/77/mXQX0LB0eYOrEIxvP1whrQdAhA2wWzf5jWxBRfvezH3HHwPw9oPI0eFW2OGthvK7Qfdzp3D7nSsJ8F6b491GN5huOM1ROL6A66PabtL+l/CQe1rRmxjCc7u0rgL43qN4+6D7+aagdeElj81+yku+uyimI4xtufYqNvYeXjmwzEnfujVrCZuzv7cxNJZL8gusMQtBAWO2do9qM2gkMtlbYklw6S5jlbr6rD7Gsm9zK2djIRbRsdWha04uGP0eFQz/Vr04+ReNXGVv235zXEEv1VhK4a2G+oaI9K8oDmvH/s6Lx71Ip+O+zRUxo2lGznjwzN4cMaDXPX1VazaucoSi3pev/PoWNSRmw+8mXG9xvGHvf/AfYfcxwX9LuCEHifw1nFvcfn+lztOHry2ZC2frvg09P1P+/2JSSdPYmCbgXG9F5oXNOe6Qdcxrtc4hrcf7mglPKzLYRzU/iD+PeLfvHTUS1w98GoeGf1I1IlV4+WZOc9wxodncM3X17Bo2yKu/PLKOs+tU6Wr+Nu0v1nc7C7odwFgDEhdsf8VtG3Ylr8M+ovbIcjKqumn9GvRjwknTOCeg+/hnoPvYdLYSbQobOG6bzojLmpCrWiY25ATepwQNspo5okxTzB9/XTaNmzLKRNPCS13sqpkZ2UzpN2Q0PfezXqHTKh7t9ibOw66IxRIefOBN9MwpyEdizpy6X6Xuro9QPio7eC2g3n68KfZsWeHMf+KMlxmWhS04KhuRwFGuuugj/Kdw+7kxJ4nhh23KK+IR8dEnoxsv1b78dCohxj99ujQsh17dnD+Pudz/j7nA0Zn79k5z0YNdDfTrmG7kCn5zD5nhrkSRCNLZfHwoQ/znxn/oU3DNo7XZ8duwbltyG2M6TKGJnlNwl4S3Zp0483j3mTmxpn0atqLhrkN2Z693bKNOfV0bYh1rggwXLFqwxl7nWGZ2LNfi37cOPhGXlvwmuWFDHBK71PCRruD7hh/GfgXWha2DAnOF458ga9Xfc3hXQ4PBR+bKa8q56tVX3Hu3udyQNsDOKHHCSF3yn4t+rFm1xrXCV0Htx1Mvxb9Io5Yd27cmREdR3BK71MozCmkIKeAY7sf65hkAoxBgT7N+3D/yPt5a+FbHNLxEE7tfaqjWOzWpBsDWg+wjGL3ad6HI7ocwSO/PBJaNqjNILaUbuHl+S9b9u/apCsNchvwyOhH+GXjL+zfen+u+fqakJvKlQOuDG2rlOL4HsdzfI/jWbxtMff+dC8/rjesGUHhHomORR157Vgj3faKHSu48NML2Va2jZN6nBRxPydO7X0qWSqL0spS2jdszzWTrwmty1bZVOkqBrcdzLD2w9hattWSujwatwy5JfRMHdT+IB6a+VBoXXCkOCcrJ+IkyMd1P443F77JljJrytkujbvE1PmP5MYERvscZEi7IczZPIcclcPDox8OS3E+tN1QGuY2tLgzXdz/YkuM0tpda1m1c5XFIndAmwNYu2utRXTlZeWxb6t9Y3YfcqNxXmMeGf0I4z4Y52oxGtx2ME//+nTY8kcOfYSRnUZy9ISjQ14MjXIbsVfzvSKWq2l+U5RSbC7dTNP8prx/0vss2LqAXk17WTKjxYp5MOCtRW85bhMcePzXiH9xUs+TeGr2U5b4my6Nu1ja9qHthjJ1rdVtacHWBVz+5eWhOJnWDVpz0b5GgHuT/CbcMeyO0LbXHnCtZd9jux8b5lJppluTblza/9JQzErLwpb0bd7XMbFAXlYe1VSTm5XL/47+H5OWT2LT7k1csf8VFkt9aWUpB756oGVf82DrwDYDQx4iA1oPiOopcXKvk2mU24h1Jeu4dtC1PD7rcX5c92PEGJhgLOu8LfOYumZq1EnN42Fkx5GhrHgAl+13GZftdxlgJB5xyiBoT2DQrUm3qAN7mYAIHCHhNMhtEAr2D770gZiypymleHLMk2zcvZHWDVpbOlcdizpy38jYZlA/fa/T+Wn9T2SpLM7pew4n9DyB3Kxci7XDntnogZEP8N7S9zigzQERXe1ioVWDVhZfZfuIZGFOIef3O58HZzzotLvzMQPBvXUt1z0j7om+YQD7aOY+LfdxtBgFycvOY2i7oaHv9tHLeBvV0/sYv2dBdgE3DL6BGRtmWDrSrQpb0SC3AU3zm4ZlcAK4btB1PDDjAUt9DGIeaQfDZTH4Mmyc1ziULa5r467ccMANZKvsUEzWLUNuYVCbQewq3xVmIejXsl/ETHTjeo9jXO+azvmNg29k7a61rN21lhsH30jHoo7M3zKfTaWb+Mf3/7Dse0qvUzim+zH0bd6XR395NKxTmq2yad+oPWD1rz6w7YF0LurMyuKVNMxtSLfG3UKuTP8YbpzjkI6HhFlLnRjbc6xF4BzU/iBGdBxh+V36NO9Dy8KWvL3obUuHsk/zPoDRVgQtKdcfcD1Pzn6S/q36M6LjCMdz9mrWi2ePfJY9VXvYtHsTbRu2dY2xcaJrk65MOnkSZZVlcfmdK6U4pbcxaKO15soBV7Jg6wL+PODPNMtvxuxNsxncdjBKKY7udjRzN8/l4+Ufs23PNto1bMeThz3Jd2u+o0FuA/Kz87n1u1sBOKrrURY3kT7N+9Agp4ElxqNlYUsePvRhPl7+cVgsULP8ZozpMoZOjTtxUs+TeG7uc5b1R3Q5gnlb5jFt7bSI13fD4Bt4Ye4LzNo0y3G9eaT9ygFXMrD1QDoUdTBi/GzzeJza+1Q6N+7MN6u+oVJX0rVxV87vd77FIvDzhp855t2auJm8rDyO7X4sMzbMsLhbDmwzkPP6necoJPKz80OiM0huVq4lgP3Fo4zA8R5Ne9ChUQcGthkYFofQqrAVIzuN5MC2B1KUW0RxRU2ShqBFPEtlcdvQ27jj+zvo1rgbfzvob+yu3M2pE091u6VsKdvCOye8w6crPuWorkcZCXHq4BIUi7Uj6B6Zn53PIR0PYWDrgRz0ek07Z2/zjux6ZJjAAav75LWDro058+Af+v6BOZvm0LKwJWN7jeX2qbdb1l/S/5KwgPwHRj7AR8s/ol2jdqHnAoykJlcPvJpslU2D3AaOg0VgvFNP3+v0UNs8utPoUKIMO+f0PSdM4Dx/5PO8vuB1Zm+aTevC1lw54ErLu+5fI4xBsBu/vdEyD1Wz/GbsqtgVljAhkriJFn/oxn6t9rMISzt3DLuD5+c+z7D2wyxxTJGSO2UyInCEpPLQoQ9x1/d3sXfLvWPOt6+UCgsUri09m/Xk/ZNim2QvSLtG7RxjceLlzmF3smLHCpbuWOro0nNmnzOZvWk2czfPpW+Lvhb/3bE9xzJn8xxLnECsc3YkkqK8Isb1GseExRMY1GZQWFrSaLRp0IaeTXuyZPsS9mu1Hx0bxRcb071Jd949sSZNqX1uo8O6HMYtQ9wTCZzb71z6tuhLmwZteH3B66EJNA9ocwCdizpbtjW/qG4cfCN52XlsKNkQesFf2v9Sdu7ZSeP8xozrNc71JVpbmuQ34YWjrK5qrRu0ZnPpZu76/q6QK80f9v4Dx3Q3OoXHdD+GY7ofw/qS9Rw+vsYdpUpXOWawy87K5vExj/PB0g84pOMhNMxtyCO/PMJezfbiyC5Hhm0fiSO7Hsm/fvpXqGM5rP0w+jTvwx/2/gMfLv2Qi/tfTH52Ph0adeDGwTeGJjgFZ9fHvZrvxUOHPhTTufOz8+OOsyrMKax1ggEnlFJc0v8SyzJzG5eTlcPNQ27mrwf+lfUl62lW0IzCnEKLFTNLZbF592bO6nuW5ThZKouRHUda0i/fd8h99G/V3zLpJsBNB95kGawZ12scr/z2Ssg1pmFuQw7vcjhn9jmTcR+MC8XU9GvRz5K2u1uTbozoOIIqXcWsybMAaN+wPa0atGL2ptmc0OMEi6tilsqyCNEWhS1CVsiBrQcyuvNocrJyePrwp5mxYQan7nUqedl5ETvJtw69lW5NuoW5jfVv1Z/h7YdzVp+z+Pz3z7lsv8sY1n4Y7y99nxEdRlCYU8hDMx+iqrqKbk26cWafM7nos4tYV7KO5gXN6deinyUOcmjboRaBc97e53H94Br3w25Nu1kmU+zRtEeo3CM6juDLU2usUlpr9m6xN/O3zKdjo47cP/J+zphUE9OYk5VDr2a9LO59dSEmK7jN6NoorxH3HHwPt3x3C0V5RZzYw2q9H915tGOMSJBuTbrVKoFDv5b9mHRyjQWnbcO2vLngTWZvms3BHQ7m6K5Hh+3TqXEnLt3vUsCYKDgYs3Zop0NjdlG+bL/L+HXTrxSXF3P5/pe7buckMAe3HRzTwGaf5n0sAmdUp1GW7Kl2nAbVDul0CEPbDw2JkLsPvpv3lrzHmuI17NdqP8tz37d5Xw7ucDAD2wxkePvhEd2vB7UZFLJa9Wneh5un3Eynok6M6OA8YJTpqFgnQBK8hVJq3t577733vHm1n1dCqD/2VO1hW9m2iNnjwMhUM+6DcazetZoeTXrw2rGvMXXtVK6dbJj+R3UaxaOjI7vGJZN1u9bRpmGbuIIzi8uLmb5+Oge0PSAulwwntpdtZ8SbNY32+f3Oj3lSwHW71nH5l5dTpat4fMzjdCrqxIGvHhjqqN8+9HZHK1AqeebXZ/jf/P9xXPfjuGHwDY6/w74v1cRXZatsZp07K+nlemfxOzw440FjxHDEv0Pl0lpbXsRaa2749gY+XWH4+7974ru+cJGoCz+u+zE0EfKl/S/lzwP+DBgB+eYO9GfjPqNdo3aWfaevn860tdPo2rgrwzsMD41E/7blN56Y9QT7td6PP+z9B1797VW2lm6lc+POHNblMJoXNEdrzbNznmXO5jlcM+gaOhV1YkPJBjo06hDTPDTrStbRpkEb1wGZjbs38qcv/hSWuvecvufw1wP/GjrO4eMPD83r8s4J79RaICzatohPln/CmC5jwgT1gq0LLFaXt457yzJ4c/vU2y0Zy8b1Ghdx5HzHnh38uO5HBrYZSMvClnyy/BNu+NZIeDGk3RCePeLZWpU9Elprhr8+3GJh2q/Vfuzfav9Q5tH7R94fFlcKhqtSQXZBWEwdwPXfXB/mkhtad8D1nNfvvARdQXQWb1vMQzMfonez3lw14KpaT6gZC6/99lrINfnQTofyyOhHouxhMG3NNC794tLQ93sOvoddFbu450dnz4jnj3yeSz6/xOJa+vyRzzO47WBmbZxFlsqyxOya6w7AvSPuDQ1o+Yl+/foxf/78+VrryBN1RUAETpoiAifz2Lh7I7M3zWZ4++E0yG2A1pr/zPwPy7Yv45qB11j8bgVrh/6hQx8Kmxk6EvYO+NQ1U7lt6m30aNqDJ8Y8kTCrTH3y1sK3uOsHI3PSVQOu4uL+F9fLee330o3K6kq+WfUNHYs6urqZCFbmbZ7H7srdlpHlal3NeR+fx6xNsziu+3Eh15l0o6q6impdzYbdG6jSVWEB/D+u+5Fn5zzLyI4jXedniRetNRd/fjE/rvuRUR1H8cjoRyx1+IW5L1jch/9+0N9DromxMnnVZH7Z+Atn9jkz6gBXbTnno3MsGRWvP+B6zuhzBv+b/z+Kcos4pfcptbb4by3byqu/vUrnos7cNvU2y7pvTv8m42a7r6qu4sEZD7J8x3KuHXRtzO/XLaVbGPXWqND3z0/5nMKcQsZ9MI4NuzdwSf9LKC4v5qPlH3He3udxcf+LOWrCUZaYsq9P+9rV1furlV9x9dc1GU+/Pf3bjE3jHAkROD5GBI7gdz5Z8Ql3/3A3+7Xaj4cPfbjOLnyxdtS9SrWu5vUFr1NaWcpZfc6K2V9eSD+qqqtYs2sNnYo6pXWdTSXVuppVxavoVNQpzCL6+e+fh6znAOOPH+8pUX72R2dbXOg+HfdpKOYuEdw85ebQfHaHdT6M/xz6n4QdOxN4ZOYjvLbgNc7sc2Zo+oWyyjI27d5Ex6KOYc/kqRNPZcHWBaHvv577q+tzu6t8F0eMP4LiimLGdB4Ts9tuppEIgSMxOIIgpCVHdT2KI7scmbAOXrp3FLNUVljiDCEzyc7KpnPjztE3FFzJUlmuaZ/3bbkvWSqLal0dFjflBY7pdkxI4DTOa5xQcQNGtrufN/xMtsrmmkHXJPTYmcBVA6/iygFXWt4ZBTkFdGocPhEzwLHdjg0JnOYFzSO+axrlNeLtE95mzqY5MSVmEtwRgSMIQtqS7qJEEATv0bZhW2468CY+Wf4J5/U7r1aZ+uqD43sczzuL32Hj7o08MPKBhB+/e5PufDruUxRK2lgXanNfzuhzBl+t+oql25dy57A7o27foVGHuOeCEmoQF7U0RVzUBEEQBMGfaK3R6LgSvwipoaq6KiXZUNMRcVETBEEQBEHwGUoplD0ftOBpRNzULyL9BUEQBEEQBEHIGETgCIIgCIIgCIKQMYjAEQRBEARBEAQhYxCBkySUUoVKqX8opRYppcqUUmuVUs8rpSQ1hiAIgiAIgiAkCRE4SUApVQB8BdwONALeB1YBFwC/KKW6p7B4giAIgiAIgpCxiMBJDrcBQ4Hvgd5a69O11kOA64BWwPOpLJwgCIIgCIIgZCoicBKMUioP+HPg6xVa613BdVrrB4FfgZFKqUGpKJ8gCIIgCIIgZDIicBLPcKAJsFRr/YvD+vGBz+Prr0iCIAiCIAiC4A9E4CSe/QKfM13WB5f3r4eyCIIgCIIgCIKvyEl1ATKQzoHP1S7rg8u7xHIwpdQ8l1U9alMoQRAEQRAEQfADYsFJPI0Cn7td1pcEPovqoSyCIAiCIAiC4CvEguNxtNb9nJYHLDt713NxBEEQBEEQBMHTiAUn8QSzpjVwWd8w8FlcD2URBEEQBEEQBF8hAifxrAx8dnRZH1z+ez2URRAEQRAEQRB8hQicxDM78DnQZX1w+a/1UBZBEARBEARB8BUicBLPVGAH0EMptb/D+lMCnxPrrUSCIAiCIAiC4BOU1jrVZcg4lFL/BG4FpgFHaK1LAsuvBR4AvtFaj6rjOXbm5+cX9egh2aIFQRAEQRCEzGDp0qXs2bOnWGvdON5jiMBJAkqpAmAyMARYB0zBmPdmCLAJGKq1XlbHc6zHSGSwqk6FrT1BRbW0ns+bCci9qxty/+JH7l3dkPsXP3Lv6obcv/iRe1c3Unn/OgG7tdZt4z2ACJwkoZQqBG4GzsL4obYCnwC3a63dJgH1PMGJR93SVwvuyL2rG3L/4kfuXd2Q+xc/cu/qhty/+JF7VzfS/f7JPDhJQmtdCvwt8CcIgiAIgiAIQj0gSQYEQRAEQRAEQcgYROAIgiAIgiAIgpAxiMARBEEQBEEQBCFjEIEjCIIgCIIgCELGIFnUBEEQBEEQBEHIGMSCIwiCIAiCIAhCxiACRxAEQRAEQRCEjEEEjiAIgiAIgiAIGYMIHEEQBEEQBEEQMgYROIIgCIIgCIIgZAwicARBEARBEARByBhE4AiCIAiCIAiCkDGIwEljlFKDlVJvKaXWKqUqlFLblVJTlFIXKKWUbdsXlVI6wt9lLudooJS6TSk1TylVqpTaopT6WCk1KkrZOiqlXgiUrUwptUgpdadSqiDCPoVKqX8Eti0L7Pu8UqpDPPcnGl69f1HOo93uYX3ev9rcO9M+jZRSf1dK/aqU2qWU2qGUmquUelwp1chln+FKqY+UUlsD+/yklDo3Stkyqu6Z9kn6/ZO6B0qphkqpPyilHlVK/aiU2hO49jtiKJvv616890/qHiil+iil/qqU+loptTlwjvVKqXeUUiOilE3qXpz3T+oeKKX6K6UeU0r9EDjHnsD23yulrlRK5UYomzfrntZa/tLwDxgHVAIamAG8CXwFVASWvWrb/sXA8k8C/9v/DnU4RyNgemC/LcBE4FugHKgGLnQpW09gU2C/OYGyLQ18/w7Id9inAPg+sM3awD4/Br5vBLr76P5pYJfLeV4EclN5/2p77wL7dAOWBdYvBd4GPgAWBpZ1jHCeamAyMB7YFtj+fr/UvXq+f76ve8D+geX2vzuilE3qXt3un9Q9WB1YXgx8HjjHnMCyauAaqXtJuX9S9+DPgeUrgC+A1wOfpYHlk4G8dKp7Cau88ld/f0AOsCFQGc6yreuL0ZnWmDrd1HTQR9XiPI8G9vkZaGVaPizQgOwBujjs911gv4dtZX4Hlxcd8M/AumlAI9Pya4MPl4/unwZW1PKa6uX+xXnv8oEFGA30pQ7H3AdoYFvWHNgRONbJpuVtgMVuv0WG1r36vH9S96AH8CxwKTAQuN2t7kjdS+j9k7pndCj/ABTYll8aOH4lsLfUvYTfP6l70B0HYYHxzgiKxD+nU91LSOWVv/r9C1RODSxwWf9wYP2NpmUvUosOOpAHlAT2Geaw/u7Auv/Ylh8YWL4Bm3IPPCjlwFYgx3au7YH9Bjica3Zg3aBMv3+BdbVqbOvz/sV5724MLLuvFucJ7vOew7qxgXUTfVL36uX+Sd1zPe9NROmgS92r2/2TuhdTGT4NHO/vUvcSd/+k7sVUhnMCx3snneqexOCkJ3ti3G5LHc7RF2gQONf3Duu/DnyeaFt+bOBzotbaUk6t9QZgCtAMONi0ajjQBFiqtf7F4VzjA5/Hx1z6yHj5/sVDfd6/eO7dxYHPR2txnmA9Gu+wbhJQBhxm8/HN1LpXX/cvHjKx7sWD1L36x291b3bgs71tudS92HC7f/Hgt7pXEfgsty33dN3LqesBhJSwDMPHcS+l1Fla69eCK5RSfTHU9jbgXYd9T1ZKjQOygeUYFXOBw3YNA587dEBW2wg+TN2UUo211jsD3/cLfM50KftMYDTQH8OnM9Z9COyTCLx8/0L7K6VuBToDu4FfMEZPdjkcqz7vX63unVKqE4aP7mqt9Sql1HDgBIwGbjkwQWu9xOE8rtektS5XSs0FDgB6A79G28e0PK3qXj3fvyB+r3vxIHUvMUjdc6d74HO9bbnUvdhwu39BpO45oJRqBlwX+DrJttrbdS8R5iv5q/8/DBW8DcOUNwN4g5qgs9nYTH/UuFjZ/6qBxzGZEAPb9zKtL3Q4/8mmY+xjWj4zsOwEl3JfHVj/gGnZg4FlD7rss1/wOjP9/gXWOZ1HA5uBYx2OVa/3rzb3DjgysN2Pgftkv6YK4Drb8Rub1jd2KcO7gfXHZ3Ldq8/7J3XP9ZyxuKhJ3avD/ZO6F/XcPTCsrhqb647UvbrdP6l7YefqhdHfeRnDra84sN+TQFY61T1xUUtTtNZTgZEY6n4gcDpwKEaH+vPAcjO/AJdhjNg2wBjNuALDF/Jy4P9s2y8B1gEKOM+hCBea/i8y/R9MPbjbpeglCdqnTnj4/oHRsBwFdMC4NwOA/wEtgHeUUoNt29fr/avlvWsW+ByIcf/uADoB7YC/Btbdr5Q61rSPOX1lsuuR1+tefd4/kLoXL1L36o7UPQeUUjkYHc584E2t9QzbJlL3IhDD/QOpe2baYPRZ/gAcgXGtjwB/1VpX27b1dN0TgZOmKKXOBH4CVgFDMCpNb4wH+TrgK6VUfnB7rfXDWuuntdaLtdalWuvlWusngBEYfpV/Dpg2g9tr4N+Br/8XyLXeXCnVVSn1MIbvZWVgvb3Sex4v3z+t9Xla60+11mu11iVa61la63OBezAC9P6Z6PtRG2p574JtTA7wtNb6Tq31aq31eq31fcB/Autvqa/ypxov3z+pe5mNl++f1D1XHsGIYViGMZiWlnj5/kndq0Fr/Z3WWgX27x44/vnAz0qprgm+tKQiAicNUUr1Al7CMJ8ep7X+KfBQLtZaXwp8iKHeL4x0HACt9TyM3Og5wBjb6kcDf42A5zHiRpYDVwK3YZhMMX2CkUseDCuHE8HYlOI67hM3Hr9/kbgPqAJGKaXyTMvr7f7Fce/M/ssvOBwyuGyIKeDdvE+y65HX61593r9I+KXuxYvUveTh27oXiAn5E0aWqiO11lsdNpO6537eWO5fJHxb97TWVYGB3AeBCzBc1+xJCzxd90TgpCdnALnAJ9o5AO6twOchMR5vceCznXmhNrgKw1x7B/BfjPTGg4D7MebaKMVqHl0Z+Ozocq7g8t/ruE9d8PL9c0VrvQNjEqw8DNN5kPq8f7W9d+ZzrnDYPrgsG+N+oI2ECzsCy5Ndj7xe9+rz/rnil7pXB6TuJQm/1j2l1GUYloMdwFHaPTBc6p4Dtbh/rvi17jnwLoYwOcom9Dxd90TgpCfBCrDDZX1weTOX9XaC25U4rQyYa+/UWl+itb5NG6n9hmA8IFO11pWmzYOpGAe6nCu43Jy5KZ596oKX758rSqksjABy+7nq8/7V9t4twAjuNC8zY25gzY236zUppXIx5gYoAxbFso9teTrVvfq8f674rO7Fg9S9JOHHuqeUOgMjQHw3RpD7rAhlk7pno5b3zxU/1j0ntNaawHw2tmN6uu6JwElPgmkOD3BZHwyIWxHtQAG/zWCwmVvaPieuDHw+Y1seTCN4vDmGJXCuNhgxK9uAqaZVUzEe0h5Kqf0dznVK4HNiLcoXCS/fv0gchWG+XaqtaaXr8/7V6t5pIzf+p4Floxy2Hxn4XGa7pmA9OoVwjgMKgC+01mWm5RlX9+r5/kXCT3UvHqTuJQ9f1T2l1DEYQe+VwFhtBJhHQuqeiTjuXyR8VffcUEp1x0hUsBPDVS6It+ueTlAKQPmrvz8MhRtM+fcn27qhGKpcA4cFlvXByIhhn2m2FTXpYmcByra+NdDZtiwHuDOwz1cu5fsusP4h234TcEkXimFK1hiVv6Fp+bWB5ZP9cP8wzNGDHZaPBNYE9vtLqu5fbe9dYPmwwLJVQG/T8m4Y+f01cIPtWM0xGkENnGy7p4sDy0dlet2rz/sndc/1vLGmOZa6F+f9k7oXWjccw+pQAZxUi/JJ3Yvz/kndC627EmjrcP69gB8C+zyaTnUvIZVX/ur/DyMtcbDSz8Xww/wOIyBOY2TPCG47KrBsK/AZ8CrwNYYaD3sIbPtVY+RdHx+osGsD+8wEmruUrReGytcYZsY3TA/VVGxCIbBPgekhWgu8afq+Eejuh/tHzXw7C4F3AvfhF1NZX8eWi76+719t7p1pn6CoKwncw49N9+8jINthn3GBY1Zj5Px/m5q5AB5wKVtG1b36vH9S9yz7vBu4hh8wfMY1sNq07F2pe4m7f1L3QtsHn89lgXvi9HeR1L3E3T+pe6HtVwSONzNw/LcxMrcFz/EN0Cid6l7CKq/81f8fMBbDFLkZY8RiK0ZH5kzbdu0xUgN+jzE3SzlGhooZGMHvzVyO3wkj48aiwENSDPyMobLzopQtuO86YA/GqPE/gIII+xQGtlkS2Gdd4Bgd/XL/gKOBV4DfMBrrCowMMB8Bp0S5nnq7f7HeO9s+JwPfYjSywZmir8E2Saptn+EYDfO2wD2cDpznl7pXn/dP6p5l+xXUdCic/lZI3Uvc/ZO6F9o20j0L/r0odS9x90/qXmjbszEGbxdiWP/LMdzjPsGYFydM5Hm97qnAiQRBEARBEARBENIeSTIgCIIgCIIgCELGIAJHEARBEARBEISMQQSOIAiCIAiCIAgZgwgcQRAEQRAEQRAyBhE4giAIgiAIgiBkDCJwBEEQBEEQBEHIGETgCIIgCIIgCIKQMYjAEQRBEARBEAQhYxCBIwiCIAiCIAhCxiACRxAEQRAEQRCEjEEEjiAIgiAIgiAIGYMIHEEQBCEtUEp1VUpppdTkJJ9HK6VWeO1YgiAIQmyIwBEEQRAED6GUWqGU0qkuhyAIQrqSk+oCCIIgCILH6AtUpLoQgiAIQnyIwBEEQRAEE1rrBakugyAIghA/4qImCIIgpB1KqUKl1L+VUr8rpfYopZYopf6qlFIO2zZXSv1LKTVfKVWqlNqhlPpKKXWcy7Ed42aUwSVKqdmB46xXSj2nlGqtlHoxsN8ol2NmB8q3KFDeVUqpe5VS+aZtRgVc07qYyqHdyiMIgiA4IxYcQRAEId3IAz4D9gYmAw2BkcC/gSLgtuCGSqnewBdAJ2AF8Glgm6HARKXUDVrr+2M874PANUA58DWwAzgGGA38GmXf1wLbTgYWAiOAG4EOwDmBbdYDLwGnBK7pJdP+m2MsoyAIgu9RWkscoyAIguB9lFJdgeWBr98AJ2itdwbWHQD8AOwB2mitdymlsoFfgH0xxMQDWuvqwPY9MURSZ2B/rfVc03k08LvWuqtp2cHAFGArMDK4vVKqAfAOcGRg00O11pNtxwL4DRittV4fWN4NmAk0BXpqrZea9lkBdNFah1mjBEEQhOiIi5ogCIKQblQDlwbFDYDW+mfgY6ABcEBg8fEY4maC1vr/guImsP0S4DogG7g4hnNeFvj8j1kMaa13A1cFyhSJq4LiJrDfcuCVwNcRMZxfEARBiBEROIIgCEK68bvWeqHD8kWBz3aBzyMCn++4HGdK4PPAGM45PPD5tn2F1noRMCvCvhUYLm127OUVBEEQEoAIHEEQBCHdWO2yvDjwGQzc7xr4fNUWsK8DrmObAutbxnDOoAhZ5bJ+ZYR912utq2IoryAIgpAAJMmAIAiCkG5EcwcLEhzE+wTYEGG7ZAfwx1peQRAEIQGIwBEEQRAylaCl51mt9YQ6HmsdhkWoE0YWNDud6nh8QRAEIUGIi5ogCIKQqXwe+BybgGNNDXyOs68IZGQbkIBzBCkPHFcGIQVBEOJABI4gCIKQqUwA5gNnK6VuN0+qCaGJO4crpYY7727h6cDntUqpvU3HKAQeIbHv07WBz70SeExBEATfIAJHEARByEi01pXASRhz5/wDWKmU+lwp9apS6lOMiTW/AwbHcKwpwENAC2CmUupjpdSbwFKMCUcnBjYtT0DRPwh8fqmUel0p9axS6t8JOK4gCIIvEPO3IAiCkLForRcrpQYAfwZOBoZivPvWY0wC+gHwVoyHuxZYAFwBHArswJh75ybgf4FttiSg2I8AzYAzMVzicoHfA+cRBEEQoqC01tG3EgRBEATBEaVUIwwrUQHQ1CUltCAIglBPiIuaIAiCIMSAUqqvUqqBbVlj4BmMuXTeEHEjCIKQesSCIwiCIAgxoJR6CjgHmIGRNrolRva05sAyYKjWepP7EQRBEIT6QGJwBEEQBCE23gHaAoOAAwPLlgPPAvdprRMRfyMIgiDUEbHgCIIgCIIgCIKQMUgMjiAIgiAIgiAIGYMIHEEQBEEQBEEQMgYROIIgCIIgCIIgZAwicARBEARBEARByBhE4AiCIAiCIAiCkDGIwBEEQRAEQRAEIWMQgSMIgiAIgiAIQsYgAkcQBEEQBEEQhIxBBI4gCIIgCIIgCBmDCBxBEARBEARBEDIGETiCIAiCIAiCIGQMInAEQRAEQRAEQcgYROAIgiAIgiAIgpAxiMARBEEQBEEQBCFj+H8DKoIGykvOUwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Show number of txs types by block\n", + "plt.figure(dpi=150)\n", + "ax = plt.gca()\n", + "\n", + "txs_by_block_df.plot(x='height', y='num_proofs', ax=ax)\n", + "txs_by_block_df.plot(x='height', y='num_claim', ax=ax)\n", + "txs_by_block_df.plot(x='height', y='num_send', ax=ax)\n", + "plt.ylabel('Amount')\n", + "plt.title('Types of TXs by block')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyQAAAJBCAYAAAC3RHFZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOyddZgbx/nHv3PMbKYzM8Z24jhgJw4zNNRwQw22gaZpf03SNkwNMzNz4jh2HDtmx8wMZ/Yxg3Sa3x+jlWZnZ1cr3Z11Z7+f57nnRLsaLcy8/DLOOQiCIAiCIAiCIKJBTLQHQBAEQRAEQRDEoQspJARBEARBEARBRA1SSAiCIAiCIAiCiBqkkBAEQRAEQRAEETVIISEIgiAIgiAIImqQQkIQBEEQBEEQRNQghYQgCIIgCIIgiKhBCglBEARBEARBEFGDFBKCIAiCIAiCIKIGKSQEQRAEQRAEQUQNUkgIgiAIgiAIgogapJAQBEEQBEEQBBE1SCEhCIIgCIIgCCJqkEJCEARBEARBEETUIIWEIIgAjLErGWOcMbYt2mMBAMbY/f7xzIj2WACAMTbDP577oz0Wom3QHNdwW73uWuu4GWP5/nFxxlj+gd6+uWGMTTDGE+2xEESkkEJCEAcJkuCj+6thjG1kjL3DGDsy2mMlCAJgjJ3tv2/PjvZYCIIgogkpJARxcLJP+isEkACgD4DLAcxpbRbLNkQBgPUAiqI9EKLNUARxzRRo3jsbwH3+/07QdUcQxEFNXLQHQBBE88M57yg/Z4zFAjgCwDMADgNwH2PsZ8753GiMr63COb882mMg2hac8+cBPN/EfdB1RxDEQQ15SAjiEIBz3sg5nwOzJfasKA2HIAiCIAgiACkkBHEIwTnfCaDY/zQtkn0wxnozxl7y56TUMsYqGGNLGGP3MsYyQmwbwxi7gDH2NWNsF2OsnjFWyBhbzBh7lDE2JMyxjGSM7fXnyUxhjLn+TYyxZMbYnYyxeYyxUsaYxz+WNf5cm/M022iTdBljbzvk75j+bMbSjjH2AGNsKWOsnDFWxxjbwhh7gzE2OJxjotl3RMc8kvOsJtcyxoYxxj5ijO3272Ot/5jHSduM949tj/93r2KM3cQYYzbfsc3/HVcyxtIZYw8zxtb791/k39fhIY5JLGPsasbYdP829f5j8xljbEKIbS9kjE1mjO3zXzNl/mP0rX/cScrnLUntxnECcIX/pSs018oE6fMhk8MZY+cyxr73j6vB//97xtg5DtsY1+3b/ufn+7+rhIm8s2WMsdsYY02WFRhjCYyxvzPGVjDGqv333FTG2Cmazw6QjsPYEPt9Tz2+EYytr/9Y7PRfCwWMsZcZY52bsM9M/72yxH/v1Pqvk5cYY71cbH84Y+wtxtgm/7moYGJuepMxdlKYY8llYp7jjLGtjLF+kf4ugmgxOOf0R3/0dxD8AbgfABe3te1nuhifAXCr5v0r/e9ts9n+AgB10j4qlOcFAAbabJsHYKb0WQ6gFECl9Pxrm980Q7O/Sf7v5wDeAxAfxrFKB7BM+l6ffywe6TXLMQAww//e/crrzwDY6/BXbXdu/L+jVPreBgBV0vN6AJdHeE2Efcybcp4BTJA+cwqAWv/jMv8xNt77yP/5awB4/e+VKeN8xOY3bfO//1cA66RjVC5t2wjgapvtMwH8Kn3W6z8m8vget9n2TWWMlfK59f/lh7qGARzpvy6M41OruWaODHXd+d9LAPCx8ttL/P+N1z6E5v4A8Lb//bchwsqM7eXrkQN4J8Lrzxj3QwB+8z/2aPav+13Gtq877D9bOoaXhDGufOm7L0RwHqkEUCO9VwxgVIjt8zXvDwawQ/pMrfQdHOJeOs9mbLEQ84l8fKr859S4Rsvs7jvN/noAWOt/fxmATpGcS/qjv5b+i/oA6I/+6K95/uCgkPgXuXEAFvo/sw9AluZzV8JeGB8FISxzALMBDPW/HgPgDAC7/e9tApCmbBvn38ZYjP8GoJ30fmcA1wF4yOY3zVBevxhCCOUAngDAwjxW/ycJHOcCSJR+S2cAlwF4VbOdISTdH8Z3dQewx7/dD8p7QyUB6FUAAwHEStu9gKAQNzrM3xjpMW/KeQ4IRhBC58cAuvvfS4cQTI33/+7/nmcBtPd/JhvAWwgKxv00v2sbgkpOCYA/AIjzvzdQOkce6IXJzxFUYm4BkOJ/vSOAN6Tx3aBsd5Q0rr8ByJHeywVwIoRg39nNNex/723/e2+HOJe21x3E9c8hhNX/wH9f+4/lg9LvsSh40veX+I/HXwFkSL/pNWn74yKYk4xxl0Fcg9cDSPK/1w3AZ9L+z1S2vRBBYTzdZv+3+D9TBP897HJc+dL3lgFYDmCs/z3mP5fb/e9vV78fDgoJxHW+xf/eTgCnAojxvzccwDwE78nhmrE9Ku37DUj3AIQyfRaAj+3uO+X1YQB2+d+bbpxb+qO/1vgX9QHQH/3RX/P8SYIPh9nSuh/CCswhrMjvA+hhs48rYa+QTPa/txF+IU55fySCHoY7lff+hKDQdGoEv2mG9Nrt/v34ANwe4bH60b/fe8LcbgbCUEgAZABY6d9mhUaw+cX/3kMO+zCspV+HOdZIj3lTznNAMALwMzSKIoKWcg7gNc37sZJA93+a97dJ2x+veT8ZwAboFcDDpW2vs/n9hsJSCL/w7H/9b/7Xp4R5HizXsPTe22iCQgLh8TTOhfYaAvCk//0GKNZx6fs5gCtttl9kd67CuF84NB4rCCXX8OCtUt6LhzCccADX2+x/hf/9J8McV740riL4FWLlMwMRNHrc5bB9vvLe3dLxHqLZbzqArf7PfK+81w9Bz9ajYfyeCcZ4pNeORdDr+CnCUNjoj/6i8Uc5JFGAMXaYP5b2S3/Maos1NGKMpTHG7vPH7VYxEZ++ijH2Agsj3p5oc3SQ/tpBCHkAkAJhZesQzs4YY1kAjLjlxznnNepnOOdLAXzpf3qx8vbV/v8/cs5/DOe7pTEwxtjjEAKWF8ClnPOnItkXxEINAJ0i3D4kTORJfApgCIRgdTrnvFJ6Px/AcRC/5QmHXb3r/z+JiWppbgn7mDfDeZZ5lHOum9emSI8f1uy/EUJRA4SF1445nPNf1Bc557UAHvc/PZkxlim9faH//04Ar9vs91/+/3kATpBeL/P/bxfmeWhJzoPwhNUBeMTmMw9ACNbxAM63+cwOAO/YvPet/7/TuQjFDgjPlwnOuc8/PgAYzBgbKr3ngfAQAMKTZ4IxdgSEhxEQ3sVIeZlzvl8ztrUQyikAXBTG/oxr7HPO+SrNfisBPOZ/eopyfV4BoaQVQ5SDjgjG2PkQ91kmRCjeRZzz+kj3RxAHAlJIosO/IBbicyAsXC0CY6wnhAXpfgCpEJbPmRAL040Aslrqu4nowjln8h+E1XgkhNBxOoDfWHjN2EZBhDIAwDSHz031/x/GGIsHAoL5GP/r34XxnTLxEIL5nRAhHKdxzj+McF8A8L3//81MJF2fzRjLa8L+dDwHIdzXQoSjqH0oxvv/xwBYw0RyvuUPwE/+z6VChNGEpAnHPOLzrGGhzev7/P9LOOdbQnwm22EM0128FwPxmwxG+///6heGLfgF0V3K5wGhJNVB3EezGGN/8s+x0cQY3++c8wrdBzjnpRBeDvnzKr/bKI+ACNEDgJzIhghAeIfs9j8LQikHrON7FcLDN4oxNkp571r//5mc8/VNGJub68jpOg/AGEtAUHFzc/+o16fRtHYq57wu1PfZjOEmAJ8ASATwT875LXbXOkG0JkghiQ7zAPwXwJkQFtpmt1wwxhIhFJDuELHQvTnnf+Ccn8k57w9hWSpp7u8lWiec8zrO+TLO+TUAvoJYrN5mIapiSbSXHu+y/ZSwPAPCamsIMLkQCgUg4rEj4UgAl/ofX8U5n+r04VD4lRkjFOoiiGNS6K+C8wJj7LCm7J8xdjuAG/z7v4JzrhPOjQo+MTB7tNQ/WVFKcTmESI95U86zCdkbpGAIn3bvy59xEgKdxie/117z2GlbIPj7AttyzjdDJOFXQeRjvQ5gC2NsP2PsE8bYWYzpK4O1IBH/HoWmnotQ2I7PL3gblf/aK+9tQ9CjFvCS+OctwxPxShPG5Tg26T3b61whB0FvtJv7BzD/ZqN/VKTzJCA8IjEAXuCcP9SE/RDEAYUUkijAOX+Uc34v5/w7zvneFvqa2wD0B/AU59wyYXPOV+nCMYhDgtf8/zMhEi5bmuYIR1wJ4e0DgKcYY72bukPO+V8g7pF/QCjvZRDd7G8EsIgx9nQk+2WMnYVgyNC/OOef2XzUEFz2qR4th79tLofRIiGghzqc8w8gqhbdAGGF3gEREnkBgK8BzAxDySfc8ZL//yWMsVTjMYTHsBjB8MGDgea4b9/3/7+WMXZGM+yPIA4IpJC0ERhjKYyxe5joU1Dl/5vPGLvCZhPDnf3cgRoj0WaQrW9uQ07kGOuuDp8z3vMi6IErgUi8BYQwFwklEPkWyyCq88xsjlr6nPNNnPOHOeenQngVxkEIlgBwG2PszHD25w8r+QBibn2Pc/6gw8cNY0SeJGg1F5Ee86ac5wONU7ir/N5+zWOn3ya/r8stKOGcv8I5v4hz3h1CiX0EQpg8GiJE9kDR5N9zgLA9V35vvhGKqBvfjxCKXzqCuRzG+vZ2M+RGuLmO3F7nRrllwN39A5h/szEnRDpPAiIP5R2IctBfhBmaSxBRgxSSNgBjrD1EmNdDEC7dmRCVagZAhN08p3y+G8QiuZNzvoOJxmOP+hs93c0Y63OAfwLRupAXw2qX2yyBiOUGgOMdPjfJ/3+5PykVnHMvgvkEEVvsOOfF/u9eAiEozGCM9Y90f5r9+zjn8yESf418jxMcNjHBGOsKka+RClEu95oQm8zx/4+F6NnRbDThmEd8nqPARBfv+QAslV43cikmMptmf4yxAQgKor+HGgTnfDPn/B6IXh9AGNcMgsc60lCvQG6IkhwdwF+oIJBrEuH3NJVjHcLZjoYIiQKCvyeAv8iBkbR+nV/pN/IumpLMbuDmOlrh5jrnnDcg6Ml1c//4IO45g7n+/ycwpcGmW/z5IldD9MyJB/Ap0zR5JYjWBikkbYO3IBLlnoEoMXia36LbH2ICv5kxdrL0+UH+/7sZYy9ACEd/g6gB/wiAtYyxOw7Y6InWxiXSY4sAoINzXoZgLPddjDFLLgNjbDhE1R8A+Eh526iWcypjLOIwMc55CcRC/ztE/tUMxtjAcPfjt8rafUcjRMlOICgwhtpfGkSifGeIkrXn+IUTWzjnGyHKogLAg3YCpfQd4SYVh33Mm+E8H0iOYpqu6n5Bzpjfpvh/k8HH/v9dYK8w/sf/vwhSYrLTNeOn1v8/nARiIxE9K4xtZL6AsN4nQZSb1fEPiJwxj//z0aA7gl3pA/iVwn/4n67hnK+02f4NiN85FsD//K/N5JxvaIax3aAraOE3dhhVyT4JY3/GNXY+Y2yIZr9pEOsxICrglUtvvw3hYckF8O8wvtOEXym5BkJhiwfwMWPsgkj3RxAHhKbUDKa/5vmDvwOyzXsjIEIBFsLfXEl5f6T//W+k1y7yv+aBmNzug7CKd4SYCI269adF+7fTX7NeR/dD0xxLer8jRIlNo37+PCh9IuC+MeIsmBvmnYpgAy67xoiz/O/XArgLQJ70fmeIpmyP2vymGcrrmQg2GNsHTb3/EMdqGURDvgkAUpVxPCcdo5OU7WZA3w/iB//rpQAGhDGOIQh2TV8L0fRM7n3RBaJJ4y8Isw9EE455U87zBKdrMNQ1Fuq8+9/b5n+vDCKH4HwEGyMOQLC3ixeaZpIwN0a8GebGiHIjQLUx4msQZZzPg9S3AkAaRE6J0bPCVXNP/3vX+N8rcbpu7K47/3tyY8R/I9gYMQuieIrxe5waI77dlPPlYtxl/mvwWpgbI34ije+cEPv6XPosB3BxuOOR9pUv7acMwos2xv8eg/BgGNdZAZSGgnDfGHEHhPfTaIw4FMIzymHfGPFhad+vA+grvWck83/l5r7z/xajuaq3KceM/uivpf+iPgD6C6mQGM24/uGwfSWAPdLzS6QJ7UXN5x/zvzcn2r+d/pr1OrpfOu97lb8yZTFfAaWjtH8fjsKHfzGsl/ZT7hc0jOcFAAbabJsHc1M8H4QAXym99rXNb5qh2V+6tLgXAhgWxrHaphlHlXKMntJsNwN6hcTYplZz7E1/mn2OR7CTuyE4FCHYwd34i6QxXdjHvCnnGQdWIfkrgHUICndlyu+81mbfmTA37PNAKAQ+6bXHNdu9rZyPSv+xlF+bBUnBdfFbsiFyCIztC/2/bxuAI0Jdd/73EmAW7BsRzGUwXvsQQLzDb3q7KefLYVtj3A8hqBw3+McnH7f/utjX8dLnw+rMrtlXvrSvCyE8VcY5rZbeK4VeqZW3z9e8PwSikpY8L5RLz+sAnG8ztliISlnqtSZfo2Xh3HcQxhdjbrk00uNGf/TXkn8UstX6yff/f9BooKj+QVjoZJdzlfT4Lc0+jdcOjzROlWj1qKVjUyAE4ikQVsrRnPPd9pvr4Zx/AmAwRKnNzRChIF4Ij8N9EJ6KtTbbFkEsnJdCVLUqhMi3qAGwGCKc8B+6bW32VwnR52MWxPU/nTE20uXmF/nH+wtE1+QEiNCG7RDC3fGc89vdjkUiCc4lfC0NKTnncyA6NN8JoTyUQVi3GyG8Ju8D+COAv4Q7mEiPeVPO8wGkFCKE5xEIBSkRQmj7DsB4zvlruo24CJE5HqKT/QwIYS8N4v74AsBEzvldmk3/C+BWiBLR6yCORxqEQjEVIm5/AufcbV4WuOgRcgxEmM8uCGWph//P1dzMOW/gnF8I4SmaDOE1Svf/nwzgXM75JTx6uT6AUEKOh7jW1kOcq3KI++80zvm/HLY1mI5gYvnbvPka/S2AyLF51z+mOIhz8RqEd9BVWKsMFw0RB0Moo8sgrpVEiHvpZQCDOeef22zbyDm/GcBREAUyCiDmJgZgDUT4Wlg5IZzzWyFC3WIBvMMYuzLc30QQLQ3jnEd7DIc8jLE6CGuPJemPMfYyRO7HbIjJzBbO+ZX+bYZDTIKACC0oVPaZDCGQAECXSARTgiCIaMAY2wYhsF/FOX87uqMhDhT+3kCGctCfN0/+CEEQrYS40B8hoozRQOlrzvmTLrdZB+ESToIICShU3peTY6tAEARBEK2bW/z/p5MyQhAHHxSy1foxOlKf43YDvyvbqJQzQfORY/3/t3DOKzTvEwRBEESrwF8l7lL/0yeiORaCIFoGUkhaOZzzBRBKyXjG2Au6LsCMseFK2V9AJK4DwL/kBnKMsZ4QsdCAiGUlCIIgiFYFY6wrY2wbY2w/RBW7WADfc84nR3loBEG0ABSyFQUYY6cBkJP4Evyvz5de+y/n/Af/40sB/ATgRgCXMMaWAdgNkQA5DKJ84jP+zwAAOOdzGWP/AXAvgKWMsTkQSbLjIRIeJwN4qtl/HEEQBEE0nTiIXCEOEbr8OczrJkEQBxGU1B4F/BUudNWvZEwJm/5qWNdCVAcaDCAZov/CFoiGbB9zzneqO2GMnQtRnWcExAS/HsA7AJ7nopszQRAEQRAEQUQNUkgIgiAIgiAIgogalENCEARBEARBEETUIIWEIAiCIAiCIIioQQoJQRAEQRAEQRBRgxQSgiAIgiAIgiCiBpX9PUAwxvYCSAGwI9pjIQiCIAiCIIhmpBuAGs55x0g2pipbBwjGWEViYmJ67969oz0UgiAIgiAIgmg2Nm/ejPr6+krOuaWBtxvIQ3Lg2NG7d+9Bq1evjvY4CIIgCIIgCKLZGDx4MNasWRNxFBDlkBAEQRAEQRAEETVIISEIgiAIgiAIImqQQkIQBEEQBEEQRNQghYQgCIIgCIIgiKhBCglBEARBEARBEFGDFBKCIAiCIAiCIKIGKSQEQRAEQRAEQUQNUkgIgiAIgiAIgogapJAQBEEQBEEQBBE1SCEhCIIgCIIgCCJqkEJCEARBEARBEETUIIWEIAiCIAiCIIioQQoJQRAEQRAEQRBRo80qJIyx2xljXzLGNjLGyhlj9Yyx7YyxdxljQ8Pc1zbGGHf4G9BSv4MgCIIgCIIgDmXioj2AJvAPAKkAVgBY6X9tMIDLAFzEGDuXc/59mPt8x+b18siGSBAEQRAEQRCEE21ZITkLwGLOeZ38ImPsRgAvAHidMdaVc+51u0PO+ZXNO0SCIAiCIAiCIJxosyFbnPM5qjLif/1FAJsBdAAw6IAPjCAIgiAIgiAI17RZhSQEHv//hqiOgmiTFFbW46q3FuLS1xdgd1lttIdDEARBEARxUNOWQ7a0MMYuA9AfwEb/Xzjb3gWgN4B6AKsBfMU5L2z2QRKtmocnr8Wv68Vpv/eb1Xj9itFRHhFBEARBEMTBS5tXSPxKxGCIBPeB/se7AVzMOW8Mc3ePKc//xxi7hXP+ZhjjWW3zVu8wx0JEiS+X7Ao8nrZ2XxRHQhAEQRAEcfDT5hUSACcBOF56vh3A5ZzzxWHs41sAvwJYDKAQQC8AVwO4DSI5vphz/k0zjZcgCIIgCIIgCD9tPoeEcz6Jc84AZAM4BiJMayZj7J9h7ONWzvlXnPMCznkt53w15/wOAH8GwAA8Gsa+Buv+IBLtCYIgCIIgCIKQaPMKiQHnvIxzPgvAqRCejv8yxsY0cbdvANgPoD9jLL+J+yIIgiAIgiAIQuGgUUgMOOceAJ9AeDbOaOK+fAh6Njo1cWgEQRAEQRAEQSgcdAqJnyL//3bNsK9s///qZtgXQRAEQRAEQRASB6tCcqz/f5PyNhhjgyFKCNcAWNfUQREEQRAEQRAEYaZNKiSMsfGMsZMZYzHK6/GMsVsAXAagFiJ0y3jvZsbYOsbYw8o2pzLGjtN8xzAAn0GEfr3OOacmiwRBEARBEATRzLTVsr99AbwFoIgxthhAMYA8AEMhcj3qAFzJOd8hbZMH4e1Qc0HGAriPMbYdwHIIb0gvAKMgjs8MAH9vsV9CEARBEARBEIcwbVUhmQngIYjQrGEQykYDgG0APgfwLOd8k8t9TQHQDcAYAOMBZAKoADAbwAcA3oqgwSJBEARBEARBEC5okwoJ53wrANd9Rvzb3A/gfs3r8wDMa5aBEQRBEARBEAQRFm0yh4QgCIIgCIIgiIMDUkgIgiAIgiAIgogapJAQBEEQBEEQBBE1SCEhCIIgCIIgCCJqkEJCEARBEARBEETUIIWEIAiCIAiCIIioQQoJQRAEQRAEQRBRgxQSgiAIgiAIgiCiBikkBCHBOY/2EAiCIAiCIA4pSCEhCAmvjxQSgiAIgiCIAwkpJAQh4Wn0WV4jrwlBEARBEETLQQoJQUh4vFblw9NICglBEARBEERLQQoJQUg0aDwkXp/1NYIgCIIgCKJ5IIWEICR0IVvkISEIgiAIgmg5SCEhCAmdQtJIie4EQRAEQRAtBikkBCGhU0i8mtcIgiAIgiCI5oEUEoKQaNAltZOHhCAIgiAIosUghYQgJMhDQhAEQRAEcWAhhYQgJCipnSAIgiAI4sBCCglBSFDZX4IgCIIgiAMLKSQEIaHzhnjJQ0IQBEEQBNFikEJCEBK6fBEvJbUTBEEQBEG0GKSQEIQEJbUTBEEQBEEcWEghIQiJBk14FiW1EwRBEARBtBykkBCEhMdLSe0EQRAEQRAHElJICEJCH7JFHhKCIAiCIIiWghQSgpDQ9yEhDwlBEARBEERLQQoJQUjockgaqcoWQRAEQRBEi0EKCUFIaD0kpJAQBEEQBEG0GKSQEISENqmdQrYIgiAIgiBaDFJICEKCktoJgiAIgiAOLKSQEISEtg8Jlf0lCIIgCIJoMUghIQgJ8pAQBEEcuqzZXYGVO8ujPQziEGZ3WS04P/TkDlJICEKCyv4SBEEcmszZVIRTn52FM56fjZ9X7432cIhDkDs+XY4jH5mOa99dHO2hHHBIISEICZ3yQWV/CYIgDn6ufXdR4PF17x16AiERXWoavPhiyU4AwLS1+7C1qDrKIzqwkEJCEBIeTXiWlxQSgiCIg56ahsYmbV/nadr2xKGNev2V13qiNJLoQAoJQUhQyBZBEAQRDpxzXPbGAgz79894b962aA+HaKPUKgrJodZygBQSgpCgpHaCIAgiHKat3Y9ZG4vQ4PXhX9+sjvZwiDaK6iGprPdGaSTRgRQSgpBo8DZv2d9DzcJBEMTBBeXQhWbbIRbrT7QMNQ1mBaSCQrYI4tClOT0kj/20DkPun4KHf1zb1GG1ODUNXizYUox6L8VAEwQheG/eNgy7fwpu/WhptIfSqkmIM4tSFOZLRILFQ1JHHhKCOGTRKyThLy7lNR68OGMz6jw+vPLbFpRUNzTH8FoEn4/jjOdm48JX5+PmD0nwIAhC8K9vVqO6oRHfLt+NBVuKoz2cVkuiopAcaoIk4cz6vZV4fdYW7C2vc/wcKSQEQQTQKiQRhCyo1TEq61qv63XV7nJsLhQhB1PX7ENFKx4rQRDR4VArQRoOMTHM9PxQC7Uh7KltaMQlr83HAz+sxU0fLnH8rBqyVVBSg3fmbsPSgtKWHGKrIS7aAyCI1kSDruxvBCFb1crE0uBtvS58tdTx+r2VGJOfE6XREIcinHMsKShFamIcBnTMiPZwCFjnLMZsPkigXjlWZNQhDGas349if4TE4u2l4JyD2dxMqofko4UFAID4WIY5fz8O7dOTWnawUYY8JAQh4dEoDpEktauu1uom1rdvSaqVSh7r9lRYPtPo49hRUnOghkQcYnyxZBfOe2keTn56FhZvL4n2cAhYS5DaCVEEUK/0H6moPbRCbQh7qpT11Sniwq4PjqeR4+OFO5p1XK0RUkiIqFBV78WKnWXgvHVVcGmupHY1REt1xbYm1Alz3d5K0/NGH8eZz8/G0Y/9iofaQII+0faYvm5f4PEPK/ZGcSStA845nvp5PS57YwFW7CyLyhhqPK13zmotFBTXYElBKXlICFvUZplOzTNrHeSE2JiD3yBAIVvEAaemwYsJj89AUVU9rj+mF+45dWC0hxRAn0PSdA9JTX1wEmr0cfy2oRDt0hMxpEtm+INsZqrqnBWS6ev2Y/Vu4TV59bct+EcrOl/EwUFxVbDow5aiqiiOpHkor/EgLSkuYiFi3uZiPDt9EwBg7Z5KLPq/Sc05PFdU16tN2lqX8SjarN1TgbNemIMGrw8ZSWZRqjXnDBIHllpFAan3+pBu81mnSIqM5PhmHFXrhDwkRLOxfEcZflixJ2S+xPwtxSiqqgcAfLd8t6t913ka8dhP6/Dw5LWWEKPmRM2nsHstFOqCJOeUvDl7K656+3ec/txsrNltDY860KgekvV7K+GT3MqFlfWm96kvAdHcyFXothS27eTpL5fsxOgHp+K4J2dE7Bn9cdWewGNjrjzQqCFbrdnL21I4le+99t1FgbWuok7tH3HoHStCjxqGpXrTZNR7TiYx9uAX1w/+X0gcEDbsq8TZL87BTR8uwfO/bnL8bJFkDS2qbnAVtvX+/O14ccZmvDJzCz5YsL3J47WjoZnK/qoLlDzRPCiFPd37zaqw993cqApJVb0Xu8pqA8/VebAlK8iUVjdEXMO/os6DTxftwMZ9laE/TGjxRUnZLK0Jzgk7S2vadD+c2z9dDk8jx/biGrz229aI9pEYF9vMowoftTCHU6jJwYrdb/Y2+rCztFb7HhBeyBbnHGt2V7Tpa56wR1VOne4jJ6W//hDobUMKCeGKijoPXpqxGf/6epVJWDW4/9vVMPSKZ3/Z6LgvOTyjweuzCMQ6HvghKMQ/9OM6l6MOn+Yq++s2qX1PiLrkBwLd8V8rJbar+qJa0ri5+HTRDhz2wFRMeHxGRDHY93y5En/7fAXOemEOSltx35cDwZKCUjz20zps2m+vnNV5GvHKzM14a85WlNU04KznZ2PcI7/g920HNqnc5+MorQmebx8HthcfHAUU1u+LzAOaFG9emp0spy2F+p1q6MnBhm7ur/PohcD5W5zvkXCMNv/4ahVOfXYWTn1mlmvj176KOvy8em9UrosDSb23ETd9uATnvjgH6/ZGP5ogEspqzWtRvc01BdgntYvtDu5zDZBCQrhg+rp9OPaxX/HoT+vw3vzteOgHa2KzTkmxo1gJQWhNTQONKlvHxCzH8TGLAfDmSWq3UbpaQ1K/TiFZLYWSqe/rFJJ35m7Dn99fjFW7yiMex98+XwEfF9fShwsKwt7+hxUizKWmoRFfLNkZ8TjaOrUNjbjqrd/x4ozNuOkD+0aX78/fjocnr8O/v1uDox/7Fct3lmNfRT1uaeHmmI0+jsenrMNfP1mGnaU1KK/1WMIAN+9v+3kkABAfYZiF6iGRPUjhsL24Gv/4aiU+Xhj+/aR6SJyEpYMBneXazpr9w8o92tcNVA+5HZzzQGnXzYXV+GXd/pDb1DR4cfLTv+G69xbj7i9WuPqetsrHC3fghxV7sKSgDK/M3BLt4UREWY15vXTyhDkqJK24dUBzQQoJEZL7vl1tsmBu1Fhdw8nrUBWQ4hAKyYEU2j0+jlNiFuDdhEfxRsKT+EPszIiS2tUFyc5D0hrSMdSkdgCYtjZY9SiUQjJ/SzHu+3Y1Jq/ai/u+XR3RGFQFbnWYuTWqdfNQmLztWLqjNHCO1u+rtA0DkL2Oskdvb0XLeu2mrd2HF37djK+W7sI/v1qlvf+3tNEmfGrIW0KEColqKY9UIfnv92vw4YIC/P3LlVi2oyysbVXh6GAP2dLNGTrh0efj+Hm1cyU4t0ntqrC6vzJ0vtCU1XsD6/G3y3e3CqNWSzFjfVBBC9XlvLVSpty7TmuTY8jWIbCmtVmFhDF2O2PsS8bYRsZYOWOsnjG2nTH2LmNsaAT7y2aMPePfh7GvpxljWS0w/DYD5xy7y8wTgRqOBOit7HYUKQJISZXzYqsmVQMtk1jNOYen0YeXEp4JvPZ4/KvNktRulPNTE/59UVhMiqvq8dacrVi9W3gz7DwkRriPer4NYZdzjpoGLx6WcmIWb7d2lC3R5AmV13hww3uLcc07i7C/og4rd5o9K3FhVicqVq6hmDbeM+HLJTtxxnOz8d68bWFvq/529dhEm1dmbg48nrmhUCtsby5smx4S9V6Ji1AhUZWB0urIwiSnrQ0KdE9P2xDWtpaQrUPSQ2IVArcVV4c0orlNaleVfztPuozHq8ylB2lX+Hpvoyk0rq2GDKpKp3PZXycPSdv8/eHQlsv+/gNAKoAVAFb6XxsM4DIAFzHGzuWcf+9mR4yxPADzAPQBsAXA1/593QbgFMbYOM75Idmtq6reaxH+dRZ1deJ26kaqhmwVVztbhbZp4smLqurRIaN5u5Y2+rglXwJonrK/hodEjSc90AqJz8dx9TuLsHxHGZLiYzD/nuO15xMAvl22G7ef2N/yfnmtB/sr63DW83NQWtNgOfc+H0eMX6F44ddNeOLn9RjWJRNf3jg+UAb10Snr8JPfytg5KwkdM83nMpwQQMBaiagtW3MbvD7c/ulyAMDKXeU4eUgntEtPtP18vbcRczcXY2iXTOSlJVoWtaKqenTLSWnRMYdDVkqC6blOYYq00taU1Xsxdc0+XHZEDwzvlhXRPpqCKhzqFOvqei+mrtmHgZ0y0L+jvgCoKnxF6iGRCdfCrIZsbSqswt+/WIH8vFRcf0yvVtEoce7mIszeWIQLx3RDj9zUJu1LZ4HWzSPLXfSFcZsDp54TVzmFymHfVVZruacMPI0+xMUw23NVXuNBamJsxIpzS7Jke5npPmirCnFZrRqyZS9POJX9dco9OVhofVehe84CkM05P5xzfq7/rz+AmwDEA3idMeZW4XoaQhn5EkB/zvmFnPMhAJ4D0A/AU80//NbN+r2VeOHXTRbLNQBUNXhNoQk6l7GTNUMVQEJZm7Zpwjd2hxBYaxsaw7Yc2XlCmrMxYnmN6jk5sJPstLX7sNwfulHn8WH17gqTh2RU96zA42/84QCV9eYxl9d68O7c7dhTXqe1IFZK+3t8ynpwDizfWY7pUny0nCPy7rztgTEZ7AyzK7yqkKhucoNGH8edny3HGc/N1npzoklJdQNmbyyyCCnr9zpXDbvni5W46q3fceL/fkNtQ6NFGGopD8mKnWWY9NRMXPbGgrCu4yylnv72Yuv9vaWwKuxQlF1ltbj5wyX4fPFO3PjBkqhUDFPnHJ1Ae9+3q/GXT5bhzOdn2yoJ6vG0u56dUL9btsa7OTbqGFbtqsDHv+/AI5PXYcaGwrDGYhgxmpPiqnpc/bbIlbrzs+VN3p9bD8nyHaHz5NwmtaseklDrmm7fagSDwfwtxRj74DQc/+RMbZ7m9yt2Y/SDU3HUo79GdH21NLM2mq+x1uAh2VVWayr4YsA5x46SGsuc5fNx25AtzrklNNPZQ0IKSauFcz6Hc265EznnLwLYDKADgEGh9sMY6wTgYgANAG7knMtmobsAFAK4lDHWvlkG3gYorW7Aha/Ow+NT1uOS1xdY3udcWM9qGxrx7C8bTbHoBnZWd865xSMSKmRrq0ZgcbIk7S6rxVGPTsfI//zsus8JoC/5C4SuslVZ57EsJJbGiP6JplRRSKobGgMLoc/H8fS0Dbjxg8WO1ZEihXOO56abSzIXVzeYFJKLxnYPPN5eXIPtxTXakK3pDsmXhtKlCmdOAom6yO+tqAvZz0ZGFbpVq5TBhwu24/PFO7FyVzkendxy1drCgXOO6novTnt2Fi59YwEuf9N8zzkJKZxzfLl0FwCh0Py4co8lf0nngWwO9/99367Gpv1VmLWxCM9Od66sJ5OoVJBaqSmEUFHnDWmoMFhaUIrPF+/EV0t2BowKu8pqLQ0+m8Ka3RW4/ZNl+DJEsQT1mldDrxp9HJ8vFvuo9/rwlf/cqajblUQQsqWGipTVeFDvbcQD36/BgHt/wn+/X+O4vdoYUebFEKXdZeZtLsbRj07HuIenY3KIZPBw+HHlnoDC8Pu20ibnUrj1kLjJxXGb1K6uY248JOq+7eaH+/25n1uKqvGA5ly/N287PI0ceyvqQibpR4PZm4pMz6OtkKzfW4mjH52OU56ZhS8Wm+eBq97+HUc/9ivu+NSsGFfWey15onWeRlTXe3HG87Mx5sFp+E1S7p1zSMTv319Rh09+L2izOTVOtFmFJATGTOxmRTsZ4jjM4pzvk9/gnNcD+A5ALIBTm3WErZiXf9tsWcxUKuu8+Pj3Ajw1dQPemG2ttV+piYWtrvdie3GNxRPR3B6Sr5buQnF1A3wcuOWjpRavhB12/S+cSjHuKa/FkQ9Px5GPTDdNUnad2nWWKCMc47PFO/D0tI34ceVeV6WNZ24oxMOT17qyqgFigleFv+KqepNC0q9DOvLSgu7/4up6y2/ZUliNNRorkYERlrZD8XI4VRxSLYU+LsIZ3pu3DUc+/Auemuoc/656SFTFz+DVWcFKLQubUN6Wc47Vu8ubFL9d0+DFeS/NxZgHf8E9X64MCCNqiKJTgrcqnNR7fRbvXJFG4de9JuNGuFtaUBZ4/M7cbZb3S6ob8OwvGwPVzwxUQVenkADuwrbW763Eha/Ox52fLccTP5uvkbmbi2y2MrNqVzlmbii0zUvjnOO69xbhy6W7cOdnyx3vNzUkUxUwNig9cuySn5sjZEtnFf922W68PnsrGrw+vDF7a8Cb5mn0WcIkaz32wpFb2X/lznJc/Np8VNSJ0F87BSwSVAWiqVXAtB4SRXFv8PpcNbPVhTrr2GdRSCLxkOi3kRXyLzXHXZ5z3a4hB4rS6gbLvFAX5ZCtB35YE1Au7pA8chv3VWLGeqFUfLl0l+k60q339V4fXpyxCat2VaC0xoPL31wYeM8xZMvrQ6OP4w+vzMPdX6zEZW8sMF1jRVX1+OPr87FgS3HEvzHaHHQKCWPsMgD9AWz0/4ViuP//Epv3jdeHNXFobYI6T6NF+9dRVe/FfxwsbKoQu7O0BuMe/gUTnphh+WwohWSrRiCTrQPeRp9JaVm41SxoPufSemunkDgltb/229aA8mVMUo0+bkkUN+KxdYpecVUDGrw+3P3FysBrTh4IQIS0XPvOIrwycwvOf2muq6IC8zUTVXFVg8mblZYYh0wppKasxmMRmuQKXIC1kpAhpKsKibGQus3v2FpcjX99sxq7y+vw7C8bLfsz/Q7lGiq3EeB2lDTPwvvPr1fhtGdn48T/zYy4g/VXS3dh8fZSFFXV41sHT968zUV4fMo6TF2zz/KeaiWLjbHee7qQraIQ1Xzs+i/YoRMGH5+yDk9N3YCbPlyCpQXB8Di1Ip9dz5EtLhLbP/l9h60nbd7m0Avzyp3lOP252bjizYV4W6NUAcCSgrJAEzwfh2M/BFVBVQUM1bpu14W9OUK2dNuoVfBKqxtQ52nEcU/OwPhHpuNlqeCAk4cEEIUHZm8swprdFVoF1ufjuO0Tcwlpp2aC4aIqJE3Ns9F7SMyvrdtbEfCkh6qgZhclILNHMcQUVTWE9F6qCkm4+XaAULL3Sd/dGvphyczZXGRRems8jVGtKGa3/qiV0eT5V7fe13saMWuj1VjS6OOOUQH1Hh/2V9YF5suN+6tMYcfP/bIRczYVBww0bZE2r5Awxu5ijL3NGPuMMbYKwLsA9gC4mHPuRvIxYlTspHDj9R4ux7Na9wegt5vto83XS3eFtJ4CwrLnlNKoTsavzNxi68YucUhq55xrBRZjAvU0+nD6c7Mx4YkZ+Pd3YrFVJ4535m3TWp52lNTgsZ/WYabfZbq/Qj8Op6R2VTixa/RYa5PUDghL5meLd1hedxLcv162O7Aw7i6vw+M/hfao6MI+dpfXmkLV0hLjTAmSZTUeR2XnwtHdsPo/J2FY10zTNgBQoJwHQ1hza41bouR4bNOE7hmoArbOQxJOCJgTMzcUBnJg9lXUY9G2yHJRZmsWJR3Ld5bjhV834/r3FllC+XYr13VFrdeiQOpCtuwEYQM1obnRx/HG7K14auoGW6u+Kix8tDB4TT8qXZ9O11OslAQuV9raUVKDK99aiL99vjxwHjnnmL7OqqQZLNhaErLR3JNT1wce24Uwfb/CrCwayaXfLt+N699bZPLEqAqJqljIihlgVZA556j3NqJG8U6UaK7nnaU1WLCl2FaALdEI6KriWFHrxUcLCwLjeGTyOvywYg+ufXdRoOiEjkXbSzHpqZm49I0FOPXZWfjj6wss539fZZ3Fy9Wc1RHV5qehvPqh0DWeU+dgOddtUOcMpCTEwg43ie2qhwQIXXxAvcbczqfy8aqs95qUrT02eSjRQjc3Nvq4q4qXDV4fvl66y2KQCKc1gY70pHjt65YCNtL36JTkeq9P62EMZdiq9zZafoMR1ra1qBofSHmZA2yKZbR22rxCAuAkAFcAOB+iMtZ2CGVkscvt0/z/7cyvxozaNs+wDfO3FONvny/HXCVO02kRkqms86JTZrLt+1VKIvQKh4Z5Tkm3e8rrtLGjhiA2dc2+gGv6rTnbUF3vteSceBq5xWsCAHd9vhwvztiMa975HZsLq2zH6JTUnpVinqTW7a3QJjQaAp5OUC6tadCGve0s1V+SnHN8r1jU352/HSuU6i+FlfWYu7kI+/2WMJ3FVFX20pLikC39ptKaBm2ZZ4Nj+rVDfGyM2atS66yQuLWSqh3DnRpoFlpCtqyf1Vm2wxWQ6jyN+NfXq0yvGb93+Y4yPDJ5nTbpUUd7h8pZOnwc+GaZ+byrwktZbYOl5KjWQxJCIalRrOOPT1mP/36/Bs/+shEv/LpZu42Tp1M2cqjKjsygThmBx7Iw+/DktZixvhCfLtoZUN437a/SVuAzqKr3YlWI8Jp9ihFCl5T6oxJfX17rwb6KOtz60VJMWb0Pd366PLCdNYfE/FtVD8m24mpMWb0XC7YUY0dJDcY9PB1jH/wFq3aZx63eu7vKanH8kzNx4avzceTD0/HKzM2WRHW7sEWZijqPRSm66/PlmLpmX0gFXj5UczcXW0ILdd7I5ixRq1qm7TwkZTUNePjHtXhpxmbH+13nFVQVEtkiPbxrpqNC4ua36gxldknqBqqio/u8ThE/9vFfceVbC7GrrDawJhi0dO8hNxRV1aPB6wPnXOtBANzlkTz7y0b85ZNluPi1+QEDwAu/bsLQ+6fgyrcWRuxlSU8y10gyrg3V4CMbXHTXQL2nUVtdM1RhkHqvz+K1NIypj09ZF8h17ZqdjMvGubKftzractlfAADnfBIA+PuFDAVwL4CZjLH/45w/GIXxDNa97veShEyyPxA0eH246YMlKK5uwOSVezH3nuMC2v8mlx2SK+u8joJFRZ0Xe8vrcPcXK5CSEIv0RPtLrdjfp0JXmlBNbDMwLDob95nH+/u2Eq31QbXU+Xw8UOPc08jx9LSNSI7X6+dyKFedpxGb9ldhQMd0xMXGWITk5TvKcFiPHMs+nHJIdpXVauPlC0pq0Kd9UA8urqrHa7O2YtrafZbFn3PgyyW7MKxrFgCRWH7i/2YGhJJR3bO0YTVyhSPGgJT4WGQmBz0kJdUNjrHZR/bOBWAu5WqESzW3QuIUmqAK3ZV1XngbfaZylrpk1Kp6r0mZCsUXS3ZafldFrUgWvurt31FS3YAvluzErL9NRFK8vbACRCacqd6/PcoxKa+1htjplA9dbx8ZeVGdvbHIFMrz8+q9uPPEfpZtNuyrRF6aULLUxVX2mDqFAo3Ozw7EjhvXuKfRhx9XBg0lT0/biD8e3gM/a0LYUhJikRQfG7gv524uwgiH8r/ZikFhb0WdydCyaHupRWmpqPPgVymkcnd5HaobGpGWGGfJV5Pvnco6DzYq8+ue8jpc/15o25kqbP+2oTAQYlRc3YCHJ6/DsK5ZGOe/HwGrB0FHea0H8bHmeTfSXIyiynr0bpcWeK7eJ8b3NRdqkQw7BeylGZvxym8id6xrdjLOGN5Z+zmdp+nJnzdg9e4K/HVSP3TLScYcyeo+tmeuY2f1UB6SmgavNmogVB6Jegz3VdbB0+gz5ejpinpU1HkxY30h3pi1FccPNNfo2VNe61iqv6X5eGEB7vlqJTpmJOHlSw+znevrPI2O8zXnHM9LBRc+WliAkd2z8fgU4Qmdsb4Qv6zdj0mDOtjuY2lBKR76cS2GdMnEvacPChwTVfncW16H/LxUy1wqz526e7De67Mkujf6uGP+iLGd6iFZsbMMv6zdZ5of7zqpPxLjnNee1srB4CEBAHDOyzjnsyCSzxcD+C9jbIyLTY0Vwq5Qv1HcvPnLHkWJXWW1AWtmZb0XczaJSba2odF1PGpJdYOji7yqzov7vl2FmRsKMXnVXlvFAhAKkt3NOHN9sALF+D7BxXZ/ZR28jT5LuNcM6fMyaqO1fcpitmBLMVZoShwDwSpbq3aVY8LjM3D6c7Nx2yfLwDm3hHkt21GuDWmpbvCCc649ZnJysEyBZP39dvluHPv4DLw8c7Ot0ih7gWZtKjQt0EsKyrRVh2TLdVpCHGJimMnr46Q8tEtPRHaqUESylLwTwCo8GwvprjJ7q3ZOalCxUd3zTqEJOqFbXbiXaY7zizM24ZLX5ps6Ajsxfa31cxV1HuwqrQ0IwYWV9ZjiwtPotoqUjOrFU2O/y2u9Fo+WzrMUKizTsOz7fBz3fLXC9N6WomqtwCNfl6qwWFHnCVgmnUK2xuQHlfmtRdU464U5+ONr5qpjVXWi7LicU/PXSf3w2Q3jMPm2o3GJVClOV7ZcRrWAqyWWdYnxFbVey7Vo9FZyqrK1Yme562RwlTIl3FIX86/m2rnJqaio9QR6BjUV9ft0Mfe1nsZma/CmCoJ2eTaGMgIgENarQ+chqfU04qulu/B/36zCpv1Vpu8c1zvXOWTL76lcsbMM1727CG8qXnC70KxQ+RyqB5Rz676clNEpq/da7s86jw/ltSI898eVe0J6UJubv3+5EpyL337D+0EFvX+HdFMYZyhlefVuawi16jlcusM5xPbP7y/B79tK8dacbZgn5V2q14dxniwKSZ0csqXxkPi9QDKVdZ7QIVueRsvcyTnwp3cWBZ4P7ZKJM4bpFe62wEGjkBhwzj0APoFoH3SGi02MwLuuNu8br29v4tBaDbsUIXPmBiFkbSmqcr1g6hLNZarqvZiy2j6+W0VtlggIt/NvUi3yi8YEBQ0fFy77zYpn4VdJsEyVFgvVA6EK2vsr623LhHp9HMt2lOGCV+YFXNs/rNiDmRsKTYmBgGiapQtx8nExEemEBDWu3KDAH/LAOce936zSCnKXHB48Jmv3VgSschv2hd/pOtXvxZKtxjtswsYAoI9kDZWVmLJaDxp93HKM3XhIBnfOsH3PLs7Z5+NaoVteDLyNPizQhO29MnML5m4uxpVv/R7Sld/g9ZkWKIPyWo9FufhcKgxhFyYSSX+QLYXVJqFXFV7KNCF2JdUNlkVZDXFTMQwEeyvqtKE3anggANz7zWrc/OESFFfVW7wKNQ2NASXIKZZ7RLcskwCyfEeZpRparacRq3dXYJWknB0/sD3G5OegR24qhnQJXkNqNTifj5uELfU4qFWwdNdcea0Ha/aYP2ecf6eQLTuDhxsq672mECpd7oFqCJGF0r9M6ou1/zkZ6x84GSdK1uGKOk+z9UJS7wG7JODyWk9AEXzh100Y/8h0i7DuBjVka/3eSny4oMCx+IVTDoKTovTbhkLMkYxqgzplICc1AckOXlDjfNzy0VL8vGYf/vP9GpPSbhcmFSonROdlUrdxCm9NjI+x3J9iH3W46YMluPGDJTjzudkoqqrHq79tDoQF+Xy8SUnlJdX6hH3VKCDPaUf2yTUd41DX6q+Kx6qRi75pdvtXafD6TOdlsuR5UCNCjLXfyUOiO1d1nkZLK4GKWm/I39bg9YVUyO45dUCzGRiiwUGnkPgxZo52Lj5rlCMYZfO+8foKm/fbHKqFeub6QnDOXYdrAVaPg4pd/oMdOmvxkoKgcJ8QG4PjB7Y3xXEWVzVYxiznRJwuWQq2FlWbhDKnRUvF2+jDkz+vt0wG//xqlcWzs7mwylI5xaCmoVHrIbGzVheUCCWqos5r2i4rJR6MicS1v58yIODC5jwY47xxX/gOvTT/sc2Uwq+cqlL1aR9USNTKXHvKay2T7rIdZbj67d8teRAycnK8is57V+dpxM9r9ml7xZRLBQQ+XFgQ0vsXKpRs0fYS7YJQUeu1KBezNxVhS2EVLnh5Hkb852f8tMrqMXESGpyQBXFrUrs1ZMvr45bwkVBVtmr8i6qqcBss2KIvmfz9ij14ffZWrbC1ubAKPh93XFTbpSeiW7Z9bprBR78XBM55XAxDvw7B0MZBnYLXkOijI3774u2lOO7JGRj9wDQ8+tM6cM4twsT6vUpIleZ3VNR5sGa3Wj5br5B4Gnkg5NOpVLYb5IIYduOSkRXynNQEJCfEIjEu1nSvVtR6XTfxC4XaT0oXsgUApzw9C8P+/TNenLEJj09Zj11ltfjP92vCSjqu8zRaFO8PFhTgH1+txEWvzg8cc1XIi3UQ1kJVlpNLFhve+mTHpHYv9lXUmdYk2aARiYekwetzzKk0cPKO7a+o1xZw2VVWG1A+dpfX4ZwX5+ChH9fhyrcW4rvlu3H0Y7/i+Kdm2s4JMmpj4h9W7MHYB6dh/CPTLd4X1Qgg0yMnxRT6WutpRE2DF6/9tgWf/r7DoiBNVzzdRZX1lgI7e8rqwLleuVLlCfleUa/PgIekyiFkyyapXZ2jy2s9JlmiR24KXr3sMFN4Yb1NwRyDif3b4cjeebbvtwUOVoXkWP9/ffalmZ8A+AAcrTY/ZIwlQnhZGgH82KwjjBKeRp/FQ7K7vA4b91dZvA0qXSVBIVSPACMMzC3nvjgXt328FDPW7w9MFLK34/BeOUhJiEO2JCzvLK1xTMY7bVinwONaT6Pps+GUf/VxaBOVdQIu58B8m3Kj1fXekJVgOmUmBR4bC7o8gcfGMCz5vxOw9j8n48dbj0ZGUjzG5GcH3v/d7wVwmuTtSPN7SOTwKyfXfe92qYHHphyS2gatMMJ56HLGAztlBMahorMcXvr6ApOLX6bUH+ZSWt2AJ5UeFTpW73a2YM+06U5dUeexKBecA2c8NxsLt5Wgss6Lf361Unnf2iDULUYuDOfcItSU13q0cemq0uvWQ6KzpAL6EtIGK3aWWZJmAaGQOOWdZSbHIz42Bl1cKCQfShVleualIiEuuJR1zU425ayt21uJb5btwnkvzQ0kwb8+awt2ltZahNCNShUznSdie3ENdiuvGx5e3f1tKGDyHKLmbbhB3rfeQ2I+trIwJN+fGbJCUudptrwOtaqXnXe1uFqUOX/sp/Wm18PpheGUA7WrrDYw/6ljcKq6FiqUbLnk4TqyjxD8nDwkJdX1lmIqjdL3261d+yvr8NOqPbjj0+UWT6RdXoqa2O7USLOq3otNGoPiOmWN2xHw0Asvj5Hr6FTuHxB9w8Y+OA1jHpgW8Crd9OESeH0cRVUNlp5STkVA2mckmcLi6jyNePW3LXjwx7X42xcrTEpicVW9JU+wsMraR2velmKM/O9UnPvS3IDC6m30YfXucizabj5fv28rwclP/4bzX5prMVjt9SuBdh4Sn49bclwBcZ2p84TwVAbHmZIQhxMHd8RV4/Ol7cw5JOlJwRL9CbExuPuUAZbvamu0SYWEMTaeMXYyYyxGeT2eMXYLgMsA1EKEbhnv3cwYW8cYe1jehnO+B8BHABIAvMgYk6WhxyC8LO9zzt0FmbdSGn0cV721EEPum4JnlW7dADBj/X5slqwDwzWJoLJCIgvjCXExOG1oJ1OFnEhqo3+zbDeufOt3nPbsbMzbXGwq+3psP+HsksOJFm3XhzoZHNYj21TJSFainEKRdMgC3WE9sh0+aW8JrfU0asv+yhzTN+jUKyipAefcZM3OTU1ATAxDUnxswDUrx92/OGMzpq2xJr2r6IR+w/skK31OyAn3siWpvNaDdXsiS7nKSk5Af5uShRV15pK2JdUNjteAIZD994c1AaErLTEOXbL0Au+rv23Bte8uwjfLrE3EPI0+U/6IrIxV1Hq0patli5fqAayo85rCR2IYtOMa2iUTHTOScFSfoOXLEFIqar2ajt4NWiuaGhIZykNiLHxqrLnBcofwo62F1Vor6tdLdzmer+MHCHuQU/U+HbJ3BABiYhgGSnPRmt0VeGvONtNnPI0c7y+wRuFu2Fdp8qTqEox1xRGM86vzNtQ0eFHnaTT1VTlxUEf9j3FAVnp143JSSHJkhSRJ9pA0o0Iija/O02hSZmWF0Y4dpTVYvqPMVV8fu+vSwDgWBUoVtoo6r2n/C7eW4PEp6/D0tA2ujWhxMQxj/XNuSoJ9sZb9FVaFRA4z2yqtR/2la3h7cQ1u/WgZvliyE1e//bsppMnOm6XmjMjn/rRhnbDloVNNSvByzTW81qG/joza6FTls8U7RIhhow8faO4x9ZisdVgrOmQkmpS+moZGPC/JL7dLndF1OVqFlfWWip+AUO6XFpTh5zV7wTnHDe8vwWnPzsa935hzjBZsLcG6vZVYtL3UMtfuKa/TelmNufPNOVu1skBZjcfS86a81mPav6GEJUr3jVr298RBHTH5tqPxt5P748NrD8eAjvbhzm2FNqmQAOgLYDKAfYyxnxhjHzDGpkDkeTwL0aH9Ss653NwhD6JhYifL3oC/QHhTzgOwjjH2MWNsJYBbIZor3t5iv+QA8fPqvfh1faG2+RMgrL9yGNbhPa2Vorpl6/P+Tx/aCS/8cRQuGtvN9XhSEmIxSan0YbBmTwUue2MBlki5FYaQKocTLXLotN0lKxmpiXHoJQmOW4rMfQ0Mrjmqp62QqpIQG4NLj+ju+Bm7/JriqoaQYQFH9wsKnnUeHwqr6k3KkFHFSGaMcq6ueXeRYy5QelIcOmRY9xPwkCiVh+zo3V72kAS32bCvCo9NCd0XRUdmcrytQgKYwxlCNYsrr/Vg6pp9+HJJUMG49fg+pmtCZklBGaau2Yc7P1uOveV1WLClGPsr6lDvbcSNHywxVUiSwwEraj2uevfIuSSy8BbDgI0Pnopf7jjW9PmE2Bh8e/N4zLvnOFxxZH7gdaMk7J4Kq1Bq1+vHEJgXby/FSf/7zfS5M4d3hhrJUt0gqpTJioXsvVORK1ntLq/D1iKrwv/7tlJc9dbvptf+Oqkfbj+hH1764yg8dr7oPXu65Nm85PDuOKxHNhLiYvB/pw3Uhtz07ZBmeW2QlIu0ene51tOny1uo8/gCxgq7Kkg6iqsa0OjjgSapMjUNjVi/tzJQWScpPgaDu5iFh0+vH4f7z3Auwmhc73bjMoTVyjoPCoprTGGE8v2ZmRwUoivqvC2ikMjW5NgY5qovwtVvL8JZL8zBCU/9FtJbYdczysA439s1nlojQmBHSQ0ueW0+Xvh1M56etlGraOoY1zs3kG/nVElvX6VVIZGVNDlncUzPoJGrss4b6A1VVNWA76QS73bnSk2els9FToowYnWU7l/dftx0oDd4fdYWPPjDGm3YqVyKe2tRjbWUtvLc6XvbpychKcEcsqWG5xpNkXVjKa/1OObqLdhagunr9lua/bphX0UdKuu9Fpmqss6LPeW1eGzKeu12Os/Y54t3mpoZBhWS4G+vV4r/pCXGonNWMm6c0Aej863yWlukrZb9nQngIYjQrGEQykYDgG0APgfwLOfc6gawgXNexBgbC+B+AGcDOAfAPgjl5j7OeVnzDT06TA1xw83fUmISmA7vmYNXpeokANDVRiFp5xdu7UJtZJLjY/HMRSMwqHMGahoaUVzdgKS4WJwwqAPmbCoKlFFUJx1DGZI9JE5W2n5+IaVXu7RAeV/ZQyIvmEf3a4frjumFt+ZuE4rJT/bj75qTjBHdnD0kdrgJSRjaJRNZKfHB5oLFNSZhKk/Tu2Jol0x0yEjUhtckx8daYo6zUxKQm5ZoCdEzFlm3ZXA7ZgQXuCxlG0PxSoiNMTVeDEVmcryj8HLS07/hluP64q+T+oYUpPaU15kq7AzvloWrx/cMKXh4Gjkufm0+thZVIzUhFheO6W6q6HTy4I4YJXnJymutIVs6Sqob0M5//mSPRU5qImJjGGJjzMKNx+cLlJzsK+Xr7C6vRb23MaxmZsb3/W/qBqxXwvke/8MwPHLeUNz/7Wp8ukgk4z/203o8P32TyWo3oX87U7NDg+MHtMerl4/GwHt/CiReL3AI6TLITI7HbZP6Wl4/tl87vHb5aJTWNODckV0QFxuDBq8PCXEx+Hn1PkuSe/8O1utFVkjW7KmwlOMF7BOcv1+xB18u2YnyWnfKCCB6EdhZr2vqG02W0v4dMzCuV67pM2PyszGiWxbu/84+HMZQKu1yD9buqcCZz8/WJs/L1etMIVst5CGRDT6ds5JM3x+KXWW1+HXdfpw8RGc7FIQKOTQ8gLpcwZ2ltejbIR1LCkq1uWehOHVocFxOVbY27K20CJ+GZ6fRx01htWN75uL9+QXQ8c68bTj/sK5gjNkqyOWK5132mBiVEDtlJjuGKjv19FF54Ie1AMQ9dP+Z5k4Hsldqe3G1xTss6yOcc8eQrXbpiaZy/DX1XsTHMtO9++XSXbj9hH6217FTQ11AlBGPhD3ldVpPc1W9FzPXFwbmwry0BPx5Qp9A41WdMq2GMus8JA1enykfJsWFvNXWaJMeEs75Vs75PznnR3HOO3POEzjnaZzzIZzzW3XKCOf8fs4545xfabPPEv+23Tnnif7/tx0MyghgX1rWMDjKyghj0Grc3XL0XoR2fqu9XSdTmc5ZSThxcEd0zU5Bvw7p+OrG8fjouiNw9VE98caVYzChv7UOAWNAZ78Hw204UV+/kNIrL2gNNzxAnkafKeShW3Yy2mck4e6TB+DSI5wbCvXISUGPnBRLkyQ3yApJYlyMSaAHRChAl6xkdM8JKn47ShWFJM36++NjY/DWlWNxpqa+vlwq2SA7JV67H0OhzHYpPMg16zM1XpX4WIa3rx5jWbST4mOw4YFTtOc6MzleK2AacC4aXy3cWhJSkHpv3vaAOz0hLgZP/mE44mJjkJ4Y+jo1vFzVDY14c07Qkn7cgPZ4+qIRyEgyW5ndKCSya19epHNtjre8cHfJTg54BzgX8d2hyoPKGB4ctRhFh4xEJMbFIiUhzhJ+ooYoDOyUoW3mmJEcj9gYhvzc4HWr8xSo2BkwGGM4YVAHXDC6W6CPjBHyM2GA9Zrpq1NIlJAtN+MxeHzKemwurA6r9GlJdYO2FDIgPBqy0DWoUzpGdMvCZUf0QO92qXj98tFgjCEhLsYxJ8EQJm2rM5XX2VbyyrYL2WrOHBJZIZFCYrvnpFgMFqEIlWsXykNiKCy6XLad/nnYTZ8WHScNDobbOSW1687TjpIafPJ7Ad6Zuy1gWWcMpjxAlVW7KgLFSlx7SEzheuLYd3bwcEbK23O3WV6Te1vVNDRaSm8b4XQ7Smpw28fLbO/NjKQ4JMXHmualbcU1FkPCV0t3ipL6NsfGqSLoRwsLAn2PwqWwql47B1fXe01VLo8b0N601jslphsYvzlR6Y0mn1c3BuC2RptUSIjwKCiusb0pjdwMma7ZyVoruZ2Vq73/ZnNzg+SmOnen7pVnDb/olJEUEEjcWu8Ni7LcqMvwkOwpqzM1JursMlwLAHrkpiImhlmqQckCkB1yXk1uagL+dFRP0/tZKfGIi40xCajlNR6TYNROE7IFCIvwsxePtOxzUOdMy3nJSknQhn4ZSlZqQiziwiwdqDsvo3vk4MjeeZb3OmclIyEuxjIuxsQY3MTC/r7NqpD8eUJvXH9sr8Bz2TPzh8O6BqqCpUWgTMrfkRSvVioyn6OhXfSVwuS4dzmMIFejHAIwJWbHx8aYqk9tK6rWliC2Y2tRtSUECwDuOWVg4HFqonMzrfbpSSZlOTBO//HU3bsAcOtxfSwhYW6+T8fE/tYwT1kRMujbIS2gwKlG8AtHuw8tNQglzBVVNdgKizUNjaawlEGdMsAYw3/PHoJf7phgatLmNL8ZoSl2HhI7kuJjTIKz7CEprKy3DeN1g6yYl/gb3AJmK3n3nJSwmo8CobvMh2rsWVQp7q/tGuu4UQHSTSd7lbTEONM6qCqQoYoVbCuuwd1frDQlhvfMTbWd1w0m+6v02XnhjHC+naU1eHjyWlM/rhz/vjuFsc5FSllNg8WLoxbAKKqqR52nETd9uATfSuFoKoZcIR9jXfXIHSW12Fdh76F0KtbThCrG4FxfCKWq3msqjtGvQzqSbJou25GsCdkCzEp0qoMy3FYhheQQYKbUy0MmJzUBp2jc4ueM6KL9vJ1XwLCauvEa2AlfBj018f1dJSFI7axsR8BDIu1vV1ktahsaTda7DhmJITtqyxgCmdER3UBXBAAwCxhyTkzHzCRcfLg5FyXG73EwV8HxorDSOYdE5mpFIRnYMT0QJmSQnRKvVQwNBYExFjKP5IGzh5ieCyu7+Tge3kt42VRhxMjXUT1qaYmiMaPO26KyaleFaQE6pl873H3yAPTI0eeHXD4uP/A4Eu8WIBQmI1laPkdeHzdVrjtlqD5h2eQhMYVsBe+Jf50ezCN41J9TYdAjN/jbft9egp9WOSeXyszdXIy9FWZFfO1/TsbZI4P3emoIg0LHzCSt8m5Y3O1yc64c3xPvXn245fVQ36dDF84XF2tdxhLjYrWep7gYZqq+55Z+IXIgiqvqbRWS6gavKV9goIPxwlEh8QvXslXWzmstEx9jPj4ZUg5JJEK5jFz6u17qkyB7Jrpmh6+QyIpzaXUDHpm8Dg//uDaQ4B0qqb2wqh4+H8cOTSlv414NlYOm428n9zc9Vz0k3TQKeyj6d0xHXKzVQCNjNOyUrzE579F4/R9frcIrM82h1kZBA51S7RRy5ha58pcu7EtnOFm3tzJkXx5DrpDX5402rQl2lNbYns9QPdMMRnbPcvU5mYVbrUU6quq9pnC8vh3Sw+6cbkRTJCrFIGQvJIVsEW2S32zKlbZLS8SxSthMVko8bpzYR/t5u5CscBSSULHEcoiVgZxM7zacyFgou2anIEESWGZtLMSfpTKxdon6duTnic8PVzwkI7rpreKy50R2447qno20xDjcclzwWF/k7zCtVsEx55A4//4uWcm44djegcfH9m9nsb5lpyZoFUPZc5ClCY275qieuGlib9x+Qj9cOMZqZVYX1LE99QqJUa1NvV7CEVpW7io3Lc7GtjqF9fCeOaZEeTehhTp65qUGfmOGsg857EBnxQfMFXbkkC1Zybz0iO546Jyh+N+Fw3HyYLNiI3sCXpm5JRC60CkzSSuo92qXCiOqrqiq3lS22OhLIZPqUDEIEMq7riRvwEPSzuohSYiNQXZKvGMRhXBgjOGIXsFwUrn6mEquRnnPSonH2J45loU+lKEjPzfV0fpdUt1ga7Vfs7siEKbBGDAgDIVE/s5txaKXkiys92sfOllcDYlRr92m0FPxihkCk6wIdM9JMSnwbjBCalftKsfpz83GyzM345XftuCFX0U0tlrmVqWoqh77KutMzSQNDE91OMrYgI7pOH1YJ1w81mxEUgX69KR410VBgvsW14PT/GcotLLwL3sry2o84Jxr1/rsVLFfXfW6IZ0zLfdCuKg5Iyo6xWOG0i/ksfOGWYpmGHJFckJwfHbVMQuKa2wNAvJ92a9DGq49uqf2c3ee2B93nzwAlxze3SQzOKFLht9dVmvK5+zXIc0SehWKI3uLUGv13MjrBoVsEW2OBq8Pc6UOszIVdR50yEgKCI4A8OxFI209BnY3gFPIlioo2cXLG/TUKSSSFdCt0GqMJTaGBZQIALjuvcUml3JvVYjyOVd36e63wA9VPCT9O2ZYwlJyUxO0ghgAjPbHDN9yXF/cOKE3rhqfHwi3yjBVwVEUkhAeEgC4++T+mHHnBPxyx7FISYjTeEgSTCWcARGjf3jPYL6JLua7Y2YS7jppAG49vi/iNRO22jl5pD/53xKy5V8Y1etF/pxccejx84fh8nE9TB24d5XVmqxxRujI6PwcS4nR647pZXquU5yP6pOHmyf2cQzNGdI5qHQ6xft3zEjCXSf1t1wPdjkkspKeGBeLSw7vjnNGdrV03JU9JDKXjO2uVfS7ZaeYxvzZomD3eF3FLCdrKWPi2tN6SJLtPSTtMxLBGEP7dOv3hVKA7HjonKHITI5HWmIc/nqCNSneQDfXZCbHIyk+FocrSeVOXgtAHC/1OpbDMLw+jo8W6pOSF0iVlnpJSq0OVXCXx1Xn8WFfZZ3JQ6LLn1GRvRi672gK7TMSTcfFCNuSk8m7RRCytbeiHnvKa3HJa/NNoa5fLtkFT6MvpNW7sLLetnmnUdDEqXmgTH5uCn76yzF4/pJRlnlPXSuT4mLQQXOtO2EYS5zOS1FVPYqrzGFJPSQDhdfHLfOvgTE3dMqyjuvcUV0cq+e5QfaGqWWW7fhVCikbk5+NC8Z0s3iXDLlCziGxC7EqKKkx5ZDYGRhOGtwRd57UX/tez7xU/HlCbzx0zlBLFbxwkJWR9MQ4dMxICkvpO6JXDs4Z2RUAArllBrLSFYmHubVz8P0iwoSn0Ydbju+LmesLsWpXuclaZlggnr5wBD5eWIBRPbJxjCanxEAnyKUnxgViGXWx+RMHtDeFK+isljIdM5KQFB9jKo/b3RSyZRUy8tISHMuu9spLM3kngq+n4rpjzcIqGnX74QCEcGgoR50zkzCqexaWFJSha3YyBnfOQLt0c6Wr/LxUW7eqUaUpIS4GfzvZ3NBItmCWqx4SFwoJYwz5kmKnC9ka3ycPpw3rhLV7KnBM33a49IgeJsFFZ+ULN9TJsMBbQrZceEj+eEQPJCfEIj42BmeN6II/jO4GzjkOe2BawAorK9rGtu3SE/HjrUdj2tp9qK73YljXLBw/sIPpe9I15+Thc4eiW04Kpqy2dlQ3GKIsUhnJcZYKZrExDJnJ8bhpYh9ccWQ+3p6zFU/4mzLKlYHkviWhwhgNdMp6XAzDRWO7a3sIpCfFYUCn9EDSplxdTKdYOC1wuamJommhRqgxzmNvTQ6JofhmJMchIS7GZLGOdEHt1S4Ni/5vEjyNPsc+ELrjanj+jumbZ7ImD+iYgbk2DU0BoYxnJMWb5pkBHTOwald5oFLTYqnHSmZyfEB4kF+3yy+St5PJS0tEXlpiYA7YWmTu8dK3vT5v570/jcVNHyxBZb0Xf/Z7TA1SE2IRw6y5NZGQk5KAnNSEwG8tqW5AWY3HlLjbPSdF2yjTib3ltbj3m9WWfIRdZbX4dtnuQH6Y3e/YV1GHZ38JVk8a3SM70AOnsLIeO0pqXCskTmuWtWBHLNpnxFgq2XXJSrbtzTWwk18hCTG/bthXZRJIVQHerlqVsWaqHpLYGIazR3bB18t2hVVhS0VWSHRllnXIfVCMPkKqJ18XsiWTkRQXuD52lJg9JH3bp1uq8QFirjLCOWWjkFpkRle8w6B/h3QUVtW7KmTSt0MaGGOuw8I/vu4IHKEYSxJjY7SePsohIdocqYlxuOHY3vjouiOw6F+TTDHqfz2hHwAhnNx+Yn9MUEJNbpXDicZ0Q2pCHJhi9T2id26g2pIuTnJwZ7MQFypkKyaGIV+xBMsTr05Qbp+eFGhUBVgT9XWW22FdM/HzX4+xekg0CkksxGSQnhgX+I2MMbx+xRg8c9EIfPnnIxEfG4OOyoSfn5uqnTS656RoLcYGslCyt7zOpJy5UUhUVIUkKyUB8bExeOGSUZh+xwTcf+ZgixVVF7IV6rvlRH9ZsVXPmRH77OQhiY+NwYVjuuPcUV0DycmMMQyRBDq5W7a8bZ/2abjh2N6448T+OGGQWRkB9CFbxnUpl/RUkb0N6ncaZPtr/hu/Tz7PhZKyakpqdxmG2EOTvD2hfzu0S0/UjiUjOd42pEnnCXJSEIwF2imHJDMl3hRWlp4Uh5snCg8GY8ziLUyLIKndID42xlEZAfQFNAzP39F9zXPEgE7OnoaOGUlI1yjWuhDSHrkpmDTQet0BVs+qiuwdBYRS31Py8G4rqjF5SLpmJ2s9W4f1yMbsvx+H3+6aiPMO62p6jzHWbF6S7NQE05xeUt1gElDTEuOQnRIfQQ5JvanUtsyz04OKhq7IAiCUFKM5bAwTBgc55+LpaRtR6tDNXMZpzVK9pIlxMZa5PS8t0Ta/qmt2ciBsONQx+uT3Avy4MmgwyUqJNykxsuFPxhCGVa/BhWO6ISk+NqxGpH3bp1l6AW0vDt9DImN4iNR1ynhu54k+sndwbisoqTF5j3rbKOpp/gqLHZX5r2deqskj7bQ+Z6fG43zlnrJr/GkoW249JLp+aHbhXgejh4QUkkOIxLhYXDGuB56/ZCTevmqMtsKWzPXH9sYfDuuK04d1wu0n9kNMDEOaIgQ47SMjKQ4dlNK2boQvdRs5z0MnKLfPSMS9ZwwSISWZSZaEa11s+xG9crXJsGi0LlJxEFbwI5USujmpCThrRJeAa7lThjrJpSBZIzSF6vQuCwty75QYFlqh06FantzsQw3Zyk1NwHiHeH0A+PvJA/xCeCIeOy+YkK1ahzpnhfaQ2DHMxsIcjsCjfm9CXExAqLtqfD565KYgOT7WoswMVr5bF4uvXt/tJCG8sKoeVfVevDtvm2kRD+U1NND1ATrTX4BCJ2CmJ8VhjCaEDdBX3HGyuBnNzHQLpnw8n7xgBE4b2gl3ntgPs+8+Dkf1DV4z6iLf0guqzkNiFEzo1yEtkIsyuHOGqbGjDuEhMY+3S1aydj67eGx3W2UrXA9JSnysyUCzcX+lyWPaMTPJcj0nxQtlLSMp3jbJurnySHJS4y0KiRzn3zU7GYy5K1Rhx7heuaY5Xb53VEOKjrNGdEHfDum47fhgeN+XS3faeixUchxKzat5WEnxsRbFu1deqmVNO3VoR9xwbG+8ccWYgCCsm8NkhevrZeaKVJnJ8ab10KmfByAU0TP8peE7ZCTiDr9BUhXOnXj+klFY85+TTCG1O0weEncJ5DIBD0m66iExqmzpxVS5pP32khpTqWi768K4V9SS+6oR1MlDkpYYh8uO6BHwtA/pkoEfbjlK+1ljHG6S2mOY/lzYbXsw5pAcfL+IcCQuNsbUZdqJ1MQ4PP6H4abX1ARJXS8Jg+65KZYb241lTk0elfeRkRSH2Bhm6pvSIT0JQ7pkYt49xyGWMUvsvc46Naq7jVKgUUhum9AT60p5wKNkhzqZ5OelokLTXC2kQiIJC/LxzklN0HaqDoXVQxL6HKgL7eXj8kO6nY/sk4eF/zweSXGxpnNQXW8OazKOk+qpcKNUDGkBhSQ7JT7g5ctKScCvd0xAQ6MPe8rr8MvaffBxUZxA/Q7dtawqe7IyuLWoGkc89IulDr3bGG6dYjFpoPBqaj0kSSJf4rDu2ZZKNzpPh5PHwVjs05PikZ4YZ7ou5eNwWI9s2+tbFdRaXCHRKAtZyeI1xhjevHIMVuwsx4huWZaeKzKJcTHokGHNIemcmeT3GgYt00nxMTj/sK54fZa1CzxjVo+xikUhSYgNGDwAUe5ajqPvkCFCyeRQ0VCl1QGrJyZSslMSTAJ7SU0DPD5ruG24HhKZO07sh17t0nDft6tN8z4A9GmfjqyUBHy+eKfN1ggU+Th3VBe88ttmbC6stuQiOIVUOZUJ13lIVOWjZ16qRTm+aEx3S3i0bj4Zk5+j7aWSHB+Lw3vmIjslHgX+yCSdQqImcD91wXD84bCuGNAxPWAICac/SZfsZCTGxZry2QwlZFtRtek6jIthrhpPGgqJOnca84XdvDSud1AhUQtK2CkkxrnsoFmrZZzCk1MT49AtJwXf3DweG/ZVYeKAdra5LcZvc1P2NzM5XpubaeddaY4Kaa0N8pAQTUK12srC7zkju1qsom6sMWqCqSzcMsYsi5sxccXHxliUEUAf226rFGhCtm48pjuevXikNobfPA6r1eWM4Z0CQiMgJulj+torcYC9sBBJuJbYn/l4uWkuqR7jy8Y5N4w0SEmIs5yDOEXBNCZd1cLjRlm1W2jCU0jMn1WFipgYEfPbMy8VT10wAucf1hVPKIq53Xeqgkd7RQhXlZErxvXQej7skIsR9MxLDSzWhqAtY1j0ZS+FgT5ky36Bk++XHOU3us0tUueClrbw2VXZMkhJiMMRvXKRFB+LrOR4ba+UEd2y8Mh5Q5EUH2u5PjtlJcPTaI7tvnliH+SlJWq9Tb3bpYVUwiyJ8wmxpnlntdTPJDtFKJzq8dc1PVUJ5SE5e4Q7o1VOaoLpeiiparAktAOh78+hXTIxsX87i7EkJSEWw7tlIcfGQ9u3fRpuP6Efju3XDicN7mCZo7vlJKNfBzFnxMXG4Ioj87Xf39+hrLPTOVOF5aT4WIsRLj8v1WJI0hVR0B2jw6WCMwZXHpmPaXccK0I1pblczpM8d1QXfH3TePzj1IGmbeNjY3BMv3YmJVcNNXbCuGdlz9vusjrUeRpxx2fLg/vMSLI91jJ5aYkBRUS9/4wxJmnupby0BPTMS7Ptl2WccxXDq6GLZpBx0qOM66FXuzScPKQjEuNikRgXox1LMGQrtPJgV/3RLhyMQrYIQkJ30z923jB0yEjE8QPa44pxIjH53tMHoXNmEu48sZ8rofpPR/UMLEx3aSpiqItW+wxnJUcXLqB6DQJoPCTwuevyrM5H+XmpSE+Kx+tXjMH3txyFW4/vi7euGoPumlwAGTthIVKFpLOSiOxGIZk0sEPAU3XzxD4RhYoZXD6uR2BBvmB0MPZWtTy6USrU6mAG4cTEqwKcNnTPz9kju+CJPwzHII1lW5eEqlrlc1MTLddFelIcrjmqJ2bcOQH/PsscXhiKW48TYSfxsQzPXDQi8LoaH54UH4Nx/hjrI3ubQw0B9x6SGCaEQrkyjXr83Ib/qPdcNEK27LyDMTEMOYpn4dqje+Lrm8YHKt6ov7NLVrKlQeq1/opuug7eocK1AF3IVpwpnES2xBqCpCrIuLlXdefssiN64OaJffDfswbjiT8Mx7/PHIx7ThlgKT8tk52aYLrm1+2twLYic1NEwD4PwOC9P43FW1eNxXAlx+awHtkBA8YZmv4xfTukoXNWMt65eixeuWy0RSGZ0K99wPsJ6Jt3JsbF2OaiAM65TurvSoiLsaxHPfNSLXO3bv3RzX9jFIXkksO74/4zBwdCJ+2qSQ3qJMIQmZr0qcGNh7ZDRiKeuiBolBGheOJxo4/jkcnrTMUb7jtjEO46qb+pgEjPvFRLEQb5uVpF0FB+dNdOl+wUxMYw7XqQmhCLjhlJWg+Cca+oHhK1fPUpQzvalvnWGVIYY5b1LD0pLmAsdZNDYmegSdT8/rgY1uRyza2Rg0/FIlqUmyb2xgu/bkZcDMP/LhxheX/igPaYf8/xponw6qN6Whr2OZGVkoBZf5uIPeV1AQuDjBCog7Gqqmci9P4dBChdlS2dkqJBDSeSJ5ghXTJtw41U7IRrN5ZPHZ0yk3H9sb3w4fwCXHtML62wpJKfl4qpfz0We8rrtFa6cOianYLPbxiHtXsqcfrwoFChCrZuJtik+Fi0S0+0uOjD8ZCo3xNuV3qn71SF2tgYZrG2PfGH4TjJQchz4oIx3TC4S4YlP2B837xANaax+Tn4z9nBQgVDu2QiPSkOlf6KNDFMHyOtLoi926Xi4+vGITE+xiTApieqyo+70AH1Pm1KUrsb8jShS07XiajWF7yubI0WfjpnJeOckV3x2eKdaGzkeOuqMQFLqE65GxUiVFM3vpSEWFPZcpmOfmFHnS/c5CTpvLA9clNwzdHBqoOGhfumD5fY7ic9Mc5k7V+u9JwwBP1QgrEhKKrCsVxx6MTBHfHPr1YFKmwB1rLt6tyuhhTrCkNkpyQ45jY6Kc66uVS9t7rlJGN8n1w888tGlFQ34MYJvS3bAPprs1t2Mib2b4df1xeiZ14q7jnFXJFRV54d0PccsSOUQjK+Ty4+uOYI02tJ8bHolJEUKCzy9txtgffOHtEZp/iLg3xz83hc8Mo8FFU14NyRXXDWiC645PX5gdLLo3pkBbY7vGcOjh/QHjM3FJrCo3UKiaGIdMtJsVQIy0wWIbjdc1Isif6G0qDuU73HOmUm48U/Hoa5m4uwpKDMVBXMrlx5akKcKY+lX4f0wHUfE8OQEBtjunZV7DzNunUxJSHWlbLZ1iCFhAiLv07qh8GdM9EtOwWDO+sF7Oa4UdKT4m1dmOokbNfrQ+Yvk/ri6WmiOsujUsK1BZ1C4nOnkBzZOxdnDO+MWRsL8X+nDQq9gQ12E1OkHhIAuOeUgbj7pAHakDY78vNSLbG1kTKyezZGKnk7qmAb4/K66ZadbFVIwkiaVa9PXdyuG3SKo101HZkTbCowuUV332UkxWPmXRNQWFmPHrkppt8YFxuDcb1y8bO/alGHjCStV0iNc05PitcK5ZF2ulcFteh4SOwFT/Xz6v1WVW+eB7JTREL3/HuOR4zSL0AX/ubmvKtCaXJCLFIShKVVjs8HZA+J+Ti6KRyi85DYGULU82aUO7/siB5gjGFcr1ycOKhD4PqSkXtIjeyehaUFZZbPpCfGBTyoatUy2RiSmRyPY/rlYdpa0VSvS1ay5RraqXRmH6d4BztnJSM+lgWaihrf6WSkUr02MqpC4uMcnTKT0CkzCXvK69A+PRF92qchMS4WM++agO3FNbZ5RKqSmJ4Yh7jYGLx6+Wgs2V6KAZ0yLGui3fUcTqJ6TmqCo7Bs590a1zsPXywx5+4wBlMZ+17t0vDL7RNQWFWHPv4mnp/dMA6PT1mPRh/HtZICzBjDG1eOQW1Do+m46pQ+QyHRebaMMLb83FSLQmLcK+o5VQu/AMAJgzrghEEd8O/vVpsVEhtDinofqhEkiXHmY5yWGGcK4bUzrOoUkoMxoR0ghYQIk7jYGMfSqAcC1SLrxkNy/TG9kZEkBIgTNaVgA+i8IY3uQrYYY3ju4pHgnDdJKRMlTWMtiba6MJtwCEcZORCoArBbS3vX7BQskQSbGAZL9bdwUHNc3KIKdd1ykrWej/NGdQ0s3E/8YXiLnYfUxDhbIf+ovnkBgdGu8pJ6zdopHj1dKF061Pu0pRWSlAQR210v1fC3sygD1mRwSxnSNPP4jeOlu25VIW5EtyxXQqKqkBhKen5uqlUhyTCKQygKiQtPqs4ab+c9unliH3y8cAdqPY2444R+uGliH+wqqw1cRzExDE9dOALnvjjH0u9Jzo96+NyheHnGZnTMTMbLMzcHXne6DoYpguO5o7oGFBKdx+m8UV2w0N+IUpRENu87NoahW3ZKoCQwIBRLVRl7+NyheGnGZpw6tJOjZ1s9z5yLNfK1y0fjuxW7cfrQzgGvWXpSvOO+1ONvGFniY2MsjTwN7BSpcJodMsbQMTNJmzwP2M/Ll4/rYVFIjunbzrJOZabEmwxGnTKT8dQFI2zHoyogeg+JuK7U6lgAkOlX7HpoPIuGd6N7bgr+fsoATF65BzdO7OO4XqshznbKgHod921vju5IjI+BbEfrnJWE0fk5+HBBAWJjmG3RHF3+ycGYPwKQQkK0QeqVJkFuLILJCbHuwsaa4CExaA4PUUZSfLMrJK0NxhiO7J2LuZuLkZOagIkDnJP9DWSrKyAsu00R8uNjIvOQqDHDf53UT5uAeNdJ/ZGcEIP83FScN6pLRN/VVIRStAtbC6twg9oM1AY7heSGY3rjw/kFqKz34powQjFVS7taMam5YYwhJzXB1LfDyRKu5l6oHpIrjuyB12dtQWW911RCVocqMLgN0VMFYyNpvmdeqqnjOxAUOlXF2E2VraP7tcMzv2w0VUFSS6EG9peWiNl3T0RBSU0gL0FVatMS4/DO1WNxzTuLAon3vfJSTcLsgI4ZePqikSiv9ZgUEvnWPWdkF7w0Q7x32tBOlvvplCEd8Y9TB2BrUTVuPs56Dk4f1hnfr9iDwsp6bUgxIMK2zApJgiUX4cLR3XDx2O7a7WXUZHWjPHY4IboGFoXERRiq7nqOYaHDDVWcFBI7D8nwblkY2CnDVN3rgtHdwvpeNzh5SHTH2Cjw0SPHmpMin68bju0dqMDmhHqM7ZQBVVFRw81VxaJzVjLuOWUABnXKQP+O6bZFc3R9SOwaLrd1Ds5fRRzU1HvNgrpTUnLYaBUSdx6S5iQjOQ5q821dD4i2zrMXj8TklXswrnduyEZ3BmpVqkhKihpx2QBwvUsBXUWOne/fIR1njdArGx0zk/DA2UMj+o7mIjUxDt/cNB6NPu66dHQ3m+pf2akJ+OXOY7FpfxWO6Km33OpQF/Z+7Z2bETYHqkCrq0ZmoFqCdQ1FZ999HApKajCki3P5XjUv6cTB7sL01DEYCokudLJDQCEx3zdqFTQdI7pl4Zubx+ODBQWYt7kYY/NzLAn6MrlpiSFzUzplJuOLPx+JZ37ZiMXbSnGrjdKWrghTslrar0M6Xr98NNbsqcAlh1sVAsYYrjvGXohMTYzDe3863HGcInm6MPA8KyUeo7qLctWLt5fi7BGdIzZw+Ozqv7pAVSzdeIx1IVvt0hPDDkN1Kv3rlHN4/TG98JdPlgEQnqZJg9rbfjZSdApRN79CMrRrJhgzF3sw1oP8XKvSHAnqMbbbj2qg6quGbCmKRZesZKQnxePSI5wrWOpDtg6+kr8AKSREG6QpFZ9Cog3ZCs9D0hzoYrw7ZYWXvN8WyEtLxGXj8sPaRhWUI1FI/n3mEGT/sgG98lJx3IDIFtGeeal49uKRWFpQimuP7hVRj5gDTagx/umonnhj9lakJcY5Wg/bpyc5djPWwRjDB9ccjnfmbsPpwzs3qVmeW9Tf65T/wmEWJnXV6DJT4jE0JbTle3CXTKQmxKK6oRFj8rMtydduMTwRutCUTjb9fHTJ/Noxds7EQ+c0r6KcFB+Lu08e4PiZUML+pEEdMMkprLaJqInt2SkJYIzh0+vHYUthlatmi3Y0QR+xeMfczCa6EMRwyvgaDO+WZWm8aOBUIe30YZ0wY/1+LNhagn+eNtBVedtw0XtIxDlMS4xDn3Zp2Lg/GCpozCs9FCU+0vlZPca2HhLJoJaRFGfxCOs8JG7Qhmw1IUS5NXNw/irioOYvk/rhu+W74ePALcf1ad6dtxoPiXkSTIiLcRWadiighmyFKimqo3tuimMcs1vOHN4ZZw5317OhLfCPUwdiYv/26NshzZJg3ByM75On7SfRUsQq4ZNOwrBqBGiKgpmWGIevbhqPeZuLccrQ8Cqq3X/GIDz441qM7pETSITXhXMYOTlqLpabHJLWRFOE+EhQlTvjOo+NYeirqeoYDk2J7Vc9Im4if3VKcw+HEsZ2XDy2O8prPdhRUmvJC3Hy1MTFxuDpi0aG/X3hoM7veWmJpjEN75ZlVkj8a6caglhSrVnbXaAeY7ukdtlDIlfYMlA9HXYl7FV0HhLKISGIVkLPvFT8eNvR2F5cg4n9m9lF3ISyv82JGobRJSv5oCzzFwlqScvqhgOvMB6sxMYwbSPFtko4SsXFY7vjhV83oaahEec2Q65Pvw7p2rLlobhyfE9cOKa7yTKsWvVTEmIDc0RDo1mib1EPcgugeqZaGrUPlBpCFi5XHpmPt+duQ0JcDK4/JrLwTx1u5ntdDsl1EYwhKT4Wf5nUD4WV9RaFxE2Z+JYkPpYhNoYFcs5UQX54tyx8vjg4ZkMhUe/9Wo851Nstlsp3NgqafI+O6JZleV81HLj3kOgUEgrZIohWw4COGRjQ0TmOOyK0jRGjoJAok6Da3PBQRs0LMPprEIRKOBXUclIT8N0tR2HVrnJMamJp5qaiCoFJ8bHonBns+9AxMykgsA5Quoy7rVbXWnBb7ru5UAXapho07jl1AMb1zsWAjumuesC4xc1RyUyOD5RTzklNwOtXjA47mV5Gp3xE4oFuThhjSI6PDZTItSgkSu5TcwvramipXQ7JOSO7YOXOctR6GnGDpteM6glsmkJycIruB1+rR4JoCloPSRRCtpTwkc4RxAUfKlTUHniFkWgb3HFCsMP82SNCh9b1bpeGs0Z0aZULvpzYLoej9OuQjpsm9kbPvFQ8c9GIKIwsfG6aGBTYmjuPJRSJcbGm3lVN9bInxsXipMEdLZ3Gm4qqaOpgjOG9Px2OVy87DL/eMQGjlF5P4ZKkEX5Vy340kBUltaiJaphkkionH8P+EYbjZSbH44pxPcAYcNGYbmhvU40uPSkej/9hOJ6/ZJS2Z5gaMtbBZSU0Xad2yiEhiEOBZij72xyoTbI6HYQVtprCOSO74KuluwAgZBItcegyoX87/OPUAdheXIObmzvf7ACTn5eKuZuLAVjj4+86aQDuOqnt3AfXHdMbSXGxyE1LtHRTPxC8fOlheGnGZhzdN6/Zmr82B4+dPwx3f7EC2SkJ+MskfV8KlbTEOJzosqx0KOJiYyyNI1uDx0320qgekoS4GJw9ojO+XrYb6YlxOH5gUMF8/pKROPuFueCc46Fzh0T8/f8+awjuOnlAkxoSFisKidvqoDoPiZowf7BACglByOgS2KOR1K54SLpQyJaJe04dAMaE9erskdHp7UG0fkKViW1LnDGsMz5cUAAAOHlI8wig0SIzOR63hOjl0pKM7J6NVy8fHbXvt+OC0d1wTN92yEqJj5oikBQfC48UFRDtkC1AKCFGn5SBnayejofOHYpThnbC0C6ZpqpzfdqnY9H/TYKn0WepRhcuTe2OHmlSvU4hGdszp0ljaa2QQkIQMq0lqd2SQ0IeEpn26UnNUiWLINoK43rnYtrtx6DByzGocwvkzxGtgo5hdFlvCZLjY015edFOageAv58yAE/8vAEjumXhsB5WYTwlIc62+WhSfGyr8PJEilr2t2NGkm0TxbYOKSQEIdNKyv6mJERWs5wgiIOXPgegmSRxaKMK763BQzKsaxbevXpstIfRJB44ewj+7+tVAID7zhjkeju1oeKRvXMP2oqbpJAQhEwraYyodvylpHaCIAiipVEVkLbsXWhNnH9YV1TXe8EYcMnh3V1vp4ZsHdE7t7mH1moghYQgZFpJUvuY/BykJ8ahst6LIV0yWoXbnCAIgji4SVLWGlp7moek+Fhcf2z4+WwVSln7I0khIYhDhFaSQ5KeFI+3rx6Lmev345xRXQ/49xMEQRCHHslKiFBrCNk6lBmq9JVRyx4fTJBCQhAy2saI0Wm8d1iPbBzWo2l15QmCIAiXVO4FPr9arAPnvwFkuQ+tOVhojTkkhxQbpwGL3wKGXQgMOhMDO2Xgpom9sXBrCe48sX/o7dswpJAQhEwrSWonCIIgDjA//R3YPkc8/vZW4PKvozqcaKAqIBSydQBp9AIfnCcer/se+PsOICmjTfUYagrRb8FJEK2JVhKyRRAEQRxgVn8VfLzl1+iNI4qoComuDwbRQtRXmJ8Xb4zOOKIEXWkEIdOKQrYIgiCINsLa74HJdwNFm6I9kiaRKCkkSfExB22J2VaJp9b83NcYnXFECQrZIggZ8pAQBEEQ4VC+C/jkj+LxjgXAdTOiOpymIHtIKH/kAOOpcX5+kEMeEoKQ0XpISCEhCIIgbFj5WfDx7qXRG0czkJwQFAtJITnANFSZn9dV6D93kEIKCUHINKeHZPcy4Of/A3YtadKQCIIgokLxZmDqfcCWmdEeSesmLtH8XGls25ZIipNCtiih/cDSoHhE1JySgxxSSAhCRltlK4I4zkYv8PElwNzngI//2PrDvmb/D3jpKGDl59EeCUEQrYWvbgDmPA188AegpiTao2m9xCaYn6uW7jaEXFWLPCTNiJofov2MopDUlbfMWFoppJAQhExzhWxV7gYqdgUflxU0bVwtScUeYNr9wL6VwBd/EsoUQRDEzoXif2M9sPa76I6lNaN6SNqwIJlEOSTNz2dXAQ93BWY+5vw5XciWp65Ne9zCgRQSgpDRKSSReDe89ebnrXlCKdtufl6yJTrjIAii9eDzmZ9TtSV71EqMbVghGdAxPfC4v/SYiJCdi4HVX4pr5NcHnT+rhmzNfwl4tAfw1qmHRMUtUkgIQqa5GiOqyWie6sjGcyBQFa59q6IzDuLQpWgj8MoxwNunA7Vl0R4NAWgq/JBCYotqgGrDCslhPbLx8LlDcf2xvXDbpL7RHk7bp2Sz+bmTYqHec/XlgLcOKJhr7pFzkEIKCUHINJeHpF5ZkFTLR2uivtL8fN9q62cWvQl8eBGwfe6BGRNxaDH/RWDPcmDbLGDxW9EeTeugrADYMAXwaowkBwJVOCIPiT1qfkAbVkgYY7h4bHfcc8pAtE9PivZw2j4NijFSVV6dPitTvNn+vYME6kNCRIdp9wPb5gCT7gPyj4r2aIJoPSQRKCTqgqRONJy3ngU+lEJSsgX4/q/i8ZYZwP/tPSDDIg4h5BwrnUJ8qFFdBDw/FvDWAkfcCJz88IEfgxrPzn36zx2qeOqAL68FyncCGZ3N77VhhYRoZlRl1VsHJKToP+ukkCQe/OFz5CEhmhc17ljH7mWiqtPOhcDP/3K/74rdYvJvSZqr7K8asiUv7jsXA8+OBN48BahvBdVYGkIoJHLJT29t686HIdom1UXBx0UbozeO5qBkK/DNzcC8FyPfx/yXxL0GCO9RNFC9up666IwjmjiF1/zyb2Dtt8DuJcC6783vHWL9IwgHVE+j1+E+cmqEmJjWPONpxZBCQjQPDTXAGycCTw0IXbNejqlU4yvt2D4PeGoQ8L8hwNbfIh9nKLRVtiJIJlPrh8sTzWdXAKVbRVzorCfC33dzo3pIygvMFj6mTBOtuXvsIZD4d1BSUxx8XLypbSu9394CLH0PmHKP8AJHQmsoG6taa1vzfd9SOAmPTooieUgIA/VedrqmnDwkh8DaRgoJ4Z7aUnvr5awngR0LgKp9wKeXOe9HtobWlbuLkf7yWgBc/H1zk9sRh0+zhWypHhJpoinfEXy86ovw993cqAoJAOxfG3ysKiS1pS0zjpItwJfXA7OeikwgXfoB8Gg+8NElbVugbQ44Byr3hf5cbZnw0nEOLP9EHPtoCFOyQtJQBVTuOfBjaC62zQo+XvBSZPtQy8hGoxS3WojjYFdIdN59O69Q6Xb96wZ1Ze6/d9MvoorS3Ofdb3MosW2O6I/V2nt52aGul5HmkDhtd5BACgkRmroKYMo/gSf6A8+PFs3+VNZ8I30+hEBTXWh+LgsjdshCfEv29Gi2pHaHkC2Z1iA46xQSudKWatHRVUGq2i8WDjche3b89A9gxcciFEIW6tzyzY3iuK//AdjwU+TjaOtwDnxwPvBkP+DHu+w/t30e8GR/4Il+wIJXgK+uE8d+1pMtP8byXcCuxWKsDTVWYbeth20ZqA3z3BKXbH4ejoCrsn+t/h4PxaHmIdFZrr02zezWfO28r3CU+o8vAbbPAX7+p/vr/vu/imiBg72RbcF84O3TRH+sWU9FezSRoTYUdWqQ6HSPOXlWDhJIISFC88WfgHnPi+ZYgH4SdNLsVSwKSZH+c9Ggpcr+2h2f1uCG1eWxbJstva/8FlU4qi4CXj4KePtUYLKDAOyErxHYMDn4fPHb4W2vKnZ7D+HSxftWAZumiccLX7W3rn9xjVjkPNXAT3cHX5/zTMuOr2Qr8Mww4LXjhCKku/+LD3GFJEZpSBdpl/SZjwMvHgE8MyJ8z6aaQ9KaKwU2BzqBz85Dsvpr5325VUg8debvdROOvGOhqHpYvkOszQczKz6BiIwAUDAvqkOJGPKQuIYUEiI0snAK6CfbcGKeq4ucn1v2fQAXwuZKard4SPy/QfUgRKtyTaMnKMSrYwWA9T8FraqqcqV6SH59SITqAcDvr7v7fs7FdbX5V/FYtQzGhVluUlWSVIGurVFdBCz7SBRyCBf1/NTaCLMVLVwgwo4ZDweV/J/u1ntIizYd2DE1F6r1MzY+sv2ogondOQzFrw+I/zVF4VuY1TndybJ7MODWQ1JbKhLZndDNqToqlfvbjfFr70rz84NZUN08Pfi4rV5/FoUkwqR28pAQhzyeOk2zHs1kG5ZConhIQikkus7hLVHFxNcIcI3HolnK/vqPj3rsoqGQzHkGeKCDCOvx+fThHN5aYN2P4rH6fl2ZUCJm/w+YfDew6A3779qzHPjiWpHfIbPhJ+GKf+9skUeza7H5/VDXhIrl860gFC5SOAfePw/4+gZxjMJViFWhRr3fok2lUja6WqOQROoh8dSKa64poYNNQVUG7TwkoUI11TnXTVhrKArmh/d5dQyeGlGBL1JvTUvAufV6ihSdwKvzkOxeGnpfbj0kFUquVJWLvK94pWRsxS5339XWKNkClG4LPm+rIYPkIXENKSSEPQ3V+thlnQCrCtZOQlS4IVs6haQlJmG7MUeSUGrxkPgnGnVyikTZaQql24Gp9wrFa9M0YM8y8/lMkEoLrvKH5qm/pbYMWPmZ6CWz4GXrd8gL+2dXASs/FfkdciLoRxcFH391vVUhCTdPqGq/dYx27FwkvA+t1eJWUyLOCyCu/T3LnT+/5htRRtrIF1HPV0spJA01wO9viOZ94ZCcZX6uS2CPJIfEWw+8drzo+P7F1eFv3xxY7m/N3LH6a+CxXsAHF9iHbFoUkgiUAHXf4RYKUD3Ta74GXjoS+N/g5lMCmoLPB7xxgsiDmv5A0/enE/h0HhJ1rtLhViFRz0m5i3VNNf7ZlcKvKRHHZcGregW4bIcoEPPbE60jl1Fl86/m5611vg6Feu/a5SUBIRQS8pAQhyKcA59eATzUWQiLKo0NQctRVaE+rMQpiTLckC1daWCnibvRC0z7N/D1TVZB1QlduBYQYQ6JsiAZAoYaelFXbrbmlhWIbugttUCo+QGVe8wL3Oirgo83/SIELJ2HxCmG2lAGGj3mc2eXaO7zArsWmV8rKwjvGFSrComNAFe4HnjzJOF9mPZv9/s/EEy9VzTD+/018+uhlO9PLxeKy8JXgR2/W72HuvurOTwIs58Cfrgd+PACkSDvlqRM83M1BAUQ5z+cvheci+trv7+HzuqvwveyOdHoAXYtCd03SDXg6ASMz64Q1+fGKcD6H/X7UZWBSEK21DmoYpc4TruXiiIloQRrO6+3pya8e6ehWnhSP/+TO4HbLRunADt/F49/e7zp+9MJirprcFeIcC0gDA/JLufnbvZtp5DMfkocl8l3WfukAMCvDwJL3wem/1fM9a2NLapCEmUPSUM18MmloiKa2jV99VfAhxcBG342v+6ptV5XhuK77ENg+oPmecoxZEtSmFujAtkMkEJCWFn7XbCKyJYZ+s/UV4oQgP8NAp4aqHnfJqTKWx++BVe9+QHniXvN12IyXvY+8PnV7m9eOw+Jkxej0SsW24//aHYv2zVGVC2o3BcUYvavA148EnjrFHcWP29DeDkGFbtFfwSZ6kKzwtHvZCA+1T+2RuHV0Am4TlWwjN8oV0YDnDvNqs0YPdXCslS6HZjzrLkMsQ5V+KyxSeD98a6gghlpSdbmZOXnQmjYOFUoi0XrRY6FjO76N1BLZu9Z5u7+ao7SzbIQ+PWf9Z+pLrZ6GNX7TBsCw931KPLUCgHhkR7CACETSaU2O364HXhtIvDiOOcy5apnTlUsqpRzsWOBfj/NEbKlWma5DyjaALx3rihS8uGFzp5sJ+GodKu7MXjrhTd0wcvC49ocioNBiTKGppaFdeMh4Vx4WENRV+5u3VFDttw0/lWVXrtt5GqYn2s8hrIhYG8IL+yBptELbFES/KOtkCx4RchG2+eIgiAGtaXAZ1eKoiwf/sE83+nmWW+dkJ2+/jPw22Pm+d6Nh+Tn/wMe6mKVEXw+EWYdrXDVZoAUEsLKvBdCf6a+Aph6n71XQbWqN3qEVe69c62fDbXYhhuytXFq8PG2WfZWSBU7xcNpoVv3vVhs130P/HCneI1z+5AtnaBsCNOfXh7smh6qypSnFnhjklAGJ9/t/FmDVV9Yz5eqkCRlAam5wec6D8mmac5Jm8YkLCtoQPAY6CZMnReqbJsoiTn1X8C7Zzu77C0hWzYCtxthwg3b5gBvniLC1iK1Vu1YKKrkTH9A5PPYUbJZ9BTRhQ6qIR/xyVYLqk4hUT1KKuEKdzoBdfnHwBN9gaeHms+Hank3wtNU3IRtLftACAj15cF7x8BNxaK6CnEenzvMPjSuaj+w5F3xuLwA2OGQi2HxkCi/VfUE2oVsqYJJJCFbunl1yj+C3pbqwuB9M+cZYVSRj4GTcOT2mv/xLvN5UA0PTUGdr5uqZLvJIanYFfreAcR85kaAtnhIdoc+thYPyQ7952R067Q8d0RSPKMl2b1U3NMy0Q7ZWvRm8LFc1GDfGvPn5HlId0166oQsZGAUguHc+Z5rrBf7m/ucMNj99rhZGV3zFfDxxcCrx9obkls5bVIhYYylMMbOZoy9wRhbzxirY4xVM8aWM8buZYylhd6LaX/bGGPc4W9AS/2WVsfupc4LrkF9RYiFWRFY13wjrHLbZ1s/Gyq0Qmchll3/C18D3j8/WA1MFY5+/pe9gFW5NygU2JbmdQjZknMoNk0Vk4qn1rpNg03IFiByaPYsF9Zx+TUnS8eab4PCw4KXgfWT7T9roLOkVe03C02JaUBydvB5bYl1YZAXwK5jgFOVbvN2CokhrLlZ0AHx+4x+KFV7nUMlVKFbd5w5tzZ7i4SqQlHiuGCuSOzXhRy5YdFb7j639H3RU+TFw60Wd1WgaajReLQ0CkmoUEZduE5tqbtmiwZfXS+8bJW7RZy6gRr2ZGfUkBPbfY3AxmlWpWHNt/bfv9WFh2ThK+I8Fm8SVk4dco8lIDj++krxHfLcogogqlBqhBgZ2DXYU4WvSIRt3T1glIM2qCsXSvrUe4VR5bOrxDy4ZYbzd1buEYUXnh8jFDpdKfj6SqtHtjnj4FVDSVOT7d14SOQ5KKs7EKs0sJRxU3hFNSg01odeD1UvnBuvCmC+Tr0NZoW1tSkkcnUtA2+de+u/z9f8YU2JGfrXLUV/pPlNd0166/QyhbcOjsVYvPXW/RnHyVsfDKPcu8J9tctWRptUSABcAuArAFcDaATwLYBZAHoC+DeA3xlj7SPY7zs2f1FoXdzC+BqBPSus4QeyFcCJugogOcf+fXWxmPus/WedktobqoUwqmIIYkUbgR/vFMrAt7eIiUi1wpVs1odvzHhEJES+cowQ5Oysd07W4pRc8/OKXTZVyGyS2gGxAM18zPq6U8UVtcP7D3eEXgB1k6OqNCRmmM9rbanzfgedBYy9FuhxlHkb3b6NhbTMhUUPsFYFcorLthRK0PxWnVctkkXr5/8zPy/bHtxXxR73+1S7cYeieBOw+kvza6ogUVemCdnS3F+hwiRV5bxgAfD0MBGiue4H/TZOOR9bZkr7dsjDSOsYfCyX/p37HPDBecArxwI7/bkPdeUi38qO4o2hBa3lnwQf6zyxgIgPl6mvEHPC65OAd04HPrks+F6okC3VQ1e2PXi9+HzA7KeF100VVFVvh7dBhOG8dJTwsKmhP7ptdNSViQIVBiWbgTdOAt49y7m5aNl2odwUbRAK3dc3Wu+50m3WYiduy+G6QZ0fnfJsynaEVljc5JDIHq4uhwmPpB1u8kh012eoctxuckh0c9Cit4RSz7n12LlVag4Uav6IgRuv07Y5wBN9RG8sYy3auxL49lYRchUpSYpCYihH6n0myz66a9Jbr6+uGaqXm7fO+hkj92fRm8F1iMUCx9/vvK9WSltVSDwAXgUwiHM+iHN+Aef8ZAD9ASwFMADA0+HulHN+pc1fmOVJ2gAf/AF45WjgvXPMVofdy9xtX1/pPBnXV4r9bpwqJojUdvafdRKO7BIvDeFSTtYr2SKEEJ3As3+d9TUjdnPfKnFDy7HsWT2Cjx1zSJT3di3WC/DGmHSLYnWh1XIJWAV6QCysG6daP1+xKxhWAohF54c7Rcz7p5cLC6ZOQFGFsATFQ1KjCdmS6X28+C9XTjI8Iar1N6CQ2FiFVdREaacwPV3Ilroo68K1wg0DKFggusnLGALCx38Enhpgji92IpKSz+pvUAWJ2jJ3IVuhyovKC19tKfDmiUKY9HlFOKFO4FE9GjKyIOqUGN79CP3+pt3nf8CBmY+Ih5umha5SF8pLkqIYVdQFv2KPVempKxcVgAr9c8qGycF5wClky9do9fLtWyU6br98tPhd0+4TXjf1WlfnjU1ThVFi30oRuvHiEdaEcTceg7pyICZOGVMEHr/GeqtnWuf9cap+Fy6qt87u9675Bnh6CPDkAOf+NjoPSVmBmNONNVK+nrqOARJS7fcXSiHxNeqrlYVK/NflkKj3o24NnHyXUOoXv2393mh7SIo3i3nzt8fF+rljof5zbubrd84Qa92+VUGDw9c3AkveEWthKOWroUYYIQrXm19XPSTGvKrOpSaFxCaHRPWEhArXAsT1qZ7XLb+K6142aI6+Csjr47yvVkqbVEg45+9wzq/nnK9VXt8DwMhsPJcxFmGb3IOcqkJgs1+z3j5buPgAMekWu2xIVlfuHPZRXy4mgA/O94e3OIV3ldt7ITZKVStSJadXub9ijDrpy/kjMmpfA1VpWPGJWSHpOib42Ijdb/QCMx4F3jw5WOpUtWTuWhy+h2TfKn0og7zA15QA390mOlx/cL6+X4ocq10wX1Rr2r9GLMhf/Cl4zmVkhSQuCYhLMCskFbv03wUAcclAO380o6yQhArZclvSt1z5nFOstCp0+zya+H2NcluyRVj8nZQuGdmabFBXLhb09X7PwarPhfcxFJFUgVIXSVWQqC11l9QeKmRLVhqMcsIGG6fqLZXy2NTfJp8LJw9J93HBx/tWA6u+tIZvGHOJ7KnJPxoYdDZw9J3AyEulz4ao/qV6qQoVw8X6H2ARHurKzeGVQFDZVwVu+TgVbbDmuQDCIr53BTDzUftxqpZWdZ6uK7PmzLjykGgUkkjReUh039dcSbeq59zOQ/Lp5eJ/Y73IobFDJ+zOfwF47Thgzv/EuZXznXoe685D4m0QHkK1307Vfv3cGqrSlq6Co7quOJ37td9aj11NUXhV7Zqb7/8q5tbpD4jIBeO4JGWZPxfKQ1JTYj6mm/weIUPG4T5gxafO+5j6LxG++fJRyvyqzAPGeVLnUvketwvZUhVIT23o36bzkNSVC0OYce0npAHHuswpbYW0SYUkBEaQcSKAXKcPHrKoAuEmvxBfsdN9JYuy7c7WyfpK4Pu/BJ+HapxoN4FulDwBh10ZfOzx90hRFz1ZgZFRE2TVY7BvtdlN3G1s8LHPKwS0jy8BZjwkhJzPrhIWOtXStGuJ3jLWWC8UGt2iueN362uA+bd9dJHfMq0s5rmSJaRgftAyHap3hYG8P6MKlmw1dvJm5PUBYvxTiCnvJETIlpNi0XGY/XtOli2d0K0uBjqF5OXx4rx+/if7fcvolLq6cquVbNmHofcVSX+QPcvN3gdVeKkr03hIIgnZ8t+vdeWa/ACuz+ta/rHwIHGuCTkqCQp8Tspf98ODj711wOdXCS+uTH2F2J/cp+DwG4AL3gGO/xfQZXTwdSMHyQ616pVazU2XWF9bJpQLGeN4qoKhLEC46V9hR02JWYjRhWiplnN5rul3MjDp38AJ/xGGhMA25c3XnFW9znQKCZSCH0WbRDieWjHLDaogWFNiXyTAwMkw5pTf8st/RI6icaxS8oD2g6xNCmWM+/DHO4B3zwSeH22+9tUu7QahktR1XiZ1GyeFZP9avWemco8I63qifzAsta6i5UvMcg5slUI650tFdXpNMF+voeQTNXIgvYP1vDopfJwH8y8aG4AlUg6U6tk15rhIPCTqPVdXZg3vtGxXr587CyQP7vjbgLRIshVaBwejQtLL/98DIKwsN8bYXYyxlxljzzDGrmOMOcQZtWFUy7MRh6gusk6EqoATbhKmTkAq2wEUSgLC8IvMnY8r9wKFypjlia3H+OBj1aKoCtqqpaqrJNT4PCKcYqPUAM5TLeq3q+Pevcz+t3uqbTwkNiESxoLurdeXB2UxwBnPiv+A8Ert91f8MP6Hg9EUUVYu7JJuASCvX/CxqpDUlloFpJoica3ZebEAoNNw+/fsQhkaauyTsA32rnS2lm+cEjoHp2SLPs+gtsxq/VzxibCMrvoS+OW/+mTwUA1BdXiqzZ4IdXGtLdOXnLaUnw2V1O4XpMt3QZtouX2O9bVNU0Vo1+ovNQKPX4nh3Nk4kdvXOTfNYNUXZoFb9qzISu2+1UEhtdELzH9Z5F4YoVOqMKEqJLpQlrpyq8JvzAPqNe+pCXoE3HjN7OCNZkVTJ1Sp511WyHuMB476ixBYBp4ubVOub34bCer1bGfMWPwW8OPfxBry3tlC+P3wgvA8J75G6zU87T7g4a5i34HPKfuMcRB5QiXcb5AKh/Q8RuzLSSGpLxdeByOUtrYEWC/l5diFSTmFbPl8eg+8aqwJFa6nU0gqdgkjYtVeoSROfwB4vDfwwuFif3OeFQVkIvFwle0AvrpB9N1Qt3dSwDoNN3uhAv28yvTlt9UmrVWFViHeKTxNPS6yAqR6N439WBQSaX6zyyFRFavaMvO8mJwtrjHTdnUh8u86AONusn+/DXAwKiS3+f//xDnXBIU68hiA6wHcCuAVANsYY1Fq+duCqN6BHQvFDaEK9yqyoBBKIbGz+tsx51kRHy9bYzZJgmtObyC3tzmJvLrQOcRssGRZrdxjnpicBO0c5Xt8XvNCYrD0PViEtYZKe0toQ3V4lWAMhURVev48DzjxAeDSL4H88WYBzMi7UENP3GB4SGTlwim8Kq9/8LGqkOiOb+E64P1znRegrqODCpaKzkPy+xsiNlyHsRhwDkz+e2hLcChrul3zsLpyqzBWWyIaj31+FTDrCeDnf1q3i7Rxn3x9qcKLLmQLsI7PbQ6JXXdvo6KdjjXf6q2/RRvEYmxXtS4uScTk5/V1HhsgBCOD1PbmUtXtBwavIU+NUIQq9gBvnwb8dLdQZj67QgiLqsCgKvI64aWmyKq4GAqpznptCB+RVmMzkMeqOy/qeZfnGnk+k8Ng6sqbL69DtcprPSQQSfsLXxFVuoy5oGiDvcfA7rt04U6eGrFvo3CGepzs5hYgdMjS0veDj3sdK/4nOCgktaXm8rCAWajVebkAcc15aoVxSw1lbqjUz2MWhcTBQ1K5Vz8HqwbJ3x4XXoKi9WKOnfovUUBmZYiQJ2+9KGv77S3BOW76f4HlH4m+G+t/MH/e6b5I72RW+jy1IoTzyf6ipLicE9TotXpIqvZZFfU9K0RYmK4ynDqWhmpg8TvCsGRRbGxCtuTP6dZ7T621/H9duVlJSesAXPEdcLWkYHnrnfNMJv7DOaepDXBQKSSMsVMB/AnCO/KvMDb9FsC5AHoASAEwBMBTEGFfrzPGzgpjDKt1fwB6hzGelmH9ZDFRyBVvADGxb5lhnpDSO1u3z+oefKzmZKjIbkQ3rPwUeP140Q9gyXtiIpZDMvqeKP7LStHupSIUyo5+J5ndvbLy4hSK1HkkEBNvfs1NkzYDu4S8Bk2sr0qvCdJ3+sMY5AkvMRPoMAg48hag90TxWo8jg+9v+00I4Lok/lAYSXvyMXYKy5MFR4tCsi387wfEApTTS/9e5W5zLw5PrYgJV8sSGxiLwaov9OWmVXYsEPeGnadEVkhkwaauTK9czHk6+FjNPdE1CHWLIeR4G6wllOvK9ONXlVq3IVs6SyrgrJAUbdRvV2RTcMIgty/AWNBT54Scw9FeUUgTUsS+DPauEIKUXKa8rEBfcUdVNHSC/44F+n4+gE3fgRpxT8oKb6cR1s+FQhZitJ6bMuXzklAqh2EmZZq3aS4PiXwP+Hyhc8XUOTicSk+hFGrj+rPksZWbw7o4F/Nrbam+ypYdPf0KiZOHpGq/1ZMonxP598tFX2qKgVcniH4SX15nHb8O9X6Tv6fjMOAUuSEl1xevcVIM5HX2q+vtPwcIxWPe88IzZMyBK6RqdmpDv70OhqD0DoqHpFZ4b7x14rqVx7J7qfVartpvnWcrdoqCNl/8KWg4XfejKF8th5kDIg/zu1uFYUm9lgIeEhuFZO8qfTRAQ7V1zaorMysbxnUl57h568zelyHnAcffJyoTDrsIGCHlzrVRDhqFxN8r5H0ADMBdnHPXrUc557dyzr/inBdwzms556s553cA+LN/fw7Zhm2E4s3AJ5eKiUIXB79pqlkhyR9v/Uy2VHlKdm8PPAO4YwNw4oPhjUmn9JRsBr69GXjzJLNwYFTfkQVfp3jgxAwgs5s5x0K2psgWfHmBBoAuo4BYRSGRrVITNdZuGTvvRH156MorvY8LPq7eLyYpWXhM00QRyuEqa78DHu5mL6QDIuwts5v1dZ2HxIl2Nh6Sij2iq20kJGUBHQbr3+M+s4BYXegcZmH0zfjxzuBrfU80lyiWmXa/iPV+baI1HGD9T+b7Zsh5wcd15eHng6gKzNkvAZd9bX4tLklYyC54DzjtyeDrRriRzqJcuUevRBrf560X+S3ycZTDIA0CComNFddJiC3Zog8pmvGQKNsrk5QlrPc9xgd/Y59J5s8YSdftbDxh7QdZX+s4NPh470p9OOr8F62vVe4JKhV2VZC0pbsL/UU2yqzvNVQL4VMWjAwDi8GwC4GMrtZtZQwh025cqiJaa+chkRWS5vSQSN9Xtc98b2b3DL39ordEKWVdCXSVUP1wjGOlVv7yeYPXtLdBGMGe6As8mm/ubO5Edj6Q4/89TgpJ5V5rpUD5vMnrW1cpZ7F4Y3ANWf2lOTzQ7lw5JbV3GgYcfp3IezFQizIA4XnwasvsowzkSnK7llrfVz08RsK5jrSOZi9UQ7W5yMWuRcHcNJ3Xp7rQec1d951QhD+7QhhRQxUUkKnYLa4h1cvaUCkMql/doJ+Ldcp01X7zeTY8HXFJwde89WYPW2I6cPTtwJ3rgXNfAWKbqThFFGn7vwAAY6wLgJ8AZAN4inP+TDPt+g0ADwDozxjL55xvC7UB51wrTfm9JJqV8wCx+G3nBn+bfjG7h3scabXqyh4SmbSOwpKh1um2o+cxQohO7yiqawBiki/djkAIlBr2lJ0v/qe4VEja9RfW1rw+wRwNWSiRrVNnPCMm2Gl+a8OIP9qH96R1EBV9nLCzAlfshmPjIwDIP0oIiIYFtnS72QIjVxoz6D4OQm/271tXyUcmJVdY5NQJPFGTQ+JEjuT0k8NAqve7b36okpQJtB9sbUZnsOQdYNTl4loMJUjVlorry1is41OBUx4DfrrHebviTUJxX/Ul0Hm4sDx98sfg/ZPaHuh/SvD+0IVs6aivCh5jWYFJSAdGXGJNHm30BBVxeZEv2ig+G6o8qIzxfVP+Kax+MtdMEx7SVV8EF8VVX4jrThaaeh+nb1jWayJwxtPAM/78H29tsFeIitxjISEN+LtGqBlxieiBUVsCnPOquJ/2LAeGni/K46rXrU5R6ThUVDsDhKClUyLUcJrA60uFUtXota8wp1JTJIQl3RzbUG22rmb1sHoBz3hGbPuwg1JiCD521ZlqS0Vhga2/CQVUvsaS7TwkLZRDIs+vyTlAVjercqBilNPe+Tsw8Eyr50tG15tKxph/7EqnZ3YVRUwiKTQw8MzgY6cqW+U7rYqwrJDIfa96HGkNZTJY8Cpwtj/R2064dlJIDGU0s4vzPGXXh0vHE33F/HTe6+K+lJHPc8lma/UydW11CpVN72gN2YpLMiu7634QY9Dd4z6Ps6eu0QvMesq+OasTFbv1hqj6SjFPyrmhQ84L9g7TGXm+u9X8PKCQOHhI3HiS2xhtXiFhjOUA+Bki3OotAHc6b+EezrmPMbYZQHsAnQBsa659H3BCVV1SbxKdFVnuzSGT3kH8NyzsTmR2F7GRBp2Gi7CqDoNEiNL75+nDowzvjKlpn0M+hmG9l0M3jDAzzs2TVFZ3kW8y4o/CM8KYfdhOdk9hcWIx4VenUUMSdPvI7SPGY4SXlW41C/c6D0laO+DoO0SugkrHYVYLVHKOvi+MrsqWE/GS9cZOiRnxRyEkqQLUSQ8Ji6ga+pecJa4FO357HJj3AnDLktCC1Obp5kT2E/8jLJtuFOdf/i3+71spQh0NQTMxA7jgXfN50yW166jaF1RIZMEg1W+5ZMz8efmYyQKsp1rsK5zeAcbCqZaGjU0Q10in4UL5NeaJ3UvNZbABoSxvn2cNbUnKFAaD9M5Br41cjMIOuwU1OQu4QunAblS963uCtXlrSA/JivCKbEz5Z/hFIaqL7K9HT43Z+txxKDDgVHHP1JYKhTc+WcxLLNZeCTLOt9153zZL3wAWcAjZKgdqQ3ht3SJ7/WRFIDvfWr41FNvnhFBIQnhIjPd11bvKCoAe4+zDEUMh5yY6xezrFN7KvcKqXl9pVqrksFuVlZ+J6mipufbXmLoW6hSSjK7OcoDbCptAUICf8g+rQlKyLfi4co81z1M2fBZttA/vjfWXoJeVPtXzBoj1Zej59sfGKc901+LIq99V7NYrxvVV5uPc5wSg/6lBhSTUtQsElbBYSSHhPvNvPAgVkjYdssUYSwMwGcLz8CWAazlv9hp1hqQVomtNK6ah2r7CkE7JSMzUJ5ZmaEKsgGB3ZbVxkA45+RQQ3W4NATSnJ9DtcOs2iZlBgdd1ONFA8V/+HUbIVk2J2YuRlS/+xyUEhUI1ZMsgp6dYhFSrrNxh2g65Q3lKHjD4XPP7KblCWJCPc9V+c2lSnYcEEOVO/7HH7LUARCiM2mcgJYRCEq7wAOjPS3ZP4MznrO+ldxLVQOSQL4OkLL2AKeOpEeWdVQ9JYqbZeyVf810OA0b7S/u6uU5l5MX9tKeEMGNqBKl4SBKVEEADeSGq1igkTiRnmcNuSraEVxWvcq/fq6IoxX1PDF7zoRIiM7qKwhIqhoBr14wr3ma/iREsqGqoE6C/jmSFpLrQ7LmQewzp0Ckjdr9B/g47paehymwF7jhUHLObfhdheqc/JV5nzHxdqRiGmnCSvwFh+JDvaVkhqbEpghAJ8n1iUkh6OP8uHaHK94YK2TLmTJ2wa1SZdNOnRUfnkcHHTh4SHbsWAY/3AR6XDAzJ2fbhiIDI31j+kXjsxkNSsdvsVZc9JM2NKlx7662d5rcpeTSVe0WO0S//EaWQ7UjrIO4J2UOi9mECRChtg00FS0Bfotxgx/zQzVXt8NbqCwHVV5o9y52Gm0Ov3GCEqanbyetGJPNnK6fNKiSMsUQA3wAYC2AKgIs5d+tfd/0dgyG6v9cAiCBLuJWwbY7eJRmXJErpqnQba7XWAvaCXFoH5/dlnDq2A3qBJ1sKFXNrvTcmeFkhKd7kT7bcFnwtIU2/TzWpPTAWf+xw51Hm17scFnpMctxuSo4owSljLJBqFRyTh8ShxnhCCnDyI+bX8vpYlZjkbL0QbCgksXGhz2V3xaKXmC6suzI9jwFiYq3CiJG/on5HXJLwuriJN1cTGHscBdy1CRhwuv7zh/85eE27DS3UYVjqZaHOU22umDPoTGiRLbImhUS6J+TjOupy8/ayl6RoY1BIccOOBeJ4eSS7ytkvAedL3oZQFrf0jiLURcU4nrkaIwYA3DgPOPtl6+uRWPjUUpiAXthNa2+vGA6/OPzvdbLWA+J82oUQNtSYvZSGspTWThSmkMMynIwBxf6S07KHxO43yiRlmcvdytdueQFChpE6IZf+risLWr/l/IJIPCSq0lW+02zQCRWyZQjKujAxwzvu5GG3Y8Dp5rVRzSFxY5hS8/s6DBGKjS6Xy8Cw4svXWKKiWALAb08ATw00l4kPeEhsDIpNRfZ4lBVYvf6q166xXnhOQuXsGHKFSSHReF65Tyiedvef22bPkaB6kQGhkMiKU/uB4SskRmiW2rhVztMiD0nrgDEWC+AjAMcBmAXgXM65YxAgY+xmxtg6xtjDyuunMsaO03x+GIDPIILzXw+1/1aNLokdEMJFnxOsr0+6T/95u5CscEK2UkJYg3WeGdmL46ZHASCFbElWW2+tSFpb/ZV53zrlKybW+hoQTGbsMtL8epdR1s8CIh/CQK4a1nGYCP3KlJQtQ1AyWd/LlBySEApdn0ligQMAMCD/GKsSY+chSZDOn87j0WuiP9yrPXDOS+b3GLNuY/SBUYURQ6hVFQPjc069Agz2LDcvQMlZwsOlUy5T2wODpEJ54XpIAt+RHcyjUgshyFbBQWfrt5fPoxx7LCuHZz4rPERdDgOOUwoFyt6v+S8Fcyli4vSCqSzg7F5mrmYTlySuN3nBC2Vxy+isL4YQ8JDYKCTpHYF2/ayvu5kvVMIpa6lVujP0XpZQOFmwAeeQrYrd5hDRwP2pwY2HRFZIQilKgFXwVq/dppCnnFddU9SsCDwkhoLvaxR9fP43BHh6SLDSXSgPSXWhCLvVeUEMxUYtvRqK+BQROqW+JpPewRxm44b2g8T86aS0GV472UOSkx98bBz36f+1biuHbKnk2ng1w0H2uupC5LZqwgi3zjQbSfM0Xs50v3Ine6HsWhOUbnPwkISoCGpwymNARpfwzp+R9yRTV2b+znYDzOHNbjDWMVWRkT3xpJC0Gm4GYARyFgF4kTH2tuZPXpHyILwdnZR9jQXwC2NsG2PsG8bYR4yxBQAWAxgIYAaAv7for2lp1NrcMl1GmQXJcTebwx1k7CzLhlVI974qKKkhWyq6CdJIaAfch2wZQm9iuggRMnjvbLNlRq4cJsOY3ktiWKlVD4muw3hsojmMRXbgGaFpF38kjlFCerATvRrjbaqyFaILa0wMcNEHwNjrgfPfEIKgYWkySMnV70c+FlqF5Fjg9rXAHevM58RAje014qLVfWUZHhJFIJWFFqOsJiCULPU62rfafFyMxVznXTnsCqGsGNgJwqGszZ2GS+FNaVaPkEH7gebKZwayVVdeWGQlPa+v8ChcO916jmQPiWwpHHC6+E6VbodLiicXsdYGGV2singoYd/OQ2IcN929m5IrlB6d5TjSBfVsSRk+QSOAGeiU7uQscf2pgrSTkgCI3+2kyDZUAtttSp3LJdBlpVaHqizIn63aJ6yvskISSlHSfkdW+NvYkdnNLDQZnr8yxUPidt42qNglvNmfXObPjfN7ceY+K/6HsnpX7bMXRA1F3q2HxOgJ8ee5Vg++2ockLjkoSLvFqCropLQVbxLhULLSK891nmr7Tt9OIVu9j7MPA3aL7IXSeaR0FR83/hx8nNcfuHmhtRS2zkPisYmcL91mVtbksuyyx2b8bcDd2/T7yD8K+MtK4WkPNR8Y6ELoijYElS0WI+bFsDwkLBjOHRtnXmdkBZtCtloN8ux2DoArbP7cnLEpAN4EUAFgPIDzAfQBMBvAtQAmcc7DKFDeyqgts5+oqvYLT8DJjwihou9JormOHboFmcUELZE6Qa+v4oEJZeHX9aCQPSQ6C7iu9KIsbMmCkrqQ9T/Vfiy6PBJjEVAnrC6jrMcnp6e98Nvdr5B0HAL8bbMQ8o2KSqpCEqrKlmWM+cCpjwVL06qCbXKOmHyNSTI+VSiicrlVnQCRmC4sPXbeI7W6mKF42IZsKcdGFpTOeEYc484jgTOfB25bJhLZDSWxUeleb3xH19Hit2R0Eeej1wTgSKWCic5CfP0s4G9bnPNX5C7yjNlbmlPzRCjUpPvNipXJQ2ITsuWEXX+WsdfqhZmkTPP3y55BnXDipCAkpInzpQ3ZclBIDGNAWnsIZ7NEpAvq8IuBs14ETn0CONyhJ4LOQ2Jc172PN78eSgDJ6GwV5NV8LV0ZYcAcQ99phN4ja6B+hyrMlGwxFyDRKaIAcIzUrXzMNcp3NCFkUSUl16xQ1xT58wgkpSmikK09wKI3rJWntv4m4vNDVbWrKjSXHpe9hWU7RJiR2ya1ae1FqGCOxtihrj3xSWYDmIGd8QIIKiROniufV6xdJg+JMh67cvPGmpmhuecPv6HpuSWyN0znIdEh9+cwrmHVcKbzkNhRstXsIdF5XACxJiRlmfuTGWT3FGtbUoZ1LOo+1LlMRs5Xy+klrgk19MqOo+8EbpgF9JRyIeX7X/YqkYekdcA5v59zzlz8bdNsc6Wyr3mc8z9xzodxzvM45/Gc81zO+UTO+evNnZdywEnOAm5fI7p7n/60eSE++nbxf/hFovzmJZ+YraRyuFF8ql64bj84KKDqbhD5xgJCh2zFJ1vDQkJZ7lWLlNqNVxdKkpwDXPIZMOoy+7F01STcBVypCcD5bwFdRgvBKDXPGqOb01t/TOJTzcc2Nt4snJlK6BaZLXm6KluhsHhIcsRYb1ogur3fuQE46UGzAqZT/NzEq+uwhGzZ5JDIQnVOT+DPc4DrZgAZncR4cnubK3DJConxHYyJ33L7GuCeHcDl31gFMJ1indFFWKN0IUkGskKijlfed1yiOL5H/dWc02JKarcJ2XJCp5Dk9hGhcTqBLynT3GhTti7qwjecPCTGPaYN2fIfz6zuVkug0bwzNt76OyNdUBkDRv5RKGJOC73WQ2IoJEqUrlNlN0BUEFMFxpxeNqFyieZQWDkHTE6I1qFeUwmp5vNevNncKyGnl7VoBSAUtVMeFw1UJyhlrmPjQyfpuyUlxzxX1BT7Q6L8Hg0WI5TYcEO2ijcB0/5tfZ37zH1K7Dwv9eXmZnwnPxw8To31wLIP3Ce1OxkMVIUkLikYwmwQm2ifY8hig16uUErbvjXmZOm0jub7za5sr3GNqutT+8FiTtUpKuEgKyGhSjsbyMYrwwikGs6MOUf1Qhl0kdZnNYdEFyIKiPmZMeuxyOhq/h4nhaT9IKDP8fbvyxjn1q2HZPA51ggVuznuIPSQRFz2lzF2b3MNgnP+n9CfIiKGMbHgdhgkBJSvbhDKxWFXmT+jcs7LwGvHiUXgovfFjRGbaO7a2neS/T6MxUjGjfCVnW/uNWAK2dIIykbVph/uEM/Pf8v8vi7Zts/xQL8QseSnPgG8IDWskkN2AGDIueLPIKOz2UqV20sf9tV1tHMTI1nwKdlifi8S97o6uRrHMDtfH3oFaBZ6BnQNkbg/8f+AX/1deC+WwoMsYSguPCR2dBqhL10ZjsBjsRBL1Y2O+iuwcYr9d5v2oxFG5UpYgHmRNeLe66vMSfBuFZJcjUIy9AJ9/g4Q9BDp0Hk6QnlIgOC5U78HEIaJsdeJsJq0juJYytb5tI5mRaylF1QnD0n+UUKY9NSI3xaqKEWGRiHJ7CruTzUkZfA59lbdziOcv0e9B+JThNJh5BCUbDZfO8a4ZOGaxYjfebjS5dv0PZn24S/hkJJrPs7VRWaLeWZXoQBFEiZm9FNKygL6nRRUMGRPX7sB9hUkDXL7AqOuFHlUS98Tr814xL60u4qTEU09z3FJVgNZbm99Qnl8KnDUX6T+T1nWz8jr7ZeKpys5S8zlRgEAu34eRk5ebLzwHBjFVU71K3bhJLuf94a/id+y4PmIxEMiE/CQKGubEeZp13yy5zGiapkxBjmczdZD4l9zMjqb2wuoc6uqVJr2kQaMvjoYCs9ihTd86r+snzV+m1uFRDe/2m17EHpImtKH5H4IM4iD78oVHAApJAeKnJ7An2wELpVOw4T13FsvrNSAsDLJCokuKd4gO9/qvg7lIQGsE5AcR23nIRl1hbAExSWKzvEyOg+JrrywSrv+wkL/4UXCuj3mWufP6zwkujjlUN9tqoIjKWYJafbWIicsSe0h8ngA63Huf6p9yJDBkTcHy9P2PyX4ulrhzbCyqwKeG6Wi8wjRHFElHIFHl7tiePl6jAMu+VQkIad3BD651L9NhjU/RaeQqEKwLJzsWwlMvlt0SpdLrbq5JwD9tW/0ANCGbGWIBS6nl1Wx1YZsOVjNjVCRtA5iDpDDEuTjcOJ/RchcSq5V6U7vaG4W1tILqpOHJCEFuPA90TB22IX2irlBRmdN6GFXcb7VvkmjrwLWfgctqlJrGZ/yHfEp5mto52JzHxgjNFHtO2EXVmmQlBl++WAdlpAtZb4zwm3D9ZDIHH+vuO8DHg+pKlheP1GswakZ7LF3i2txwt+BFZ8GqzzJxKfaK2hOoVTqPROvySHJ7W197dzXxb0rG7h039PjSNHAUUd2T3E9BxQSjYdEbeJ7xjPA7P+J8Nz8o8Rr4XhIeowXssDKzyWFxK+ENHrse4o4EfCQqCFbRg6JjXLf8xhgtr9kdvEmmK4LXSlwIGiM0q3VMk6Gv4Q0sR4efQewY6EwvHQdo1dIwvGQJKTprwE7DwkpJBbmQHQzj5RrADh0BCKijhq6o07a3cbClk4jrJOMG6uoWpFCnpDiEsSNKLt80zsJ68+wP+j3p1NIjHyNUHQeCfxlhbCmhQqXUif23N5A0ihgxqNmJS7Ud9vmJkQQrqXbzlXpZMXOcOQtoTeJTxZhNCpqbomxKETiIdEVDwDCE3jUkC31eb+TxP9Gr1AedywUlky1+pduvOqxVpXBBUr52/RO9ounG4wkW7uQLUB4SSwKSZgeEkNwiokV97QcNqR6nOysi+rrLa6QOHhIACGUGXlTnjrrZw16HyfuGYuHpJtVIO15jLhmdB3tk3OcE9oB63lMSDULS3LifGyi+D3q8Xej4DZXpa2UXLOBo6bIrBwYil5TEukHnSW+IzvfKvC2GwCc+yrwsU0p57jkoIEqs6uwbC94yfq5DoNEh3gdTmuWxUOiKeCgS2ruOMQaUaA7Rj3GWxWSmDghDHcba76e5eabgPCeHvVXZX/jxJ9MOAqJsZ7LCnzJNtHjaNZTwXUuJk7kxoRqyBybGMyFsSuhrPOQxCUpIdVK6Wq7OdVYc1RDqa7dgB2JaeLcHS8FCflsmiQHPCQuckjs7kk7ZYZCtixs4pxrzJXuYIxNACkkbRs18fvwP4sJPy5JuDFTcoGuY4GdC0WzQrteBTJH3gas+UY81iWdJ+coCkmIqia6uPdQzfdk4hLd5W6oAnZOL7EI3jALmPMMsO57YbHqNdF5P3YTU6gKW27H5abijTzZtx/kXoHT0ft4a3dt7biyQu/LzpIdjsCjCnB29f9j44CrpwjvgF3SuIolZMtGOE/MEF3sj7zFfcIjIEKgfn9dPD7l8eDrunNqCL89j7Ue/3BzSOTFNylTUUhcCreqoNbiIVsOHhKV+CRR6U4WpkdeKgTYjv7cIYtC0sWqzJ76hLWZm0HnEc4J7YDeQyILS3J4WEZnfXEFNyGAunPWeZSwdqfkAX94G/jsCuEdT84291GRSck1V05Um1AGFJIQ18i1v4rPfHOTOQSr3cDg7xl8btAiHni/vwi/vXmxuI++/rO570XPo80Grh7jrAoJixH7sVNInBRnNRdHV2Urt4+1mIpuHdTNMarykJ0vfqvhfUyRrmc5ZGniP4Fj/wZXuA3ZGnhG0Cgje4sbKoXS9JuU2zPiEjFXvaL0DYpLMldjzOsX9Oap87Bx3nX3UlZ3sX6ktjOHgQJCGcrrB2FUUxQV4361GA+VghxqFT6ZhHTrazExVkMpiw3u101ivl0BHLv1obnywFoRTVFIlgMoCPkpZ3YAsJnpiFbJwDOC4Qi6kpsn/Ee4mfP6BpPRL/1c1CLPH++ux0TXw4DT/yesK2rzQEBMwuXSpaeraiKjC18IFdIQCapAl+6f6Nv1B85+EYBNFR6V5vaQtB8krKwlm4WHwY1C0meSEJZLtgInPhBakHKi/6nA8EtEE6lTHg2+rgpzbnpMpOQGY/9lwvGQqAuKrpqagVP3bN3rlsTtVGuI06jLgZMejkwgP+YuYc1PzRPCsoEpKZuJ6jmGMt/zGFgWZzchWyl5wJg/CWVvoNTsUV04dQu0DlVQa2kPic5T4HTtp+aZFZLMbubcElWoyOwqhOE1X4vnR/01aJnVXcuhEtoBTQ5JsjWcxMAQqtT7yM08oZtjBp4OjLtF3A+MATcvEvmDX17noJDkmOffdT+avcGGQhJqvm0/UPxWVTjOHx98PESnkBgNcP2Cn2q0UUOKdWGnSVnODQ2d+uWo10RMrHU9yuktogVm/088zz9an0OoOyedhgujhlEQ49zXzNvaXc/h5IWE+mx2T+CEf5urMKbkiOvOCD39/OrgHJfZDTjxQWH4OfUJ4Mc7xet9TxLexp/uDu5Hnrf6nyzCruvLRaNb45qxU0gAcX2pCklythDiM7uZ5QQgeC7VeVq9x/ocL/oVbZlpvp4B+3lbVUhyeweViZg4ofiqTSNN+7WpfqfzkMSnupOl2hgRKySccxeza8h93Aug2ZLjiQPAsXcD1cXiZjviRuv7cQnWTtVJmWKxCwdZ2FJRJ2E3dd/7TAomoY11KBXaFAafA0y9T0zSg86KfMJobg9JbBxw5feiMWPfE90pFzGxQhFpDmJirI0UAetCr6sWpMKYiEtXO/aG4yFRz4ub79WhO086wUZWRgDguHsj9w6kdwTOfsH6esehwFkvAHtWiKp5cqPOlByRD2aETyRl6oUsVUHI6KwvA64unG6vc/U+jaQxYjiE4yExPi9XCVLvN7V8enpnoWgDQtAYeXnwPZ1C4qYho3pNJaSK46bLcTDy+iLxkNh5/OR+PYwJK6+aA2YIXh2GCOWl/6nCUFBTbBXeQuXmACJsxxDsVWG+h6SQdBgiLNdF/uZ4CelWYdqrfL9cdMVuPCk5oRVVO9ScPu6zXuc5vUS44un/A3YuAsb/Rb8vdQ6L9Ycnn/cGsPBVYRRQQ6TtGgU3p0KS28fcWBYQ10b7QcCO+eK5XHL31CeCXugx14i1ZO9KYVzMzhfr0eS/i75co6R7JikTuPI7UdrZKFkP6L0LskKieraM45jT06qQGPeKev2r1wVjwB8/E9fT5LuBxVKhHDtDSmK6udeUHDbGmFAsZEMaizX3JrP1kGg8+AdhuBbQ9JAt4lCj41Dg6snRHYO6AIfykAAi5KR4s1h8JrRQn8vkbJEEv2sx0O/kyPcTn2K1qgPufqcdGZ1FqdTWhDoBq+Wa7cjWKCRNSZp18pA4oV6HMXHB/BOZ/KODYSS9j4+sdLMbRl4K2JmJek0IKiS6cC3AarW1s9hF2sdCvX5b3EOSA4tnKJRCYnquKiRK4rQhKMhClYFq1U1tJxJfQ6Fex3GJQpjJ6WUuCAAEBUmLQhKhh8ROqR9zDbD2W/G4y2FiLt0wBRjpL5mekgNc8C7w7lnWOUvuIXXSQ8CUfwoB1a4oQqPHvL2skDAmwrZmPiKet+tvNa5YLN+KRyQxXZxXuRRzSq71uug1UYQhZXQFBihFUmTU88x94hwedbvIFxt7XTB3avTVIQxtWcrzbPH7eh5tLZ8vf0ZHOHkhcYn60CcDu3CjkX8MKiQGmd3Nijdj1t885pqgx1VV+jsNt5ZX1yok/8/efYdHVXwNHP9Oeg81CTWhQ0B6lSoIYkEpKigIqNhFFLH7U9TXAiqi2BuoKEgRpSPSBekIQui9kwCBkJ7svH8su+zevbvZFAjlfJ6Hh+zdW2b7nClnzr+vzAJM23NSqop1RXhHtt+cuHbWYXMnd1qDH7NKP1ifG+OcS3fBgPH3rKxhjSBjQBJR3jp8zfa81+3hpgwmPSTejCa4Al2yPh+lVBmllARAovAshqVhPOUMtynXAJ7aYF0B26tJ3QVUuhrUv7twi4+5W3TP0xoZVyLjMA53E9aNjBOD/UMLHlSA+zkkeTFW2Bv3N188rflD1lbgErHWXoziUK/XhcXZ3KUCNnL3HnasYDiuBZAX4+e0oM+7t3x8Xef05Kcl3Fjepg9e+LuyYWy/kTHYqnWLd8NEjUGBrYJulvLZNiTU+D70JoueaUWuhOs2sA75u3E4XHcX9Pja+v7p+q7zcJu4NtYeAEf+oc7PaasnrKtgP5PgvJ/j+8A4Z8KYCKHZIGul1zcAWj7mWtZmD2FPyNHlbfPHYwxSgku5Pvbe463Z9h5Z6r6yaiw7XBiSc+Pr8NIh61Anb7lkHfRiaG1RDNnKa393aXfr3en6fm3U17se07Ao73v8zSrftt8As4VBba+l8XX2DbgwhMrXz/raPviXdRicJ8bn2N0QVWOgElXb+bYxsIisZF2ioEwt62eroZsGQ7M5JFdhhi0owh4SpVRT4BZgitY6wWF7D+ALoCxwTin1mtb646K6rrgGGbvlve2+LMw8iEvNuLYAmGdGutL1+s66JkDd7nkvTmfj2OoKhesdAe/G9psxVlgdV8d2FH+HtWfEP6T4xv2WawD3z7b2EjquneOJuyEEcW2sFdRDa/PX22h8vgqSwjq/AsOcV/X2VMkzvo+MPVkVGkPX96w9TW2Heb6usbfJmIrcHWNwYQtIzOaR2HtICjCHpF4va0/uv79YW2mDIt334Cjlmq3JTOP+1u+oKQ9a05036GPeg5FjGALm2INV+zZr78Sx/+COT12vEVYWhvxrHTJm1mgTU8+64GtqIlR2ky+nVBXnlv2QUs49MaWqWt83Zr2dRsbH5zhHIL/zFI2Ve2+GNJouYBuR/+GQERXdZ8Ry10MSEGJ9jR0zBza8N3/X9YanHhKz9YPsPSTG3jHjnMUQqORNr6W3PSSG87v0kBgCi8iK1p6vJ1d7vr5ZD8nFHu5aTIqyx2Iw0BuwNwEqpaoAEwF/4CgQDYxSSm3UWi8uwmuLa4lxTPPVyLSH5CoMSK6788JaGt4y9pAUJKVoj6/hj8etlbf2L+S9v5nY66FSS+sY5ls/uDCm38zlMOa3csu8s6VFX3dhaFCjfu7386aCauQXYF2Mdd1Yayt7fjLdFZQyVArz814xW4vArFXejLE3s0o78/2M3AWsZmlJCzNkyz/Y2qPR6XVrYBkdXzSpgKt1hGe2WLNKGVectvHY4+AP/X+3ppF114Dk4+u5rGVreU6l7dJDUtIajN43DRKmmw/B85anSct5MQbExveu6TEmAXZ+e0fAczpqdz0kYE188u8E60T0uj3zTmtdEJ4mtZeItQYMjut92T7jxnWjCjrMyaWHxMOkdhsfP9fMXS49JF7+npv2kFydQ7aKMiBpCWzQWjs26z6ANRgZprUepZRqAqwEhgCLi/Da4lrSqN+FsaFla3ve90pl9oNbkB+aq1FJQw9JQSpSDXpbM6kERRZ8uJevP9w/B9AXJ2tbcej+GSx615r22dtKdH50Gw3thlnHuF+KHktjwgLjGkeOjJXJwvTglK5mXSBy+xxrYoD8pHaudQtsn21NIdugj3Wbpx4SY2upN5PabYJLuE78LqyAEGsSBW9p7brtYr43jBVVWy9DtY7Wf4VRmIDE22x1jswmtRfkd6Lp/bB5ivk8Ek8payMrwiNLrKvEV+uU/+t6w2Wtl+AL73GlrL0ku+ZfuN8+ZMvwOmd6WDzTE2MvlKdJ7TalqrkG3sbvHrNV2c2YziG5DBq4LoKiDEiigX8N2zoDqcCnAFrrdUqpZYBh1pIQ+VCvl3WBsJO7rEMorkbGSnZYdP4qNVczYyuccSKtt/JTcXPnaku9WK4B3Dvx4l7jUvb05SeDWs2usGKM9W8/L9YNyMtNb1v/5Ve3j61DiCq3ulAZMvaQKJ8LPTjGOXVF8b6+mpnNISkMx/S3nibA58X4XeJNkg+zHpKCJFQpWwuGbrWuL/SxcVJ5HquMl6piPneuqBg/iyUqOwesLgHJ+efE2Ivg2IuSH8bn2F1vt+NvtnH+CJjPIfGG6ZAtCUjy4ut4PqVUGNAYWKi1dhxjcwRrb4oQBePja21pvZq5LMJ2FQ7XKijjD4StMiCEUX56ruLaWFOy7l/uvBDkpRYWBdc/6bwttKzzwo1hMRfmqRiHtBRmVfRiYdJDcjG5VJ4Lef37psFfw61zjKoXYS+BN71EIaWtvxUZ5xfMbNjXcyYvT3z9zXubPQ3ZuhR8fKxBSU669baxQcoxxTkU/fvfJRukm++U+Dvgn0+tc1wbD3C939gTX6ghWxKQ5OUA4DjD6Nbz5//LsF8EcAYhhHsSkHgvQ75OhBux17tf1M9MfrIiXUpKWTNt2VM3O8xXqt7p/CJwB63pVK+E5B3BJS+sXVGYFOkFvbYjswU086NiU+s6T0XNmx4SvwDo9gms/c762jcbVLjX3yz48GaV8YvN30NAUt4QkBgXzS2ssBjrfJCTu6wZ3tytrVOuvnX+lCXXNTscuA4Z8zoguXaGbBXleIMZQGWl1G9KqcHAB4AF+MOwXyNgfxFeV4irj0tAcpWl/C1KZplWhABrFrDIytYf9bt/LO7SFI7jPBLHeQK+/vDoMug7FXp9e+nLVRD3/Godhlq2zqXvjVIK2j1n/btsHeucncuFY8t6p9e9O6Zudxgww5pevLDBqG8A9rTJNsXdQ2Isg3EOYVhZa1p1m7g2F/7u7rAgb9cRBbu2j481BXSn16HfVNcMeo5Cy5gHIwDnDPNzvM2UZdZDIlm28vQBcDfQ/fw/gFFa6522HZRSLYAKwIQivK4QVx9jt7P0kDjrOwV+6W39oer8ZnGXRlyugkueTxObWri1gS4HFRrDlt+sf0fXc74vuGTRT06/mCq3sM5ZUD7F06PT8VVr5T+i/OWVkKLjq9ZhWKWre5eStqgpZf1OzU69sO1y6CFxnDNhlsnrvmmw+F2o2t45w1r93pCdbs3M2WRgwa9fuhq0HVrw48H9wpN5MeshMS4eeZUosoBEa52klKoP3Il1zZF1WuuFht1igI+B8UV1XSGuSsYekvysvHstqNEZhu20Dlm4SluLRBHx8b3ygxGwzg04tcdauWr+cHGXpvCKOxDwNsvRpRQWZV1UsTj5BxsCksugh+S6u2DhW9bhU9VNAu+41ubD5nx8odmDrtuLQ25m3vuYMfaQ+AZCpeaFL89lqEhXTtdanwPGebj/D1yHcAkhjIyLLEkPiatQL1akFuJqERDquhq6EEXN2CNyOfSQtBtmnTQeWfHyKE9BVL8Rdp2fUu1ujR4zvoaApFLzK/c5yEORBiSOlFKBQCkgU2tdwHxrQlyjjMMYZA6JEEKIi+1yDEgAytQo7hIUzk3vQuIOQMNdP3h/nLGH5GKsD3WZKPIk+kqph5VSG7CuP3II69wS2309z096r+72BEII1wBE1hYQQghxsbkEJJfBkK2rQdma1vlsQza5riuUHxKQ5E0p5auUmgZ8AdQBtuKSroGNWCe89y6q6wpxVYqOt44ZD4qEm0deGak8hRBCXNmMCxGaTaoWBePjm//FdI1zrYxpjq8iRdlD8iRwBzAHiNVauwyS01rvBnYBNxfhdYW4Ot32EbywH1o8UtwlEUIIcS2QHpLLS/XO1hTZAK2etCZyuUoV5RySgcBxoLfWOtXDfgk4L6AohHBHekaEEEJcKsYA5HKZQ3KtCgiBweusGfaM6b6vMkXZQ1ILWJVHMALWuSVli/C6QgghhBCisPwNQ7QkICl+geHWtUeKO1X2RVaUAUk24M1gw8pAShFeVwghhBBCFJZjAOLjD77+xVcWcU0pyoBkC9BEKeV2lTKlVBTQEPi3CK8rhBBCCCEKy3HIlswfEZdQUQYkPwGlgS+VUi6zbpRSvsBnQAiQjyTMQgghhBDionPsIZHhWuISKspJ7V8DdwH3ANcrpead395AKfUxcBtQBfgT+LkIryuEEEIIIQrLTwISUTyKrIdEa50L3IJ1HZLywMPn72oEDMY6d+QboLvWWhfVdYUQQgghRBFw6iGRIVvi0inKHhK01hnAE0qp4UAHIA5r0HMIWKS1PlKU1xNCCCGEEEXEaQ6J9JCIS6dIAxIbrXUiMPlinFsIIYQQQlwEwSUd/i5RbMUQ154iG7KllNqjlBrhxX7vKqV2F9V1hRBCCCFEEah1M0TFQ2AkNH847/2FKCJF2UMSh3cLHpY5v68QQgghhLhcBIbBYysgNwv8Aou7NOIaUpRpf70VinURRSGEEEIIcTlRSoIRccldlDkkZpRSPkAt4AbgwKW6rhBCCCGEEOLyVaiARCmVa9g0QCk1IK/DsK5ZIoQQQgghhLjGFbaH5CBgW1OkMpAGJLnZNws4AkwHPinkdYUQQgghhBBXgUIFJFrrONvfSikLMFlr/UBhCyWEEEIIIYS4NhTlHJIbgGNFeD4hhBBCCCHEVa4os2zFAfuL8HxCCCGEEEKIq1xRBiRjgSNKqTFKqQZFeF4hhBBCCCHEVaooA5JvsQ4BewJYr5RaqZR6UCkVWoTXEEIIIYQQQlxFiiwg0Vo/DJQDHgbWAM2xpvc9opT6UinVtKiuJYQQQgghhLg6FOlK7VrrVK31t1rrlkB94DMgB2uQskoptUEp9ahSKqIoryuEEEIIIYS4MhVpQOJIa71Za/0UUB7oBywFGmANUo4opb5TSjW5WNcXQgghhBBCXP4uWkDiwB8IP/8PrCu1+wP3A6uVUlOUUiUuQTmEEEIIIYQQl5mLFpAopVoqpb4DjgKfYx3C9RvQBYgA+gL/AT2QlduFEEIIIYS4JhXlwogopUoC9wEPAfFYe0MOAiOAb7XWjgsnTlBKTQY2ALcUZTmEEEIIIYQQV4YiC0iUUuOBnkAgoIE5wJfAbK21xewYrXWOUmoNMKCoyiGEEEIIIYS4chRlD8m9wDHge+BrrfUBL4+bhqzwLoQQQgghxDWpKAOSu4A/tNY5+TlIaz0DmFGE5RBCCCGEEEJcIYpyYcSp+Q1GCkopFaKU6n4+dfB2pVSGUipVKbVRKfWaUiqsAOcsqZT6WCm1XymVef7/0ZIBTAghhBBCiIunSCe1AyilAoFeQFusa5AAHAH+BqZqrTOK4DL3At+c/3srMB1r5q7rgTeAe5RS7bXWJ7wscxngH6A6sAf4HagLDAFuVkq10lqfKoJyCyGEEEIIIRwUdZatG4FxQDmsGbYcPQyMVEoN1FrPL+SlsoGvgdFa660O1y8HzAIaAaOxBi7eGI01GPkN6G3r6VFKfQIMBkYBAwtZZiGEEEIIIYSB0loXzYmUagEsAQKAVcAEYN/5u2OBe4CWQBbQXmu9qkgu7FqOVsAKIBOI0Fpn5bF/OeAQkANU1lofd7gvEGva4lJAeW97XNxcZ0t8fHz8li1bCnoKIYQQQgghLjt169YlISEhQWtdtyDHF+XCiG9hXYH9Ma11K631J1rr6ef/jdFaXw88ijVgebMIr2u08fz/gUBpL/bvivV5WOYYjABorTOxTrj3RdZKEUIIIYQQosgVZUDSAlirtf7K3Q5a66+BNVh7Si6Wquf/zwa8mffR4Pz/693cb9tevzCFEkIIIYQQQrgqyoDEAuzyYr9dWBdOvFiGnP9/7vkejrxUPv//ITf327bHFqpUQgghhBBCCBdFOal9Nd71ItQ/v2+RU0rdAjyItXfkf14eZksRnObm/tTz/4d7WQZ3k0SqeVkeIYQQQgghrhlF2UPyP6CGUuoNpZTLeZXVG0ANvA8WvKaUqg2Mx5rd6zmt9cY8DhFCCCGEEEIUswL3kCil+pts/gF4FbhPKTUV2H9+eyzQE4jDun5ILayZuIqEUqoCMBcoCYzSWn+cj8PPnf8/xM39oef/T/HmZO6yC5zvOYnPR7mEEEIIIYS46hVmyNY4zOeCKKyBx7MO9zuuSfIw8BDwYyGufeFiSpUC/sQa9IwFhuXzFAfO/1/Rzf227fvd3C+EEEIIIYQooMIEJG9ycSen50kpFQbMwdrz8BvwkM7/wiq2oV2N3dxv274p/yUUQgghhBBCeFLggERrPbwIy5Fv5xct/ANoDswD7tFa5xbgVHOxZghrq5SKclz88Pw1ugG5wOzCl1oIIYQQQgjhqCgntV8ySilfrCvBdwSWAT29WJH9SaXUNqXUu47btdZHz58rAPhcKeUYpI0EygLjC7NKuxBCCCGEEMJcUab9vZSeBHqc/zsJayBhtt8wrXXS+b/LYJ1MX85kv6exLtbYC9imlFoL1AXqATuBoUVWciGEEEIIIYRdYbJsfQKs1Fr/Uohz9AVaaK2fyuehJR3+7uF2LxiONWDxSGudpJRqfn7/7ufPeRz4BHhda52cz/IJIYQQQgghvKDyPwf8/IFKWYBxWusHCnxxpcYC/bXWvgU9x5VCKbUlPj4+fssWd+smCiGEEEIIceWpW7cuCQkJCe6Wv8hLYYdshSmlKhfm+EJeXwghhBBCCHEFK2xA0uv8v4JSFHPqYCGEEEIIIUTxKUxAshQJJoQQQgghhBCFUJh1SDoUYTmEEEIIIYQQ16Arch0SIYQQQgghxNVBAhIhhBBCCCFEsZGARAghhBBCCFFsJCARQgghhBBCFBsJSIQQQgghhBDFRgISIYQQQgghRLGRgEQIIYQQQghRbCQgEUIIIYQQQhSbwqzUbkopVRroBzQHygALtNYjz99XF6gG/KW1TivqawshhBBCCCGuLEUakCil7gK+BcIABWjgsMMuFYBpwABgfFFeWwghhBBCCHHlKbIhW0qpVsAvQA7wLNYeEmXYbQFwBuhZVNcVQgghhBBCXLmKsofkZcACdNZarwdQyjke0VrnKqXWA/WK8LpCCCGEEEKIK1RRTmq/HvjHFox4cAwoV4TXFUIIIYQQQlyhijIgCQESvdivZBFeUwghhBBCCHEFK8qA5DBQ19MOyjqGqx6wtwivK4QQQgghxGUn15LLnjN70FoXd1Eua0UZkMwFaiml+njYZxBQCZhVhNcV4rJk0RZ2nt6JRVuKuyhCCCGEuMQs2sJ9c+7jjt/vYPg/w/N17IrDK+jxRw/e+uetayKYKcqA5D2sGbR+VEqNUEq1PL89VCnVSCn1JjAG67Cuj4rwukJclgYvHEzP6T157K/HirsoQgghhLjEVh1dxX9J/wHw287f8hVYPPLXI+xK3sWkHZNYfmT5xSriZaPIAhKt9SHgViAJeA5YjnUdkjuBtcCrQDJwu9b6RFFdV4jLUVJ6EksPLQVgxZEVHE89br/vbNZZvtr4FdN2TrsmWj2EEPk3ffd03ln1DodSDhV3UYQQBXT43GGn29mW7AKdZ+2xtUVRnMtakS6MqLX+RylVC3gQ6AzEYQ16DgHzga+01meK8pri2pBryWXyjslYtIW7at2Fv49/cRfJo8Q05/wOZ7LOEB0aDcA3m75h3JZxAESFRNG6QutLXTwhxEWy/dR2Plr3EdVLVOfZps+6pL/3xu7k3bzy9ysA7D+7n686f1XUxRRCXAIpWSlOt9Oy0wjwDcjzuFxLrtNtf9/Lu85TFIo0IAHQWqcAo8//E6JITN05lbdXvQ2ARtO3Tt9iLpFnx9OOO90+nXHa/rctGAF4d/W7zOwx81IVq8DeXvk2iw4uYkjjIXSr1q3Q59Nas+jgInJ1Lh0rdcTXx7cISinyIy07je83f0+gbyD317sfP58i/zlwK9uSTVZuFqH+oZfsmpfKc0ufY++ZvSw/spxmMc1oX6l9vs/x287f7H+vOLKiKIsnhLiEXAKSnDRKUCLfxwX45B3EXOmKcqX2ykqpCl7sV0opVbmorisuvt3Ju3l75dssPri42Mrw1sq37H+/t/q9YiuHt06kOY9KdAxIPG3PtmSTlp120cpVEDtP72Ti9okcTzvO6HWj83VsSlYKM/fM5MDZA07b5+2fx5BFQxi6eCgz9swArO+zwQsG89G6j2QoWyHN3jObwQsH88+Rf9zu8/PWn/lq01d8suETJm6bWKDrHDh7gDOZ+ev0Pp1xmpun3kzbiW1ZcGBBga57Odt75kISyT92/1Ggc4T5hzndPpd1rlBlEkIUj6T0JKfb3v6+n850rhsUpKf1SlOUk9r3AQeUUp8opTyd90NgTxFeV1xkr/z9ChO3T2To4qEu4yEvBbMsVZd75ipjD8nJjJMALhXtzNxMAA6mHOSlZS/RbmI7Wk9ozfTd0y9NQU1orTl87rD9OT6QciGYOJF+Il8B02vLX+OlZS/Re2ZvzmadtW9/bslz9r9fX/E6YA00Fx9azPebvy9Qq/CKwyvoPbM3o9aNyvexxSUzN5PkjORCnWPBgQXc/vvtjFwzEoDkjGT+t/x/LD64mGFLhrn9rHyy4RP73yPWjGDNsTXM3jObHEuOV9f9Y9cf3DrtVjpP6ZyveQ4/JfzE8bTjZFuyeXrR014fdyUwPtfBfsEFOk+QX5DT7eL43jXacXoHD/35EP+38v9chpMIIcwZ6wLpOeleHWds6LncGiovhqIMSAAU8AQwTylVIo/9xGVsU+Imxm0ex8GzB9lycgtgbb3/dfuvl7ws+87s87gtLTuN/xL/K7YgJSMng1MZp5y2OU5ihws9IcZWj8zcTLTWDFsyjJl7ZnIu+xw5Ooexm8de3EJ78ObKN+k6tSsD5gzAoi0cSz3mdP+xtGNujnSWmZvJXwf+AuBc9jn7JH8ji7Zg0RZWHl1p31aQFvunFz9NwskExm4ey5akLfk+/lI7lXGKm6feTLtf2xU4ANVa8/Sip9l7Zi8/JfzElpNbSDiVQJYlC7AmUDic4l1l9oF5D/DCshf4apN38xVeXf4qYP2B/b+V/+d1mTclbnK6fTVVbo3fA4G+gab7pWaneuwFTMtxrnxcDhPb/7f8f6w8upJft//K7L2zi7s417Qft/zIo/MfZd3xdcVdlGvKztM7WXNsTb7qGsbRErbPtkVbSM1OdXuccfSE8TvhalTUAckU4A+gE7Dq/AR3cQVJzkhm6OKh9J3dlw/XfchdM+9yut9xOIJRanaq25a89Jx0hi4eyoA5A9h/dj85lhyXD6o7/yb+67JtU5K1UpORk8GdM+7k3tn38r/l/wOsAcqjfz1Kjz968O8J12MLI9uSzb4z++xfSMdTj9N5Smc6/NqB2Xsu/Ei7G7JlnOwO1haUhJMJTtv2nNlz0VpE5u2bxy2/3WI69O1M5hmm7pgKWJ/3Had3uARXxgDFnR2ndjjdzsq1VpKNFTGFcqlw2Sb9Tds5jdt/v51v//vW47VOZZxyanm62OPuj547yqi1o1h4YGGBz/HHrj9ITE9Eo3nl71cKNEzN2Pq2KXGTyw/ZzuSdLsd5em/9sSv/w4zMUlJm52az4MACtp/a7rS9dHBpp9uOPXDFIceS43WrZV6Mn3uzisuk7ZNoM6ENd8+82/6ZMDIO0Tp0rvgDEsfvqCk7puTr2F2nd7H++HoZimnidMZppu6Y6vG31dHeM3t5f+37LD+ynOeXPu/2Oc215LLk4BL+S/zP9P6MnAxm7plZ5L+RV6stJ7fQc3pPHpj3gMv7f+K2ifSe2ZsZu2e4HGf8/UzLTuNs1llu+e0W2v/anr/2/2V6veTMZKfbnoKXq0VRByTntNY9gXeAGsBKpdTNRXwNcRGNXj+a+fvn228bPwT/Jf5n+gV45NwRukzpQtepXZ0mZNrM2jOL+fvns/7Eep5b8hw9/uhBp8md+Gpj3q2xZl+YtlbWP/f/ycGUg4A1TWauJZcfE35k+eHl7ErexZBFQ1zGcHqyYP8Cnl/yPGuOrXG5L9uSzT0z76Hb790YvmI4YB2Hn5yZjEbzwrIX7Pu6BCTne0aMFUgwrzxbtIWtp7Z6Xe78GLZkGAdTDvLz1p9dntu1x9aiufD6Hj532CUA2XBiAz9s+YGVR1d6bCnafHKz021b67Ft+JpNyaCSJJxyDsiS0pNIy07jtRWvsffMXj5e/7HHQGjrSefnytZDYJRryeXb/77l5WUvc/DsQbfn80RrzbNLnmXslrE8s/gZ+/svv4yv7+7k3ab7rTu+jntn3cvINSNdPnu23kubzJxMjqYeddq2K3mXyzk9VX6MxxfUmH/H8PSip+kzqw+7Tl8ogzEY2nZqW5FcryAS0xK5aepNtJvYjhWH3Qex+8/uZ+SakSw5uMTj+Yyfe8dhimB973y58UtydA7bTm1zO8fH+L1blD0kOZYctp/afkl6ppIzknl52cv0mN6DAXMHMHF7weYqFVauJbdIg6Gk9CSm7JhS4O8QG601Ty18iuH/DKfv7L5ezcfamLjR/veJtBNuPz8/JPzAkwufpN+cfqw6usrl/i83fslLy17ivjn3uTQaFLfNSZsZsnAI10+4nhGrRxT6fMsPL2fg3IH8sOWHAp9j5OqR9r8d57SeTD/J26veJuFkAi///TLZuRfS+qZlp5GS7Tqpfd6+eRw+d5jM3Ex+2faL6fUkICkiWutXgXuBAGC6UurZi3EdUfTWHvec6/pkxkn2nnWtzLy76l37j++YDWNc7p+0fZL9762ntrLv7D4APv330zx/GE17SM4HJMaK6JFzR5xaKU5lnPK69flgykGGLRnGnH1zeGbxM2TkZDjdv+74Oraftn5xT9s1jQNnD7Do4CKnfWxDyYyBh60ybtYr9Pfhv03Lszlps+n2wjD+4Bm7/Fcdc/7hOnLuiMtj+XLjl3yw9gMe+vMhukzpwusrXjfNkW4cNmULDI2VYa012046/6geSDng8robK9+OjJV7d8OUPvv3Mz5e/zEz9szgw3Ufuj2fJwknE+wLXVm0xR7UJaUnMWvPLJdhO+4Yg7l+c/ox6M9BrD662r4tJSuFpxc9zX9J//FTwk9OjQW2sjg6mnqUI+eOOG1zDAZs9pxxP40vPCDcq/IbGefC2IYd5lhy+Ozfz+zbjQFpYQPvWXtmMWrdKJIzkpm0fRKPzH/EY3Dh6PvN33Mi7QQZuRkMWzrMdB/bsLifEn7i6UVPewyMjZ9v4+ft0LlDJKZf6CU1Bn+HUg6x6/QuzmV77iHRWvPtf9/yyt+vuLzenmiteWLBE9w5404e+esRr48zrp2glOJc1jmPPUtaax6e/7A9aQVgmhjFmE0oP9Ky09iStMVjw8jGxI10mtyJ7n909/qz6YnWmkfnP8ob/7zBfXPu42zWWbTW/N/K/+O2abflK1HDmmNr7N9zKVkpef7+guuwQHdDYW2Vb4u2MHjhYJf7v9v8nf3vb/77xvQcjr+bqdmpbnv0CistO43fd/3Ovyf+ZfHBxdw7614WHlxISlYK47eO93o0hTtvrXyLdcfX8cHaD9hxekfeB5hw11Bj/D2zfb611qbDm9Nz0p0aGIw9KDbGgORaGLJ10fI8aq0nKqV2Yh3CNVIpdR3w8MW6nsif46nHWXxwMUopqkZWpUl0E1KyU9h/dn+ex645uoaqkVU5lnqMJxc8iVLKqZXGrEeiZFBJt+fbdnobdUvXddmelZvF6PWjTVtzdybvJC07zaV1aPbe2S5DQFYcWcHa42tpFtPMaXtSehK/7/qdkoElaR7TnF+2/UKOtk7oPZN5hsUHF9O1Slf7/sau70nbJ3Ey3blytejgInqH9HapUNiG0eQnIPFUAfdGtiWbHad3cDbzLDVL1qR0cGmXbFfGFlzHyjBYAxJPFbDjacf5bedv/LbzNx5r8BiPNngUn/M5LYzltw1XM76eZ7LOuFSsHReWtNmTvIdOlTuZlsN4vFmvxZKDS5x+eD1loDJz4OwBFhxY4NLFnpyZTI4lh/tm38ehc4eoXqI6k26blGfe+KPnnH/gUrNTWXV0FUfOHWF2T+vwv7Gbxzr9ME3eMZkucV3st42P+1jqMTItmU7bzIZsueuNAWvFKDM30z7/YezmsUzYNoFbq97K4EaD8VE+pot7bT21lVblW9nP4Wj9ifX2v43fD2M3j2XF4RUMbjTYniI325LNjlM72H56OylZKQT4BnBb1dtcgqV1x9fx4rIX7eexX+/4emb2mGlf+8cdxwAvJSuFHEuOS/rj9SfW23uZcnQOmxI3ERMaw+mM06w/sZ6W5Vra0xcbg3fj58vYI7n99HbeXvk2kYGR1C9bn6cXPW363Bp7SP458g8fr/8YsPYw/Xrbr27TNh89d5TSwaUJ8A3gYMpBe4/sqqOrOJ56PM/nCOBUunMleEvSFm6cciOZOZncWvVWHmv4GBXCnJNsHko55BJsGitfLy17iZl7ZtK7Vm9ebflqnuVwlJGTwV0z7uJAygG6V+/OTXE3MWn7JG6teis3xd1k32/c5nGczDjJyYyT/LbzNwZdNyhf1zHalbzL3jB1MuMkU3ZMoUW5Fvb5lU8veppN/Td5lRVp/NbxTre3ntzq9jvOxhiALj28lEcauAaXjoFLek46e5L3ULVEVcA1wDRLrLH00FJeX/E6tUrW4sHrHuSJBU/gp/wYf+t4qkZW9VjG/Ppo3UdM3D4RH+VD7VK1nXrpwfqYo0KiCnTuHEuO01Dy+fvnU7NkzXyfxzgfTGuNUsrl++xE2glKB5fm4T8fdvres0nLTnMKbtyN4HAJSLwYwp2WnUaIf0ie+12uLmriea31OqVUE6xByX1ATayrtYtLLNeSy6vLX2XFkRU80+QZftjyg9NQjuebPU/1EtW9OtfqY6vpXbs3X2780v7FbJSek062JZtRa0cR7BfsccjBmqNrqFu6LjmWHCzaYp8/8PH6j/kp4Sf7flUjq3Lk3BEycjOwaAu7kne59CI4tsQ6+ufIPy4ByfNLzYdm2czcM9MpIDFOxv0hwbX7d+GBhXSo1MFlu6eAxLGVMSo4ihPp1n0KMzH7bNZZ7pl5jz048/fxZ8rtU+w9UzaOyQGS0pPYfca5onro3CGvW6e+2PgFOZYcnmr8FGnZaS6t8O56SCzawprjrq+Dceifp5YtY8Xc2KKclp3G8H+GO20zDuuau28u4zaP45Yqt3BH9TuYvns6tUrWonm55qRmp3L/3Pvtr42jE2knOJBywH7NXcm7mLlnJj1q9HBbXnCfOelgykHOZJ4hKzfL6f0P1krk4XOHqRBWAa21aQ+JsRVz35l9ZOdmOwVIjq9Ng7INCPINcuodO5l+kvJh5UnOSObj9R+Tq61D3U6kneDN6980HVry3ebvyMzNpF3Fdi4NBaczTnM26yzh/uEuQTxYK+Yj1oygfaX2HD13lP5z+7sEwr9u+5Wvu3ztVDGZs3eOy7kAMnIz+GTDJ7zdxrp20bmsc/y5/0/OZp6lQngF2lVsR6BvoEs2qx2ndxBfOt5p2++7fne6fSz1GOuOr2PwgsGkZKfQslxLvuliDXSNFW7j87ThxAan297OxThy7ggWbbEH+yuPXUgAseP0DibvmMw9te9xOW7s5rGMWjeKmNAYpnSbYhr4R4dGs+fMHnac2kG7iu2Yv38+03dP597a99Ip1lo5NvZqZeRmwPmO7T92/8Hfh/9m3p3znCpttnl+jhwDtqPnjjJzj3UNpl+3/8rgRoOJDIz06vkA63Bd2/fb77t+56/9f3Eu+xz/HPmHVuVbEREQAeD0G2Wc11YQxiG2E7ZNIMTPuRJ4JPWIS4BmdDDloEuPkfH1MWP8bvsv8T9OZZyiVFAp+zazNPMTt0/k5RYvW69tGGpm1njy8t8vcybzDEnpSU5zxP5v5f/x/U3f51lOb2mt7UP5LNpi+hx4m0jFZufpnUQGRhIVEuXyGcxPj6IjY8a8s1lniQyMdPkeP552nEPnDpkGI2Dt6XBsjErLSTMNJIxBouOQraT0JMoEl3G6//C5w/SZ2YcBdQcwoO6Ay37xaDMXZciWI631caAd8DPQErjJ8xHiYlh0cBEz98zkVMYp/rf8fy7jyr/e9LXHyrmj/5Ks80g85dg/cu4In234jKk7pzJ+63iPE1dXH1vN4XOH6TKlCx1+7cCv235Fa+3Uc1A1siqjOoyiXFg5+7Ylh5ZYfxgdOLasVAqv5HQNRylZKabDjBwtP7zc3sqktXYau+vOxsSNpj0byZnJ5Fpy86zc31L1FvvfB1IurPFwLPUY4xPGs/O0c2v38dTjDFk4hJeXvezUGjt5+2Sn5zzbks2M3TNcesAch98Ze0fAOmzM1mtk1CS6Ce+0eYe4iDj7tgnbJpBryWX76e0uwyg2JW3i+SXPu7QKAqapZo3DQYyP3eZM5hmXH4Wk9CSn4ydsm+DSEpVjyWH+/vm8vuJ11h1fx2vLX2PLyS18sPYDnlzwJCPXjOTh+Q+z58wefkz40TQYAetrYPyR+27zd2Rbsnl75dv0n9PfpXctIyfDpZLnaFfyLv7c/6fp+9sWqB1PO+4yfONo6lGOpDqXJUfn2F/3Uxmn+Pzfz52GGg6sO5Bvb/rWXoED7EHDttPbyNUXhlRO3z2d0etHczbTueUfrMHS4IWDmbZzmsuYdI1mzbE1nMs+53Z+z8GUg2TkZPDz1p9Ne+V2n9nNwLkD7fdprVl+2HUyvWNZbe/p0etH8/qK1/lw3YcMXTyUF5a+QLYl2+V1M/ZgpGVbx3s7mr13NgPnDrSPDV95dKV9Enpec0iMAYm3sixZTgkxjMPwxmwYY9rKbUuBfSz1GD9v/dmlAed42nES0xLpPaM3zy19jpf/fpk3/nmD1cdW8/zS5+1pyc2CSEcnM066vOa2YY2OzmWfsz9Xxs9jfifuGx+LrVc6IzfD/l1hHB5jbHDxRGvN2M1jGb5iuNP70RiQHEs9Zs8maGNsvDIzffd0l56ALSe35Dm82DgcVeP6OTA2PIE1+LX1ChufB9vrm5SexK/bfmXfmX1u57N4W0/wljdJUk6kej9ka3zCeHpO78nNU29mz5k9LsHZ9N3T6TatG4MXDM7XEDTja2Xr5TB+hySmJZrO2bFJy0lz+Y52HMZp466H5NnFz3LDpBt4/K/H2XpyK2M2jGHF4RW8seINkjOtDUhP/PWE14/rclKUAckSwHR2ldY6S2vdH3ixCK8n8iGvyYTJmclOw1k85c8/mnqUtcfXelyv4FDKIbeTtYzWn1jPr9t/JTE9kZTsFP5v1f/xxj9vOLWkj75hNNVKVCM65MLwAmNFwZGP8uGVFq/Yb29J2uLU5flf4n8uXzBGOTrH3gJ7KOWQS8peMxptmqVIo0nOTM4zIGlVvpVTK2HCyQS01gxZNIQRa0Zw94y7eXvl28zfP5/D5w7zwrIXWHhwITP2zGD4iuH2dS3M0jMnnExwCUgOnj1o7743Bm3gvjsZoHX51nSr1o3xt4zHT1k7W89ln2P76e0sOrDIZf8cSw5z9pm3aHtj79m9rDy60uU5dDcH4XDKYVYfXc3Ti55m9PrRpvsMXTyU33b+xsC5A+0BjEbbx3Xn6ly+++87j5Mhj6e5BiT7z+5n6OKhTNw+kQ0nNrisjWIcj+zYugnWIVXuhlX9ue9PwHxIX3Jmsum4/l1nrBXY99e8zxcbv3C6zzb8wrHFzfa6m012HbdlnMe0r7P3zjZ9TUasHpHn+O2DKQdd5slUDKvodP9Dfz5EUnoS+8/uz7MS+9hfj7HgwAKXYZELDixgzdE1LkNXbAGJrVL414G/XJ5Ps+d9f4r1c2V8b6Zmp9qvcSbzjGmCAW85Plbj85uSleKS6cyY0W/hgYUuQUJiWiKTd0y2B74LDiywlzfLkmWfo+dNYhBjz6e77E62XhJjJSy/E8TdnR8ufL72nNnj9D2/98xer9fZWXl0JaPWjWLqzqk8vuBxsnOzycjJME21a6yA2hqvUrNTWX98PauPriYtO42MnAwm75jM0kNLTSutpzJOcTztOP+38v+4YdINjE9wbrzRWpvOZTA21pgNc862ZDNk0RB2nd7l8j60nfPZxc/yf6v+jwFzB5g9JXZbkra4DDl1ZNEWp8DqyLkjvLD0BT5e/7FpQ1VezJLBmDmZfpIRa6yT4LMsWczaM8v0d3vf2X0sPrTYbZbEE2knXIIVY2Bje/yHU50DxBNpJzwmDUnJSnH5bJpl3zSbQ3Ii7QR/7rd+/y87vIy7Z97N15u+5pG/HuGfoxeGIN9R/Q6317+cFdmQLa31DV7sMxIYmdd+omidyTzD+uPm3YfudInt4rEH5JtN5pPgbGwfGm+kZqcya/csp21Td061/x3iF0JsRCwAMaEx9u2e5rtcV+Y6WpZrSbh/OCnZKeToHDac2EDrCq0B2JB4oaWydfnWNIluwnebvyM6JJp6ZerZ14WYuXsmfev0dZpgHeQbRKBfoFMLUpBvkP1H3XE9DUenM07nGZDERsRSu1Rt+4/V3jN7qV6iur0bO0fnMHH7RNMAc/7++S6VOUdbTm6hXGg5p205OodDKYeoElnFY6uOmVqlrFm9IwMjiS8Tb28VnLBtAjN3z8zXubxh0RYe+vMhSgaW5Lc7fqNMcBnSstMYs941iQJYX+ORq0c69TKE+ofmO1uJ4xohIX4hPNX4KZYdWmavAJ5IO2E6/MpxOMba42vtY47Bef5I+dDyzO01lzdXvmkfwrM7ebfTj1rfOn35eevPgLXnLDU7lW83eU6F7GjHqR10jevqUpnyU35UirD2JJYOLm0fyrXj9A6C/ILctvR6Wqvk3xP/Uj6svMv2o6lHGTh3oMdyzts3z956qFAsuGsBZUPK2ocegbUyMWzJMG6sfKPTsf4+/lQMr8jjDR/n5WUvk23JJsuSxcvLXjadEPrZRtfhnf8m/svGxI0MXTSUUsGlKBFYwmN5bQ6cPUDd0nVNP98pWSmUCirlVQ+rJwdTDtIkugmJaYmmAcKx1GNsSdqCr48vtUvVdulB2J2826W380T6CY8Lc/574l/8ff29WpjRsVU+KzfLbUPBuuPr2Hd2n+tciENL+TfxX1qWa2k67NVRanaqx2QItuDG2JOUbcnmYMpBqkRW8Xh+cE7wsvP0ThqPb0yQb5C918iTjSc2cuDsAe6eebf9+yYmNIYOFTvk2Tg4b988e4PSiDUjiAqJss8bS0pPMr2+Mbhz/O6Ii4jjeNpx0nPSSc9JZ/zW8S7fgcmZyZxMP2kfZpTX5P8+s/oA8G7bd7mt6m1O9x1LPcYD8x4gNTuVTzp+QoOyDfhkwyf2RoxaJWt5nJtpxvFzlW3J5tdtv5KZm0nTmKbUL1Pf/r1qTA//z5F/qFXS/eoTa46toWuVrvyw5Qd+SviJm+JuolRQKUavH0250HJM7jaZyMBItNYuAYK7HpIjqUc8Zg7ce2avS2Oo4+d5d/Ju5u6b6zLkOTU71avhZu0qtuOWKrfkud/l6KLOIRGXh3n75plOlAQY3GgwX2780uX+LnGuAUnZ4LL2Lz7HaLx79e7ERsSyYP8Ce6pXTwu93VDpBhpHNWbRwUX2L0B3w2EAapeqbR877dhD4sn15a/H18eXJtFNWHxoMWDtAWhdoTVaa6ehE02im/BQ/Ye4v979+CpfdibvtJd/88nN7D2z16lidlPcTXSt0pXH/3ocjcZX+TLoukF8+u+nHst0PO24U2tNxbCKTq2e/j7+xITEUDGsIquwBgdHznn+cstL6/Kt7RXnM5lnTLvhB80bRKfYTk5l8VE+eS7+VKdUHfvfTaKb2J8jxzH3MaExXq9bAuCrfJ2GCJk5nXmaP/f9yb117uW1Fa+5bWH7eP3HLkOeHqz3IFN2THHpMvfWA/UeoG+dvjSLacby6Z4DEqPE9ET7/AfH65cLK4dSimqR1ezbdifvdqrgta3Qll+3/2qfZ/XC0hdc0ip7surYKtJz0l1aV7vEdbGPNS4TdKGHxOy9/GC9B/kp4SfTIVeOgV6WJct0yIhR7VK1GdVhFK/+/ar9e+D7zRfGpjeKakTZkLIA3F/vfnIsOfbV5dcdX+dUkX6g3gM82ehJfJUvPsqHssFleXT+o2TkZrjNTmMWbB1NPcp7q97jRPoJj99JRvvP7jdN8QnWz12poFJ5Dte6t/a9HnuVbb1V7iriv2z7hdHrR6NQjOowymUsvtnQy8S0RI89BvnJROdYCd5+arv9NyXAJ4DapWrbP6eOKVMd2bJx/br9V2b3mO00PNdo44mNHr8nbMNVzXqk9iTvsQckk3dMJuFkAnfXvJs6petg0Rbm7J1DjiXHNDud4/dJiF+I2/fWtlPbmLJzilPF/1jqMdNgJNw/3Ol3ytjz/+ryV6lRsgZVIqu4/Z7xFJB0r96dIL8g+7pTu5J3mZa7IMMJv930rUtA8uv2X+1JRZ5Z9Azz7pzHrD0XGhw/WPsBXat0ZdL2SXz272deZT5zDEjeXvm2U4Nl59jOfNj+QxLTE11GBuw5s8fj0NjUnFSm757OB2s/AODHhB/t9x1NPcq0ndNIzkzGR/m4BIK/bPuF42nHXXpD/jnyj8eg1azn+9ftv7L2+FrurHknTyx4wrRhIzM3M8/fmVD/UP7X8n9eJVS4HBV4yJZSqvL5f76G2179K7qHIPJitliPTafKnXi0waNO26KCo2hQtoHLvu5arXpU78Gg6wZxY+yNpvc7urHyjXzS8RMG1htIgyjXa5hxnGTq2EPiyfXlrwdwmsi++uhqRq0bRfOfmzv1BjSMagiAn48fSilqlqzplIVjxu4ZTsMh6petT5sKbRjZfiSNohrxcouXvWqReG35a063n27ytNNtPx8/fH18nXoxjqQecUkcUDrIeWE5Tx5v+LjTXBozJ9JPMGHbBPvt2IjYPI8B5yE+TaObmu4zvNVwl8l3YO3BMtOyXEun202jm7q0hIM1uDydcdrpx7t3rd7cXfNu+23H4CvYL5gRbUfw4HUPugyPyg/bZ8AxMM6yZHk1GdXxh8uxpcs2+bVaiQsByb+J/zq1mlUvUZ3Y8Fj77SWHLqyH0bNGTxpHNXa5nuPz/l/ify4tkT90/YF32rxjv21csNCoW7Vu1CtTz2X7DZVu4J97/nF57cBaGR3VYZTLdrC+jyuFV6JGyRr2bY4NI47ZxAAeqv8QlcMv/HQ4joNvW6Et/j7+9oaLJtFNqF2qtsfH405+Aj2bz/79jBa/tDC9zzaPxFOFr1pkNdNMSU7lOt/jYUx1bmOrxGg0zyx+xjRdussx6ScKvI6OkeP727GRoE7pOlQI9zzB21GOJcdtKlubvNLj2h6TWYY5W5Cy5eQW3vzH2it57+x7+WXrL8zaM4sXl73Iq8tfZeFBz4uePlDvAfePQecwb6/7IcWOmkQ34bqyF74PjcPq0nPS7Rnk3AYk54f8/LX/LzpN7uT0/VAlsopT49Gu5F1OyUxsvEk5bLT7zG6XlnzHtMeJ6YlO2e/A+r2clp3GyDUjPQYjAT4B9r9tQ7a2ntzqkuxk/v75HEo5xJpjrkMwU7NTPa5mv/DAQt5Y8Ybb+z9c9yHfbf7ONC3y/rP7nRpQbBznjcWExtCvTj+neZbGnhawPve/bv+Vu2bc5XEUhfG5fui6h5jSbQptK7QlJjSG99q+53Ud6XJUmDkk+4A9QDWH23u9/Oc+Cb4oUsdTj3scKlAlsgoP13+Yj2/4mPKh5fFRPjxw3QNOE1xtWpdv7bItPCCc+mXrA3j1o+OYeSS+VLyHPS+oU/rCl6lZD4mtEuLIVnFqUe5CJWHzyc2M3TzWqZXLR/mYVrK6Ve1m//ub/76x/8ApFO0qtgOga1xXfrz5R+6udTcVwytSNris0zn8lJ9Td7Fji2upoFIuFW3bY3Mc7nL03FGncfyDrhvE4t6LWX7PcnrV6EXVyKp82P5DJnebTL86/Xir9Vt83ulz+tTqw/vt3qd+2fqmKZU9aR7T3GVolxnHVphGUY1QOLfKdKvajdYVWrs8L02im/DLrb84Pcc2N8XdRFSwtRehamRVRt8w2h4wOlp7fK1TBSjcP5yXmr9kGkj5+fgxu+dsbql6Cz7Kh1LBBQtIwgPC7ZnoIgIinDIKOVbqzIIDcP4xcewhsb3ejlnuHFvYQvxCiAqJsqfsdFQisAQvNHvB9EeoQ6UO9qBEo51a36tFVqNxdGN8fXzt2zwFJIG+gcRGxJoOxSoRWAKllEsWO4CaJWvSObYzv9/xu8t9tus5BhmOzNKfNo52fW7D/cNNGzdswzwd1S9T36knylvxpePzlQHK0ZnMM2TnZjsNoTJ+VipFVCIiIMJlu6Ntp7aRY8lx6iHx9Dn1ZvJxYlqix4Qj+XEg5YC9t8XxsV5X5jpiQvJXSTqWdgytNSNWj6DT5E48+tejTNs5zX5+dxmMbGyfR7PWaNu2jScu/C7mWHJ4d/W7vPz3y6bnKxtcltblWzOk8RCGNR3GV52/ok/tPh7L4G0vbLOYZh6HFYF1LlNWbpZTQOL42tsCktHrR7tUaKtEViEuMs5+23FekyNPFXdPHOdhZOZmumTUNK5LlpGbwbx98/Ic+tYkuon97xNpJ7BoCx+s/cB07ufa42vdDuE2W/vGJj0n3W2SjaLQpkIbXmj+Ag/Vf6hIzrcn+cJvSO9avXmq8VPUKlWLz2/8nPl3zs9zqOPlrjBDtpYCGkgz3BaXkejQaGb3nM3MPTPZkrTF3i1sY6vMd6zckRsq3UBKdoppMAJQt4xrxfa+OvfZ899XCsu7Vd0xaHEMNOz3h1UgPSfdqeXEMXAxq3hVDKtIek66vds6xC/EXqaaJWtSLrSc20WN6pauazqB/5aqtzBq3SiXL7/m5ZqblkEpRePoxk4t9p1iO+Hn42eaGrlemXr4+vjyWqvXePOfNwG4u5a1dd+x0nck9YjTmia2H66IgAiGXz/c6Zy1m19oEW5bsa3TY5y7b67rg3ejebnmeQ6bMnbThweEU7tUbXtlqWRgSZ5r9hyASw+JrffJrIJXvUR1xt8yno1JG+lQsQNBfkHcWvVWft76s9NreCbzjFNmm8oRlfH18bXPh3DUObazUxlKBpqviaNQHhMdNIlqYq/AK6WICokybV1+uP7DPPrXoy7b3fWQlA+1vt5lgssQHhDusoZHXGQcSinTce+NoxoT4h9iWjGtEFaBNhXa2IfQObZcOlZQbMx6smwqhVfCz8fP9Dq219Gsl6xvfF/AWikyzt+xBSRmQWSNkjVMP2eNoxq7pOFtVb6VaYpLs4CkfFh5WpZr6ZICumtcV4+fkRblWrDq6CqnXrcWMS1cFhI1czbrLAmnEuwVsACfAGqWrOnUE1M5vDJ+Pn5EBEa4DKv0U37k6BwycjPYnbzbaQhnu4rtTBNYGIX5h7msjQTWlNCFqZA1jmrMhhMb0Gj7eg+xEbFOrfzXlbnOq4Qgjnae3smsvbPsGflOpJ1g+eHlTNw+kbdbv+22l8jmVMYpfkr4yW22NjCf+G0mwCeA+XfOdwrewTrB3N/H3+1waG+1KNcCX+XrcZ+UrBRWHFnh9L3RMKohR/davxNTslM4lXHKtFJeMbwifsqPiIAIl6xvjrwZGlynVB1OZ552el7/2v+XfW2XLUlbvHo+bGvoeNI0pql9aHi2JZtVR1c5JV4pH1reHvStObbGbTZIb+b8gPM80KJiaww0poUuKMdeYW8aDa80Be4h0Vp30FrfoLU+ZLjt1b+iewgiLxXDK/Jog0cZ02mMU+vtvbXvddpPKeU2GAHz3on+dfvb/zbLu96wbEOn2477VAqvZF9QzKZKZBWXFlPHypPZIl5xkXE80+QZ++0P2n9g/1sp5bHVoEtsF9PtUSFRThPvbG6vdrvbcxmHud1d826CfINc9utTqw8vNrcmnLuzxp281/Y9hrcaTp9a1hY3WwUVrD+sjuPxbRPJ88MskLwp7ia3r3Wz6GZOZQDrkKcfuv5AtchqxJeOZ1hT11WtHZ+vl1u8bF8M0zYPwP4YzgdVZhOGy4eVp1xYObrGdbWvEVEmuAyzesxibb+11C9T376v4zylyhHW90ybCm2cehqC/YJ5sN6DTtcw6yEZ3Ggw83rN47VWr7ncZ+PYYgfmnwc/5UeLci2ceuZs9p7Zy/HU48zeM9sp25QtAFVKma4FZOvuN1uMrFFUI8A8UK9Tqg5tKrQxfSyOQwhsPAUktl4usx4SW0BSr0w9p+C+R/Ue9sDVR/lQr7RzT6Rt6KFZQNKqXCvTchhfA8DtY3QXkPSs0ZPXWr1mf//VKlnLaSE9My1jWjpl+wLXIWXuvLTsJfrN7me/Xa9MPZfeZNtzYPxMlAoqRfWSF94Ty48sd2olt/XWehIXEcdfd/3FRx0+YljTYfyv5f/s9xW2ddjYa2ZLF+tYMb6ubP57SNafWM8Haz5w2Z5wMoEe03vY50B46lEaucY8f87u5N38tf8vr+Y5gXUopTEYAevnNa9hjnmJi4ijRskapp8ro9eWv+YUjDco28BpdIBZGvv40vH4+/ijlDJthMiv11q9xvw75zPt9mn2bVtObrEHSnn1XNkY53WUDCzp8v1Wp1Qdp+8Tx3TL1UtUdxrybOwhcff98Xyz51lw1wLT3+Vvb/qWrnFdrT16RTTsyTY02VPW0vxwDKKv5KFZ7lz0dUjE5eXF5i8SFRJFlcgqeXYjGitcSik6x3a2336p+UtOAYVZi/crLV9xuu1Y0bWtyuqoSmQVHmvwmP12y3ItnVYgDvcPd2ltiIuI47aqt/H9Td/z8y0/O/UOgLX3x+il5i8xou0IewuumZebv+z0xRXsF2w6n8GmfcX29pau6iWq0yymmUulaFnvZbzS8hV7BUQpxa1Vb6VXzV72xanKhpQ1bTEL9gt2O7zFk/jS8U6vU42SNXi68dPM6TWHKd2msLrvavs4/i6xXSgdXNrpdQnxC+GzTp/ROLoxv3f/nV9v+9X0h3hA/ADGdBzDjzf/6BScGOdsOGbnchTkG+R2foe/rz+BvoFOw4IcW5Jtz0ugbyBTb5/K1Nun8m2Xb5nZY6ZLEGc2B6dRVCPKhZXjjmp3cGPlG6lTqo7LkKGmMc49AGYrB0eHRuPn48eH7T/krdZv2QNPsGZfu3HKjbyw7AWnngLH94jZvAdbz4hZQGIbzmZcefipRk9xffnraVW+lel7yaxy4mluUs+aPQFcAlW48DoG+AbwTJNnCPMP4+a4m11W3jYOjbS9hyqGO1f0AfuK70aVwiu5BE75CUgqhFVAKcVdNe9iTs85fNflO3665SeP803C/MNoFN2IiEDnAL51hdYu30VPN36aP7r/wa1Vb3V7vkZRjVy+W23vX2NAEuof6vS8Td1xYTJvicASbudihftfWNG+Q6UOhPqHcmPsjQyoO4Du1bu7LVt+lQst59Rzt/fMXqfekZKBJakYVtGr1eAdpWSlOFVa3Q2DjI2INQ1SjW6Ou9n+ec3VuQxdPNRtNkQjxzlORo6JINwJ9A10aaB4sfmLDG0ylM9v/Bwf5UOIf4jpd9/NVW62/30687RTz3WdUnWcPrPGtO3NY5rzUvOX7LfNGiEcG3i8YXutq5Wo5vT5WnV0FUnpSXz/34U5FcYA3oyfjx8r7lnBkt5LuKvmXU73VQqv5PQ5ccwUWiWyilOP7NHUo07z+G6vbt5wGBMaQ1RIlMt3TrBfMPVK1+P99u/zy62/0D++v+nx+VEhrIL9e/lirJ5+NQYkFz3LllIqCCgBJGntpk9NXDJ1Stdh/p3zUag8MzG83eZtBv1p7Yp9t+27AAxtMpQg3yAqRVRyGUOrlKJu6br2PP0D4gdQs2RNqpeozq7kXVQMq0hspHMloU6pOk5jV+Mi4mhVvhXPNHmGrSe3OgUntmtEh0Y7tRRUiazidgw7mLeq3lvnXpM9nZUIKsHHHT/miQVPkGPJ4e6ad3v8YqkcUZkP23/ImuNruKf2PSiluCnuJn7Z9gtnMs8wqsMoSgSVyPO6fj5+RIdEu4xBrlGyhmlLXV5C/UMZ1WEUc/bOoUW5Ftwcd7P9PBGlrJWsn2/5mQNnD9h/fNtWbMuD9R7kQMoBHq7/sFcThH19fE17o4zrONgmbxsrX+XDyuf5nmxerjnfbf7OZbvjj6OP8nGpoDsy++G3/fAF+Abw0Q0fAdY0pI7DnIzPgVkPie1HODIwku7Vu3P03FF7dhsjX+XLYw0ec/phuaf2PUzeMdkp85EteDALImwJHxpFNeKR+o+w9dRW+tXpZ6/QRwRE0Kp8K5d1OLzpIQn1D2XQdYMI9w+39yS6m0PiWP4+tfqYvo7GyrPtesbV0sF9BVQpReOoxva04nVK1XHpgbOx9Zo5cix/WEAYzcs1B6yVB+Owpvpl6hMVEkXPGj0J9gt2mjME1uDM+DhvrXorMaExRAa4n2/SKKqRy3ostqGGxuGEYf5h1CtdjylY00E7zveoU6oOJQJLuAwbKhVUivl3zmfhwYWcyzrnMrwywDeAkoElPQ6jKhtclgF1B5CZm+kyB8BRTGgMZ7PO2t9fm5I2OX3eryt7HUqpQlWenmz4JI80eITnljznMqyuTuk6PFjvQR776zECfAOICIhwyUL2Tpt36FqlK/+e+JchC4eQkp2S5xpUjmqU8BCQeOhVtKkYVpHGUY3tiVR8lA/dq3d3GR1QIayCyyTvXjV6seroKqftZYLL0LtWbxpFNaJMcBn7UGXHgKRLbBc+7OCcIc1syOft1W73ah0QcG7Ysv3e2nol3l/7PsP/Ge6UmfHxho+7nZNj0yy6GeEB1uDZ+NtYIawCUSFR9p4sx3JWDK9I2ZCyxEXEmfZ0ta3Q1jQLmu27qlJ4JacMbHVL13X6be0S24UxG8aYrunkra5xXe3fD94O2apTqg4lg0ri5+OXZ2IHCUgcKKXCgTpAstbaZbUrpVQN4FPgBsAXyFJK/QE8o7V2v6KOuOjMJoGbaVGuBRNvm0hmTqZ9aEjF8Iq80/Ydt8c8XP9hXl/xOrVK1uLxho/jo3z48sYvWXp4Ka3Lt3YZ6+2YQQsuBBeeMpjEhMS45Fn3xN/Hnzuq3WFPY/x8s+c97u/o+vLXM/m2yRw+d9i+hoknnWI70Sn2Qst6+bDyzO45G4Vy6unJS7mwci4BSV4THz25vvz19sxjZoL9gp16EnyUj0sWsIIyTqq3dV8be0i8GbbQKKoRfj5+LqlKvckKZmMbSubIrLejdfnWNItpxvrj6xnSeIjL62d2jPExuGsZ7hrXlUcbPOqUWQus7//+8f2dsrdUibBWJMy6/QN8rZlolFI82ehJ02v1rtXbq4DE+LxUDKtoHxtuY5aK1Vj5dhdUGntIPA0P9RT4d4nrYg9IulVzTYxgE+wXTJngMk7Zyty9x2zZ9RyHnAy6bhA3VL4wuviumnfxy9Zf0GhurnKz6eO0VRKMvSk2of6hNIxq6JKVzTYe3PiZMPaQOKpdujZKKcoGl3VOkhBangDfALrGuQ45tYkKifIYkPgoHwbUtS6ON2HbBLcLIxqfT+NaSLYgtKCZ7cIDwrkv/j7A+h3mEpCUqkOtUrWY9AZyzwAAhTlJREFUf+d8fJQPw/8Z7hSQfHnjl/bv7WYxzfigwwc8Mt85m1mgbyARARGmq2WDeWBrY+wpDvINIjo02mn4UKWISrQo18K+IGnd0nVdghGwVsCNGbYqhVfik46fMHn7ZMqGlOWGSjdQr0w9+294VEiU/fEaG+mMbN8jNjGhMaZDS43KBJehc2xnetfq7bS9UVQj+7pJxnlvgb6B3FDpBqd5HmD9TDpW8vvWuTBCoUPFDpQILEFyZjKtyrXC39ffbZp/W8NPk+gmLgFJqaBSRAZGUr1kdZfU3rb3ofH3wthYEh0azbiu49hwYgNjNowxXbuqfGh53mr9Fm+tfMv+PeNYFsfeLW8CkoiACCZ1mwRYe/8fmf8IiemJplm3FMr09+dKV5gekv7AJ8BzgFNeR6VUDLAMKAv2QZ6BwF1AQ6VUI611wUNPccnkN0OTbXK84491dGi0S3esjbEl25sFqwL9nFsqvRkb+3STp7FoC5GBkXlmRzGqXrK60zju/DKbcJuX8qHlWYdz1hN3w1gud12rdGXqzqlsO7XNaSK+sYfEbA6SUbBfMPXL1HcZq+yp0mBkrBxFBkaattL7+vjyXZfvSM9JN60gm/0gGCvsPsqHOqXqOFWSVt670rRCYvNI/UeYt28eh88dJjok2mmolmOCBrMsVGbaVmjrss2sp86bgCvQN5DSQaWdhtN4m30qOjSaxlGNWX9iPeVCyzkNhelXp599ArPjfDAzXWK7MPqG0aTnpHNz3M0e9zUGcWZDzmxiI2Kd3lfGYLFaiWp81ukztp/eTs8a1iFsjzd4nPfXvg/glD7drIfkrpp30SWuC5GBkdwUdxOfb/zcet7Iavbn3hgUhvmHUb1EdZfACi4k+ygTUsZlXZu8lA0pa5psw8aWORGsDUDuApJyoeVoULYB47aMc0lJCheGBHnbCGZc/6hXjV72z57Z958tMYqtdbtFTAt7WtjmMc1dGmGaxTRzaTmPjYilXGg5p1S5NuEB4S5DNR0ZA5ISQSWoXqK6c0ASXokm0U14suGT/Jf0H483fNz0XMbvP4U12CwfVt40DT+4zs+zMRveafydbBTViMoRlV2CBqNuVbsxtOlQl+22RkqjYL9gXm/1OmEBYVQpUcXp3PPvnM/qY6tRKGqUrOHUsx0WEMaPN//I+uPr7cOs3VW6bUOu2lZo67QmCVzoLa9RooZLQOLYQ+LIbJ5lfOl44kvHs/TQUqf5K0ObDKVdxXaUCy1HiH8IM3pYl1V47K/HnAISx7pNsL9rY5KxR9bxsUYGRjLxtolorXn0r0edrg/WILEg9YrLXWECkvaABRhvct//gCjgFHA/sBCoAXwFNAUewxDEiKtHfhblqVGyBvXL1mdT4iZalmvp1Robxm5Ub44pE1zGY8/O5cbY8hjiF2JasbwS+Pv4M67rOHIsOU6VXmNAYkwP7E7zcs2dKo7h/uFuM2eZMQYkno5VSrltrTdWbhTKNEi4Ke4mtp7aSrBfMF93/tpjMALW3oEfb/6RJYeW0KZ8G/vcIoBXWrzC04ufJtg32DSxgBlfH18GxA/gh4QfAPMhjDa2gAGsw6/MlA0pW6CABOCTjp+w4sgKmsU0c/pBfaDeAySlJxEWEEa/Ov08nMH6mngbjBl/tM0CTxvj+8IsQG5bsa3THLW7at1FUkYSWmun5AnGHhLbRHqbqiWq8lLzl1h9bDUPXXdhLp/LHJKAUHx9fLkp7iZ+3vqz0322yrgtTbaNN9l3zCp6N8fdzJx9c/D38efpxk/btz/b9Fnun3c/4LoYYHRoNIG+gYzrOo4nFz7pUgGsV/ZC787rrV7n3VXvUi6snFOFvW7purzS4hXSc9LZfHIzH637yH6fY+NRTGiMSwu74/oaAJ3jOrP11FYS0xN5tsmzLr9F/j7+NC/X3CkVbFxEHFVLVHUKSF5o9gIaTfOY5h578oxDtkoGlqR6iepOQz1tld+81pkxJjooFVTK6bNvxvja25g17Bkr4TVL1sRH+XBL1VtcVjh35K63r2JYRafFksH6e/7b7RfWCXm8weMsP2xdw6tDpQ5EBkY6zUM1K7dj2d29l22PpV3FdpQKKuU0pM0ekBjm/iiU/fNlDCTdzcVyvJZNyaCSLo0VYP2+tPVEv9T8Jaf3nlkPSbmwcuw8fWGdHLNhqkop09+LqzHDFhQuIKkP/Ke1dupPUkr5APdgTQH8stbatirfv0qpnljXIOmOBCQCa4vY2JvGsvXUVuJLx3sVzDSJbuK0sOGVuiqpJ8aApEOlDh4rU1cCYwu8sSIbFhDm1XmaxzTny41f2m9XiqiUr/eAseKZ14++OyWDSjK522RWHl2Jn48fTaObmvbUPFDvAZrFNKNMcBmvhqWBtcJo1qvYvlJ7Ft21iGB/1zkNnjzW8DG2nNzC3jN7efi6h93u92zTZ/lkwyfUL1Pf7WRx449rfgKSyMBIp6EMNmVDyvJ++/e9Po+36pSuY9pyb6ZXzV78sOUHcnQO7Sq282q+VrBfMEObuLYeG3tIzOa33VvnXpe5bMaAJMzf+pm4ucrNLgGJraJkbCX35j1mDP6rl6jOO23f4dGGj1IisITTZ6RpTFNebfEqO07voG+dvtw/735OZZyicVRj+3uwZFBJvuvyHSPWjLAP42kU1cipMn9nzTvpVq0bAT4B1P/xQg9MRk6GfWHAcqHlGLN+DDk6h9ur3e4SFNYpVcepMcL43vP38efZps96fOzXl7/eKSCpElnFZW2a68tfb7ruj5GxMaxEYAmX3nRvh5MaH6s3iQDc9ZCYJXQI8A2wp68O9Q+1Jze4pUoeAYmbgEwpRaOoRvbhkwA3xTpnq6tftj7vtn2XhJMJ3FfnvrwejgvHBSNtfJWvfWikv68/3ap2sze2gHMPidPjCIywf6YbRTUiwCeALEuWvYfMHWMiGXcNWG0rtOWbLt+QkZNB+4rtne4z++0uF1qOGyvfyBcbvyDMP8xlgWobs6G6+U0ScaUoTEASBZgtRVof6yT2bGCi4x1a68NKqVVY554IAVi/KN11SZu5r859zNozi2Opx+yT7a82xjSZnsaDX6mMX7TeZGUBa7rLQN9Ae355xxXMvWGbd2FTmK7vyhGV8xwuppRyGgJTWN4kRjAK9Q9lbNexaK09Bm/1y9bn2y7uKye2czkqqpSWF8PgRoOZv28+WZYsnmv6nMd9K4VX4vMbP2dj4kb7kKyCMr6nmsc09+o442tre67NsiHZhkEZgwtvWk/bVmzLV5u+AqyZDEe2G4mfj5/pUB+A3rUvzB8Y13Ucq46u4sZY54yDQX5BvN7qdTpX7szGxI3cUf0Ol/OYBdGOPR6VIiox4bYJ7Dy907Ql/Zkmz3DfHGvF1pYmPb+MKWHLBJdxWnw12C/YdD0jMy49JEElqR7pHJB4MxTVbD9v5t2Y9SrbhhKZea/te8zZO4fG0Y3tZfeURQw8z/WqXaq2c0Bikj77tqq3uSRW8FatkrVc1maKCY1x+nz1rNHTKSCxDcs0Pi6L5cJQwDLBZfig/QcsObSEu2vd7fE70fj97u77VylFy3ItTe/zUT4uvXvlQsvxWIPHaFOhDRXCKrhNIW3WQ3I1TmiHwgUkoYDZL7ltPMAmrbXZKjyHgLxnUgnhRlhAGNO7TycjJ+OipNO7HFQvWR1f5UuuziXMP8yrCfVXGqUUd9a8kyk7plCzZE23LfJGAb4BNIxqaO8l87by4M7VOBbXnaLoTcxryNnlpEJYBeb2msuJ9BNOC6y606p8qyKZq1W/bH37QpCNoxp7PQHVLMsWWF+3h+s/zNebvgZwSjZgrBR700PSoGwDfr3tV85knqF5TPN8Ze8zDqsxur7C9VxfwX0CDbiw0CQ4r2UF1kquu6x+DaMa8sWNX3Dg7AHTgMcbsRGxTtmZWpRrQUxoDC82f5HZe2bTv25/r78TjM99REAEcZFx9vNXDq/sdQ+JMZB0nEvjjlkPibug0lZeW5IAR44L9Bp5Ckg6x3bms38/I1fn0rBswyJZ68SRr48vTaObsujgIvs2Y8reqiWq0rZCW5YdXkawXzAty1uDAuN8rJRs54n3N1S+wSlphTvGQNHT8+GJMSCxZZXMq7HKXQKEq1FhApJEwOxbow3W4VqrTe4DCALOuLlPCK/YcrdfraJConil5Sss2L+A/nX7u7TqXy1ea/ka/er0s6+07q0B8QNYc2wNwX7BHher9Ia7FLPCXOfYzvZsR2aLW15uyoaUdTu05WIJCwjjh64/sObYmjwXXXRkfD4dv+MGXTeIUxmnyM7NZmDdgfbtxiGH3o4vN2Y4vJT+1/J/vLXyLUoFleLOmnfm69g2FdpAIepjSinea/se323+jpblWtqDq751+jplffKGWau2n48fX3X+iqWHltK2Yluvsysav+O9WfHcLNC9q5Z5AhlP7qxxpz397nur3nOaI+ZuDglYJ8qPvmE0G05scMnCVVSaxzR3CkjMArwR7Uaw4MACritzXYEzurlTOaKyPbV2uH94gedvhPiFcIoLc108JdgwHmfkrifmSleYgGQV0F0p1c02T0QpVRaw9XX/6ea4eMB9SgchBGDNyuMuO9nVQillOkEwL20rtmVp76X4+fgVqMV+RNsRvLL8FaKCo/JcIFQ46xzbmTtr3smmxE35SqF9ralVqpbLopx5MQ4HcVyJ3Ja9yKh2Sed2wYK24F5KsRGxeQ4NvJjqlqnLqA6Fn8ZqrCzaejXKh5XPdzZHsE5SP5FunZbrzTDdUkGl7Ot8BfoG8nqr171O+OBIKWW/3lcbv3IOSPJ4P3Wo1MF0/amiYpx/ZdYIEh4QbrrgZ+sKre2T6ttVbFeg6wf6BvJpx0/5bddv3F7t9gLP5TQ2oHo77Mp4XPnQ8h57wa5khQlIPgV6AJOVUpOw9pj0AsKBA8As4wFKqapATeCnQlxXCCHyNZna6Jaqt9CmYhtC/UILtNjktUwpZVoxFoVnrPx500pevWR1Hqz3IH8d+IvHGjx2VSb5uFwZn+vCfCcBfNjhQ4avGE5sRCw9avTIc38f5cMXN37B0kNLaVWuVaGHr4Jr8pHiDnCNc0HyM1xpeKvhDPpzEDmWHJ5p7DmduCfeDEPMizF49TbBibHBrW3FtlftZ7zAAYnWepFSajjwOtAP6zAtBaQD97tZld2WRsBsMny+KKWaAJ2B5uf/VThfrny/UkqpfYCnmbF1tNbbClBMIcRlqrh/aIUwMlYGvc2k9nSTp4tsIVORP7Y1dIJ8g+gX7zlldV4aRjXk9+6/5+uYmNAY7q51d6Gu68ixVw6wD+UqLj7Kh8GNBjNmwxiiQqJMs/S5ExMaw4zuM9Bor9fCuVgck3/4+fi5zD9yJ8DHeShfQXt6rgSF6SFBa/2mUmom1mFaZYGDwM9a671uDskEPgbmurk/P/4HFGxWm3s/uNkuc16EEEJcdLb1QML8wwqcnUhcOkObDqVV+VZUL1G9yOcvFAdjxf1y6EF+uP7D3FzlZqJCovKV7hysvVjGIKs4OA69igmJ8TpAMs4tMkshfrUoVEACoLVeD6zPc0frvv8r7PUc/ANsAtac/7cP62rwBaa1HljoUgkhhBAFNPz64dxQ+Qbqlann9do8ovj4+/hfVa3Wxd2T4I632couV45DtrwdrgXWNXFsiz/2q9Pvsk6zXliFDkiKi9Z6hOPtq3VMnRBCiGtHiH9IvoalCFGUpC51cTj2kOQnU1eIfwgze8xk/9n9btNhXy0uz1BYCCGEEEJcUrdXvZBG3bhKuSg4x6FWbSu2zdex4QHh1CtTz+sU0leqq/vR5ZNS6jmgGta5LluAaVrrxOItlRBCCCHExdezZk82JG7g4NmDvNzy5eIuzlWjS2wXvrzxSxSqSBZfvRpJQOJspOH2R0qpwVrr74ulNEIIIYQQl4i/jz/vtX2vuItx1VFK0bpC6+IuxmVNAhKr6cAiYB3W9VSqAg8AQ4BvlVIntdZ/eHMipdQWN3flf/U3IYQQQgghrnISkABa66cMm7YAzyqltgFfAyMArwISIYQQQgghhPckIPHsO+D/gFpKqTit9b68DtBa1zXbfr7nJL5oiyeEEEIIIcSVTbJseaC1tgC7z9/0Pk+bEEIIIYQQwisSkOSt5Pn/U4u1FEIIIYQQQlyFJCDxQClVF6gFpAHbirk4QgghhBBCXHWumYBEKfWkUmqbUupdw/ZblFIdTfavD0wGFPCt1jrrEhVVCCGEEEKIa8YVO6ldKXUr8D+HTQHnt6902PaW1nrW+b/LYO3tMM4FaQ68rpTaD2zE2htSFWiM9flZDLxY1OUXQgghhBBCXMEBCVAWaGGyvYVhn7zMAyoBzYDWQCRwFvgb+BkYq7XOLVxRhRBCCCGEEGau2IBEaz0OGJeP/YcDw022/wP8U0TFEkIIIYQQQuTDNTOHRAghhBBCCHH5kYBECCGEEEIIUWwkIBFCCCGEEEIUGwlIhBBCCCGEEMVGAhIhhBBCCCFEsblis2xdS7TWaK2LuxhCCOEVpRRKqeIuhhBCiCuEBCSXIa01KSkpnD17lrS0NHJzZRkUIcSVJSAggPDwcEqXLo2vr29xF0cIIcRlTAKSy4zFYuHYsWOcOXOmuIsihBAFlpWVxcmTJ0lNTaVy5coSlAghhHBLApLLzJkzZ+zBSKlSpQgPDycwMFCGPwghrhgWi4XU1FSOHz9ORkYGJ0+eJCoqqriLJYQQ4jIlAcll5vTp0wBERUVRunTpYi6NEELkn4+PD5GRkQAcOXKElJQUCUiEEEK4JVm2LiNaazIzMwGIiIgo5tIIIUThhIaGAtbhW5KYQwghhDsSkFxGHH+wZby1EOJK5+Nz4SdGAhIhhBDuSEAihBBCCCGEKDYSkAghhBBCCCGKjQQkQgghhBBCiGIjAYkQQgghhBCi2EhAIq4I+/btQylFhw4dvD6mQ4cOKKXYt2/fRSvX5XRdR4sXL0YpxcCBA4utDEIIIYQQ3pCARAghhBBCCFFsZGFEIa5CzZs3Z+vWrfbF6YQQQgghLlcSkAhxFQoJCaF27drFXQwhhBBCiDzJkC1xxTl79ixDhgyhUqVKBAUFUadOHT766CMsFovX50hISKBv376UK1eOgIAAKlSoQP/+/dm+fbvbY7Zu3cqDDz5IXFwcgYGBREVF0bp1az744ANycnLyvOaZM2do164dSikGDx5coIXiVqxYQffu3YmNjSUwMJCYmBiaN2/Oiy++yLlz5+z7mc0hsW3z9M8450RrzYQJE+jYsSMlS5a0P9/Dhw8nLS0t3+UXQgghhDCSHhJxRcnMzKRjx47s3r2bjh07kpWVxYIFCxg6dCgbN25k3LhxeZ5jwYIFdOvWjfT0dBo1akSHDh3Ytm0bP/30E9OmTWP27Nm0bdvW6ZjJkydz3333kZmZSZ06dejRowdnzpxhy5YtPPfccwwaNIgSJUq4vebx48fp2rUr//77L6+99hpvvPFGvh/7jBkz6N69O1prmjdvzvXXX09ycjI7d+5kxIgRPProo4SFhbk9PiYmhgEDBpje9/fff7N79258fX3t2ywWC/369WPChAmEhYXRtGlTSpYsydq1a3njjTeYM2cOixcvJjg4ON+PRQghhBDCRgKSK4zWmrMZebfGX04igvxQShXJuVauXEn9+vXZuXMnZcqUAWD37t20a9eOH374ge7du9O9e3e3x6emptK3b1/S09P59NNPeeKJJ+z3ffTRRwwdOpR7772XnTt3EhQUBMDOnTvp378/ubm5/Pzzz9x77732Y7TWzJ8/32OlfN++fXTu3Jndu3fzySefMHjw4AI99g8++ACLxcKUKVPo1auX031r1qyhdOnSHo+vXbu2acC2cuVKJk6cSIkSJXjhhRfs2z/88EMmTJhAhw4dmDBhAjExMQBkZWXx+OOP89133/HGG2/w3nvvFejxCCGEEEKABCRXnLMZOTR448/iLka+bHy9C5HB/kV2vg8++MAejABUq1aN//3vfzz22GN8+umnHgOSSZMmcfz4cVq1auUUjAA888wz/Pzzz6xbt46pU6fSt29fwBqoZGRk8OijjzoFIwBKKbp06eL2elu2bKFLly6cOHGCn376yX7OgkhMTATgxhtvdLmvWbNmBTrnoUOH6NGjBzk5Ofz666/UrFkTgJycHEaOHEloaCgTJ04kOjrafkxAQABjxoxh1qxZfP3117zzzjv4+MjoTyGEEEIUjNQixBWlVKlSdO7c2WX7PffcA1jnWHiaS7Js2TIAt4FBv379nPYD+OuvvwB45JFH8lXWlStX0q5dO06fPs20adMKFYwANGnSBID77ruPNWvW5GvOjJn09HTuuOMOjh07xocffugUWK1fv56kpCSuv/56p2DEJjg4mCZNmnD69Gl27txZqHIIIYQQ4tomAYm4osTGxppuj4yMpESJEqSnp3P69Gm3xx85cgSAuLg40/tt2w8fPmzfdvDgQcDaE5Mf9913H6dOnWLcuHHcdttt+TrWzDvvvEODBg2YMWMGzZs3p0yZMtx+++18++23ZGRk5Pt8AwcOZP369Tz44IMMGTLE6T7boo7z5893OwF+1qxZACQlJRX6sQkhhBDi2iVDtq4wEUF+bHzd/RChy1FE0JXzNiuquS5g7bX56aefeO2112jXrp19DkZBVapUibVr17Jw4UJmzpzJkiVLmDFjBjNmzGDkyJH8888/ec4jsXnrrbeYNGkSbdq04fPPP3e539b7Ur16dVq3bu3xXN5eUwghhBDCzJVTUxSAtcJclPMxrjQHDhww3X727FmSk5MJDg72mO2qfPnyAOzfv9/0flvPQIUKFezbKlWqxM6dO9m9ezcNGzb0uqxvvvkm5cuXZ8SIEXTs2JHFixcTFRXl9fFm/Pz86NKli3141f79+3nggQdYuHAhI0aMYOTIkXmeY9q0abz++uvExsby22+/ERAQ4LJPxYoVAfcT4YUQQgghiooM2RJXlJMnT7JgwQKX7RMnTgSgVatWTqlrjWzpfCdMmGB6//jx4532gwuTyL/++ut8l/e9995j2LBhbN26lY4dO9onpheV2NhYe2aszZs357n/xo0bue+++wgJCeGPP/6gbNmypvs1a9aMyMhIlixZwqlTp4q0zEIIIYQQjiQgEVecYcOGcfLkSfvtvXv38uabbwK4ZM4yuvvuu4mOjubvv/92CTA++eQT1q5dS4UKFZzS6j799NMEBQXxzTff8OuvvzodY0v7m5mZ6faa77//PkOHDmXLli106tSpwHMuPvroI44dO+ayffbs2YC1J8eTxMRE7rjjDtLS0vjxxx9p0KCB230DAwN5/vnnSUlJoWfPnuzZs8dln8OHD/PTTz/l81EIIYQQQjiTIVviitKyZUuysrKoXr06HTt2JDs7mwULFpCWlka/fv3o2bOnx+NDQ0P5+eef6datG4888ghff/01NWvWZNu2bWzYsIGwsDAmTJhgX4MEoGbNmowdO5b+/fvTp08f3nzzTerXr8+ZM2fYvHkzBw8e5PTp0wQGBrq97ocffkhubi4ff/wxnTp1YuHChfmee/HGG28wbNgwGjRoQI0aNdBas3HjRnbs2EGpUqUYNmyYx+O//PJL9u/fT0xMDNOnT2f69Oku+7Rp04ZBgwYB8OKLL9oXjKxTpw6NGjWiSpUqZGVlsX37dhISEqhfvz733Xdfvh6HEEIIIYQjCUjEFSUwMJC5c+fy8ssv8/vvv5OUlESVKlV46KGHePrpp706R6dOnVizZg1vv/02CxcuZNOmTZQpU4Z+/frx6quvUqtWLZdj+vTpQ3x8PO+//z6LFi1i6tSplCxZkho1avD00097XCHdZvTo0VgsFsaMGcONN97IggULKFWqlNePfcyYMcydO5d169YxZ84cwNorMnToUIYOHeo078VMbm4uAMeOHeOHH35wu58tIPHx8eHHH3/kzjvv5Ouvv2bNmjWsX7+ekiVLUqlSJZ577jl69+7tdfmFEEIIIcworXVxl+GaoJTaEh8fH79lyxa3+1gsFrZv3w5ArVq1ZLE5IcQVTb7ThBDi2lC3bl0SEhIStNZ1C3K8/DoIIYQQQgghio0EJEIIIYQQQohiI3NIhCgmw4YN8zrjlqwFIoQQQoirlQQkQhSTKVOmuF2g0UgCEiGEEEJcrSQgEaKY2FaFF0IIIYS4lskcEiGEEEIIIUSxkYBECCGEEEIIUWwkIBFCCCGEEEIUGwlIhBBCCCGEEMVGAhIhhBBCCCFEsZGARAghhBBCCFFsJCARQgghhBBCFBsJSIQQQgghhBDFRgISIYQQQgghRLGRgESIIrJ48WKUUgwcODBfx8XFxaGUujiFugyv62jcuHEopRg+fHixlkMIIYQQxUcCEnFF2LdvH0opOnToUNxFEUIIIYQQRcivuAsghLh29ejRg5YtW1KmTJniLooQQgghiokEJEKIYhMZGUlkZGRxF0MIIYQQxeiKHbKllGqilHpRKfWbUuqQUkorpXQhzldSKfWxUmq/Uirz/P+jlVIlirDYogCGDx9OlSpVAFiyZAlKKfu/gQMH8sILL6CU4u6773Y5NikpifLly+Pr68vff/9t356VlcXnn39Os2bNKF26NCEhIcTFxXHbbbcxceLEQpf56NGjDBw4kOjoaIKDg2ncuDE//vhjvs/zzz//cMcdd1C2bFkCAwOJi4vj8ccf58iRI26PWbVqFX369KFChQoEBgZSrlw5OnXqxDfffOPVNQ8dOkR8fDxKKUaOHJnvMgPMnj2bzp0728tQvnx52rRpwxtvvOG0n9kcEts2T/+Mc05ycnL44osvaNWqFREREQQHB9OwYUNGjx5NTk5OgR6DEEIIIS6NK7mH5H/AHUVxIqVUGeAfoDqwB/gdqAsMAW5WSrXSWp8qimuJ/GvYsCG9evVi6tSpREdH07VrV/t9bdq0oX///syfP5/Jkyfzww8/MGDAAPv9Dz30EEePHuWVV16hTZs29u19+/ZlypQphIeH07ZtWyIiIjh8+DB///03586do0+fPgUu76lTp2jZsiWZmZl06NCB06dPs2jRIgYMGMCePXu8nsA9fvx4Bg4cSG5uLq1bt6ZSpUqsX7+eL774gt9++43FixdTu3Ztp2M+/vhjhg4disVioUmTJrRr146kpCQ2bdrEc889x0MPPeTxmjt27KBLly4cOnSIb775hkGDBuX78X/22Wc8+eST+Pr60rp1a9q3b09SUhJbt25l+PDhvP766x6Pr169utNr6Gju3LkcP34cX19f+7b09HRuvfVWFi1aRKlSpWjZsiVBQUGsWrWKZ555hkWLFjFt2jR8fK7Y9hchhBDi6qa1viL/AS8AbwLdgBggw/pwCnSu8YAGpgJ+Dts/Ob99XBGUd0t8fLz2JDc3VyckJOiEhASdm5trvpPFonXa6Svrn8Xi8XF7Y+/evRrQ7du3N70/ISFBBwcH6/DwcL1nzx6ttdZff/21BnSzZs10dna2fd89e/ZoQMfGxuqkpCSn86Snp+sVK1YUqIyLFi3S598vunPnzvrcuXP2+1avXq3DwsK0j4+PXrdundNxsbGx+vx71+7AgQM6ODhY+/r66j/++MO+PTc3Vz/99NMa0E2bNnU6ZsmSJVoppcPDw/Vff/3ldF92draeNWuWx+uuW7dOly1bVgcGBuqpU6cW6DnQWuvKlStrpZRes2aN03aLxaIXLVrktG3s2LEa0K+//nqe5506dapWSunY2Fh94sQJ+/bHH39cA7p37946OTnZvv3s2bP6lltu0YD+4osvCvx4RMF59Z0mhBDiihcfH6+BLbqA9eQrtodEaz3C8XZB05cqpcoB9wBZwONaa8fxHc8BfYB+SqnntdYnCljcopNxBkbEFncp8ueF/RBc4qJeok6dOnzwwQc88cQT9O3bl++++45nnnmGkJAQxo8fj5/fhbd6YmIiAI0aNaJ06dJO5wkKCqJVq1aFKouPjw9jxowhNDTUvq1Zs2Y88cQTjBgxgs8//5xvv/3W4zm+/fZb0tPTueeee7j99tudzv3ee+8xadIk1q5dy/Lly2ndujUA7733HlprXnnlFTp16uR0Pj8/P2655Ra311uyZAm33347FouFWbNmuRyfH4mJiZQoUYKmTZs6bS9MlrSNGzfSv39/QkJCmD59OmXLlgXgxIkTfPPNN1SqVImxY8cSHBxsPyY8PJzvvvuO2NhYvvjiCx599NECPyYhhBBCXDwyhgG6Yn0elmmtjzveobXOBGYAvoD72py4LDz++OPceuut/PPPP7Rs2ZLU1FQ++ugjatas6bRf7dq1CQ0NZdasWbz//vse52MURMOGDalVq5bL9nvuuQeAZcuW5XkO2z59+/Z1uS8wMJC77rrLab+cnBwWL14MwMMPP5yv8k6fPp2uXbvi7+/PggULChWMADRp0oTTp0/z4IMPsmXLlkKdC6xBx+23305aWho//fQT9evXt9+3ePFisrOz6dq1q1MwYhMTE0ONGjX477//SE9PL3RZhBBCCFH0JCCBBuf/X+/mftv2+m7uF5eR7777jqCgIM6ePcvNN99sWjmPiIjgm2++ITAwkOeff54KFSpQq1YtHn30UZYvX17oMsTGmvdgxcXFAXgVANn2sR3j7lyHDx8G4OTJk6Snp1OqVClKliyZr/L26tWLjIwMZs2aRfPmzfN1rJnPPvuMKlWq8P3331OvXj1iYmLo3bs3v/76K7m5ufk6V1ZWFj179uTAgQO8+eab9OjRw+n+ffv2AfDNN9+4nQC/ZcsWtNacOiXTwIQQQojL0RU7ZKsIVT7//yE399u2Xx7jpIIirUOgriRBly6t6/Tp08nIyABg+/btnDt3jrCwMJf97rnnHm688Ub++OMP/vzzT5YsWcJXX33FV199xdChQ/nwww8vWZkLoihXWL/nnnv46aefGDZsGHPmzDF9vvKjfv36JCQkMHfuXGbPns3ixYuZNGkSkyZNolWrVixevJiAgACvzvXYY4+xfPly7r77bl599VWX+y0WC2DtlWrQoIHL/Y4CAwPz/2CEEEIIcdFJQAK22leam/tTz/8f7s3JlFLuxqhUy0+hPFzgos/HuFLt3LnTPm+ka9eu/Pbbbzz11FN8//33pvuXLVuWQYMGMWjQILTWzJs3j969ezNq1CgeeOAB6tatW6By7N9vHjDatpcvXz7Pc5QvX57t27ezf/9+03LYegYqVKgAQJkyZQgODubUqVMkJydTokQJr8s7duxYcnNz+eWXX7j11luZPXu20/yXgggKCqJ79+50794dgC1btnDvvffyzz//8O233/L444/neY7Ro0fz/fff06RJE8aNG2e6T8WKFQFrtrUxY8YUqsxCCCGEKB4yZEtcEWwt6u7WlMjJyaFfv36kpqYyatQoxo8fT+3atRk7dixTp07N8/xKKbp27cqtt94KUKi5D//++y87d+502W5b38Qx/bA7bdu2BWDChAku92VlZTF58mSn/Xx9fe0Txr/++ut8ldfX15cff/yRPn36sHTpUm677TbS0tzF5wVTt25dnnjiCQA2b96c5/5//vknw4YNIyYmht9//910fgjADTfcgK+vLzNnziQ7O7tIyyyEEEKIS0MCEjh3/v8QN/fbmopTvDmZ1rqu2T9gd2ELei0rU6YM/v7+7N6923Qewptvvsnq1avp1q0bjzzyCMHBwYwfPx5/f38efvhhp3kbGzZs4LfffiMrK8vpHKdOnWLVqlUAVKpUqcBltVgsDB482KlSv27dOj799FOUUjz22GN5nuPBBx8kODiYiRMnMmvWLKdzv/zyyxw+fJgmTZrYM2wB9gUi3377bRYtWuR0vpycHGbPnu32er6+vowfP567776bxYsX061btwJNAk9LS+OTTz4hOTnZabvFYmHu3LlA3s/tjh076N27N35+fkybNs3eC2KmQoUKPPDAA+zbt4977rmH48ePu+yza9cur4JSIYQQQhQPGbIFB87/767WY9t+hU3cuLoEBATQtWtXZsyYQYMGDWjcuDEBAQG0bt2a2rVr88477xAdHc13331nP6ZJkyYMHz6cV155hYEDBzJv3jyUUuzfv59evXoRGRlJ06ZNiYmJITk5maVLl5KSkkK3bt0Klfr3tttuY+PGjVSrVo127dpx5swZFi5cSHZ2Nq+++qpLOlwzlStX5quvvmLgwIF069bNaWHE7du3Ex0dzfjx452Oad++PSNHjuT555+nY8eONG3alBo1apCUlMTGjRvJzMx0CRQc+fr68vPPP5Obm8vUqVO5/fbbmTFjBkFBQV4/9qysLIYMGcKwYcNo0qQJcXFxZGVlsWbNGg4ePEhcXFyeWcBGjBhBcnIy1atX58svv+TLL7902cdxONjHH3/Mvn37mDp1KnPnzqVhw4ZUrlyZ1NRUEhIS2LVrF3fccQe9evXy+nEIIYQQ4hIq6AIml9s/CrgwInA/1sXs/nJz/3fn7x9YyPIVzcKI17Djx4/r++67T8fExGhfX18N6F69eumqVatqwGXhP62tz2mbNm00oEeNGqW11vro0aP6//7v/3THjh11xYoVdUBAgI6OjtatW7fW33//vc7KyipQ+WwLIw4YMEAfPnxY9+vXz77QYIMGDfTYsWNNjzNbGNFm+fLlulu3brp06dLa399fV65cWT/22GP60KFDbsuxdOlS3aNHDx0VFaX9/f11uXLldKdOnfS3337r1XWzs7N1jx49NKC7dOmi09PTvX4OsrOz9WeffaZ79uypq1WrpkNCQnSJEiV0/fr19RtvvKFPnjzptL/ZwogDBgywLzDp7p9xIcWcnBz9ww8/6I4dO+pSpUppf39/Xb58ed2qVSv9xhtv6O3bt3v9GETRke80IYS4NhR2YUSlrZXlK55SKgMI1FrnK/3Q+YURDwE5QCXtsPihUioQOAiUAsrrQiyMqJTaEh8fH+9pboLFYmH79u0A1KpVCx8fGVEnhLhyyXeaEEJcG+rWrUtCQkKCtk5TyLdr5tdBKfWkUmqbUupdx+1a66PABCAA+Fwp5TiMbSRQFhhfmGBECCGEEEIIYe6KnUOilLoV+J/DpoDz21c6bHtLa22bEVwGqAWUMznd00BLoBewTSm1FqgL1AN2AkOLtPBCCCGEEEII4AoOSLD2XLQw2d7CsE+etNZJSqnmwHCgO9ADOA58AryutU4uTEHFlWnYsGEkJSV5ta+7dTKuBgMHDvRqvzJlyvDBBx9c3MIIIYQQ4qpz1cwhudzJHJIrT1xcnNtFDo2u5s+Rt6vCx8bG2hdsFALkO00IIa4VhZ1DciX3kAhxUUnl2upqDraEEEIIUfykuUoIIYQQQghRbCQgEUIIIYQQQhQbCUiEEEIIIYQQxUYCEiGEEEIIIUSxkYBECCGEEEIIUWwkIBFCCCGEEEIUGwlIhBBCCCGEEMVGAhIhhBBCCCFEsZGARAghhBBCCFFsJCARQhSLdevW0aVLF0qUKIFSCqUU+/btu2jXi4uLQyl10c4vhBBCiILxK+4CCCGuPSkpKdx+++0cPXqUDh06UKlSJZRShIWFFXfRhBBCCHGJSUAihLjk1qxZw5EjR7jvvvv48ccfL8k1FyxYQHZ29iW5lhBCCCG8JwGJEOKSO3ToEABVq1a9ZNesVq3aJbuWEEIIIbwnc0jEFWHfvn0opejQoQOpqakMHTqUSpUqERwcTOPGjZkxY4Z938mTJ9OiRQtCQ0OJjo7mqaeeIj093eWcaWlpvPvuuzRq1IiwsDDCwsJo2bIlP/zwg2kZli1bxpNPPkn9+vUpWbIkwcHB1K5dmxdffJHk5GSX/RcvXoxSioEDB3Lq1Ckee+wxypUrR2BgIPXq1eP7778v1HMycOBAlFIsXryYOXPm0KZNG8LCwihZsiQ9e/Zk27ZtLseMGzcOpRTDhw9nx44d9OnTh+joaHx8fPj999/t+82ePZvOnTtTsmRJgoKCqFWrltvHCZCTk8OYMWNo0qSJ/bls3rw5X3zxBbm5ufb9bK/jgAEDAHjjjTfs80cGDhyY7+cgMTGRF198kfj4eMLCwoiMjKRmzZr079+f1atXO+1rNofEts3TP6OtW7cycOBAKlWqRGBgINHR0fTp04ctW7bku/xCCCGEkB4ScYXJysqiU6dO7N27l3bt2pGUlMTSpUvp0aMHc+fO5b///uP555+nffv23HTTTSxdupQxY8Zw8uRJfv75Z/t5Tpw4QefOndm0aRMxMTG0b98erTUrVqxg4MCBrF27ljFjxjhd+7nnnmPjxo3Ur1+fTp06kZGRwfr16xkxYgQzZ85k5cqVpnMgkpOTadWqFefOnaNt27b2Mj/44INYLBYGDRpUqOdk8uTJfPHFFzRt2pRu3bqxadMmpk2bxsKFC1myZAkNGjRwOWb79u00a9aM0qVLc8MNN3D69Gn8/f0BePfdd3n55Zfx8/Ojffv2lClThuXLlzNixAimTZvG0qVLiY6Otp8rNzeXO+64g9mzZxMREUHnzp3RWrNw4UIef/xx5s+fz5QpU/Dx8SEsLIwBAwawa9culi9fToMGDWjYsCEAbdq0ydfjTklJoUWLFuzdu5dKlSrRuXNn/Pz8OHDgABMnTqRq1ao0b97c4znuvPNOkpKSXLYfO3aMefPm4ePj3Gbz+++/06dPHzIzM2nYsCEtW7bk4MGDTJo0iRkzZjBnzhzatWuXr8chhBBCXPO01vLvEvwDtsTHx2tPcnNzdUJCgk5ISNC5ubke973W7N27VwMa0B07dtTnzp2z3zd27FgN6OrVq+uSJUvqNWvW2O87fPiwjoqK0oDevXu3ffstt9yiAT1kyBCdkZFh337s2DHdtGlTDeg5c+Y4lWH27Nk6OTnZaVtGRoZ++OGHNaDfeOMNp/sWLVpkL3OfPn2crjNt2jQN6MqVKxf4ORkwYID9/F9//bV9u8Vi0S+88IIGdMOGDZ2OsT1XgH7yySd1Tk6O0/2rV6/WPj4+OiwsTK9cudLpcd51110a0L169XI65oMPPtCArlu3rj527Jh9+5EjR3StWrU0oMeMGWNajtdff73Aj//777/XgL799ttdPi8nTpzQ//33n9O22NhYbf3K8yw9PV03b95cA3rkyJH27Xv37tWhoaE6LCxMz58/3+mYOXPmaH9/f12pUiWdmZlZ4Md0tZHvNCGEuDbEx8drYIsuaD25oAfKv+IJSCwWiz6TeeaK+mexWDw+bm/YAhIfHx+9fft2l+etTJkyGtCvvvqqy7HPPPOMBvTYsWO11lpv2LBBA7pZs2amz/P69evtFV1vpKWlaT8/P924cWOn7baAJCIiQiclJbkcV69ePQ3ovXv3enUdI1tAcv3117vcl5WVpStWrKgBvWzZMvt2WyBQtmxZnZqa6nJc//79NaBfeukll/uOHz+ug4ODtY+Pjz5w4IB9e+XKlTWg582b53LM9OnT7cGio6IISEaMGKEBPXr0aK/29zYg6devnwb0fffd57R9yJAhpsGVzVNPPaUB/dtvv3lVnmuBBCRCCHFtKGxAIkO2rjAp2Sm0ntC6uIuRL8vvWU5EQESRnCsuLo6aNWs6bfPx8SE2NpakpCS6dOnicoxt4vTRo0cB+PPPPwHo3r27y5AcwD6nxDgHAeDw4cPMmDGDbdu2cfbsWSwWCwABAQHs3LnTtMxNmjShdOnSLttr1qzJ5s2bOXr0KHFxcR4etWd9+vRx2ebv78+dd97J6NGjWbZsmctwqBtvvJGQkBCX45YtWwZA3759Xe6LioqiS5cu/PHHHyxfvpw+ffpw4MABDhw4QNmyZU2f+9tuu40SJUqwa9cujh07RkxMTEEfposmTZoA8P777xMdHc2tt95KeHh4oc45YsQIxo8fT4sWLfjmm2+c7rO9b3r27Gl6bNu2bfnkk09YvXo1PXr0KFQ5hBBCiGuJBCTiilKhQgXT7ba5G2b32+7LzMwEsC++98orr/DKK6+4vVZGRobT7VGjRvHiiy/mO3VsxYoVTbfbKs+2chVUbGys6XZbkHPkyBGX+ypXrmx6jG1fdwGSbfvhw4ed9ndXBqUUsbGxJCcnc/jw4SINSDp16sQzzzzD6NGjueeee/Dz86Nx48Z07tyZBx54IN8ZvGbOnMnLL79MxYoV+f333wkMDHS63/a+cfcetDGbkyKEEEII9yQgEVcUsx6N/NwP2Hs12rRp43Uq2JUrV/Lss88SGRnJxx9/TIcOHYiJibFXWsuXL2/vgSlImS61oKCgAh1XkJXOL+bq6KNGjeKRRx7hjz/+4K+//mL58uWsXr2akSNHMmHCBHr16uXVeRISErj33nsJDAzk999/Nw2cbO8bW4Ywd1q0aJH/ByKEEEJcwyQgucKE+4ez/J7lxV2MfAn3L9wwmqJm67Ho3r07zz77rFfHTJs2DYC3337bpUKanp7OsWPHiraQ+bB//36P28uXL+/1ucqXL8/evXvZv38/8fHxLvcbewls53ZXBsf78upZKKhatWrx/PPP8/zzz5ORkcGnn37Kc889x2OPPeZVQHLy5Em6detGSkoKEydOtA8FM6pYsSK7d+/mww8/NB2CJ4QQQoiCufyaboVHSikiAiKuqH8Xs4W8IDp37gxcCDK8cfr0acB8+NXkyZNtiQuKxaRJk1y25eTkMHXqVCB/6XTbtm0LwIQJE1zuS0xMZN68eSilaN3aOo+pcuXKVK5cmcTERBYsWOByzKxZszh9+jTVq1cv0uFa7gQFBTFs2DDKlStHYmIiJ06c8Lh/Tk4Od911F3v27OHVV1+ld+/ebvctyPtGCCGEEHmTgERcc1q0aEHnzp1Zvnw5TzzxBGfPnnXZZ+PGjcydO9d+2zaR/rvvvnOaQ5KQkMALL7xw8Qvtwd9//+2yyOLrr7/OgQMHqF+/vj3I8MYTTzyBj48Pn3zyCWvXrrVvz8rKYvDgwaSnp9OzZ08qVapkv2/w4MEADB06lMTERPv2Y8eO8dxzzwEwZMiQAj02T37//XdWrlzpsn3dunUcP36csLAwSpQo4fEcTz31FIsWLaJ79+68+eabHvd99tlnCQ4OZtiwYfz2228u92dmZjJlyhT7KvRCCCGE8I4M2RLXpPHjx9O1a1c+//xzfvnlFxo2bEj58uU5c+YMmzZt4uDBgwwZMoSuXbsCcP/99/Phhx8yY8YMatWqRbNmzTh16hRLliyhe/furF692uOwpYvpscceY9CgQXz11VdUq1aNTZs2sWXLFiIiIhg3bly+ztW8eXPeeustXnnlFVq1akWHDh3sCyMePHiQGjVq8Nlnnzkd88wzz7Bw4ULmzJlDjRo16NixI1prFixYQEpKCt27d+fxxx8vwkdstXjxYj7++GMqVKhAo0aNiIiI4MiRIyxbtgyLxcIbb7xBQECA2+MPHjzIF198AYCvry/333+/6X6257B69epMmDCBe++9l169elG9enXq1KlDaGgohw8fZv369aSmprJhwwa3iQyEEEII4UoCEnFNioqKYsWKFXzzzTdMnDiRDRs2sGLFCqKjo6latSpPPfWUUzrd0qVLs2bNGl544QWWLFnC9OnTqVKlCm+99RbDhg3zenL8xXD33Xdzyy238M477/DHH3/g7+/PHXfcwTvvvGM6DyQvL7/8Mg0aNOCjjz5izZo1pKenU7lyZZ5//nlefPFFSpYs6bS/r68v06dP5/PPP2fcuHHMmzcPgPj4eO6//34eeeSRizKxf+DAgfj5+bF06VJWr17NmTNniImJ4ZZbbmHIkCF06tTJ4/G5ubn2v23D28w4BnV33HEHmzZtYtSoUcyfP5/58+fj7+9P+fLl6datGz179izQcy6EEEJcy1Rxjn2/liiltsTHx8dv2bLF7T4Wi4Xt27cD1om6l2N2JnH5GDhwID/88AOLFi2iQ4cOxV0cIVzId5oQQlwb6tatS0JCQoLWum5BjpdfByGEEEIIIUSxkYBECCGEEEIIUWxkDokQl4Ft27bx3nvvebVvmzZtGDRo0EUu0aX3+++/8/vvv3u176BBg/KVzlgIIYQQly8JSIS4DBw7dowffvjB6/0HDRrEuHHj8p1F63L277//ev0cdOjQQQISIYQQ4iohAYkQl4EOHToU6+KKl4Phw4czfPjw4i6GEEIIIS4xmUMihBBCCCGEKDYSkAghhBBCCCGKjQQkQgghhBBCiGIjAYkQQgghhBCi2EhAIoQQQgghhCg2EpAIIYQQQgghio0EJEIIIYQQQohiIwGJEEIIIYQQothIQCKEEEIIIYQoNhKQCCGEEEIIIYqNBCRCiKuGUoq4uLhCn2fcuHEopRg+fHihz1Uc4uLiUEoVdzGEEEIIr0hAIsQl0qFDB5RS7Nu3r7iLIoQQQghx2fAr7gIIIcTlpkePHrRs2ZIyZcoUd1EKZMGCBWRnZxd3MYQQQgivSEAihBAGkZGRREZGFncxCqxatWrFXQQhhBDCazJkS1z2MjIyCAoKMp0b0L17d5RStGnTxuW+pk2b4uPjQ2Jion1bQkICffv2pVy5cgQEBFChQgX69+/P9u3bXY5fvHgxSikGDhzIsWPHGDRoEBUrVsTPz4/Ro0cDkJWVxeeff06zZs0oXbo0ISEhxMXFcdtttzFx4kQA9u3bh1KKJUuWAFClShWUUvZ/BXXw4EGeeuopatasSXBwMKVKlaJp06a88cYbnD171r7f0aNHGTlyJO3bt6dChQoEBAQQExNDz549WbNmjem5ExMTefHFF4mPjycsLIzIyEhq1qxJ//79Wb16tcv+J0+c4MVhw4iPjyc4OJjIyEg6duzIzJkzC/z4bLTWTJgwgc6dO1O6dGn7e+Huu+9mwYIFXh/fp08fatasSWhoKOHh4TRv3pzPP/8ci8Xicoy7OSQDBw5EKcXixYv566+/aNeuHeHh4URFRfHQQw9x5swZAE6cOMEjjzxChQoVCAoKonnz5ixevLhQz0N+XhOzOSS2bZ7+GW3dupWBAwdSqVIlAgMDiY6Opk+fPmzZsqVQj+Vak7l7Nyc+/pj0/zYXd1GEEIVgycri3PLl5DjUK0TRkB4ScdkLCgqiRYsWLF26lH379tkDE4vFwtKlSwFYs2YNaWlphISEAHDmzBk2bNhAfHw8ZcuWBazDWLp160Z6ejqNGjWiQ4cObNu2jZ9++olp06Yxe/Zs2rZt63L9xMREmjVtSk5WFtc3a0ZWo0b26/Tt25cpU6YQHh5O27ZtiYiI4PDhw/z999+cO3eOPn36EBYWxoABA5g7dy7Hjx+nV69ehIWFFeo5WbZsGbfffjvJycnExcXZH9e2bdsYPnw4d9xxBw0bNgTgjz/+4IUXXqBWrVrUr1+fiIgIdu7cybRp05g5cyYzZ86kS5cu9nOnpKTQokUL9u7dS6VKlejcuTN+fn4cOHCAiRMnUrVqVZo3b27ff3tCAjfeeCOHjh4lrlIlbrrpJlJSUli5ciXdunXj/fffZ9iwYW4fi87NBR8fe4XYkpGBJS0N3/BwLD4+3HPPPUyePJmAgABat25NdHQ0Bw8eZNasWWRlZdGpUyePz1VmZib33nsvpUuXJj4+nsaNG3Py5ElWrFjBE088werVqxk3bly+nv9p06bx2Wef0apVK7p27crKlSv59ttv2blzJ1OmTKFVq1bk5ubStm1b9u3bx6pVq+jatStr1qzhuuuuy9e1IP+viZk777yTpKQkl+3Hjh1j3rx5+Pg4t0/9/vvv9OnTh8zMTBo2bEjLli05ePAgkyZNYsaMGcyZM4d27drl+7Fca7TFwsFHHyP74EFO//gT1ebOwe/8d5IQOadOkbJgAT5BQQQ3akxAxQrFXSThwbE33+TMlKn4REZS/c95+HrZk661JmXePEARflMXSTpiRmst/y7BP2BLfHy89iQ3N1cnJCTohIQEnZuba7qPxWLROWfOXFH/LBaLx8ftjddee00DeuzYsfZt69ev14CuW7euBvT8+fPt902fPl0D+oknntBaa33u3DkdHR2tAf3pp586nXvUqFEa0BUrVtTp6en27YsWLdKABvQdnTvrU2vX6rT//tM5yclaa6337NmjAR0bG6uTkpKczpmenq6Xzpyp07du1VnHjmuttW7fvr0G9N69ewv1XJw8eVKXLVtWA/r99993ea+sWLFCHz9+3H5706ZNevPmzS7nmTt3rg4ICNDVqlVzeo2+//57Dejbb7/d5dwnTpzQ//33n/12Tk6Orlenjgb020OH6nMbN9rPtXPnTl2lShXt6+vrdIyjrKNHddp//+mMPXu0JTdXZ586pdM2b7Zu271bv/XWWxrQ8fHxes+ePU7HJicn68WLFztts70ejrKzs/W0adN0VlaWy2Np2rSpBvSSJUuc7hs7dqwG9Ouvv+60fcCAARrQPj4+eubMmfbtZ8+e1fXq1bOXtV+/fk7Xe/XVVzWg+/fvb/o82FgsFp2bkaEtOTlO2x1fk2zD/cbXRGutY2NjtfXr3bP09HTdvHlzDegRb7+tc86e1RaLRe/du1eHhobqsLAwp8+V1lrPmTNH+/v760qVKunMzEyP5/fmO+1yZsnJ0YlffKmPf/CBzklJKdA5sg4d0gm1atv/HX3zrSIupbOcs2f1mbnzdJbDd4C4fO3rP+DC+6N2HX1y/PjiLpJwIzcjw+mzfGrSJK+PPTVpkv2401OmXMRSFp/4+HgNbNEFrCdLD8kVxpKSwo7mLYq7GPlSc/UqfCMi7Le11mQfPowlLQ3/mBin+9xp3749AIvmz2fAgAH2YTMAr732Gr1792bx4sXceOONAPb7bMdNmjSJ48eP06pVK5544gmncz/zzDP8/PPPrFu3jqlTp9K3b190bq615R4IDAzkgxdeICgwEICc06fxjYy0DwVr1KgRpUuXdjqnf1YWTWNj0Tk55CSewDcy78forW+//ZbExES6du3K0MGDyd69G3x8CIiNRfn50apVK6f93bXI33TTTdx11138/PPPbN682b6f7XF17NjRpdW8bNmy9h4ngBkzZrB561a6d+7MM/ffD4DOzkYFBFC9enU+/PBDevbsyVejR/P+Cy9YhwYFh+BfLgYsFnLOt9hbUlPJSEhwulbGmTN8+OGHAHz//fdUqVLF6f7IyEj76+uJn58f3bt3d9letmxZ3n33XTp37swff/yRr9b+e++9l1tvvdV+Ozw8nIceeoghQ4Zw6NAh/v77b/z9/e33Dxs2jLfffts+bM9Ia03OsWPknDoN2gJKEVitGj5BQcCF16RDq1Zk79xJtvIhsFpVfIKCXF4TAM4PQ8s9l4pvWKjbx/HQQw+xevVq+t17L4Nvv52s/fvxi4pi9OjRpKamMmbMGG688Ua01uSeOoXOzeWmLl147LHH+OSTT5g1axY9evTw6jnTFgs6Nxfl8LwUF0tqKvj62p9fd05PmEji+eGZoIh6dmi+r5W5e7fT7eSpUynz+GP4Gb4zioLWmoMPPUz6v//iX6ECVaf/gU+o+9e/ICxZWWTt3Udg9WooX98iPXdedG4ux999j6y9e4l+5WUCq1Yt9Dkztm3j5Lff4V++PGUHP+nx/alzcjj9ywTw86Xk3Xej/ApXhco6eJC0VascLqBJ+vwLSvbuXehzO9LZ2SR9+RWWtDTKPvlEkb8nLje5KSmogAB8zv9mF5X0fzc63c45cQIAS2YmWfv2EVijBsrHfCbEseFvXPj77Xco0atXgcqQm5JC+r//EtyoEb6FHGlxuZGARFx02pDtJzc5mdzkZACyDh0isHp1fAIC3B9vsdCkYkUCAwJYvHgxuadO4Ve6NIsXLyY8PJxevXoRGxvrNEbf9neHDh0A6xAnsA6xMtOvXz/WrVvH0sWLuattW3LPniXr4EEAGtWvT4Xo6As7WzQAtWvXJjQ0lFmzZvH+++/Tt29fypcvj87NJfvoUefHfPq0x+coLzo3l9zkZCzpGfw5axYAjzzyCDnHjmHJzAQgJzER/3LlTI/PzMxk7ty5rF69mhNHj5KZkgJ+fvx3PgjYuXOnPSBp0qQJAO+//z7R0dHceuuthIeHm5533rx5ANzhMGxKZ2TA+dfTNgRu9Zo16MxMNEBGBlhy8/xRXL9lC8nJyTRo0IAWLcyDcJ2TgyU1FZ+QEHLOP8c6J8caFBkqFv/++y9//vkn+/fvJy0tzdqFfn6uzc4dO0zPn3vuHJm7d+MXFYWvw3Nwo0kgVPV85ahp06ZE+AeQuW8fvqFh+JYpzf+3d97hUVVpA/+dmcykJ6QQIIQmTcEuNjqsq+gKrnVX14qKroJdsIsdsYJdEBB7Q8HPCiguIiodLCAtEEpCSK9Tz/fHvTPMTGZCEkJC4P09zzyTnH7f+8695z3lPcnJyaSmprIzRC98eCsqcBcUBFyYxl1QgL29sXzDd0+eef550qxWhg0cSFRREZYw99vrcvmNaVfOViw9e4LWaKcTAEtsLABPPvkkb7/9NieffDIvP/IoVFYAxkv2W/O+nmsacp6iIr9O66oq+vfvz+TJk/n111/rZJB4q6rYMHgICuj05gyiQzbda62p+HERlvh44o4/bq/laa3BNHzrS+lXX7Hj3vuw2Gx0mDqF2FqW0OU9+qj/74IpUxpmkKzfEPS/rq5m90sv0faBB+pdVjg8paU4Nm5Eu1xYk1tRtXIlAK7t28l94glc27cT0/NwWt9yc0QDrOy776havZrks8/GtXMnlb8uIWn42cT06BGUzut0kn3hRTjWrSPprLNo/+wz9W6vY8MGqteuI3HI4Hp3jEs++4yit98GYNsNN3LY53P2ycAtnPkWeU89BeY7SkVZaX3TTRHT502cSNHMt8y0UaRcdNFe69Ba4961C2urVjU6yOULag5QeAoKKP/xRxLNd1fYMj0edHW1X36u3Fyc2VuwJCYQ27t3jfRFH37I7pdeMv5RijZj79xru5uK8v/9D2d2Nq0uvND/bArEW1VF4cy3KJk9m9ijj6bd449F7PRX/PorBVOmUrFwIdb0dLp88D629uGXwO165lnKvv2WtP9eT6uAASvX9u0Uvv0OMb17k3z2P4LyBBmPgGvbdrTLxdbLr6Bq1SoSBg+mw6uv+OO11ri2bTOeveYzGUBXVuIpLQ0ajK3+4w92jBuHioml/XPPhV26p91utvznUhx//UXM0UfT+f33IsqiJSIGibDfcWzOxpKQgCU62hhp3R3Q8fJ6cefmYu/YETBmHzwFBVjiE4hqaxgBzi1bsDud9DnySBYtX87GFSvo3Ls3C3/4gf6nnopFKQYPHsx7771HZWUljrIyVq5cyRFdu5JcXY1j40a2rV8PEPHQPF/4tvXr8fg2hBtL7ejQtm1QWl1dhdaapKQkpkyZwqhRoxg7dixjx46lR48eDDrlFP592mmcetyejpXPAANjhMO9ezcqOhpLbCyunbmgvdjatQv7ctVuN45Nm/wdym2modSlY0c8ZWX+dO6CAqLatAl6QGmtWb1sGf+88MJazz8pzsvDmbMNa3ISQwcP5pYxY5j04otcfPHFREVFcdxRRzH0lFO48j//oftRR2FJSMC1fTubfjM26V51111cddddEcsvCLh+AE9JCR5zA3gktuXmApE9Rmmv1y8XZbfvMXy1xpmTg910HuCoquKKiy/mg9mzI9ZVkpeHMyfHuAcBI5Peykq8VVW4tm3D0rMn2u0GIEMpXPn52MyZCe31Emd2NjLbtcO1dQva68VbXg62KKJatSIhIYGCQKMjUB4h8gHwlpcbU9nV1Qzo3p2bR41i8pQpXDF2LFFRURzbqxdnDB/OyJEj/cYQgDfAoYH2eHBs2ODXHQBrSgrfLF/OPffcQ1ZWFp999hn2igoCt/b7dCWrQ4eIMgPYvXs33qoqPGVlWJOTa3S4vE4nmC9lVVKCcrkoeGMa6TfcgGd3PjG9eqHsdorefoe8xx4DoN2jj9Dqgguo+Plndj3zLHHHH0fGnXf674szJ4etV4007klcHElnn03b8Q+C1pR8/jlVK1fS6p//JNbcQxVI+Y+L2D52HLhceIDtd9zBYbNmYYmPR7vdQffetX17zXtSWYnF3D/mzM6m6P0PKP9xIZaYWNo//xzKYsG1cyexxx6Lp6QEx7p1NWb+AIrefY/4gQPDdjqdW7dSMudzbJmZJAweRFRqakT5F8/6lJ0PPACmXoZS8vEnAFQu/pmqlSvJevmlGuVVrfmNbTeOBq0pePW1PXk//5xuc78NeiZVLFyIw3QAUvrll6SPvrFesxTO7Gw2X/QvdGUliWcOI+u558Km81ZUUPjWW9g6dCA5YCay9Isvg8oqeu99Ui+/LGJ9js2bqf79DxKHDvHfN/91r1pF3uOPB4Xtfu11Ek87jZhevQAoW7AA5+ZsUv51Ec4tW/zGCEDJ7DlhDRLHhg1or5fobt1QFgu7X3iB3S+/gr1rVzrNmB60f6g8gqOLktmzIxok3upqtl59DVXLltH6lptx5uRQ8sksf3ybe+8l9bJLg/LkP/Os/+/CadPIuPMOlFLGc8FmQymFc+tWPEVF2A87LGjwpS5orVFKUfXb7xS98w7O7GyiMjJo+8D9aLcHZ3Y2cccdW2MAoXDmTPIefwKAyhUrauiDa/t2tlx5FS7znefctIn4fn2pWr0Ga1ISadeN8g9mOtavZ+uVV+2ZHd69m4I3ptH2gftrtLdq9WoKpkwBIPfB8SQMHEhUaiqO9evZMnIknnxj5t6WmQkeNyoujtjevakMcR7izM6m+JNZVK0yZk7KFyzAlZeHzRzALP7gg6CZkUAqfvqJpGHDAKPfk3PDjbjNd96O22+n0ztv15glq1q9Goc5eFa9ejXVv/1G7NFHG/cg5PnVEmnRrVdKxQJ3A/8GOgKFwNfA/Vrrmm+TyOVkA51qSXKE1nrtPjS10bAkJtLj11/2ntBEa41r506j82exYGvbFtxuXOZUI4C9fXu8VdW4C8N3lnwoq9UYKU5KQlksaK8X59ateKuqas8Xbce5dSvRhx2Gt6oKr6M6KN5TWoq7sBBdXY27sBAwHroq2o6yWo3lFcCAE09k0fLl/PDzzxQWFVFUUkL/I4/EsX4DgwYM4M0332Th119TvjMXr9dL/z59/J1ebRoXnupq/wyGrqpCe71Y4hP8HTYdpv3RIZvPtNdrdIKjo7n44osZctJJfDZrFvMWLGDhr78yZeZMpsycyU2XX86EO42RKO3x+DvMrh07cIXZ0Ka9XuwdO6KrHRBl9XcEnL4RlhCcW7ZA9+5BYd6KCqyJiWiPB3dhIe6CQv510UVkZ2dz3ciRhucnrUmIi0MpxQOTJvH01Km4CwrwlBTjKSkG4PFRoxj5j3/w5dKlzP3qKxYvX86SFSt4dsoU3pw4kfNGjDDupSnXv/frRxtzCYqy21ExMXjLyvxGXVpKitFAi8X/wgiHJSYGa2oqrh07gsI9FRXg9WKJi/MvE3EXFOy5byHy8VZW4ty0CWtaGk8/+SQfzJ7Nkd278/i993LcMcfQym7H6vWyPjubY4YPNwzlkhJUVBTKbq9hIGiPB09pKdqcjbJYLLjz8rAmJxuzG7m5uLZtMxKXlaEDrtG9c2etU+va4wkyIvzhLhfeigpcOdvQHjdPjBnDVWefzf99/z3f//wzi1euZOljjzFx4kRmPv88559/PlEZGUFGajjZ/LZ0Kf+59FKio6P5YNIkUsrK/LNsfvmZ7b90xAhUbCw69DeuFMpu58Rjj8WxeTN4vXh278bWsaP/Wl27duHMyzNmbALKL5k1i9Kvv0ZXVmJt1Yq0a66m8N13/fE777ufmF692H7rbXiKiqhes4aKn3/BlplJVOvWuHJ3+mXtrayk+MMPscTGUrl0KdWm96/ijz+h7b33kHLxxf5yK5csYdtNN/lHwwFcW7ayfdw4olJSKJk9h9ijj6bD669RvvBHit7a0/n0Uf3778SdeCLuoiKy//XvIKM698HxVC5ZgnY6iT78cJxbt6IrK2uU4b/Ou+8h+v33KJgxg6oVK3Hn5aFsNv8yEACioki94nLSrr4ab2UVtsx2/gEH9+7dhhEXwRgJpWrlSrZc8h86zphuvAdMij543/87DcSdm0vlkiXEnXIKBW+8gXPDBpwhRtquZ58l9sgjie/b198xqo38yZP9Min76mtcd92NstvYef/9eEtKaXXhBSSdeSY51/+XStMDoDUx0TDwCgupCBmhzn/pJZJHDMfaqlXN613zG1suvRTtcJDwt7+RNXkSrpwcbO3bo2w2SsyZ5iA8HnbcdTedP/yA0i++YOe99wGG7njMd5OP6t9+M5Ygms8jrTX5kyb5jTprejqpl19OwdQ3AHBu3Mj2O8fScdobKIsFT3lFUAc3deRICqdNA6B8/nd4SkrCbpgumTOHqmXLjOufNLnGvcufPJnkEcNxFxSw84EHsCa3whuih+ULFlCxcCHFH39izEpYrUHXlzRiOJkTJqAsFpzbtuPelUfsMcfUWKLndTjYfsutVC5bhr1TJ6rXrAmK1x43lT8tNpZnd+pIm7FjSTRn00vnzvUbI2DoQ/V11xFz+OFG2U4n226+xW+M+Nhx51j/356iIr/BUfTRRzXeLSVz5pB01pkom43YY47ZEx7g/VE7HGwacQ4Wu73Ge2fLJZcYfyhFm/vu9RsePhzr17P79deCwqpWrcJmOokpmD6dSJT/8D9smZnkPTGBqhUrapSx+5VXaT1mtNFGtxvtcFDx46KgdGXz5hPdtStbr7mW6nXrSLvmatKvv77Fzpq0WINEKRUDfAecAuwEZgOdgauAs5VSp2itN9Wz2DcjhNc+lNuEKKXqtOfCh7eyEtxurObUrtd8gVoDpsp1lbGExlqH6XNvaSk4nNg6dsCTm4uyWCLmU1arf+mIdjj8ywrCEfogAOOFSMAPa0CfPkx47TUWLllCsdmBG3DiiWiXk77mKPp3X39Ntdn5Gdinjz9vO3NUavOqVTiOOiqok+YpLmLj8uUAZGZkAAplrf0H7Vi/HmtiEpb4OJKrqrjizDO54swz0Vozd9EiLr/zTibPnMlVl11GT/PlH86oCMRbXh40mqrsdqwJCcYoewBZbduybvNmNm3dypEhBolzyxZQFmMfArB20ybWbd7M8b1789xtt2GJjw8qL9vXiQ5Dt/btual9e2465xyqHQ5efe897nnmGW5+9FH++fe/A/iXsl11/vn+MGW3Y4mJ2TPTZGJr0wZrSgqOTZvRzj0dVGW1YsvKQjudRsdCa1w7dpBlym3977/j3LzZTKz26FWYTlSQPKuq8G7bxmdmx2PGxIn06tbNjDTksznk+n3LpjwhMgeMPRQh+uuIsNQrEP8SPvO3UL12Lcpmw5qaijU52TB0zPYoiwVsNn8H3hkyq9WjSxdu69KF20aOpNrh4LVPPuHuJ57gpvvv55yBA8Fi8Rvw4SgoLuaC0aMpKy9n5lNPcVyPHjWMETDu66acHJ64807SwnT2gjDbrr1enNnZxiio2x1klNWQidlB8hQXs+vpmst+Np8XvL7asW6df2Q+HIVvhjy63W5yH3oYgJSLL6b8hx/YduttYQ2E8nl7XEdXLl3KuuNPiFhP1apVxJ14IgWvvV5jhq9i0Z7OgmNt+PGrdo8+Qu6jj6Grq/EUFbHxjGER6/JdR+Eb0yh8w+ioJp11FpnPPI1750623XRzrfc6HM7sbLZcehmd3n0HT3Ex7txcSv8vTMfcpHTuXKpWrTI6vmEonzef8nnzyX9+EpbERGxt2xDdoydpo64lf/ILeIqLsSYm4szJMZbqhswQln75JdVrVvvvQeWSJeQ99ZR/hBqMDqi3sjLsu8NbUkL+Cy8Sd9JJODdvAhSWhASsyUnkP/e8/3dUPn8+6/sPwFNUhC0zk4y7xlE+/zt/OYnDhlH29deA8Zted2zwssHy774jFO1wUPjmTKzJySSdOYzdr7zqH3UHY4Q+/9lng/JU/vwzhTPeJG3kVZQvWOC/JktyMq1vGkPJp5/iKSpCO51sv/U2Orz6in9WoWr1alw7dvp1wWhEzWegt6yMgmnTKf/++4jPp23/vWFPO8O8l0rnfI41IZHKJb/6lxzG9+u3ZzlSVBRKKQqnTaP8++8BahgjEPzbcm3ZyrYbR9PmgftJHnEOuffVnLnYduNoOr75Jvas9uya+BTVv9XuJrvo3XdJGDqU+JNOpPTzmi7mveXlbLnUmEFrc++9eIoKcWzYSNm33wal8+zejadG7gC0Ju+RR2sEe8vLa7yfq1evJun003Fu245ry9aIRZYvWEDlsmW4toZPs/ull3Bty6H1zTezbfSYsDOtZfPnY01O9hs0uye/gGPdX2Q+8XiNGcGWQIs1SID7MIyRxcDpWutyAKXUbcAzwDRgcH0K1Fpf2bhNbH4scXHYO3bEtX273zgIJXTGwoc1JQVb27bGFHTAy8DrqMZhLoHyp23VCktCgjHr4PZgiYvFmpqKOy/Pv3E5tENuy8zEnZcXsV3a6w0a8Rg4fDh2m43/LV1KUWkpSQkJHHfEEQB0TE+nY2YmC5cuparauJ6BAwdiSUgAj4d+xx/PW599xodffMGoMNPs75kjJv2OPx5bZjtjFuiXmudtBOIpK8VTFtzpVkpxev/+DBswgA+/+oq1O3b6DRK7OePhjnC9Na7f6fTPGAFYk5KwZWYypG9f5i9ezLSPP2ZEOJe3eo/MfIZb+zZtQOugh2eJw8l3ixfXqS0x0dHccuWVTJ45k9z8fHYVFJCRlsbfTj2VN2fNYs78+X6DRDudNV5yloQErGlpKIsFe5fOODdtRrvMPQ1JSTWWCFhiYzmuVy9aJSayZt06lqxZw4lHHWXshajjiHBYGYTwiblXoi54Kyv3agQFoqJsaLfxu/GUlPg76NrtNva+bN9eY1mQJTkZZbXiDmMkhBITHc3Nl1zCpKlT99yTWtJbsrK4dNQoNm/bxrhRo7hgWOTO8NBTT2VTTg5z5s/nqoDNl9ZWrfBWVPrvXTj2Zng3JbkPPUzRRx/h+ONPf5iKjibrhcnsfvkV/36LulK5ciVJO3dSFDCjUx8STz8d55atQR3XSCi7vYYsS7/8ksolS2qcgRDTq1fYDgtAfN9TiT3hBHa/8CIArm3b2DCw5h4oFRdH5mOPUvHzLxR/8AEAxe+9X6frAqMj7Cgrw7F+A6Vfflmn38quJ5+sERZojABhl3Za09PxmO+Vonfeoeidd/Zal28fn2vHDrbfdHNQXJt77iYqo3XQkqy6sGviRAB23ntvnfPkv/giscceS94jj/jDEgYMwBITQ8ql//Hfp4qffmLt0ceQMGQICUMGG0t/ajHyY446ym8UFLz2WsR0dSVUxysWLWLtUUcbg4S+Gf46vssCyXvkUYo//jjsfXVt387G004jvu+pVCz+2R8eP2ggFT/8L2x522+/nbgTTvDfXxUdTeLf/05pyBlYviWheyUqqs6zjuEomPoG1X/8gWtHmP2CSvl/F56iohp7SxMGDcKxfr1/gLZk9hxKZs+JWJdz40Z2PfVUUFjZN9+QU1BAx7dmtjjXwi1yXkcpZQdGm//e6DNGALTWzwKrgUFKqchDXYcQ1qQk7F271slitsTEEJWejq1tW2yZmSirFXvnzkSlpYXdcAZgTUzC1r49Ua1aYWvXDnuHLKLS0lBKEdWmTdj1qFGtWxOVmoq9U6egWZCotLSwG7Mt8fEktGnDiSecwNYdO5i/eDH9BwzAGrBmcmCfPixds4bV69ZxeI8edDzpJKI7dya6a1f+feWVZKSl8dPy5bzx0UeAOQORmMjL77zD8t9/J7NNGy666iqiUlNRUVFY25jdO9MbT+jM1Mo//+SzefNwhozcFZaUsMR8MXTs1hVlM0a4fLM0f2VnGxvt6jGtqqKijKUGUVFcd8stpKek8O2PP/LiW29haZUStDb311Wr2FVQgLJY6XHssVgsFn749Vc2bNniT1PtcHDTE49TaL4ULHFxxBx+OPbOXfhq1Sp+DRntikpL4/fqanYVFJAQF0crUxbnnnEGvQ4/nPe/+IIJr72GI7QzGhXFsqIilm7f7p9Gtths2Lt0xpqYaIyqhjEUrMnJRNvtjL7MGN264cEH2Wqur/VRUlbGwjAHOyqbLchDVbdOxmrMqR9+GJTusx9+4N3PP/fLd19Qdrt/86SKiSEqLZ3o7t3qN0qlFFEpqYYRHcKc+fP5NWS5ABgb/0PvSTisKances89/LB4MSOGDeOB0aPDp0tMxNa2LXfcey+xMTHc88wzfDZvntE8qxVbu3ZEd++GNyWFT+fO9e/zUfboyJuLlQKLpaYslDJe/gFEhXPKEOGl2nb8g2SMG7cnmd1O+0mT6Lbge6wBHqyCjJGYGDq88jIJAwfScbqxl6U+G+PL581ny5VX+g2FqIwMLGGW1Vh9SxQDr611a6xJSSSfF94JQIfXXyP9pjGkjx5N98U/0eOXn2n1r3/VSBdqjNi7dKHjzJk16sp8+mla334bWS+9ROsbb6T1Xjbkt/rnOSSdeSatb7kZ9tV7Vj0Mdx/WlJSI9zqU9k9NNNb3NwIxxxyNLSODjDvuICbMhvBALPHxJJ9zTq1ponv0oPXNkTfG68pKtlxyib9Drux20q4eCUD69deTGHAmFED599+T+8CDtRoj9m5d6fjG1LC6WBvpN95IxrhxtLrwArJefYXDvow8W+bH6zUMkTDGiDU5mQ5Tp9b+3NM66DeZevVIokNm+it+WuzXIXvnzmS98AL2CPs/vSUlQTNYiX//O2nXXrP36wjB3rUrnT94n57LlxE/KLLHxbo4Yqj4aXHw7LbVSnzfvnR4/XWSzj67Rvqotm3pMns2Wa+8TKe33yL2uONqpKkzSpE6cmSLM0ag5c6Q9AOSgY1a6xVh4j8GjgaGA8uasmEHKha73djD4XKhq6uNzoNSODdtCpqhsKam1tj0aImO9nvzcRcWBs1qWBISsHXIiqj8SilsHTtiKSkxXqQeD1Ft2xJlLgOxxMUR3bUr3rIyY+N7TIyx30Nr3Lvy0V6jnqjWhnEw+G9/Y9HPP1PtcDBk6FCsSUn+B/uAE0/k7TnGaMLgoUOD2pHcoQNvTZ/OPy+6iDEPP8z0WbPoeeSRrF23jhUrVpAQH8+7775LfEDn2GoaYNakJKK7dcNTVh60DGnrjh1ccuutJCcmcsKxx9I2M5PCnTtZtGwZZRUVDB8+nL59++LKy8Odn89ZQ4bw9pw5XDVuHKd//z1JCQlol4up06bhLS3FtWsXlrg4Y+YoNzeorqi2bf3rd9Ozsvho1ixGjBjB2IkTeeWjj+hzwglUlZWxdv16NmzaxLLFi+l4eE/aWyxcffXVTJkyhZMvuIBBJ51EbHQ0Py1fjsc8hX7GjBl7jLCEKP63ZAmTJk0iMyODY444gqSkJPLKyli4cCFer5f7brjBP9sTnZbOZ3PmcMYZZ/Dwiy/y6rvvcmSPHrROTaWguJjVf/3Frt27ee655+jXr1+QPto7Rd62ZU1LA4uFe+65hzVbtjD7iy84+h//oP+pp5LRujU527ezYuVK/jZoEIMGDcZbGbx0xRIbi71LF5xbt3LbVVcxd9Ei7n/+eWZ9+y3du3RhU24uS5ct44477uDpp5+u3VNPwKiWv33JydjatTPWkEdFGRu6zVEtS2ys4dYYsLVvj2PDhqD8tqwsvOUVxn4dM1zZbNjatcMSF4v2elHWKLTHGKWztmrFT+vXM/mWW8jMyODYI48kMTaWnbt2sWj5crxeLw/cdZf/ngRia9sWtGZHZSWvvGIst7DFx/PfJ5/0z9QE7qmY/sY0otLT6Jmezjtvv82ll13GJbfeStfOnTmiVy8SzIM/ly9fTkVFBb98/n90MgcisFjQTqfhCKC0FO3xYMvIwJKTQ8wRR9Bx+jS2BCzFan3rrVii7eQ9McGQW1ISXb/6krwnJvhH6FMuuZiM22/HnZ+P9mo2X3ABurKSqLZtST7nHGO/T2Eh1X+tI/3664kzX+SZEyaQc+21QbKIPuIIMp+c4PccZYmNpfVNY0gdORJvZQWF06ZTGHBAZtZLLxrPqtatg2YUApdhpI++kcpffqU0YD+CtVUrui/6EdeOnWw03ZAD/qVx0V26EHP00VSvXr1HFjffRMLAgSSEuJ5u99B40q8bhWP9enKuu77G/Y079RTajBuHNSGetOuv8+9fSBs1qoaHoLRrrqF69WrK5s6rUQ4WC63MmeOolBTiTjqRyoAR6lBa334bpV99hUKRPmY0xR99jCsnp8bMefzAAcSffAqWhASqVqyg7NtviT3hBNy5O2t4H8t6+SUs8fEUvvEGrtw8vGVlNWZ9LAkJJA47g7hTTiHjjtvZftvt/jh7167E9OxhPqdL8FZUEHfc8ZR+803QHq2ojIygfTqJQ41ZZovdTtYLk9lx1924d+3C3q0rqZddTuH06f7N5+0eeRgVE0tJBAcZcX36kPXiC1gSEymYMtW/d0PZbGSMGxfktc1Hu8ceI8ac6VdWK5lPTSQ3NqbWkXFfXZVLlwLQesxNWJOSaPfoI+y4/Y6Is5TKZjNWOyhF+2efIenMM2ukaXXRRRT7Bm+sVto/+ywFb7wRpK81ruHxx0k87W9gsWJNiCemd2//HiAfWa+8zM677g6aGVExMaSNHEnyiBHsevJJwxAJIe2667DY7cSecHxQJz/prLMomzevxrW2Ov88Ynr2pPWtt1IyZ47h5GRT+NX7bR9+iOo//0QpC+ljRhNlDiQknXlm0IxMm3vvpXLpUmKPOpJWF15I7sOPBP3mo7t3w7Fpc8QZo6wXJpNo9kmie/aoMXvT4ZWXielpPJdsmZl0emsmuQ89RPFHH4ctLxwJQ4di75CFNT2dxKFD6pzvgKKhB5g05we4BWP/8YcR4v9hxs+qY3nZZvo7gVeBScAooHUjtrlRDkZsbDwOh67etElXrlmjq9atq3EgWzi8Xq/2OBzaU1lZ70MP65Pe63ZrV2GhdpeX+8Pmzp3rP6xwyZIl2l1erivXrNGVa9boP7/91h/3/vvvhy1zzapV+t8XXqjbtGmjbTabbteunb700kv12rVra6T1HYx4xRVXGO3xeHTV2nXGoX3rN+jsX37RD44ZowefeqrOysrSdrtdt8nI0H1PPlm/MWWK/2A8T1WVv40Tx47VR/TooaOjo/1tDScbr8ulq9YZdTmys8PKbdOmTfr666/XnTt31na7XaempuoTTjhBP/zww7q0tNSfzu1262eeeUYf0aOHjomO1hlpafri887T2dnZ+sEHH6xx4OSKFSv0bbfdpvscd5zOSE/X0dHRulOnTnr48OH62//7wn8tlWvW+A+LKy4u1g/ddZc+9ogjdEJcnI6Jjtad2rfXZ5x+un7ppZd0fn5+He54eDwej54xY4YeOHCgTk5O1tHR0bpz5876oosu0t9//732VFb6D1Mk5GBEr9ervW63Xrx4sR46dKhOSUnRiYmJum/fvvqTTz7Rmzdv1oAeNGiQrs7O9v8OXn/0MQ3oe/77X+0uLvYf4HjpiBEa0PO/+aZGO0P1xYeroEBXrlmjO2ZmBt9vj0e7y8q0u6xMe0N+7+6KCu3Ytk27S0r23JObb9Z9jj9eZ2RkGPckK0uffeaZ/oML3WVl2rljh3bk5OhOHToE1eW7zr193BUVQe3YsGGDvuGGG3T37t11TEyMTkxM1D179tT//ve/9YcfflivgxHdbrfeOHyE/qPn4XrdKadqd1GR9rpcesf48XrDmWfpUvM6vB6PLp49WxfMmKG9IeVXr1+v8195RTvqcLhowTvv6PVDhuotV12liz7+uEZZobjy8/X6IUP1Hz0P1zvGjw+K23TueUEHov3R83Cd++RE7fV6deF77wWF59xyiz/fn8cc6w/fftfd/vDAQ9L+6Hm4doUcrBqOHffd70+/8Z/n1jio0et06vzXXte7p07VXpcr/DUWFuq/Bg/x34Pi2bN17oQndem8eUHpiud87q9rwxnDdMWSJdqxdaveduutetekSRGf416XS+98+BG98eyzdfHs2TXjzXzlixb5ZbP2hD46/5VXa6Qt//mXIBlV/f578DPS69W5EyfqjcNH6MJ3343YpoI33zTK6NVbl86bp53btul1/fvrP3oerv888ijtyM4Om8+Hp6JC7576hi797juttdbu4mL9x+FH+Nu15Zpr9dYbbtS7Jk3WngAdK507158m/7XXtdfp1BuGnbnnmnr11runTY9Yr7usTG8fd1eQDLZcNVJvu+NOvXvadO31enXp99/r8l9+CcpXtW6d3nTBhfrPI4/S+a+/rtf16++/j87t23X+K6/qiuXLI9brKijQG889V689oY8unjPHCCss1DsfekjvGD9el//0k67euFEXzJiht/73Bp3/+us1ZJ874cmgdq87ta/2er26euPGIBnkPv5EcNvXrgvO17+/9prv0ZJvvw2K81RV6Yply/RfgwbrP3oerv8aNFjnPfdcjbZ4vV69few4QwZnnqXLfvhB54y5Sec9WzNt4D3fcMawiAeZ7po0KagtBW/O1Ov69qvxjPB93AHvY621Lnj7bX/c1lHXhW2D1+PROx962H/vckaP8ecp/e47nX3Z5UF1lC/+2X+9zcW+HoyodAOmVpsbpdSzwK3Ac1rrGvPQSqljgJXAcq31Xpdt1eJlqxIYo7WeFiYuUlm/R4jq2qtXr+jff48UbXi2WWdu3OzZs2eNQ+n2F1obZxQom61Femdw7crHW1ZGVEbrersrrC/a5cLr8/9uuk2si9wcmzYZo2VKGeeu1OHAJu3xGOXHxDTK9Kv2eo2N2V4vUenpDbrXWmucm7PxVlZgiYnBfthh/nK012uclVJZCR4P1pSUejlg2Be8LpfhhWsfDsLSXi/eqmosMdGGq98dO7HExmDLygIMJwvuoiKiUlL9MyB1LtvtBovlgPt9aa1xbtxoeLWz2Wo92KshhD7TPLt2UTZvPvF9T22UQ+0aG09JCa7cPKJ7dA/6zTk2baJw+nRDJxISSLn4YuJPMc7GcWzcyKZ/7FmG0ea++0i91DjvqGLxYrZefQ0qOprO777jHwn3VlaSfcl/cKxdS/qY0bQOOaw1HN6KCvKeegrtcpFx661Epac36Brd+fmUL/yRhAH9g1zQBqK1puzbuWhHNYnDhtV6TlRD0U6n8SxNTAz7fNNeL9tvvpmyefNJvfJK2owbG6aUOtSjNVVLl2JJSiKmZ08AXDt3UvzRR8T16UN83771LjPvyYkUTp/u994V6YDIil9/xVNcTOLf/oayWqla8xs77r6LqLR02owb63cvHLHtHg877r6b0jmfE3fKKXR8/bU6LzH0uYF1ZmdT/uMiEocOqdcyN+31NvhZUPLFF+y4/Q7//wlDhtDhlZcBw2FI4fQZoL2kXX99Dd3Kf+FF/5kp7R5/nFbmEkftcrF15NVUrlhBxh23k3bllf524nbXKhetNc7sbGyZmXV+R2inE9eOHdg6daqhn0UffmgsozPp/uNC8l96Keyeq/i+p9JxWnAXUmtN8Ucf4crJIe3aa2t9T7p378aSlISKiqL0q6+ISk0l/tRT0V4vJZ9+Sslns4nv35/060bV6br2J7179+aPP/74Q2td+9rHCLRUg+R14FrgMa31fWHiuwHrgfVa6x6h8WHSTwa+x1jelQ8cBowEbsbYZ3Ou1jryIQbBZbU4g0TY/3idTjxFRVji4rEmtuzTVY2OexWWmJgmP6m5udFat8i1ubWh3W485eVY4uOxNPIp6ofCM01rzcbTz8CVk4Oy2eg699sgt7o+F9Khrmm114unpMS/TEQIj7e6OuKBjs1JU7bLXVRkOFppIc9b59atbDz9DP//qVePpM2ddTuMUWtN+fz5KLu9xhJGODD0wb17Nxv+fjq6qorkc84h88kJVK1Zw5ZL/oP2eGj/7DO4dubi+Osv0m+8Abs5qHWws68GSUvdQ9KoaK1Dd6D9DtyulFoLvA48ieFWuC5lhb0RpqFS+3CIcNBisduxhNm83RKpzdXzwc7BZoyAsaE/am+ufYWIKKVo//xzFH/wIQmDBwcZI1DTEPHns1jEGKkDzd35jERTtqul6Ykt5EDV+JNOqnNepRSJAXuvQjkQ9CEqPZ3D5szGsW4d8f37AxB71FF0nT8PPJ6wjnmEvdNSDRKfV61Irhx8vaWyCPF15Q3gUaCnUqqz1jp7H8sThBpMmDCBtRHOLQjl6aefJr2BSzWam7Vr1zJhwoQ6pe3fvz/XXFN/Tykthc8++4zPPvusTmmvueYa+psvPeHAJLZ3b2IfDn8isyAcaiilaPvQQ+x68kni+/UlfsCA5m5So2Pv0AF7iOFly6jN8bqwN1qqQeJzcxJpHswXviVCfJ3QWnuVUhuBDKAdxuZ3QWhUvv76a3744Yc6pR0/fnyLNUhyc3N5M/QAu1o4mA2SlStX1lkWgwcPFoNEEIQWRcq/LqLVBee3mGVmQvPTUg0Sn0P+4yPE+8Ij+6mrO7650vodiSsIdWSB6VLyYGfw4MG0xD1r+4Px48czfvz45m6GIAjCfkOMEaE+tNQdhouAEqCrUurYMPEXmN+f70slSqneQE8Mb1t1W1MjCIIgCIIgCEKdaZEGidbaCbxo/vuSUsq/w1YpdRvGoYg/aK2XBYSPVkqtVUo9EViWUuospVTwKXpG+NHAR4ACppp1CoIgCIIgCILQiLTUJVtgbDY/DegLrFdKLcQ4S+RkDNe9I0PSp2PMdoS6PzgJeFAptQVjKVglhtvf4zHkswC4a/9cgiAIgiAIgiAc2rTIGRIArXU1MAR4BMOI+CeGQTIDOF5rvamORX0DTANKgX4Yy726AT9inHVymta6qjHbHolAl6Iej6cpqhQEQdhveL1e/98Ho8tkQRAEoXFoyTMkmIbCA+Znb2nHA+PDhC8GFjd22xqCUoro6GgcDgelpaWkpaU1d5MEQRAaTEWF4QvEbreLQSIIgiBEpEUbJAcjKSkp5ObmsmvXLtxuN4mJiURHR8vLXBCEFoPX66WiooK8vDwAEhMTm7lFgiAIwoGMGCQHGMnJyVRXV1NcXExhYSGFhYXN3SRBEIQGExMTI7O9giAIQq2IQXKAYbFYaNu2LfHx8ZSVlVFRUSH7SQRBaHHY7XYSExNJS0vDKucRCIIgCLUgBskBiFKKpKQkkpKSANBay4FygiC0GJRSssxUEARBqDNikLQA5OUuCIIgCIIgHKy0WLe/giAIgiAIgiC0fMQgEQRBEARBEASh2RCDRBAEQRAEQRCEZkMMEkEQBEEQBEEQmg0xSARBEARBEARBaDbEIBEEQRAEQRAEodlQcr5F06CUKo2Ojk7s2rVrczdFEARBEARBEBqNjRs34nA4yrTWSQ3JLwZJE6GUygXigJwmrtpnAW1s4noPFkR+DUdkt2+I/BqOyK7hiOz2DZFfwxHZ7RvNLb8OQKXWum1DMotBcpCjlPodQGvdu7nb0hIR+TUckd2+IfJrOCK7hiOy2zdEfg1HZLdvtHT5yR4SQRAEQRAEQRCaDTFIBEEQBEEQBEFoNsQgEQRBEARBEASh2RCDRBAEQRAEQRCEZkMMEkEQBEEQBEEQmg3xsiUIgiAIgiAIQrMhMySCIAiCIAiCIDQbYpAIgiAIgiAIgtBsiEEiCIIgCIIgCEKzIQaJIAiCIAiCIAjNhhgkgiAIgiAIgiA0G2KQCIIgCIIgCILQbIhBIgiCIAiCIAhCsyEGSROilDpRKfWhUmqHUsqllCpWSi1USl2llFIhaWcopXQtn+sj1BGnlLpPKfW7UqpKKVWglPpKKTV4L23LUkpNN9tWrZT6Syn1kFIqppY8sUqph8201WbeaUqp9g2Rz944UOW3l3p0JBk2pfzqI7uAPAlKqQeVUquVUuVKqRKl1G9KqZeUUgkR8vRTSn2plCo08/yqlLp8L207qHQvIM9+l5/oHiil4pVSlymlXlBK/aKUcpjXPr4ObTvkda+h8hPdA6XU4UqpcUqp75VSu806cpVSs5RSA/bSNtG9BspPdA+UUkcrpV5USv1s1uEw0y9WSo1RStlqaduBqXtaa/k0wQc4H3ADGlgGfAB8B7jMsHdC0s8ww782/w79DAlTRwKwxMxXAHwO/A9wAl5gZIS2dQPyzXxrzLZtNP//EYgOkycGWGym2WHm+cX8fxdw2CEkPw2UR6hnBmBrTvnVV3Zmni7AJjN+I/ARMAdYZ4Zl1VKPF1gAfAwUmemfPlR0r4nld8jrHnCsGR76Gb+Xtonu7Zv8RPdgmxleBsw161hjhnmBW0T39ov8RPdgtBmeDcwD3jO/q8zwBYC9JeleoymvfGpVziggz7x5l4TEHYHR+dUEdJLZ06EeXI96XjDzLAVaB4T3NX/wDqBTmHw/mvkmhbR5FhFeTMCjZtxPQEJA+G2+H8MhJD8NZNfzmppEfg2UXTSwFuOBel2YMo8E4kLCUoESs6zzAsLbAOsj3YuDVPeaUn6ie9AVmApcBxwP3B9Jd0T3GlV+ontGB/AyICYk/DqzfDfQS3Sv0eUnugeHEcYQwHhn+Iy60S1J9xpFeeWzVwU90rxpayPETzLjxwaEzaAeHWrADlSYefqGiX/MjHsuJPwkMzyPEMvYVGwnUAhEhdRVbOY7Lkxdq8y4Ew52+Zlx9Xo4NqX8Gii7sWbYxHrU48vzWZi4c824zw8R3WsS+YnuRaz3LvbSoRbd2zf5ie7VqQ3fmOU9KLrXePIT3atTGy41y5vVknRP9pA0DY46pivYhzqOAOLMuhaHif/e/D4nJPwf5vfnWuugdmqt84CFQArQPyCqH5AMbNRarwhT18fm9/A6t752DmT5NYSmlF9DZHet+f1CPerx6dHHYeK+AKqB00LWqB6sutdU8msIB6PuNQTRvabnUNO9VeZ3Zki46F7diCS/hnCo6Z7L/HaGhB/Quhe1rwUIdWITxhq9nkqpS7TW7/oilFJHYFizRcCnYfKep5Q6H7ACmzEUaW2YdPHmd4k2zdYQfMrfRSmVpLUuNf8/xvxeHqHty4GhwNEYaxLrmgczT2NwIMvPn18pdS/QEagEVmCMTpSHKasp5Vcv2SmlOmCsMd2mtc5RSvUDRmA8kDYDn2itN4SpJ+I1aa2dSqnfgD5AD2D13vIEhLco3Wti+fk41HWvIYjuNQ6ie5E5zPzODQkX3asbkeTnQ3QvDEqpFOB2898vQqIPbN1rjOkh+dRpCq0fezaoLgPeZ88mp1WETIWxZ8lR6McLvETAlJqZvntAfGyY+s8LKOPIgPDlZtiICO2+2Yx/JiDsWTPs2Qh5jvFd58EuPzMuXD0a2A38I0xZTSq/+sgOOMNM94spp9BrcgG3h5SfFBCfFKENn5rxww9m3WtK+YnuRayzLku2RPf2QX6ie3utuyvGrKYmZCmL6N6+yU90r0Zd3TH6OzMxlrmVmfleASwtSfdkyVYTobVeBAzCsJ6PB/4FDMHoAM81wwNZAVyPMSIahzFacCPGWr4bgKdC0m8AdgIKuCJME0YG/J0Y8LfPlVxlhKZXNFKefeIAlh8YD4JhQHsM2RwHvAWkAbOUUieGpG9S+dVTdinm9/EY8hsPdADaAePMuKeVUv8IyBPojnB/69GBrntNKT8Q3Wsoonv7juheGJRSURgdxGjgA631spAkonu1UAf5geheIG0w+iyXAadjXOtkYJzW2huS9sDWvcaypuWzV4v5YgyLfwHGxqJ4DMv2NfZY0TXcrYUppzfGGkUX0CEk7iazrDLgKgzPPZ3Zs4nK53Lu5IA8f5lhp0Wo7xoz/vWAsNfNsEcj5Olmxv91sMtvL3X5NsJ/ExLepPKrj+yAS9gzMvNymLImmnGLAsIyA/JERWjD22b8JQFhB53uNaX8RPci1lmXGRLRvX2Qn+herfW+bKbdCKSK7jWu/ET3ItZpxXAdfBuGx8a/gM4tSfdkhqQJUEp1B97EmE48W2v9q9a6Qmu9Xmt9HfB/GNbxyNrKAdBa/47hmzoK+FtI9AvmJwGYhrHvYTMwBrgPYwqRgG8wfHmDMYsQDt/eirJ9zNNgDnD51cZEwAMMVkrZA8KbTH4NkF3g+tvpYYr0hZ0csME6MM/+1qMDXfeaUn61cajoXkMR3dt/HLK6Z+5p+C+GF6MztNaFYZKJ7kWuty7yq41DVve01h6t9Wat9bMYA6rdqblJ/oDWPTFImoZ/Azbgax1+w9WH5vfAOpa33vxuFxioDW7CmL4cD0zBGDE4AXgaY8S/iuDpwq3md1aEunzhW/Yxz75wIMsvIlrrEoxDg+wYU8k+mlJ+9ZVdYJ3ZYdL7wqwY8kAbG/xLzPD9rUcHuu41pfwicqjo3j4gurefOFR1Tyl1PcZ5DSXAMB15I7LoXhjqIb+IHKq6F4ZPMQyJYSGG2QGte2KQNA2+G1YSId4XnhIhPhRfuopwkVrrlVrrh7TWo7TW92nDVdvJGAq9SGvtDkjuc613fIS6fOGBnn0akmdfOJDlFxGllAVjw3JoXU0pv/rKbi3GVHNgWCCBD8TAh23Ea1JK2TB8s1djTBnvNU9IeEvSvaaUX0QOMd1rCKJ7+4lDUfeUUv/G2JBcibGpemUtbRPdC6Ge8ovIoah74dDGWqpCjJUggWUe0LonBknT4HNb1ydCvG8DVvbeClJKRbPHl3QkN2zhGGN+vx4S7nMLN9wsO7CuNsAAjCVKiwKiFmH8qLoqpY4NU9cF5vfn9WhfbRzI8quNYRjTmRt1sJvgppRfvWSnDd/k35hhg8OkH2R+bwq5Jp8eXUBNzgZigHla6+qA8INO95pYfrVxKOleQxDd238cUrqnlDoLY5O1GzhXGxuaa0N0L4AGyK82Dindi4RS6jCMjfGlGEvHfBzYurevm1DkU6cNTsezZ9PSf0PiTsGwev0bjYDDMTwmhJ6k2Zo97j9XAiokPgPoGBIWBTxk5vkuQvt+NOOfD8n3CRE2N2JMrWoMZY0PCL/NDF9wKMgPY3r2xDDhg4DtZr5bm0t+9ZWdGd7XDMsBegSEd8HYaKiBO0PKSsV4aGngvBCZrjfDBx/suteU8hPdi1hvXd3Wiu41UH6ie/64fhij+i7gn/Von+heA+UnuuePGwO0DVN/T+BnM88LLUn3GkV55VMnJX0qQEl/w1hH+CPGBiwNvBaQdrAZVgh8C7yDcVJ4aTilDcnnxfDg8LGpYDvMPMuJ4LECY/PTbjPdagyf2b4fwSLCeK/CGLH1Kf0O4IOA/3cBhx0K8mPPeSfrgFmmHFYEtPU9QnyBN7X86iO7gDw+I6zClOFXAfL7ErCGyXO+WaYXw+f6R+zxxf5MhLYdVLrXlPIT3QvK86l5DT9jrHnWwLaAsE9F9xpPfqJ7/vS+3+cmUybhPteI7jWe/ET3/OmzzfKWm+V/BPwaUMcPQEJL0r1GU1751ElJz8WYmtuNMSJQiNHxuDgkXSbwHLAY42wMJ4YHg2UYm61TIpTfAcMjw1+mUpcBSzGsWPte2ubLuxPDLe564GEgppY8sWaaDWaenWYZWYeK/IAzMVyy/onxcHVheAj5ErhgL9fTZPKrq+xC8pwH/A/joeg7CfcWIrimNfP0w3iQFpkyXAJccajoXlPKT3QvKH02ezoA4T7ZonuNJz/RPX/a2mTm+8wQ3Ws8+Ynu+dP+B2OwdR3G7LoTY7nY1xjnktQwyg503VNmRYIgCIIgCIIgCE2ObGoXBEEQBEEQBKHZEINEEARBEARBEIRmQwwSQRAEQRAEQRCaDTFIBEEQBEEQBEFoNsQgEQRBEARBEASh2RCDRBAEQRAEQRCEZkMMEkEQBEEQBEEQmg0xSARBEARBEARBaDbEIBEEQRAEQRAEodkQg0QQBEEQBEEQhGZDDBJBEARBEARBEJoNMUgEQRCE/YJSqrNSSiulFuznerRSKvtAK0sQBEGoG2KQCIIgCMI+oJTKVkrp5m6HIAhCSyWquRsgCIIgCPvIEYCruRshCIIgNAwxSARBEIQWjdZ6bXO3QRAEQWg4smRLEARB2O8opWKVUhOUUluUUg6l1Aal1DillAqTNlUp9YRS6g+lVJVSqkQp9Z1S6uwIZYfd96EMRimlVpnl5Cql3lBKZSilZpj5Bkco02q27y+zvTlKqSeVUtEBaQabS7U6BbRDR2qPIAiCEB6ZIREEQRD2N3bgW6AXsACIBwYBE4BE4D5fQqVUD2Ae0AHIBr4x05wCfK6UulNr/XQd630WuAVwAt8DJcBZwFBg9V7yvmumXQCsAwYAY4H2wKVmmlzgTeAC85reDMi/u45tFARBOORRWss+PEEQBKHxUUp1Bjab//4AjNBal5pxfYCfAQfQRmtdrpSyAiuAozA6/89orb1m+m4YRk1H4Fit9W8B9Whgi9a6c0BYf2AhUAgM8qVXSsUBs4AzzKRDtNYLQsoC+BMYqrXONcO7AMuBVkA3rfXGgDzZQCetdY3ZHkEQBGHvyJItQRAEYX/jBa7zGSMAWuulwFdAHNDHDB6OYYx8orV+ymeMmOk3ALcDVuDaOtR5vfn9XKDxorWuBG4y21QbN/mMETPfZuBt898BdahfEARBqCNikAiCIAj7my1a63Vhwv8yv9uZ36eb37MilLPQ/D6pDnX2M78/Co3QWv8FrKwlrwtjiVcooe0VBEEQGgExSARBEIT9zbYI4WXmt2+jeGfz+52QDeLaXEqVb8an16FOn9GQEyF+ay15c7XWnjq0VxAEQWgEZFO7IAiCsL/Z2/IoH75Bsq+BvFrS7e8N43VtryAIgtAIiEEiCIIgHCj4ZlKmaq0/2ceydmLMuHTA8JIVSod9LF8QBEFoJGTJliAIgnCgMNf8PrcRylpkfp8fGmF67DquEerw4TTLlUE+QRCEBiAGiSAIgnCg8AnwB/AfpdT9gYcQgv+gw35KqX7hswfxmvl9m1KqV0AZscBkGvf9t8P87tmIZQqCIBwyiEEiCIIgHBBord3APzHOLnkY2KqUmquUekcp9Q3GQYQ/AifWoayFwPNAGrBcKfWVUuoDYCPGAY2fm0mdjdD0Oeb3fKXUe0qpqUqpCY1QriAIwiGBTC8LgiAIBwxa6/VKqeOA0cB5GCe0R2EYIyswOv8f1rG424C1wI3AEIyT2r8C7gLeMtMUNEKzJwMpwMUYS8RswBazHkEQBGEvyEntgiAIwiGFUioBYxYmBmgVwcWvIAiC0ETIki1BEAThoEQpdYRSKi4kLAl4HeMsk/fFGBEEQWh+ZIZEEARBOChRSr0KXAosw3ADnI7hXSsV2AScorXOj1yCIAiC0BTIHhJBEAThYGUW0BY4ATjJDNsMTAUmaq0bY/+IIAiCsI/IDIkgCIIgCIIgCM2G7CERBEEQBEEQBKHZEINEEARBEARBEIRmQwwSQRAEQRAEQRCaDTFIBEEQBEEQBEFoNsQgEQRBEARBEASh2RCDRBAEQRAEQRCEZkMMEkEQBEEQBEEQmg0xSARBEARBEARBaDbEIBEEQRAEQRAEodkQg0QQBEEQBEEQhGZDDBJBEARBEARBEJoNMUgEQRAEQRAEQWg2xCARBEEQBEEQBKHZEINEEARBEARBEIRm4/8BIyX1VWK22coAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(dpi=150)\n", + "ax = plt.gca()\n", + "\n", + "txs_by_block_df.plot(x='height', y='block_size', ax=ax)\n", + "txs_by_block_df.plot(x='height', y='txs_block_size', ax=ax)\n", + "\n", + "txs_by_block_df.plot(x='height', y='mean_proof_size', ax=ax)\n", + "txs_by_block_df.plot(x='height', y='worst_case_claim_size', ax=ax)\n", + "\n", + "plt.ylabel('Size [bytes]')\n", + "plt.title('Block size composition by block')\n", + "plt.show()\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docusaurus/docs/protocol/primitives/geometric_pdf_vs_cdf.png b/docusaurus/docs/protocol/primitives/geometric_pdf_vs_cdf.png new file mode 100644 index 0000000000000000000000000000000000000000..26710e1ed13d52de9e90671c7bc1196d44b12147 GIT binary patch literal 102554 zcmb@uWmJ{z_ce-v0SJhcAfTdjBOwwh2-1RdN+aDJDj+2xDJ_kpbh8BsDQPy{-Q64B zwV&r7zYk}O_na}#2XySZ}ru)Wrc2>50 ztgPn$^92@58zWY_B~o2D$W5!)s=8VFv3!3epNTjk<vJtSpV@85u(R8wf^I^cUH=yddB}e zi(c=4Q|IbBaag>=2e-cgAX^&zK#!Y{jr&%2} zn5RCwu@NkqI=wQG6O7y1R`R~D+xUsnD9*JjtaV2Zr>CclOVucyrY>P{aBw)S{K&j< z^X7}xo~<$4E=7-D10uC9`=so;-l@OQw;)2F-M-KC{N>BbUf1zx?%&4<68&A{ynBx# zERxgc@An?#qrE=ays~IJ<~qA&`B-lAfWSa(E|dPOJ*OOO^-V5se1mXU3>g}3?kJ-q z_o(I|^4aBO|IAEUIXOB0-44#P}0FAKQr{nXffU#jNj?*6_v z?PiG3Iqxd6pxk-GWq&2oNi!}y{H=+`9U7^rXl)Ojwg`GA&8i3w)Jf#xZ#$RQol0RzuaZbC_@2&4$@}=H zwiz!^#igV~3Xr=)dLfZRGy(z?czAf{=Z6SoW2Toky6Ms*QoZnBenY_)^6zyEFYUX0 z#-)(RQOfH!DZMA)60uo#8eCDqtE;Ey@8@S_msP$t;kr5Boh-~_H?6}F^QXQ2_rL&A z-ocSS6=RZKC;Tnc@-bFVAjl&0P{!tw;R)@zcM3i=DQ0 zEO3;+@P^BA>3Z|PI z(PCR%hdNL{-wyHo>AY*`vbQ9c?7qJ_nFLGmH8k`?W~Nag3hfS!ez$W~3L7>aZ9?$) zCg{!=mQ66zyhK6q0l#6b|HoVYv#sAEA|gMnXGLEM3+Ejm_6OB#4kujaZ62r$%+1ZI zuzU)nA!`4f;5gAbRqu6)^r_9GAaWkVu?lM@)go{Dw;3uUrEt=r%sy*t>%HYZUs(9Q zTvblBQWM3Q%Js-^-)_9g*FJ6Q=wPxXwgLlqKUr5he;z^qcBth29XJy!m<*LCYM+FX zk`e<9ch6;2h|1sJpIc8xO6m~MM;dFuq6xYTa_lj_+V|QnoKc8t!nrncVGY+E;1x z?CdN+v+r*#SD^K5^ENnyT!EIrgv%;(4oXKyC;e|Plejq2mnUb5G%5|g!A&*!{e_p) z`SId=2n|=R;b8o9b6r3AmV8uNk(%F=Fb?jdTJ69LURQK1-2@T(vXGF_HQakkAC|nc z3?uLx=)X`3s9iEy{F}gIH>T~0N~d(&dZAcsC_TThkO5I4(*v$ccU>ldFZ~)GWvIXScPs%FVWfD1ZF; zv8}ybGKiG@<^0?n;i~C!Z+bRtQQP>q=0L9MTLB0VD-d_1P~+8(${z-pA3khg_{@qp zlSiFSUMRs5E0G0>YF64b6YnvZI*Qvz>PrBKa(Q7Ec!9 zEOX1K`0QR^f>a?VL7xsWhUoi*$EkVT;&7dN_2vH55J9zt%645-jn8;g7Q+a)W1IGh zYgeykB@6pz?=E(!C+Hn*O`|V4f!|pkeIjR9*PPQ$1fo$;=y>i9W)@uM=-36EiQ&2X zR{ixT^S7BYiawr#SS^bu>eHkeo`FF@iW2mZ;o+%T?)!=Z-(OsrUs=gs>Hm>>zF*); zTNLCUB$ec({>uw zVgi?G)aCxgBu@(@FN76MF3X9r1wpU+?ki@%DQo`u$Omay*4WfUU#nG6Ww)$5tmH&-+De;5mo8C99OCCkSLP0@7_~cOdrNVI ztE$IX!FKVlBCKIsXQwnKCgzWxRI!|h2*Mm&LO~MsatlQYKD#%tFbo_V^31A5X&r@# z^L<0cGT5*mg6=1Dva+&7WMtVHvPt<;G;jS|=+hNMML+NC?8tjvyTwq(`ryHfWjnt8 zxo}z7os;$Q$$khricU@y^CuUTi-~VlRaKQ*G(B&*qIMPf_q%-L4{F8UNc^}!ZF-_N z&)LZ-i;T-8%VB+F7-cDb!{`yGlaCdF5NhuZgv~U#3I{6Nqb;2(hjj@R71D58+2;24 z!1?y*-CtMme(E-1ogb7VE-h4P06clX$cT;$xAF0Rg*}$6fDC$cFlq@9rZfKO9mu{k zvWXp#0h|{T93ii~$QiJiZzIZ(j%)s#@a!1!u>Y4Ya|6oSrT0#o$t}0q7z@|{*(AEG z(1(SEIl+%AR`aWe5S~H+v8E<3&Uqjc#0z;QR@yFJo?2fwC;Dw#Q2RM2hmo~r>oPhQ zR8@`K^V(lU+HTe!5|EL#0fM-B^X7B`;(R7E$wT+-XxkygAQ^7)5X6(y`!3R4NiQPmH@UDwHI^7jZk{pN4yTUtQ=* z>e@tHSlmUvyyo?>&i%AEPn`#C)+1+C5ddJ$thHR09|JgT$&yPASjWS`(T50A17Q_X zr%K%p5~6<;i)Nem%{y6dGlS<%-60}v)v<8)KFCggoNm zY!lfb(sA5{5E~NR4^#n>y#kQ%`t|GYU~d2@&~IM8a^)Bxrt?lKt+=ElW7)UST-9R0 zH#J)g*l8IVJ4qL3zHl2wrbw3dq3HeCl6mmV`PBjhI$1%cKu7qV0&O8(U0vgzlvn;O zD6kr%wV^^ZU~Q_)KWHM+#=m|01u|dr(l;SbL3Cb%Re8+H8d6Yq65x3@OLYeOI?qk6 z3-^mdB^VEDgU;ArBO{v{e6W`X^T7{VGN|9jUCP1NcS>NqT&I+?4+w+mvzC z2C3<&I;cg*6!T_DG)c_0R`I-;fC2nO-xD26F{SZrSyO#KVGMtD(({0n{SI` z(x||`hK7NvKi^$~i(NdN^ejISMS>xt0ko{(aa#Hq z((g94F*2W`Gmd95zj{L#mhTLVW)|>zifXYTMpV*ccCw(oRb&X5`Yw9eA!l&duP6XU z<23A`+va6uW!*qrc%UJQyuAF@;bHmO>B(vV{0fJHkMM(K-SOw#T&Ct=3d!fsG1%GJ zYj*!WLmNMQknzQ+TkxPx>}cyZ-d!Gxdq7qU!L|X4Y(b1eZ!V?#UXP9cD?f?FC7fdX zmp}UZ6)>}|Q#ySgs$*2n&q_;s)SkCQ8!zB`pa591B-Z{NM~ng>IE7TvAg0ko*Nvw+ zcRxb5NKDKJ)Tsz|76EZhLi04O=2aju11oD+?*Z(D93(+VMw1L>;7K{E!A5`M<@ge0 zYQfHx)&Wpv?YYzr9DKZTeI)*YDycB)WIxb7))n>TI)q;IaRF5o%I>zGlvHkM1d^~S ziHnP`09P>qfQSag5~)2Zh9yy4Udr_8=(WPkg8Rs^9j%Jw>gyT&GE!5+Pee$VrdDE{ zTvS}lJnDI}OpBQXV056!9MUD$8wg%3rAfUf)rm<-NhW<6LGyKaG0BfRZxnK^>Vbhu z+@ALU{_S~F)&N^V~pF6v|#WfCC zNr3=fe~gW3NLC;3E;2r+;CJdS%1cA)i(@7A!IG+!H9@v;badP=N1*aLW-kDN(!tC2 zRZ;r%U`l~(3@(E=yQ~vxrUQwWJH8MQMmx}jYOndP@Vm%Qe5#* zaBOum*J;~rNXx2ak7;NaczAgB&vv`i%iIBf8~hz%&Son^yKIy>O}O~2d%SNdtE$ul z4AqqiwDK_a&rdhi&4F?hV_{<#^JkVNwg3}g2og=5nVDf4wJ^9=P`h~>_VQf*g87CV zks@M7>?Ln9xaY5fFZGlHF8HLR#+9|F8`T(TX=y*-_tAXDxvLvP9~&Rv0V!yCw49Yz zCVmPc2?hkV&%qSW)R;Hs*Vj8CU_P~7kSbI(@V!NDxG!!EfbfmPcHERu6@^;%U0p(oE zDAClyoFv*rr%%6rJvTw-cmDc#rM06&zcuW!(!O!K{83GMW~REi=l*~)(6-tE=0}ej zH+G3fijD99pr1`%ppq05eu4}1mb`xpYoxjMtx&IJ!b<4z_Q3(m!H`80&!n4hv0*20 z=^q2DbKrZI=nnXnCu*w|DYVlG8I^M1b$@?Bm!A8#r`%Fo{_Wf0a?7NFr=r34-gC{) z{(ZK2bqXj&`JM`ZDCWSJ56%vMP=}LUfK@;B7&Gk;wNSc#iI2Zmce?Scy$lVwe{u9( z`g!7L1*sU0RtaGxP@p-k6!>JmR&5(~2)`~@6kkFxAZ*n{$l-Vznwmh{uz|hON7sS! zGbT9aQdR+|N?KC#cS}plhEtn-FPAwiI4}j`gh*Fv3ott)oOQ+C*=p4TEny;i6xRvd zrB_lCRjun`8J}3S!}=E7y+d$T7G1kN(>DYKGEF>Oy)FaO>0sE18A0;*LuY%t-tW)1 z(kYRdvQ&`Pn307Tg@uJ{W0m1zl+KMi>rE+LdWMEHkhSfWdoj}qAyOmek1Xc|UIvkI z@p_)~16Qq^_wcbImQQ(cgZ7P+PSn@0a%PhNnq?u|11?a)z825#Ops1kP_u&te*vAl zG&D2>#KfW+8u6V4ZA2c5v@9%tS61gBla!h)E-qew?&RcDxK0!94}s|N<;%RlH6`c) zP3dzclB==-qATj)_L(P?IAw5CMZ@fknq3(?K8jM40d!VqBF1NwoZfXnVLAZJ&QqGK zRRuzb@dQ+op*ny?MdqX2Ip#pt`RrH5Y!E)6Slz(FVkqAQT>S~Kb|9Ew+$lCmA)Ot{ z^Z`A+e~xkiS_whJlp*`zRqZ~A3s)=VMbh(-E}%`cwzWN^r~lFK?E#!}`|xlvkhSg| zuw4wd;LgK>i-D)dvV_?GCO&jdbn)cW5z~ZXT=>dHD2nb_SJC zxCBCONt~K`$LF}wQF}Pi{!{0-#fld;gr#y4;F9?%1xD`f?(O@+M`8KzO$V|SS&${a zZV81Pd`YgAaB<^lpD@jOS(e`;8_)Z~#KgoOIbxvM_vyImK&b%4B4&VX`kO1W*{hvI@ehB*J^i_zXH*VcRi#bgPL|Pb{7rq1f9G3tTv37$~#Vwi- z{hXF=O6^;=Fs_zwBM1jQ5$?8ZcrY4UE{G=#CjNkx%eiajQICp;j2H^MkGQNF? z|KifpwadsbW-tmMeH=!A@5P-Kc+T3ROp~`tFF++>cRR9*TcpbkRLaUl=2L@UfkwH4 zXIsLcqVc*OFrg!w(8X~`dM5zJN&wMl*y{uk7A_ewi4P!-Mw2LS=Esje6eOu?@Fq$| zvy{eUF`s;Fff&^Sg!>4>E^Mi`(|n}zx2Lu=aopx902LjC9MHQ%^LJ^lvs?Dv1xlAY>dYN#R14H0s_MJ&dv;kXwd5#IHJnNmbmf+ zHgCsrnKnb@J6g_6QUL`3;@T8g(Ja7!gOj~wo|7#fD=ZL>8^m$$@rH&7p7?$HM#|@~ zreb*7AgiLOq0uJwMpQ(^3b3f|Xb7c%$*?vhVD}I50e}9yZl|q#Odm4r>w_H%H6u=SNa8#2^l%qvbFH zNYU8%IC=xDY;B9pE`XY~@jFg4&4Yicxz86{i8>`Wc#6Gv@xmd<2uK`SA9031v{aR+ zUTz2y8k2fiZigN^x=zfw94wr8#Z@O#JTb<9=CJmzDS$``iO2KX_{k2y@2TbG_lkna zHHw3~PPN5GT|00!1QZmS7MxC&dt}*Zwq`>=KjwopuFi34s1*%n*_SD+Ub_%NC4~D9 z`LZg3&pzda*EKYt--BKI?Tfby*C%R)U-z$}-~YI;|elk(7KyMs3gG z4bYg;qAB_hFw6EK;v#`(!pRG*ZACWSNy!c+t9i-mPonL18|Z7I)67k| z-|vI;Ru5sf3sya#R8~Tw=u8k4QQ#OL*ZCT#LlmcS+qwjxuQ=P%g%K^;f+vCy=Thht zDX&rIHf%H5-o6@z2B0I< zEG%6BbV}Mi7r=#%VSRFyp0db-`OlOhwWv8bdRJBz%T4}-KG3MJ`iKU0Lv?FwW*nTH zk^)+pecMxBctxoi#L$YePDU*oR}4wjc%KLAuRsyi5GbetjeoB<(`8 zVUD`<6VockO^f{jfdm;4FAHOntrj}&)?J*Ra&&1PWz3dOdK8;6=CW%lOxC$?@9)od z@=QJw5<(0)W3_Msi;j9&IsR)l+03DH=rf z3W$RE>(}qVThWXM{PW5OU|+l7V7&-WPpGQ+A`n6#-9CUi3lXDI#3=HZ{E6`|*y+C@ zn)2E%;NbCZVF(HeHa0gG+009bhER55v({id2jFo83mC&|{SX4huhG#saE0+Vo@#kf zKG-B2#@+YT$}Kwoe5Jk#*#a;nnx8_XOV^+z`2|c?rOfOuI25>bk?Wy_Qm)EJs73*g zXp*=bK}$kHf)+*rn2CeR?>zTa47mBb^Rr_#xxIOZX3U04=;DkMEvvs{3k?nZ1sPuj zl>XbdZ|AC&W@`vFd4R5_TIcpuulb7(sET&$BSfh^e?UG$zlk{8k&Fo(>jWtlNN3-V zx3uV$Qcxg-OKxAl03X%UdLz4g&(&}OC=77Q!9OAd21eMk_%9ceIt ze*PR0vYL7h6$)X52g(Tqc&MDr0W?n6`TZGPqDoJ!mQ51u&r^>E4itv=EKrAuS+%6z zy}NJJl~`J`yT5M$+A{z7(QJwNXp}FN$55{!I51ptBqlbo)!C7?%fVVJSe{=%z{>(; zF>C_5W(3;px(m7@Y4J}P=^rAa4@4Y?l#2NUwV3alv+TxP^+^K z2mRo`YYFx%glMPj6w!0eURvA+kq4qD)Cu0dfB!#q0#I4j4^@4XINB@@qE518~f)JTBUZ{2DdsIoT&sAgHaPYf~>Xd%{J0*4V*8K0}GpP3@_ z4S-PEt@QgtPK+7IQQqy9WF6kmd%_ki`i))hn$X#nmjQurGHhutD63jd)0iw86(0%; zSRv2-tajLXD=W|hj0IhQG@h&z04+YQ6OU`nJ)|4J3b2r+ky6I``g*iOGpYRi0BJgE zwZZ450>fi(D+XHGLe{r)Y?Wj>-1beB_<0t8EyQ?zslTlXV06n}nZ zCI!^ce#oskpe>B*uKy#G_h%(Tic$oR8u$;He9~<WJ{oN#VAz=+;fDIg&y&%tPyE&fL5ng`o2#T#fFK1d_y@YCCm9!(7}&75A1*6cXvVnAr5e^S z1W+#naDN*5kdRmcY6aVEKs3dq1G;Pv2CaJvQA@A=7(UAu1c5%T>jhd~7Ido^C<6|Z z4eW|uSy@@J+(MHJAY;2NB{{k2fCG4aw&i49TUVDX6moN*+L?8mS~Lqp1t?!i$jB&l z@$Y^y0j7wSgFQSvvSH^Me>T*4B{KVl-D-&xNk@OY%~VJdbVn=jSh%=Ka4(9GIvZ!rmb;U^ zF88}`)+(D#Lh)0fK&v*Qyu2K0ol&sp5ojGFK;U{=zHM<)Q9o?U55V^kAt51T!0RQX zq!d2H^4VuAs=H25*FXkd0fA2b(xppiJ)XCBfl5B5pL#F~S-#q~FFK<|1iI7jr%tROWOGZ|ndA`Vh4;Ky{92x4hiIG=Xt+r=g zflx|8@%f)-j0#MUJW|2Tf^mQA%*869FC)dIdU#b;eCsk~#t+W;z}6`41?_^d8NvSl zS6meHo$c4pU8B`A5W35F`iFN|wz+q;(^Ne%6{%6r}`ZtZf$MtN>Y|r9v*_wCvbFf(&l-i?f$>VZdDl;Yi|AT zLr}M5S4BS#H61BxMHrmIXa9BH|2_O-R$hOwsn$&-+>4R+E|7!ZgRI(of zti!hwUaTKf4gn`Owbr1GV;~>Na^<8 zUdigW1{+)m{b5tg!mqwW`ubkS0Cfq-sCebIf2`v{K&T@f`WRVCSgQ?HRaJbv1lH78 z;oG2);|7cTyI_kC|LdM4<=ab5zAj4s`}XMn+YX;bX|`CxXEK@#zE?({wCDxfBTzeuH_2Y`4_eySfkv=kNWR5vy8Shw2Uad z4l4%$R$|<9`2(;K5G5OcgT%1wiTW@jOkG6Rl zeR-zO#`vjug64Wi$5LQs4k}s?dZFNcNP34*P6*=3f%b|yW!Du+Z)6ma3x3`B zbj4l1bnP&RhyBqbja44rZ&RKKh4-k>mq`$30gVzH9}vtkTWwoYSzjZFx-E@9SUTWy&LRe8wj~hdldCIA;-AV1(xJ}hv)xs1uif(G(W7tW zT}ia!=s2Ge=3KGF%kkSmVE84_hP@KI^Q!o+JCX-c&VOaa9KP$NAvE2U(?9|MT5};k zicVHg{OMn)10Y8bP(yzW7{o6mQrU1b>H#NbI5-np(cS{~UE6WMQ~W)l0`*jPL8qrN z_3>@xdVevoTG{MiR3a4*<%g8W(cL=)yh0ZI_UAm>C(PGJ1ut073*0r#s$B}dP5wioT%PoF&cC+&XO$Xnyj*W z3=f_%g(ElCBkT$z`&HiIViF@?yu}%8Rx5`iE183}S0j9<62HdGl1Q3`jJR?L^B+?(rdY!5+t?wv zO@A`_$Y(d41jVrveIJ@+yR|?dY+WE7>0$Zxfe;?-t=T~i^OEu@LY94QQ5?}*u*Zms zVvMO*7cV+kV|GZ^e?<>QiFPsN%-~3pZ|GRHmeFVOjgKw>B8uw7ePV_h{CGY(tb~JR zg7O1C(D3fi%FKbXWeDsZU8w6w6sT@IC|66-0RoQ(^q`DnDfsqs0Vn_376|y~#V}Abj#mQ zJ8i~n7fvPbye-Vx7xtft86l8_s_PQ-4y2Gkbvg$5B_Et6-FUy{pJzL?0hRnBPj@UQvWqOZRwV z>=&}QH|6<#cbD;LT`yl@eP~pG;IWDSY3T>+&{+I7yrAtMj zGD@CQpP+W@&grORcb&0> zCtB~Tx@FwQc~gQja>TMzfm;34@rASN2)|{|ZuQ*!_UcS|fu?>$w?_0=X+H|o`CtL3 z=;qAiFZ%P>5_0nn2HfBG~AAh9Y156Hz(MK-FO%#bGkeiWx;-Py@x%md{v=n>H}I|XCe z+S|+hsbYB@`YavoZan6U@r&Olc1aIF9J0LDO^D-87|LZTIlfj>S-GID#S+^vX}gj2f&96+S-4E|eX5wXA%? z?CI-ZF`rVnCU3^Wz{t276&!ul@^R1gYf+}p&^en|20@&>7mW3QhTErc@7^c3v1QU_ zZ5>WWZ0PM{vz*{3X35ieb!@z3r;a8O0prG=xbkJ{WUsYAGwGXBCG{C3*gJRbU|JUsdX^eB{%Wo z?Gset8Xk45-!}y6WIpt$I(+ zrk}^G%S=pO>-rqjZl>%ah15^v7yV5oQAblXXsKR9##Oi)@38MWLwd_|NZGLZt;3$_ zlNesd4W{X7`<_Vaged13x?5{bHJKZxLCUGk-=*GheB_9=qzQM9;~+j`Dw@>4nm>*t z9FD&0n0TTtdHzgg$<9c*=2LA!g8Gk#iwX-KbVuX*RR`7Z?I$s(%%NWwUZULd4Gu z=Y0m-?<7Q%kjd`K=0%gJ$?iJj4WL%bh{kM!Dd!uCFPMs}M+y*H`H$x#dj7PcPTSp* z6kJD2Y&75f4NYo^iEQ7JW^P2BBtW+^poNx{n1G3&nS=?r_$i~iw? z;USNwoc?oOlVG{EH^WIu`w0@1e6>==3I zuXe6bx2=`0=3Jx-t7P^j7Lga7Hn4;_Mvhyyix)(iB0it->z0+$@7nK|t7<1Z(hGcz zNJ{F0k`O7|yXP?%wH$Mcw|7m4Q4^;NMI5KKxBvNm#Q5e19zn(n51#08%L}AX-Uko$ z+2{<34WzOpyriG>ur2l$NW|F;0=qC>2OP0(|gmfmpMrpY2PEQU?d+bI z4yquYhGDM9`*M(VnwmU%oQ#LlSnOUMS7m_^jES>7VymQ;ZIEW#BRtr+TvKf?JiFrZ z8=HG%hJb7(^d^0phK!_`YZXK2Jg?~YuTRL)S z+kUqRIpDTyz58JDTUTbSsF zmdgoF2bS6F6^%VujuGS;`80d4E}->#&gg|!)N$tgVaKY6;R~&dAe8FT+b+G8(2s`U zj;$z%KhG}^&)Ph2o-=;fb>P?f)!$RT<`HNh%=O*zN&@+k#`8tBxlG0-%>tB`ool^x zlKtJcJHbV#>pM7C#Xb&VmhkOXmbmP?C)EAf#5^s(2 zhk}FdtoL1C=%SwPj8Vcw?bp{|MLcP$(MEH#hR+~H@$y}@z5=|P*Lf#x-owm{={oMc zUz3wbkTN+yc?6C2mr+s-;-N*?Cx-_1-oZRZ4-_SV{K9^-Jw-ThnRO+yS;B(=w@P(~b_7ev+uh&D0TR4gu|n_M9{n^+HSGobuC4uM zT@=f5-mF>Nn~gkA%SswGdo>D_n2eFkgze*l)2%=6=SPg}*GRsPc9RTU!z@@d)xMC~ z@6#dU`D7uiO?N1mV}LLxD_&2ODq+{^@2Dsf7`QG)!LdA;vDS;jO+=$_+xLLB^Nf>c z;B5Ddvg%kFYW~o;>ox1ehrTAY{}}lRhac5^YtBW!lxWrCl6U0k{D@ob z-@8o9CzR#(H#5|QH;Yb#mgGI$qo~EVlsG0Kr!NnOSLpn1ov4nE4G|LEnrr2-{b!N5$T? zY9bH*Z2IPN*S9;!SgqT&xxuYG3%2aL4;TBoY*|nmh58nT9?RG&l_r|4ob$K)MA|n* z$zl`UMtNLdAqgYIKH#0Yy>995m6S&hjw}q3jbN5D?lP9~9dS$CjI>FXjg+_xzfdL495=VP}s9re6Z--m!A#<+c};KEZVfR^^vBD{nhu#YM#0TKE)wd;?&kZx!+V5 zd>Tv0f<-ihxC7ol%dp;A5oa;fD0yT(%Q@Sw;l}ib(~ob$K5O=^)o#9Ug)FbV+sd2Y zrPok(t75uJ4<#fEJ-Cc-9N=VVS{)aB?PW|Mv32RtQR-lVBj(gn%-n5A3l3*^vONT! zIQmX@)-}36GI)G@>F(>%?`1?`Z^{NNJDNxbH&wc}mL}|S#|wK;^440g7dS4PpW@|g zdEA@W{HplVjnswE+?04Y@hfJ#Z+&Rj{gpcMXPNS$;aIBC4^9J)jg%znQG~B~ao&?$ z>NZU_?_3q?mRoqVYUE{cZvDPwYT=57$JB=D`MB{1>}tv7@?Rf@7gQ5jD3JseEQwad zfnBj*wicB`9d6bt4Wsv|^g+sMX9D68=1tisJmG=?4WwngC+BHr_BU^%es{Jx&OKAw z9wpc95r;`O+a#WoSepZn_K&c4B2;g%F@DbzUKe|a=0y*@E3^g^Yn56R)fF7LooQt- zxWg)$)xP6lRV~N<@bMqq$wIlNLUK){;0sNR@HXjiSE_9Y@^TaO#j~$0w5ayn?8-X*zWl4rRX`hAFuiAaZ|DR& zZ*wiM?p#ymnQeI}dd*0t@IJ857kN?NMz0wDOO3A32z}*e7hkEjso2k=!YUv4EZI5P zGt}}wSB#8IYD)ALaC6?1tR5-HHW6DKNysCpytHwt{K>*Aqh4ZZj_a=1l#is;vOfEZ z$!!PcGCa6_sB}y-^W`}7>y4H{wL`@(pGvUVs(U*3XIE}fo=>UX;lG0AfyWjte>59d z6ymu>?N_tAa8mY)ATKh`7}J(&{`lU+a|A;QISFoN4?{{^AFbmHf*Rb^Lp%)qe+71L z{J*cMNR5@BZBhzY-NenGGR_wCYWMJjczI>a-hlanY6$9_&q z?LnL3iyz*)oRWPk!`ck>`raLnUL&q9Z$G~1kYbsTRUJF~)rXi;`j*RFK}2IwaG|N) zz~mNwTemzyAiV4$@$WE^94q;-DSLePdK|6a^ZNf|b9AC!m0BsS3Jo5&PNv@Rk4Ae2 z4UT@44;boKanKm4|10@y_zuGN%Nb4%x6Xu)9oBMVb1}Jir(~&fVuMD%Tx-@{TE%klwfq7-hapgKgNDqli`q&vOp-;?2v@@j#u& z29H$@mo{Lj8ktrj=TKv3ON71te@mbBJuTs!7M#WyQ(csyv52|xX1UbLCyOmo75lJ% zp-A#^n)W9=*9do(puu|uvNw*rN6wcibQ28%iwbDW=QMfte@e{%i7C17uQYAo7i`9W-9bpw8O%J0K=D7_Gyl5|nas;)NDc4rs2SD@A!;oNA+o z!$1#)=E@oEixU#)`Y$a(&v4v@*`NVy=!b)HibDTy{05ecF^!o_XruQ-{z1d%fsSypepd~YNMy$U6UZ{z&c#E=a{DPxh2%o^z(oR$UgA0t$DyBG_R9$j?q zFJ5EwXlJPwyl&u5bGnRV+-lA@ihoCAuBeV9=@)SSrq=bIlao(cc-O8pM-Y}ICkNw- zqh0MFJNK2;Jtk--fx0_~VF#(;#hERrm4BdW|H{~y&i(YD)VTwijg2R2p0d{Np@}eh z%mF=~2;*xTwTD`g&!Ex;-!QDyo(Oz<(>isBRdeP{sO78e625Wi)!MDg=hR{_K)glK zos=u!%KksRVAN(|<8#F=h+#b@#LUkjncOLtniCqo5dLYz_KY?5PL(GO%KwFCPHN5z z;o=X5cDU^JcM&}@*Xz*|eAUv&z9bZnsXTLE zXm?Q0^(b&B$$sT3=lh%yU6q##SH-vZ{6teExrP5q`PKr}`}1XG62Xdg_Q2qedZxWt z4=~`?Bl49nJ~xVdp^v73vMy9j-03loRnyDaV>--j*jVM|N65=d!@qmrolf*uIH{R9 zkLW?OH~;Zmcw=MZPr#VaO(YEk)4NcK?mU1NiFD74^Yp}B=(;XvNP5!`R6LXib1&V3>15_kg9rkRXqp)&q-3`2fatLE7oO@?YHs+c(^!P)i?;uIS3<|HO>t6CFr0-cY3)Rt4}wLEihN!X@j`_I#hXm>Z0V zCAFhXePK0RCj;|aO;RaUxFS?T_$K|B?)2#t6sioD(rEJVacRH>dQY#1Vw378bD>F+ z^-l3r=SVtt&tNv_9oM7pJ^=i>lB6l@f0#5Np>xk>xt%W~NF$zVYB5 zJbwUJp`tssjh#OJ3Qf&^tizH-Dd$Y>kR1x-dSZ3 zmY?%oU|`_1{`>5Nd(BOK{NZJUP&F#qvvYfkn}V`=J-m4DB+uP`LxX=EXJ=u|#2-8h zpMW42QIr7V%moFOF~yEBB&-ZwBaP6ic$eEu<%cHoYg zk(r^n_c<-~U0eCMSf>mA*yT@g!tXd$P9N$&nhsT~xR1V<4D`L6sA1mJiuvck5xl{o zZyjQ;hTqiq(mh4FOI}<=%>Ld=)~6$CxYRUy0G05}u@`y-sep^!5A#c3M5)npaWDgFP)0OkNS|I&Wp>wI@PstARUvN` z7Ier#hkW<2b8#qA594aZ^=|5#>yrsbf5$TZc+Nh-WuU< z8KL+b@gw`6qH{H=I_xg%+6uPa(A8r>Ma*F0K&$o#K-Crw1g(qWikIN7P1h>#leD$9&YmR0D`JrlOHd5jb6D-9p`zDfc z&?5H}I^rP3-1yecfo`gWF3#ZVRBoY1M@|?paIt;J6P+0gjb*Sp8BjOSfFW&YA&rCQ z6To=nkGNn(zus@F>oSk`eHD!{Ha}ju>53{fQMEjLK67bdGp-A;A%;`66K7G=Yf94t z(nOX-JM7hFpgBs|`IxTPIDgDOa(T7Kuw3$zmn6K0-?qH*mE1=n*&#utR4(KnW~mvl zQq%rYOC5zDK8)U0=&<=l=a!amz(4&Behj}qT8=@dy{Ll&H`J#^GW*y)&YY?Z|4igU zH#QWvI$^L8Js)Vl(mxHe%_-2+6vYjr8u5JgZ8jG$eMb$=4=@qIZaT=+4kg^`VuN;K zjC_sC2AG%h3kk`D39AxQWbpcE`5hu6MV*jW3fjjctTyMvo?*6gHa@l1lG zu(H(6Fwn|Kdpvo5QFuINh@nxM&)>UuJJIBrkZa6TWn@2KscC%L@s2I~=ly4ceb1_R zC`=tAVyaVC-eBQ+n4);99_3HGsSdJ#$n%rFVnX-kWAr^|=>w*`-;OgeM^Jb99~QGX z_npUrg@vUfjwb|~MU{+&UhOaSc)_$#bcH88gF-5fyVK?Zx{-9C=M!38QU*-SDWQz1 zvG6xReIgl4PHN$=rp7n6OS6%TOD2Plju4i%{7);@m@^#MXCH1-IE7HjUigW}beoj$ zcW+&4E+dolQ}*lBvs0r0>Jq*b`}%b1AZ(22Z>RpJM(PDbt5Lc3>8M$V>ta2{Mb@_p zNR0R?1md5NADOtE3N&8CNEu5w-Fbv2V6=}c$Gol7Big6fb%(be+BM^pY;1t^@r<`BAR35F7`3E|jnhrQei(K*%YSUmlTr=dNnRJD&E^Wf zEj`BFAn)+qf7j>4arm$^x<-l@K|bT~d~DOo1CO*QZ?wYc#kkCy^1x$quH?L_aa;q| z0J5HRe##gqEyV+`dcC?5FxYbatqb4h2*Q6`g;GR(_Dy~8AGaf{KH6TK(N>C`Urq>~ z5)aQhKGGXVc_a++d%h)lw?2s~G)zxxHZ{hRGtu<)UQcOiP7~=3S_gfi+yrmI^@r=1 zW{8RV^F4E%)=zQ?dCS}5JAy`a67yV9W*T^&wl-xJCC5g8D85&-)K33;CFg^mQuNgP z6AaBx&coa`4Lr#MUDAgcuI@rTu{d*A=#xkHKboC>xO62~$=N~F#nW@Aw~zf1?W~e^ z9rS{tv3g_Y9~gqd?vnoHw9il#%XKr32d_Y;Y*J`U<_itAsV;JBv%gC?k9BGl$$XTBXh zRpfb=`Y9kinp!hY4WGo9{c%&zKTi>X`e;8WH6R3#hJ|%szcw>mM`2u==2qq1SU!0z zyj8=}vHn>_fByQCm1RtizP|R1U|3PujXj(+^Ec}4pNu5vJ)T`aVDDONjJ$(!)#WNj z#sKO0;F4v9vF5$IRrrQ9sZZ-oiltuGmr=ElOcHhfiSJ;p8OUx-C&IKP3W zcW3JMubSH3q38-c3@Q?;MC0SD!g05ngg2+NLVf61EUNd{hQp3{K8U(^6x*$edO2?U zYw}1Fzao06a78A13Ox(AIZ-PW!_ibEoioszqs;066A8$t=x4}KdK~H0)YLFAbl9X~ zv(Y*QMZ=IK+D^Rj%b>Lc-I(&RC=t{6_3Osa&>L#Z_2IOW-1`nZjppxWqWrT~4FzcQ zAG7JSUu}2iNg#*In)fG`omyN_9@fE<;}B+PJimtMDlb5dv%YArCn67rHq+*KmioB( z_%A)ik9c|i4`pu|m1Wm;4TB0wgNPt0NQiVdD5yvX7Tp2@(hZUd(jn3zs7Od7(j_I` zBHbyl?Gckwj~tMi9jH{z5p78`9-EwE(k z0xm@akGEWb%I%N?YF}o{JG}0|%Hnj{-+VsUo2ljv!k>FyN&#BV!c{-s-jM7AACjbP zmpss^ugu}6VFN?*jHxKfDYu<&rkm8e0J=iz8#ijwyedV&dx`00+Mv8+u!5#0B@n3& z!5o1E`*-?R1AYB)W3B39;FuUIL{weXmBv(Y+8(*;pSC13WS|i7iT3;gUf5KYMcE>g zg-NEsSErXZNUXA!HgI1jpC4<$dl&v@NwAD`x%7m`BM?cA<6IBWL?#kN8ok&K~=158L;JW9D}&RldzZL?5C_ky!(*-y zx=qu!Hf9D0CZ8$%i)9*O`Ay4~j481bsf*Kl;OJfwOwRdrd))HT{-5o_(El?ql6wSC z&O8&%CLQcb?eeU*Pjz5F7F@!SixPH)c>_E1FRoj2j9p$$mol25z|xb{iJ*+CZNy z2WjSfU+xXyiQfQ17;vM{v77X<1K~dk9I$#Uk%f#%Ux4i#bm<^@4)b~Vz2B#&aN_r# zC8v9vR@!>gO#d6u!Lro{YF9*v(|nX><3b7S5J_0{n!?~ZW?{^B)R0JFo%ql-+V0`LndI4`&4o8Kt8l5i*e3M~Z>gUyL5 z+S(7L7P!3q;EHKw(T7dvL7ogA zG%cfqUzS~_dx5BrF#vMapL6aJ$8eeZTHsuyf?InuAeUp5?if!@d!S6qh z2!@L+_yZLQhG`L7rs)Po!ZMV0(E}4-x@+Ke_rydExSGuAyh?PcT3Q_oRoXwI-oN4H z{?$p1P!M|jp7@za*nKqxK%w8ugu9sZ#m|=S#U(D|1u7hQfF3qxP5FC|OnSY~1Lo;C znAXtJ(|duMfc@2`A>tke*|tf+Xo)QoWU*{ph{=d30_+u=14(J~kN$^@Wl-EB47BK6 z(bXU40pjZbg|4Ra+P&pc`HDA8X7NDTBr#~YejKipQLy0Qf#GU|S>dwJfAiaVKA#R7 zU|F?aWWQsW)YP^3*HtjGf1Ug?_$T(<=gSl-3XiaMN-A}Xh;{ZR$Hwvc?^URzS-(Z! zi6X2FJn)EgCIljWTzEGhW(9hCOXli=fg8d}1l-1{V_^$? z!QOyvhC4hM&G%&!zexg7invqd$NEkrs7QQZXB4)!4A(^BZM6I}XyBN!Q2J0BWxpf* z-7x)LrukzG+4~zU8e~+DRP|EaM+jp!c^GWTw$XQ*G(6RjJTBxyHemm2wNY06 zXIWCUuPrbtU;Z=)E&-@Je;RUs&I_4ZUtRqOWnlO<8jzAtfKL-}k%==EWxR1IiX7Hx z%qx!yXdUWUq(+Mf+(~!D+(*mLQ;@s0@|mY&q7U&3Vg%RpA10qCJ9&aZ|w8&j~Z5tHP*UQx2j?x6XIwlcJVyZp*t(wokVp^-snQ2k)w zh1Sf$cueum(X-%jidQ=tbUqfQ5zPZq^Pz$$!Ie0djEuV$HzCfP+| z?vZX~Y5ew``@e$=41$6K74BGw==~9+1fAKPpXQZ!Tt%}&LW+8_SLQ659zIdLocKGC z2I2?0D~@uXG4)8+ND!{f5Uwmee=+Lw5x$e}k@k&lgm8iUY{&(Es4P}4r&c*LyX5LN zvXx!tkA~Ru`HpV*RAxZWQhU5ebFD9-BeX8T#DQuBAU=4-thq;-5r!mOFR(#{IR*;f zDPM+oZIDqjYgNQSda5>n5J7~Wf^tZp#a~M87Q$!=J`Dv zZaTOO%jMZWwSIc7+?9K_tDRtm;^##d(T`qEIPhT8O5&dNod_%*<3EujHu)8`Ft0g; zrNW5Bb=1)Td>t(uM_2=G_h1ctv_Q|k^WxMRR4!ZTF5ApzR1Lrf;T0uEp!;uVYfFak z3&{oo_5xtclu`NL3;#bw;7C~+CuEOXu8H`}?ST>#w09P7>ln?wQ`cpkIId(y6Vhc8NqdgO;@5UX!wn#wKTZxoLL_*nr;b`15{ zDyCC$#^%8}38I$@h z5d(%M!y{#n-l(|6u?MFWrKbgDlOB!B(>q7Q@kC0;UpS+}d?O3XTOu~pEV_%=+C)}5 z$`q}U1@zwY#!P>S8>{yr^9Jt@X@?z&jRWS(`+fG5nYc7789D55?miPe-L08#?)}a} zPzVLr7m&tWqHY=m(HuF&8~kwA*>*7wdb-4|?VssSB_+MByThK8LN^hX0TG_z};5v_N+N;r~CgO zcDQ8lt|IrNaE*rjCrevf3vNF10tF|(&#J9;i;wdTApN$*!Nss^}gsdc0C8h78qES$ffBEuPW+MK~Nt&^% z*Bs?Xijw?AN$U+!!Ce9>s(li7rO#TQ-1OWoO45=qH{4Pd#eVdAu$#4Ny}p&lrhVz0 zM37^tx7c?w+@%Ch(r?#cwfal|a7w#*d_0wuqWeJZXQr!*r1y=p_aia=LGz@m~l9eyuhERk@mmQBgcd2lL9`MIC8panpxmXcrnff2~9CA(JZkP;T#e3r~ zsekV#h!HRW!wl`{Nkg-=BzgJ-k+hu_iMWv!RqF9o>DC4|BO|y$Ge3`P_8CU{w$M=$ zRfC@2^(P3zdBE>owDep5nsnC+i?x+f6FU@_IUX4^)3lptwhlOvY(o5(;dQ{DBhSt` z&XR9WQ;OGVE@mk!ThhPcCmADJEjD=A4JnI3NQkzUP_`v#L%!XKoT3e<-`0q@-Q1Bfk&`p^_&U9P9EcQbKR+@naak(! zVB*DvFD@iv>>Ptfhx+$?@WiLl?WRW&R?QcuBAFXAT--6}N;tIc76UqtrTnf)%bei( z%=6z(ieWMK!2BqCZOx*p~oR zm4|v5b>qLKiipXS~|pU1E8_9Jb>nIPxQ6YiFb)v zKHDwkdl~ogr819`;Ulpj8#6c<`QJaWFhnznLjOA3GFUwj8(KI{F$POtsPR=5&*;F+ z(c>KfT0MAO3X!x9A3R5%cqpA6Fm24H!-A{qu1sXb38bzxD^E!s=r)1Y_8Xu^0Af8 zP?)ebUq|W{@u3UI3ba9mdxH02aUtnSaz@5C^ZtI4?rtfEqd)*8-VmbtdGd|aM#Y^XE5!OInFFc731^koQAek=C~3L3;3YHJ&W_>m5Wr|rb_$esf5ANZzQk6WsH z43-RrLq!}Qt4`_J4hX=ep`p2ihc^o*Fte-UHFgP4heo>iOduvUDxtlv2(xXUT{L+&`H4iI{mo0QwKw`q4`T= z(n<%LGbwiejA$EIsht1PCSL4V>-QD$+%M*`eRKsR9)f~p2+l5L=;CrG z`=SRbz&8VrW?eer*YK-3{zrFl-mm@ep9%cuaLDA|$H%w9o60PZl$0c-pfD{Sg?tVg z#6J<26!5fE1niCBeZDnAat8C}ojXOuVYHU$_d`Qmd=DNpNz-(2y?b%o>R>mScNo4- ze7t<@+%bFprIQRz_5erp*cjg&pKOxRKHWw^NoU8-!%M~seSHv}hjQ}0SvlVhk2KTzS?C~s;cKW|A2gI~n^!3;NXIkc0bY7_OZBcxIDji8`JPdETgjf@bJGFGl&v{@EqL%#9;^ zO~@1O663oA-C=TCPtqId=R6}L4NP9-#Gofs^+3(e(&+H^)PC?FN5fkw@eUPvfKqRk zp-D?>Ibs&@AELIQSH4~#X8WC?qI)W4Q_M4$xeRu3;C_JEQbn5v{(FD2kWHWaeT5Mr zifC_-t6dmyUZRThY5tTHIyoi_qul>aatAmaL6;u#H}&M@=#Y}D>Qt=!3Cvx%z?*!x zBfI|yIVpW^-J<7B`pE2IidhsEBOz;o*@<)R78|<|tU=$o^XD4Sup^)TJ8R=)*XF(!O~jS1Y*mFL$m_1m4>%Ay5ByFL3|o7dG}${R1ZIir#pMD3jaRobm?z_*FJadhZhU&{hv#Ed?4!o~{S zsZBkX)>b!^%Y0Y(j_5KG{%|Ht7$EH2i%oH8J~b1lE(XplBunxCp$S&#YZ(^*FD1^) zSjBWYR#se744!9T7SN2~U0kw{>ll+BjDn5({^pF(q1NVGQgeeUZ1@G+tT-mcU=qxH4>sgYM^ge(4qk(pD0ioR7X`Y?s#*|=( z5h3QfR1wQ&<3=DDgkG+e8NTb(|7A zt98%T1Am{m*xPq@rODw8^rlN4Tyh)uo#~s9;;&zsT^gU;+~RL=Rpc9clCbTgu&1m! z=ujElI;}DP(RN9_k7=;-%Fg%x?9wzmzX9}ox<0O=T235NZa93pc~eb6Q`__w$=1~- zUd^Ko1bRAYqGzjy69K^e%*hx}hrXCwbqeMOWG_(u>JRHKH&Z9kMtpb+iI$H(y7^h#{*sOm*PJQFu-=@R&5`=^Z zhS?j843@7#=|RYtfh79=8AzTW?(>KGq>Ii9m*QL?dV0|eFIW=~!!sH~ctOReFul4;hDLoyG zT?x%@jDo|rhqWY6zf;gd3F(6?N1a+A6v{EGZJhJWdq2Cd9gak0O4EUl+0*J=bZ&x2 zgaBm!vdXR_8y*>ZxvX$bp@~l~Z2zwBFpgvV41(_^4X)x3@mO@?gEmG0oRSW--lLzJ~DMl1$ z#rVtYwY1>3-Ox?k2sc1sXC(B;V?oze-q5kZSeO{|xmzqPf>#&O$taB!CgSn-$m9)2 zbV9ed%BG;Fk^Qc>qFoHK-y5(GcL<0dO$k=O92Y@?%ycGIDk|Ced6Fkj{&MgQv?@dWo5PaQtLzbjxu6g&_u(*5dx}h<;$BB+uE`Z>9}6-p@@on zNEfb|$%_>TwL_;;qCyJIAY93?NT^O6FE6S+(bL6PNCLEl^Qjs*Iz?9*PIT09%ZS^z zM>FZol4TBDI4B{|5OZ(aIv-Vj%-=X)%q#Y$TU&E8L-&hYQmv-KgEzg6b4N#wGV*-A z2eX3n3y{v?0?iI@%n&KNeh=V{%ryTr#% zVqyFXzxUM^C_CRi@e9Ut!TwS6kn-nX&tMgSua)KA6=o`2jEkr^HVGH*w2nnG{>IAM z`_0Q>pSWzToC=4GYykZ|I8=S-1upDGg{CL^tG}N8NxNoyTjzNqCT;0fuCBv z1O>?-Q{uYei3wvl&W~L~aXY~$y;`;$gY%|nX$GyQ%%fHRn%)eg=qNec9dyYj4z(}G z^B#%WC*%5k*7AS!7duA*f-G_wDiQ*^q@p5pA9ZEyEiR}>A*%O!yx&K(i& zzAW|9guM;UXZda3V0+|e3^;@yQrOd-^0%HbXDa%amX>Om+6q#jd!T~rhSX}rouATu z&0(=JKYwSU>~1bXpvxd?8#z*|sU#R97#lOJW#O2r+E>!121vb&NQxD{N$) z;gQ!O$u%UPe&NzS@~t{8-&}+Ta#`n#(P3-J!bzY&#->C;L37lKF}$DeleXj}k!N<0 ze<{iSSp!Zhc~%>8i8iP+q%=R98UJB#;^P-u>>_lF3CqQTeVHXjNRZqgkoml$2|F87 ziketFdmH`v}Bh`G}3Cj2}P*KE9i?RlGOLGgV4 z_iUw5R-Bie#jYs!zt(E**&8o#%pr=;hKrfo?*L2bJRoivdl>SU43R*ZIY2J#f+Qp-wZ0^^+YNs~Mbx8x8dpJS=zX5X`Cb zEKz|_7%MZX&DuUToG3)fpc23a(7Hm3BI>GMGXoeA73rk#R{1@C7ml4JYH@PT@Yp>u z5zKf}Lc?$pmV}#s!xDDf=M>nZZx$_Alo<4h*)+V|@B!!iwR{^qjIRQK{=bCeVWZlh zdhKj^pz-`&!VsJ!q`%T^*?$1YrR#=FBi}R}!z`w62EbfNhb@%A^$729|LVuEDGNclGl3CoO_p-N@mK$j}n(We-UrZ zHbpY@_A73TFETZ%yCqr&W3~eyZ-V8FH+shVvbQ2~6ju~poP4%Ai+8OF&QX7>W@~GU zy9j^--bTu%YX=Jzrc0S4z>!&KNCIZ*1%Z>4v2) zOimUF$$~pl(H+&_P{c}j`_JlBwSX~+|3h43gs#-#D`DRcDQuwzMZ7XfDUWSZXWNG# zddzpy`uwaKp<}fh$i8$?3G&-bpDFf%t~vFq3pU9UkGi5!!b`WV@kuR(Nhyzfg&VWN5dH z38Yt2-;u=&FyBJ(qJV!A)g>{R$gMYdWh zN;bzu)WjJljNm2DYwCnMj{s^0FB76_!zbX+;L|Et^mg#4o9&O6rRj1qkg3YdzeRsN zqf!Fa8X3OjYa}+RI8bMq9o~Ly1nbGu1{D>ljy2`%Y)*}q;GM-D`V%(_IFoRbmaS9_ zc8;U09yP8=HA+#p2nD!q?F&Hoj>)*9yvH4@I)NC@W}XxZ+$hR!zBalzK2;fi||h5JdtEfj4n7jT4bIYZ*fCf5dY!M)_SC z$|N3>dh&`j+VOsD{ohdVdB00g(EWWG7|MeSCmx(#V6A;uR#x`w5*REsakUF0nFa#j znhiyP`^>W^-=}4$w2vi?5JOvJXHM{jtSw|~b5Hy(;>faHfQ?xYKibro&ah^+Ht{JL zPe3s4&k|C2vo4h8|s<+c;eQ=WlskU{UV&3N&KVnENP{+_2N`f1zP(O}j}yMuTn7s$^DW;fLs>YuMw=D-2gr6!{l6yTSD0;RZ8G<75sFmC^{G=VzW z9u_L`v%nO^VaLY#jlJ81>o&u3{k?_i$yQ1@&3n{_wkNpkvm>MR%!nNgrfZRt{NL(N zUDjZ2V|3H_s@m3^Uvd@k8NhweJuv}ecDG&0cSCVi0 zda_ep5q4W-WIeb`Msw=>=|h#Aq?D}*#?v)3959W926O}96zN6fy89Xo*%7C4@V!R- zvww^7@kI^|8K0zfopIh6z~MKJsx$Cug)0gPtCpRg118bW30V#SrvG4${q?vb=TKZP zX`|>sbNU; zci80xh#Q6XqZ!N~CiB%M$QkHiGFbxlK(? zw@O1SQa1z1P(aO180b;?g33I=V6e{AkVo}CFV%d9@`W)9b-P$HBL;}qhW|K39!JZ3 z6$nr%2)?RQK`!5Ly=mssx(h@V-nW}DW020gmz9L&8M^=NM1^nuA= zC?DjIi33G20}UZcv|d;Nli(;ARWfKLn4V%$myM=fIZuRw!tH%$HE3{GFkrFCDUr- zkKvq{pWplkt*`P;=(~5fA3Ok3IG6?k*p_>%9w94DOinhQPA4o0^8HJBYnudbJ96^@ zb@h(@U2SQ3$~T%omMHZ&6MiLN0kYB z{JUGR>}_q6G)nDEhKf4Bwd!%^0!u_*Cy-1ZJ8xvDD&3l z@yy%b0sq!dG}GKi->@y052iHS4Emt;Z8JOR=9SJ*o!nT4GabrlB1tWc!!9zn6W_|| zwsP6}uV>;whduRxoG=lJA|ru4=e$|+ZdYLwB`2kF#rLJ3y99=@HQfOOjMgBc897#s?o$^z>;Lzlr5qP9*4 z>VVViIrTHRa}vuAt=d^QdQC0rDSpsI`_XXoYx%+>>8coF?e^!l&*L$BD&k3u@?AG8 zb-cr~qHV2$9t~%Ng?pUy4YeS;^_tiICc-g>3Qr4}5vY$O8oxl`f2YA+H4S-N4@6GH zdOiw(O#30ri!hcCxn!wOdVxRGL!2(|jtY1GQAMQP+S#>SZ%>e%obj^n&B6_w-l!C1 z=#7%0(4ZJV%eOXU?umJ_x@+jQ8Wma`VlT)o44qjBt$mjJoMPlf4Q$>M zQtdp-+dP*xCn^;4RSGtk8?P1r&A{yi@9!(AwuoP`YP!Jo1GFB^@G-VVy8nKr{y{-6 z0Ba;7SD5ZZyAomez|w;D?3{gp9MWarSX^6Q-<_twguv5?|Nrv?kjUj)jElF$i@*xb zCxIDEVC7spT>hu+g7jz(Dhh!2oiNdZHK@#{LU5l5#lCo$PV0m1m87xA$m=sM8%GBt zuYU&%^3qe^%})-S_)(mGXfZ}3cI4t}$Hf4t`sw$S|Z@W4z2I%@Ru$;bubtGgKwJwlv+su{{ER1yN7b4!m?)C~5wQ?6vV5!o@bk5<~VekWV*ivnB+?Vo+bbI+gpn2|i2 zz#hO-%G+BD_D5cbn}&3r$&N*5XNn{HPGQ!=La*0Fe`HRCI^mAW6UBXeA5wFOcweVF z+cx9~*dqP!1#IdQKw0`q?b)6t%jTMNzsyJGiGn(*PdFI{W`IR_z}ZBJ1|aQ%^av+d zOmiK({*>HFZg@Jy zpij)JzN374e|;m+Zfmq6i){?cz0vT8-lz^PT{hDJVzc{F4AAE%ul}ZZkLl{TDoDy@wJzOO>xp0?D@4huxW32SWGADWbmbvi=0~aOTPVjF zTmjHpwCGs)^to~2)F&8nnWf-n(yLT#aYjz2GbYZexb3dC?#tBl@2$AWANFWJiFu>w zhhEW<72&IRjL8-$V{v?0txaeQl|QO1Yf(u>H#|IC!7lL$6w6Zc=P->|o6bCweFldi zf;hksDn}SPFb6Z8K+~uPW6zMm24(9_OuWI6u3>@^s@R(9pL8AdNC{EJ@Onhc>)Los-skL!PYtlA?rPcU= zeJBXfxc2~XMkxsEMN*=5yWcHIU-bhO(5-XoKzHs?AIVbb9JbQVp#j@DKjKC)gP z==9*abw?C0*|SGm7!O=&Z+PHc`w=JxS~4gk112{sC@Uhe#RO|e6o~jl6xCi-6`aJl ztsKyo%o%iqyWS0FfCY7$%%l~Gq_7f)>E9e49rRjr6Cv$lZz#R|IZgHSE=beWmLwEO zES{)}iFL$otlW>TJGH)gtdHQFXPkV){ui9lePGuM?)|*Mjgag`)b`A`%(Evwt3y+} z)5T{7!~_F*@46g7=7N&RK?PHF;~|x$GI>u|ws}oN^vtMJC3Cr1?^zV&oI_|$rXz@!z599blkiohjPKI-%0YY&DJS{}$13LYHoE-KS zZQKl1h&UFeMS~_bFzId$@_b=_4zuq_T6Ne5C>5}FH?7p)>`Y2foo6pv(+0`81zcF$ z@BW-U+l`g-WQktOAW*hhs?b1|3Uk|W zHxdcNhtOG*UTn0+Z!nKq2W=>QV;S61#X%2U0;v>0WTyx8lQ41qc)(SnMn)6Vf4pNp zbB6Xwo9Q=5n1&BRqCVxzk4`7oX!Bf^MKz(lan4Z{iQp< zD_mEO0Up$r!{xV*>Qwe3c;9g+ zKjDtYRlctS5E$iV%nZw6Izp}x%+x(b#~8l^VeR?8D$Hy@<E}4_2q-QJ$y?oz z*LMPhhjJNT?&RtxhoYF~tNE8UbjNi~qoEzhnlz(4;PsE{^+B}E<8lZ-zVnBz7@9Tu zDtc#D&-|4cE(h$I<$hWBafAo+Z69DG9h39M&SmlGoj$vg&obRHZC{=)lS{z&!A`tm;;W)EI0`@KX?H(4s} zEMhQxK4ZoyysOYTk1}FE8hBr8&zy%5Ze;SkCze>0=l99{ELC>bXC(V5dh+dkFaN4{Hn%~cs_Vwv9kc9 zMG}7ed2{bqNq|TEQvh4;@)T@$Bt6f!kidF5z72(MTQ{R~`2n*rZe6GWJL*_kcUShk zOL(@I7)o4GRHGf4YFUuY$`to+{6kM`8MdhMg`P|%RlH#MO8-Qyccu-=p#S_Vk;qhj z@=|x@^6tFA#!6?q_{udPXM84AbDF!X8@VK*QF!#^C9ZD7(v6P6@Gmr2$vha_t-O@^tD&pX`2;!>v_8q*=#5d z-=;&YhSeW$v%ICMk9J!*bb}_l)H3Gdz-tfvfZDdoPx-j08LC$K2(JGh{E%WLM#mj+$o5sHDJ z(pYo_@w+gr2-&T0l>HBKEPoP$8-qi6Vzx@&lY=(CnY^in%P3Id`^u%K|2j4oIwcj% zb+dL+UN@sI>h+9cnmMAlf2UFf;l1RXEE1ItBu!5#AvFR#I)U;^F~|A&8Nsrx1!(Ue zxcMb&KgJAXbs8k?9CgnpJZO=o?YQyo4i37)tCPa;8|m76>_x{|y>ALE)jo5UlY!xw=|69 zF5lktaFz7o{i{@}*gqij7X8tyijRH4Sv??iMP~VGxD9p~1~;dSs?Q&K9;SrsojCo* zZGKkuR`lEHs7mD#an7Nwy4<&Y5`-vj95Hb`p-y8!?x|VaI5L!i-1oGM#IMsg8Nj9| zG<)1?fq|9&tAa0KuqFCC*KW~197ki)O9usng%n+^5hL_VZ;CahK7XvD)bAGsBNGg!Hmw7WZ2k0LxYrBkL+&Xj*LD0g3cuYeF@IdD>X38kFZ53aci z#q0Ht(Dr$UXe?N|EwBr#w{q)cZ)CTcdH~Ztm*&_%ctPiFATM(BVeF&g;<=h? z3*(`p>I0sb0EF2CA`ux}HqCvq=^Axs0@k=CP!?Nm&0j&3x7i zz$pS5tOq6Td30>;t}jx*vNXtGFei)+=C_%{C*w64149yB80?6o!WYod1qDsKrT>i* z%%xc@zQ4Z(CY4Whj?8=pe}IyMR!=4JlHsGoJ8!pCG7W7z7G3-DJASskQE@nW5e-a> zG~px|^`JF_Y?ATp3(xML4mYT3Vh0ClTO3%F4b$q=-c_JJQT-5y@OaN8FZk0-FvbuM z2%d-|j$!`5^8;_}Yv+D|SpqW58yTKONH3eZ$o}E}K#8q7$q9Lc>}}NWaQzWcH_f-S zj(;V|H=pIYm@hhepzNT$y7$b?*Jn^}U8=A0*I{Wo-c*v-;Ov{V zQBW(DB57f3j6zi>KOYeFR%cp(srwmB@O^<$WoR?a*W7K$$;tF0qIJsbQ{nTGiRIPO z&c?;A*wBRYqe1Rv*s1mm!rK&HT$R?^3vAyj^4RwG?HgM(sMCk!zTUiA?-RyC#L0ul3 zB^Btr!qh5zno1(6kFPtR{}>g!P|ox(12YfAnp?Dk5aO({j1#rp3yu<)F~f2b$+%XG((19SFs@HoSZabA{q$ z)ne3JXUWy;hL25aiZ{Bpv3-N9>Yo&|g!nkH9kG?fb49mKr#qOcyzIUXjB2ZjA(x$D zY)WC!BdR9tk9$*b!dP$wm709hLnvxy#yY#qZ_k5eb^3)`0*?4s<*g{R*70o=sdNd< zzjM^7eqyPKro~-q>LKP;vQ+wl+I5mvep`h~vs8gB)7QtxCyouUc4Xhew~(awG$HI? zFiuehz9k@yd7W$6#J{rHM00bs1#4!6=n3Ip7q%7_IuEvemnCE$VbiBoWMdHK-pSqc zU7qYb;B_dtyt^xRv&~EKXgrPaKEve@Qo*q45eC^V>vqixR|!_WoXaM@sZ|yG^;|Z5 zeZ$`7dNW&ho`F1T#qM)@xwrAy-i(poHGCu?$#i%A{~{t(UhQQp%E3{4X!~tpZ$sN+u&Slx`BgW~69W@mwY|Nlk0g{b4gpoBJ*s1I ziyEk-<%@z9#|nl6Kl_AftmL|^{2Z*0P)AP2+21DFp*XkDn*^nmuEx0c<)B<1ko=`1 zP4HFb*6J(Ngoc~9MI7$Il?j_d%gVsnY^2N)x@~wUp^cuyX4#3)w$$c2K6zr3-mMCb z&DGZ%>(01#=V3j`0Bi2Cf<*ur@5RmTRvMOTj72=?cQ`A1d`)q9=KN;rDRUp!MiBTM=# z+AQ}II>VKaeOY)6kA8dfzQ~`j5o|tKfIZ{m!;S8g;dJvm(d9qH(%#7w0YQ@*QE&46S@u;MTk?q@GADqfj7=U8eBD7F zLBu7c*Tk_nl6Jfi$q#W_Zy- zKRD3E#i$C2^>2Nt@EX~FcS(s%a}*`KD?IYsi-IJ}P+Ch!VlJ2p|JwVL>n5vLom%k5pAr}HhK7sR``W8bi3_K*ng<9eE~DHwGWts0f3H?(zIRl! zdUo@c=GHj!2G+`|tHlQjOq;>oskuE9pk+v_a@RIX7`SE5kK+Hhj~dw1Ky6<1$j$mr3M3wp9NzqGk>dT1~Jm;w@-br92ZXR7g` zK-3Y3)_+dF2{d%7$2kBY9ZpG%x{xR^pHT1spcETP9xG?VbrMfh%; zP-#u$_oPPtbcd`(bwyW|70`KtEjoB7es^kZV>50Ip5Pw)BX72~Av zQibTP1I;0)dy+)<_iA-vnOu%&c!08~TEzsb!%9=#Wvj;-OoTvY4j`vMeB2a!pa*mI5yUHHNFjYA@oD~ZU>Yg)wIEr~YWmV2|&-)r#a>d~0)kW2F zFSLprMK2gu+-)n&l$7I`bSvFGb~mP0By^+7`ZExaG^mkqxVr^Gx6&*c3A%Z%do(oh zN$0Xr7jcE8=B4zm=yfosUUT_;pv|F{<`O9Hh^I+(dPKBE0zMZK87V0%i#=Rw&nGCC zs5BB!t-5qAExd$6@vzlac*@AIzZZ@moS}+M;p1W}ypuu4b0}i|(SsMiPaiW05fCia z`%r%UAMrQPkA((DxtwLSEt<<4nYa#sb_X2Mng9`ksY@F90oX;c>r{JU&K@2eG2XJu zu5#2+bur}O;%&R0c|G$`9TJ0J2I01`0+06H5_l;le-gqUAvG&EYV9~u~rUwgHev09x;d0mgaHk-c37i!aR)oJ4SUi5+xnq zjI{TP#)o6MXhkCe85O&%{e5sP^YuHLGzbK={^-BnslgMY1uk)~mfHt^))F7^)8K-h zD!AfF*x1;FXG5n~A2f#3!4J1`Mt}X0NS9KN^vSEf$aB5?`iELuUpU);U-K^$CCH)_ z2^vx-r=yEHI&5>&JPqlFFd3eRvJfgXn1o6amb`ZBCX05YE%8U9GJ`3b>RI1+`FP@L zRa@4-?3Jd38(42n_hfIcwH01uED%5;At$cU^0H5ok$n)Jog4KKdyYgUlH=YNg7iqV z5yXnla-w!!p%@x^f?CdNXyC9ixmHh=z0L!C>At?ck^o0JSQhYex#qIherR36rqNaW8^V(KrIwzQJNmwKB1^OvY35fM*R zRsVci`SO{n+cl#jV!SYpU*NIDo4|U$F1BQ?a9w5sg1+uI4G^2^<4Kirs+KG7ge{&rmYvfToGzI5DQQlnn!2xmau#Dp>gz4nFu z>S(KEbonbbBY~`eJH1i($DCzMO1A!4kqIPMLw;tC5IJyhapev!frsidekvG%2ggFX z^F!z`BK>!fSDV*`gkp&`9bSV4?>ZRwL!FQ=Jqdi2HmJyNeb6elqJ#PA@q71Ob=4Yq z3x8$~$bM#Kfi8R4=jy2eMl=%S)!*N`Eh&vNiPJ?1yaD*|d)z zKejE?*`{QiWDRgV`}76n*y&;)=BJu)i^dvc<>SZ6F*Mu9kL?jT@xP14yWO1pTA1@Y zR`1TsuaqS;Pt1Et&zV2OhH=HH=h4H&DETd}0}rDNu=+z#AZByBu1__B$4Z1)TVvxV zFw#MoG#wos8}B&;Sz=DI_EuEtajvmX1u!`TvuKKsuRYthS-d^xLl7V2pa}CdVGy(* zwFL087Sv{UcIac6c8s!yQi`pDXBu73elVz24|gGzA;pcY`B{M7dk!OWEVFvO{<0bx7y>)izVBBi9(}#@ph6Wf6lg@6MJvusC+u6xpx1C+M7~**qqxM4GJI!~R`c#^P z^v~Zse_$B$NFPrVWi<5xCaT;A&Q0&;4FP$az?r7M*O};Om2mb$&$Rk{rBqGc&Xgvm z37Y4wSI1W)1~>`W22Zf0uuupC;;|m4jd-fw9m?BK=H-f9nOR8SLcO$}XR)JC5#^xb zBz|sl#ox!l`_)dmCfF?_-gBUpY-$%E#|0JMQ=M=#+eJGe#DU3CWWcB8dBLi~8)FZC zLL#x>kGFSoJ?q<)htO7iZMKH<^;O!RN}tA(S)j{hZSMj81S2Ds1*LDGsC8*9U3+zZ zCu94_GBGrtO7tXjVRyaqws$j5;Ef5KMO+55ZG&8g1rFZD_UdH|mLkEh@b>d3{nZVT zmE&;9Yxz+mVjo$wj`pN4d)qv=RJvOxU9MJz^)4!^0aR!6z1dXI+=Iz*u|TJS^9$ui zk>#Xe|2I02j9(lBjra_VLr;cg3z%g3A(0=PczR0tCOiglU;HM@i^{dU{}!hgp1lL} zI0t$mh5FKh3ynsp%|NEgEKdp&adh9qSHb+vCK!0EFi)rpv!}Jex6jktn=CBLav-kY zntKI@3y$1#c5ez?my3=@_#~+5@t*I64V@U(kE1&0@BS&D7J3?8z#aW-@$$Iy=V;)bno!Ttnk_r;ckq} z-h>z1>c*PTf-wt0h`ZvdAKaHi7q~GY^cG@u3)JkgbxdI9&;ip<>}XydA&m&bBx(h- z4yIY}?s;ads=?HQ6?!(yt$|hn&9yQu!XisnL;bu5`4KC!(<5)C!bw4#b~Q9U7WD^_ zM(oo2JbD~%R7TMn$ zxH@==t5JJf<8?D0E|%9dDXtEDJ4=0PpMphIJ$#U%m2l5fFoqkhmV(=;%M-X~5ywXd zWE8oN1!A1STB>E8TPtjW|Crg3>(a8l4*q$E$jScE`-_rpp1TWwgd=H>jk5prCZ8 zbax6WC?z6@v;rd1-Q6u9-QC@N=R)`XzH{$6W86K4f9x3hec!d7nDbZD#&-_Af^m^? zSKYb@BV7#*xhQc1iy^(}29M2MVDPGqayKe5$bS?Vd&FezGXuO=uaP{i9L?2KLZG1Zgt6SIp( zMUc1BP`C$icJuw&G{yF-`Y?kUDNB)q5!3~Zb1(g+9i88Xi4H`M|FRDmWO+XJI#MUi zl0r6t-;mqPU$Q;5>>@qI1cTA=xAEUea>z6f7l>U#&@NBUbFjTdA@C4!Zo*j7E#Wrw zdjg%^lzq$iCAewlm^erRB5%@bE#Tcjx+RrBzKx5>vVgaSL?hk4b<5+ckoN|H*cf)+ z5jftGn`w`cf#fv*fPuT8Qpc9@hU>@fpf^hL9)?*H(RBJ;A6zQgw#8&hJ?T$f@3@UR z%N^t+KKx@Hb7ZnU&>AZ3t`bM+y)5=J4}?)@NE_jzh~h!4t9~^l$mxiJk{!|?VEHvPqppG47jb$)$o2n zZ}xfz*Ou_9@D$%q_^KdRWrYx44)YNy$h8X5!NkJaU&?L|gM}y-aC5vvj6Buy*V`XL ziWo->CsUtitnchzG!+_*-ewmF3i>oPU3jo&H}@3d9s+?7=OMwn*RMaHwq|B#rdKZs zvmbTM50GP*R_V$=_lr4&^2zyd;_%x0rWlW2`Wg+eg{ijZchgXbpjoQ5Ua+bTjX645_JmM7o zWv7fD{pS?;FU1^ZzNe8PjCr?ltT0bGZV;o8B zdOFNPl(;*0|Inj)r+NPuLE41bk!{`7wImFvHt5_WCRbx>UU$Hj@Yg+_ z_^Q7Dz05XzX#`0O73{sL)u5S1?q~})sHiU!v-!k{1v*V|V9P3zkEkiFnB~mSei~$b zan|J}rA|%hBHcJ-&bI(tAX)BqjAZzua76gSzbV_FA%QuI4IoehxA&{ccO+?W!Zj*2 zqHG12)zCS}ka@0Z*pr^R-QMH0H2u+Yr>;BnA)S2!?qEz%y_}@m1af7+#3iWs6tsSM zmCU#CxoyW8Iul0_`A)ogCg_|w?9PJmw9y-**^ zU8$P4iC!m9U=c`Ecw~Im?TIflK=>7e<*zr;Tg;QCr^J*Gg#G?c6ShY0e2g9|{p|pSQ`fai(o| z%k;(LP7^4CI(nutXg$XllY=YDNBnpk9;c?}Eu>9RP_;xWhwuv|suTSAlK^w<)=ZPI z3Hp*pRqJzv+*d$Y1#MnhiBq@2r&EGc;ybqRF7ki;ayZXX`N%Ec-zQG zueY;MO5bO3vAFuNNBWn;^tqavQQKP;3j9Argn!CTo-+qbJ^5(v6F_j=y&ALdz3#5w zGtM70#?Sid>+3h!D|8@EtB?Be?|#*bfJhy3;%rWVb?J65Y{3 z>>nd@Eahe>P+3-KV>Zw~$7S0te=a%Nh7>3Af|h>)Mkbr`74KjXl>h`_XlS8B9a~t* zJX#LtQhtL$6e%qn@0M)&${wzY=$4KjwIT%^%93po0*j)?u*lbVtgJ0RebU_7Ob+%# zpg-(xPc$rt?QR7me-K5n)Csn^HMV)_Hi3S2|Co)xkkaX}daIKbGiMdPlVIEVMbwJ{ zZzaiCc>Eh2wd}d}Z`U@>NZ|$DlSj9CU#D$%yi^P&wG89PEjf#fV_9vj zm!;tH<%ff=^k}1*|4ZDnMdA+p>_#d1X9PrVh+zN3Sf+5ZU3YP*(65dTc~j`P$s-A+rhrQrE~O~6KA^*e));O`M6G*1n4QeO=+tcd-k#Ch#l5C-Pj{cMmcnh`|JIWf z6;+-w?(vR_D1n#ft3oLg9o#3iBBd|xWUr0Iwn-Jl^ScQgphfuj6!T>@hX0n1mAOS) z#gno6Tfk0l`Db2*F-yeyC7k-upjQmd@BgmlT{Q4|_si!20S{)VBrt&pzTparRfYg;jNLO5)Jln#bk(TzrqJ63U^B2UlKF zDxA#*S=U)kv==}qJ0Zn&OEXGkOV%)GHAIUb!k5t4$*->}w1>t8<4i)YWm?!lC)QeXun z<^=mF;zop6jSv8G4ijBbDN@qsV^vHpG7Sv{uP{`j-1y7FWH3dAXq;C3YG%}akoXda z7~J)%rdjfVpYR<5r^s$6PPH&FHYuzrrz$frz~Y#=4dvgE<7^Z{yNZe#UVm>QveYtg ziR~MH$)bkGH@T~%IHl&SJpSUT+)>g5RHS+hDckVb)%7M5GG4sdx}6ErwZkj~+3$P@ z#C~x$HHs`#K1V+E7Ocpi@2F1Yyt63P*uZlmd+ z$!Xs}z71p4z2K-JAx*A4xVK1Sa)spCt7kcwhI%%Uo9*G}1WU$w$PVo9tH9kQD@l{( zTW~lk_;Ig;BMVD%euU*y0*-1^47z<~yI2A`ZctJDX>Y1Q)4>|GL6l=0dv>|t40T$d zbrKFjwD}kyAukZY>j#b7dcELD(C(;v40NC@APIpz{<>A4l}Fo4Hm_0{_^>c3e@&{< zg~WE(AGLA$3R-em20I}+5l%sNhw>l7M42!Xp1UxyKV*ZS0G0(n@v6n#uiMBc zuM{mZ29WVLf&FVAQpS`Dtr9wzOT(+@HH{DCQJm`8*06gbr4`o|dM(pcZqJ<4+4TAC z0T=MGzxS6i6Hdokjw6>AK9+bad$j>Fa(p`x;mfm`=gh%(8B%X$)}+jKvqeDsp&{zS zvWG7M4)x;L|B!g=ufa6P3`5c7QxqS%xbPu|NB*!K$&&~U269%5u?OIB^26$Xu*91i zIMk_n&h^|p@ksX^*Q~;ZfrSm;9(v^qnHz9wM3QC_to6|h?wge_8nl<0Ry(eIC$ll> zsX?k4**e(Q>wZ5f?tVKT_n1k_puLfQD8``eGtyKzpJPEbsW3x-Qu$!`#0mFV&RLzJ`1 z%E?{A{CUtNrw0K37am(9QYxc@kDW5RqyC0t$M&3UZ{)mVAJboUsels6j5q8{yM{o2 zTita9$qMKY`RsLY21L+EBBg|de}2>F-hQeS@m5XAV5Qoad-z*r+8>6O4ENf#M@~*o z37bkvN{aLZ=dZD=0w6}`K(d8yj3%#m8o9XllcqxE4Rg{dAYtaNt{&q|sRlalLv9IT z$!NHvl1r5+)~ewKIZ4quEPgHU=|USZ;!r;PPuXel-QUyK*LQt$GkKB?Tfs=377AxY zDFQ~nqF?aJ+7D*G-X+m45=vL`gFV!?Vv)sME8%2@3;j57K^58@nSzvo9#}PMN4dYXs@a2S zkwgyAk={V3u57k%Q+w@O^!u?ocQls76KZB+-<9LIlj7F*z3vH0H74;$23miTs!s zTtRX*i7El8YsHMMVFCw_lsT|d4n1Ib>*Ov}4(6L{s5^|mp%rWcTA&Uz7WDv3sYIx- zNr3301jpP;-YP`LMLK=Vc4}tg?!BaJ6Qnl4ej*`(2_9WlxBY2oVp5MR;qRSymb7Z$ zM09O}_{S?I*fh8VY^J5+0+b4sFiSOW`dOK)V)jTQ<3 zhp)=`4xn#uux{tCUv=B%g^_|9;{aChLHd?9U{$$S`fo&~;-n*$rz%#)vT`j#c*+`s z>xhbvZ)olYwlefvhtezOV-;+ebgCn9q-j$2A{GmFm#@klCz6URGy#G7ChzhKq)+Io z47U9w4tkCxc?M!c)xuc3#IjO2OXjq*)Ch)(THvT!fo0f(GrkgNtCVPd_UCz?_6qXd zXzIcJeliYRd488oz9{Y0)%ED{K@Ap!4)1VvA=?N;*}i6&zo{R-caEXU?aNCw5_J%F$+PmgyI&;M6W!VsbNYPw#=oEz9@JZWKjqOz+67M| z0bYZJ(hm80jywGZ{gAo#SSNb(j~s zFexZTe)RA=z?yD?#~aYU^b;Qg17mZ*IGq_%_mKhBp^R!xkn+hNl-uzx(8r+b-IF^8 zRMtYXB((gic(|85805}y+@Nrnc$PD$L&%^!wS%lQpeTjUhyxhN(?+P_QVAXxhokj+ zI{z5p(BzXtR?7~rXlN+leh1U7*=Rcn{BPwZ?%t-j<(c=@)IVTSNu%}kgo#h#Ri^-U z9{-Dpm=b%N^@B4I_G1h%na0i87!ou3zW0#bW=qqt#h0IPy zK?9Bm$oswzg4G`z>=0zG1vA`++)s}YfDv#NOMrLQ`g8)dG8OrvJ1#z+FV8V}`IO&3 zd#Cz)zG}VD>6Mwc>!Xq-z2Cj$$qw2H0t^Vp4VYOSg*jJl^j!&VtO5BF(KYhsy6bfF zg(AY<1p_QEr{SyHC%<^LD+P5ZjO|1Wrn!Y8aq{wG!#cxW!&>zl5uCoEpd9)G+{jWw z7~t+6`#)sm^C4Y27?}VhzrubvV9{&fw6y|QC<{a#JIjOhAQ2QZG`t5(K6Qf~$k*$H zgr5=a4>dL?C&y*7;9#o$H#zDYZg+Kti{9?`)G-5HqNZJ+h0RUB($<8hIJ0HcZS|_` z&$so`;95<0we|SiyHY>?+Aio}%ZV!v<4auSBwOurj;{~yqFgD)_AWJJ>G@o^f&MQu zsG-*W!gN(`^4uzvsqK&+ztqzQ$QWpY3&uRLjGT%^lT5``pftLdgKu?z_7-V`UCLTX z`#f0*$KN8$=!&-&1X_-`Y(AkUz(R&r0t(A_dbDXkza||c5M|i){RK}sh>#(0qRoEF zdcuNdkGcNE7(<^*Mb`N`GqQYOTmw~UD9mv_A0MGfOQmdP1qzD7W@t@i0%3{KmI@n1dWTshqtiU#rJ|IoBRI3F$;rD0-X8f_mC6FLB0V#i}M zSApPrKDd+@ucVa(J%G#txKnjuz*yL$ zI*1q?{E!PWeAJZ?4>TN-KHyFNdnoYyD#9aZ314%U7HbN!hFJ>`xQz;HhF(_y)#j z{`w|@b?)3b2vWTR3=B0BQy__1!7E6YwHkjz*hBkL2cHnPK6Hy=DQjh7AfQ*?AuRNpkd=H>?Zm!Bc|;gd$!xJ3pGVg%v&^J!zo z!l`Q`?x(IduZZo>)H?63B!DOT1%W*(obS!qr{OSrvh?t)X|XLY3V+1*orcl9?pm@h zairuz3j}M%p3^_ewUP|1SMF`EugbZ;fM2C;y*9KlT(bQH6J@hN} zPbcbs)dvV?pPXFya~XlDfSR5LAa)A*1Jk9ZBFxLiLGyH-fS?n!F~|t4w2}=8_(?|i z8JTpWFBy_IpmWYD%x7K%e zZ+Q|v*3euXs`p2*S99L&XkE;1+3MJe9|p%k2u$=Qdz~MVkfU1tfQYQo3Khcu;VKZs~11G z-gu;3;c*E4tA7i~MfVoJkxqT?GbEmB-sIfY6)$mXyhYI&)?HMwXu*Y;Zv~IH@L;;e zjxaUKOv{&QBu5+}fPoG~T#P_;8@LVw9Z~^jN#V)CB0@#+h1TCC4Y#XkUlLO{Bong^ z?4-_l@@AGH2$ySP1Ee#Lym!zO5Y^tg8+=zi2wZVFT+U}R9k}iR=PNVxdjfl7=aqAf zY^8f6fKeqA`BXBvE>0OV#H)i0{ ze97=8ri6)<+7aIAu*-FXKr7kuR%gTMdPD~b)Hau$+XjUm{Zf!n(AcywB&q=!FSnr) zmx|&EiI2a76pk?c0;Zs(@7Tf&(kUR-rn8zEHx&uu_QPH0uZ^I2=o(uk%(_y6EM%1vo%#Tm+}imCE;%L8w!$H#yP=irI%9SASO_edL8yR?&9!kn#O z(RX{=SYdQH0q2qBl^XSn{3n_=EQWVJ2F~8!m^R;Aorw#3vX)pGwclRj`vSle+=}yP z>K;U_`fIa-r(fWmI89i!gtPm?>tNBUx&YxI$UvJ*n3&q2`!aCxA2yrqQ8CwpiIp~U zzbYxY7kn2E)((V=4%P-zqUkbxk&PmX48cn;-64iTfCOs@-QUo36#YNo6y+-R&(RS z53RL@lj26nu{cYQ>PDH)`Lxrt%jJ=EZk8lZSG?!|C0$QPt8!i(2kMhb2c*4Oj-uB^%4~4>ev6NfuTqVW-u0$y6c=3WZ%)%7pZx(@f&ZJ#s!49w>12P_aqJaF z7)&ZWKG;65N|MG86JimKxv(9-RZJo#M$2IEkC--ES7Do!6I) zs{L4})%B1L=hy(NKHGOKJM0S_J%BaLX2ukY2*+!!i@&mmtp$a%r`KXxqC6NGV6rSP zxOS+3mP+lF`kz<+!YK76jznx$eQErdiDRY_nxUKOC#rq#@M=)%KL+nx_Gj@lW*c?? z zR0BO+hx=PGr^nv>G`qh_46M_PTwm<(^ZDY?5HNlJ5<^}p=Es#zBq1pY0pa+-mcj6* z-I9^!!9UtAcuM@?G=GI&F}QH$8>WN{3>)TArOFC_OkqzneqhFdp ziX5*`7!u=qWj)dG1Cw*t2Fi`$Vk()y1!+9@z?9}|(5a@#pUU#>^y!!k7lnW%C>%Pp z5r;`^#N`3<6l0es|D~i-c+7PsrK*m998BxK+LKBGVyYh&D=>%X7U*n1(D4qIxq_2_ zdAZ=p$w^4t;lV-AAo;)qS>wM_S0$D~pXh&FV3;N&njlFDr^n z9vCu!)CMvsit-md?!AixtSD^nxX+XrRs(-E-?E#5TSMA_Wv_2CvmU?2D$F#e6WRb2 zXE*7^EBo%BFG>KNyi77f%LU@+j}X}K-q$yoKDLMs+H;^uy3#cSK`V<$A0W(63P$c) zK(Ho^wEHd-BmLk33RLsyYX{#G4?9nGN;vrHAua|`hKIRX=h7)T3G2<>F2V(gi@OVhGFd_00%ZhDyrAae zE2$#qM)=nE%e8FV<`Rd$c0}vB?e(!P$21c87Nb-fy!2w{rXi6_!5?6GPDPm?1|$)W z1PExbAErj^E7FHb1V*(jxRK8z$w4prKcZ^Fi2Lrc9hhmIw0*o7!8opVKcYpKK>y>j z56{XTzxjt9G|Saa`zDi#lvk0%8Ydfs5Nyy4BMj<5UkBiTHKHgtFIh*2F?;vnuIv9e zW7PhOx5)mD|5Ay>Q0}jI?x|ya%f~OV6f8MUcyz4Z^-6#?sK7aG62R!#P=s=M48!7S zOSGE*MBRn8meXI!Q{En|AHdwe{^t79dBj!8VS00zqQD)Izne>juh z4KOPUNw7zla;>da`9!`1Y<|K?$}X zO@%WIKZrP6ITh|#REzCF29ne;G5YaxQe`m=62`7*pV2juKYBVv&vEK6Tkd^ry({aBf$PPRO_jmvmSfQ6Ju2 zQkvmeanH|Gs#%Ppy{pxEsIsT8p})_KhtJFR*_F|5A$MJ|MSY+L9{=TM$xnLX&1yyD zOFP1;I=2VaieLOeR*Z}Q4hKjO+XJd`c*`?auU@SHFrX#o^vJ-g%keWPg$YH~e9~)s z$Jp4nCS5FeVu$svk{Z|$uWLJZSrxjq<-24v1p|1TJ_-<%`J#}CVlBsIkm8issgS?5 zH#d7K3x%M3?uhP_1?hYrGnDw5M60a1JL9Nn!;!8O6sQ?`KP%4QK{)_E-47qo%xsI zpW(t)h5F1Fok?!w`?!Lu0|Q*_-Cl@GCte;DuGI}el*rIe$TC9WOh7|6FsG`_7tnou1aeg2nqWTJG5Efz zG>nvHK7lr-vO$p{AS|D?!BLO+qqY3qmz-YK1maDo;LrLVWC$m?L4fkV4_Q%hlaBsb zJD1g}ihtFlzpFGf8mqa&wZR|es*0u_WNopfi^^G+_ln6be!`fUS!e5wRB;(^89{0) z+(?`Clnlhk2vdkqM8urH<|Tr{GP)q;`EAB;(5}IcUj7Th=m7mjk09b88ln~49rMDm zYNYzS20ero0E;AHZO(v*uK{5VobF`Wn-7XQ***&W4!@etlbh6sYdm_6C#YVY%5*#+ za)VS7I4#t`BjR=FM5Mym-USMtgu#$vWNa$3TO=eT_$(dwL$c1T1`Sb8eVRfk-x|wR zO67`@uFgVu1BYy+`Ec1=lbD5RixPHrd8qG7V3=YMM~Rj^c-LC_iK_94v(~e9e5xp#VQ&?p z?K{|h&AkLchmS+NNOk)5e3y4$pCSb%ZmJfQXwhYQad?D8 z_3KBI04jC~<_Z3Hhgy4$K;K3fxtG${(%p}fkGP;iMKUts1v6__prDkUo;a5s@2HSD zPT|H;IE9!J4O(!K=9qMT?9*g2HXpO7KoGu5_Fj#;CS*ywESv8O&9$zP;3zYXPX*mp zD>(hx7Pe(CCM>)V1|k9w$|H~=k_!iD%fa?yJ(A;tXa^e_#-L~!gCW2$!()GmFxUuD z?9Hr&zjt+@q_mit)@pBhePtP2iUtnP34R!4T8kN2U0n?cS!rw0xd3$`0jmJAd`p{j zBu!r_kI1@`a#+c9!O4%A$N#rAZ=jxadvOG}-OmryCjvvAWns>4z3RYw;WED#!z@8Y z@1E|ryMv=?$n9{MZ+FPr26U`P`;f8;{0kZ|xa02z*_|wd5;>Kd4-zUC@rXp`zgG8U zrHIyEgU7ed19Xe1*vqGR@s6Mxnw;-0F0BJ8O{P-3x=PV9m-~qWiAcf~9$~c21%}eT z?0LF49k?SX5rG|GV@T@_BEY)Q(efr{m`swQR@{S^Z@dMC8mf4s^w-!Nk6WX+Tqx9B z9ZY-ZDdWy~v5R^ny+-WOhZ3X-ChbF49LCX&69XznP74DLM@>x#lJddqb*h@{&27AU z-oo*-{*keXxu=U}U}Zm?PnMev)W)zurs0vNJs-;LH%ZYbCqsd{p0WJMN@ggn!xz)< zo02ALBv-$)6%$IR&%Z`CSsi5FWfd0F9kA$u?8<3tt`bJc8{5#QXVe#YgZ}WV+gF>H z1C_uI&eS`O**rKLeVCmlni%ACH~+_{Q|I0KjfoZh^2Lf0-UB>>Ib#bJc!D^oW2F!V z_V~#YDjuGqs(lz8fIve_cEvPil;zh5iNxwUE`QAaIFCQP_!+-M=?gjy!lbPtSr{ z(jy6d0X)K^25@>Exwf>FWMV++$Ho&1y+3#0b%!WvgAj6!W*D*n)6((sKaBc-I_|h* z8v)HJ{&ub$NPn&Fyv$zbPom%kn>=k2JUwGciP5sJcIkm+^IeB4wbA$MExbp{4||l!!9sp7kV+{k z-WYQdA_RI_Q&V%_8Zbsx*md9u$h5nZAhC{{=HIguGa!>$dPDMcvWOSIWJC(GEPo3F zfwBja&h{2HPL;=xfF2VESO!~Sn)J%_%_?Qx+V&-dvfCL7;=|}-oSyxJ2Y#G9{x>xD z+n#@CctXuy{NqT~UK7S|K%essGs+EVqO@4w}PJf%f#kC{3ZO?ZR)`z=V}gra5_F zJA#u9t~MynU&gV+UJoL^!ESUt#&w4XD#whDXC+NNTd62En5)8J?qQi)L%KW}S5h!4 z1g|q5m3COxpnw8_j1(>m?RaI=Eb2NV{Lc4RN3U8*T60@0pu7qSx_&;7KDna<-jr~O zG^|l%zVANbjR4v`fuEYpW$mHY$8PiKWBa($#M3m#&A~J;^?VO^Je_Kv+fKP=5};%K zCMy=w9`R2qf$4qZTmAspA87Ao{Z08~%z#z&)p73N#`trqL?(|n(@u(C)e?odsn0vb!m>yx(I(kt98xv4B-A`B z^^Hbvg91eZB)!=N?K_&6ladO2xZp!-z*T}SS`dEvM~K}}DEas?GmmHQy+5AIF@8FS zLA})4*LVXOSDr=r2T;w?E`XD)jES-tP#pV>H>@aR?>Og^m9~~VF zrEn0BbVgU^7+*TcQ;qz}z-(JMFvlh9jS$(So18&GDpJX74+w_7Jn+^}J81^>8!9O! zw)9dGb!3202Xb) zMm4sz&47{WXp;PN4D6olJo2UbAd|My#!J4Eb}m*STfGk5DtKS4cg84SWU}(x@plqm z?8EH6YLd}l_%``{R|$rBGfE1eU+TR2drz(PvxeJa;n&7;>AA+ePV^rlNqqYs^{%Cv zwDvVU%np(F0O1ef0~yK#z$Z#88&N&l#I_X5b;K#0U$lhxE4&Kd2lFR^H0qxb$+${HMms6fx z`N>3)a3mL9WIllsn28%w==8fsDOSJdqi~Jn2r@s}8qH;P0Pz)Hp#zOH&E@i2q5bZ2 zA|B}yhlrfnVafV2n{!=E`bucV zeIaY)a&qtm<%Tcy6Sw__yjJ~5z({V>(*8Ue^1=~#DV*a}y^_JIGwCN$tA;`&Efp44 zXi2S*S9Z;}FdDxDGbLkE2SxT9I-ZWjP405=e=wz;d~r|RC-P8XGOF(CwePJngm0$l z7++EBcI=c^x}#iGRW%3hK@>#5&3u5YI za1{N~`I|w+B{rbCsTPbJ9HEGR=P0vL*JulEBz`L%)0D`q`CTv`8jZMw%r|$FQy!_A zx2dbIQZE|V*r!xR0Sz=8G(0}_uH9}U#@`#&!NG!%?B?&sF=p2RTWqC78-c8v7`PGF zK-Lhl%Ls!0A@~S{%tvza@$!RM=YHj!cheW#kl3_%D<-5)W@k)b^U~ag4LN|FR-s!L z6eo zq5!Iqtr~_Ydhm9+I>?|Ek`4YXntWy)qltX04wY{mM!myWn+Q z=tVcC!KoU-Pn&eJCn6SU3p^%r^mBHmte3{`q_2rVv!}k=%lCT@K{#!H)}f66?5M@^ z#e&D(QD^sa`B6e=0m3iCtNp#jG4XxxBCIZNhW@Pwf2H1=u)$kkk1@jn$0SLsy->TR zSfz8>jJL1C=Ea^R+1P8)p+Bd&%fQYP;z<3_S zqX1S735oY`2Qb)TuD%Xz^kzHNM)~WXp_r|N{DQ))?T|YOG(pckJj{;Ohled!F28c_ z6T!pI;4`b4xIdMRdMI8{sse`>k9PMEJJ z>U0I@ViY^w9!xRnIE!~mLqtWOeeW-K7i22kx(0EzN2~6qaUd>58eY-*WKMd0tYaN8 zY{oeWGI&0sd!751u^M&;+17k$+|hpdU?z8@Y7h5&K(8b--2L5ifQwsqB0E;N4`e-J z_yG~d_z{ThW*Y|^h!D7t#(@*%pM)B2LWE;e&~Rn{tZH=$!iQ%O?;^~WK+H~1J#0ey z014@{w%WSFwDe=@2d*k=^z0n=$EeXtGs?eNekx!^7bnrU36S;ks=}>l4CjUOSOuzC z!8kf7bDn)=N^hJRFsU@lcb?#|A^`Bv1oPnfA2EE8_4eLm;3ha1yg(fF=+UF5b`9I^ z7f6UQI(4wMoeAqrnRCA6TVx1ahvHq`=r>*L2q{V^D@8f{?j*S0{U$72U*H^E=i5kb zLkMM%!URW0OFw;j72$=EBxQ|qHy~%*@bUpD6{`z&b&^4a6Et8nC7u8|0ayn!bugfK z6-wBI2M;|K@dt4uldi$EbO;%F%qkQoz8o?@%6Bko3Ig&*1^dZ&#z_5&dk-PzApQY4 z2HydFW5S`s5mC6+DG6gKcwiI7(wN;go4Yph#`6JQUf1c1zZ$}cJSdJnLL|xj5i+#9 zKPv(CUA!oq#hZA&nH&n6PH0pd)Qo#UVB^tZj@X-R&D09YD^wwz)Y8Y-BvR#gT7xPk<#lGPYEB z>Tg;~p#zBK3QtcC4M7S3tSG4Iz$~9XWQ8TexBj|gy@vG4A-K@4QG3ceI{E+W)&ci7 zLG~r^SasdfKz5aYX%)5xIy%*usk~`@w;43g{mQHX5)CVAVsWZyGMn;x4B5q61$Py5bc<Fk_shCAGF#g23~ zfs~WO5B?86goO(~lV6UO@w*={Y5>l}!4nWkXN-AN(quby$_T*aAjfw_x*WY95=M5o zByzvqz-BZh1$Pi&DN^S1QBl6JYjZuCdb9j-N80nXMu(57^ zbrmN44!6`gBiX&RgTuov(1u9NLcr_cfNv#cQkHPrazas z>SmPrzly>CktO1IppHCEpr**k-H(_>L_}1fJqHcIaNO=y9J)c()X@uwtA@ht5bBrW zk^blEL&v6H^G(D)gWlEHiyh8#Bfz$Kfr~sj*)3-UatuUas0z5-aGhyESZQ=YtG<>*S0#^d^ORy)7wY=}6nJ&;yzq(giL63=*iC{k8Ldm5cmb>Qc?g0MDWDnK+qM1iVu3lI7ihOtD2 zGERyey}&TR;xY>Ov>1SV3MAEQ--ZG4g$yyQWj?-Qv8B@?6( z;FFC4-~>raX2V6Iz1y3cagewPP4HWg38I3R1zut+cPhFa*G>F^`$ysB7UcsaA} zF{_O?@gZ=B1)>jt2oQVp=p4Wp)G){65*{_meX}7hR_}@%v&zd!Mmo-h;CgI^p;kIBW8yK$Qnh3Dj8dF0cVs zDB24Gt;G!H_)XiLm`H`x_hny;sNu{Q6B8$&vA}ASbTxh!X=VbUX~~pjR#U zfE3~<5gW2)LC-8GB2p$X`~r}(P}Usqv-e1<3Mr}D$$aL|Fe&OKJLh4v;B4!@@p?z3 zKGy6M+h5E^qR*hqnIaeze@R}6K;=`j9pqxLzKIzEk9@=7Q_th@Re`$!mM$r+XNuV3ugxC&N~}yl26lqs|*H2PVD5nTj1Ldirm*gdMw;PmKfKDeky9}4d9tF zZRTYmV4*fiE>RIkEu<_4ticB=x!Jovz8EL=|8l`_mRVuv@`vkG{5W5;(vx=A;_khB zS}>jo{mw^;n|9*+#C9&1HCk<=7F|j944H*obC2ilnK>U~SoxYDxmrh;jxX&%2Ky~aKhR{hB~Mh?&$&q;L!Lp~e_8y_ z^vBN?Vv{Ha)3c$+MBz0LN;oQ$W$ehBXY%shZzVQ}j^>S*SR0&sa#kL5Gx2ROEkQO_ z7>_M2&?~oY-9qtz97d>q>)@aASz>XE2|P` zd5K8g;4-Mz?!%C*^LQLqS9s~&{b+rQ^+E-&45y)HC$wodep%)VZA~>leqg6{&vk%p zI_lE#S)IlWuP%KF###^wxNt#83R0P%APEQ{Kmr@z_&b#b?kwQ~WwzJ&6(@3s_wooQ z&DS}(Le5?-tI_YfD0ybXO`!LC33taCU4ZyYNX$z*Vr{CvuHKq;U_T%E!McS#?O4y2 zK=S8Kmt}9$@KTkmQ@&wS`Kr{dI~BcW%`J8~6epmqxh;5l#ERT+P&1-y0y;6|w3rIO zp3?+@RRB<7bPm;+QhkveJ5fXRXwL|5M1uE3IQ|5DcC;u^Sm;0pJ{=<->_oxTnmsvH z@>n3c8h&;~lBcXwt~|1!;?sT?Rj4Q{OTcltceL651t!bUu)M>7q#0~Rs|g+Jk0wv# z&oVdTiGlRy%u(3H3;PT z@uLAxsm6<5OUt6jUG*jELNy|Kup)p`9uW?`etkh(2LaK3tchLjw7c~>4~5p;V^-Vq zS7@50w$Ct)DxJLy!Kcpb7dNn0o}YbPMiB90Spde$YCR)m!Vy8kNJFN1X0FFjb#?d~ z7cv5=YcLR#K&Q^{HUzUlna8!7o6I86s?fN@ZS6gT9RfQK1BS|jIW5O8v^2Z-J= zP+yDVKGwjK+>=K4FX{@oZ!WkUt^IHb<7PFvLb;Y;PPeTQlm6rdQ;l0RzECC9FY(-_&K_s zeB|g=ONsVGg!jhCFkuHfokUlZ7DVg29pG7>i)GblnR8GrrtV)@9WtUp|i z6*Z{8?h2B@4G5*47F5+XD??vEB-T@*TUBWudzZxXTdb{ThaqvQ>%1fMzx-buYipty zSKeYIBd4c!4q_anSFAv^Dg3)b=PRHdE1U^8b^s^N{Rrb+E=9gr6Erx~@H{|6-$!ak zzaU4AY!i9JCI&JF(fX@<3H(C6$=%kyw+>k$1Ke*&yQuc<+2Jf3`1@yt^WK^kq_jRe zfr!OQxJ(1c1reo+5vjCMJ)(~(UwZV{M00odDg;y9K>V~2?g4o=?*?_!L6@-^CfwFA zf0R&>ymQ$W0^&A=-iNe)p{9^asdbNC(G{J_Z?3gxM5EiXZ8ecTgaP2?tR1_>M zw-em#OE;zGh$m@RL^(RXdm&fXWAJW)DV=wvAg(H{3X1$A2(!Aw#Z_=L^i9Oq$eJYS zb_~P}n99>x;tC<~JA}sE=zmB@j%>qs zIv9n+Be29Pi9L>2?Qv`9L(?apf{3p|3v6+Pd zh`fo;99&2Qg&O9o@j89OvHzkhlXz*@dUB_zGLD!VxKEl3e-Yewp{{XuGtiIm5tqOr z)ju3DueiW9UPvBu{ucG!xAk~r29SeJR(?hj<%4HYGQk=Gd5~O^A&YA4S)0_q#z){< zZ4qOpetUE)+^K!p1~>q>8Mq8Xx)CxN4nc0(xZS;S4y}6?at*jvzX=U3nlG(@Q583d z_aM?uO+x(~xqmVQC^kH{jgnEHSXWV&HqY7VuiNjtnTOe)Ko}ofz!=o+E$@6(hP+?w zhcHkXiM0nU#q3tm|JD1i`lUk{C~_4e)H>*~esdJIZD_SKp;*6UOF-_vw9&j+tfOAC_CrLy|jeARNI;0r?k2c-8-SrL=W$XpP zTWqIN_O@2v#x6jD@K)gRYUUvv);gRj#v3IKc78|bJqizub`?JSu@*pMm}DXF zug?&Xo*;xS_|1x3VV z8=ZW-ZBMu>^}l&!crMiIUDtKkI(wrdGvF#rSp&mB7tETi3nXs`Dzbgh)!N#+5I~+U zfa`(O$gJE9S}b^(sh#_9m0i1jeX7yNwyj>hVeR}P${sDl>mj{nKBwas$?}d{P9ya9 zx@yYZ?MzEtOi6fMpWNFD@IL0IwvxF0n~>-2jE-Q=7d`LGS5(^PS3{7F@ox<6KNi6@ z*#cfHh!Bwo4$BVY{%pB2!cl~VqP71b_wAktPz7YAe|83lLDw5>0X51{q>oQ{aa8O2 zf5`k*$wPM6*R=rRfvY&Pa}fe}rL?uR_a`GGZz3oWc+H?q*lyU>zTTBqtC%-vA!;+0 z)d6}nR#VjfA?)v^?A_8QxuUy%;(4c{ahWh*tH~!VOu9YyUsvB>V+1_^?rq3&y_Wp_ z`B*C5nVh`$t{%wN6r+pMoI{Rn+5h{||9KDTX){0b zcAvibfB1UKu&SbWUvv?oAYsrFA_7WEgAxi7DvCw7v~+h%NQZz(haw^+(%sS^-QC>{ z_nr9P`<%1yxz{f$`m8m_m?Pf!MM36g7C5FHx$ygVF31qtIry6eY~8H5)7LcIfiB11 zr%>la{md5E@83q8H1hTJwFRGA1t1hb2YDu4ulY6|U6E4;gqEeKa&Q1V>lB1O#N9mkW-`>P&8BO#ca2-0r_)84o-_iUnq`jxOn( zlt=PNL(y;J9h|CP_m{@^E~_7C67ec;UG@rf?BC|uF2}pYUQEZ14+OM_%6;*UAK0R{I|r|c zgOw3K%+(YGf*XH!5YndhGb~r+#UBmYjM_EOl9m3=Y*$e$QC-=PF5tEn`)a*g^nTIfIwQ^RF*)dV|U-1s#}nY3O7O zUasuwQ$hO3c;I9KqV?ZkT$&tJR&1j799qj>K@63Jb?Rvcvll@~9X*Ss831&_`Jx~p zj3u!Z_-mn-p7p)+tBfRs>t~w_ssVw}D?n&?$;n(VqJ%|fsqP&W%dS7oa4LEbP~lvB z-SsGI`OgZ*AlVHN)Og%>nPuQ-&~bF-XU}mGbnkLcnKuSj{LfOBXyq$Zs%}i*sP);U zMeR?|Nx!!uIG@En;3j||X+U77ZFt70kqa5-2eRm|X#M81r7F|kY5Qg zt5d&K={}m|m`rl>e#~l>L9Q(8dc8z#7faHOuYs?HgxBo?lFx7O5}@SdYSdtXT;XHT z%mCkb5LWK`t^WoLxB~+FvS;F4lac5}f;76W`Rg1pyYZ;_3rM|_Wk@ZI7d*1Wgm+-6OTf!tUZMJW}0(1>}I`nkr^!HUX?wu zRzpssuK?B|r%c=!%x&4p(^k7=q+v+R7NPXE>BB)ZpZ%}ke9#OiNfxd;Jq(eC5hiw3 z?C!+YT{Ql3(L@1iMRZWedTwEZ%uS z`{onI#d32>o08ssX4R$%)6K}Bf{oU4Dd5Pr#COE!hk)`Kgn%LUlhCsY^m<4#o$-av zuK%JCFqNS_XTQ|?8sz19q;+Vg~2a>UX3h}1O_(D#JK+_h3i&q@N%55HI z4OK3<2CaQ~BQflpHe(r$rPY~l{VcPQ7%v`digp4R(*I0M0v5e{?5>rpEKx71&L{KL?`8N+W(I>2+JRji{ z@M1~^l+kZ()EM!_-ZOrvv|5ss+!+FoS9=r8d6L)jO{bJxv3c6PSuVF9UIV`+)UvL8 z)#WQhq;*6YS*Y=@c;TJLuaV;-D+d5QI4;oWu7^oG0Mr|zy6hj=cP|`-knW?m9Cp^K zlt@pnyR4l`ejKUl8PSZgU%5bZCV=yonN#i8C-!^admlkDPEeF! zltbHyJc3I8Y0gO5E&+@M(iQmR`4NyqwclYBrUG+zAp9W$QQ{2-wg5{iYq9#d3+NUA z{BLaWgeqy#CaPev1ul5j{XEZkHD@&~QE8sdRBoEW)uS`(oh$1uYL8w%4i{xfby$}z za3@h$_j5zU^JRnUBfTr87kA|x1oDw;rxO4iUr*!=7=D9D4igiT^wW2@2l-^1FI?3w z{jO-4=h_J!na~1-t?l7kNuucU*SbC+j}Y-jD)KXZ3uRvrO3km69o~PfI?OL;E}WJa zqowFCzEv{V)MT7pu$bYsn}I{~hgy{ZyHa7|7G7!jij~m8!S(Ytc}k}qNIG?1C6645 zFDbXCLKix%*GcpKU&Vx`_5($!PlK@tcf0KaX0^NHIRfC;j;A7*ZAs;~dpb1xnANA; z*~a4GHOwJE-$`eKOKp)0=Q_Q!|&z5(s`y01zB2<_ePvW z0&eienJt5650b+Il$ilwm5|lSJt(jGxPsqTK7C*HjAB_qRo|z50X?f#(a8_X70j|Y z66#P7qY?Wx$r@gVT|*$mO6uw9eVv19dm#uiK+!V-t&u$2zbtr%^RrW8*Olb1Zl-^{ zPBU4~*^Dd#b(^=mA}}uUFwl!X0dBw(DJd<$a6>%X33n))hy|Sax3-A1(ayQoz7J>!6Boq~P%>mu(m> z$B_C&RbpG+)-QE{A&mmg6@VKNLJ#JJ3+yJNrHl;~z<@+>dq~3{dVL$93ji)-(B6Aa z$-vv+p_{NH27xSffJdnNW-0`t>SjB$R=PxM;Tc)ChlOLdt1ZjOU&-8kBz_|=w=ZZ^{J*!`ja8Bp5?rCk za_dEw;z`DT<-UV+_D(~QYHU9Fd& zBCt}Gc;4!29fg#Z9H|J6Zm~z!s=gND9Tk+Y68*n)ApJk5500iozzRz#47yM<2gd+r zLM(DJR%t3i!*Cj$Eh%j%H4G!{@7%v#nT*g~kU`dz=yaq%+5iSnkBG8e!1(6XCP_8g>If`aT z!a4ryA_rzmTIfllKUmklyl{yG;XqdDi`ktn~ojq$}gycMB@okumi8XD|z8 ze||8zh9d75h}Hf7cp*baU~;n#xm@!vwO}in70=x;~jBRW>()O7CZ$G~GWXLU5@!jUa|7LxH&=(#ac^8VCP zoWm-AoZT!LB9aMN^x_>OK^;g1vK}gOXsx;hF{oqTKs`MDLWlX7ADf&VKP*cvFOqD~ z`VJ>=+qC5BRi0FXJw3Q|^*@X#1X1cd-!RXna_M#lEhKiJ^@O0j!o}sGw^?KZxSr0Q4oQw;0Yw-#FWpbYN5?Ed<6ZG`&nog9lNsgm?+BdzlY zWO-6-QN_=T19`og&kzo!jIASdCAO&lJmY`%O!7#*Wga+!T7kktK@K=e9y>o<`$^6>v{6Gv#+!6<2}~za z`2X&McCYkfWFkW9t0!DXnw1+CE0l~I^QTHTdeBgD6-5^}SVaCMwWE?3MzPvb#cl-o zU*00ne7W=p<>XyT8_L;VHS1yKNT;_9F0@^Y{qFy^87a|@grqo)q95>FePTj*|>Gp_So zOSCx+e=%l~+}a}HLprnQp!5FPi$9!82`4jPK6BaRgHw8X*$cJ`)&0+o{c$<5pjN7U zu@Ol#YSSTiUopL~?@dZxrx$N1)KqHn2DLx8=Fmy^&8!`%XxVzs~fdl}ml~DqEXvz!i&2k$ILxJ|ril-!soE5k3Ws4kiOD z=|{$)m9A{R!*|4dJb&aZ2rrX5c&>|;R*;);u4|1(IW zH5wXp9Z&EmRiZOk1hYR~b9fS~grQ z!*YRRZI$}-k2m>++^$QQmp-!d_&s`Rh`;J!!kIQ8W@$*=;-_h^(fjQ^vZo)x+`o1! zbC~KXjIyRX0D_A2Yq*aH*;b2&9nTgJAc-#|59tV+6V-oQEEJ0@h1bA7Kp zY`}8;HqEIJa6GAL&<5WktU!ThFd0o+JlF46@30reusK6()6gp)k#bo1_5d``JDRdZ$xaYZB zMs5r8>63KMsu%EYaQS&4aM3i2Xo6U+rpZ_oqW&yrWe~%{2+ux!jI8plAitU{Cx;k1 zy6H?+m5nE1*jUfq(!Ui_Wkm-bH0u-jmL@+4!cyNTuY*=oG58|FuTk~Axy-D9Y(Y`Q z7vKq681=d&EWM<`{46}yKM*N};eCb`__Q+JasB?I*PmD0UMDxTx zf7H#hlC^Aw3>gA)Q)>U1fa}*OIpj1Cj-|)5r*t=_KyD9x&=7e`kDcjenC`TC2NQQB z6?Ez^`gbj8HR(PWu%9Lb3sZ!%TXib*ud0Fd0$ylag_8sNdJd(xU+G&RBkx@7@f@R`Or{Qc$5Yi@u$^e6 zm3^Llr(AvMCf78?rRB0AmNykcavDcHG#1pgeEESecusXCK6z#@u~)zPJJ5WJmeVy~7fj;xwaUu~3WxR(ILD6@gKhLl> zeBX82Z=#AKcIn@`aIDLmJQRef-r4SF8nfDd{+R*YozH{g(M~lwR$oI#^>Hc{r)aJ0 zwjn-4-;QC`*-56yf1dW0o7}q5XiTNE6WSkz-HO~m8*6g(0%y$fN7*iTqP#5({R}>k zTJCSu2F*QywlgG0x^Q$C<6`(_!P)xoRhq$@yr0L{0J*@iRZsPAvn+nXDMf$SzrcgX zudCnnGP8!r^eAQ#=ceuWLzH>B z{OsvvrCqlNf667_z*JT7F-M^-*JMw7bNQDF zO2F(n1;zt$vh(YYoQcTxtMWWIElMsLE46Fk^s**vCD(+@u>9g7-yp*i3)46ON1)h@(64p$$G^EF z@n^g$X5Ga%^b?`4&C0EtLZc@n5>`63=s&jMz2FCTBOUMe0dCcX6_uA=gMHe9r* zJ-ahpv5S?BEXjiu{x`efIZYl73%-Q`Mt@!7`ON1%uzPA>0!D3y`T3WQ>CI-eKh`$6 zd1}~x3vI!@a%k&0cd2KCT(?KYvqhWwfK}Hg=RJ}P!mp6XQ1v?%x5`EPB|hQQ%(eaV zzpR8SXHA_3R|v2(u-ALe&*gW_Fh}kk2Flc_%?i81G58Jq70%li3eeUog6RpTQ>&Cb z#^Y5c#%L$PN|e=fZM>)Hs9MjDA}j;-6*8d1cSX>@QJMPXk}=>tVuqj5itPF}4CGVk zBhTXmr|gGC%jY$ibNDt+A6?K`o} z=sgpZuHu2bPSI?e3w$eAoX{Ry-n$8w(0|dmA`9EDoBX(3Wc1`hf!~)=ej@Ja)G?8=VLs=tTkR8ZbvbwD6xQ4E=X%tSwz4@%OrAg7`sco` zat8@{7{6CCg@1N*!X^{Kb&Y9nFMEzrIS(&5`}dQ3bUk>6*WM&Aorki5X6lrmh#%@P z>5X>Hb5UusM;D$<=F14_-aoNA=Q4j|Y&bs_?kUT$pF^)u1rq zaon%UI|m~?p~+OZVWijD{AS~PX|nPyXV1C7gmlMMfi6(3?gRdJEGgPu4fAg z{y!nvl1_<4rLXD22Bg3w6k?uNxjcBhxVE_0>B|Xl)fG%{HoJTD6OIQ7{=RU0szQ3k z|KYdmPp9=>_5D?CQ$B$MBV<1Q9Gq{F^&Y7^f6&kF={@L}e@m5nXMxnOfU4mg&qh{G zna`zNO@LPaA4!qD*acPoWY`)PMoX=hvgc-Ex0aN6^qIP6hUi{w&3$r{68*#I12+`9 z$W6klKj(LFc;0?u^1+#8>OsHLYVDRTx4bj>^%CYnStJVGD-Qj`cK$%@UeNOhX8q{k z=QQnmTM9NdyDc%C3^n$f(=8TFzq1+*->qgAi8+6pof(TQFrcE(ZTv+l(I+vH7I3Ab z%{+RnFIj!&S%ez#hbtnNXdd@)Myu}-{xrBtsJ+u1Vb0y{&dtE*$WCU$E9gf(ex!(H?nOx|mGrKju<9zas`1Bi;yPcaIz$^jxk*EQ+C^aPbm={IuGsky zK4^X=I%_yG4^J1*Ows0CDDglY=SpDQ8p4z{^E>|^%M56$uNbp5Y*4|)e@{I*kB5(q zGnI2Mkrv>6!N+{V^V9Kaxiji-R{sbVJS+^?O#q!SUzuBjC%tt4f4ymx( zF*2?n=MDZs4K3_w>z5{=i7h&Agp zNH2bJK6l!;kcW4Ac?IfJsBydXV3i|1Zbemm2eO3zn`?d}s*ls}YNImlbWG`!mQXn= z$r~RW9ka@BF;36+yIec}h{;*K-x0#47@i)bc54^g^FF211S(7EjQ*HHmEQkJ#DXrE zUMTkO%Tm)9v3$N%8T8-d*jujK8h=!>_fe0us@nN-REa@mtGfXX4kM#P76sj}S1C>x zFB@KzHg@GcyXYX~WwiFFg}!i3bKOX>KKJVRr_KC5d{KDDDKA)OUBxY$O;6WL=>$Tw(7lzt- zHb&Fu9?zQ(9^`4N*SPI+S2yCV%40sqs?3_A*}chJg6CCwA@)>1YK7^1p-`mn#CDjI z#*F9`l{C>-hDIb}wGLnSyko%SqV|HJW4u~v@3%xqPRbP#AM(dCGGGoP`HM4L=Tyke z%`HaQMfJ2o4o6};yr6&=et^H=fW3}WGQZeel_5dEk#9_A)WbNug1hccry^QVY0NW} zlqJ5^*ePvm)tt_?VJxDVRlm#ot%veu7U%K)?U(^W?AuDW1&@G$fQ!6w zP%+eZnMp+0OS7}Gbu3r4L(aB-@#>l@z-ib2d}`v6eRBlrc9y(ZSHqUoj`pLm z3-es}d*f7^bvxt3*Bz6r8445!TcKB<6WxoF$&W8@V!O!t>ttI-YL=r-IYT6k z@&PLNmpRdo0mrU}rTMXtyCdIF*?McYtQ%HX$J}BBHKr>jRtelDPphVPwiY8<7H*s` zkH;A~Q)}tR4pU>OQfpl%k;Okh8IX4}O#Z{jbq|<{34rr0EG+B*k}s4?Wef*^fN2iA z%8u`^XbHtMz&|#;uY*I;>2}2ER`1rh_k+*tt!PxorWecRGIV!B`hOUIQTeNs|Jcli zftM$u<>ZKI`g5|P|2x~MiO+AZvl%;v6mA!8QnzqkGPqeF$(W-2dwQ1W{4B_;&fBJl zJKIJ5z!^Dd8SX5fB;iF)iN`y6fOr6+u77SWCjixF0Bn0V$5B?6xLsfix>=SFQ@hyB zr~f?F*R_*rMy&yAu^B{Up^}OPCFEovxjhyaSCoq`c?EnZ=-BCiB_?n$WX%m$3JxWi zr^@>!49z22cMGSP>z#74#4+t;%BX_SPS7ONT)FVnqmqPJ9LZT66@x#A|G9iatx}Is zS19!NzAp>I`Ha5jl97qptf6@qmU}5g(Z>R) z@rd^Ab!mYrAUeKU7NQTsCLtj~pl1+S)8*$o{?K-{nW*;kr+g40LGAPjRQhs(m^3^* zybok~Kjtxju#7q%8By7eqs7F=G8N_RvPa42oDi!_5C1(j%60b3ym}Ta;Dw8JQ+tQ{ zdr=XQxs+Tiliwjrbys7UXe7Z#?`lEQKq2a=iQg__ZU21Ulf)0q=lFXcHzfBlG8b0} zwh@)+f?QwJ;SM8yol&MDZAr|5z-v?FUU$z$0n{{|W5weL-5* z0$L5f^g5H??U~uw6x1`MZ)yE?EdF6!8DMU1-d|$F1{!U7#$9?`Fjyc3@8YD<0<8nY z(Uy)reIl&<bv?GD#pDgeKK)k8M4L}5H>*ZE?65@NGe5;nBkzuH&?sLK zYl&@e?OmW(Qk8dB<6pEd4wqCLkUne@`YXK~R{kq~JN)EFQr7g`E#ECUN5-rZD!j^1 zRV@0~4ab+=ei(%z6GAyXrtPdbefx}ci|%Z>WjsIdiT*a2rfMGRaJb2JYu zJkkf&h9NV&0QL!2o?+92crWO`0?=CxJ-Fdjsb%FS-*iRKrXR*ZN4R@?c zws8&CvC{8KhX(vWmwlRz#zrFh4eu%Jzu_yF>Hh3d6@M-F_FXYI zI8akmxX-4{nU$o%8U7RRGC#2;8;Mh~$Lo#jgMFDQN)rvGGEe^J^f2aTad2=jX0X1p z&?0+&yp(>THTPvUowcI6#k5$L$_L6-x5W8|p>)e|{<3ci<< z>?Z!S#DpXya#}I$ATkRbPh}OA6=Mf0nHBWXa1H2rLyNBQPze4lIQR+xqdrurn@Yx7 zX6o{oFnyi$~;(N2U%e&Nf3Lq~p`oApkq9*JRsSOP;^@sH*o5KSP>aj;dn%?nNa z2iD^jlWh0#NL|07ztO~%y~wFigPC7%JVW9<;pfA4k1u>?j)SmkgH^Au6g@36(}btH z2AtQ{e1|t7c^dYmWX%$y#P`(xzTu zIQloc&N7{H2R546uR5Zcg3N9S5vdXA&W`n=1&CL@-CQd}<})B%pR3c}euH1TS>(dx z>tA}j76B?V$+{Agvsxg^2;5*Ew2Ad~Q(|U$*G4UobQXc3&YqrdVA~Bk9S?pVykHAx z+s^lSwGBh8?nKnoY8w1(aCZ2$^rZJKQSSOl+P-mdFIDz=*2c(V=9-!tnB8%oqWrUz z$a@}!$u7RD@%02p%#WUy$tG$iz~q(bskQsONs7EDK8<7j z;MtqA#KzA1cWI~4%QNvZ?rmPyz-6PMd${CpXQw`CsgBwCA370|{AImobi_4Ey)N|S zS4*~$4ax7K>utul%-?6Py8g{(xc_{VL@bCQaZ5CNYAkz(^3#6Je0ezu`JRVQ)Ro~h zk+zzUzU~b1!zSmya=RhU=X)1sRxZkkPWZZ6GPlIkzTuGqigbnk(Nmir8 zx$5V1NB#PAD?v`VlbVBpbJ+eTW_%UN*$&U!OIvxkwBBs=7W?lw)Mi#7H1D|I|Iqtz z^mqE4*wLXX*Y4IG!a^0eEEOumhNjW*H_bKb*L!E0(vtMJNWJjsHl~7}DCGRA#wb;7 zQ)ON(@bQ)tY?<|oRnOFT>)YdMTE+(#L+aCFQ z56|QhUra^w;~`i0rB{uUp}C)rYiLmQqr^|gW}Rh*Z^1uQZz%65Ch1B<$k!Y4gnbEZ z%1IZeI%nTc=a>192Vn}@lLbdln(qCDvm)}AlB`u2{EN@i#5+&Z^sfP}zUYObvB9j$ zq{=K#gnW-t>v5CSoQ*yRsy9H;VY`@?+FxKojc`4I`g$k-xb>SJq7!2WTt`G6AV_eR z6w%oMsSZtWu~D4vtX10%6<}n zXoxccXw8EYz#rhBWpwU?x>jPRa)rtnT*sD+mM0O1z*|BT5Ds@&ngIsHSaLu|KFs6e zmVwb6!}#bGp~zz4)z=LHi7U)i^0^8#Ej^acI`$knU=^E9zr$JJr?;-V{fmh{r&e>8 zp)GDli3>yNV#EP;#p z-|I?yFizG*RJ^!pyLX3$z|ZIlsmbbnF5{JQ9b0NwPMP@}?te2rU$16e5yk?offd)y zEdFjn^lSQ~dI!m}d={JHN?LSrO;&=zs)ODb_$k+jiM?dgwL$P3;jZJSUA_ryX(A@s zb>O-pCZR7YoShIQzV|G=B3wCZw? zJU~QKm_Xd}XT$bH#=+@A97PmSBlY#8_1&@+GRo0ldgoO-D$xrN3fgLlaXGZphejBk zHC6j2sgv^Hx=y3J?0naIQ~j-@t$^|_|6QrUdmn!e|NLuHO!kO!e1aMhrz_o8&Ht*` zP}mk+Up~BIZb6|`ft+2&*a#K|*!IdhioL#D{iW+Gv!@Fs`h1ZpfL~}69XiZ zTcD2b)tY1w*a1j$(4>;Kw&sBuoCQd8&VeJqUO-;GUS|l9?qFT%IT_INDlevrsYyEh zmEP6)Cw>p5SC`1EAwl7oh{pK3y0_8G=~%jhi^5wf?quwEn0^x@!vpU(&SpxSP3MzT zJcx#8JP0Jm@?(b$`Z^Bw2^lSN{Yv=tW99ozXp)_&>o#hqO7o|`62!DyE{l}qKZR81N)XnZD z@K!&3=LU!3KY;JcFpxylDv=!l8ZcV`btGXt1Dm+P(lbQ97Ib=ie0|>m-YER&GtT-%+Knws z@mGYh)E~8nNsbr|%?ef@jYL7&z;BoJU0Wvq@1I?vyUr`kL)_ZQJ)-^c^Xm!PSZnz< zG`lEA9`rA`u5j6RQzf~0_Ppu%s+`1BIY6g=$*XEBVJ9}cOBOjn-lhRHYIk*{83c$j zhPcS_ppFg#!y}oRT3TA_T;w3;upORmP;$0XR%vpPEwSfL>5)1EF6-eB<4|N<`My%= zO6#?}HeOa2&TVF`LZEBUZS_s=jhaDGj525HwZDAk6XZ+<)VCUXA~ns@l$-CFbI=6P zeX0L|QJm~edVl5OTQwI&EPL~D$JZf`W}+2_S2}ru%=b4ndSjIuQt-m|cLPn*mJ~m_ z=$r4lI=@L+(#&2k>fg%IX3y_>)sesuGlb6@XZ4iXk(Ye+Ov=3!p6M}*>3K2`X5}{S z2%IAdVdvpYO+?WLM4q5N?aKmG!snm>zvBc(s3`H|tI3`6ff0QI>~epjHkMwY=(kNo zN^S;SYZpAr9sDcIEBY@?`cI1UUQ>-MK>V#t-MMJl$|#$#i{WW`l5OBTQ|^HOj~}D~ z;=dJ#9+a8v9)_b#Sc2pEj_TiHyIFsGYWi1SkJ2z9DxRq==OXF--%R&o1NT1}E-{Zi zYf!x6c#7%7Mm2u1&)HDWDG%-rw$=QTZ6bT#t=uDJLa~WF)hsi{1w!4|ZTIZDv?B17 zy?aS}n!FDqvqyKO=h zr&K~O&3i1y&?Zah3Fjz!nQ~#-SK*I2d)I}JxZ~K*TIY4og0gI4r=myZo(Z;n4zlU$ z9`n#aqvG1yOR;mEv8pLvozD|vQ=grfu9_So*&6q~I6ze3XR}w)oWdH06J9bBA0hj*$2TjBO)(<^^wXkO07nZ|jEKTDxZn`} zBOoP{osL4^ym}5sVNb#`gWP~4dila1}|PmViZ zO&_aiYimy|E6+o-dw9?WW!$Xy%i`0!I{A4ecsXA4EMjte!C6#rmmc8U&@ad zAL*ILj*M3fMl$;tKO7c!wTy**JEh_xSWi)Ky%?}qJeAVbQCotY>(Dy;HGnPW_z%=) z^O5>&?+Md;Gu{$@he0`3mhx?m^Fy#RCME_kGC)Fi3jS-^!=WVLasVW7zmc_!g3-wU z-qCSzTtH-SzV=QnFGC&4B5}pO>@?!&g3V5d{OL|>)vYdX>lap!66U83ivkPXeQPu%^h5kbtjJY@M&^q!kwofeT%KCB~W}O z5|K;AU!9mpF&Plq^dR zUyKCFJ;lpcVYMVEJk+#58flGa7UnQ&=K5mGo0uavg`+my%1VXyH4=?451)J+m32t; zFE;oAFPolSr-iiGdgUnyokOrqFDMub<=%&sw;*HFEjepgk3$eKP5q=Sue4z?oKS|65IxMVe z$55j?9sN=z`@aqGd{;Oqss?k%RkKzH86Iq?E^jH=4k32To zBX?Ykyy1`dB}&hc;UwJ;LuGxx7l%RX6V2`sQ*lOrv~Px0U?c-0A{0xED`46wRVga- zG#cmS;cw>X;uQ)Hv#S~llM~mpR>VBy%THmZVLGB#CZHW^I=i6WGa>Jle_7#Gf23p6;yGP9DLh@f65u$Zzr6H9@3f{pmcE?IwkVu- z@5$1GiPQF%a?+2U6j_!zd8vP@vS5kFQ0B*W5O%{*6WO%e-?HlGBT>Y4%M5y?CmgKI zhwQB@sC|dQ0$cyGne)TgbwEquiV(|asPiw4cBRc1Q$X1R((i4M`F|=Yc?mS<7(seR z^5YB~7VW1eN5Fkf1Y!vygeCy?alIVzj+-C3Ph^F3b#;IJVmu3KL$*uPJwwtogTByG zb2{fR`b0f0e3fB5X16i4fD%qRT@I5~$LqRhGM{r7HJbE3^s-=yMf!eO`goU?FdOp) zH;xwha|*xb6Y_==;W$f$4^#*a;XtWvkA0~|K;COrBc^stGVluKRxe{eScCd zvUFv7=C$D$uj4#Q_{&@48kiBEFRX`h@`4v|q+ZutF)R}0cL^P2x%sc+y8+4&TM&X> zgR=-KzK=kcG$bTMY&93;5CM>119l-I@Ux1u(+7xMMsu?tNMqC}wyEDk;Kxf2VrgG? zP{?xlBvDbWH$2ir_Ze=BJ=fver8%8sl7Wqy zjV{ZXc9Ns3(J^8z;asQXF>PaVe?Jz*yl4rxg!+-BR67m3pm&*W)TPc?;~ zjThu(JxFw>;@Y*EgTy=Tr0G}TkeH&{7(<=>_N1{r$^5;hO`jmIvgV0#UWmebTU~du zl*(V02w~wlC@`M)aKCFq!Q?8XheGkjnn*m6^3WqT_2Yr^sKD>AzgGA+MtPCtgN=;xHk_X)t($UiG9Vg zB@)vRZ(lGhD~wKw0hR9+W&*KD|7T@vg(XikmA4g_mWNMSjDo`AVw>iC( zWTkBF&2YWWH81-7sj)6aiYLDGom|PX;xJ1BH?Gr-TRPPt)GWF7Y%3nL!tzw*t%=Ra z9TRA#Ogh$2S&A~wH%{I&^KT*4dn%ZfBYzu9V*(^YIBWwE~}{98f=xbKHDF&ZUR=nEEkSfV@6p?mNjI z$)cnaCX|=}%8!6%*2rby;0Oi7&A|~J*Xe03m_6-W(C`a@BEUPI=mpT)0Zj*b5Wl(G zWya(V?P*U=+#66lIo-I3mL(GUF)GxpK>>e=4iP*vCWNxD&oPuy>A*SyyV?xv?+lz z16_1%b6H^}+EsaN1T|kVA{5HJ%e|Rgs;J-4yeIx$)Xb4y;9Ri8Ky+fjUgTnuF~oR& z&>WTK-1_pN+mQUIcx$M_-eO*4^Lf_FP2^fK_a|G|G5sjU>DQ9ga5}aqJdvO5hE=E%b7{#lp@6<4btP(a+Rt4Y?#vb+LErDZM<@ zl&DUP5|)z3mp>kMb$$O%c)TP2ya;nFK-{du=wJ6NF#lj$yL`w3P0Y=1FTY_#VXh;O z5}C^hTS5En>?aLZsHoaNU=I>_y*y8bsiNZIzo4(xWSA5H;$&e+w+ZxGI&`d!ZEg90 zSKPY?LX#<=l)oe8Lx-#!2X&bETd|#3c2mH#d4QP_U(JuJ@fh*92VWIhaOJp zJigl3*cyWCIhty$U5Oi5ik1n5GdnfiKgY+@EQ;Q z0S^a--+EW!uw~8pshX7v-Kd!RRzGUZ18<_KPFzu~@e0{)El9~!@w1!7zh#D|fosX4a@6rjy;MHe$Cq9^q+BE7i(jF2o*Y@o}LyVQnCtEJnIzygE9MmEP4VA!St#x@Q$#CG8=S3=8S8%G@0L8%wdE!c7 zcZ1TD7e1xp`vG5iWbm0P#R>na^}nA--@~Plzq@0-yC&tTgu*7n{x0VH#7#B1VW_S| zWU1#pp$@J|Ya!ciqWaN}{NQ3+9IL(J#U*`8!#mpwnT=A0=EQSb7!`KybJscd4;Cqv zn|H@mQVE_Kjg_wTTBNyM+;LP+TU&W5NG-Q$SMsX8frwyk(*^IR(6#2DV@V&MmzO7~ z1T$OTg2DSl|DKb&6>ltzQ5jP*G~s-Gis(EteVFW7wKZPS`BIrsb6wec1lw_Sm>&cu zYTrl;)`2OtEtFs7v(+Ev%$V?q)gS`Vpk$9I#@H?AG{{#t3ywMMQGz9Pb_7zEJ%A1# zR7cR6^~s?4S7*^K*Z}%oqRPq?s249@bf;++rRzaw4~i!qh=BK}Pqm2WF4$<=fxb!8 zNbhE7NT}&0vE-_IT9-aHM~3}+r~UPUZ5}xbn|E0Y6aiko^u^sIZxt6m;qhe{5^kI_ zqL#?&0nZ?hA*`I~_}I%A1Wa_SbYo>jB}d;Gij5HFILk0DGf#Tl5Qr}F=k9b+&|R&b zo3++575w@kGCj_|HzA8@XDiNQE5FCe=2v4tmbOdI3K)1w2m{vfC z%@~5tJ5qf{6>zVbovhp$P><6k?|{N!j$T1tOG zPjFf7)rQVvE`N263eT1i?#O-rC4O1-5p=R4XJ(hUvoIEtg7qplg8iu$>Xv2xFnni9 z#uTKbK-zylcqR3ke6AgXhw;)2Xli+XWi~akzY%HOO%q%z!f%WAmgp^E=_lOPE~7~y z9*wu#6dn0 z}+Q_S{*a>#;djers|r1Gsf;0 z!tXAd++i}UDX=Aj-?bBeRVryGmv50{X#XDV+6}+_Cs()@E{B*@&Rk#bW8}-hXU4}oN+(=n#ly$&`hQ?^H9}E56Qj9@$Bj;4<`8ehfFY7fez9Ab6H1u)WI1TNEqK;`R5t z-EA(s94eiog>-@a3H)2!C7%<|{MBdd)ek}yy%p*^k2UaX`bIvcNYNJQghL&0^35-P z`DulDTO$`jtC84C_vFzl4$#IQvdN)uxmTaYwY40wD83d&j-G-9?HgdC9_?Nb9T!zI z^w!D(nT!e4!GVETT_`Hc^iq%3t+zsNmtHhDFiO!n%Wk7{oTf0Z49zG{Zm13 z9Niw|)b@ijy`Q)wfTX1Sj}JYqud@2j;>Pxq5~gp@2GE13oI4h1nrl8^(B)BbFJq8> z^q!gGY-IDHTkt(Sc1%TFx}UE&sn+=_qwDKD@yR4_J=^xP6BCZ&Rkgctp)fS=xw1KN zPNPC?s(c*F8Yc_qhpexfZ;3L$&6#owruI8ler=S-%h~DHKIGbC>tla`smf{@f&&#pNx# z!Dj6cLKEP9&tga_kbz2fuvh>1bZ@O?p55b$sN}-Mw0BTpw+)N_Z1vN|O$UP|NaHfi zZUSA0!#lcKO82b?EJ0SBo%XzwR@Yu;OX09eCd+T0wRO07MMOSIt{dyR;37>j*vF=v z(W$3Z2Wk$*PB-N^%ro4^3qLVWhH_?9jRX4Wb*{zA{qRoewfdpwK^3VMsv~XtWSJGa zdzSTM>UJxuhGTsR|8_7%jh1W_G@2pYF*ccK_!GGE<3CtbZeL7WPtj@Ba^=Js#%IyR zM*Hvk``Zjs$I*w7B020pbWPks+F=( zSQd1(_onCYh*2?@B|XkAo4#TPli^ORIJzn?r^+Y1J4e{gwQ2L4^gEG>w>M7N-0JIj zMQhn6XO*Zse*rZHc0MHKeJ__W-A|0fsXxu(RqnHW`m~LXn%i%$W&vCrHe#o^5WQPM zt&hMz*Ue9jtk&GmqIMU08FD7?+`8SM;xG1$vMlP7R}MBoe@5S0;+`Y7*S<$AhR#w? z#Cg~1f0CF@DS@i#{Sy5XQ&Z<=<;F%tY_(XgsjP+uQ~3*no`#;+co*Hib!WI6p2Y7{ zNC+S{vbO)< zxbL-8Ft11~zn+uXlFL1LRCCn)nRr@Cc2 z$#LuUFj5um63=MtZjP#=l-@%=IEJMy(_XAS?ysXQL%&odAm2Kc^(Cr8F^Wu-C=4P8 zQ%|$AH#dX4zuk@g)mwp!=V12yFAMl>W(Z;)MSD%LoD7(V=_N}>J+u{qQTo%%BBws5 zU$FX}f6EdCr2iOEB@>ga$QjlgRXXLFUx{vA;>uBVx8pPG&Nq16P5S%NlI(y~F4-TV zwVZC!x5|>&U4$An)T~5o&@IJ*t@M>)W&-i@3T~t3bA>}2w5P#?N`(1kR!>QHd*$ZI z?U2{J3qt%HD_sr-*bXlD(Ch14iG>MIeCBvg!W%vXNyuE8O705|H>0CRbwC_}jm{vV zDk%B>4PJ?x_e6f7V~8p8(W_r-23m9AL||b6MqyKL-LPA{MMlANGKym@e#dw==mV_G zxA=dN!21VYlW{Fy>iJp?8@XYc-LKOH?<^#w=Bqwz8rc#bDS9_q34N>flwbJyEufd$ zN8Bdn1HU@1Lp5MUu)~`|v#*@VZI`r`4{nXKjVq3Q`JUF>1eEbHV+KpM6`<-WHM8!! zcCWqNs-8T;{UC6bk$CbK=DhP(qF$5{q;=cXp6YSBIaImBQmO3(VX+c} z7TFRUzJ`=9jou|#uBGp!y&vLC6XB~g1ZKP~w~#k;*06?D_xv+8T;(4u-O7DMtO*%& z!Jk6BvYQ5eQy^CLR-O6EcbO|21qD03>G8zEmeT#!-5$R-tZkb{@@7e!#6mEU800-Q za~nFV{CgJ~{Jhk9KIgjFG_;B@n?f!-M<3nZpV!r|2RCdjC)tg;)j(hWayhk<%#5~%g9qljJ zxhi^f2*euoc?#*>@h;lpPE)PPsJtXm3n|T2m8GhNQT#a%ci1&v3JilHPlMJg3`UF)@zhXPSweiwi9j@_KQuR(|KFqfP^^SnJB?S@WbhBn{l>@yOv|EK!Kgd zyQHLtQI!^S8KE*0|aYVP+k17rfBx0EMJf4DGwUkuHce-wZW2bfn_-cEuL~eOjB5vUqMMh

3=(YAvo6Lk>Zrv`w%nI$0v0fC+}uA=eo(Xsx}CO$WSfq z16WkNLR$GQc0XfeisizysBeE}d5aISJ6@3=_~Tz|<*X0ZuFO>{!4l29h3?ANgTk9Z zk_#^-zH)$o6$y_y355FYYP;{#Lh?#*oJqYkU`X(t7V44 zS1ZF?u}3LkURh9%bM0ka6c3@^%aNNG%5ZZ_Zt5V^0J(=Olml7ccxIzJoEyg|uJsj& ztRqmw#Am+;M8110$J0w-`icTR?aIx4OIz>%t`Zi zeADn!G5vjTY%^qf`SQ~ZxX|Us7$*bus#!S6i2K@fXE06^$)rEG+Pl)xd&eK*Z@py} z>KMYON4CFRgg`x94}5b5Up@D7E$B#?l$6Ax@)_eb$kh}Yv=f0J1tBV=g$Sfd`BOCs z#bFfHdhYRE&-<9BUezTp-ulK@z zA!15NPEO>oLJ3;pRUSvw3?wyGqTUfbWWjqqO7TJ9a&<&wl9j}SM+;5_Y12twLp}Fi z`FZ68Y?EjruBm9_p08eX7{9RY%^Rsj^y7>5nsDzq^Uo|Snmfjk%iQKLbY8^y&b?z# zkIMZR7V_{}gh5D6|FQ)=9;cyaa6~s zWSIFozUp}b?A5b_7PgL^X|6hs)w(44{3y;A3*qD6@{}G&)`(V0ypSs*L}JpDh^R=j z79GuZ#vuKEd|EaBlg}LY;nIkXy}tf!kWOJK&4Y&Ux0#v!;JsX+JF{9-JdHZex&*%d zfbWwvt-B|4M!MSjB0qR6Z=YViun zToIq4D%;Sk>K&Ow>E%c1l`~iBT^x~9NOp3vb=O`{gQH@Jqe8`yfLvpHaFfmDis8UV z`HE~C-1d$a)Q>ERc=+QdaJ58J8q^{5D(<+I<%Yn?7a>tG;=2V^%0nB|T+@sDQZm)w zSC3kyM}MakJPc*Oefuqhry--vs#Y=y!ATailFT6tE1)azy_~%7(|Y;RC5D}1;46tH zTs(h1_~S=W2+ic@=fB(8SYMyqMrmh&-2N{+exQL}d>ly81`6OBtX?(9KnLbqYA!(= z%2M|FTT^-EPe&?3>Yw=EcIu)Kv_xwTbTa>#^KW+ucQu+25F9;tVVUEo9#wbrDE_?= z>zRQt72mGroY&PDAx3UJk)eC+_DW}I8)Q7fk+^`JhZ7;vSjwl~xg?imlKmLde?PtR+=?i0naqH zY_ANzE`HacW>rUdXYZWmj;XjiKFhVq&w1&3U!cP9MKK_TvtOTpdyb<_Mi253`9Cip zA(`aw5W8zO{AvY}Z6IYr_%msMDE`heP!>QWoVnO%@8Do_xwu=GgQUm!t{r+X0BB@L z`$LJ>%9mUjeMRFugx`V^kA}+zW|2(%^wCgZzw_+XBRZj=uUY1AZa>+w-73x*ZEU~D zSFv$ZnvC9M5H0@5>(ary-_7mA?TxH8Vo+T-Tr?5ze!3~BnTPHiGTCHuucz-#j!)l%7Fzxw*wOFJ&pTOk3_lQf)QKzQRQ^t=h|KssOTHY5|@> z)z^hrrQdRARjv@grA2sy-QOw`yg?Yil*4i^-==y!YOgnA?sU zmCZq*fg&`DBGiq~d!c|a)|R9}v7n_-EONI;+hZk`_&nR^vB~6S8msD<&!Jo!w3Mv({E21IK2ZrJ%jx4n#u8u zj`z1?WrVulZ;=nZbU&viCV^_me{}alqKDVXUiH4R%b{7=pre{$J5dzV3(MYOW6jI> zKRP!V7~sScjv)RmW#aMI8L`$@mPx#DUe|4iEl6=2Z zortjFFk?{eInDrcVdp4D5el|aH>smh z*|vl`=C|98u`U~tNkO(6f@G0%b`s$twoc1N)sU%w^JLurg`-is?G#E)P{ZyX`dK}l zDO%UznhH_!k~yFAJFDH;i#p>%E7ra3F6Y4+cqArIkk&8ot`peERT@oR%@P4G&R1ae za8+bH9K8CovX2M9R<9Ko%0`rCmo+Q)39djwCs(8Lhv5jc@x#KyD=%nthT@9*&!2Bg zrXi)TD<&Emmtuvl?2gxdaGN{*ChXw<$#s=>GCa#^!quu&<+W5!@21UAJ5W}!Fk9wv zkP8+2P1cQkEZ`kZRTfIf8^MSHqh87th}_RdxdjKaTy)ymp!RMt@X=||A+ z7)g7scEbC~F^;v$H*=*%_{QIz1w6D?wKc!fR-KL2oL(QT*NJ*TKAvi0qdl?gX=9MY z;LFY7Vik!`R3M;gs^i?bWr;KA5>ZUF7v7A;+8tS~?O!7t(1BY6@CRd$Xu1eCbfB_O<+cX`z~} z;60R$g&>JZqz(A!%FElZYsi|5Jv=nr_uomd%TVhb;!dYa(YtLCc^Y<$qF2Dy(Tc*F6&6<^{z5KVip^)^U>eH2#!A(NI|g`kOtbrOqYoZ5B1jrD$$_O8!Ud>RT`IaB`OBul90yjy$w9LZxZuj@3oH znL3AsgUfuU=O=_~o{R{8PqCn)6&8vY={{|%vPBPFFZV_^m^SKUdg9`#)CZ#v+(RS4 zCMTOa=%}(cLJ{t#9lRezexh&uqkg12|P|nq=Peug49g~zbN(qYB)d}@ngLGysP zS4=3ba_wMIr+Cb+ns<);c-h&6O1?$&gLViaZmZjIx7nLp=VYV?w;Vot;M#S2b8&|Y zqocC=24&Y~4pO=!8#mj^!Q@)>NvpsJ>Q90B^(ASW0P;`>Rb6{|0lE+A1I2A{7b;Sw z@~c;i*ou_K+88AI@A*D{IMzzl%9<+>sr4!(w%CY|cmC><@b+!@Zec&UM_rxYQwNL} z$$G-iXPmFPV8_}=toPa#1Fz)O>x*i__vMtXk+YlYk5$^6S62jVWi23~qxK-S)`@|H zlPd>YiBlLKi$XuuSlcAk@Ijsw;q$*cCVCdUYdBn7F%n#!B-@?5%R48!lvdNQHe9n{ z3z+Sz=bf>Sczc_LoOfB+ch^==MYkSA+{~@>{5Z0Z_KqQTVW`lAI?+b{;cU)wgN;~5 zYL5xGQ>E#;4eS1)6>Jg*OeYZ!7JsO~67O!KrJ;}fZ5}#je`2e}!AG<3ensq6e2AXv zVkj)qY-zvVz$1^ z)tHcrv@$r(>~V&?gcP0vxxAdh+_YQrK^tfEC#Y{#AY5IMOAzi{Q4dDkS^RK`oZcU- zpVb#J#Y!QEEUQ;pW+w3~NCba(KIZo6I*oE98x2sMmTHfAq_2=AMoa214@<1hwf{Og zLPC^jpWcoQgp~X7(nJU9JnFluPr^0y%9=~oC}qgb`Z`wBpL)(Zz746QSA6@Rqe*~- z?;y)H@pF-k>7g@`V|&JcW z9cQNt8XhZGb@n?3GJb{OKi@W?&eoadP;l3&8M#Dbq-=lq5WXqC6EN%aENSu&rpHSA)~JsLABMWE7Lb zLQFw+gNc^_?MGISOypP{(nY$&Qz(dC#JgKiEuv5B#YkQh${LhI zFERckg`Iy7J#`U1k@)?GsKQjoRQB^eBixbp@rF(2hwaMc+1XGA%6jHS3hjDKl%DQx zR8Gf9?QhkM+L(jssodi8K>>6{Tk%}*ufJi@re{Zb4MS13?iG$mWx4c_4Q*l%Ka~e$ zm=X=jj&6p9#nN8IT7G`^F&F6b-rKicdxpz$>O>MM-ZG%-SIo9{k6(ggSUjhZkG;Ws zIRAlBtEj7D9QH#65hSB%hZME*BwM^YF8mV{GbaoY1IdV*@d%pOFuK_)Br)L@U zp=6-6yPiRTj#oI|?>b$RfS;LuFmFQWppWqOVNZrT6&QoLaMpsbs_qK=8RPjr|K|nI z$y~Y93zhXmYae25Tz*hcS*cy6Z_RtLh<>+#nuLz>f|wrGW;*SCHHy@)>YhC&))5w2 z)+mwonhS<0wAwGfzvJX#VrTub8+2bspj~qE$Xh)QT@ZJrr5m3uu!AC>fZODb05}`E zS6&?u42|;-HF(G9J-fotlExjtWxNEq90uzE9T<$hl! zgSPpTnKF|xmt^SxxrFv z(du3*=$m3}b?IP`aecgcoyX{0ZnR`xET6_ZzhMiJ@P_D40a814M{oA`_RQxaO3Bvk zdXv~`QLc%N1Nj(hXvb1!p2;W?X1?nC4ZI?kV&lxpE_mV8P1w?fB;aW$fcEr z{WJXK7Cp*5iy5_9r&FgNs!H2uj-@e?`?i1Dt6_R@BSFgJpUFzcvaF?f#Q2H!V}qYv z9@cU0q95++yu6~#%=CviZk&gY&Udk@C2sAO3zWYAwsSq#8Ot-b^=}hIc`H9?oajuT zy()1p#wMaZ^t4RymHc#Bn)!1EwnCWqmZ_+R%26^Ex$G8z=KUn%>RW7_4k8&U_V0!dq7J z>jm8p?vuaVVOi&x6>?RHCtN7HQN?70t30Rc@M$s0=c`z8Kp>e+$==!U>ni!VVFYmA zqcmDyB-#54J#JKO)0v1Pk~$Jx#$Kjl{3sJq{e)bB@?JRQWShVSeYGT3Bg!Hw~)4(|YU*wN1F; zy&i1GSs-G4Y1w-=lBkolAcjY5W=SodCzI|vX|>~w^CSkTyE{phqvMeIi@e9}NG#r@ zIaSmzkI{Ln50q`9423&kTXq;~7n{-v3!S+1@UpLyhf*|`E}LmQtN)VrTLKuL1BN10 zMpR^^WY$MNH<;8%^9DO9y4sIp4x#Ie`H5FxxmdEs{{_lvPK`l|4hP zcAWDQ6)QitEfynLA58tAV2E{}d+eg~=_}@nxYf%$DrbA&c{Vzqc|q^Ex7DfJHPFcA zo%29PHPXf>AHyh8!BmG&=3d)CSsE{bEfk!ANm z4HC)I5y@K+aEMjk<*+Hxprxm~AaBD-TI~>0XolK8OLj&23i;0qZZYNewb?7a4A(K5 z4I)W&SfQ8Bvbh~!!NS!VW&MX!FdoR)&v(^ZhD>AYwHd4Dr_q$X*BOs{@n^3-3VwoL zyR==jzpOS`D*9mJ(<}*Fn)bBX4tKt0osw?MCb6R{&ys31$|NwT7!Mc;Jl&8{a{49o z{Z(D5{rqRFp_S<-H9TH_Hnz7@iNPvwO7Q6jb}H{#tLC(H>nGbP1*Ua*not7@Efu`n zxPu}u#uC1vgVlY7+w%_!Qym4ezYi$088*;e{GZTW(} z$2;Y!>2Ua<4`1Bh(6NY37kewv z<3XH+h6w6_BW+H^=jEgOxi8q!9a9>`-;?wm<%;c{_!oYRGvA0q=JlL*B*l71=hsgW z-`;cA_p;Y8yU3?o+`K0+aP4x}M8wO>Y%9gfrs*GCwgSy0%LOSCf4OX(Z9m1mi02`3 zUuEH}8hyL%iR)OvTHFJ)hLifq!xZmu_OqsUw)urWYy4U;3lv-U23TtV=knmP;p;vE z+zfhkw1sjjPOTy3WJSYfP`P%a2byI%v^aPBf>UL1kJ*Jd3VfCP?=E5kP#0=eMX2Cp zwr!1}Mfu~S&f4Y}CM^=uB~Zj9s%Xe zX}$3xRD9q%j#^(tN^l@Zt`DiS5{r>C?5_I?gkm{JuqEPkcJj~#^)17X=W93zqB$ST zOnaKe@Klsl)?NCLo&70agPNKBSIjXAs~z2!aVH}qw9<+y>TqYcKPN{SuP>Zg>|*$h znhN#8H*;^_V&kz?FOC^&mUAzDwW|}_V1XxqwLxILssxScOh9cZQG z-uC;}!Cv1RZPBOYz9OiasAlzXsvyHi0b!G1D$1d`sds!VapSv@oVFw^4avm&!|4+-0d{Jxi<)4D#g1&D`FgoV%mR%lY0Y8C54dz8FLFnYOWb z&&9)IoKr$=L6@WKJANBuE8GNs+SY7M5x zQGx`EATXWRU*?x>L~{4ixT?8Sc(4pHzK(MCc`@0Z{r#z_1@9+o=qwzCl#u05B<AXhBH)f6-@+S*>=*f_R+VLrC4VdtZWDQL+jXl#YKp^uBy`$(j6P?`dBhC;$=*x+KXoNCZT@yn*IJoaD!i} z7tf3|ApbdEUUExrv?@?meYQ_fCUoU81r?<2bj4Xe&>iIlr`r9hYg)$D%47`avEd(R zc9-(}9;T!hGG(_f${V>&1+i?qd^Y%Sv36ukz3@!Kr%rR{L#lpN?R!!_rQ;_(uKl*p z%kRt@5S>O?#^T)}$5k2X`orq<;5$*b8;#pGVXO9!TB z!dVykuPxad;bi^R`bn;Ve*IW)Sh;r|(|;?TTdjn_u8tsRr(7`tql`QARc*)i@m=$M z6X!NmvE{YeC)$N2%DpPP#m*|_b3$g=?)j`5kGYEthW%(!ISG<$q$@0MHa+c=W^0wO z%Tp>W_B-gxUfoNZb&1R9aeZ^{>|*kdJYY}*Et@b(XI@{F%q)3^;-lvu!L`7o|KWVM zyg*-4O#8p3`jK8O&^sN+!qL{2Mrh2&aRGv1x&fN=whj(-%*;7G?tw}my#u{om&d9j zp)5zO+~h79lqL_=xw(cMLIHLhR3r|Y`}zCNE+lw3=*x?78^U_+K68%gx5Tqvw6)1N zMdWQXHl^q zyMr%NY$}T|{TjMFI9TT(%;bDr&=K39Ldf?4kbhGC?@ESHxo^q`ZS1IW8 z4BBt`WL}xRsS@aVeB-sLQl--li`hp!0=Afm_!>8bP|}1en7eGr<5xbfqRUxO9%owS zA{DSHvUH+6(>g0FE39@ID#uqS&6o3%zr-;ovn|v-N&3!uYWQ2MTuMsNYil=0BF}N_ z*Bj%@ZzA5UDO}GqY&Rb|+BLKtFUAs6WG#@YjIePYX*6dwlCJmc+v%4>kGWJ|^i_&< zq$r-lQ_Rk4uzjJO)bcVK!+5l3yN9!TXZ? za><9TPUam>``zOacFYhF~m5Hui(+CfQAN+@{yFUOz*= ze60dWlEb<1X9c$3ijKpTjNEJENtxnpPmPrK=`aY6pEPo!VzA;1+#LE^nUrgbBbB9U z+b!$XzRR;SH*RKxdnU}{DLxY~x8~Y@?5wm`m^O~S`&x!+d14Re2Klzb(;M6-=5nDc zzTzxl5lJ@*KS*`yDofs)l3G&ILdqX6$r>t_27>m=aqgl5R1y6LBLf#FkPQSWdU~FN zE)~Xo=wd!pWPtNm+6z53_2B+}j0;{MbJYy(vU~yq*}@p_%MyS((~TdiMVSs~#=mp? zk23!pPoe=9sNl|9qEiqtmsr&H@}JG)?|mX>*e`bAC_E^TZ3Qo-*`yu?z{ zxX~0e`57`-e~;~^t$rNJA+D^mXVo4x;B7$sp`8T2#ppX5w?fAhy1kJhdTSWfwFMrS3@mr8X$ZKS!A*DoahYLugTE}=ke z(r$oUdTgf{eOi0+EGFJZMvf<~a(?Aep!!v=r+!(Llk{cVYWEEE<#`#)Uv7|VYz%&! znb&CA@XIUuR>o&Uwjse38#w(qvbI#enutn=Mcx%7vO_}vJrJxYS_|1MlP~O9zeVgc zcLswO)vO<$M|F(;RJ3}3wSM+Tfls>@c9bRI?v}kqEiF|aHw`M^MJ7S8H7%UE{dvJL z=jQ1I69p6XK;6idl|KrHAACX3&D7A)#{k5S<~t-MA@GB?3JYGnIz8cZ9ctjJSKlgW zXtoo?LJw;h=cA3*;ZieV*PZ35Hu{9r2VNII%&_d+W(=>D;kRIFT1s1J6^;}Gi@BFU zc=*;Wb5w|rzrX(U7axc6{gfc#WGGZZRBd=h`hNT{9{NlToE1=4+M18C`jOtiFB6{j zAChLRBj!OtLF_!YC`m|E(l-%-LGeX|Dgo8Vpu*Rr!!bHbI$Gubmn6zlg*x?E+c~Q|`?G9g0wwtdlscN*7`0O|x z*5-fc1x2dmZ=egN9GX{fc$wPm4XkPd#-o)@YYjrmZ0W6K2#!UfJ)>(%@q<>!m}|%9 zt?K1pZ2wd@%Gsw<_*F@{H-qD}ktf$)S#xk!=+>#KZd8$m{LUcyUwre%IDKQ~v|?;I~U|Nn?4H5*+gp1##vBL9%rlZbj1 z86MsesqL<6toa!@REVZb9~|xf&S&#q<72B0 zMM9`>nx#^2N2hzluWEZW#F;p`-;r`0I?q@vX!GXS)+*ZP$K9gRMJ?|;rG4_t;~kce zP?>%BYx(G;a3R{}QSDB!iK2U>J^Q7g4$IQ75<`FoFV`9?%_9Gcweb z)5(QgN;+?uL%S-ZVHj}RUeB}!aY5Y>u-@d&@2gyT0wpnz`ZDd$dmL%&QoVXT8FVTE zzv4*F_p&!XYxFW(DH+sW$>qb%j6yohaKC7asol;JL7 z0Vx9v9VFvq3^j>bCx;-H*M8OvVJHwj*U&U6w6gLEGIVvgzP{kHG+g)||Nb|Rh;Ww< zqQjl!F#2PCQs^N_iia0;jS3i$28D;jjtljTIt=zZY$`vvMy*?K&~{zB(4OiAE%B_E z`WX+UbI&SPlh$DT?^mXlvA_$of*{Z{Gm1VaCC|4hwrJz zr4{z*$4hhV@SoDuo6pH4U?prDFp$y=h)@F3tgv61?y0)sb)iwfkJ<674IxVXbj=5Wu1+l>8*}iCJIa#jv&MK`)v!x@ z4ij2xxH7cX4D|y{B(}^$S&cYF>-@^E6u5bZ@B4>roi1=Ex_vok5WTNFZnk8IW-Z9h zbv&igw$WcO{OM31ARU4?wziaWeS}@mbN#9(PsXl}BAH%D*+BWb z^FQ?UfR2a=&kAn$%M)r*sdyrBl(}J}gt>n(DFk;%ZGlPQ2}Oz+;~uAO?gxwX01RKF z-MB#-FM?gW3#b{`n28_=CKW^}WDG^|pjA zAT>M)+1XNi+CFP{ekpG`Y6=Vtf9>@+Z-vpb&*iK(wjKPB=p!ZVf06L@zo?Y;%Pue5 zwzbG9XUb=mMQB`z)O8gp5&~ez$gUC~V#!kG;^M->!FiZ7zzK>5NSVL)05KWacV9wg zr<45!=Y=@OOznDMD!1Pu+!Z*8FqCwHutjmgu=zYxwa$S&8>5ZG252*a+$@W=wKXWg z^`uDfByb9GwHv-;7UrisUq)#us1XwT99Y?*Zc63-}j)mF+kl*!CK;x>g;LFriVMB zIFTx%Gx3k>!COpAom^c*gM%?%$Hb8PCWlqQfYH&@d*|k|+$D?JQvENPb1N&W5;Y6V z(oKG-p84lR0NQ#1W%#U$SIy3I#qfWK&SGCe8G=w2d;;B_mkb&J|N2ry?Om3@)6;Vu zl+}&z{wxiGLMtE_f_P0UwaHmaTEa19m)db^F2}9^@v)~l13z!v>o+Z(ou3D1Va*x`#6wC-nwpy0|KW&6 zQT$&TU_rk_kN>JW)o1_8Il7~9@+rUU;~k5|*@>cm{NW!8S^wOm%U~lma?d-x>F-y- z5ET{8uAu#MYsoc;2Gr(e_L89jDQVxIq3buFyV1>LYLT#n@u|}g9DuhO8T7u%P~n%I z2NKWl>3be0f)~7!vSZ}){-J>T-x98bZfV&}(C6^{#fvGu{o|MQIn!C=j?~K#dFKC8 zr9y5md`y{FAU>S5=Jn&0Bw&Usj`@={>u`J{eiQfa_dXRtRG$CXo8`LfPMCqVPlN88 zR>R0k|JHW`SzhG96%Dn=I-JUOq^p5!s`0_KkcMIFvJJC&R?gX@K0tytRqiCPWE?L z*jU)uO#pR1e7GbXFQ~d?EwVRxj*Q#%t)CwbXlfb(-oxeh`Ytbr2+pNTMj_ww($SIr z-n~yCOJxf>FV})p<2_mjG)++bG(m!LzhW;!$J!-pvk`7gg8kYw25hVPV~4`l8o~m` z&sML30g}Q^NsLw5Bm8IRI7%%nT=!)rVpl-=!^dwF}$` zioE*QVz40?=A#uMMhR{aHv}9$1LqVr2sjA0goJ9p97EZ4VPWB5E7bHeXSFEifbbj7 zLMVnr#q zxbTB0{Um7VGi+{^kGuFmbK}S~iO3?`1?kbTF>rQ(9-lL$=MIwaNOxISL7%NAg!%1$ z-3Jam78X_@f50F277?P`K+hUJB~XWWwo-l*Uv;JmY8AdKu=Dd zg(F~tM>=)PE-VV15vo#7@2DFsBO4aENbsLRa-6GvEqF<3T)z<*>O1s5t zaA%G_K(=&@#ZL>_Fdv3d6y}U)jrTWN`7?^JQD78h@<_Y0MG2^>sUKkWgMdDfx*_x= z&5n#zp5xAr2A%!)Ka(C_tZtw1I6Ynhoj&t2`?YaRH#n-9DhviD-eO(vhvZ16VR7ZR zZZkADW+v#}hHlpmn=73=cWwaW`bVl*85zax9UPRP3lv&6=sFQmy71w0@!&39sQ49J zT&0DMsF`2~<#*(V*$l9ZiOU+eVzX}cuOI_M_*#;4a@(4bM@Akab$H8nDbo8AVO3cltg@XEg%YlRCyx7xTQ3~TUe zX=&N5jn@vLk)x{Cb@%6TO0O~W6Uwwlslg5SCQq)cXzErL9SPJaf`l0K!thWlF>b7| zo~dxzHZ3%mi!S;Q6l8=*HJt3tq($UiLG=gBc)^u)?~+;Mhr(w6k@&z%w;*)$RV$V( zB}{abzfrsN*W#Vfjpa_5|2BO|bqCJ$+Et|+-OpYt6M$?`)IIB4(3U{_rl6iE--BSNDE=Pmm?PCA<@xl`uiYR zeD>^F^D@ly=kY;(hqN<~$NgmA2n3y+W<#F%vdXI$WRcHllN(e*+nq|!HvQ~vlp2T* zLSNn~NVk5`;UG}Y&pi#a!t}a`HxFij1{Av?P*7++^BBaC-~&uWH5&3ni2oEHAD=d! ztVo`pmHhQ0fTDYRe1r#>C8_9C!3k^8uyB7P3A&l#&5(`UW0-od8ZZnd?N7dz5S4E_ zDJj#I`kJmFQ1V*{P1?LFu%)4^`{+R(pdzHt0a%5NpJoMoRnT_<;u(V|P+!Ub$=SQ+ zL&0lxhh6#g?+27lkJmh)Q05XWik671JXBaF$>Wp|SbtQCimFBW;ywmuGxal|%F=L9 z1w~#ZRul2CLlB9}3ztcrzhliA7e3k3qjdR|BuD%$>k2BYcIF&)_BmLkxje6o_&oiM z-leoTmD$1JNJZMGHu`-=HL8)>9E8i`VH3t7f<6b^=tvXoS}mCj>9~9LOJQDW%0kYr zu6-Z_sM{^T!ST6g$?va(q|)Q9?02BPRb)BF9}l5Z&J|^tjU%%Z7F56=y~(mcEwg>E zDda6s6?Dx=fFP~JqqRI4jK~Zct-j2M+5tnfHQyO~&pNqdLh~hBQ@$kt52AU{!-blW zu`T_TI7-~PZssim4m?5}OaT4Na1ml~;2~bYqT@#%VrfPdKn;e1q5<@qKs@JM?fUqh zo*quB=D&h90Iw)|nwFpmdjNDbCw3kGM{MD*)Q$Fzm3@08dn=rOfI7oX>VLXO0e|-z z35l`o7yzNquq|~9$m!|nL4`!OI0zsi6Vp;e{ov-sW_p=;eK=S8^VG{bS{YU*Hu8Qo zy~EL{btxUP&F@4h)SaH})`K+JJKP)mVa^lkbJ0u|uMnjD+oiVC9?n`U@Ys}>?d9Uv z?olsO!|Dp%Fkgh##RIF0{Eu-lkx(9KEh#k=RHv1w_AxaA4<9UOWEIRgHxJL?!MAVU zK#m5KdIuoxGJN0;@@7l0*OKCe-PGVXEjVa6hnLC5#rGSHE9GK~B6ndc98&7$FQGqG6 zEtSW(=YAZg!Ly`p(=G1s=;-X#iF)m^dXIYSOdMi1h26CYD@{gFg|EymFE2lU#AGJW z9ps+)lO(-=|2{h^Dr!*gHxO{$fB=!ZR=+<_J}^A2dJK@GA5`DBA^N9KTU$E-1x(LG z>U|aDwC84LGvWBkPy?~zEkaF6wK)%njr3}EB+fYHOP;NDm|Mkn4 zOn3-+0ms!`9DeSh}HFb`+Srt~K! z-W+Ia6VFpFi023K%56|39_+SSrdL!P0Lvh4F!PI2`0G=&6c=RVNd`o!MWR(`Dt%?7Kq ztj8LARS!W62DE=p$})3U<9A8Bf65>udMEE#U(zh$Cuh7ONcpcMto?`g2~}8C!4&@| zhW<-9#up3Inx?|A5cQ@1Y9(KYkbOfBs+Yi<|AcS7;5WnZETGDGp|A@JnM@R;vexA@CP#L3z|{Ss9JOB3o^fD1%oFW zAhh|7hQYT9bdxN~KxC<#!BMHfWWwXDRhx_t3LGY?(Z`u#!rdt|W!Kt>+0W1B2Gd@p+Gd_GH zR|sy}(jHp+yv9$~2V>L`!yA+l?}AN5m5^;I{q7sI>}qSv(l`X86%9tX7f!Tm?N=xT zKh3pAj+k$4Z82}}!D6eZs*1?5XsL|avM&Kk-Uo&hsa0Cl8(rRK)vk+$oRIp203Tn{ zfGO7H%PbCXYC;G2Uv|8w^@SiOT4+AZi3D{J!CTP4Mp6w>*2L?!yad9;$R7;5<2BQd z;rOIRl7EOeX$+4AML$1GLHR9MtsghcTRv{&0?LJDY|R`B(H#X_&<+QWpVO!-R=1tN zeq>;}#m}TaGi3W1e3K@?0?u2VyjYhmHH?hJfS(W=6VooiUi&DH-yR|~?nw`Bt60*Y zp-2Zt1%go#0F!^da-aQn6+tK7-WS1M2p+9BYgF2_95_S5j6}p;5N7rZ3Ka>K|5kUi zIS-fXjyY7A1VNW8@KN+3+&kC};*|giJK}}N#biJ6*%}tQO)oD?>gXhPLd>Y><&-Eq zxOa860AO>$tq!i#v^3RS=9Pk3L}Cg&K%NoAS%C-8b(?_xU0SXy+#vB4(5N#B*7>|n zdjuYJ?6Jq0V;pXAP2kQoLK3)~J7033sQ z^V(Jr(7KAm{3Jv{@%B^XLF9&?rH-4@uMdG#tpt@@lBLwZ5IMFtW89WK5O3c>@JJso3J$LJse z>ol1G*>L9Ku;FG@NxQMFw;)3Hh&yAz6j_JPaO76JoNAJ~VFoj;QDx@?E^8qy2g8m} zjW--e-@xVI*qjAryZNk)cqWBzSgT(EF*Lvc1EMwBTb}}SL-_gf*@N9R1R@R<8{q+P zrxO;A2belBPl6z6umf5)IeE$?c7aL&O2`Q$Rsb19cl-p$Fu2{w5Dk1dqkf z^(Gv4d~$L#E}g>2$0<`|juUf`C3*$TPY@v27D^wve=iNmAAxtQ1Nvu@F+2#4<8oTp zS*={4go}PbTDO6lf@}^9WLsA*#3SYXfGa%*a+KlC3D?lDT_zDlZ*T(i03O_?rQHB% zq#`m=9Rvy) z7{vB5w&LNAVCsiMRrbt?JJs9U+Yu)~oTr2X;OHU=hYkj;KSS^x5eY{K!RT>DVSEA( zA+o<9+lGuTBFcBPm2g^evdL%h^KNoViYn|9B!dJV7?d@iU5Aywi7u$$gz2yboQg0c zVzl2|m4J$DG_O@)Mut&H0;n;AddIFc^yuNS8kdB)NN&PAXzK$Gmd!47KKt-f{A)2F z*+73I13?_lc*11SOwkXfW`K&8K3t`N!+rpc%S`BP^9g{{0pPGK%+vj@Pj?=!^dxz8 z)&cyIgBBddwz)__23=@dRUTBnFIkk28M-CJ#N<>}SLbMZ9GAj}$*x~dIlBagBhSG9 zaSDPI?SV%Ne^`QSSvoG+-EZluTMOMeuU+6_6crUqttRSBVf{W6nt=WY+psV`4@2ml zcRR``zOZf$zMdbd!mb6uVM?NyGmyQyx;oej=t*6F7-n1x1~`BF82aicLUTLxA^Bk$ zTyF^?7UqF>V14|>eF$WF5=dbpKM!b48L)tOj0L2#mAJ_QqNAd+PS%_8vKw`t%gf0< z6D;>!Io}WVM5P@5k;Lqe6L5r^&j$SVeB#xXRLn6VT*1x2kU3OVpj!NRz_fG;G7-5W za7bmJU4jO#3W}w_eY6Uc;S4wLYSH1yR8>{w+2%I+@kq1GT(xlF4B`avh~&WjY;##z z0mKfYa15YN@%}N0DO>F9{{F2X0)ao>!_3LJtQ1_$C6LHW0~h;8 zx@7bFD+4eM!{*FRtS9hf*^g5SwYGR&fT=p51;$}tRY@sgX?{K(Vql$yhciJU`NDgX zUdUWPx@iCkAxpj;pKcd;WI?n=xzo_rBm;R==}#OF;I`^J%Z^T9>WcYczmz(zjUxy% z$!!A4C`+Nmq{9GG-;|l{Z=|UBwYUYG@ps7LVtyospu~QB@Fr70-eB&4*`p3@OJc7^ zLIo8*zE0?G?VJHQXc7u1miZ12p!>SPMLWBdpWy(6&mf1w$ID#-GEOFfX zk!+gJ%+&!Yzz@mL@P%i@b$iJGWg*L31qmPU$9=YI;S9w9Yl5_`f{q)p5UjSbwQc+U z{T2<)IbPm!PLzBsOwP|55vTQ=-~~;CH&kLNuSf_r?~uO&9GD7t2MGWHcKKt`s?hn@ zMpFA0e+}lvY`cL~+t}HehYS|9%d&>MEVCRljhn)VP!E5`KLNLX6(HNwryuOq;U@B0 zI|~Znay)#KxRioVA>;%aFr|E2ApZaskgc!)Qt}X5db{oR{Q2|3Vm!-b6cFw}JVpkQ z(*`N%Mz`IuC!p5zEO+fOtnhh2FNj5gAB#--=-%T|bs>;ow}}AoZX(3Z2hp{e-D?oQ zyd@%FzeE5Y!)1zlJ%+AuegVEYs{_6&5=vYiDGvfZ2a@7PdtL*f_e;og!xFj-2oJ=| zz2J|8BZH7EL0f$IvyQSLc?I3B*f|{&0C>W6TPTrUs|-F6cY2JNl+s9lqk_aBylp`?!u!vk%<29lQ zn3$NV+6#D3nf+iE;UFv>c9`!VU9FhGg$P9}xmC>rcnXAmgdF`qTXeYcVdekp?OelR zOv5-Xtz1{J_HvpKu4-57T#2+2S8BUDTsf_Ftu-j4oWc|@Vq^xy33a@J5EWiHn?tEI*9_k=s7#X;bBJ6sGbRt;IzRx8HR zqd7^4qs>9y-ih-SS%QB#f0TZ`ZluXzCP*}q6>f5fNf_B^@1xN6Xe6%tE8aCVnU5KB zr*2cZHt6Vxt5}nzqy_{8sPXkY{e4E)!+=4P$s2YvLboV=>FhX{xdvBAdIV*$)YCSy zuG5*r<9NphKud9mwy>$9^7`lOfGIpLne3Hv9^D_cGe8u z2oY#@cB4A#?R+RO;m1C#0T(Nl8iG8u_|)b!4pYHf7cAJ^;WQ zQ3F26yf6rD;U=9=$L)odmQXf__pheqa8f|{c6kS=;9(KKL&?CZFxe6n7dX#!U8B(s z`g^+hz42WnewkXNq&RZ{04vSM)q)nX0))w z@Jf{yoSKttY22gVte4a-rt)Ndf1K(^7OsXa*teAXbg@TW58*cK3FsaN?b&e8R-@YO(=ynEKiMbykeB`f^(vj(uoRDL#ZIOc8@()y~mB=<{C@SNyj zVW{$9V$mp?+mYO6y^FJ!8PX%O5JgW+x5~`Q>N9w70eA6X@G?^lw4lwWB`110I5;q% zqBr4`+l-uiT$)9HuycRC7ZL_~zJAhlWb zFdpFAbJc&x`Tf~ymSn^>v|=qM`Poa~8sN}G_Qs>3DH!@L5_ zUG{?kV}#>vZct#u-Ob@f5^J2=Dt=#?50<`#1zlcX)XgEmQC2=TEH^a!VQ}cq{4eov z?hjJgnxewT)>Pd0&x)pH$ZBI-;Fhp3z5JC6rs!JDiFzl*ID5KMQ!nZE^Wypjd)V6A zQkuLvMfbYbhPThcA?n1t({G#T8wu^~_z@9SlvR0e-C3520bhcuHg}&G+%gJ2d8}o65CgT9((F7gwUm%2$ndnS zJr?l=T~JAoSHRcLG6okkBl8cCKklmBKldSuTbwCzr6Ht$z0v1 zY}apuzav!d3Y^#2PQEyy(ob-2!v7QDbO&N!U#q`*BHAfa=B90>Zi0#8*K`q4y-~bv zP0el@NP~g^Jff@tY)KqTnj1HyIfMTOVly}LB+sp{_9#^ z%t%GYyKli_jRNd!DuSk&5o^2~?j{HY>?hKOa8CejFE1-}5qTd1k&jdem57Y;H4=G$ zW#5b>yBDGWo+*PDZX?9V`C2o{?%{c8s$5Dx_2Qezuz4TNww-RVDt{hLu>6&Zut|#`S1Dw literal 0 HcmV?d00001 diff --git a/docusaurus/docs/protocol/primitives/geometric_pdf_vs_cdf.py b/docusaurus/docs/protocol/primitives/geometric_pdf_vs_cdf.py new file mode 100644 index 000000000..992652cf9 --- /dev/null +++ b/docusaurus/docs/protocol/primitives/geometric_pdf_vs_cdf.py @@ -0,0 +1,37 @@ +import matplotlib.pyplot as plt +import numpy as np + +# Define different ProofRequestProbability values +p_values = [0.1, 0.25, 0.5, 0.75] # Modify as needed +k_values = np.arange(1, 21) # Range of k values + +# Create subplots side by side +fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6)) + +# Plot Geometric PDF for different p values +for p in p_values: + q = 1 - p + pdf_values = (1 - p) ** (k_values - 1) * p + ax1.plot(k_values, pdf_values, marker="o", linestyle="-", label=f"p = {p}") + +ax1.set_title("Geometric PDF for Different p Values") +ax1.set_xlabel("Number of Failures before First Success (k)") +ax1.set_ylabel("Probability Pr(X = k)") +ax1.grid(True) +ax1.legend() + +# Plot Geometric CDF for different p values +for p in p_values: + q = 1 - p + cdf_values = 1 - (1 - p) ** k_values + ax2.plot(k_values, cdf_values, marker="o", linestyle="-", label=f"p = {p}") + +ax2.set_title("Geometric CDF for Different p Values") +ax2.set_xlabel("Number of Failures before First Success (k)") +ax2.set_ylabel("Cumulative Probability P(X ≤ k)") +ax2.grid(True) +ax2.legend() + +# Adjust layout and display the plots +plt.tight_layout() +plt.show() diff --git a/docusaurus/docs/protocol/primitives/penalty_vs_proof_request_prob.py b/docusaurus/docs/protocol/primitives/penalty_vs_proof_request_prob.py new file mode 100644 index 000000000..8a5f7f8d5 --- /dev/null +++ b/docusaurus/docs/protocol/primitives/penalty_vs_proof_request_prob.py @@ -0,0 +1,17 @@ +import matplotlib.pyplot as plt +import numpy as np + +p_values = np.linspace(0.01, 0.5, 100) +R_values = [10, 100, 1000, 10000] + +for R in R_values: + S_values = R * ((1 - p_values) / p_values) + plt.plot(p_values, S_values, label=f"R = {R} POKT") + +plt.xlabel("ProofRequestProbability (p)") +plt.ylabel("Required Penalty (S POKT)") +plt.title("Penalty vs. ProofRequestProbability for Different Reward Values") +plt.legend() +plt.yscale("log") # Use logarithmic scale for y-axis (optional) +plt.grid(True, which="both", ls="--") +plt.show() diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md index 6269b8eca..ead8f5ffd 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md @@ -5,79 +5,115 @@ sidebar_position: 3 ## Probabilistic Proofs -:::warning - -TODO_DOCUMENT(@Olshansk): This is just a placeholder. Use the [probabilistic proofs](https://github.com/pokt-network/pocket-core/blob/staging/docs/proposals/probabilistic_proofs.md) design -document as a reference for writing this. - -::: - -- [Introduction](#introduction) - - [Problem Statement](#problem-statement) - - [Example Scenario](#example-scenario) -- [Solution](#solution) - -### Introduction - Probabilistic Proofs is a method to scale Pocket Network indefinitely. -#### Problem Statement - -_tl;dr Too many on-chain proofs do not scale due to state bloat and excessive CPU usage._ - -The core limiting factor to Pocket Network's scalability is the number of necessary onchain proofs. For details on how proofs are generated and validated, see the [Claim & Proof lifecycle](./claim_and_proof_lifecycle.md) section. +- [Problem Statement](#problem-statement) +- [Example Scenario](#example-scenario) +- [High Level Approach](#high-level-approach) +- [Key Question](#key-question) +- [Guarantees \& Expected Values](#guarantees--expected-values) +- [Modeling an Attack](#modeling-an-attack) + - [Defining a Single (Bernoulli) Trial](#defining-a-single-bernoulli-trial) + - [Onchain Governance Parameters](#onchain-governance-parameters) + - [Dishonest Supplier: Calculating the Expected Value](#dishonest-supplier-calculating-the-expected-value) + - [Modelling a Dishonest Supplier's Strategy using a Geometric Distribution](#modelling-a-dishonest-suppliers-strategy-using-a-geometric-distribution) + - [Expected Number of False Claims (Failures) Before Getting Caught (Success)](#expected-number-of-false-claims-failures-before-getting-caught-success) + - [Total Rewards: Expected Value Calculation for Dishonest Supplier Before Penalty](#total-rewards-expected-value-calculation-for-dishonest-supplier-before-penalty) + - [Expected Penalty: Slashing amount for Dishonest Supplier](#expected-penalty-slashing-amount-for-dishonest-supplier) + - [Total Profit: Expected Value Calculation for Dishonest Supplier AFTER Penalty](#total-profit-expected-value-calculation-for-dishonest-supplier-after-penalty) + - [Honest Supplier: Calculating the Expected Value](#honest-supplier-calculating-the-expected-value) + - [Setting Parameters to Deter Dishonest Behavior](#setting-parameters-to-deter-dishonest-behavior) + - [Solving for Penalty `S`](#solving-for-penalty-s) + - [Example Calculation](#example-calculation) + - [Generalizing the Penalty Formula](#generalizing-the-penalty-formula) + - [Considering false Claim Variance](#considering-false-claim-variance) +- [Crypto-economic Analysis \& Incentives](#crypto-economic-analysis--incentives) + - [Impact on Honest Suppliers](#impact-on-honest-suppliers) + - [Impact on Dishonest Suppliers](#impact-on-dishonest-suppliers) + - [Analogs between Model Parameters and onchain Governance Values](#analogs-between-model-parameters-and-onchain-governance-values) + - [Parameter Analog for Penalty (`S`)](#parameter-analog-for-penalty-s) + - [Parameter Analog for Reward (`R`)](#parameter-analog-for-reward-r) + - [Considerations during Parameter Adjustment](#considerations-during-parameter-adjustment) + - [Selecting Optimal `p` and `S`](#selecting-optimal-p-and-s) + - [Considerations for `ProofRequirementThreshold`](#considerations-for-proofrequirementthreshold) + - [Modelling `ProofRequirementThreshold`](#modelling-proofrequirementthreshold) + - [Normal Distribution](#normal-distribution) + - [Non-Normal Distribution](#non-normal-distribution) + - [Considerations for `ProofRequestProbability` (`p`)](#considerations-for-proofrequestprobability-p) + - [Geometric CDF vs Geometric PDF when revisiting value `p`](#geometric-cdf-vs-geometric-pdf-when-revisiting-value-p) + - [Maximizing `Pr(X<=k)` to ensure `k or less` failures (Supplier escapes without penalty)](#maximizing-prxk-to-ensure-k-or-less-failures-supplier-escapes-without-penalty) +- [Conclusions for Modelling](#conclusions-for-modelling) +- [Morse Based Value Selection](#morse-based-value-selection) + - [Selecting `ProofRequirementThreshold`](#selecting-proofrequirementthreshold) + - [Calculating `p`: `ProofRequestProbability`](#calculating-p-proofrequestprobability) + - [Calculating `S`: `ProofMissingPenalty`](#calculating-s-proofmissingpenalty) +- [Future Work](#future-work) + - [](#) + - [Onchain Closed Feedback Loop](#onchain-closed-feedback-loop) + - [Reviewing External Literature](#reviewing-external-literature) +- [References](#references) + +## Problem Statement + +_tl;dr Too many on-chain Proofs do not scale due to state bloat and excessive CPU usage._ + +The core limiting factor to Pocket Network's scalability is the number of required on-chain Proofs. +For details on how Proofs are generated and validated, see the [Claim & Proof lifecycle](./Claim_and_Proof_lifecycle.md) section. In every session, for every `(Application, Supplier, Service)` tuple, there is a -single onchain Merkle proof to prove the claimed work done. +single on-chain Merkle required Proof to prove the Claimed work done. -These proofs are large and costly to both store and verify. Too many proofs result in: +These Proofs are large and costly to both store and verify. Too many Proofs result in: -- **State Bloat**: Full Node disk space grows too quickly because blocks are large (i.e. full of transactions containing large proofs) increasing disk usage. -- **Verification cost**: Block producers (i.e. Validators) must verify all these proofs on every block increasing CPU usage. +- **State Bloat**: Full Node disk space grows too quickly because blocks are large (i.e.,full of transactions containing large Proofs), increasing disk usage. +- **Verification Cost**: Block producers (i.e. Validators) must verify all these Proofs on every block, increasing CPU usage. :::note -There is a lot of research around this type of problem, but our team is not looking into zero-knowledge as a solution at the time of writing (2024). +There is a lot of research around this type of problem, but our team is not actively +looking into `0`-knowledge as a solution at the time of writing (2024). + +TODO_IN_THIS_PR: Reference the papers from justin taylor, Alin Tomescu, and axelar (avalanche?). ::: -#### Example Scenario +## Example Scenario -Consider the hypothetical scenario below as an extremely rough approximation +Consider the hypothetical scenario below as an extremely rough approximation. Network state and parameters: - Median Proof Size: `1,000` bytes -- Num services: `10,000` -- Num applications: `100,000` -- Num suppliers: `1,00,000` -- Num suppliers per session: `10` +- Number of services: `10,000` +- Number of applications: `100,000` +- Number of suppliers: `100,000` +- Number of suppliers per session: `10` - Session duration: `1` hour -- Num proofs per session: `1` +- Number of Proofs per session: `1` -Conservative (simple) Scenario: +Conservative (simple) scenario: -- Num active applications: `10,000` -- Num services used per application per session: `5` -- Num suppliers used per application per session: `10` -- 1 proof per (service, supplier) pair for each app +- Number of active applications: `10,000` +- Number of services used per application per session: `5` +- Number of suppliers used per application per session: `10` +- 1 Proof per (service, supplier) pair for each app - Total time: `1` day (`24` sessions) Total disk growth per day: ```bash -10,000 app * 1 proof/(service,supplier) 10 supplier/app * 5 services/session * 24 sessions * 1,000 bytes/proof = 12 GB +10,000 apps * 1 Proof/(service,supplier) * 10 suppliers/app * 5 services/session * 24 sessions * 1,000 bytes/Proof = 12 GB ``` -A very simple (conservative) scenario would result in `12GB` of disk growth per day, amount to more than `4TB` of disk growth in a year. +A very simple (conservative) scenario would result in `12 GB` of disk growth per day, amounting to more than `4 TB` of disk growth in a year. -This discounts CPU usage needed to verify the proofs. +This discounts CPU usage needed to verify the Proofs. -### Approach +## High Level Approach -_tl;dr Require a claim for every (App, Supplier, Service) tuple, but only require a proof for a subset of these claims and slash Suppliers that fail to provide a proof when needed._ +_tl;dr Require a Claim for every (App, Supplier, Service) tuple, but only require a Proof for a subset of these Claims and slash Suppliers that fail to provide a Proof when needed._ -The diagram below makes reference to some of the onchain [Governance Params](./../governance/params.md). +The diagram below makes reference to some of the on-chain [Governance Params](./../governance/params.md). ```mermaid flowchart TD @@ -102,7 +138,7 @@ flowchart TD ISPPR --> |No| NP ISPPR --> |Yes| ISPA - ISPA --> |"Yes
(Assume proof is valid)"| DR + ISPA --> |"Yes
(Assume Proof is valid)"| DR ISPA --> |No| SLASH PR --> ISPA @@ -119,88 +155,423 @@ flowchart TD ## Key Question -What values need to be selected to deter a Supplier from submitting a false claim? How can this be modelled? +**What onchain protocol governance parameters need to be selected or created to** +**deter a Supplier from submitting a false Claim? How can this be modeled?** ## Guarantees & Expected Values -Pocket Network's tokenomics DO NOT provide a 100% guarantee against gaming the system. -This is similar to how Data Availability (DA) layers DO NOT provide a 100% guarantee -that the data is available. +Pocket Network's tokenomics do not provide a 100% guarantee against gaming the system. +Instead, there's a tradeoff between the network's security guarantees and factors +like scalability, cost, user experience, and acceptable gamability. -Rather, there is a tradeoff of what the network's security guarantees are in exchange -for scalability, cost, user experience, and acceptable gamability. +Our goal is to: -Our goal is to model the expected value of an honest and dishonest supplier and -have levers in place to adjust an acceptable gaming risk. +- Model the expected value (EV) of both honest and dishonest Suppliers. +- Adjust protocol parameters to ensure that the expected profit for dishonest behavior is less than that of honest behavior. -A Supplier's balance can changed in the following ways: +A Supplier's balance can change in the following ways: -1. Earn rewards for valid Claims w/ Proofs; proof required -2. Earn rewards for valid Claims w/o Proofs; proof not required -3. **Earn rewards for invalid Claims w/o Proofs; proof not required** -4. Slash stake for Claims w/ invalid Proofs; proof required -5. Slash stake for Claims w/ missing Proofs; proof required +1. ✅ **Earn rewards for valid Claims with Proofs** (Proof required). +2. ✅ **Earn rewards for valid Claims without Proofs** (Proof not required). +3. 🚨 **Earn rewards for invalid Claims without Proofs** (Proof not required). +4. ❌ **Get slashed for invalid Proofs** (Proof required but invalid). +5. ❌ **Get slashed for missing Proofs** (Proof required but not provided). -The goal of Probabilistic Proofs is to define an acceptable risk for (3) -such that the expected value (i.e. balance) of the Supplier is lower even -if (1) and (2) +The goal of Probabilistic Proofs is to minimize the profitability of scenario (3🚨) +by adjusting protocol parameters such that dishonest Suppliers have a negative expected +value compared to honest Suppliers. -TODO: IMPROVE THIS. +## Modeling an Attack -## Modelling an Attack +### Defining a Single (Bernoulli) Trial -### Defining a Trial - Bernoulli Trial - A False Claim that gets caught +We use a [Bernoulli distribution](https://en.wikipedia.org/wiki/Bernoulli_distribution) +to model the probability of a dishonest Supplier getting caught when submitting false Claims. -A [Bernoulli probability distribution](https://en.wikipedia.org/wiki/Bernoulli_distribution) -is used as the foundation of modelling an attack. +- **Trial Definition**: Each attempt by a Supplier to submit a Claim without being required to provide a Proof. +- **Success**: + - A dishonest Supplier gets caught (i.e. is required to provide a Proof and fails, resulting in a penalty) + - Taken from the network's perspective +- **Failure**: + - A dishonest Supplier does not get caught (i.e. is not required to provide a Proof and receives rewards without providing actual service) + - An honest Supplier is rewarded + - All other outcomes + - Does not include _short-circuited_ (i.e. Claim.ComputeUnits > ProofRequirementThreshold) -Each (Claim, Proof) pair can be treated as an independent Bernoulli Trial. +### Onchain Governance Parameters -If `Claim.ComputeUnits > Gov.ProofRequirementThreshold`, the model is _short-circuited_ and is therefore outside the sample space for this definition. +- **ProofRequestProbability (p)**: The probability that a Claim will require a Proof. +- **Penalty (S)**: The amount of stake slashed when a Supplier fails to provide a required Proof. +- **Reward per Claim (R)**: The reward received for a successful Claim without Proof. +- **Maximum Claims Before Penalty (k)**: The expected number of false Claims a Supplier can make before getting caught. -Defining Bernoulli Trial success & failure: +We note that `R` is variable and that `SupplierMinStake` is not taken into account in the definition of the problem. +As will be demonstrated by the end of this document: -- **Success**: False/invalid/missing Claim that penalizes the Supplier. For example: - - A false Claim that does not have an associated Proof - - A false Claim that has an associated invalid Proof - - A valid Claim that fails to submit a Proof on time -- **Failure**: All other outcomes. For example: - - Supplier submits a false Claim and gets away with it - - Supplier submits a true Claim and is required prove it - - Supplier submits a true Claim and is not required prove it - - Supplier submits a true Claim and fails to prove it +- Reward per Claim (`R`) will be equal to the `ProofRequirementThreshold` (POKT) +- Penalty (`S`) will be equal to the `SupplierMinStake` (in POKT) -### Modelling k Claims that do not require a proof +### Dishonest Supplier: Calculating the Expected Value -Successive Proof - Geometric Probability Distribution Function +The dishonest Supplier's strategy: -The foundation/DAO is responsible for selection a value `p` (ProofRequestProbability) -that represents +- Submit false Claims repeatedly, hoping not to be selected for Proof submission. +- Accept that eventually, they will be caught and penalized. -$$ p = ProofRequestProbability $$ +#### Modelling a Dishonest Supplier's Strategy using a Geometric Distribution + +The number of successful false Claims before getting caught follows a [Geometric distribution](https://en.wikipedia.org/wiki/Geometric_distribution): +**Probability of Not Getting Caught (q)**: $$ q = 1 - p $$ -$$ Pr(X=k) = (1-p)^{k-1}p $$ +**Probability of Getting Caught on the `(k+1)`th Claim**: +$$ P(X = k+1) = q^k \cdot p $$ -$$ k = \frac{ln(\frac{Pr(X=k)}{p})}{ln(1-p)} + 1 $$ +#### Expected Number of False Claims (Failures) Before Getting Caught (Success) -TODO: ADD GRAPH +$$ E[K] = \frac{q}{p} $$ -TODO_FUTURE: +Recall: -### Geometric CDF +- **Failure**: The network does not catch a dishonest Supplier +- **Success**: The network catches a dishonest Supplier -$$ x ∈ ℝ ∣ 0 ≤ x < 1 $$ +#### Total Rewards: Expected Value Calculation for Dishonest Supplier Before Penalty + +$$ E[\text{Total Rewards}] = R \cdot E[K] = R \cdot \frac{q}{p} $$ + +This represents the Supplier's earnings before the penalty is applied. + +If the Supplier chooses to leave the network at this point in time, they will +have successfully gamed the system. + +#### Expected Penalty: Slashing amount for Dishonest Supplier + +The penalty is a fixed amount `S` when caught. + +#### Total Profit: Expected Value Calculation for Dishonest Supplier AFTER Penalty + +$$ E[\text{Total Profit}] = E[\text{Total Rewards}] - S = R \cdot \frac{q}{p} - S $$ + +### Honest Supplier: Calculating the Expected Value + +- **Expected Rewards per Claim**: $$ E[\text{Reward per Claim}] = R $$ +- **No Penalties**: Since the honest Supplier always provides valid Proofs when required, they avoid penalties. +- **Expected Profit for Honest Supplier**: + + $$ E[\text{Total Profit}] = R $$ + +### Setting Parameters to Deter Dishonest Behavior + +To deter dishonest Suppliers, we need: + +$$ E[\text{Total Profit}_{\text{Dishonest}}] \leq E[\text{Total Profit}_{\text{Honest}}] $$ + +Substituting the expected values: + +$$ R \cdot \frac{q}{p} - S \leq R $$ + +Since `q = 1 -p`, we can simplify the inequality to: + +$$ R \left( \frac{1 - 2p}{p} \right) \leq S $$ + +#### Solving for Penalty `S` + +However, since `p` is between 0 and 1, `1 - 2p` can be negative if `p > 0.5`. +To ensure `S` is positive, we consider `p ≤ 0.5`. + +Alternatively, to make the penalty effective, we can set: + +$$ S = R \cdot \left( \frac{1 - p}{p} \right) $$ + +This ensures that the expected profit for dishonest Suppliers is `0` or negative: + +$$ E[\text{Total Profit}_{\text{Dishonest}}] = R \cdot \frac{q}{p} - S = R \cdot \frac{q}{p} - R \cdot \frac{q}{p} = 0 $$ + +### Example Calculation + +Assume: + +- Reward Per Claim: `R = 10` +- ProofRequestProbability: `p = 0.2` +- `q = 0.8` + +Calculate the expected profit for a dishonest Supplier: + +1. **Expected Number of False Claims Before Getting Caught**: + + $$ E[K] = \frac{q}{p} = \frac{0.8}{0.2} = 4 $$ + +2. **Expected Total Rewards**: + + $$ E[\text{Total Rewards}] = R \cdot E[K] = 10 \cdot 4 = 40 $$ + +3. **Penalty**: + + $$ S = R \cdot \left( \frac{1 - p}{p} \right) = 10 \cdot \left( \frac{0.8}{0.2} \right) = 40 $$ + +4. **Expected Profit**: + + $$ E[\text{Total Profit}] = E[\text{Total Rewards}] - S = 40 - 40 = 0 $$ + +The dishonest Supplier has an expected profit of `0`, making dishonest behavior unattractive compared to honest behavior, which yields a profit of `R = 10` units per Claim without risk of penalty. + +### Generalizing the Penalty Formula + +To ensure that dishonest Suppliers have no incentive to cheat, set the penalty `S` such that: + +$$ S = R \cdot \frac{q}{p} = R \cdot \left( \frac{1 - p}{p} \right) $$ + +This makes the expected profit for dishonest behavior `0`: + +$$ E[\text{Total Profit}_{\text{Dishonest}}] = R \cdot \frac{q}{p} - S = 0 $$ + +### Considering false Claim Variance + +While the expected profit is `0`, the variance in the number of successful false +Claims can make dishonest behavior risky. The Supplier might get caught earlier than expected, +leading to a net loss. + +## Crypto-economic Analysis & Incentives + +### Impact on Honest Suppliers + +Honest Suppliers are not affected by penalties since they always provide valid Proofs when required. +Their expected profit remains: + +$$ E[\text{Total Profit}_{\text{Honest}}] = R $$ + +### Impact on Dishonest Suppliers + +Dishonest Suppliers face: + +- A high penalty `S` that wipes out their expected gains. +- The risk of getting caught earlier than expected, resulting in a net loss. +- Increased uncertainty due to the probabilistic nature of Proof requests. + +### Analogs between Model Parameters and onchain Governance Values + +### Parameter Analog for Penalty (`S`) + +_tl;dr `S` = `Supplier.MinStake`_ + +The penalty `S` is some amount that the protocol should be able to retrieve from the Supplier. + +In practice, this is the `Supplier.MinStake` parameter, which is the amount a Supplier +always has in escrow. This amount can be slashed and/or taken from the Supplier for misbehavior. + +### Parameter Analog for Reward (`R`) + +_tl;dr `R` = `ProofRequirementThreshold`_ + +In practice, the reward for each onchain Claim is variable and a function of the amount +of work done. + +For the purposes of Probabilistic Proofs, we assume a constant reward of `R` per Claim +because any reward greater than `ProofRequirementThreshold` requires a proof and +short-circuits this entire document. + +Therefore, `R` can be assumed constant when determining the optimal `p` and `S`. + +### Considerations during Parameter Adjustment + +By tweaking `p` and `S`, the network can: + +- Increase the deterrent against dishonest behavior. +- Balance the overhead of Proof verification with security needs. + +**Considerations:** + +- **Lower `p`** reduces the number of Proofs required --> improves scalability --> requires higher penalties. +- **Higher `S`** increases the risk for dishonest Suppliers --> lead to social adversity from network participants. + +#### Selecting Optimal `p` and `S` + +To select appropriate values: + +1. **Determine Acceptable Proof Overhead (`p`)**: + + - Choose `p` based on the desired scalability. + - Example: `p = 0.1` for 10% Proof submissions + +2. **Calculate Required Penalty (`S`)**: + + - Ensure `S` is practical and enforceable. + - Use the formula: + $$ S = R \cdot \left( \frac{1 - p}{p} \right) $$ + +3. **Assess Economic Impact**: + + - Simulate scenarios to verify that dishonest Suppliers have a negative expected profit. + - Ensure honest Suppliers remain profitable. + +To illustrate the relationship between `p`, `S`, the following chart + +![Penalty vs. ProofRequestProbability](./Peanlty_vs_ProofRequestProbability.png) + +:::tip + +You can generate the graph above with `penalty_vs_proof_request_prob.py` + +::: + +#### Considerations for `ProofRequirementThreshold` + +- **Threshold Value**: Set the `ProofRequirementThreshold` low enough that most Claims are subject to probabilistic Proof requests, but high enough to prevent excessive Proof submissions. +- **Short-Circuiting**: Claims above the threshold always require Proofs, eliminating the risk of large false Claims slipping through. + +##### Modelling `ProofRequirementThreshold` + +`ProofRequirementThreshold` should be as small as possible so that most such that +most Claims for into the probabilistic bucket, while also balancing out penalties +that may be too large for faulty honest Suppliers. + +##### Normal Distribution + +Assume Claim rewards are normally distributed with a mean `μ` and standard deviation `σ`. + +Ideally, we would choose `2σ` above the Claim `μ` such that `97.3%` fall of all Claims require a Proof. + +##### Non-Normal Distribution + +In practice, rewards are not normally distributed, so we can choose an arbitrary value (e.g. `p95`) +such that 95% of Claims fall into the category of requiring a proof. + +#### Considerations for `ProofRequestProbability` (`p`) + +:::note + +See [Pocket_Network_Morse_Probabilistic_Proofs.ipynb](./Pocket_Network_Morse_Probabilistic_Proofs.ipynb) for more details from Morse backing the fact that the majority of the block space is taken up by Proofs. + +::: + +Accept the fact that the majority of the block space is taken up by Proofs. + +The number of relays in the network scales inversely to `ProofRequestProbability`. For example: + +- `ProofRequestProbability` = 0.5 -> 2x scale +- `ProofRequestProbability` = 0.25 -> 4x scale +- `ProofRequestProbability` = 0.1 -> 10x scale +- `ProofRequestProbability` = 0.01 -> 100x scale + +##### Geometric CDF vs Geometric PDF when revisiting value `p` + +Up until now, we have been tracking the probability that `Pr(X=k)`, the probability +of `k` failures (Supplier escapes without penalty) until a single success (Supplier) +is penalized. This can be modeled using a Geometric PDF (Probability Distribution Function). $$ p = ProofRequestProbability $$ +$$ q = 1 - p $$ +$$ Pr(X=k) = (1-p)^{k-1}p $$ +$$ k = \frac{ln(\frac{Pr(X=k)}{p})}{ln(1-p)} + 1 $$ + +However, instead, we need to track the likelihood of `k or less` failures `Pr(X<=k)`, +until a single success. This can be modeled using a Geometric CDF (Cumulative Distribution Function). +$$ x ∈ ℝ ∣ 0 ≤ x < 1 $$ +$$ p = ProofRequestProbability $$ $$ P(X<=k) = 1 - (1 - p)^{k} $$ +$$ k = \frac{log(1 - P(X<=k))}{log(1 - p)} $$ + +Visual intuition of the two can be seen below: + +![Geometric CDF for Different p Values](./geometric_pdf_vs_cdf.png) + +:::tip + +You can generate the graph above with `make geometric_pdf_vs_cdf.py` + +::: + +##### Maximizing `Pr(X<=k)` to ensure `k or less` failures (Supplier escapes without penalty) + +When selecting a value for `p`, our goal is not to maximize `Pr(X=k)`, but rather +maximize `Pr(X<=k)` to ensure `k or less` failures (Supplier escapes without penalty). + +This does not affect the expected reward calculations above, but gives a different +perspective of what the probabilities of success and failure are. + +## Conclusions for Modelling + +By modeling the attack using a geometric distributions and calculating expected values, we can: + +- Determine `ProofRequirementThreshold` using statical onchain data +- Manually adjust `ProofRequestProbability = p` to adjust scalability +- Compute `SupplierMinStake = S` to deter dishonest behavior +- Determine the necessary penalty `S` to deter dishonest behavior. +- Ensure that honest Suppliers remain profitable while dishonest Suppliers face negative expected profits. + +This approach allows the network to scale by reducing the number of on-chain Proofs while maintaining economic incentives that discourage dishonest behavior. + +## Morse Based Value Selection + +As of writing (October 2024), Shannon is not live and only Morse can be used to approximate realistic values. + +### Selecting `ProofRequirementThreshold` + +Choose `R = 20` since it is greater than `p95` of all Claims collected in Morse. Units are in `POKT`. + +See the original proposal from Morse available in [probabilistic_proofs_morse.md](./probabilistic_proofs_morse.md) +and [Pocket_Network_Morse_Probabilistic_Proofs.ipynb](./Pocket_Network_Morse_Probabilistic_Proofs.ipynb) for supporting data. + +### Calculating `p`: `ProofRequestProbability` + +Choose `p = 0.05` to ensure high scalability. + +Choose `Pr(X<=k) = 0.99` to ensure that `99%` of the time, a dishonest Supplier will be penalized. + +$$ k = \frac{log(1 - P(X<=k))}{log(1 - 0.05)} $$ +$$ k = \frac{log(1 - 0.99)}{log(1 - 0.05)} $$ +$$ k ≈ 90 $$ + +### Calculating `S`: `ProofMissingPenalty` + +1. **Expected Number of False Claims Before Getting Caught**: + + $$ E[K] = \frac{q}{p} = \frac{0.95}{0.05} = 19 $$ + +2. **Expected Total Rewards**: + + $$ E[\text{Total Rewards}] = R \cdot E[K] = 20 \cdot 19 = 380 $$ + +3. **Penalty**: + + $$ S = R \cdot \left( \frac{1 - p}{p} \right) = 10 \cdot \left( \frac{0.8}{0.2} \right) = 40 $$ + +4. **Expected Profit**: + + $$ E[\text{Total Profit}] = E[\text{Total Rewards}] - S = 40 - 40 = 0 $$ + +S=R⋅( +p +1−p +​ +) + +## Future Work + +### + +### Onchain Closed Feedback Loop + +### Reviewing External Literature + +https://research.facebook.com/publications/distributed-auditing-proofs-of-liabilities/ +https://eprint.iacr.org/2020/1568.pdf + +## References + +`ProofRequestProbability (p)` is selected as `0.25` to enable scaling the network by `4x`. + +`BurnForFailedClaimSubmission` - Should be set to `k * ProofRequirementThreshold` to deter `k` failures or less. + +`Pr(X<=k)` must be as high as possible while keeping `k` reasonably low since it'll impact the penalty for honest but faulty servicers that fail to submit a Claim within the expiration window. We are selecting `Pr(X<=k) = 0.99` $$ k = \frac{log(1 - P(X<=k))}{log(1 - p)} $$ -TODO: ADD GRAPH +$$ k = \frac{log(1 - 0.99)}{log(1 - 0.25)} $$ -## Crypto-economic Analysis & Incentives +$$ k ≈ 16 $$ -## Motivation from Morse +Selecting `k = 16` implies that `99%` of the time, an attacker will get a penalty of `BurnForFailedClaimSubmission`, making it not worthwhile to take the risk. diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs_morse.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs_morse.md new file mode 100644 index 000000000..ba84dfcb0 --- /dev/null +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs_morse.md @@ -0,0 +1,332 @@ +# Probabilistic Proofs + +

+ @olshansk - Daniel Olshansky
+ @RawthiL - Ramiro Rodríguez Colmeiro
+ Feb 2023 +

+ +This is a specification & proposal that will be submitted to [forum.pokt.network](https://forum.pokt.network) after peer-review. + +**tl;dr Values Selected** + +- `Pr(X<=k)` = `0.99`; selected manually to maintain 2 nine protocol safety +- `k` (num failures) = `16`; computed using a cumulative geometric probability distribution +- `ProofRequestProbability` = `0.25`; selected manually to scale the network by 4x +- `ProofRequirementThreshold` = `20 POKT`; selected to a value that is above p95 of all POKT claims +- `ProofMissingPenalty` = `320 POKT`; calculated via `ProofRequirementThreshold * k` to deter malicious behaviour + +**The question being answered by the distribution**: What is the probability of the protocol trusting (i.e. failing) `k` Claims or less (i.e. handling a normal claim or not catching an attacker) until a single penalty enforcement (i.e. successfully catching an attacker). + +**Answer**: Selecting `k = 16` and `ProofRequirementThreshold = 20 POKT` implies that if an attacker continues submitting claims for `19.99 POKT` or less, they will get caught `99%` of the time, and will be penalized for `320 POKT`. + +## Table of Contents + +- [Summary](#summary) +- [Specification](#specification) + - [Governance Parameters](#governance-parameters) + - [Parameter Usage](#parameter-usage) + - [Flow](#flow) + - [Scaling Benefits](#scaling-benefits) + - [Block Data Verification](#block-data-verification) +- [Attack Modelling](#attack-modelling) + - [Approach](#approach) + - [Definitions](#definitions) + - [Example](#example) + - [Model](#model) + - [Geometric PDF](#geometric-pdf) + - [Geometric CDF](#geometric-cdf) + - [Selecting Values](#selecting-values) + - [Calculation](#calculation) +- [Dissenting Opinions](#dissenting-opinions) + - [Malicious Attackers Bloating State](#malicious-attackers-bloating-state) + - [Honest Servicers Getting Burnt](#honest-servicers-getting-burnt) +- [Appendix](#appendix) + - [Claim Data](#claim-data) + - [Python Code](#python-code) + - [Python Code - Geometric PDF](#python-code---geometric-pdf) + - [Python Code - Geometric CDF](#python-code---geometric-cdf) + +## Summary + +The number of relays in Pocket Network (V0) is limited by the amount of block space utilized by Claim Proofs. The estimations done [here](https://docs.google.com/document/d/1QcsPfhj636zBazw2jAay8H6gdBKXcIMmohY0o321hhQ/edit) approximated it to be ~3B/day. + +Several solutions were proposed [in this document](https://docs.google.com/document/d/1uBomaVieGAjsyHeqSlwmqOyPOln1CemVlWXZjQXUMRY/edit). This proposal outlines an alternate solution: **Probabilistic Proofs**. + +In order for Servicers to be rewarded for their work, a fraction of the Claims submitted on-chain will require a Proof to also be submitted-on chain probabilistically under the random Oracle model. + +This document assumes the reader has an understanding of the [reward protocol](https://github.com/pokt-network/pocket-core/blob/staging/doc/specs/reward_protocol.md). + +## Specification + +### Governance Parameters + +Three new governance parameters will need to be added: + +- `ProofRequestProbability`: Probability that a Claim will require a Proof to be rewarded; x ∈ ℝ ∣ 0 < x ≤ 1 +- `ProofRequirementThreshold`: Claim amount (in uPOKT) above which a Proof will always be required; x ∈ ℝ ∣ x > 0 +- `ProofMissingPenalty`: Burn (in uPOKT) that the Servicer faces if it does not provide a proof within `pocketcore/ClaimExpiration` for a Claim it previously submitted; x ∈ ℝ ∣ x > 0 + +### Parameter Usage + +$$ +Probably(ProofRequired) = + \begin{cases} + ProbabilityOfProofRequest &\text{if } Claim < ProofRequiredThreshold \\ + 1 &\text{if } Claim >= ProofRequiredThreshold. + \end{cases} +$$ + +### Flow + +The high-level flow is captured in the following diagram: + +```mermaid +--- +title: Probabilistic Proofs Flow +--- +stateDiagram-v2 + state claim_threshold <> + state random_selection <> + + SC: Submit Claim + NP: Proof NOT Required + PR: Proof Required + DR: Distribute Reward + B: Penalty / Burn
ProofMissingPenalty + + [*] --> SC + SC --> claim_threshold + + claim_threshold --> PR : Claim >= ProofRequirementThreshold + claim_threshold --> random_selection: Claim < ProofRequirementThreshold + + random_selection --> NP: P(1-ProofRequestProbability) + random_selection --> PR: P(ProofRequestProbability) + + PR --> DR: Proof Available + PR --> B: Proof NOT Available
(honest or malicious) + + NP --> DR +``` + +### Scaling Benefits + +Assuming the majority of the block space is taken up by Proofs, The number of relays in the network scales inversely to `ProofRequestProbability`. Example: + +- `ProofRequestProbability` = 0.5 -> 2x scale (~6B relays) +- `ProofRequestProbability` = 0.25 -> 4x scale (~12B relays) +- `ProofRequestProbability` = 0.1 -> 10x scale (~30B relays) + +**Side benefit**: It has been shown that the majority of block verification time is spent validating the Proofs, so there would also be an upside on resource consumption. Showing backing data for this is outside the scope of this document. + +#### Block Data Verification + +The [notebook here](./Pocket_Network_Statistical_Proofs.ipynb) originally authored by @RawthiL in [this gist](https://gist.github.com/RawthiL/05fbfaf76ddc199eda4a303559bff0b3) captures the that the Block Size composition is approximately: + +- Proofs : 67.06 % +- Claims : 21.64 % + +This goes to show that reducing the number of Proofs & Claims submitted on-chain would increase the capacity of the network. + +![img2](https://user-images.githubusercontent.com/1892194/236548602-bb6cbc2a-aa2a-4b92-ae75-d40eda80685f.png) +![img1](https://user-images.githubusercontent.com/1892194/236548608-be569088-a19a-4759-8d7b-2c4f8c5e7ae8.png) + +## Attack Modelling + +In order to select the values for the three parameters, the attacker's likelihood of adversarial reward & penalty must be modeled. + +### Approach + +An _attack by example_ approach is used determining the appropriate values for `ProofRequestProbability`, `ProofRequirementThreshold` and `ProofMissingPenalty`. This will demonstrate the optimal malicious behaviour an attacker should follow and tend to that case. + +### Definitions + +A Bernoulli probability distribution will be used whereby each `Claim` & `Proof` pair can be treated as an independent Bernoulli Trial. When the `Claim` exceeds `ProofRequirementThreshold`, the model is _"short-circuited"_ and is therefore outside the sample space for this definition. + +The definition for success is taken from the Network's point of view. + +- **Success**: Servicer submits a false claim and gets caught +- **Failure** (the remainder of the sample space excluding Success): + - Servicer submits a true claim and is required prove it + - Servicer a true claim and have no requirement to prove it + - Servicer submits a false claim and gets away with it + - Servicer submits a true claim, but fails to prove it + +### Example + +Let `ProofRequirementThreshold = 100 POKT` + +If the `Claim` is greater than or equal to `100 POKT`, a proof is mandatory and the model is _"short-circuited"_. Therefore, the attacker can _freeload_ by submitting claims for `99.99 POKT` and hope they never get caught. If they do get caught (i.e. `Success`), the burn (i.e. `ProofMissingPenalty`) should exceed the total reward accumulated. + +Since each claim is independent, an attacker would never submit a `Claim` exceeding `ProofRequirementThreshold`, and therefore have a `ProofRequestProbability` likelihood of being required to submit a proof. + +### Model + +A [Geometric PDF](https://en.wikipedia.org/wiki/Geometric_distribution) was selected to identify the probability of `k` failures (sample space containing an attacker getting away) until a single success (an attacker is caught). + +However, as pointed out by @RawthiL, what we're actually interested in is the likelihood of `k` **or less** failures until a single success. + +### Geometric PDF + +$$ p = ProofRequestProbability $$ + +$$ q = 1 - p $$ + +$$ Pr(X=k) = (1-p)^{k-1}p $$ + +$$ k = \frac{ln(\frac{Pr(X=k)}{p})}{ln(1-p)} + 1 $$ + +![Geometric PDF](https://user-images.githubusercontent.com/1892194/221076333-f6578bc2-0567-4e9d-ae7f-8a483a86cc2d.png) + +### Geometric CDF + +$$ x ∈ ℝ ∣ 0 ≤ x < 1 $$ + +$$ p = ProofRequestProbability $$ + +$$ P(X<=k) = 1 - (1 - p)^{k} $$ + +$$ k = \frac{log(1 - P(X<=k))}{log(1 - p)} $$ + +![Geometric CDF](https://user-images.githubusercontent.com/1892194/221086054-df25a888-558a-497e-9c13-87c6e07cbe6d.png) + +### Selecting Values + +#### Calculation + +`ProofRequirementThreshold` should be as small as possible so that most such that most Claims for into the probabilistic bucket, while also balancing out penalties that may be too large for faulty honest Servicers. Ideally, it should be selected to be `2σ` above the Claim `μ` such that `97.3%` fall into the `ProofRequestProbability` part of the piecewise function. However, as seen in the Appendix, the POKT Claim distribution does not follow a normal distribution. Instead, 20 POKT was selected since it is greater than `p95` of POKT claim using the data collected. + +`ProofRequestProbability (p)` is selected as `0.25` to enable scaling the network by `4x`. + +`BurnForFailedClaimSubmission` - Should be set to `k * ProofRequirementThreshold` to deter `k` failures or less. + +`Pr(X<=k)` must be as high as possible while keeping `k` reasonably low since it'll impact the penalty for honest but faulty servicers that fail to submit a Claim within the expiration window. We are selecting `Pr(X<=k) = 0.99` + +$$ k = \frac{log(1 - P(X<=k))}{log(1 - p)} $$ + +$$ k = \frac{log(1 - 0.99)}{log(1 - 0.25)} $$ + +$$ k ≈ 16 $$ + +Selecting `k = 16` implies that `99%` of the time, an attacker will get a penalty of `BurnForFailedClaimSubmission`, making it not worthwhile to take the risk. + +## Dissenting Opinions + +### Malicious Attackers Bloating State + +**Q**: Adversarial actors may continue submitting Proofs in excess of what's required to bloat the state of the chain. + +**A**: In the Random Oracle model, only pseudo-randomly selected Claims seeded by on-chain data (e.g. LastBlockHash, hash(claim), ServicerPubKey, etc...) will be included by block proposers. + +### Honest Servicers Getting Burnt + +**Q**: An honest Servicer that submitted a Claim, but failed to submit a Proof within `pocketcore/ClaimExpiration` will be burnt. In today's model, they will only lose the rewards for the unproven Claim. + +**A**: The onus is on the Servicer to upkeep their infrastructure. This is a tradeoff that must be considered as a risk/reward in exchange for the network's growth. + +## Appendix + +### Claim Data + +The claim data below was collected by @RawthiL [here](https://github.com/pokt-network/pocket-core/issues/1523#issuecomment-1441924408). + +| Percentage | Limit | +| ---------- | --------- | +| 25.0 | 1.010101 | +| 50.0 | 2.525253 | +| 75.0 | 5.555556 | +| 90.0 | 16.161616 | +| 95.0 | 18.181818 | + +![imagen](https://user-images.githubusercontent.com/141699/220939267-83504646-7aef-4f02-b365-3eafe85274bd.png) +![imagen](https://user-images.githubusercontent.com/141699/220940745-96875a19-2e6c-4bf8-b9fd-5eeed2e1c950.png) +![imagen](https://user-images.githubusercontent.com/141699/220940864-b54f2577-30db-4f76-9968-dc12e7db74df.png) + +### Python Code + +#### Python Code - Geometric PDF + +```python +import numpy as np +import matplotlib.pyplot as plt +from matplotlib import cm + +def pdf(x, p): + return np.log(x/p) / np.log(1-p) + +# Line Graph +x = np.linspace(0.01, 1, 200) + +# Points +xp = np.linspace(0.01, 1, 20) + +# Plot the actual functions +ps = [0.25, 0.5, 0.75, 0.9] +colors = cm.get_cmap('hsv', len(ps)+1) +for i, p in enumerate(ps): + color = colors(i) + y = pdf(x, p) + yp = pdf(xp, p) + plt.plot(x, y, label=f'p = {p}', color=color) + # Select only the points where y > 0 and plot them as dots + x_pos = xp[np.where(yp > 0)] + y_pos = yp[np.where(yp > 0)] + plt.plot(x_pos, y_pos, 'o', color=color) + + +# Add a horizontal line at y = 0 +plt.axhline(y=0, color='gray', linestyle='--') + +# Add legend, axis labels, and title +plt.legend() +plt.xlabel('Probability(X=k)') +plt.ylabel('k (num failures)') +plt.title('Number of failures until a single success') + +# Display the plot +plt.show() +``` + +#### Python Code - Geometric CDF + +```python +import numpy as np +import matplotlib.pyplot as plt +from matplotlib import cm + +def cdf(x, p): + return np.log(1-x)/np.log(1-p) + +# Line Graph +x = np.linspace(0.01, 1, 200) + +# Points +xp = np.linspace(0.01, 1, 20) + +# Plot the actual functions +ps = [0.25, 0.5, 0.75, 0.9] +colors = cm.get_cmap('hsv', len(ps)+1) +for i, p in enumerate(ps): + color = colors(i) + y = cdf(x, p) + yp = cdf(xp, p) + plt.plot(x, y, label=f'p = {p}', color=color) + # Select only the points where y > 0 and plot them as dots + x_pos = xp[np.where(yp > 0)] + y_pos = yp[np.where(yp > 0)] + plt.plot(x_pos, y_pos, 'o', color=color) + + +# Add a horizontal line at y = 0 +plt.axhline(y=0, color='gray', linestyle='--') + +# Add legend, axis labels, and title +plt.legend() +plt.xlabel('Probability(X<=k)') +plt.ylabel('k (num failures)') +plt.title('CDF - k failures or less until a single success') + +# Display the plot +plt.show() +``` From 4b990fc8dac41e4512251696b96ed96fb53edf23 Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Thu, 31 Oct 2024 17:11:43 -0400 Subject: [PATCH 04/25] First draft complete --- .../primitives/geometric_pdf_vs_cdf.png | Bin 102554 -> 106867 bytes .../primitives/geometric_pdf_vs_cdf.py | 12 +- .../primitives/probabilistic_proofs.md | 160 ++++++++---------- 3 files changed, 78 insertions(+), 94 deletions(-) diff --git a/docusaurus/docs/protocol/primitives/geometric_pdf_vs_cdf.png b/docusaurus/docs/protocol/primitives/geometric_pdf_vs_cdf.png index 26710e1ed13d52de9e90671c7bc1196d44b12147..fcc765b16825fb10402189871e01fd43a43e7e13 100644 GIT binary patch literal 106867 zcmb?@by!v1_AWN4h!P?ps7RM|gCgDCp&;GepdunIN~eI7lyrlDgmg-Wbl0Zyj^%gG z`JH?Jx%ZFj^Y{t-+k36K<{Wd3cf9XAx1XGhDCTv->u6|bnBrnW3TS9ooYBxOs-a(n zSBB7nL*O4Sdto(uMJq#lr*Y@x3{+A zW@NPZ&l?!5Y>gPH7Vqi7MKG+z)a}sFuwEj6FJuU$o1k4lLlYNzrsN#AI_~sBaqj5H zmX(N8Y_A~x6^UWRkMdN7EmY6taI0k^GMt6wh+nH3WPDLo7m&9mdwb~`Lz$QXdP~|D zbAsabk}$!230qIEuNaupqeVsH&8YIy-Z)eOs){m;Qg#AWMI$Va`|h?N`on+!M~TPO z$m!|-{Eq%m=uqsf>VLoRjaq#3`hPwEZ(t+G(D|?5-({pduA}|;1(8n6gZP(G{W*pR8ZuqXQ+LC(m>&cemF z@$s9#ihnllNxqVhkl^g<+M6a#l;FNCes;9NXylYv@4nTDPp47TVzSji`D30GA0I!4 z)uev0Cxy#yJ}@<&D^s;hyV`XZUbx0sbMVNhD}ml&(#LDPa-)WMzqrgJQ;CK`CeB%L zzoA2;)KWWKK>piea|*==fB$6dN=NoVa!Sg{evHkra=XJnzND>_Ttw{VLqEtucm*pR z*Sd{ag=L1?lC!(iQ+itb@n{!+=MbHpogEw;bSDen5D6ja$kncF9mj(8oFiLk4Gxcr zYO(9$6U|b|+1%Or+13`&8P9_nG0U@A8)1{I%*dc>I}F#z5lQdsDKL;E@jQ5`r>AGW zUTHJa)R>SmH#^I@h)x@E*yg1v0E=PgxF08&s=#E@`#5%`=5%k=){EL^Yg*W_Bc`#= z`E#ZNK8v%bDQZhRniuMuC@`e5^Ag6EM*W$991I@a*;a9Kr#ikbk0Y=YEauJ*64E=qRx z2rT}C*TrUowu{{lmk0B#Oq}3SEcT0Xfg)t8c{&Cg6VxoWq4W*9LuGqdwzlJDYJISbnH z-r7tM$HWU5mHE*3y55>+-dEdWIj~;0w@b;yb2si!dUdsi)0Xc~xT%-h8ib-Ug75Qe zuNHRQ_0tYrIPUyzztsCE<#naQisAkqhuwsdrdE}6=y0J?Uzv?Qx8tgD@p=Q6z)xe= z2(wzNnnQ}Er6nODA?u~y)Y#=2w~cC12=!G7?1hDezI0jAU{Zn3C?n<1QK&?r*(PzWKcuK`BnsPw43zUzjOC)Q&SKT1_nmH#`%1#)%JwjMv}^4P2D0F z7Z)sGvPzbXlT%)|2h2mPe2U10CzfNJ8b!u+v%fwc!UMp4-luA(%fusdkzEoL5@OW- z}E(5rb~c>PJt=mLKir zJ}EVoZ$m`gfL{A#D_@KMW3%qQAssxjZcKZ#(}mC?~5IX~U-YQtUV zO_d~uCptMfvE4<9GzZ^rXlO`jp_*J9Elue$j$*fnF&GXJIBWU-vLQpamfzCSlGS1) z4DOEST_^XdmVCTazd3jgw(yngHnE`s7nC8?5VPOe)CKFXN1vuDF(-$xB(srr5R z@C7zh9H&jP)ac!aPoL_MTnc+`Yi|!yCey2y+h->z*(}Er)6I#Duk0KVd{1=iopu)G zNt~xHzz7!yvLX#UO!CNHLj>6Fk2~QI69>W~U=p%U)f}&rv9T3v?F-wqd+<3dbh_FC=w|^XpqwMQ z;f2{-=LuO#{UB`Lqw^W)m{6zN!YI`x9DQVUe->gvc^ z&Cb56ET!&D^g8>6WJoUCSLG!F&YKS|T(}@4EF2mdD!=Y|vOB07c%LVNLONz@eO<=d z`pHal$O7apm9w~XDwLKQ(=a&Rg+@Gm<&C1G3qr}`~SX7vKA1TW_D}z|Fva*8DpXcyfSqv96+8Rv2 zL(}Eqpt#C%2&?w4-?&j|797;u8BfSz*&a$JdT_cwNqF%J*;antAK%$?#yco%-I}aa9l1=0%=Cppz?XbL=cz)vB->=k}D9}~!bK`=) zJI~Q_R^IgTax1b~Add1QO&Wjxv_4)d#lgm|52IE@zjbSVC}00%yNyvQnz?cPxVQbp zw;14nV{u4e;8&BrGD-Ko=8waOhA<;`m?>r?r*?8#tLjX-Q+wPjhrg#w1 zvXeC) zT&_FDsk+x4y7>0HVY|+E#s?%*z4pjUfdrnMlJcvgV=gm2;Snci)D3)w%{InbYd~i1 z9v-w+c`)aU5D!q#LxzUb_>UIJklmbO!+(BaM32QoA~_ErN}-at};gc6HUW|-FH{>%n=9<^G} zYJ;Ee`8F)}&M>LgJTH_1FyXSDMVIB<#SJ3jprEGqi;B9}nZW0!$QI&rJ2|wx_3OD2m0-Vvf&kuRBjy0MMWMyzPtV z=xFn?vQQ|V1(xI75IG^Gr5sM<4yw_|wN4v4Ff9NuZU~$mkdcs(q*{Ld^hwV_Go@#0 zVL?<%>ZVa=+{>{to6Fa(+0C}x;XjzV6im!j54e}cVS9pBHTMamWuy?1xGp|?`}XY< z!l1x=OmCq)poa8AdMX^uZr$hp388ujD@2c?A?C7uhtz#d%W@yU@Kf{iO__@62Qwi8 zG^u$AG~Ar38*>=c9s{`J4nZsx%N_&|$O3l(0N)YEW#>E>uIjv+-@G_p$$`e_x|0!h zHl#38-j^&KfIy+my}fyX^Fyo`M|xj5=TV(_v?`mul8nkjc7H-eNnXNw+$3Orhk--! zWpHJ<#DWO+V6tQ+16q3mU#xneVNZ%E)_i-kcUBf{rPGEXMBGh6R`e(F3n74Y78i{t z+)>g{ED+!gMPM2hJp$F(yB_)V>*K4KghEfBq5JmTzG@fl$a)jKwjAR8x zMZBlws7{`M>`K?&Z?=cq25qt`DiH?S=Vzzk@Qkzo#UczuQskFCTC!fxe!)5 z;hHt%F%AIx`j@Y1X&P&zzh$+w;*zQSnGM_TWsQ6>a%rg3MBB4 zjg7U1o!eFb^Ddk#TcB@Ky-BW^SM zK?g&%v9nWzMbeip$qw9vb%?P7bzIETBMS_UC90nnp)PM#57@JvwF+c<+;lf~25)w6~_2 zR)fDkkwoR+oAmse!O-`Y`I1dLrf@k71V^_D@G*jca z7Bf9FlVZQ}Tl!aLXNjqqr^WE`QQ^MTQgW{>q7vitaPg=Ise4;kO zjdc$71n=o^g+rD>G~a@B$q1E1&%zrQ&8O-m=F!TdT>|G?@>v5aT^_>nVFqmx)UUT8 z@k7*7LE=?HLt-g);u^=rFv>*t-uVjXcG8Awa@F$d3+OmFR55PdQdzG#wrneaF6^$` z1RpZ9d5HzQk?sCGdByuoD0sVrn2K&nO%UJ-3=9g~J54JT!gFEr`BAXk3y^UFVi3B4*sc7Q9K@Ahi!zSEfe zD_tfgCIDw$y&^d(NYREq_a5^r^o{C$5?FsKTRNW&Rg_)2)5b(Z+te4m^--cA622IS z4`3oR+X|rXBCOW2a#|}!Ep+t(MYN4VK`@v_Q^-@VZ&};f751;N+`9=g(`Y-aZfg(tTf)-Sr{uml=)q6P|FTCe_S3Ug;XRQjQ6Hx39M-WNwz2Q6eFw*k>9%JLZ$j!Bw8 zL&F2D6pK+OT|wsw37{c?7p#OXu;BjvPdG~b{QUkvOE~6reyY-i6D0Dy)N-7z3&(98 zA7!@`sq2~f-PR|0FBBUyxs^GQclg`F4m7}@6B1z5=ywcS9P=vLm|eDqPSr;m>X~4k|Gk6Jra#0&heWSwY%GB%=!ts*YOGmE|=}c z{>caki#?^5%s<}T+*BBiYNN(ocT=z4Zl&E>A18ugK@ml!M#Exwf}uTRG>Ebepo7tm z*B9p2HD5yG_T5Yu;Gh8n00KIT%mzE>?Ph@LK$;*xmziREom%)gk03mYO$Yn|mK2x{ z(2%&y-ua=FkmR<%&T96%J=cR5&?3}5U}Fr$BSy2znj5qtmw_T6V_@j~b~nE|mD{o@ zsLR1kR}@ODR6KY1l^b`z!-ZV;*E>GkAwx(Hny7-sTLQbm-;Qt^z)-AJ&9A~Pen~mG+vAl^3wxthMnH%ec*bKq6fyuFB$?(|OFg|0 zPrPX&aJn;c1w#DcLL0OzDF9yLxE=g~jK$H_)ol|pXdIs;hvf7U(t`c^STwvd@(}eb zk>A5yrU2=#fpa*7-a$-4qCi8n$Bt@@ij}oU?9(x{GQ>QNfv;bq#g0ZDALMzR288e* zeE`Vx1e&0u{f#bdr}0K0Q)pi4H4t_25V0D|y^2muB=v&!MY{PLdbq>-?8-_TLXw=p z!(x+?b^-TUc?r~tB4|a1*yo>Jod0z>vzU+L1Msla&pqs*NYBPylao z<(<5QL%-?9Qme0VYQl1IdK?waogFNugs8zB0dcHf{|x=7%?XG%)A zwdZF%TU%S?GEMTm`d%!MD}N*$&%rPZ4>tcG&D6=!N**#uqyd60XS0%1s?y2?>|6D} zlBXr~c-OE<9y2oLwUg;uFbO!$Rd-3U*v^WH1QY-A!=Y5Gbfia`XU3|{i(R~^n;o$n zNKLv)#2yF@`H%xIw5Py7g(1%e^~w$cLRCxvDvk~i*L8rGWr1G;vZu+ImDzc7N1tyY;&DZ zAL!yr+U|-6-uj+^Coh?3FvtuP*&4;IpQe;EmDo1|TKP9l0Ha$_e81s!L1E++pz{Ij zw&7wkeAq%PwP#1PKnobblB|vtXGv{%C+~qmlhF$(sY#U7<0tfHA3l7bD)#tHA&u6@ zahgg_)lgs0X)`SpIyc|8)n*&*CLY6X0e}ZORHQk<9#s+QaYoHb`(lyieh)1$D7IUW z0XSyiU|4! z(q?EHL!fy=5cQ|{_@ID*8|O!ZwW||n(BdXTI;es)i|||ULFUHNIcU35b!$Bll%&#@ zr(J1iH!CdOPNsqUSj@}MKe6r+Hs^3Tjgfk!)T#@}!=I2Z7l#WeA*5)xh|Yi;WVaX* za&&YI{p^8q6Ly)zr?IoW?RIc{j1ZKt#YII#uENb;Lbi?&G8Ep;gT@LWR<$bZ{ovDC z%{7|_-#PgAd~`J%Jz9zvc2y&4FUTF8>IEMI$BYo=w%fDfK!mrP9HI~gJ@XhJ$S{h9 z*13Rdb3Cdf{O+7QPV2Lv?##etYcoCX-Mm_JFnxoUk1wb7h0=SNtzJ-8(q!T#0Jeda zGX#Ww3h02_L_`@_rATKk5p|@;HfAL> z>`Ku7TI-)|J=coYW&t}pw&o^;lnlgdAxJQfDA|J#969*;695JQ$z+-t{t8)C8)$y6 z=kVZydcIl(LVVezs75Od)payc=n#bhR4d>+!b8Dd^#B@ z`Uutp_TbgPH|3ioyk+g;{jgHeK#&Im)}u~jOQ70p-(IWWHj}0QUjMxipP&}Gb_>42HRnBpbkYm&N=*9x~XrKyQDn? zjP&N#*2{@1m)Y4_wHy|KiT?mia$4FfFtY+7>&()H6&e?3zR&KnWX~-UMA!&@k+_)H3y1>V z-F`(!s|{fGU|D6MxDY_}yX~z~s|vK6$NOFa0WCx8xX@w!<&%4$XJM^QGy|e(g9hXP zvUxyuTW2Q)3k%MZ@QAWdE&}5&mjx&!L$zMD1KWVy@&VnzMpMfzxN2}ptPr}&=S0)y zvIV5E396g~DmHYeCc_1(%GnTSn$;nv&__e!AXOQi@Yo-x@<-4^!0O-$Zxt{aFloTZ zrMFPo+QmX2WY2vcNd4l&!+|j@xAn*@)x5hdm_x@}*!5B(oBlL8E~t4#sY0-6k@@ha zYozWUftdJ0b=}6s2KgV*rDe6{0>!Eg6s<4_04_T{q9(mxF#yy;Fn@-Q0|m6kMFfu2 zoNPOFkLXft6afliZ@Fg$Hjv>`oI_x&}kO-u|O+N}kEpGdL9v(lfC@VR41r)<=e6QN|C~mZ7)0}iOpyPg?jmTvvd+$B9To2l zwgz>*wt%C#kQU>gnVA`Z6@H)F{(F@ZpuYDYjB`7!2iDdKAPOsd)}Z&RxXS6J_W;;7VO622rDf2mYJs#=Zoh<`2+Tuya4i6Jcr;(2b^grEct=L!L%&y;#qS{Q zd3I>j=JwpvlOKA4$hj)JpC9gw*|yO;Ch|By3j)O4Hn<^rvej9DTMx+5Cjt=wG6w;Z z-eu@^nny=tA!IjyQ6_$jjWydPM4;P^yL5e$P7cf20 z-biC;zufN!%hP2W3|z2=>)z_GPvnxT6}m`lz{KzYx)p~~E-ov(08O?KD3L(6#k#Hv z(I=zJV?xg*;WF(<83y%)dVPJ}-`Cf-7iP_1`lnwj*fau)1OT5iL#sf}$*BezP9C(d zaENj3Lx7tBMMP|-VG8Lo_Z!E@wLt-u^E{lx&tgaDShP842Jtuvb_pbgY=kicPk=_mDO3yzsAYIqSXil$ z;aUN^d_i*OT!q!HYxQ=&qAWG+Q-6t6h3mBg7h53~0*GZTEpriS6rd{&*h^ALYLkaN zZxPvuvu9Z&uS2J4jt^=l~1`V>3d0J<=Hh^9R59B2g! zt~-lKkVmMv<7JRoLW*M+`(9P)FbZMD$ho-G|Aq)y8>n@3bP&R`H%F7hV0U>Sm7iS@ z{g1J2?rM~sK_QHS20FOFUf?y5z}(u|QGyJeji?9`rl#LgwPA*H&iH}gqy+%1iikf3 zpeeBL-@kh|4H~}ep`rPidSus z1^u45PM%I@CoTv#D*+rJE)W=V32y81kb2Z+IoJ5CxRE{d;s;t|M~5`V_3H{c?pwm- z6clMKs4ozL5|9!s_NW;dWnDme3rDzrXf^#46BB#O?TifeR)-^+ok2Kh1?DrUKTlWJ z#=$`uYEvEpL0S=jw(4OsVxAm}(AHTqJOF@gBf3#}Y28u!$D4)WB ziTuHXr-)Ej0MGtt4Jgk{R+C;KWGDc{GLT&X3z;`aYgN4)fn<=zfdORt+PVJeKW4^ncL)&gqfC+gl0t&> zGzN@8JzvkKu#)WGhR6@5A|n5%f0FF~W{=b`a{598awAx%?vRp#H8K3(S8RPMkK5bV zhj2@#4r}*oA1oC89rHk6M?#mxTl_NTtw&Hr?HxJ(4&bLWr_(wyaE;cE9C0F@CVy?2 z-%7Xtz8Ap%1u3UwnRGj`_LCEL#2pBQ(%Qx*(`GB~j$&}W;mC83LrER9&d;{$cG+UX3}e|~1sn^--}e(YRlixCUAFn&AO*M}1? zv+y0?o9w^d_P>9Gd*)t;shj#m(Zs%1RQccg6EMx)%kttiLdJspY$hW`b$)2RMz28e z?>YW!I*t3knobqG{~BA1KlKtc21& ztCGk?1;I%8k25vH0lK{p0Ras!p4=uTZifz;nE6>`GS#i1g}|tAygX1vK}H@t^6UR+ zP-UV23`af-`U$`W;I{;)#i#Ia9}uWb9p+SXnF)iSl5x@@x3%XLmTzfoeMC)-@fxf% zu@mY4L>Qajzpt{m>k4=ju_1wB1%3gu&i#m!_O>=VHJF<0Kxfdm(IDmDxp$9hj_{u` zPzh0}gOv7AC`T{%#>(>Y@@&F~0&tOBmSXe#mp^y#Uq0L7PyMzzI1N_}Ua>cQ636~}~{w{;num6G9z-4>7s1_uWRG$Ty_uq4eBKYwljI>HLEV5(%z zb@FW3iwXQQij171&h^*G6AL*Mo^6sFp1X%hW`bV)ux7oTc;bECnqb^ep+6qbJ6Hy=OVh7@68ssH4jwUd((fa`4a!lpXDyMLbqWPpFH$3g_z0`7j4 zDowUC&g1X;i4)Wa+IoGtl_frL0J#7{^My_50%xYD>v3dx>p-cXvA9?OAn*yByWxl_-z#Sh9jx`W#izSv~|5>qmAqiGw3X@e7aecCRtF;A| zxDMM-mc&A58D6NfucW7ZU6{qM3|Zy%o^ukW)>QWeSJurOl{Vnqz_G>zkZ>v`grBD5 z6f%AHl0B<&H(I=mZ)vGhXd*B>c$KHnf)G4;@p_;Dx>3jVG4(W0!0*V-X+i?094_eG3^61?NZAORzf2uB$zY8ZMTEQjtr$Bwl84!+8PU(d26qQbow>*4V?Am z1NT>8{YMaF7Z4q1fo!1DD*FgzV87upgLcJjA|gp3z$PXpG6sZeN3pJ7r(xF-6ch~I z1=AKd@Iry318_L*fiH+|ePZ;`$bIhw- zf<>>D>33Wdha`5@t%#DBm;CG&l4QjmTrNA9Q+<5p8qUu2O?&UFT$OIfN@mnoIBi%e z2R~$H{sf#ftakU%!Iu^AI29Uph)GI5PwyL++VpSDcUVzD>^OTHlU=awpqr7-#OVZc zmJd)rw&3z0WH)a?_&+fA-0#(u=i%ZunP2P@>^xYV3)6S^U^x2ub7kx8TlAx@fN;0K zTY*c9&ZDZ;L9Scr2dM;0w>CRu_S#*DX2NWCTsOs`Q z^!u9|iV5$D7@GSjDPkfRbsmc&e);;kF>Q!Dw(i{7g@iKPCeMn}e#f?E2l7W_wJo+O zJz}mJ-2B|6z{HU-g!9y!Lfr>9$Jd|ipxN^Sz4fKTp{}m(F$IMNJvd4Ms{dLXS9oP; zh^X&PA*6_Kp=^4*EoDq;N+L?36(9P+e)jJ|*fudGB=TN)T^~M#!olGZaJi0oW@VE~ zoI>09wix)Tab(0!cRQi28V_VkL(#{7lG^@avz z{ln_)&nasY)uYRM2;VB4XDy2;AVBDU9Sw>lj(~f16B&=NY(V zXLu3!F!pP`5;N7=Ks3A(j4b@o32%RZKrw-=_HEfyueP3r1!b|ng$PO!1Cv<;lL{+A z-O2;?<2`(?HwDR5i#XUVBc-HymUn_zqL3}Qng+r+R~4pgc3`o487oU7dMEM3)u0M< zKTWrIKDP*j;Rfi1LqyaDT}lHang9#0LUKY7lUtxsbN=IlkMxOv%=7@qf++C2*AO~5 zB*W3%aX&e*(bCoy7Z-oX#~1H?4eMezkZ;V5dD8x|-Rp=5;}{E?HkfPaOZ$3z(ORI# z77(aaI8u+|dQYauMVpo~ZE&(jgrS&7?>L+Ovd+EA%Gon4Qa+FJPw}9nl&6lX0flSz z1-$G2b?8_5{Cm({FZuVNT}`3RG(6O{DsC?bszVpKbcoL|va3#Y7K&lKGQdJE-XSpW zq;aK>&p9nr5y|ma?cAHvSL&18E)MN zM-f9DZi{^iJrugMj@5*6x;0Hp@+sZR5+96inVlu-9pPUIq@wcgu_tL|Xrx=C$_*927IkOVO9p2qXg+ zB28Z$eP`6u|xcBd2omBV-_h2cDwbxtjX+4KzmR##z zE;x#T?0K%Mr8izKJ&%t%MaeUy&Z|XSJFZ}{b0&h9GmD16GC{$^6Z_!x&VT9ZqX6)x*(~>*8 zMB_hub8`$HQ8u5rbz+v@C@rtiHqm`Xkf%*%v)tdxHG%zVV`Q$|x!f0vhn3{%M85v5 zph&M(PQ2aSch$Pu6$$*h&+e?v9CzXQHr?P(#CXNcYS`jq{$TXw*0OHP1zQOV)lfl3 zZuYd4e{kO%XO$TdKBll_{&+V0i5<~FCJhrkquUWl_0|bc@b3*#MDf{BKTch^y*MKy zROXc$G{$CUWAhTk4qz^e6lQSYR8Aup4*j(S%zo1WLt#+73d+JK@p0l8(49)rhrN@O zluQBT3~{-|%cw4Gp-?EGSziJ{P*zr^SK#f0G^n1ne?x{}9lCyNQUaXznV~FTeFw z@%c98#J2o)ltw9|r%CtgpcQ%GPloSya?e@+1YJ*Hp}BruI(43Loi9CGLyg1=PeO~g zH2b)+-`UrVK|j;FwlPtMhE)$|ylz^A9!aRG*|NUHzoVJVr(8 zv^zxvCJd~84)lCF>AY1Acqq1rYNpZRo2fJ1NqE?WPf+1%b8xQh+SY0>fra&xqn|>f zk>eRk#@=r?S9^!I;{W34Xp?@LN3p*h965wABf)oF<+I&&bSx?0}NC24Ce0vf3WGYk%UZ0 z`!mJ%k16%q_K9^!ld~}n>{waSn7EjzoTtsFeKMj8n^L;KkVdNP=HpcQ#;an@&oc0- zKbHG|W$d>Zj|u4y8rqpB$oRp9_Q$=54X`mGLd! zEux_(EWVnf5ulPPoW)S4{e4V$?X5^^zJ{lM{6RIo<7fAUAqD+C=ehGm!jYVx%`GHu zjH?tbPD@)OvTntK(@QASP~qus>_m>t8bXnpEj*3L-p@}Rn@_5DqDs58)gLnL9=fa! zE4V@g=Vc7(k7>EKKg^@gE7KnvyEDm}df?2>_FU(T*=@1G^#RyTi>%m)zOQ!T0H%`se4Rt(cn0I$4l?iuLXNFNu?wL$vBc;Nc z7z+iz@rv+6EjU9)x!+GM$;`2k_k1>iTlq;$ra7VK!3CXa*KilxCZcjy z^To|Kl))!-uapAKd26EwE=>(@NRzhQ@RH-ulgRPxCEYu*7cJK_R@Sh$z+3yh!puuTH!W^iFI_nt-9IL_O?o@Z{u)&@`k6S`R7Exy%DZJZ5BC;Z3ceB z!J9=J_SsSTmjmxq^v>Y@Quy|C~(eF>8ROfG^;TkFRc>)lk_PYFvgXU?ukge(zh zJlvv*dF*^&jKlagosQ7-n2U<=dGWJn$VwIIAnjQFd+2I7D{my<1TP?X-ooY_wX}%A z@$qwVG7+>%CNQuwXqEl&$4hH#S&QzL;glJ9j~QXNcYA6&Qa2QrSZkWAGMQ>Nkw7&3%Zk@h#d5 zKQM?%f${XHgqlB1XeA-SR7;8Bz~w-l+_a-M7N?9`RXcPyL8I$Yh)rgvK z_)M@d13x$SuGB5i&_xvLanIeevZ&h|WtQLAs%M-z+EyZc;@I(ZFef$Akg7f|tV7y6 zPN_xQdrXP5GFGPsf7mnj)-H(^(H8UKTQ-Iv9P62S+0CDj z3s{MjEaTuvx8XAi!jc`$zAC`F|7f8*>Fw9`hd0?xm%e$pZyHbD+TSaU`c$ztGJ}n4 zJV3FSdd|uEXF2c9sc#&_RvCglc`u&1i(Y+)`Ms!%W7h8B z%v)-kSkK@>leEX{hdZdaF3ymN3`X_{LN<}WRg+9ZD?7ZLF6s#9X2NgRB_97c_MS*L zvmU(8#UG^6u=8O_sw1X#VxC4Lp5-pL2%En~ z^Xr1?mQ5c{PdC1W3wBN_6XAZC>P=@p#lN2OUPY<^PwJT9grZs{gyF-II+bC>(!FbpnKfH+c!d|m z-wt9Z5n|>_$9z0qNCXXDeEsi<^!_K{nxi6@N-hGEZ|rCoYf^lMyMNtNNB||Gy?5y< z59(R5=Q|p#GmUMZ&Mo_EuBbRieJ)=coguty7!#L$xl^nx=32tnwTX_isC(R4#A>o=sY|Gn3W!oM!5H+!JkDR3Ced?jdO~6Q;La`?4QuG?DlD8xP5|xw6w>MBy2Rj~ z=d`I4X?=Pmrx+?BA_0PwwSsLd1uu4u%bczh5y+Q#5NSAFp3_E+u8 zPqW_3ct&%WXFoN>&aTRGZ%$G0j=eSJQKxO>nkU1nC0KRw`NZ4rVk_@*0@5=X%+v`m zt&Q2fY71tmnEzCIlgs~Zm+rX6f?7 zY#rHZXHe^?Cvqs$Clu1<_uujar4jC>H+pi;3Jx znMNy?ojR<&`pW*@4*Bv3tDo^?IJt&2L07wSwZ&`Q3E&@EdKGg8IzM$k@)Geb*@e;1 zlN$7>ZdY9K=@_ePu2&d*6-uUbMvaj7xZ`?W(|GbEQS-<*u6z+s^q1|%3rs844t{z;>ANR4>-v>p z)rYjH59DLDs9a(db{s8xvhZ8m)A{>NjN`K%_UX%VF70#scrq4^4UF0rd(Yj&FZM2y zY$P^%R#3b`hQ~h=HjpBHTu3${y{+oK0$6I97Ey>az_ruBL`E!SLVgiqFQXWH9RQ#9t z%Z0}HZ2tTaII>H)m!jL?$=Vw&GV>dip}Jnt;3L|1SBBx5%T?tOm6bbTl*_q*M1E--o&1#D0l{n_ile|@b( z^0)4*mxl&AX_*V^KUcE7naEg>+kRN0JJd;ve>Sxko}!XsB#E+)^`*_GVBj=j&ADx$ zBFCK6V%%3Gxfd=ahudd7x+9rp(aV5);<o_#TTfOh{9 zH+L#U?(Mnh53XfsHky)*(H}$65=A0w7_q$i(3KN!_ti#BK7WR$onF!?_eqz2nkJ&saFJ{xKp#1dOXLa45-Tv+f$b1)R0+EVG%(F0r$- zBcr5DFSzym19mE$#EaB%B_J0d-DkJRusip7Tzi}_@Xl=H%Y(N%ac?ZUA5iWUO`qI7 zk5%>dF6alHXRu-6U{rSUL+X# zT;eb~BGu1b2-9Jp(6eied1%c>qR@$Z632e(Hpi-U3YHY-gXiOESHwq;Adnb}9=y@~ zSmm(w-AcFfp7f0Y$7z~}-)P;o&_N=I(<7&eG>d2K%mC=UbbcB1dD*97gj1 zoLE3DFo72ZIZO{uB*cURTD_3yD2a3t*k4CVEZV?0Clda2AP) z%*iX@JP6X=UFyh>Vc|df=@p|#-53%yWF57}>h^AomVdOV`=TQ5ryW$44u zgNnluJXOhTvAM)iS%EW_j_Eo z^4QeLDKIxT1GW9+>(_t24JL!Z(vdmL*8iXH7D01|RR#)W^Cyn%6F5XEAsNh|SrQ0` zS?0SEv7W+77C2kQ1LQ0ndmRrTYw$9HlmXT^#8D31)B%_saP~^PFTzn3}wN(s1L%b!ZRTx!W6Tfs>rX ztJ2B-(c&ZMhw2~GnHuf3iu!kpnvD`Yn!tTg4-yW1p$sWvQ9Mup-)jPf7Epc>;|_?7y`Tay zuc?06Zk3gqJ;6DrSXh)-Vqmyj%k9gJSaL17gv=GPmHpmLUv|FST`TY9>a&+@X06Jr z&3nI_=V2U`r|~?L9np%ap;!BhJwSRqM`zH}99sDT*xnI?Hl5YlHRoWWGkRJA<(YaW0>TBW_3vGStn`4tvg8E! zpUkF?4wbjEUgtQti*96?smskU9P)dRV{h{UCze_>?k24}&F;mI_dsTdsy}D!P zPj1mKxtIwRcT638@6#>I?{52+S)<6&X7Jjwi*D3+L>hkx416`ty&|ciucwzSGC5KJ zJ}_`>@gpaiN!(WRu}3e0n;wj~Kf9A`xymw}o2q!Rbv%9gNxd%r*!bg%5wmxZ#$xS& z%ARY5S@IUc%Z^`cR8)ZP7x6{{Iu_Vd1P$1RW4?WvUnu%u!h9H=K`0SBWIxNiY4Jj0 zHU_66GQ^vycCm)l@^*hySUaXA*2DV`zGIfT=vpb}`PeQ0xekl=?YNABS85gNG8e8Ixf2ew4S z#;a*nE$r^ji$ftrwW9q<$Zv<5IxcYscQ`-)OV90-Ua!r{b5A3uwuc3~!|sl=Ec{$2 z7(h^?UF9HY50g`o;F-sq7;*>h2$dVyH={Ia4 zqZ7ZYZ@n8+_}ES_w)orZLX3jK0|hMAzu)UM=$AV<6^@MwB~|EuvG&$cUA5iT@DCLb z6%h~-5R{VclvGMmrKL-{yCkGr0Rd?NK^mly77&r{F6l-AQOa*^^?uHIo^#&s{p0)Y zG425}l)Zm@U)Q?UnrqIv%I8{ey#BKb^3L4P!WFbIh>1*!>k<)YePw+yun`eZP((yU znbd;^OM9yWu@ej``L`GtLV2cLeBuA*l3JikS&WsSdjl)`8~p947caa)x&(vRG=zE@o4v5Vh<`-X53Wp1$5LVy0+wLuYrboM6}6CeHGrZ&Bb50=T0 z;MAVt>)Q@rD5J`x<^>Y{P4nW?I8_fcnu zQaStE8)`rEs%R3Pko%=AWHsaDyL```e{DX_f3TTAM2Q2^Rtk@M*xDz`f1(Un#mTky zq%-+d(LqpfT%^Za?mC-++rzAN-edV!@8QooHRdsEse@jRi@neidn_>;Ct4HlTf4r* z)DR9z{MglAho633jqb`X%oYMF$LNTc*22@RBT*oN85hB;ec(_hCVC+xee_sG>vy$y zUY?IyIMuJ(zWV#3D(c6y2O&9!ak`zOqg@aELo+M-j#JH#s%;G-MJs*ToMC2cAzseM zJf~Zy-CHTy?f*TTet*gOsov=Qx5ZS;tT$F)^g;$lur1DpyNk|i_tN4CttcM0Wa$ag zFTDcN25~e*R-#%tYT}oZnlJMimC&(tkgXa-62Crjfjor$O{VSK>f83oclcn4lj?r$ z*VlRT4OGZeQ6U|&Ur~l$Oq7Bwq~1cZckHsP78#Ieu&Xurr6kptmh>G?-T~pSi{%gu7 z7QfKiW{)iR*4DIddsKUyl{?j&+{Vs%3P4S=Huf@@JM{-x1M}|1hHC;Ni+3p2@AFkV zr>pQDD&G6BA0TEqPCf8#y2poYhEwFA|K6jp;mtK}j__XWZA)0}FBP<#g7FhC0Cz`$ z8o&0h*uZeC#1Itz;jprCA0$4pnr#*gjq%jhQ_|+hdR~0O659yH78VV$(AQy{y z`JeQb6^H8_98J27C$SnPKeq77(9kls@^TNEPI;zBcQF9*Ks_z}O5!8n>vA01HkMkJ zT5c?>di%ZkB+-Nw8fyN)29P=&}_T_=iv74s=c z%bv0FJ|}6DVx^FHv1)Nf4Xs&e5-0Ch;nC`r`tPJ$f!{OeD<8rm$ycgAXKiQ4j^X?4 z^{sVv0bmgUk-v6u^I&7F8B{4hffW&I8J(CY1BB^CC-tUwJs{ry{P}Zn!*%S{eD?7g z>P6hsY6XMDgU#%DdkNV)9}^J9;$hq0?+4_+f;dh7Dtbm=kirXA_L)M9h=|`*y`E#2 z#pUIUzQ@le?H1NWcw_ZhU+_9>M=n_D9m-&3Lt9`pFT@bqB?dht;7a9Rovro5;*)V% z(a7{OLHu%cE54-1IQNGeb7mS}XdH4IO=k`cftjWJT&||ifsqG1PSAALk7A9X5P>Tq zC1RW@);pV$5>eN=s%b`i+Sq>bjtW!tl;QZ_3z3kwR?DHu$D>H{WbY5M%);v&$kx_~^>x4y5k4zxge&e&|elJA@MQ(rvN zC-D$D1B{gUp@JW~zj7J5>4p_z(|CV=d}_CM=ki))cDWtL>_So2o2~Ziw8u$#BWK1Z zv5w+ImkcdN=9J@a3j?bD>J;GB;%qytX%H!;^_fV@mI<{>$;whyy*y`PWON%udx#?v z-McAp$$Q1;mf1vheHM5XM6#hNE`5s0Fxyk^im26lKv*YDrdHGDqd|(Lq2{9@^@x| z_61CIn}#`sr@KRs)0g^m>NV3gbJIK2zVA;>JBhrM(!QNEsVlv9T8FkbHZt;)$KT2M z-bCb;Q4A&e^Hw-{_s`PjN7tfnANbC^IIIG8_&L}kK#`ONhCQN_M0~Jx-&0v5B*O&G zoEFQ5pGzdbq;UncytKvg(h``2X+$mpi~aIZuf>vj5gF>^p!wzC%`gK8hySq{OH1a# z6b7huX655i-kdYc1D;_R`qBE;NsjTT9uyzC6TRbYcl&mqZ!HW(iQ(0T9oK*@^BF09 zz&whjZVwOCI7}6Y&z{M6nQ7!A2u0rjLEkXK+Q_rkLQwd|Ny3!~gY7q_L#}q^sE0>~ zR@VIF(lM!)#A)tNu#fA=zFpKppCj}X%pn=};lER5oIcJ<{HWEMhSQKH*M*dGRng(9rDsG=Y~h`p#5h|Itz=e3k;+ZU z^Q(_IbKEnyDPIqYZ zA~>`GE@$))2Aq;Y6P*AT9u7n4%RdX+hf(WWrF&F zw+Vn)lYhISMLwtCwl9EV(u#ukG9l@#UcZj0b{p?|SX$M!O>?86YC*FJe*+RezrG?Q5(R z+_mU-vey0%fXvFZ$u1*y(6&bv^hhKYi5IBMr|r`!+ImH z(BMf8Wiy-=L+68(MsSkk^me9}-w=-PaP#}DLgu|g$*JCM!-s1S^s-BGEqp2~SZQ2h zHY~!%#T4xji+Ux%8#x=4kla(6>`ZRjJ;tNs39xCT9Euy=VNeZgh3N{)+`xP&%V|-r2o)@jDA@_9t@>$NNo_l+9yC zcjhf}BjZbFDKYWng+(N`E=+`BD3WTD=x#tYwW__@(71dXB$h- zlM75Nsu?>=De;V{>dnx6FYl7govepgnT2$poJJMI-z*GK&!LjQX>rj-$WhkZY4OZZ=%K zsd^I__ezFPWTe#?U?t7id$1dF&Y*JU8DYr)_?3q$ zXvm3uHJAHa@Da48dv_Fd$hC1F`k!&7%=oiJci%QXh!G->0w)Xzh5DfHj3Ito4C-QV za(lFK2=YBPph0$Q0+WRmY)b;=)^3|sgfV3u)=bOGtKeT!p>fMdA*`rxOpW^`ww!A) z=52V+wcT(x{dzS~7TzU*!(0t4!kpwlG}eF}OU905v-q^V@PpR+|c zKbE$wAEkZi60+{6%Z@Isp~_A06U}136xeXqpx!jzOEKt}$H4`qDJU}&sP2n59D4D7 z|H_qNnJDBU7p0JkTpOGnlKFF$s|GSnk`m-*p?f~dwW`m_vZp4KCgSZL+uLCSN{FT_ zQAre|o~oh5CUG|R$EIJ_h8RJSFUkEu`U^>iU7WV+liMS4JZpNnMHBkxC4))eaT(r% zrF(Z?m9>4G;Ga$}+Q|C$;a;enneb|5A6~GC7eoB;HfVLK0p0u|9yn z?7x1T%@)F%&Oc_nZJE>p1P?#Az;Dyu2Rn9O?VKw8C=IE`N0`^87r%?12Mm|vI)PJL zX0fnZ>sHm(OA;EY#!5`=K9wQ8KaMgUN`H7^H#Da8hwbpewB-9%D?BFdTc`u>g5;@W zg+-Fx_`@Tm2+cb_sfjnYah|5Sk?ki7# z7iMqqmjxkERm6jez;{AzmKC)N7Bu=L)u!k*(*_=5Xb=u$TxENJ4Lj7iG zr{(iw_{qYXl$b)ZRJI`sV&MTX^FxL|0~>PBg1pH7fK0(lO=f9JkQT$Yv_^>z41Pqw z78H!}5ThjRHOjWbrZPH}!23vWIg5*6q3wERL-$1&l#@QC2}s)~*K z4$13b-l`0U0ULU(^qr?aO{5eJ*^ibplq)oSUz%i7aGqwJE4pX)TXw0e4MaYw?&Lrr z@}?45k{hzUp&Y%~#0xDc%K6|oh*%!A1mmlLH7^N|)e~@+0<-EXa3I(xLR&8ulgtGL zHRvFE2FuaGHsVxLFb-}e;I6M%U7#@a>I!bT{PgO;0vOMJ9wI3EBx&sYRxIyf{*rHl z5NdXDi)ElvPlx6}lGiW2Q72EYS>{Fj6ZK)Yb7DRIeAsDSq{W^I`+nx{53?4m5^=j% zO95(9u;h2G{`6_;!_`>@v&-&Z6oM?&M{G$;qhV{Dw-3gs1LsEg=(%Nop_zfeW0Ae! z;H8 zR5syVLDm%0Z!Pa(Xfbxi+xWmL8>A)^@pu*jHIXCE4VN1m_>U87G$uC}$glz>c`vP} z1eWs4R<3jVlK=8IIw`6&{XYeC|LfrwY*pFs*nB6(?ABgv95cTmBUx%b@n-K!bYnLa z1ey<;>G%E!7;k`GXPBCr?)`#?u>QW5j{tmq(dit$B*eZ? z^5k7zUeet;8Z%D)3dVxP#yw<+8HK@f@Sv0kcLBc@%ZeGmBt!!)(b=Z{m%0jy>L&n; zsdRvz&=sWhn_Ij0Z+eKqX}dC2Q#thQf9cI?)EqFFW$pQ#vsPyAv0+`kHBj-OIs1Bb z&Ce;>4c5LfExZ^e8UpSff5DqR`Y6JOE4u=4xT;sCZw~!O5f+rF%SyiyA*1J267t@b zPK^7aSO)XNY`|dt)5|FhDV>5YTf{kIKNr^?zJ55w$biIn5k=KMTEp(w0GqIv_}s3O zm!)+5wM8tiU)tj1rSWm=zH)$k2!hLiY%yDj9^A{@!Mgyg)b!qAP5+y$FE$FxA03@Q zIK%xv%ag$S!6#i{wFhoSvZ+E-X0A{nf~D<4#A9DlPHqt#1hQboAm+!APra;qC~r?x zs71;D9fcC|$TO<;<;XF9Rc4A;9iVy0z0x5wr4#jyf-63~F;(YYC&NewTUj-Jx(=p} zYY}1&U-3u(S@zn&CxC$F0Qbv!cjuht^-1QIC2lw0Nc`Yc^bGqV+u2FwZq07S{%*Ov zERSrKO77g|f^aYfea3RYI3Xos7SY95OMh#0Bss|D*9AdDmya+7B=CfTJmzD*{&I$wlNJCC9pTkaAcaT!6Dt6;BKojJ{PT-oE* zm%BKx6dq%9epm=|*(u&?#PYJ}j8E1{(gX|S>ePRuaVV7rzJk4rz9FN`&9#A zSk_nc?niP&(Tn_DD`|GlZ-3U;IZ+Fjf*;MK!SlHB!a2skv z#`wp-Q0%PbUpyoY_wxGFRrmZ>Ke)X8#qaW7X^Ob%%k3vR95Du?N942;HeY?}S?(Tq z`3?__)!_rw-lVI9$fXh~O}jc$P7iOL3g28z4-f8pI$7qxD7lb;_ulh|d(0`BP?gqs zcsfcZgT+!dbQuA8XQXyiaF?Wp!&X*!TFgCKH;I}p zpcv#MHR04{)va|=>LQK zFaY2?b;~0V83M0E-~QZJP)x6YwHxA11KsIb@R|i%6%M@*e(d`X2XBmFUe=YB5mkJ9 znT*uRR$cg##98YNS4aaZi=X3obP6(U-J`@e9=Z{C${Az8+tB7vqb+m&P{#ysanK5^ z$1LsXxDr7P_O$LGNo$j4-~4k+wvkJXvW1&shDsmPWGX}3)%X5Ksy`Q)p-lMvC}+sz z_?VT7#z0c4=`T7L^9Cs5*H|cQw*)|V7`ym~Z>FcNBL$<5k%A7vcQMwDV!W&j;k?FMMGnMxM!NT2@DHlC<1`9<#*oySR2X{I9$n~ zqM}0Ve$A;qiEhMBrX_Go2{@imYw zhhio#DhE~EYRY>U89WTDAShQB$m~KVN73ch!iODkeHiCv$1?3RX|iC}(Bm=_T!48C z26_F(#l>ww8K*zelfV@Ud7K&(n1sPgB;?n3f#UM>1{_s*a zf@?(d)eDtL$}f!jANEssKIg(@wqatJS>ocNmvywI{E+!1Djt%bD{@osZN9ycEkkM! zrL({d1EFpAR=|}ZZSAK5uEyQoDxqK+^k7rQ+xV`31^xpE=(`FMTghU-(eksF&}ks; zy%123KId^`To4{(1cX{8lQZnt3=g&_-v9@04}-FeIkS|1>jETQqel-fsFr>!7_TxL zbTC;x5NVK~YBc-6bonzMHSXjx|Op38MI)b4TJ7;gxD7I`)}`zAT1 zbKb@6*CCcPfYZE4r%jUntUJ;Eq#h_RBiu#PeG&Xt*aZtISQ-Gb`M;9k{6u9A$+_5K zpNTA1LT#-8NCcB6N%V@qj}4`%xnQ@Ju;AtzK>PN4Mlr#C6%=dw*m(rz`JQI+8~?O& zOt(dkA--zBhOP8E4@Xb%#yAtKg0-lA`yca4>=O@e@3!SU!5gsaDD!yTT^HqcTbdG5 zn-+Mff6AR0iM*jNtE=rGaREoY1!xsUNBgQD7!r_9k^@sht!#{*ER4L^PMG{pJT-;k0q11jXOSqM+RXXqD9XMRK$14S};Y z^M%DHPuM3OQrioVPnp#vs>s0x5lkFf%&@f8Z2wfM7O3iP`mHp`#w&17<0>`Wq8Ln& zK^^A76dD9NWd!agICsDp7O;I}1f&j}on9*_dkV6M%ikb|HYfvwHkc*Bd>6P7)^f+s zbruAjuB-dHG1)#gg{HgsE{2wN@A9TxG@l#@+nu3YtlM*iJ+yJu;!v}1GtgsQnopxS zFvLUcJP~Fi%>&341yR_Ant6rM)ckZSP3au`7x3r%%vmLy$S1j7Dtt=s8nCVtl%v#J zQ6Hh*b!KI%mMppX*v6U7gJ`&_kPuY-;^-<;+V*Af%@dLynlw?!3Zu(zGMAMTZ|}KJ z9d`?nrNn#~8j6A5Z#0a~f$9Qma6N9=t$IQK8oaF>|Jt=c;>2!Oi6PBG+cP^T>=gEjSD!h4?5!^^q`Z2%d%y#VX4AP5AFHORq$yIpB767Q^+0k; zw8^J)ThCv&zFuGd&kE@G2l)~l^G^ITHPxR`N4AdtK%(&3=G&;?hA6|Kk8N@?PX^xa znQ1@Q?pnju?&;XdD@5-8-(pR{pnUTOHe@?y51Mg0uIWlj-Aj!EXAT7PIWJGSsPkTI z>+Ae$mHDBX%F-Iqdh%43=N?#%E8H2RDk9>OZ#+^zykBm5g@aZwSFil2GN;rXaFQ6X z;QgJImfLi7OwSM-t7R$YRh7$=x^Z264Nud-WHwYq@zfQM(~My1!%4NBY??+@1C?{$ zc}Pmxh`oei`ThalVfDZ3jLvg)*a#Z#>1nTfw*M=ihK@fN^&AxtfaB=oEM~e_4S3#$ zan^+8mN)tbU`t&0 z*91unJLaA1MHE244>mDh-Nt|cV#}z>nKe&MP6gny$kd$6yBVB85V}Y8r@e$Pp}H;KUtY z^?tn75%%%nO})Uxs@cN*S0jUPJs!BoSlzU+3m)jeqkqh zPL1qwqH4DeKGlK*GP(8sBIR4#R(!3Cdzy)kF3NX{i}-QpPA{)l+6euAUBUwwAN{G9 zzyXTZAT;N+5IQddG#p1X`!_3+X3jK<7TmNm(-C9)X0JPCZ_}tG;afpD7vbDA)KPr` zCQ2liB>a&C?V*Z153~O#qi56)M6zfv(BKWoWjH*iwws;gdMTndfx5|aSb1TgLgg7O zYMh6vio`6R+QPx5DE&+xRneV(D1D!ND^&*%D&??`Go0;yf3P2TSK;ZjPY_7Pxq;T$ z3B6IlohSF+)o>3I{z{JY?6T0EeNh`d;q1X)uiJY`6#Gv8SCsn?o8w>w_xWJ;a^~|^ zKfj{mY;@VW8EVT|r)syeHQjHDzdojbXJtE=;JE5vvG2HNP1@o;{H!c*J9Jzk-N~lr zO03Xe&Le?nU6QY2n+T9Cv2IP)q@17M>5A{l>x5F0ME6jN|(7&Xac*2=dl7$b%TafbrZ>Og_uk?z_+!m;EFpNV+}Eq% z+%FsB1KIQB7Lc)m3)P^JpyqCg>CA~?xq#&IN6P}Al^OaMDP1sIEtgK!B3xa((#EUs zhT_V#Etd8vby>K2=RO|xU!O6NLB^%S8X;s0-cKQa&hp#~>y^YdU(K~*+83#3%~Sn- z8RRM_rm!ieBi(95g6J)g?H%v;g)?WlH7H`AsFyDYUc$G^`%1LPqFlnm2G^9UzGyL7 zPiMaT-ht4_TZxWt|JlLm)1LS6=G*U!Ubep|@9@Xp?YW!YoSr;RD1U2T;OPmgW*FDd z1Su~j1&vgl7Vy!sc&`7PA2h5Pe?Zim#LpL?V)tCk5;>(M6yHXyQc1|OYSsi)0I$PY z>i30$5@Wv}sh}n&%A2WKdreOOxh1%-irTrGhiTJS#aqAvo@)PHRCg1&jrBxlJ zNcXUHJ3AGDN0h|hep2FYc$nV0_-hD_AnS>h-qHlr z8If4MVwt&7lrG@mZ;o(;z@rSA+zTKj1vtrqKk5~edAmYLJi(7yQdjrZjOP(kS{mYU z3Kr0$ZO-*)pkY0G>AFH8?>}yblV#viz-DBahJC)VPR{)8{`_9~fJH+wDFHp1*~yE6 zL;3aVNOdxrWKiE&Ui#Y6{&5^A>aW!`ed^{=eS9=R?I{@5IF$digAekF^a%{Md=HQJ zJYVnURSOx}{fQdEW5PGf6Kt3Ok%QccwMr{U^ttGu5a=mtz)BezQv?bs%trV$$e;zJ zZw#ZxSo%+aUP(?(?N7?@H2XzAH*KiO*5JNVwTS6SC#8$xUmiWE2edyT)%E>-@l2;_ zalh1?CpWw&h^Hh(wM5_UXAB3=$U7`-h4(YR8uveNl1+v1nbMSvl%FT<^lKk8uZ%JF zF42xZ^^Ht^TU5OD$X04fH=rDcE^4r@55nUm3;fP*MJbEXio|<$H3TGzK_M!Oc(pK? z44f-d0UvxEn=@pFap`&^ShHDL?SiHU7f2JxXcXY|OTqvnaH~au%dTif-&NDpe{mYs ziBUjkTv%QvG}R&Mw6$neBnT7emU&QEeERZgQ3)^K|L&^Dw|iZD=nbuOOm;(JRP=|Q zw_X^!4vBpa*6$a*jC}lV6Tu#2C#272Ipn*@g5kk0Ym~qwR*i~447QNuyl9hDo`w*s7*1bW?yU} z75KDup^(yoLEF&&fAZvhTTVJWsfA)GuocfR&iRn@=WUhk69E;)7)Reh5J~z;1bG{x;(Ifk>vQMnb;CFW`yDMa7 z$&mj+;u3!em7_IQnud!OktIWJIdJs~z>*Y32DgZ6*f|+?BbORUVLx<@#P!d`{z6O zY1pfXu;rB_1t>@eXnTskcd9GcDV+a)!3Y=%u)9<~OFvU~CY0XFEl#m0xRu8K1N#vn zQxTNQhVKB*G>aL$8l)+RCIezEG7>NnphP^iPHHW1S6+Z8 z4~Fv{CEzQc2u7F`?Ne)a*R2ztblE8XX$8S_`8YTrN(^vNvjdeyiicpW&k&K1noS$V znM;plId|hW52?!3S*iO?{MQ4zF{iLO+Sk{b>lj{lonPLQ2Z{n!*5VFCTBmaC9oy)I z!fg56$@ALY;KYUu@&nI!5g3Mvgi{zQ0TZs!Si#*IT&o(CD$lEE{7oiE7gec(wmDO5rwDKUQq&a()?3M`un;d$8IZ5z5b->_+^sfX11t zp@YsNJLa4HY#!$92cexE-#+2Hy5=kFmrvpgZcKh>Aa%c=VcCBl_*>+knfQAe12V9l z61qRzq+u~AQ%-COxO?;9^X987msS2RghfWP{r#pkXaFsML;YgBamrk*h7~z5IAK&e ztK~SSG3f`nz8^612^S}%FGyNz5kvitnWTJf82zIZy;k`F=zS&3_&?8k4(CAL^>1?% zwpS_%G(Be1wq@J3Q2)s_H#Fj;-#DT1-!@<={@zQ?Znq!nm`pM>H@GOjwXVB1&P6F1VOQ%?!Yn6H z%hWCpwFTSZEj-E_6c|0c_jWIBn2mTY(5pGv@wH zE3m9k!qh?X!_`LhEym;&-OJ+l+JAjSuc>}bL|_0{4EcGbv2)gzS$4Mf3I_CKWtw07 zQ*8#BErE5g5oqZcK^_Zivv5pu*HiUP7*oU9*{Mn#`tW&{=7-%6j5g!T5%%Bs+*k9=@KQjxy)Q`A z<1nQsPf?PK5$OL%7qsk7l!`TL$)*zf%%T#eAf$h=;NsV>D~g4&(~tkutwjH)qk90TYbu4B?SJMU&4P9g=y(w@ zcA#pMx4OC-MntPyz0J%-dy$&@5C+nslgfSVWD5z6sdwc-ZPmG{KK7ChRU0L|-*9W@ zRS(m?Ra$}0gx!7`<5&8S3V$>$e~4 zlqUH7cCYq^?opfx)BL1lPriQ0$5J4&>~;YcO@i1ZGhO;2wbRi%yMudVZ3(!gw{IG# zs0_y>6V)C-1cw@`t|+7P%8JWZ@ORGcz&@68!(?;k<#t(f%-LBnD>mj4g3< z7M~izD z9mXDFF$ZEe-N=@}9lS7%9r5;{3lme!HxlgQ9t2*uYy?L0~h+_Bls9(0Mx zq!)3QMNtuJhxXSMHTlr+>Emh*lzyY^Ru)A>29a(gevr{oef$xJER!>QpL z!Ym`wtAPR$T$Dy~LLU>uZFhA7gQU~`C_&-8jQU^F0#H`lCxS&Jg_NdTQwub{l(dZ* zo{>}fcGexCc7j9fT#h#hEAZop11m#$C=cA0h(W|C{6ijrHjdn`@u}gLyP&bbUK8 zBo>D0*vO<;zW;P=fVr>?tpqmcDDVrMhEQhNp*iz3kXWl)2euUvbZ`5z+(d~om%S&I zU_>Ly==8r*J|f&6pFd98L+IW;J|xuJR<|c15~L3d#E||U@z6*({~NFjT3gcjbx4Rz zOOH|227ifXFu1J5^Te&A#T=%$mlMA`f(g)R3OO#TnQ>J%b7x@W1S05$^L|P#@R1df zMg?ki)32|lO);XBUyp}4CIIx9D?2~RMLy^~cI8;?kH1H!bjcJ$+Up?V1*?B5n6>=Gek#_7 zDmz{!&k$+>7y~naCYUDx626by4QIQhc04`z>`@s0*c2`NEfD-`8Q#wAM!v9z$Q@vS4WrZ+#Xq?-5RLS~nPa@@*;+ppdS8aRwI5>G< z%gY24l3Rg>KaaM93i9!^>*3i8Q8a&G-qyt%e17EA=;f6>DarhIIGq$!@YcT!qwRp{ z3@LGqiliV8!+cS-Xv1r@b?;4eJ2<*P7an^#vR+95PQN3HgAfQ2Ons(XTu8 zqaLvw?eVdTS|mqbA04m)-2G8bqs-~}e-x&;V~md=VU)iI(6@MwmX^G`yFurtyQy}{ ze;n+uq<`)h{q}2P%GpK9as1=g?anuWN+Nh})@WEDbfo|xUa;Nrxo^TJ<*8~ z*J>&W%6qILPS{5UN8q$>6wl(au%Is%z{AA|@oScJ6S7a`VLm zaZ&^}H&tYeG5+{^MW%xEZB^&xyTz&g>xY$dvAYv}l-zsy+Xifj*C*McI<+oiIEN|O ztG4(L&N>>zev;g9bsa6qzk5Gp9_AGW1trOwn$fq`IQxPXcyC&`y8GAD)`gb~z1(k@ z;wtLO1n=Q(MrNBi4d$;e@%am~X*nn(i7>K0Z{2PHo6I?UsbT zj`ME!@q^Z%Wbeo)-8|ht?wiYTc$LS9O+Gu7aWD|V#eGR8Bpa_xQULQvf`Z%`W;B_= zN9HL7@%H?YQ(&FGeYuAFbV#e_enyi5reSOGjtcKL${&GEmZ>62gc*v#K^GaP;t%s& ztFA3=Pf2#@bTv=KMRxey#Mzzcy5G)3f3~qle<@dpse1p|Y0sMQS^JxzN{THpY;7Ku zcYO(59kWyv$bVcN8s)^^MseEX*^Ui@-_tfw2nw4Dp?Dl>p52;xU8>1s zY*^VGg{e29U;LwKTiDylH~axL1+#7`|EqUYInwro*}RoJlsNdTjLZQVJ=Q(F%<`|e z7*ty}bDGvaKBY*))($th0(1;q=UBJ|Z%F7@%b^Ru3bjZIwtC`)OW8aqg>K)pTC-Km z7}_UxBFPdpH?`CXTzy3AaN|P9DNcna>h{HBD>8@r$(5HBUnocv^53?x4{pRH9jY8Pn)`Ep zEZi`@)tENY#BxsBF1bgCgV0Ue@`(tp?Yq6CQXXeCi-@)1A0a{fittN+it+Kh?G3^} zZr@h*a-eVRP#&6z(^zJ>3J;TTxFKd78Y{V#2;BJvsnEH3tepuQvp62-BRTJSbzG(| zOd-;ijN?zkR8_VLhW7i&(Xf*w#WdxRH(u{kDVv!8d!;4PkJTlXgk6#ahf8WIPW34q zXD`Y4jIev}e1pu%Mob(9Q>HLv-YR5PADJJi@)dDt5HrOFRcWhuVqNqUXlWQGU3j96 zg}U8+tkZxMgnjW=n!ytT@vFFm$YW7^&@)?Zicy5T=Bk`y>k-tIr%hKnPfx=YN?(_G zKa3JaD|0(YB0WU2ix_z-*Uh%C-LLO=|&Zy&P+@;Xcp6C?a9F+4m?m#=m*aWYE><_gXHGY*^Aji7?ld z^_ejX6~CJ7*BlS5SpLFI$fK@R^dfF+d|j-?(n8oRglFW&Y#wRO=tF1gdG!Fh1M1}K z9@;WbnT$|pJi0m`M=6;$myZ^svUEt>vZtBCgP1Ay-~74cT~oU6wE~RfOe&;kM3Xa0-*C`O~^q z3w@h5Np|Nu5N#E@;D+B~6eX65N$9iCzGfT<(K-4q(T1$-uk^rvqXR&hnujM22Ip`% zt|_UPn~4M7tdbW4*iMOl>jh+zyH&%96Y>>+b3F$O(M3iLiNjJ3IvE+t--nhr&44^Hl}+l8W;ENwS;LC`uvCp94;GqDlDW%D7fwd%$rl3MM{7%eI5 zOF-6ho*>LGM5b$N!YuJuUCP31;AO&d#%5!bP1|*m0LkrO{MO_s+mu9iiQx_RmFKhB zwU{-6EIqELi+7l;IsW za?x_pV(Vi#*X=|}e4|qS$Eo^;15)^1iuuYCw{P$(f2u8~ds;Tf`jfgld_Z6HY}I`F zay7WpTPd7U0 zyQXwxyqs>6t7<-L|B^72%3Tw#Mq;FFx^+5kPm(fUQW2-u7cwxec6j{>sb6u$PM|fN z%vAUAc74`%Z{!b$_m3Hz#V-{*7_Sv^3zo8aZA+-9Oz-7eKDqKs)83n<;;lY^oxS?= z(JQxcHd}_i7VPZy-LS)jFtHh9U1n5jM3jVt&z71^m|O`HB2|wj5icz8M%!+BsM)zw9m$PjLrt$>GVif(GrJ=*zt^d580>JS9mSaff! zLJxeO#Ca1h+&0f{^7<2Tv#pTpx~ttvTUy1{pP#=|C=IPLZd#IFX5Q#e64soI53P|< z9^;i0OW=lMDv7$k+Giw-pcaWH*k&+u3vtqilv#!E*UYceI2aEJ#k=(*_Jc=GU;Jc> z^1|`a%iW8{wMX78zWES^ncPNrg3G6AVsZo5Ho_1&uL62#d9|kAQakJP$4?hD6H~_p zxsVksI@=3HcA?P@TtZ$@BnC{Jb!M{|W$pJYmv#iU95R^(MlJSK=~{hw8=KfM^!@#~ z39eGjLGGrbTZcDFR{U_K?#lsLlm=n4jKw`zpmon#rak-I(`&#$jJKbok)X~TAXB)My z)4r2ntdJ(LeJ;6ILD(UgUJhPyLwnLB(|%|38fmT+x|2LT4tqdFao5agZj9v&yIs%p zxoeSG$XT{k{2D4YKxQ80M&JrT%SrWO+`}<=?Wl2mNx!bqj8;fr{z)-7lVJ3L>K*4P$C0lvg4cFHjz^C@p1zQX z-^s$D&7MDvQlhcLUee3SC=+|+slI*?G(nelnYr^%Shu#_h3zZ53mk-Q(+1>VDH08P zzUnY{3op@s%t>U?+Ut1kQtiNs7=>Iy*VgQALEDeE&viFC8BvWEXO4&hb`red*udkH z;MSJJ{VHj;^Zt&En5*wdNb_9pgLvePFeAg3IfRgD3&8Th^lpFh!Kjo=f&SncpZ+=6 ziTAn>_bt@xlhB$2@%dbeWmLCLV~fTJy*-%@`=}c(HV0m!NmKSw*-Gj9{Pvay%{lQV zF8dw_Px3sR1*nCB)oFJJ2Rur&5Fj?Ri9cR1Z_RY^kHL>bR`%?AUU;-Cc!zL@ncF*jD= zPoS#abWw|Cim|a8y-uhxw%6s#cOPNJtBD3dqO8j|b z(3Gw}wi90tgt8CwCN?LRub>bxP))l@O&AjnROOzjvY{3|gJyZI@*?p7{ZX`;* zi2+#(au0r9nEtWi;u~FcM}vs*J&Ckk+U8H2zGev;yswYBYkc?VRJfBl`vh9m4ao}O zk!;pScWT!MG6gGzQ5qDOG;T7SKVJK)M% zwpOhn1TgtJ6=s$rQ(VsuaA^q}pN4hmQS#9yjLtsJn6D}_NYveDT>h%eA|i$3)o&x-lf6>S<*yK~`^sUzs$M;?A-uD{FGsK;kOy9m)cD zcf@_S;I;Md04==>X|0B|ArpbYcmt#H348LYVZZlhp2v#5l^8m|Za&%a?Hy)aqV8?T zqi`%ChgZ00<+yZQ&*DWoAp`lFEd#Q;QbRC`{sz^T5X+-(dj5Eplyn17+-7hXxz48V z*Y_@gF|av}pw_tbNM>}8S=Yz5NL1Gkxos7Rt+B)!l;QW^HO_SzN@9V#u%g)itX5*# zBJDbpu@Y*;_6a=J3_iUeN5rG^;q_$67K5>k%cnIzX;~PjwB{Xe-+~b3 z7ZDkbFDtfiBfDuGt+VOgtK(w`mye9PK0N%LTt#BAL5C0ED=}?tGOu4pGvN^fZ(?{{ zjw)8nEv`844NMd}6FokjJFIMKn}N7NwiqSOt@(FGD86`d`i`I=84F(}8B-}izPuZ=+8D5!u)H>e<>l%Ud`(%q?ugoK22sFX-|cXxL;NO!~CADo## z?)>+jwOBJ}tr_^@{oZ%)r#9pOZLN$9&9jMy&8|jOcxcG%h9}1cMc!^9Ml_wxxa9~?-n9pDD}&iIYj=WAyUM070FmxLUcmt?r{ifT+-Ch8T=rMe1{hR3Sg2ne|yp)S3pf}*g{KG43Qf50mnuH{vZeenfQ&&D~8x87#H4C ziX_p%;CjzG%7DY;HmjPSc=uDqs-Mp&vNB#}5K@S&UlP`i&S+S~9f(l-(Hz!ulfmO4@J2;&tX4BKt`!)m+p)Fns7ad=6!fX<`js%7yZ0nV&AAhLYz< zNNUX;lU-l;{chLrgy!<%>u?A?i1?HSnOU;z7*AgAA zI-RPI7Ta*`^sD!j)@m@|5D^W9(6@QC7^?Svk$oRlgn~^R@^pRp%Upi)vZhRP(BnQC za*Bx6nDat*a)v4DCn0*7TaH;oo%-p8p9jD5>j&6~v4bAOF>W>~BGt125U0&u2YUxtGpTSd8AoTbTxKarRyvMLUB;gg1Pg)G8R@iM!ztU$Rf`lwy zPdpf<4I!3E4x%t`8DZib4z}*W;4Gk|{H{I8caC;C2?bTky8=f9cn+bDY1~IfH{QB6 z9Y(b8ZSY`7*J5PDqN!o6>9;A*BtIIhGvAO^`a~1mVuU)Fk}Vul61uy&Z3RU~V&?i7 zfBkbOB{5p+z0?mMe#n;VTqDMIBP=f4o{7GDc!l5mvqYAc7{z37XXaPyiA4>319s1< z3nx5UNSnkRY#AR~Hk9*>pI@Pp`ec;_2A(4^H|u+!u08ny3!`{{Hk|8ttLuGgG>ZWt zc^|5?5O1b0TcO?ug)7*u^@XW1{hwsQu z0jsAZ=Ir6KXqD8SXg|VAvfnmT*krS(6+PPB>BiZc+^P%|KEX6VCkPj;#u`}0h9_Tp zO?j1)yN=z{MCI@bDH*QdSnfpa7hD{j`-XYTe<1%86%A8mrtv%8+>#|HwRCE7_Uk-K zmT+&-l(lEZ9qMzb(92uXR1`dq@Mzq0Y$OvG4Usc2yIp=02jfEk^I7|C2N^`V_B;S~ z6s;5{`E|O(39pq`k+A#Bge9Bc5+4~eho8IZzhPuG2T#24k%AApBPSxYt%^-Crvn1E zV)On}znY4W=8Sgg~4)V$+5d zjdCV70cSR3gt`LivR-+O&Un84Uf!XAz09F%bE!E?7EAM=>KlWA*e(t~gY zIh@?xRls)*9Od=uni>L&YuZfE#XZrpBOqHn3DI`44N@6XDJ@)~wr}0Q3V+Z!FrEX| z0o~(D;v4OEOprajcobr?L!c`zvE7~oU+zqNxFI>bE#8xL-(rZ}Mr?UKhV9g;!OCH6 zrEgp5^+XLX8+EG5aNtEpOkrMPGe59D61_3dP_9B=D+@PkcUwP|VS0^UiJoc$rfiJ| zRV?pMrKd6(Nm*dVxC_0V2*OfwMl>{Q0wcGEua2wEYimjBdq<1~e$Lo0BAyB8ob%q|lX;C84w@2qtylA3M#2w`B z2TKrX&UTewy3SUd99iho(P+KJlJ;=7=FJPQ7z1BLtF>@$R7u6PGB2HU&4uev&%U4oNdENj_0@*` z8>aW2m7(|ez91AT5lPA`9sf&GbUb$a>b7uf3}`aGEK31(i^wNMl=Y!Ow#@r(a4 zN+SQmhZq}uNZb%T ztpDn0@m7|y*^@pG>yMhe3G|CeiaCWW9Q=n}?(W?-msdd*S+JN|gw()@Rn*nh69SP!OsJJXx=w{gdiV@yrHPI_LBT%ARhxHWSu47lGnyiq_y0%|+ zgoRSYP?|C?GE_8PG#rLlC+&n)R=(glTw+8P z9XvfG6ai$-L^;{nm&V_;-n;tx+LaBgKkK%_n_U!y*`E-Wq*^oAXiV(Qo9!{Tn(As~ zTJk2mR94eJ@d@@^d}*^KYdL#_5%D-VWhgJ?d!EKuOxu^1@DMy2ZPK!O>NN6P>4+or z=q3@57Oqo%KJJJ*-`2^pkDfD6WxwLgpr$NcY==HZ{}jG7pVH7>CM=$zAk+`lJ!8o7 zD~5r96WTH|YDbjo?=G(>D)W_h$;)rCMhV zhh@|=J(zwRO)_ZFja3zmC8$_E6LP-ZmAcfhik?$*l=QwJ#x_sGS^*ko&Gex2#o0DG|%=y|xR~A8JRNR60pjc|x zcnJz|eJpRKXtC#<>00BwDdf;?b*zJhA+ou>8UzlWjS3fMUH^&B+7r2Kcfey!nrQQo0I~JWHeRzD zJZWS2_oomODIK^br$|wFF`ZS9j-?1o7;CH=*v9s&XJCFX?1OV4A(?Dp9n*m65X3z8 zA@DW+`t@smD34A;LiG2-)6WuC(D&KJB6F`IP%9lJmlo2D}RT_;Y&%}>epw< zg8db?z*dM+YlF$^5+*I7EGoF^A++WgtCg+IkxQ+Eis~+X#DrIQc-}~Tp{2fNCL%I* z84pg4bxEkwkP;tImba3UmC!6#K<+yRCMFYyT!4yI|A3x_D3tQ%V3}d3+44-_(3ZOfmFl zaO>|BD3}*X7b2>P>IxHT7e%xfgWQduo%iVqGY};+L+7-A4G!fPi^X0!^KgApc0c-BFdYn29r3G56INvp1s8UM4mf@tiQhnIFbsdLMz zDe3h?>X7U(39hD2K$B(s`E@OER8&t!y{o^V8NEg{ zRJjTy;ILEucU41zyDO0|N_(0j8)J?~7+}JZE`3;+4$-zcGwIh59o9rRezm|mhtJ~-xKI=b_6Ou7 z%>E0G%kPHdsicS^2+P0{>fBml%YZgukV%hkvwRk6JnJzoEVdtg7VViBOxZO_`a&5| zq)o zhupq9TDSlc@=)B}^cXg+NU&w-t89i>r9O-f04!zkP5PY_0^VJ0bp)6$Kd_0g82D>4 zIO>v3X>z)_e{rHbN|1b*ix<6K=qcLEz(@q#8T=!}m(IC_-0X*oSfdWq<7?N)aZ!Rr zm^r-b*&k&M*l5luMIG5|d-sJp2dQ4TZ_c$DKLLp7Q-$7f#dMVm?Ck9Cec}+f24nkL zT(bmdVfZa*{1RAYn>x>T*mVVTF_OD^Ou^5hpTXhG$RSphF{C=P&{KpFa4$Ir=%?0- zih%v$wONjnQv2&H=pe4~!O&*h?St;Gj05}YeqNg=T&9_jb-?Wix>UF~ zL%wXFrEycC3+m{^XuvarFCu4S9kV3Hc1nF`GUd5Hk83u`IN8m-nPqH;C}d7xQ+s->n9rJ;2A&87$u8eAL!O z`-_OElck%@t?wp2nigaKa-gQ>1QE%IJH}bRBMoM9Nahl#`@j%ZeWWP=$bQpnbMF)S zT_G~X+q=Pj^3~nqxml0*FQMEvH*EdNTHW=S>xT3H3AU--HOQP5(9QbPr@^9*aUH!p zp8kw`e1Z$W3yIZm1w^`d`*hxC@<3Y+x~#&D@?66B!~yx_lHxeK?(BCGNwv@ zRiBhGo*Va^HDv!fP(AMBhv{zmG+#Y7tcaW(4bjJ#`Uf|6>hCn*fe0NT|zwWXv@;Eqopkg3eAnqjqI;bG7Aa*t( zYMn#48aB0m_Owv&d91@0Zvr}im4Z1^o})Fs!91h35PEeaA4OABQ$TQw5Lz&lABsYp zSeNkBR`3?ybD!L7t zSV{p6@0K&Vqta@E#Z)6v`VB@LY8M+><+3#YoDnsXy0miHccD>V9?D~c5<)6jref7` zmlI?aHQ*$B_5AtA4jk^NK40yJjbC!;fD;Nw<2eEPEK$HD)H_spd2-k2xIW{pE0il5 z6C-?ko4-l-_CL^uxVuxC3{dKokv@9UWql!07QXMLhCx14DTd&@qT)e4dvXethfQEv zMb7^oKy~)}%1&xvz&z4p?TxHD)(1|H2GWPZ!$>W6mFa}VZX(iyFttX;jO z_53R-LUQQv|LKnmsv_eZY+T7!K&id1--Ih&*U_wenEut>nmqV;jFXi$Z&00`b%eq( zw91YWsh6b;GAZFWo_q|Jn@J#gXTUH)3A5D>SBiXLSk3pfE~4R!3dR+ex0VLF^1mrT z7cA}d!QFSK63s{nE!nQc#(sZFCHGFa;IuUGh^xt>6Rv3ik1_^yNSErG7hBc&(_~^| z;Oys~hanj8_AxnOf=q1EYr5yqP9MUhL*cZ#54{Wl(}y=Xec8G_o~MUpr+U*Gqnf9Q z$J5_uaprM_g4do1)R~kp)4kB)$tFeNuDt^vcx6ZOMbhIo7Duk}BfIJJsE+31)a$e_ zn7~6+-34+stw!lJ(k4y;!&gu4Ilf09I*f>_NIK{BQv<@nUc+Q8@4icDXbb>o3cQ|< z%#G^5T5cmTH=(|hS>~fb^2vJ>&KD8%Wl?g&@(JVg51aHSg?rkjUz@IMWUWnyu+?7I zO*%FM1mrViLQ&|Nv#}cF%pr%&pdJnA6V8QnCUFq80U6YPBHEgptJON{mK1A}=2laq zFm@#8%^#T;Rzqb8tz-VGOAFUVw81ofa7URUn=&_3;22f*TQh0?>aW0_e6i)l6H^byyK0x(rsbskynndY$6FT-;VPqp|tYS~Qa!FGV0j=hpGW3BzB8-3lM6IJiX} zE*1t#m>MmslQMk^Q#6XXIFj%i-um5i-!Lw>0tK&X6E|)lkfs zf5dwSmp)TlewXF$N5q<%A@*BC4`InjN}ul4L0m?tNb&K`5R+bS@+5nBOD&8~?KW8L!U^0j<8t{30NH?R*~RT8$&H;W3c z`UqEM|LYeaeI#~) zwIFNd3SGIzmnJe+4sRx$e+rnRoh z8Q_XAK~kI8#-pgMEptHgn*Y2{>K^A7oWU9`k+pl275sj{zEUGY1>;(k<=O$oA0R=5bcl@5 zufmbb@jWqqme#VTyLFLm%h^%f#(T;I1v))MV?wtHUoC)>8GyXoy6Niwx|E%0O$eGn_SvU?6Y5<_v%HT$vX$t%quOGefPnt18b!xc_s$RuMMR~5*%k|Ws{%k>$MqZ6u~ z2kg|LPjD3fD5!gQIispHb&~bNnjyFN9uiUy23^tfR6AxQ)qhFg^-QF`B@w6C5=t?w zbK`PPg4U_$R?n^F)i;F#{Qj##YLi+WDFFZ0{#KWG0mL8fZAPDpz;9aYOPd2Pn%T=z z$|O4tD{Ys)u;%xXsed+##Xp-}HVQqLarqSvW@=soVg;{G``62B+j*i#?zH%RJuPKF=n?i zT!75padt*QyH45+38=coCt!p@IvNPvLFxK4Hn8n&k-b(tgSX={`TRsMc{63g2U9y~xi4ld}|H^7|#4U)T&xn_{kN5pPZwO+ViG<1R$ zYIpDH%`d}7=7c)rxg_j0A=15>TC1<@XW(KS-pcMRMD*fL2PYGxik<(qR4<0Vvbsoe!!ZHz;(#S61HFciS28-|oUF zs($EZ#~)ygc9P3*ciC`l;as`G%;Ia!4H^zc|zkBQgckA-m4gOe-rCkd6#6FX}31 zS+A=Bl~oDxmu(;i6N585A7B^6JcIvr&X=+NapR;)>+^D9!eXMaj}huO1_uiY!h}#C z(`2kWMX#uI1gWEVxqqFgA)3O#T8q4J?YggM>#s?HYWuuciA_bCo8YoJn0l8npby^ccN}DAL}8Eb z7>DsV%9#BoR^G7bHAFuFVYgGTU&Lf*2QG9aNFRnxPO1R_KutO~J&p24PEIbvM1k*d znnbu&Tp@0Rc|y$+>*_a%^mDJIt>u4AS#26tvV{sEAw2SV`Q7cp!Ox z>K40>7*avh1NgV1WoYn`*ntf7I%G6PYyWs8yBQ@o*nXQjLVoY1%a@tWr>`~z)A1fM zySD0)e^a54KI;IYm!4f6qIkZ)Syb%EifzAgo z{0@ZgLwE8%_0{XwY89U@7eg_}wL5I4yA~DW2~fhH)U9;>2+|JYzqhc9NCFC!4rdTu zJJT!JEVO~CgG#g=@M@8GMyF&Oz=CsZ+aTwj2LIZ^!ov5~goFfKA|m-^JxH_lNJ}${ zGrhFK^=;-KAu@(Rl_bDl*xLO+;ei{trdflP_)ZYFj8be-Au5n|giGau6 zx@LHsabJH%`x|!5p^uh%aEG^K7v7)lCSH#=z1@p9ta}(01~&hGNgF69ECNCso=TIx zrIJEvu#Fw|g{SEbY;?Z9R2`y6jIpjb*K)?a$m_$MP0jLfw1nN$~@sT9m9{(G`fUswXf2AjXdlp^p zIcG1%YMn8Zp{aek0hJN-63bzFsTE^m157ZGCqj6%tF6uV0xDX%=}e>NZuZb}vO-X4f4k0mbfaiQDZ^$REUmy%Xy&viqBuF7dM=gCE-nszaN184En%=D0Pz&& zv(x^QCk>*oP4V|cIKpNd_`qQO>fqn+Yo-^zz(M8#pm#ypJ z=RzS75e*n4gh|Zy4TjrEd=((on~S8ZmOXS+Q`4jYM)>%9$tb?Z@b&OGmrHcN$k5X?23V{Mx*?>oK9o9(dQ3iMbH6t5b=rf%>{TfTj zICYY?p*6l)ccz)F7eNaA%rZ=-1i;*W`56#Gz)G{t?cU*ac-0uK9Iw{K^GSrO_Ch4or1< zBoU5B>w+*&y1&ec*J-~=`Ekqi_PZf5HlpJ7j&(GuM7IDt)kU|~De8DWtgNt?tuMtS z9_`ZfS7#}&)M{B7E0*=z+n!!VWP0`NiB>Ls`Yc^JdeShbO3@G98PYubq0WN`Hc)KC zxW2ybMa=H+<>f`FY_&H297&sj3;&x*Bd~}+faT0BYxjps+k>m5LoO&sf)Uw@tYd)a z|JvCp32)1_N4G{dCsVKQ3Frqvj~v{w&L#EICC}B3*?O5p#I3h;un@Z`*w?uVdnD~s zu8Wr#rIH#bO4XHRoBDVYrnKod^YrXCcj3(2Fl#_JfQlBwq(M7Yt0k-^`ecg=MjkDA z<{_qPktnWENJ7B5eY*~th39YH+k zjPB9gsVnD8Q|H-m*|c~2>eccLVrez!^_gW5EZALz*Cha6CzaVNm)*EvCDQ?MLh&drj~1<@e&=5bFl495N;;D7S~?7x9krPw z$u%62OCkgtG^|=_Y^=c+^b{0%kjr$1ja9)82FY22j8suFCUHG~9n+GC zCh~Po%ZRBknG31($AQf`3gIaZHQMpg>nvG7Q&Qp{t$P}B8Qa`$)=C+~!|^*Xftv!I z!>{CIFEDyb7mu(vw6x6R4jE1XxkUc>@gJ$Q(En8q6mY0{L&xOUt9S8Q1of}e-LBJz zqx-_@9MkQpau*5gcGLHp=oF>edI*dDqne8-O9{^VNM#}%90{GDFJRM!61=vqZr{KZ z=t3SIo?(+Z5~VB;BlW?s3_R!34hO6j2|YJQ=ZGn0g>mNy_0~lW+qP1&NxAuF|LWG0p3>w6v8L33z*I`x1A7f@4EtC<27>|m}zlRFN@ z6)db2vmG;ue-{XBrKP3JO5p(!RkNbu8G-`@4h{33o0lhWh)?G!Dn+#pyhs(RI3wh_ zrFEA6rM5b<75JBo%&MDdlC+7}`~7W5Ofpftkr>;oR15A!RMPBEtaQgqeGyF-ozr0d zY=kl%*v1QI7Enf~Yc@43D3e29HV0{sbx25MHi=;UMz}yZ47F7w?EW@?6BDjnxiXHB zha1xkFiG!E>*~VXT%Gd;RG9)(&6>v;MI)^+T{VjRV> z@o=WRSDIQ~^(`xN`o0M_>b-N@&n%Ikj~v^XJ7MQtVK49CKCbdm;@h0o<<#BzhHbBN zG1;inf0ved%ck*IfT&=;^8SV%D8S#yNC~+sUm>aDAS6k!46BJa4l^qd3k&>5cl{WZ zr!l-J*j%rImkP6dOmK=Dn%W#_R}?|WhU76&2>M)70regreE}du)Ft|zgLLcg>IqYucx_W$^$ z7Lb!nLu|=OnKh8^g&bU?vA=)2`}_O9o+DfgP#XPZe_|N@nyMyy;lU zV`8O%&HbI*OqL8LX0TR4{G=N;+8ni|V83MrQQXy9lCgY7lNK2|{dw=9Ow^)=4dZH+ou|5c6O&1lb0zU7#win9kq4=jX;LXwE;IyKK zW7%=@gdvy~dFy@=oSgTdzK3rb{{8W>zuA-tQSwK#sceZhlUlHFoH^kBoI8dlngPLr z|7s8mzK_npZo2^HuQif08C4QpZM1sYAa&{S(Lj*_eUf*Y13cruien?@zVoda#p9JH?9>IFHo}|#Sh}6vnpqHf#e@&ZTRJ(~SFl}(L!6L+ z0d>X+-$vkhbTa#L+Pq;kbADex*^q{g;+T-9CQ4s7y?o3JlhGfC6=_bLH1yKS&vTmJ z=ZSpM+o;GMv-V@K<)SY(#s|bZ-Fd4gsRAmv)xyVa5ij$E=7>j?eLq01gnR5(yJ{l? zqqjSt8RV19$x_r1Mtm`1)3WLIBL(x0m&1UM3kYno0X71~BV{#R^*Gbqht0#*w8*sb zjztb1lB;*mtZR(~nzML}+WS$2Y4jH|5H`z8KjIDi>Dcb1iX=rhB5{OoTWT8>PfWR` z{B@J68jmPNHVd=q3@O9nu=vaW`t?;9Sq4QKsXctdkVKfS(cteXY9D9GWqR_&IptQa z<2V#kI)0oBuT#6BA_nkQ z#T?T&i%ReM%UtpoM=xMrSj9YBj@93%OY#$3E4&r`G?TeNK4b;2PV~G#M7h(I@PKag zhPd-89b*`+7Oo4YfPX<#1<+wgy(;7ar1ter?#cpPE8p#4kPV+(J|-DJoT>r)9~@Gl zkR%A@-W_0pRLyC8Gnv(?#}!KSSZvyrS#xPnh}+lI+?O=W2~GH*?jb$;ApFwIs!>yM zuWt45J@Pl)?^HY(GlBZ45zmN1TY@J@)vDK!7<;bYQCP$5ALY;A#hgAR_3qyiFz{#% z>51;8bCTSCEJAupuv+gSwY%GsFkJ>y#*pJdm0Is46v9gLKNTKWxFKs!j~R+N7k%U ze$s%^V~?udi!V^^t*3G?D73RT&db2>#8b%pvK=^;$@SqVCeO(i0i4}TLnq3o58mkT&~@+xNBErPsoakLl4btI|Cz2hA!57BkyVq)MLy;^jobgcur?v6CHE z7y{bz?H(Tr!VV%ln$5JIpqJ;o1nf^ML6^tV`3|rBe8~#i1d%ZtF=8&0E;TWXXNeaV zRw}-y6rKpD#E_}1OCEr8z$iq(Rb|-kn?j*npOjYGD9SnlB>ygQiv<%}pY!DoRCW{q+> zv9aAB|Djl;R4z`@2{6Gtix~O3go4v5M~W!ZGC;hU-*d$+;^IMtQkwc z(SK3cl4OV}8GtMbP;Qo&KRei3r~(DE5o};@c%puazawk=;58S|w;|oC?ydcy(~;|2 zgGJhL`OoHygZ!5^794K>M!p-;8o2MKCq=Xbk9A`BmYM7{>UOVz~horJB>(9lch=taLiA2lMk$RFtYp`L*z z09pMBb~E3l5nwO$sp^ZG0zh9olcecRU~cpV;Os;pt;ZmpS|%Fl>%W_$npZXJ#O{ke zZ1~|8JvdIssXhzTwe5V!IA z3~0;(Fa))bC3@ep-sfxAU6rOls(@9mWtGlT(-8I~XefP0u^cx2+~NGs$*pc;?G zMcSD2TQzH4zXN*)xuiE-R8?gq%A7ba--{PlFpo6VF9My}%6n=LoTEb7XUUgE-z+a3 zT#}TLs{c96#~)4F@h1M9;I`<6It|%%Pd0+f-f@%xol|JJto!D1+Z&)j^{k~o*}Gth zy}cGbYUa3XMzObm>o%$jK7TEmSLDn^SJII*f?s?`7$BNC^{}^ZraZAUFao|?+x#71 zX|{>b6@p&iGLi#{==%xl+J$Jet|?X(Wgbsk?#S%6Gh{NOu$(jCiCGZS`_%Es8gP&* z*V{^0${}g74Z0*`#bAlejdJOp7@oZ9-*(-U2~V;~Id56Ch|Acc{p3Xi4CybFYK?}n z37zd#(#8#xdO)v8o8|d^Z<`n~81ZgP6JTN^E<45-IKybC4i?k20RiEE`4Z8UAU`;G zcs0PZgdp)zdawUr?|3l56!4R7j2J35bA7I>) z*)YAwEbn1DVnou05G}0j5%m!l_NO=As@(Ode4+m@YI&|6yg-O!m215kS3q!`4KC@e z8r{80-cOeI40)Qi+IPPdT(@`mxw{SQCYt|$(W)j^AUlLH86|`2I>ex&RIRM`sKnL4 z*P6t|dA_iKMz=hCM5Kq@4J%mh*$~}2a;V0{SO+ds<)OAGyo@H~?U}=8iBu}F8(l5u zt?sAkQ~_a{f-OSG7bO8&s}^y0?Czjz?i8roVNcW{fMk&MsX(0=X85&!91DXv)Z*OR zw~(pDfXx2RtgD8I;}4J%AvHQ~ak!3oSxV?&*d}=$Q_0|s+m*2W!*9|GQp=nFwwMxu zohJ5UcR>Y$jVwmD%ct}f2Kf;}v$dkXCKsTCOK`!NR`@g-DKh>}f~4jioJvqEW$1Lp zzitZ^p#;K9rLKX*8J)>GkM5E@eRb5_u!?B0KUlJRrHl0RS1yVm(zJmV=?Ey|yCoxu ziV?uRiHHlM3BTLt9u z+zl`7qY*^JqY1K?xp=uxn$^&wMSt?t30K%jtP0}4w&f3`nSc@nnwleR{CGCp$lc4l)j=^w z_j}XDSIe+)5SGy4udR=)sm`_jbKU231dJ#{_;cXQP<**It{^rn0s;b($^zP1$q*L&VolpFX{&r~y6>(5kz1 zbmCZ}V=^WmE<f1c`!@#@jYW_||!LqDEoEa41M%JM_bOU^OBuh>1mFngDEv<4yas=c%I z`h4<6ZIe0+`uk-@L3@E1nG+jWty#78Q<;J$^3DynX0=*qHH8fiKO==3%u0POXFZ7p zzSI1fWwHS$^61}MCp7ugA4xL?yX9e(umm$%!_XneT3@m@5HTpx7d2~TnE>!^a(cX* zrCx_E9q6ZPes%G4+CXrC57*kR%jC_*WT~TbDP-bz0CWiI^S57X+^WxA&v-rZd% zxHiLUwHyeRFvjKXyGrm2`2g#6z~`{DI##B(vyujg$k)9+Yw5sm$QFzJOqFr&)6zeo z1l2VMg1c0d57BUYjNWNg^6S5$IgUAGHO*xF-LGKqi$!|VxJc6M&gm>ir>W;W;fR;- zD(Q>xD-LQBu!So`3Nq=Bm6lBIA-(8NH&V5+QilleUZNa9sn8tB84Qc6hc~VpVQP8C zPT6HYTE1vMr^F_0&y#N`Of1MLMZUAhQyU$KiH7_oB}yh4yP7CpF^Rs;N)##ZS9Q_v ztw==PN9faRbFONhkYE5x0d+F$+If<5AfhXEpbr&+g2G;XcaHb8pwR-+{D2xZO^+ba z6+}LG#RQHovr+YB|4I2sWrgooOPM1a34elUmj4RA`MBVyxmgyWZ0GfHe7080k3-(+ zZU9p9gB9y|$aQli_7bSoy?vnLoV0{5O!U<&6HV+yH$$8e6roMpe=2Q$!d8d^K)mVt zY^5J(7K0e=>y5$Tn_t(c=aFv?+xV{tu_)%UROO)&Bio*CDu+~{_~%5G27|X5m9u&D{celj|gx^$`0Fj z2=)b2{RHaFh~Vjdq(=o8w~9*hvt6B)i%SZZ9u(Z@fWRhwbHYRy&>~xpkA*+VVb3oX zWJ(+9j7CvrJ+Ok4xw<8POYjGrhlttc4EqJ2-(n+!q&J+M4cI(r&qA5I#+hItlSj=B z8I{d6Ql}w6ga#Ns&dh=U$O3A<-paYU22|}G5((WHFuk2(s8}{cfrFK2$ka>lBnu0K zj`N#pp^T+ujywkraBL=efEETFn|K`BY)$x^-)A?%#8##BvIZ0+1a#X$BTwW~dLg?3 zi6;|MMDhWUqXNVWFjiC2 zy6|V}c^@&S5C3b#fAzjqP*Bhey!WU#LE&g_yKT5jeeZs4KaHu_sBCy;_RH4Um6W-> zDc7;>vp*Lbq_9CX3wkkYASPgst<+~xX9+Ku|MfKl$fxT(dq1dO*UOswE{TbKgWCEm zz%Zf+JUEhX-zG(jfglb{&MbHRA_6*J^q=@`T9+?>5%3!X7e;ZWDV?~J-=*@A+g6hc zdbaRuF~y)apJa!fH)lW}k4*imr{^Sq@Xlrwxzp1cuo+~17)fT%O;WK-V zQt*F}b%ZV+$*2Qj5#*u}d{BCNVu#cOlp-N2=3MOIv28ye5>*a9PiXQMqtJ$=%6}r; zcuDIuW~Gbv4>!0`xVVyud=&>`)VibLWp(=qYpw09jD*9o=*UnPM3i*k0`mpG`RUOd z??QKC0CM9YqFRGBmI=*AxIC6~A!uevQUY~|+I{^_8_yvPG$Fk3|F6-?0?ya1MQaL< z_gMf@SUI91S`ds0j>I9k|7pHXoGdtn?1_fki>p3xa~2c+Xsc7cykbDcp&%73#D%HO zxBp}^8jS!NyztlO?iYFWE7O;b`87xbWwX})$sFv3lNp(KVLj>$9$( zOHsy|&eXhiHWdRB*E}FQQHIG5S;`RwM_IyxKExCCeiZxy0=-EENTvzkvCm+r3Y=70 z&|_&ATSE9hA_aj(^~uF$0Zeqr0T`)g_Xqj7G0aaG>6*IFcj&oE#9aXMT93fab??!m zhIuwg`M8(q%VVumC%E1%`@hwSetv#OW2eVtpifi>9U20ULe;Vkj<~+vUar?5ET2Z>Bq|;t z5X2Nadt9G6(y48AI}AQ*c#3Jgvt0$9Y(Q=5SxiTvU|X6t z|GxwTf}#|w9q*A%if3;em1ln%7nCyj(1*jG8ZWHp{#Bo+q(ClM^~Pv#KaFIHRd4*- zMq>${ujm_{teg!+c?dmCK%}kwf9nBD13B0l2$na2=mM7VXb-tor^BJK5C%<8>emtP zVO$LOZ646k`F^LC2HlJhBIARQ%p?U)XkxUQLnLO7AnXSQ0qK6uE|V#>FAyH1qZ->^ z_6G$ElA1rhts9e}_fL4o<|4s)^b3*!lSRLXck5REv;$D?wSr_0$Pgh=-?7n^9WnGN zn2E+XIX%pICv{Pt$C&hb{z&^n$r4vylGz2i2qJt+>{Wrh5G_Q3{y(E!Js-iAvW_4V zD}{@Xxs|{;4@%X0JUpb%u$fAnJ4H>zR*CTNTx-cLNap_HZrQY|S z(qrOrc4ba{qip~ciFnleh4R)_lAw~VF*o&+?^DLe7OdCYX`n;{`UoBDA zAZc&Cd`1yYDNNt5nj@u{K@NFQIDF`g0OUg~Ih;Fhq49@)<2xxtZf$=j%`=eC^A&>G zMD!}uLK32P}ii{DgnBzOpFRUw(0I zTxIn6LH2ytkN>Y%Sn#J6PO4S^T|WWI(gL|L`SQ;EQ|?zSQp>I5zGMb96VBl`2kDm^ zNkc?hDO3Nqy&DJT_HPim0tRKF>GS&kFYhEZ#FYhB9WuQP0uUZOc`^&T$TSF!c@tVj zie1HH&D1~rxY-|Cn)UiTyV)@VM9Hbe8?Wsh9At~FO}zU+?~v;!*&rLqaS2_D-S<%Z zDa+S)2uTC_F@7Kh`}d@{7*nlYBGnQ<;TJf^gE%3o1mqzo=BuNT__T7}3l2#Cgs=`E zFn=X190MgeP33_96)F+x)V8*^IZzZM7Gf~)bi(8iBt90ZkwvGsq_xC^o+E0N z`ew#^Yhv>T=HzhXuW^<=rfg&vuf^<7m&TJCXwG$T0Xk>MPGwAUHtp{iuaAUQEPH9Kke1V_Y2t8|xfQHZ9*#xu63O-~b2Ij=b#pFqylq?$g);NR`Ylh@G z&D;NI=^3tF$tI?39eU>I;eCyRb*?A;a7vFp`mDi|GzO8yXtc zDBV!|7F+W)ftBZ4ZO2TtJN1t;EJli3uo(eeSxDB1p*cXpx%Q0CI@-W>HGpHH{?)? zGX1g6%azfy(S4vzB49VY4-He2bt{OH!PQ_490^fist4y5U(ffV?`(JHLN*J1_=sqw z-Ucfx)Gn_YsDMsVqUA`|xKBmS6`c?vVPYFhLD&W?k~&mA$b`0~(Pd%`W5|C+(iU#q z`OP~|6fRzKRY@rKAH`z;JTg?!nxexutGw>PWP)n5kXj=4H|2MC?esp;fa%^X)sLkJ zNa7;_mRWdgI-P$<#%XD3;}B5=i10voIe-@$8$|;+mXXj$m#t6cVtA3{{lAO~VT<6` zWiXlKkD;hHVooY-6D&y$uzi#>5V|pe@7N#x3T72JjrcwD?SFG74Q8_09@S_8B>dMe za%l~m+w1Jyzkb^IWjRGBpL=SxHM0f~;omDEp}Ql}F+|AaDM zE;(qk#%$I{S&{ao+iZ~0f+#lbMTQe0uY_OBtO0WrBELPLK*-b|V1PE5>yrz$FDlq$ z{iqv(6kxSJzSfl9PZL%J3?8}UHK;Q$ARni+q6HpO4i+rLhtCfeFoMr<0&|6mkTo;TT^C;NL=0TF9&h=S;6fV`2WYxhf4i0IR~U5A2VHvu*Hp7U`5+^VXo z%E?M6%J}U1vF0L6xLFMIImN@Cl%36lTo?-QlmY;|qCh7!;XxJklp#!m>~cBFICgHt zR>HqyuZb#>#+Ig{^{`Q%ZWeBWWaE2<2i)p(9(0!=Q?*iDXPG3Y%pwrBX3K3Bfs?X4 z5jC*?_1Tt0KG_R8S3X_c#|SzB(kNuS*U9lAGWv01b=3%-Z_+~|>|+#X?g>(#38c2U-<&zzgu#>lylC|07iHn?nw;M7lw*IuAu5mv*19syO=pGldo zxC4!{@#P8mA>KbQ;+6|8QrYI`Ar(5ji;IY;bgdd!ydAX9(94$pKcu~NR94-(KKv*O zk_JkL3Ic+3N=gVKB}#X9NJy6=AX0)N4GJnK9nvA)EhXLE-M@R`yU#xRoHNGv$G69L zhYYto&suZMd9ORJ0Is&~^I{r{Q*O{jn9;nI^S;wGIxvKrV*ERE7|O{>g?ptmCF$>t zN-z9;wQKEpNQyikVnEtJ%N!B5FfcG+0cm69>G!-jVmz~J4(zo#@z-HyvToD*$`UU4 zY9>Oqd^-ubT=!oUMG3G;Ejn08#g*=@S>FG%|8ww>z8%M{)4}*A{nKH*UsIpSo!8zn zorSE>=-;W6+z{ckT$edl$`7qj2-O*pt%1Hv(11o}ZRJxrXqvvrl0e->n95`}b-qZb zTfZsli=ztyqriIqv&7Y3(&9XH{8&Gi<7#Rc``%;~V?X)xXCmq+Y{j%R?;Fpe*;52K zd6`nM1zyq&6qiZ4aNai}DJaZbWXh@~he0~oM3n^R)0xV~BTfQlEsaHUXoL)UNq$kQ z=MomCx$s(euu_Mc_njjYscCZAIrCrqXYMMs7-8?0R`@@S@lKsoUvDYg{5=F9m~|Ae zGe3rhU%hhW$$V^PCNpsTwz2MPD+?yx`q4n>HI-&SCX7c#b@mM7fOOuozzeVDRwMI% zmZyp^7SGi5eOXJmbl~cn`ahtdZ!n*us$Im{59^%n8F3=>0Dj>zl2S03fK@B&%BXty z@Zk`|1DIJW$EpJd&AsUnxk@yYm6iL3dy#GpjIDPDLoJ`vBhPPFufSX~MLjjLg0HEc zOv~tReIGT-bV}#R&sBb-oFHfjAOP#v;dW$Wd9s^|fL`}g(E2XZ1fXRy1%Syr9tR|2 zKLzz4mEVyFDP}hRTeo44SlVb7OUnimVi&+#LDq6w`WGmC+bJd}oi!>aZUNl$>~MvP zYNWY|dAFK3!gldgnI9@$e+8@gC=P&p3@;4M5{us67m;{ABFO=j7B;5-8#28XN(^UWJSFzr zq}|+M9rWh{0v3^H;8YB%c;MX$IDhybKpQ^8QJx(d0|Nslq}~SMI`GZigkB(6Q9keO za|e|ygl(x|*UIU(GhjTc(4DFfXiQ{kfyewl)OBXYN;3mNpiF+R9PIxO>yTS{Hv(Po zCNv7zbEiReN8N$z^bgl%Fa3P|Bi(6A&_*23eqB%0t3~+&`Te^Ez@ep|wY9Y^1ZHy) zjEvjo%Lte>9_i`bwk};qM>-#EvG);D1GK$>h5}_M{M`n~wXs3nZP&J{_;}-%VbG?^ zrlTf3FZI|GVO;eKh|7BXGHuq`FKGV-;riztl1@7-C+o*R^eHp>J;cv85p{ zj1E&8RT~qZ=7qCmN`iz7d7nW0!$vkU=HJ{#;6y`BV|@kOVN0Di+xAF+e+`Jtsz74) zIUtm}C%NXMjlN1Jsu~mypb$@9r^h6xGM(|9c_B#i$xsD_NzO?i3eDMPDV2jNOI)DF z_hYziZ0k&5&hFuT{3#4jn*O|Bkv@~Q3(}}rMJZ%jKw>GGpHnT2V8W}8kWLG449 z6zNGiT?sNVx##DRQfymr4P%PTPOC5bgtBokHaqIsONZzi4@_QqYnN*>WX{}7zZnD$ z2E^C-Qbx9stPQm9Pc|Q(bM<>9|L%YKh66# z;4PH}Dne>~P~LniEG(R`k(I?8izU|p9^&He_tXs%rp)Q*W4Xq6X+EWGvXE7{oT8^X zqX%hbem1wd@Ag*WG#A&4!6k2OcJlt0>7$L+Cl--Hr;dh~Gv+9IKJBKB{%s~$|M!kU z>p`!)cR}{l*OHy$Tps!7uc~g|#23LfE0;y?VGP(2KM=X5ZXhNjI&qNuk)%P=%!FWn zkr%nVy!=m(VL)IQem+c zZQR|zO_FG2bhTwf_w$z)vDHg_`c=<}@$nArq^CZJq%hm#wbnbB;A>OZn$EL#t^U(pt3U}j65_U&s6Bxz=Looe$T@2}teSVptg`JU{#Z(O<>2iUAF024v>0$!5v6kf zB~U6X^*|AD*4fpMyGYwD_5EWoP+6{y!`b^-g{2vmmzwhimeGg#) zp_i|XSFdkxzZf`-?&H7QsI$TwD6gMk`XSo53vTa+k(K;i?h`vSXT$xPpE$aeao(2% z1^oKdS32Vs&Ke>6{{qh=lB}vHl4-?H;coH}k-Yod3aJiw%x4K7_EyMB`^S!(H&3_T z_%=x+da0ig%ZA@bK)6Z^pc{ng35XS-{gI7X^k@9T^D8Qc9CoQcJE^M(@~YUOAq_2$ zeM4Y1s9TZ)k^AWQI5l>6d)qRv;)vr>*>PJq+sulxo?!K%%aH(=UMo!C{RBr^%JKJW zULUZp?p&yfxyYeXX7~C3*h3Dmhma=`$;h&Bf6wWBn{#0ghqE95SZUiuK;Eot`c=tE zVKSt6c)teMh3vw=r!^T7Q3CC0-JTzckXk6DB{CKO8V?$K5Y51^+yEx90BU9dap#TA zO+=0Zg-;{>3C;&N$h`-SI)b^I--d}hO0mtgY>0!Wyw-W>#p`U?;L(*J12X0u>;uyUMW-g z2@HjiyN*v+C2`D!(hdlb-{cTRm`VsG)3M@^99RdD(mki|O1b_&8UmU(hFzC5XO8~- z5PDr`WUu;cXJr>db!}2tn#O5=*L{ANw`J}Tgy1gJ?=edY8~xAqiXX^Ts{iH0BDU+r z&FmXUt#UvVcw9d)noMvn^eRf@N`H)}mJMZdALFdT@4Fu{J zEjyS}ZkiX!*UhY*XK?(wxpf+b+G`FM zAnr_EI0EsgtLu1bTsjwWFG?H+@DSX;0Ds)fyQ6VRpz{ip{m2svzXZx{&Y=2pa)^l7 z-#Jw{(d@?K{EF5$2d1~JBssD*tviZen2U&r1O|87hZ9tuD7H;nQ3bV5jE4o!uKlVg zfB}^Zre%@2i9`~T_&h=b9WG7#;_FN&?>C(qMc)-wj98oczX1%#Po>z!Ya>4Kp#mUZ zv2NHDv7PbvMo$1#gp6;Xq%^Sq@NK?Bjjq-2-Nz2LkvR?u2CC#Ye5c#^7w>Q(jxfm? z^O~79XEo3Xn8eXWNc-#%ibzr%87JD^5Ea-1+OZDb3oO4@C7Y9Iran}b)9HjuSp_`! zH{1x#1o9~Rh2Q=lm~xwnis3j6U5PbbmpbK^DlNFe4ee(J0a>TB=pjqyFdIrc;G_vq z%oEEX_8zC=HU^e;K>;@{G46Su7q57-TfkR#$cBfpv$XVfQ`w<3jL_31^h*o%j^T2W zlvsodIw7+DZrsE6_>gi=0!Hi(4UKpz1?l_hbB$7Q_0bjTv<@ZSeuP$r_1PA;y^kXu z4{!c!R(m_>0j`!K{vRxG%Msiox7ee#FT6C7@x5C;%FUhC&quett?uJ?bLnt{*CXG2 z;-()|sVb$Oto~^Dn&Day@N4vs0jr3(+wM69VVKwxm)tyL*}L$dUMf&_GBp0sg&Q0> zf)i?6gse#)9L`jVOF#-9DxTQBSeOJZ5mkP%^$9{?PqBEUBzQHsotF+jsz) z_7fxK)XhUgT*N5=JdK~IsF>IXelu+c`7Ls0^opDMxlW&uCU2|tWz^cy>H$lZxA@t? zy8~V;sm%#qT$oQ{aTA8l8Qyu}LMmm@6V!`hvT|nyj7=;Ze`WFH;sW`ZSW!3h8UjEB z<#kW0^82VLNm*Ihui9N+9s-`qZH<=?Wj8=_;KEoXLor*1w)t7*^hh5xs5DjG#vNB5 zJm4W4yue`md*0G5I>BnqNYQHTK+TPK*oNa%>luUug}6w=U=!)9K+6s$kFVamxl~nM z?ay=koz4`sANAbcd$TZ=q;yvA6a@NJv;5ggytCKSq0CY~+v{)6AsfS|z}qIXQi8j> zSUGOfsYKgZ)>_w}&U(#A*u>=PY@GvfvtNnOR7~~gyJumdDcUA4tdU*cMGe%hrnyTp z-Q_m`K`m{4$=ckWBt*BBc|3U6<92dNAfmc>;^>~o`Uy@IKJXYy7Hw|eloR$=AnroD zX+Bw8KRt@>Y$&rk4Hjf>X=oUbX;zhFf#^uN;2tNq^;LfDM9^sbjdvnU?3hJAw2v-x zK|Mh61zf@eR;?$V7@f1ceSUxT->taY=wR}KkCSlDuTOYEX>Url@Yqx5`>=JK+!Q!W zocJ~x=vmBWw~TPa)E*K*Mh^EO^9RatGq;n80A{N%)G}|0d^GeGTPdOBR` z>#ZaLNT1yuVKL6lzYPu|us@O;o4m|jifyfRUc%$GqNlfRxA}ILwm64Ms=J4DGHc5K zzh63SzAfGCm1WUEWmg2}_oko(nOejiZcB_Iya=iLx-id3-US=ktJr7 z0r_OrfbH7-cw!%f$;yj>#)!aI&-rbG?DOsBw#lElak))qpS#}pnjwkC#dIcA-T*S4 z=dc7ESGb3vfkBr2{8OYzhnYxV@N8UDJ-a>mIinyVo*3qQ%Gp{&S5zcxJ|Ur_x$aqg zZ-W6Q9AP7UmB096>jPGNhw^gEzvzj1|2()+it4j3NB6pO7y)XQiwVz=gNX(b!ions z04@rN$C>69%{wvQHtvY0%r~Bvy1N?k+%V83?>urr`h?9 zzk0tmTJlS4Q{o~cC_rTy8he)=%q$x&Gf~xWzy5us;PLpdaXR$u$*Ted7TVt8^=pE( zyTUVqfG(JY3HW3$KyUUyQuxD%0pecv=!(D23daT3aDBZ;E29a` zN{47~4>{}P>N4F++ad7`5TfGaRhBW4M(Dg8ih%dX+%gBA1ETuux>Do^h#(U3_QR!P z=n@?JT)ARqLBRd-nL<485uX+RD&Jw3V$kLWM1sLKEZdHfTLt0E&}>r;(|o1z@u zxc2vT@ocP0bsF1+CSOeJlYFF9lNC07xtN255vMos6(jZo?1W9>Dr=I$SOQ z*sVK#9eW@fmmeuZ?pgnC=gaI>@`-l7g3HwX+J^=RIm+;0<=3;?5JxVD0w%9hSzp&) zk=zAtRcLzZw71qK`=VRB1vnv=gn%Q3?``AM%rH%vf+uj>>h7I8U%T{Szyz`=0D5Dg z3ngS|@)Z^03E}iCcm?(^?r+0oXl29zQ()SK*}HUK_*15jBMn}np~|PutMEYhJo%zf zs87Eo#e@}Va6vw-QC#S9Jy(_g@Y+1(*vHdXMGJ`*APxHXGI@s0#mv8_tuzOW>sGbX z&UzRe_m>CFyMKu1o{|FOU4a{v8s|8ybpI1o{q60n7RhMD=AYNZgh=*36fMr-#8#m* z%deI2V3xaawEg=Io0P$qP4kf`(o&SNV=)On4c8aTF{cq5LOxolP16Ukv*z9lz(PQ@;?XoJ3v_0 z1Iz+k%ayBFE3utqfZz;ZfElAHgDCNSM~pfM|CZGN z=QakG8I=3%z!gHY(#kx*O&h89Ar8NVY_tVcI= zkJc&lP@e;^uM-T2K#;W(X`c;SA^Isnu|qd$@B^JOZ}W+^vFs_>FBq^=_ zgG<#x`>wjkZ@@**Toe>1;c1eBt_px<cZ`38%!1u%Rzx7e3tSL|ie&yCkpK^k6;~(I85A&I(v<-N3xFhLMh~U8+NQad7(aVOQh6kaPG^g12 z@1L<26co2|l8Bg^-UU4%(F;gQ90UzXDH zNM9HrcPLjoy77Jg`-Lqm9Rt7OWvd~b-8q_n6}11!2LEd`vakT~C1U{O*e~`50q~#$ z^e0dtb<;XjWCtQm2o5HJA@TA4!f?L#tw*?0UcZ+_V9wbiXv};30(7iYTE3ZO!gIQc z+|j>^`K`yZ-QC^5TT5U6i4d>A15*z%0Gscg4eZ-LJOnDc_H-#o0VN$j{32|wwTbn` zvf6&(O1ZWmj%Wf}EES2Ho12-UHRL9xMaMGbJX;s_i+inWAM2mmZAXtvaQ`@iUi?q% zmsIPx$VeiOy>X0{vRy4eFo4o*8U$T1l>{7UK~r+`mtc6I{I)#zvf%FBT)R_0bvnB2 z&T{7~wO_fqY(0qY5Q4ZXFmH)^)TuxbQf#UPHs9iZarN(jC=OamKZ_;6XFw+d&|~cg zn+~z(fbn<#Bhz689iE{zrc(B64vckVF(|J_tK>1E%t_bDvPidMGq->Z^i@cQ8|WHt z^3oMweTC%QM2NMI+x~QffuSL|vIv3#t!9Y>j8UuROh%HZDWCT8gp_DPH z1699v8{xKtl-$vZV?`2lTyIn$|31m8l5uK@w>Eo~ijE=eXi($h>KHI;+W$pm?LyDHvt+GC{XSWAg{zvdB=N3$76RX$b$mNDt~(qUjDQ>|+8CAB9v|OuyPuHb zmhxwa(KzwmsPk|Xs0}=KE@?iu=XN^F)PANhAS1S*)F6d6sx$XI6xMSRnfrCeElIW~ zJ$xf{TKJt(kl;8RK(k^C5~DIs-*YDYG;N1D<1){UrGChy`x)NLcP8V^Av~Sx$fu2{ z&>FFJNC=VZg1j53plOwTrv&Hfvx@O5Gt5>ZHcWfk?)1ftZn!0)CEZtad&?=&S9lvq zs^4&MR>W5fiXmoDTeU)HYssO*#6#bU&L&hf>X7?=eI+jUisk-^ayiF^=pV#Y<(ZDCj;6XvSN};e2XQ~mNaW28t}-KrZJFr@ zqK^WzRdL2(nYM%mc`O(|$%x(btoY1qv>CP22nh?QB|uu7-NAPvvM2->yH_y!All@G zJFUnd0nFaBP7*lF}ke4qJXLw;{Qj=j8oE;wnO^)RcsH~^HANT~9W zD|aduHUG>(DWWD~0mLUERh`WSL7CNiFUxo2_xNwu<9m+*}>B z&L+H3nMM4(60ME)G~yEJX!_2J@pI!Ee`cPd2v)o4&)#I;eLzloSp3!Z`Ifk!1LXW$ zodjU;JP#=S3QbpvZ#4F&u-Ur`p^2t<LNdw*8=;wdC=m!#F~>b&3A1 zOfzlu|LRAWf2o1rx;+s}hS#6_8y4k5wkpX0_>J!AdeR7c5NK8W6skNC{AbI4L$}5U z!S74N^Rb>E54ZcKX?3SYb=Jz->ZK@NwXP~VFF&+o0=crVmPBa}o)c01hsdp7mHUv5 zElZA`fSPmi?=&T8{V|23wQod;%FS36jhMUgcXV3-eMw9#@)yOGB`!bhq|ta{N|TI4 zs)oJL2!v4Tf+<_P+PTb0e8K2ro9+qRMh3_SuX7*=O$*0ExX#Fwx?c9i##&W6YRJLE z6_`qFT<_p{o}0d(QqwT5#63p zMFT=(ZauTJkETP8-vy}iia`4}mY(jbTnq~ZWq0@AUZofeW-b85NJJtKb<=phufqMB zcm)b=^#a-2Kv|ZhZf!Tf$U8U_8NTj3g{DGGA5wt5K}{J~b>g;7X2>K}9{&3!(^6I> zbRtObw+o2>85a45t&6ni$PdMS5MmTEWviSc)cr*rD>LG%bLc56WH=Gs)`wc#_XsjY z4q2$#lKMG3zM5E!amygt?y-*+d~L2mWEaN1uCM0>S&&fOMb3)=T(Q{2y820cd~X4v zgrn7pOqZ7fILfWQC-||Wv7QGQ{p*-0vFOWpn4b8vMYX;Tyhqucm3I)(VnnpbwpG$IFr~>s?7(!J zp5-mJx^}~9uH)#qyrMdqpQrI-Hq-a#zh4od>*Bj0BLDiqlMCyAG6)~mW@uEZJji^U zjiNvQmQshX`KQLi?2CFV*D=c;5x&Edy!39wxNWzdT2#b^?GEOmdwg|E?7(cA`%~XI zPS;-az4eBW;DwwkBA0HxHo=khdCoIpd-_AZZ8;!r`ug?t2IIj7CKlFDL6mZ0n$t^6 zn73YEnZTmP9ASuLEiRObN~3UakL?D6dvnS5y4M!_QU-5vm@|1>+g8`qJkU7jQY#=soz$T6W`K2qk>XOdB zJ5<8m_Jkydw#|~|gEl1T;<}yWWtZ02cuJ&@e^e+U`Dz#In+bSv4iQIk74cTj@$~*-lWt|7y^|7JC4tjdq z7$$ivR+#o>K32{}c}(|i7tlp0*8hk)ckk>nqsv7Z7z=d0f9cp;X)ircRE$3`BBW)S z>gehVaxT~rOOlTrW<>5tW1PCu)#q8BS|F7;>Yco1l#rS=q6@Zj=b+ zKfCOM+`3qjE@L}OQ_*qO``zASnW1t6jXV;9kX7%3l99g``ug34OjM>xGm4*Gkm6@n zmJx>Oi?xv5!dnI`Z-3-)Zd%J8?`!kzJVjPZgu}#n{<)j?w1;0^!Wd_iA{TktuY3g` z842dB_0`RmAc0H2wzA{qd%Ff31+F9OmDO>-1g&a+=x|4PFpc=z=4|6gA!hq6Z*zxF zN)jE6&2y)yxYP>u+L&@n+&ruFS}|5`7VO<$4S<4ofcyuAqrrzC;m_PWm9 zJw5w`An%Ksx}#Wwjv8kR$CEH{!S8LKok`8Mql{5_l+cQ3dSdHPKU!pq;?J`)`~05d z8Ww8ka9eb7G2pI1+)`_dxntT$++6R+3+r#alysP0$8H*u8pir$(mo1PMm{z1E^k>Y z+X=gqsEMcX?zc8B%CaX`Gb__=-)6J-=PqJwpKb9(7v#F>c*(Vp-BM($m>xno=x`6k z!09}tv={nwLKQE&`-_J6*>-tmx2D`|Swh#b5H}d%@~AP5w@7`^;cVvz-^A3?oxUM( z&8wx5=XYYF8u=h!7B?eKYeO$xnuBBNmvAiNWajjYe>O9^`SEa_di=SYznXQr|NAFg zz524Z9;3T9V9H|PX{tWwTi>CLE`ef;*F3}rWQ`nSX|gR_6vb_-KW-k0^y zMs{&a;ph{YpQ+)be{AlRVJj*;98dmXwEk@gO;L&BEK-?ZeW#h`95{tE?2jT6wUtZNhlPs}xyLfh?RVyttA0`*)Bexje-lZ&6f9Z)~ zy!%57FWG=~whs+;WNc6S2i>VlXedOmRq?>@P*N5B>};sO9-Aggk~shFDxvZs8*V&P zy#3B9`mg2_4{2PJwwkdAiK3!=t<`9^DSce^EBmi89pSFx`dLy+HJ*LIn>xKwER~KM z!^V>)5l{JV-Q4A0I_)ev{^2L`J}NTPF-+TFW+C;6c(fusw}cuAm-70^S2~G_C$fUT zzSJGZ!yPs9!@>2@{&zzB*gr zEI+WBS;Ty2^KI$ml|}Q3J40-Dri;t$ZuOBfJ-IcvK<4le`NPnGVq|Gd_^B%yn&dS! z)=0Q;yaM~fIR)DcxLA!hW3dvR1u$&14f7MeA23kW-4D*ZX@*XxwztXPWKHyCDbw-v zEIz#^kCeH>cOzxuy>fQ**o%=V=b!36$Fna=}^GXB&T#F{MUL|A?smC#);+C63)rc-NE;X z`{l|@I)!q&hwogkl%csOAAJ$W7EP{ty;@mK8MgbYr0-X}^@v+Tm(uVNr!42)Jk8r#U$TA!4+ zgJ)bA#js;TBM_2hw8HP`PHXHaaTd3=?AunnObR(NGMqr?nONvp%xLNHkn8r3oye3d zx)JCR+i|sje_r|1?HTU-JS}0Cag0Y!H+oyW8CR>nr$1k;A0yOiW;k2#D_ot<_lELu z^pZbnK5r$`lU#A2SS&5?d9oBwT|VrA6?A^nYWbyK>X9Uzn#6UsDCs$S-i?h7ppxME zgRc8rM`UoYaY&>~8AW=phxMyw6LEz`9{T9O1drSLJ@n_l33?}f_vms|P`TdctJOTi z9^)?+s4q5kDgTSbc-inOD}xPzW{l$<5G8Yeo{r~RaVh=wcnQYXlB|jgZs4KNoW1BV zv+P+&|E)Ef-C@J=&@{?JpYfq5gjFp*^;HfG&nE7RxN{#k<$gYGU=NmH1 zun!+|;Wl zLN6Vq3U>+jEYYc%ax7@MD;X(Y%F#v2KsM7oA#%IPhKeIhmHKZOXDuIacssg7JDJ$S za=H^=xL}Y*2hZOIp8uDxUjd2g1vpfYejvg@_oETQ#=;^a=Cz~0B5VPQ!5?1*&Q$CkdUPNUpCcZGd}p7$bY+}ZI< zT*1P|KKIopmvJ;WuP=*zjc1_=?%zey&5%kRkMRX+1OQYMw>$! zF>-L=nCaPFU4aqh6UCo9LyRT!!fCdufOBXQyU(ib&2_J4tu&VAqxeGt#iOmN{ zipN$G4M!{mI?Sd*bdjs!V8rFBJOrE{0*=8!M?-||VZ0Qc45Xi{7+KbKJVUA>$AH0PYI3fcE z7NPT)tP`o+UR7mSm31Vz1+je-&mvmt`@^c1@P%_X)LXW46P)8UIXWo7=D1uBg&nKz#>qX##UC^z=K0Y_YfS+ z*Fmyrv)%IqUs+ihV>jOjz7cZwq(traVeagnLw!1)p%8YQwA?v$V%Ts|)oQqtZL*H% z*N!OL-+zcxD8Y9^?@fy{%P?#|yB9J20+a1qJMoRb>NVSkVoIdqL||V`u-!>utC%bc zl0LDebu2CDTuES~*>3Th|3UP9E?Jjk;1Jh0)7f-cPdXPRvRDu94*ZKV!Ey&*1 zAmG}g{Y?geI-o&BCs;JRmz0`|9e&viEXyp*K`um1aZxZxTogtpU@Xt&ADWOL=iyPl zZ3C(`I;yp86bu9BEO=c$548+;DU4aTQ26^jo1rLxZ< zC42C~%&%>Z4xhH}Of4^!WQ8POi=P-yaqKkT;#_?4NXTC6);ni{udjX=VbOUV94AG# zFIDl=q2uIhvJMbv_xX~w6SGc}kb3eP*L*OyAc3D_#HEe3lCIowh%Id3!<0Zd8ESB! z5Bw)1GEsRfXz1b0^>ymmOu*_=Yf46?ga0weEg)0QZ0AiQL`4x)nI3_Ekki;p40?+S zt6^U85DLxd`@rdJ0`47y8xt#Q_Rzf{plTtClF29BVz^9|G11X)8x3x=WGyYVfG`~% z8IR6;qFm#4#9V!PCsXYw7DS|&n!=%cg^L|ZgDY_fT)Eu+(q5$f`p13%(B-8}oto`d zN={mvl2r0sJGX!97MDM<<=dG{68+)D0m%_Ut&a*qIai)N-;9}$*w5#TQcs+^NI!h# zt>cJf9x0)G-ZuUY#%PPbQQs%}9#3YoBth-Ix-0+J@<`M*H#XX+-0NJMCWv&}Sk#Pc zq37Pg(Y1FxJhGujLJKv#E}uP7NXn$wv4l_J+Ov8Eq@U5P8P06#38;w`H}GF44dH5GqkX zoND&lV>HcVNYgA{kBmjD6$)ZL zHLJWm(Q0mc!7zWHnnW`uwbS%%1y`Jes9$K-G}@!cAX_V;;?t4y%0aI}nMF5uI0K$t zbUj((cY5sL;mCaKRBQKp^VbTFov9r^-hP zeq)Db%FOh=(l=dH969*uF%rU40`+?Q`@YW{V zpG&$(vJMrjRhqh!T?m_GU%!BH)c$1o#6gAHNAf?9vkG3$>+|+~|M+(Hrzli(bUYrh zM-?YkKo-=jpq}O*UNv?2vNV<%;K^z^%rQc`PN61)D|Oc-FGbh;ei^qng|7Gb#$=ug z(He_=1#WMP52WSV+0Xa5=XOyVn>dAoS7kh}KwqNWQ}0%B1VzRryL@dEhIw1WK0%YV}^j{fWrHv4wD34Lt&d z2!_})>}}@GE5yW&K$L%Kqz!fFkWAQB;ocmQ;_-4R#j zGvxHc0D_iy0n)5{Env7MxOfcEmR!48S$+WlQ;^>1&X}}?enswH+sM~z83e)+cQjt8 z;cAMM&R?5o-8<1m8BE>CIaJ`~llzuES@X~#UYd$C)e9=v&DrnvA8)iPtT}XdQ~mbS z`Yd=os`Y4eRl-7zMSXGJzkaOJAYDslrYW3DX06yv(|IzQyYM)9a3Czt$MMuHLc&E* zFLx8|BlXG)K$jn9EjUYsId<#yZ)+1B+}kQ?55xJ}77l6(q}&aIQ|M%OIlinsDYt|Q zq8`tOM7qL~-}gFszm$1~C$K4JP5toA+s({Fw+;;;a3s`>drT9{WAh5K6-2TEu^IzB zOe?Tb=qkphu0B0UhVQ;|du9LI5!#M5rFLyUe*xK%myJ{IhXe>}QZF z>a9meI>>(@aexa5^57MZaPb$oMq;x!uU$^gG8?85$D7wq3d0olj)$nto}y{@>nZ=? z?^=!Kd!rMU?eq3scG#+iefN7$USxFHg?ykS%oNVHPiM$X$##T+gW8!dwy+d;Yq$&AO*l;AoM7Cx=Ao1mo$B@RCAv%gCJa zr{hOi<1di0fXJo8eZyVVkE=XE;xC;Gwo??zA0S!E<7e;XqU0#Mi`u3IQrW>q+}6$x zpxX~pd)S;e3=sdElA812DK`t`?=$Gic$E(r$Ay7NK*HRd6np%$XV2~fj4Emp(an{O z=QnlN2y<2FX?mNaUhm?17nF?)yojsb87T2gZNR#Mk?4^uA ztXP@$$y!Q>&H8bLE?X=!vcb(i=JH!ESSKejN1}da!@CPZ9W&@wW{&vu^xeHOlWr@{ zG4)wyd^pet;ckIx$McgbZZ@QDF8I`|x!M|M$-MJw=_Vdz>~%UU9U#KVWj&%{Itb@2 zxf8!;l4^?cUoQN+6RI zspJN8!2^&Wf(AI(PwN6%kHoy*_5pS@g>~^nAYktm9O- zqe#ol`rk8!ppKb^jewG~$=cg3&}`ZO8m>y;JCz&*Org^wc0|zz7^Vz;CxGc;-rNJO zHXkW0 zEE8{69h)hz90p+A?lij&QDMN5#=Fe8YrvJpTOhd`x^e-()7-A%#Z!T@aCEu2ckqaZ zczo{y9go{<(HO_hZ`O|Rf$&yzp2}V3QteNVv*wFmJSAhcateLON6<-|b-C=ki=wBF z`@T>0aza(Mkj`}ObBBmK<0adoMEh*^rRR1|FJ(XLG>rYs{A;~d2j``{-RDh}!`-t2 z7*`2wfB@W!kQaWgbenL1;B9DRq)L(<07C)z|0Y3uKRnf^)_?PU>DK$NUwWT)DtF#$ zXl@ihy82=-NX+i{)WP^nM!^!>$hBnN-(oPWrG%^KBFzr1Vb-p_P1mk8FUEVe#s-Gl zR$$EC~)4jwh3D`@!;Aqt9o!?k8#ew=XhBN4xF(WizHH+%ukg zL~drM7rzJedXK%l0PmSM2^R@NDwQ2yc}nm&esViJYabL^Mo~LM&HRQz1?b#B94>zF z-2bdbNYTNOfBF4cGDId31qFq#mOxKxY;P|RY-?yheagyu2SN|LTcr+<^>}XgPP1-q zV87XSp&htLbKtwr^4T**^I*Ki++IPtsP5a*U$a~)}JR@N0oMb?@^vtT9cTAKfY-Mea0f_BdZ!F2oFvzUncSkv4sV&Q*nKTTCk^H3%n+xlbMnhenCs zjam|j6Arc_I$A}Ewyn$r1XB&zu$47!hTmJt-=A~7J=mM}Ej^L0lx6JV&bO6ml{(h= z(@EzMikD`_KJ8MWpj3Ba z*4H0gEN)!)Pu2IY3eb)91ur?Ih5${IfAR$Nz{u#^@PuMrCoAb8C&BgW?_y$_L1*eN zJw5%V29P<*+88lMXfnR&I82ORS4tnOX}EQ4UN)v`%EbFm!V>iTSo3K6xFk5B(l6^ImZ7WNpBvbd10nbe$7$I*#rmKHYTcja92o zJ`^+*iOBgmw@{Lz{!>Fhx8L(#u46@<%0tl`Y_iqsxK{*g9M;c9E+(L;MwYH51+3ht zW9aUIyP~4=68Lmg#@@Hv1GUjPaG?pe1Y=fJ@D@r7VP|6lQz0bQ5e3y1Yd^pRT<0|q z%m=ffj>T<bt6B(oIu3PiZj1*zU)DlzMC= zcsFW4jqiiYJkdop?#)l4p9q)HT)SG0FO_unt|RSZqa|*OJ%&M}fa0Dv#yZ=UsJ109 zygu)MNkNLcXRmfDVD=)AbGSKRNFfT_4Q*{Rz`nbvgLn~|biM*GIvQg9g@6kY${wN? z_VnpBRD68A6C?o3ys@nYN=Vg0KdP6xOmZ2i8?ML%Q9C^>bHby<>o$JpIfnX%UvHk5 zr7r33*TuGpwa;)rpdw5vtehCRAwAh!63=q)M@P#nX+2;k3t20R9mkPR;1{3q=d&n= zeO-nAinS)^lbWKZ88s8I`h-_YK8+ra4gTT!yS3?tJPwy*`5c20-y(1vaM@Xsw6I8f zG5!L7nj=%b6J?MVc<~-~NqPcrU^~r@p@=Jfg3MC$!S`x2O?qMZ>*q^xa7C#=Cl96d#eI`n(c43gf?T@Uv>KCUys8iFH%rYAY}>oXp~CF zKzoyqrop%vCb7ine3x_*QY6F8tXC)$MU#x;EW!njnt zhGE56e)F(j-vrnAiG5VcL#;^Ls=LmoBAJSG9N)=g8z-JWCSch8sEK0in0s7;lKXQI z@#j4MB{mXz&AY64XM=bj`%63EoEy&A<<@NM|~%N zYWAN02-R$kWNQ=c{py@!n?1KEA_^w8KWg|D6t(`^a(Fa`YkQuKiRY8&-M-5a``ln& zn(@4$amtJ1dd}gPkgEcF_Hy;N+K=hOm*!5dSzViMGR^SRvUw?N3e+j-0P=lt48&+2X7+71P=&CV_uebHBM|`! zI+&zE8w(9Fl1$UCi2vIPbO$jDkc$0f!jaf%63Oq(1|8N3h-wV)#}u#oeEM{=WUGV= z0;@$85xI=)ggBc%`TMbpYj&HrihE>^Tn>`h8Z}W5BZ5EI8XqNDl5X+hGP)0&&M&rc zD(^>_M#MjB2>qQlQDe>J_bg}cP=lbJdFq{}&P4mOd6>VKi64J=(B<~-3~N~4MIDuq zaFt>EDOHa1G|%+)vLzMFR{R>%6!aQ+ZR;k$$V8n;#w`+)%E<0>7HpzZMlXNKIu;`# zxp>5{@u-zPOHg_EEQZ$Hc&PaKW{HtyE6v_EF})UlIZw$|zMh=mCl8%5a*46*K0Ppx zO8MrP+2bM#5@MK$FAw-B7=cPB|K6B)o>|XZ4Ejb|DEoq8lPNp5eU*w}^EleWN|2J4 zrUrY(mhyj^%#(s>Uy_r%Ays5MgfZYHZ0u?fQYdk>)^gugEC#Y*>gJzUfM1bu3L+Bj zN{fI=NW`mW$i_ajPUuoJif1SelZyR@x{@f^%TwWj{g&DM}ac+{jQR5>!{<4 z4~=9s8fKn9=7LS8YJ5T=-A0|+p<$Zvn82aL-Sl=@wHv1SjO?Nj#cNJG+Wx`Tu&o}G zPnvMvJTK(Cq4)&7u_bOgkknLM5I8Ya{lNGsX}ac6=~JET!w4JSa#THG5{c-O=>B?S zLtVP{cnbQ?<9-6DA#R>n)4mtC*Pmmh_FC#qy*m-h$9@-8f}BSGDzZrZREh5+10u&Lj zw1Khn^()$j-dDiE^uNwfWd}GFm2o!>n{vjN0r%Yjftj5T%ha>f$^$faY5kY)4$c$) z&QzLp=rlDU9D7)T%49qA?6-+-)Lu^8*-MA~XM3+UXZE+5Nl!~$Z|e{&r@Wi_mlqYY zm_4oh=KM%ptFi&@h9}?1ME|3Q{OO+_a@zDYvSnzU%tF#I4Q4hB?0np8Y+(%z zj}|9iqG5Ew=m!i0n?RU#szdNG+;5=r)+1Xk%iHi?^`mxbpN`EnEs4Iw(rdw4p+P{jVleZVfdmEM?rqlwx*1h&PV zGqZ=>a<$5})aAZK?TiVP6by*gm$vPg?G{&_7HDt&ZK4YTxbWQHF8V#A+em2OJ2V=U z%qJ^(QxfozSf9M&kw5%p=agw4iy0G~0$7Z|X#D~?tc3sneb`@5KaPV5(kzh4W}&}A zbN4PLija^HG^%E}oo&9=9d@qX z6-=#k@#efYrZvPI2nbjHaHp7CKBiL2ctyKbeKZNS>_XGBiGlSANwx`YQnAz6y1p8X5eLj|37WoGF_hdcMk4AFglVC_~HVOsc?1$J13xop5 zxe_C{r@$^?^zQ!-o9Z!asYXq{jP3u~d7UC@eV3jJD%Tz-`^Jc%F(L^CJV$4cUiJ?T z&d-;Wk(mai?B06#ODbAgzx#GGh^)%uiFrnmFHosaOj@N4XqWjPK=}c#ufU)4!zJbF z0Ga0!O)0~_OILF#OxxLKNVA0Qo`+*~d}39iligel(Cw33UYQH82=jN&V(!F^*5|l4 z@13me{y)ObI-tsJUH2wRi6YWr0MbZGqaYw4AV{ZlcehGOD@d1uh;(;%mvnb`H{5r! z*4k(9bMCqK57&gnggNK;jq#2*e-CM_u-1H41eyWE?{RaXzjEBAnX_re+@G0N&Tdch z72}s(NkJiJE}|0f`(vX1%?6b`Z?)HYVIjWaG9olkWXM@-B)dIDV>;dn+sA zsA|_UGfz`%*t@Ah54LsAivsV(xEZ;WOI`MY7Uh&5w_b(h?h@{7J-3@8XDKJ*687}l z(^wH2CpSlhpv8U+jV!fMoe|0$$bDaZ4N|Q}18j-tf2CKYk57S570#gPxwnNt5<{*( zHJXJBDx~wBai%L7{oaVPdg=Ogvz4)^QR9&!P=c_dL}5Qa$2~a^O8yxt;w<1HU~asa zZ^V-uQB=n!_$uJxW72D|(DsZobnOPsV%09Vo-#^oZkl3PTAoDNr)<2lE3uPx-KJvG zAY1rcaDFP}%A1K@;dzwf(ce~&H@L7TvE5R~poejK}?l;E-XsAJvZ_fu#{j)&ojb~Hv^nHX5-M#|v-N}p zM3qhFxe-_Np56b!{^E-M&&gUHOQAOT^FarbBjQ-4id$}~{GSU6s(C!8m7c>9?0#5u zZ(8%=;7Iy#NM_>SSEH4laqIM;^lH(Q_y^!(ar{-NyXy}}sfU<$nxeq5?L^3k+PCPo zrRI0>Qf*{4ot*y<|QF?$x`cc8kKRV}6UaAhrDHQ6xZWN_9n8z|*0lVD*6VyK{c+{pS5p+B0UtL%jXW4>PVW{+P7xpHNe@4^Itj zA)RvgCps36hdy|o-4 zJ7$m2QKid@59EF8H=ex$t3TE-ot1gi#Y|FOAR2l=&rhi46ID>smw}SH~|U;<%zO zZq3Twr(-$mXLhKu864OAGj8Cc-@rq^fs1|vU!`>vW0P?*KD9z8?%QQd6DY+4+a}1B zA3SUtd9nH}^)k4Al4(cn$V|+0A)NC%vZZ2=wqt#gD}i^6MeTN4c<)^Qb zes)c-Zz5>XnB^{?!^e(9n@21tJ&jiLUposDUPO?ZHWS7|I|7vJ8b`z=lw3PSIulc< za4b=TMLM6bGX;M0;|lt-BizyUq}Wc)LXc;HamTQ?u<@eweijYp!p5A4rG(sRIh}ET zV|`&emvWarH66xOTF_laO?f!~_*qQ*UUq2D_xvip6^LfM^4EsvV^)N09BYDJ{tcc3 znxv-^*;uCO51Ui5vCMWumGrh6xRUy((m!|CH^I8mc{O-jhqPl7>ILh^dvxn-7W9Gp zPFOg`YnWmFvV$+4dA?{+_-!Um``!Ac|DEj~S{5ga^qkcJyzkn)dJmA*zjiTRQ>K<^ z3dQ})p_)&8P>S3>EO2S65$5n&fs+6IIG^~*g{e<*UZ^n)vco24KP*R&s^<+llX@ty zB4k=0o7?w=dA`Nkw6vuRL)+i!%4M4}^$K(Uf>#T75kDp7Y0sh6jQJI4MSma{V~IU^ znK9EtxpZIHEJ$gTUu>u5w$c>+g4;P%=U9BWH-JURQ{(NpQGc=3sJ}mXog#7>r_SQ1 zAz$Xy$%l=IT>Cq`XJ_|GR*ycgB=v7@e-B&wQ|6mns_Tkq^F~#Z_|P)nJATSzRYV+Q zTf6m&?fh2sYnah7Gm6o^{xX; z>;DyoJ5*rr-@=#XIIozqBNpA-@`Q{jt~c#khqj{5l_Z@xrH#1OmIWtS9-Rk<_P3kT z%w0u9__&UTSUJ4xW)_zCcBWrhGfCh?+80f){StcTJDW-K7@8*Ie^4<-9CdDw{iYi2 zO}%-2gvHh->~d$~vmnlNrT{|kfz2r`qv5)OBDP~c+>hC=u2|{VaY`nS^yg{*xE_AA zM8*D+YfSJcvt3|eWo6YQY-(+}ef3eUH;S)@>@>}tBqE(t`kCU)5ofN^Gxc3XZt`63 z^k$_YnJnKAvsWJTJ?`qyB{p{Zr#GFiA<><>;Vv#q<2IMP2&4P%rzRm2~XlKLjs zGO9;ZBuYQ{;CNH3Go~uHQBuU6wzugnH2WHH$I2R4%C3v*%vH>aoUE>7Bt>|oYKP{q zAg?OYJzAZapUxAQebEA|#{Kv3Q}0G7nqE(M*=RXnYhh!1X{I8ZjWirvY&zzmYbVCy z#;=w~iJK&R15X($ID^os`{TzCu8Y$h1XwqufY)Xf*LWn9{!s`Bn|-)?eRZ&>zU*;Kk` z4@@^?nmB|EYG#+6ER>Q)zj<#olI>Ko@h-@crn$&;y7EyM_ZKM2e@5}OFiA2_+>u{o zi;S-v$gvy~ak%3xI55B5f+O<|YqPQ?XRmx9hki}VJjd2eTa^3u!X5d7bP~m3T>eMT zLws6aVkJG%OnTYay{Foho)?sJH%tUq{zhN6`$yS?uF)Q;$SDhNp$^MNM}k!D#-i9q zMa6pTaWYjN(-Bn*x!d4$)M&{Hw^Kc2N&PN+mh!sUZ_0LnSpEIT{9#GygdCNs5qEd3Z5iz3!aYSR}$dyP{lk02_yA%lY z2_$#sp-lc1isK*_90zGy0NSQ<*#IsQ7$WV*MWDB~zitu(hdNtyJjLOt6O(6#3j5ii z7D@og!l66zjk>x?+YRnL@n=Jknblzfnf5U-TcJ91h~lbp>ifJPRLz}+?5Rh%J1)#y z==9h>>eZ91MY41-MdGeO8sMp3zHcy8GNEH1?R+j(b5MuGcJfp!I&GemN-Mg6@IKE^ z@i55coQ_Fu^+{>fs|{J6(_FRRf3-g;XS;Bo6EGk%{0=+2sk<@S03B=y$v+Ue z*kMb6(dEeF+kk5BHzT{f2YKV;9qX#>-RTKSa}&NRVQLZ;l$E19R8%M^md`uqhPw=- zW`*#V+Y|7tN~&|N!mRhO{bu9oa-hnVspzNYS=2YIJgewJ`ghXNX?2kF_SL(Lz9%)H z(zah6aoI3X#Ej3W%kdTG|K9!Ld-vM}yOnc}Mimm-%FoKwytXJ}p|j?yKO!FIiWr0@ z*1Zy=M8QROa2mCWPA2`RlCyENanMCqh02S8!pG1QP07ZkVP~*Ddrp0L)83M{RA*j41ijq>MVxbBtmUq$`UFJ zuLMHGWI;8J2{<1HCmbO10b@5s%PFaL^AWnZoc#rcH->z`A$q6J&3!xK0BQZ~I0zi> zoaq_%y33O;lpW$}IwPi8G%SEAa`C{VQqN`H|c3C-`w=n~`L8^u+l_iS{1y znB^Z;XuKz?=(@_d_4ZhND-orUf0DU419-89J&~2~PlE2s;0C)wz_~MTD;s z7+5;jUlQT~CRJ*lo!;%v15qM%-Cn#<1vru=9ocURlpWTpURft06i<4e@Ru9TOj|5a z{K^GSKX-?0fs|>p^&^Wx>5^I$L`wsQqhMHJRgwru0`==UsE6sCpB_OYE%ZJjIsmqI zcV8tW+r_{AUvk7DoDDra!O)@*p?l94T82Sc-A;Tb?Fk z?A+QY9!cWnr)n3E-!Dr$HD08?3^8I0v&;}&;~6}=>fj%{em>Ssu@{v%IO~C)M=HbA zA!SaadXwuqjc;kNPsikm?m$~TZgRsh>>@CoQGlFDA1>@1R+h$q!nhBw^cq732RgX+R~UDE zo7(87trSiCH9yUbEM^P@sk~3g^Uv?tjC}GcZ>v_XYeu_E)2e6c*FgV~b-hBar*=cu z-S})JT-VP%`o(#h=9(7Lj(?Aui8H^i`oQQKEFdVz2nZg~mQgf5!mEWIZoohxC3MT{ ze;VkId~VtS(gHgEL%_!af_N}x;>BQj`*b75Uj zqAqp3a#(sY@Oz9z_k1#t$@T6caZ^+O6TChLtg%R2!?(@LNc;);ZQ*AQ*Q7%O%Fg|_ zoBPZBrrkGUr+=Dm$$mj@E~Qn{UvH-;bG**McS=K8o<$%ZlzCQr##X78=vovv7GxC= z&XCq)kcQeSP(b-x^3%bLKUzOhePIAO#JR8jA+u(14B zZrpu^ulV1-y$g*W+WTZrpK3DWLzk{n1c*M|$H9?v=70L7J4Ekop5PN&z$E#$hJHOg zCeUhV2r6_Xp~a!A>&k{kR-ug#<2Oof1qB65si)&#A(10N@<4k$C4H@#y%}-x^Nbx( zRufmhDhwbmv1V3@wEn7Psvpy+sMFQ}l~1OyeFAZ4bg#+$k_c1h zaAtI@n$~0P!Y_!(I@$C*t-yI@em%VXON88OLDhTYxjxNliXvjO(rU8ttRgz-62}^x zYuC#+E&8VPyQUPJl#a8*Qi(C-jPtEO$FOJ);t6XDQ=oP;N3>JHke}D%+?J+}kFTsV zPG^EIO);l{q=7QI`unCTDoX+s6d3J9L&KBTM<0Kza&O(?fTR8QSYEQxV+WvOIanA{`t%~O8T{e!$NI)d?=G@s)U))p2b|l-6W=;Xk}lrQWru+8 zHEFc3z%zcrK(cWbjvY&jJLEu$H~?1%6oSg%3s2h+igiyI4i%e_aeKW=NHyMmCt3Bp zEyud-{LlF(LN?o~pjEM=~mUbCmHfRYg{k5wd6& zRiHNaeM=P={SX!!<&dv6o>G|tQ+KHh*6KiZLb2ZjIu7j-~Slc%l7mfGJ ztp%kNmhn-$t(?pENFhg9Hzv^Pm#q>#Mudpa-{y`s^nOmZQQ|_hF4xu7ZFccvWILbO zjJuo|&$ma(>7N{j>e(Gmc`4-S-RtDqK|_$b0f^`Xl0K)WJDvTk&`qszv^@vJ#Ot9R zlVES4bNW?6_a;yvx4@^{K0nzQIR8ZS0?O*u7Ar%+n;R8#ZF%}ynF^wRe0ylg2!2Tj z%}h<@xj-^?Yrg9_A`EM05Bqg^tK=3V4B<+uhlb#(Fy`m-gf z*erG=TbRPpw7(2Q@<|IctwQdjyNX=O)^5^LFOry{r_tN+5wJGLS?hxCgq3;fWG2wP?tsMDh;N`?Ew;@`}>lU zGqOrq_zsCvRq;*KX8Elr_KpYL7S&G5Bb=rm1HiM+Krat%*JZsQhTHhL>7ER^GCIfg z+FDO0E+aNL^3yo;140^QbM|``#dTt5&&D=(&eso+nLHU7+Zb~Xs3ua=n#U&sE@bBg z4x$cCZ(Ct#L1wkIVv$vWMP+cU;lgb<*ldeJnM-Ggj?nGYs!0SUU@==sG7c!BHuv;z z8qUjNwpOsX5-DI_BUHk!`HHOl+aAy7sPG_d-vQMJTJ~{5M6N06Acwh>ogE6uu8C%B zb0vn5`o7CGuvN*Il=9R#Jt08e*{Nz5@D(!884P;gKRq8`tCCq?ZdY0ATVR(vYTKuu zmT3&*RRAJkFUw$1X4j@5^`?zp>We!Fj#YZS@czjGn$g-{85Wr7EB1#9Gkcij9amdd zhg-V^Ct8f*<|WT`xLVu3rj&O37y7o=`X@-nEOfh4;Ke|Ll)J-Y)v8sE;TLOgi@;-s}=v zXh0mnV5rzV*weVnLuDFev*Dr#=n^i#wD#8c`hlLYk(kwrUYSanz4OY--179#*`IfV z@76}~PkbXaHSV)gFWi6Nq$2acf?ieRSd}8=wA>EukHkxL)}O2SMl4dwJGMPiMO64) z*Q@)GP*FL4kltX+pt-@u`opM|5eu3y={O*aQKm8uwwrbG$1DT?TWH{}DI_?w=5W5k zh?`H~0 zyQe!84&3ZY1(W%fPybciVYB5&B>SaTB>fDyeWGg!5nZA!n$!xm21JdF0ol8qi6O+P z@$uiE+3qOAPAFIkG0Z9~p;<)={e!yh5}Gb>)c1)SWDcLl!} zR!4Gm&}NZ(TcW<1#R_ktq@b!Ox2pU}Ho4Ks!W$DT#{mEb$j6TJ+II z*v}g`?;Vcj;tB;=*@PLkscdvuPYsx>99nBV(E4gd^^qRKsX4>4l!{yMGN5S}j`BuJ z9$OB)HbS#%!yZG;Y^pmX(wjG*$#BD>hnDFBD&v$Bc{H!|9s|SJ0!6Ww<@?mg=5SmwtMniZx0qMszAHYF4+X zRBShK-&9pMXrKLIRBTPllc}02&B;H6mq;J2AgaL3B|3204)qu21FN~E#el!Y2Or^o zfs~Q1?GIt7tLRxle(j=>xVGFDfJ!IkJ{{4N1HUNPBYJ|9s%mcfQ#C8q^wb9v43B<5 z5(_~d$HchUe`Z`Z($$efWb8bwXv$yC*R8*NZb*k(I`mr1;2fX-eT#|c>1o^a&G8OC z9g8hvsiTp25sPM$6Ruj>6obW-rU9Jfu zZW&`&rK94R^?0((u2&F}mpyLXI!eTB7SPGJW3>>gM0p_EN;%t2Uoh}HJ^n4vQEHF; z{i+NHboQfPjJ)(=)RfK)Ct+t+XspvIJ(KZ0-%4nC0R9x@OlE8qnIo*D+b@NU-r3!2 zgnj0M`vJ#f(Y-Kg{GauAj97oP2cK_aJ%8Sm@?PMP%uRtuP^+>-CmE+`VUex_&WPYz zTS`Q&z88D6O;MW*jz4O8xl)+$alwJU1ZpRCAGv|H`g4L5;r0nhOFA+#m2w)T9V%>0 zX_=nGDNb94pD_Y((OLx$_KRpAz(;G0?eSfGx0pK+$fUPMY58gp(uNR(dUB^)% zHf6W@xKR+7!Kw;#Y+TCuuqd198NaIO6*N%BNXyFj%!CVfrtjy;IJlm5a}db|Y1woe znDrS-wo@e!-3%$97p5@farjY_nXJblEi+e7vj6t2md@*wdB3%L(|^Gz_>}JwDS z`pB~wPC5JQGKmzF-b|g`UeM*~DIU{Rs3*B5q(l$|iA`iH3{tYEiKCAVub`m7P^c5z zGJilK$&A^sdcaSjDR?*+KZ)XcM~ujsRnncy%(Ka*QzO=8f0A*;tSMYmJuLJ}q6>s8 z?M1)Z|5F!jAb;Le8>?O_wt5o%oT!CIt|#bjOykFKA`AK#9rjJd?~CK2kbZxOGZ~`m zr$v^Q-AbEMi~Tei8+xOl`gR7H(w1iVtzIh+DcyEl8$Kxo--xS`&bZ73i^*GjqLx)I zl>`BAs5l)$Ex;Z^AE=C7Sv*DmHYyLx=Yf(4AvkX`$9vQN%qFFzV1`nqEqIQrRRm{kXEpX((OW^<(p!A4`AaQmuj_$|47( z#GBKcWV7|~Wmh?BOZbzE7MaVeGzSD(<}cd~^x7^ja(qfqX`vXe{>P@h1fo6&U-*XP!0Qk_m2JM=jOA#K}A%e}n`=n>8|&u@kJc8u;mDirp=# z59A8VhL6h>SS&eKn7!zU=U*S+Gu%GVJC@uQJ6f&GiaW#E5A$C5Wtotl%_7tjC>#E^ zV4=oDuFg;0vG+9nwU{X1=(c)&c00Lf(DMZ+^X&t^YnxW*7x{|hjj8y&a z@|YE#5PdJrX6|L*Q|5l8E>6a<#-%yfEv)^tUCKsF${q%61+8{<)u!nQ2fw~?i`)G{X@@ky&WhJ#L#G%WOY@-Ot~V9U zL0WY7WovZ;s)sHT`3peq>!k?Qi-t)h`=zI?MH+wd*Yw6lYyaNaMHZ07Wme?4hzz0M zEONLlkeobA!r{lx6dX;f)HIY+e_RHPuRj$;uzH_at!fD$gZ6fR?l##HlWaPoT8%|U zHsq{c_zyehc}K&>d&~+2v+nzJHn-;^u7*7219chc9<^USQq;dLXaKvHv3b~cbX8GyZCy_M@JR)y{M zkxjxD1s&;e7Jo~cwD9fwC?n`}(LDxR&m$INP3+qor zNs=r*)M6Wc2+vV#hi+Fq(9=x%Lpy^uc4hhkqhOF;wK;7nOm>x=*%0UI&##{_o^m^G z)(o21Q1kz&f5Y2;)v%0qJ|Mh%&?%eCv94DS3k|=uO`9T0YaI;z#hFVul-aS`UVZZ^ z92&j%KrCO_sQa+IV*5(6!cpGV!Q>CaVYbU28lWV8LyDSoUWl=^gE&uEL?j->rOIIF z70{Z}!{?y3KIMUSvlYq}BKKOC%Ak`_60JMm%fu&h3Qbf;7G zi|>oa#`dR`c!NczmQwp0mF98R0GfI}XP9gPkcb4s8T_D@qI7^0 z;ma0bA7pyR1x9*!Z@yqiwckANr*;Fa zKXb_=^jZE)%&Q>|{eFip*8OH*73MmvFc^2N?TWFx$2bXMe%bYJ#!SdYpGwP6v`~j^ ziWQEAieFjKRmA?*+WFy|vzY<)6#*Tp&vH)VHAbyEnhzRj#Hr}Z!P9=Rpd*a3f)-}7 z=b00jUKqCV{DUk;B^UDVkh| zmU~F}vfBXJXFG~DG=S=@lWfr9^bZd_>srPlxKpC(K6c-_@bcRBtS;X z>z{YZ{CnzETgyzc(fXGyGr!q;Vo!a ze^|O|tZtI*%pR&`R$Nejvcve2HibuLoA`Cc!a(jfsu^>9RYOBcwI6+M{d0fPJMw#Z z!nQjNsqIt~+^kKrc4=o(E5^6a`j>q-R$2z+Sfd`=7(Cd@ z!81xC-A{~@F*R(XjeURai0SrJeTUR$AA{b^Dfd=|LPoz`BX@Q5@iq73;lwOVf=Fuqn+@T&aS_XVfZKQ-?1Sy+5BX7~x(6=eZ-2k54m@pMPoF^KT zsGbmFP%C}c zs)eO>*SxDOcp`$@|M>>VChbK3G6$L>f5Z*5CDN>yh7X^g+iFxW$>1{0bKdv0?hImi zgbKc^LppIxJbzNRjGbC$UxM83-2M_Xhn3Hq_WnTNFFCx8>tT4xC-KHQlu>QuUJcaQ zE{$r3>2zwA-JGc3`iRp=c5&P|M=0b6U-Tz=O%|4%z6-UBO{?q(t{yYZRngd7eR-}>hFs`_?y;Rqrnmtp!yKVSW)x= zz&QhgfutBYlqwPyN7=2;&x;P$GV8SCRDj!IZq67-V;0HPRugk%Yii>kc zM;jUDyA5BTY~k}n`-w#jV&e$K-FvcJJ{i$5fHPM0(GHDJZ%ntNeeP61>rsgGFA zZkyEOsYE|}MTjbfhersnTJ&2U9`$P_^XC+bqI^GQvD1+fe-#c-|NMOIzH8f6I$Abq zKDR{7#kx2P;f-Bh=Hcl&LE+YEQaACdt`EPHE`7(n`lPGmkYVzgPil=C&K-^OxiP94 z?!(lGJ3K_s7SU&;P$`~0c&kT6QxPZeG5Nza%SRsbpQK#P=CMq_W5>zUjt8fvaGm-p zYPWH^wrON9u}c%AUCEG~no?_%X(-+E+Tlus+(9{kPyBaDX1y+HGqsn+tLz@rBh!rv z_7S7|wH^jDw7bQqYPP&s0xv053nX4%_epFMY<6k27a_jhzaKUn-cDXKexBVDPPfCO zC7^zssIW(oXd#uTp|a0HKXR*;r%$Wl`H$Hnk!i9j(+lVJZ6;NV43UaBk>uQOChtn} zi+|q^eAStvN$!xNlXa)P_-CtP5w__ZhO{!48Rf+{hbi0)wMJP2(=qpZdVU|jN76(M z8AafwMz)Mnr4;w_^Foh4g>bq>K9&LUWhJmG__YTBL(pb+1NXHdD(CN`KT+5~hG;>ktT)tVv#h`C!ptJ)qC??;ej_YMqPfIRwBHn#A^ z#YL1r`|akZM+24T9${fPk<${7VRRxI*kvL5y3F|OcAMY#%(Y!Dhn3t!H-G*5r2zalCe3%e>ZrY!LK3D~7F+{-!%$V}X)RxuF*4{n&kov&QoHQ* z#4;SoR0kDM4=FK5cgb1FpUu=e4(*nqQ~r9FX%6CH^e1KW`d2323}(;Yaws4++Szf_ zYUk;l)Kl%WKEXCGjm=jC_LI<(^ z>^+_KNbSPeML3v%ccKfrOIHx;kb5fwOs?mrBKON+n&}1-k_Iz=w;nS>7zM;vLQ=85 zQ=q_@yUmiVF>}$4%qM{3i2^~P(2+`mKC02NF{0rxfQpe50sm_aztf0(bc8^~!J$|| z&}B^s zr_Ei)$~CZ0i=^#oq8ijKXNh{rk|4nyc#^Hz*U*NF{G(|^o(kuC{O@mPoj*RE_*loG zQ0e97n28A|v#P$_nGfd@O?0Dfc_}U3690*He$|SLPD^@(d88B7-%Da|frjK~kt0<~ zO8mUmr2V7R;RHsfF^1AGq=oX-)T?kMMd0>Y?F27#X&dERtis? zlDMS5=6vx=3XdAPivU{jFZ_B=i^UtdE=P&S_xoRpiwCH5P`8LQrwuit8xCIrN(&NF zQnYL2L7MOlOy-C@n0xr>C`4}SvtQa~Pq$7ko}~$$PD~g?*%IHww*Ej2<} zY^cPV8iVKXVY*`e^v7Gozq8Ij9}<__!75}yxx|WcrZF&cv$(GAReXF)#!Hw$Z3il$ z!RP{li<6pB;sdytZ$oh*Ap-L9xIljbUckEn%U28vZq0Zb z938E!FUUnf@mqEcpaMgTWJDlK_FqT=2i2GDSpS9;Fy@>|epCmH38DH{M%>pv_J6h~ zb3Ded9$Gb6aj5LqNXn%&*JbymG9><#KCMZmSiE+9sZj50yTL5rxoaZ44`fC%+FR+T zT!w`1ui|Cy8Cn`+VmvhLArD&5Jmd}dGhDGx9(#7eNi!~!NpGcBCT?1$8EkijQ_clR zqFmOPvvx;<@!_$!SG}d`QFwif!3UWx_heY9o9nCx zE6@|M@00WM^GEQy^7zC<8`Ld?x)g$mD7FcV$}rH^o?cqgrwubJZsi?PQ`C+-?QCj- zVj0f!=Y=8xc}=aYGYBe6A)UO}9il__*{Ip|hpsU5gqUf6eRZ`~H4410@o8-gHZw1N}X_P@~c8b&t-r(p`KONdB3Vj_DQq^Y{&7E0CN|lIw_hPnRM_Z0vOVsjWY4;HOrdZHXb*3&w zQ@moJVPLTcz;{c2hFBfIpn3!7c#6vJs?9UdzTJB5lJtI`!oN3pr-2}895{7heK(V;Dms#rZlq?IMu1SD{>^x3H%!jbT>XF za@C?gAALJVqn`DKW3ew4#|wibW5{FZty@$zsu{>uTCR_>BhV2rD!Vw8`!qW{yPtm6 z`~K4wt<_t12%7-ePz~$36IxV-Ajm!fcOhLM$|LL6e{`irk+;(660&1vPSrLK=6M^N zoA2T=)cj&nr1oj7xfu|Vxaw|4#-LP@|7BKAHNTCR?pI-t&kr$f;;P9liEQF7n$z18 zexmxZR;IM`jT`Elhe`O>msC$6ywEVjnEThTBLHVxG35x51tV(4O?v_a)DJ<%&$fjP zT^AxMiN(x96FkYFcee!JDX3qw>$}g+9UZ2~_{RWNwT_f5{ofFHVd*y|`<`Biaze)_ zjQMd=%clJW&QEM>`>xlP(>GA-;z-TBzR_mFcF3+uUEjs5>Xwn=D} zUWq8CMr;#Ivbdk=8H7K}&uzHOr*8m}k88J!-)N#Drf|X~3U-dna76_fKC#Q8I$*Bq zm^!&?q0vI2+<`^S^^64|QMvi;@dCc`6;23dfp);zVnX2UJ9p+wRx+q<$Dx&z;eFK= zXoV93*fc_>tTB)T;R$A1ldPmxliPXR?O0g+nS*%4I`0B+g$5cP_*Dcmk@GqTs+kr> zMs@gHl4F2-shprE0zHusdPh%W0?uC|=yHJj$&8=GpV07U>epcG8nS!e`wSvr?jH`f z?_<**US1%0#=8S@Zdqnie2N7|&Cr@FVP%zM_c=*{RP^){P5kc;cy2j z!q>vW)kdtEtWnLat^5h*ZCv6oLH+XO$65^zj@Wd~loa5H-l3$VJUl#v`(oVND*E4E z2@?zJMir!Ao7&s!f#WS8Nr$#+aGn-fwby6*d@bq1M7S#^mCM0@#dMp9+*KK}&Xng$q?9dnk!|KiT z|Btr>w?{{Z{L!OFddzYrHyQuG?@Sws{yQ{x4CN%g(;)B{^g1)+c=BIp+W&^BO_)(> zX0jD!GkinM+lkn|e=%48oxggh*{{pxI45rYZ>tibNWiH5+x@=X{aX0bfUvTPN(7HH z2hhI782{JTWXh0a^E%~v{x>Q2U)-s`Ufx@QB&R9z-(QPa3Q#it-1^HULJ7kr|F&da zJt6y#CFG7+A1gQh2Sw3nzzzV!+OWaFW<$&b{k!F38to7*K~Ot2Hz)Ao#T7^%&j6#v z#`jhhP>4!wHv+o#>hzc~fsG1w(O@7vu|0z6mVjh9qqfhO2K=e(2;dD+6!Vn0J^=dE z5{emr(f|-KI=a}OP5^Yte5Eqbf($Da6p*xA&2C)9?9^i1szIf{OH3Sq@N-5A5ME48 ztadXK6H^4EHj28sI)Et{fL~Z(Gz1J&xr5S-6e@pk~3q6xq+ zX2X6o0m;E)%cQYsgqo}MvNXgAo?c$JVAZ?{fA*0{w_}i&T;7G36Y5*=zhM{~$a%nk zB`>X~UW4wrzu53^7wlNP?K`;-zMYH_vKV|Do4&d_Q5gqBqv^FZfA~FU?w^5U#l~B% z+b|G#Z|BD=);@B<;h_*}QICg+YWwF!#91(mhgvU>r&xZGZol!754euYCQOLRo@5h7hR>S+d zXB56Lq|-L!1rT@2;`9(}DhdVa8e--$EBWb19orRIVR}ui&x|)9QHt%?yDxVsap_QeriQ0Jj>$HL~%w z-kKHw$#!?u%!L6pS8YI%v_(C~P*YPYtsl+N7L8c(_4U0z*{@`pFIon66#=|L9NW;{ z8^LKyms!4#Z(4a)pfY_GK^KA~^wv^RT#n;`iC_SsFre0xB;pF1k5W%mT-Wjk>{ikX z5hO@Jo5COl;zPnXz+WG-+U*vT?fNK3<8S@4=x9O&r52UGtP0|mqxI4aHoMJ-nvDVZ zN^d?OqDA2NX2VPLXR1lSXT@W;AcY&5D_Vw$5b%X<0ehyGQruWG0G}nLZDY~(;sibo zr^W1TsKxw(ze7q&x(R^RZCKjxpW&`zX6{Jk6o2A)!2Z)ECeSA`OE;?C`F3v%; zc(Reibrw?i>YzOg*3{GWbcV#*=P5ohSVbcC*qe=k`Z0(H|9`$C;*PzE*E6i~W@T~9 z$eLk|;qOHvI%x1_q_;7b#an-cAw8inx3B&igE5Qr)LW4LTSoM(I~y@Z^nUqr*Lr_- z=#DqWZ@3D!uW4jt`as0u!P|i}g_*4Il#~?MO3UD^m=54ZL_`?CLhCCkV%v)}%#Z|t zo>8GZEI&EN-9`1n9W|5X-sEMlEkxLvkD-TB7FJbiWV=pjv@0ymW!P7(t0#@T=RW{d zJ5IL+2bOfYZ0h-LkA(IcR4T_0$NA{e!oGB)scc;Sh9EeLsiU1sh-6X6j zSwb-xA7lJ6veUbPgBs| zA6nj<+_nRSS?R0Row3~g&g8+udj|({6QFtE(D<%z`(h#~F)`VpT=fi~8fnH5mStWu z(9nn%(?D6Un7`cBGS(g8{r6@RWUNR3{{B3?e;mFKVMtFIw)y+Mi4Iy^ekH@O#`4Q} zd1k0ZL$xFH(g;xdP-+gRG^45BqN1R957!hdo5F!UGk$!0JjhX7X>_hW<>n^3!pqC+ zRmT+Z=2ELzSNA?1p8kM*Aoo6KO9j&HoaH3}to|OLH(?v$^13*c^9)PIJfN2C0=095 zV-LC|h-hh}{2+F0S|#KA_YaV+_k*}7p29~(0};qWpbqws{))}oaQ*S#O7VKh3T%Sk zzi$UOORp0t0WPt$Q}rrh3=Q(4+AgZ)<>gBgm9D|gXIEPdzrg&+;UOETDgaJ5Do*Ie z$H!q&)Y37u=`h)jS>s6Xo-u=o$rknVfqi!O?%fxVO|YB&D#Ye`UZye)f-ne3M@Gpq z6-=`s-@g6b_2S&-g3ZQzc2*1V6WH!Nr44w1GJb|}{olM@a3)f0ecmR*BwQSyMb?~cfx+2TcKs2?7pZ;1a!bpQzMm(%v z-oGylv`yjt{e%p$Hy8Z$Grw)ou<5*6Y1*P`3NPRYnza7j+ba!C+aEuE)ZV{^gaiUS zvp-db0*8!rK#dw9y_}&^I?U3)K2{2GYh7Po2qj{UJotIYV58wNy0^8xDXlw!&8Sdj#{fJWgfuhcz%HD2Pv1 z7Ta>ZO&y+;rkL*&Wm4jeuySb%xefDMbO#_$F*!G*26K{4hPBV~FUk*Z>&H z1~4In+u|m$9>D{73P$F1!}VeY798ZVS#0pI;<)UCnuDJr##S5AiDbnGZ0Dw;oW@4IYjUIfCCn z)GCgqed!nfB%;E2h88R#IGqO9@OjU6-;s+)zlLFfE`$8t^|2_<^&&TLv4+UTL(+hu zJ7Q9bE+YdABztT|#c?fvb+kAbRwg2GgkXoW8V|pE@#2HnjL}GeKQP&IU__y`1F2+` z_u@!m<;-NPq#M9s!v)5o0IRL_!YI_I$sIzg@_#I<-fLs{zAK}cl^j(}|a zvQ}p(t@wdKU(eitBb}Atxrr7?$-8@aWZSGM5<9Lk@bU2(@%V}ZI1f@>=Ab+>wXonN zn@R>nz?F>B4szd3w(SeYN72=iyfXoWou6hJ5kAl-OL)NT`~=<)hfsh%5zAlO?&p7O zJ4UyGk1&E2Ae%~CIIId>EGQC)FNZiId^H&4^alSo23F57cdV~3>e_IAf8vX+8i-Hb2ghza7&A7JQRdloRV7wWeuP-4X^{_yO%IpEM z=K4srMtUFd> z{qyI~t`r&Sm6c9-VMN_Zf2<_GeMSZVS*$?P9i_{B2_u$5z_6ZU(Szp$F1%|!lNYiP zTnD3;W#FDbM$i)$CKJHoO)Af9#_eX%OY2s9k}wbhK(w^}V0$nL2wDL(w{mv;Zs_6w zt|k^xghNARe>uN%YA?oY4)5n71ovYhP=5{ljs@^S;J)DXgzEWZ@&*w1a2Rl*qHDex zk#5YL3};AZYRG*EN7w6510R)@l^5ZaAXM&mhD<$J2Cv=$iyJ^HXV$;;zhD%`-OGzJ zkwhnVNHMOy-xGtR1K#Wq`25x@AglrxNf+ETi1$nDXlbdbeL*k<;%~Su7+_n$Lkk@` z08jKDHnvWfU83`Dx6q9nH=co>QE3B=n7vG(Ji+|kXOO;8FdPhiKExTyWp-afsO2nR zdSjSd2Pls4X|+{dp(HSvr~fY4{_LaZ^(iA>t(Ek&bUH2>0qsak8Igu*ah4A1*mkaDw^J*;Z1^jFK&;%y}#cu zF%buUIUA;5IV#Vk4=$YHNx(4HR<*oC%+&;EZe*`vM~Dan1L~cy;9cJsZoq@-o0Z>) z;|5#njUoNM6S~1|&Ea1h;0*d*`h<8rvadv#+2kQ4Knz1b;f(C@W0;x1{t^?@4&5Mz zg@`aldpv{#PH4F0b)B7oaO4d!_alrPBJByD><7ej9=SIFJz>z1)n8^BK;(0fLraiJ zm4$S`c0G<7P+;E|Uf_aOTT7qX&gSNKh;nRFTlah4NigWN;eyR$vz$jnB|@ov7Qm?= zBpV0QQ4Kk5`@KH7;+7eaw!(Q4n>9-m1EEwgMJ1&TuP zkOE&F%yt8XuVA<=!?d7=K`kj00uV#9!%cO>_2;lz)yti@SaummdJ|F8N?-W~d{ku6 zQh>&~hoq$L;BgPp&V#9AgR~+DN?gslWAW+Jr{&!MU74*t-7C5|?h&(i04NC}b5PJ@| zvak90KB-K9oC~ZqtvK?8gl8Y6ps}W^WjhO^SqBjnV`DeKQ7T_xga^;~r84adapmF3 zNe@^BM9Btp{$OTTIR>Zt_xgpSsi`T#B?9ik=FU#79`iPwSy6yMM1T{M!sFG=cmEZL zLg7^3k}U1YjbnSv$M0lsamg8 zfTQLpmH8;cXI+L*v1W4)drk%Y&Yk~L-Ia$^oxg2urlk6{$(m5pq8fuvmJ{oxxxz_)m}e1?Dg!W}1E#HJP3VxOCk-0!()G5%*VU z$Ueo@Z{J!?+_~mvsH&o3jInzACS&&gfR=vw>!eCUZyCfbZund%%v0x1@P4XLMxb= zA>B+6n6qO}yhyZ5kel#6tIXcDb7$CE3H9E-KD)TFb}iNUc4sYsP{+1=B0>}wF8YGs zrVSg2Pa*8pSQR!z$eU>UPt6ADROS^KD~RqK6Z zJV21@D}^}#0PykH9j!BO_kGQ%JdRF}m%<2=p^)MboW@6b(y*u=zq~J00?R&VbT1K^ zotwKca{g|rUpR*Db`+n$vq=^dXo%n5Z{GPkCp+?lvr2V-de&=LlB=^7xU|V7b;D_2k;^7~?N@f@KQ#=O`ld-KR@_Yau z5D*Y>=_ zuG-c4(y2K+1scNd9CjGxX{tDM=+N2?8=gYil5{m{s<}tppCAwA#EjtKR7VNbFmfMh z+1hSVQc`-6ye}d>U7Tbc49=bYwvl$37-Dz~E5#DCtv65x0^V?s5`QW{_A)5W|f5aXOPbcPs;1`$DcaU<; ztK2a3(-DM1$uX@%a?vbu>lz&$-Gb4;xNm=CXYXdax0Guu;b0`O>2v6TZvgST$tLzc z^%!;g^x}&3FjphvQMt&RYT~p5DHG0f$USoH?d`4o=nDT91L^FT6#sHw-uLmAZdnDQ z+a94WkNq?JXRaffz8F)UA6)`@kU00;(GhZZd0o@MAeNcdbAE0Qv_w^d4eWiyHVP`@ zT0K3zNOg&#E*~KvuvX9b`Lc3gWuQF#0xk`0?S910nw}ofjHc%(ZoOeTA7Qrj_V*hN z&LIUK`7B`yrzh-8sM1=%N2k5LX@FIvC&)RsoDXFNym`RvxE&rA6obsFi{OvIA@dXwhs$za-B)n0bn`+H3jw9lu)7 z0LEuGV5*fUrnzi@hoOH!0GR~3x}@Gg27&iSDpeRd2S%1uE_|C(X5ZiRlg;t@X%5nG zKkg>ha?WE0HUoLgfD8yD(7H_?*??`;&xX)wpxHS0eG6hDZqi~d=%o-*pJMQa`LH|o zoZ6w|RLTB!`g31XvP?Ioe?u8aZOPphCjy<$V)FxL8kfIh`b{{IX%nbto&^XX6$#QC z4yn$iqach33n82RGOe!PO*@~AZkykci-`9bMsz|=q1p;8B| zP%j8wVH$c$F_eb7r%L|QQe+*2qNaE^`ayL@ivU@EwS}&o#N!owcnHHyDRU*d*CUqk_xPPMl9}>>C6~vj89oD4A`AnrOeSN z*NA=wgD&N1=ooK`PKiPj`GwK4I1koxAV0bwJ7|w3qm9Aaxa0m@T7eK{4)6!=Z8y?g zPUSpZ{}zC>Raxn%Z{ITP+ZuAIP}qq&1Shxf#pY35OIQDR8%y<893UBxxVT^jUGv!Z?WWA_&L`AVLrY)(L($0 z9lnM!MtT7t=5-%&3sdM#j?D!30jrussb?g|#u^MTuYTTs!|mnPB~ zg^DQo6WJ;^Uj8#Y1Wba1gC#%B(M=dc|4x;2uPQl(2a50RE;BbVscTcqZDT-{pxt}s zC`*TzFzp@FwbK;p=*in{i!!-`Z@!pv!la1Sv~p~0@&M4pQOc7^ru8KCmzR|_6BpuF zxdy`{G}`3nE`|@QS+m7a)(JVI8G%9L>p;TM+JY4;R~mt_9(6c6oc0V%m<|`1S((6M z2ui9VvX1(f8U_XivS3fd!V#3(kB`CDn#pVA^T;?v`XS(&`p!d@KSgA7db`WL&xUxd z1xg3w$>mj&`MK}eRMV_N&Vsy5;;@wKmysN z;f8aO?10-KqNfLGkdQBvBi73Z1*dLn{Bdlvt<9@F4Cx}SdhY6aSA+FBPkHkns@=9_d0!K$ z6Rwt4lT~O;sz2Uz^Q5injuFv|LlZamZ1O(!s%>PuSfBjehO=(lVCJAWbSt#h$k0$- zcDGX=!j?bh*`_L=)2F4ldYiM1c1TL9Iy*~ZNe88-Zk~s=*@urG)%5inGh_Pe-xhlw z>RcVNL`O$Q&g;V!{noa&9}?;=6&6y^D7HmfdL8m|Ct!Q>)=80_D z6w=tJZ&mEE47}pBoN!*}CzZ=f8kLPtX0ppY26!A^B>pBKy%c_iC85DNYinyji0Ug-SYA99Ii_!-LqkWC1Ei)O!Li*Iv*bu|4YM*(iu=#{ z^)l}{+z~M`zj}Jg2nq?=6?Jm3bt-M8Y!QAWY!crgQ6wq_l#HIAGEPfK7`l&Xm~8Sf z)zvR&mX($YA=7gOK`A3`g-EGt=m&U^pMPoDHq&gg-_S__

EWwl@VW)z`p8kh`* zHveTgGt?4br5%mxukZEJQ!qlsdyaQd)~;>R=WmE!-EUr=AVaEoV@GiXK^u98UffIu z;|caI2Z_@b8~=z7CDYD^MBPzl3s=p{1G)JsIlEFDG^+? zYL$kb-WkT@Gb7!hd}qYO#lKwSeEcAlN~0SzkVHDU9J9nz=P|cy}kI}qmLqi5H=fT8IQ{(Z;{)& zbtwecOI>c8u6BO%0Y6f{%64>dxmY()1*CHU)u89crRRYxGn^!L@8%7h=Y-^Sb#_J! z4i4H)!DvKHTRWoj!0%eOtHR6Ig)Ozn;p2-~hVA8e>QoIX;bn#G`2BFcF@N*OZ(^5% zf`VGZAhP!6m>I{xx{UW8@^E(A-}H`e&z?OvLBRh-9tT+7A$eZW*y>gzm}trF5s&** z-^z;jTK#44tK|{{x7)z!7C&@k&Mia73{I`+kU+Idy$ zx>7&~`~Ko3OWfJ5dy39YISy)~tr_Jh18eIjBtm;=?<&?B8q0Ca;6AvGu#!I}MF?{g zj#xpfx3IMATI_#AIX}IuOc?%=^v-uO2NxF0E-~jvH(E?E=VP25wa(Y)7Jq{@p2bQT z-!T7Bm75h9SQZW95>|T@Bg*D+RxHnKH+TXO%UEnS>V;p7qf1dWM`x+Z-URe{^8|jK z*aXpY1(zA{0@6#wg$s*a+8-=~`*0Qd_zjGVf)S2a#C?f*idA(VJO*cddLbN=>c9K& zt8GnEdE3RVYH_gb{83Mm;^$S}d!jQotL5e8#ar3~G#GpRdL-WX z7=jKu`qZ_xSHb}`4An_qCX@_8oIjb#3ii4g`%3GkFVR3W0$x#hW3vNA+qJS$&3_G}> zRfzzCHipYuw^j7@uheAoWi*ANvQDP-_4V~RIy(pddHllRA5~#R9Q1AId~d}feqL@k zi&wc&BDy=Xva%W-Wzmjyh(_CX%Wx+iFUlrAr0D(tBzQ^XH*{s&Lo#2!e0c?cZEQk9 z2w0^pJTiCe-Fq2(0lM$$g>M0GKKYPNAQ&W)F8sk4mB5f3;J_P&g{ITJM&{;lpe9t>mXO=n-ED*O8;AqPz?@XNARxp5dQc~2B*ew- zsdLB4qM~7W#Xn!~FuHCg5p9nZuFsRK_SRtUMt7B-QN3;02R7oDUR=*D`O{Coo;@pX zyldmjH02m@p%p#$YmV<6pPUqzky+1kX)!1{+VUr6b4vC@OjOg&;_(8$Q~jyq{-qBwFC4y_ug2L8U{3JMm@_lmx< zSS<9cjRJM5{215AY_oX+gwDYn+*RiSH`joeou2w^O)gnFi5F_$GtdkJ3kx2uM0Dkw z=GsKzbP-BwmG<|2UA7~Ep?fu?(l!Xo$Iea+B*r$seM{_k;2J0Cq$|nEJmoeq=pU6( zRP1zhD*$djm}8o8;|3R!{hJ50h%4@5aev|`dQZz;`Qwj^SlWFMGgao$J5>QP6!YML zG@>s`U}ia{=rvgMp`jbKTm4;Eu_F1Q%{w_caS>zepl9}#04O(28BN{Y(Iq7cxq*Rb z`%u@_eR)Mx7T{jr!h$s2p#ADR7niK8Y%c-;Hl2i@5<*h9RBC{KEJGA|Rugu_8)nKXvbpeogoqW3_aHasMs0tD?@wChYMethji8Msn}llFPY6bWdHyG literal 102554 zcmb@uWmJ{z_ce-v0SJhcAfTdjBOwwh2-1RdN+aDJDj+2xDJ_kpbh8BsDQPy{-Q64B zwV&r7zYk}O_na}#2XySZ}ru)Wrc2>50 ztgPn$^92@58zWY_B~o2D$W5!)s=8VFv3!3epNTjk<vJtSpV@85u(R8wf^I^cUH=yddB}e zi(c=4Q|IbBaag>=2e-cgAX^&zK#!Y{jr&%2} zn5RCwu@NkqI=wQG6O7y1R`R~D+xUsnD9*JjtaV2Zr>CclOVucyrY>P{aBw)S{K&j< z^X7}xo~<$4E=7-D10uC9`=so;-l@OQw;)2F-M-KC{N>BbUf1zx?%&4<68&A{ynBx# zERxgc@An?#qrE=ays~IJ<~qA&`B-lAfWSa(E|dPOJ*OOO^-V5se1mXU3>g}3?kJ-q z_o(I|^4aBO|IAEUIXOB0-44#P}0FAKQr{nXffU#jNj?*6_v z?PiG3Iqxd6pxk-GWq&2oNi!}y{H=+`9U7^rXl)Ojwg`GA&8i3w)Jf#xZ#$RQol0RzuaZbC_@2&4$@}=H zwiz!^#igV~3Xr=)dLfZRGy(z?czAf{=Z6SoW2Toky6Ms*QoZnBenY_)^6zyEFYUX0 z#-)(RQOfH!DZMA)60uo#8eCDqtE;Ey@8@S_msP$t;kr5Boh-~_H?6}F^QXQ2_rL&A z-ocSS6=RZKC;Tnc@-bFVAjl&0P{!tw;R)@zcM3i=DQ0 zEO3;+@P^BA>3Z|PI z(PCR%hdNL{-wyHo>AY*`vbQ9c?7qJ_nFLGmH8k`?W~Nag3hfS!ez$W~3L7>aZ9?$) zCg{!=mQ66zyhK6q0l#6b|HoVYv#sAEA|gMnXGLEM3+Ejm_6OB#4kujaZ62r$%+1ZI zuzU)nA!`4f;5gAbRqu6)^r_9GAaWkVu?lM@)go{Dw;3uUrEt=r%sy*t>%HYZUs(9Q zTvblBQWM3Q%Js-^-)_9g*FJ6Q=wPxXwgLlqKUr5he;z^qcBth29XJy!m<*LCYM+FX zk`e<9ch6;2h|1sJpIc8xO6m~MM;dFuq6xYTa_lj_+V|QnoKc8t!nrncVGY+E;1x z?CdN+v+r*#SD^K5^ENnyT!EIrgv%;(4oXKyC;e|Plejq2mnUb5G%5|g!A&*!{e_p) z`SId=2n|=R;b8o9b6r3AmV8uNk(%F=Fb?jdTJ69LURQK1-2@T(vXGF_HQakkAC|nc z3?uLx=)X`3s9iEy{F}gIH>T~0N~d(&dZAcsC_TThkO5I4(*v$ccU>ldFZ~)GWvIXScPs%FVWfD1ZF; zv8}ybGKiG@<^0?n;i~C!Z+bRtQQP>q=0L9MTLB0VD-d_1P~+8(${z-pA3khg_{@qp zlSiFSUMRs5E0G0>YF64b6YnvZI*Qvz>PrBKa(Q7Ec!9 zEOX1K`0QR^f>a?VL7xsWhUoi*$EkVT;&7dN_2vH55J9zt%645-jn8;g7Q+a)W1IGh zYgeykB@6pz?=E(!C+Hn*O`|V4f!|pkeIjR9*PPQ$1fo$;=y>i9W)@uM=-36EiQ&2X zR{ixT^S7BYiawr#SS^bu>eHkeo`FF@iW2mZ;o+%T?)!=Z-(OsrUs=gs>Hm>>zF*); zTNLCUB$ec({>uw zVgi?G)aCxgBu@(@FN76MF3X9r1wpU+?ki@%DQo`u$Omay*4WfUU#nG6Ww)$5tmH&-+De;5mo8C99OCCkSLP0@7_~cOdrNVI ztE$IX!FKVlBCKIsXQwnKCgzWxRI!|h2*Mm&LO~MsatlQYKD#%tFbo_V^31A5X&r@# z^L<0cGT5*mg6=1Dva+&7WMtVHvPt<;G;jS|=+hNMML+NC?8tjvyTwq(`ryHfWjnt8 zxo}z7os;$Q$$khricU@y^CuUTi-~VlRaKQ*G(B&*qIMPf_q%-L4{F8UNc^}!ZF-_N z&)LZ-i;T-8%VB+F7-cDb!{`yGlaCdF5NhuZgv~U#3I{6Nqb;2(hjj@R71D58+2;24 z!1?y*-CtMme(E-1ogb7VE-h4P06clX$cT;$xAF0Rg*}$6fDC$cFlq@9rZfKO9mu{k zvWXp#0h|{T93ii~$QiJiZzIZ(j%)s#@a!1!u>Y4Ya|6oSrT0#o$t}0q7z@|{*(AEG z(1(SEIl+%AR`aWe5S~H+v8E<3&Uqjc#0z;QR@yFJo?2fwC;Dw#Q2RM2hmo~r>oPhQ zR8@`K^V(lU+HTe!5|EL#0fM-B^X7B`;(R7E$wT+-XxkygAQ^7)5X6(y`!3R4NiQPmH@UDwHI^7jZk{pN4yTUtQ=* z>e@tHSlmUvyyo?>&i%AEPn`#C)+1+C5ddJ$thHR09|JgT$&yPASjWS`(T50A17Q_X zr%K%p5~6<;i)Nem%{y6dGlS<%-60}v)v<8)KFCggoNm zY!lfb(sA5{5E~NR4^#n>y#kQ%`t|GYU~d2@&~IM8a^)Bxrt?lKt+=ElW7)UST-9R0 zH#J)g*l8IVJ4qL3zHl2wrbw3dq3HeCl6mmV`PBjhI$1%cKu7qV0&O8(U0vgzlvn;O zD6kr%wV^^ZU~Q_)KWHM+#=m|01u|dr(l;SbL3Cb%Re8+H8d6Yq65x3@OLYeOI?qk6 z3-^mdB^VEDgU;ArBO{v{e6W`X^T7{VGN|9jUCP1NcS>NqT&I+?4+w+mvzC z2C3<&I;cg*6!T_DG)c_0R`I-;fC2nO-xD26F{SZrSyO#KVGMtD(({0n{SI` z(x||`hK7NvKi^$~i(NdN^ejISMS>xt0ko{(aa#Hq z((g94F*2W`Gmd95zj{L#mhTLVW)|>zifXYTMpV*ccCw(oRb&X5`Yw9eA!l&duP6XU z<23A`+va6uW!*qrc%UJQyuAF@;bHmO>B(vV{0fJHkMM(K-SOw#T&Ct=3d!fsG1%GJ zYj*!WLmNMQknzQ+TkxPx>}cyZ-d!Gxdq7qU!L|X4Y(b1eZ!V?#UXP9cD?f?FC7fdX zmp}UZ6)>}|Q#ySgs$*2n&q_;s)SkCQ8!zB`pa591B-Z{NM~ng>IE7TvAg0ko*Nvw+ zcRxb5NKDKJ)Tsz|76EZhLi04O=2aju11oD+?*Z(D93(+VMw1L>;7K{E!A5`M<@ge0 zYQfHx)&Wpv?YYzr9DKZTeI)*YDycB)WIxb7))n>TI)q;IaRF5o%I>zGlvHkM1d^~S ziHnP`09P>qfQSag5~)2Zh9yy4Udr_8=(WPkg8Rs^9j%Jw>gyT&GE!5+Pee$VrdDE{ zTvS}lJnDI}OpBQXV056!9MUD$8wg%3rAfUf)rm<-NhW<6LGyKaG0BfRZxnK^>Vbhu z+@ALU{_S~F)&N^V~pF6v|#WfCC zNr3=fe~gW3NLC;3E;2r+;CJdS%1cA)i(@7A!IG+!H9@v;badP=N1*aLW-kDN(!tC2 zRZ;r%U`l~(3@(E=yQ~vxrUQwWJH8MQMmx}jYOndP@Vm%Qe5#* zaBOum*J;~rNXx2ak7;NaczAgB&vv`i%iIBf8~hz%&Son^yKIy>O}O~2d%SNdtE$ul z4AqqiwDK_a&rdhi&4F?hV_{<#^JkVNwg3}g2og=5nVDf4wJ^9=P`h~>_VQf*g87CV zks@M7>?Ln9xaY5fFZGlHF8HLR#+9|F8`T(TX=y*-_tAXDxvLvP9~&Rv0V!yCw49Yz zCVmPc2?hkV&%qSW)R;Hs*Vj8CU_P~7kSbI(@V!NDxG!!EfbfmPcHERu6@^;%U0p(oE zDAClyoFv*rr%%6rJvTw-cmDc#rM06&zcuW!(!O!K{83GMW~REi=l*~)(6-tE=0}ej zH+G3fijD99pr1`%ppq05eu4}1mb`xpYoxjMtx&IJ!b<4z_Q3(m!H`80&!n4hv0*20 z=^q2DbKrZI=nnXnCu*w|DYVlG8I^M1b$@?Bm!A8#r`%Fo{_Wf0a?7NFr=r34-gC{) z{(ZK2bqXj&`JM`ZDCWSJ56%vMP=}LUfK@;B7&Gk;wNSc#iI2Zmce?Scy$lVwe{u9( z`g!7L1*sU0RtaGxP@p-k6!>JmR&5(~2)`~@6kkFxAZ*n{$l-Vznwmh{uz|hON7sS! zGbT9aQdR+|N?KC#cS}plhEtn-FPAwiI4}j`gh*Fv3ott)oOQ+C*=p4TEny;i6xRvd zrB_lCRjun`8J}3S!}=E7y+d$T7G1kN(>DYKGEF>Oy)FaO>0sE18A0;*LuY%t-tW)1 z(kYRdvQ&`Pn307Tg@uJ{W0m1zl+KMi>rE+LdWMEHkhSfWdoj}qAyOmek1Xc|UIvkI z@p_)~16Qq^_wcbImQQ(cgZ7P+PSn@0a%PhNnq?u|11?a)z825#Ops1kP_u&te*vAl zG&D2>#KfW+8u6V4ZA2c5v@9%tS61gBla!h)E-qew?&RcDxK0!94}s|N<;%RlH6`c) zP3dzclB==-qATj)_L(P?IAw5CMZ@fknq3(?K8jM40d!VqBF1NwoZfXnVLAZJ&QqGK zRRuzb@dQ+op*ny?MdqX2Ip#pt`RrH5Y!E)6Slz(FVkqAQT>S~Kb|9Ew+$lCmA)Ot{ z^Z`A+e~xkiS_whJlp*`zRqZ~A3s)=VMbh(-E}%`cwzWN^r~lFK?E#!}`|xlvkhSg| zuw4wd;LgK>i-D)dvV_?GCO&jdbn)cW5z~ZXT=>dHD2nb_SJC zxCBCONt~K`$LF}wQF}Pi{!{0-#fld;gr#y4;F9?%1xD`f?(O@+M`8KzO$V|SS&${a zZV81Pd`YgAaB<^lpD@jOS(e`;8_)Z~#KgoOIbxvM_vyImK&b%4B4&VX`kO1W*{hvI@ehB*J^i_zXH*VcRi#bgPL|Pb{7rq1f9G3tTv37$~#Vwi- z{hXF=O6^;=Fs_zwBM1jQ5$?8ZcrY4UE{G=#CjNkx%eiajQICp;j2H^MkGQNF? z|KifpwadsbW-tmMeH=!A@5P-Kc+T3ROp~`tFF++>cRR9*TcpbkRLaUl=2L@UfkwH4 zXIsLcqVc*OFrg!w(8X~`dM5zJN&wMl*y{uk7A_ewi4P!-Mw2LS=Esje6eOu?@Fq$| zvy{eUF`s;Fff&^Sg!>4>E^Mi`(|n}zx2Lu=aopx902LjC9MHQ%^LJ^lvs?Dv1xlAY>dYN#R14H0s_MJ&dv;kXwd5#IHJnNmbmf+ zHgCsrnKnb@J6g_6QUL`3;@T8g(Ja7!gOj~wo|7#fD=ZL>8^m$$@rH&7p7?$HM#|@~ zreb*7AgiLOq0uJwMpQ(^3b3f|Xb7c%$*?vhVD}I50e}9yZl|q#Odm4r>w_H%H6u=SNa8#2^l%qvbFH zNYU8%IC=xDY;B9pE`XY~@jFg4&4Yicxz86{i8>`Wc#6Gv@xmd<2uK`SA9031v{aR+ zUTz2y8k2fiZigN^x=zfw94wr8#Z@O#JTb<9=CJmzDS$``iO2KX_{k2y@2TbG_lkna zHHw3~PPN5GT|00!1QZmS7MxC&dt}*Zwq`>=KjwopuFi34s1*%n*_SD+Ub_%NC4~D9 z`LZg3&pzda*EKYt--BKI?Tfby*C%R)U-z$}-~YI;|elk(7KyMs3gG z4bYg;qAB_hFw6EK;v#`(!pRG*ZACWSNy!c+t9i-mPonL18|Z7I)67k| z-|vI;Ru5sf3sya#R8~Tw=u8k4QQ#OL*ZCT#LlmcS+qwjxuQ=P%g%K^;f+vCy=Thht zDX&rIHf%H5-o6@z2B0I< zEG%6BbV}Mi7r=#%VSRFyp0db-`OlOhwWv8bdRJBz%T4}-KG3MJ`iKU0Lv?FwW*nTH zk^)+pecMxBctxoi#L$YePDU*oR}4wjc%KLAuRsyi5GbetjeoB<(`8 zVUD`<6VockO^f{jfdm;4FAHOntrj}&)?J*Ra&&1PWz3dOdK8;6=CW%lOxC$?@9)od z@=QJw5<(0)W3_Msi;j9&IsR)l+03DH=rf z3W$RE>(}qVThWXM{PW5OU|+l7V7&-WPpGQ+A`n6#-9CUi3lXDI#3=HZ{E6`|*y+C@ zn)2E%;NbCZVF(HeHa0gG+009bhER55v({id2jFo83mC&|{SX4huhG#saE0+Vo@#kf zKG-B2#@+YT$}Kwoe5Jk#*#a;nnx8_XOV^+z`2|c?rOfOuI25>bk?Wy_Qm)EJs73*g zXp*=bK}$kHf)+*rn2CeR?>zTa47mBb^Rr_#xxIOZX3U04=;DkMEvvs{3k?nZ1sPuj zl>XbdZ|AC&W@`vFd4R5_TIcpuulb7(sET&$BSfh^e?UG$zlk{8k&Fo(>jWtlNN3-V zx3uV$Qcxg-OKxAl03X%UdLz4g&(&}OC=77Q!9OAd21eMk_%9ceIt ze*PR0vYL7h6$)X52g(Tqc&MDr0W?n6`TZGPqDoJ!mQ51u&r^>E4itv=EKrAuS+%6z zy}NJJl~`J`yT5M$+A{z7(QJwNXp}FN$55{!I51ptBqlbo)!C7?%fVVJSe{=%z{>(; zF>C_5W(3;px(m7@Y4J}P=^rAa4@4Y?l#2NUwV3alv+TxP^+^K z2mRo`YYFx%glMPj6w!0eURvA+kq4qD)Cu0dfB!#q0#I4j4^@4XINB@@qE518~f)JTBUZ{2DdsIoT&sAgHaPYf~>Xd%{J0*4V*8K0}GpP3@_ z4S-PEt@QgtPK+7IQQqy9WF6kmd%_ki`i))hn$X#nmjQurGHhutD63jd)0iw86(0%; zSRv2-tajLXD=W|hj0IhQG@h&z04+YQ6OU`nJ)|4J3b2r+ky6I``g*iOGpYRi0BJgE zwZZ450>fi(D+XHGLe{r)Y?Wj>-1beB_<0t8EyQ?zslTlXV06n}nZ zCI!^ce#oskpe>B*uKy#G_h%(Tic$oR8u$;He9~<WJ{oN#VAz=+;fDIg&y&%tPyE&fL5ng`o2#T#fFK1d_y@YCCm9!(7}&75A1*6cXvVnAr5e^S z1W+#naDN*5kdRmcY6aVEKs3dq1G;Pv2CaJvQA@A=7(UAu1c5%T>jhd~7Ido^C<6|Z z4eW|uSy@@J+(MHJAY;2NB{{k2fCG4aw&i49TUVDX6moN*+L?8mS~Lqp1t?!i$jB&l z@$Y^y0j7wSgFQSvvSH^Me>T*4B{KVl-D-&xNk@OY%~VJdbVn=jSh%=Ka4(9GIvZ!rmb;U^ zF88}`)+(D#Lh)0fK&v*Qyu2K0ol&sp5ojGFK;U{=zHM<)Q9o?U55V^kAt51T!0RQX zq!d2H^4VuAs=H25*FXkd0fA2b(xppiJ)XCBfl5B5pL#F~S-#q~FFK<|1iI7jr%tROWOGZ|ndA`Vh4;Ky{92x4hiIG=Xt+r=g zflx|8@%f)-j0#MUJW|2Tf^mQA%*869FC)dIdU#b;eCsk~#t+W;z}6`41?_^d8NvSl zS6meHo$c4pU8B`A5W35F`iFN|wz+q;(^Ne%6{%6r}`ZtZf$MtN>Y|r9v*_wCvbFf(&l-i?f$>VZdDl;Yi|AT zLr}M5S4BS#H61BxMHrmIXa9BH|2_O-R$hOwsn$&-+>4R+E|7!ZgRI(of zti!hwUaTKf4gn`Owbr1GV;~>Na^<8 zUdigW1{+)m{b5tg!mqwW`ubkS0Cfq-sCebIf2`v{K&T@f`WRVCSgQ?HRaJbv1lH78 z;oG2);|7cTyI_kC|LdM4<=ab5zAj4s`}XMn+YX;bX|`CxXEK@#zE?({wCDxfBTzeuH_2Y`4_eySfkv=kNWR5vy8Shw2Uad z4l4%$R$|<9`2(;K5G5OcgT%1wiTW@jOkG6Rl zeR-zO#`vjug64Wi$5LQs4k}s?dZFNcNP34*P6*=3f%b|yW!Du+Z)6ma3x3`B zbj4l1bnP&RhyBqbja44rZ&RKKh4-k>mq`$30gVzH9}vtkTWwoYSzjZFx-E@9SUTWy&LRe8wj~hdldCIA;-AV1(xJ}hv)xs1uif(G(W7tW zT}ia!=s2Ge=3KGF%kkSmVE84_hP@KI^Q!o+JCX-c&VOaa9KP$NAvE2U(?9|MT5};k zicVHg{OMn)10Y8bP(yzW7{o6mQrU1b>H#NbI5-np(cS{~UE6WMQ~W)l0`*jPL8qrN z_3>@xdVevoTG{MiR3a4*<%g8W(cL=)yh0ZI_UAm>C(PGJ1ut073*0r#s$B}dP5wioT%PoF&cC+&XO$Xnyj*W z3=f_%g(ElCBkT$z`&HiIViF@?yu}%8Rx5`iE183}S0j9<62HdGl1Q3`jJR?L^B+?(rdY!5+t?wv zO@A`_$Y(d41jVrveIJ@+yR|?dY+WE7>0$Zxfe;?-t=T~i^OEu@LY94QQ5?}*u*Zms zVvMO*7cV+kV|GZ^e?<>QiFPsN%-~3pZ|GRHmeFVOjgKw>B8uw7ePV_h{CGY(tb~JR zg7O1C(D3fi%FKbXWeDsZU8w6w6sT@IC|66-0RoQ(^q`DnDfsqs0Vn_376|y~#V}Abj#mQ zJ8i~n7fvPbye-Vx7xtft86l8_s_PQ-4y2Gkbvg$5B_Et6-FUy{pJzL?0hRnBPj@UQvWqOZRwV z>=&}QH|6<#cbD;LT`yl@eP~pG;IWDSY3T>+&{+I7yrAtMj zGD@CQpP+W@&grORcb&0> zCtB~Tx@FwQc~gQja>TMzfm;34@rASN2)|{|ZuQ*!_UcS|fu?>$w?_0=X+H|o`CtL3 z=;qAiFZ%P>5_0nn2HfBG~AAh9Y156Hz(MK-FO%#bGkeiWx;-Py@x%md{v=n>H}I|XCe z+S|+hsbYB@`YavoZan6U@r&Olc1aIF9J0LDO^D-87|LZTIlfj>S-GID#S+^vX}gj2f&96+S-4E|eX5wXA%? z?CI-ZF`rVnCU3^Wz{t276&!ul@^R1gYf+}p&^en|20@&>7mW3QhTErc@7^c3v1QU_ zZ5>WWZ0PM{vz*{3X35ieb!@z3r;a8O0prG=xbkJ{WUsYAGwGXBCG{C3*gJRbU|JUsdX^eB{%Wo z?Gset8Xk45-!}y6WIpt$I(+ zrk}^G%S=pO>-rqjZl>%ah15^v7yV5oQAblXXsKR9##Oi)@38MWLwd_|NZGLZt;3$_ zlNesd4W{X7`<_Vaged13x?5{bHJKZxLCUGk-=*GheB_9=qzQM9;~+j`Dw@>4nm>*t z9FD&0n0TTtdHzgg$<9c*=2LA!g8Gk#iwX-KbVuX*RR`7Z?I$s(%%NWwUZULd4Gu z=Y0m-?<7Q%kjd`K=0%gJ$?iJj4WL%bh{kM!Dd!uCFPMs}M+y*H`H$x#dj7PcPTSp* z6kJD2Y&75f4NYo^iEQ7JW^P2BBtW+^poNx{n1G3&nS=?r_$i~iw? z;USNwoc?oOlVG{EH^WIu`w0@1e6>==3I zuXe6bx2=`0=3Jx-t7P^j7Lga7Hn4;_Mvhyyix)(iB0it->z0+$@7nK|t7<1Z(hGcz zNJ{F0k`O7|yXP?%wH$Mcw|7m4Q4^;NMI5KKxBvNm#Q5e19zn(n51#08%L}AX-Uko$ z+2{<34WzOpyriG>ur2l$NW|F;0=qC>2OP0(|gmfmpMrpY2PEQU?d+bI z4yquYhGDM9`*M(VnwmU%oQ#LlSnOUMS7m_^jES>7VymQ;ZIEW#BRtr+TvKf?JiFrZ z8=HG%hJb7(^d^0phK!_`YZXK2Jg?~YuTRL)S z+kUqRIpDTyz58JDTUTbSsF zmdgoF2bS6F6^%VujuGS;`80d4E}->#&gg|!)N$tgVaKY6;R~&dAe8FT+b+G8(2s`U zj;$z%KhG}^&)Ph2o-=;fb>P?f)!$RT<`HNh%=O*zN&@+k#`8tBxlG0-%>tB`ool^x zlKtJcJHbV#>pM7C#Xb&VmhkOXmbmP?C)EAf#5^s(2 zhk}FdtoL1C=%SwPj8Vcw?bp{|MLcP$(MEH#hR+~H@$y}@z5=|P*Lf#x-owm{={oMc zUz3wbkTN+yc?6C2mr+s-;-N*?Cx-_1-oZRZ4-_SV{K9^-Jw-ThnRO+yS;B(=w@P(~b_7ev+uh&D0TR4gu|n_M9{n^+HSGobuC4uM zT@=f5-mF>Nn~gkA%SswGdo>D_n2eFkgze*l)2%=6=SPg}*GRsPc9RTU!z@@d)xMC~ z@6#dU`D7uiO?N1mV}LLxD_&2ODq+{^@2Dsf7`QG)!LdA;vDS;jO+=$_+xLLB^Nf>c z;B5Ddvg%kFYW~o;>ox1ehrTAY{}}lRhac5^YtBW!lxWrCl6U0k{D@ob z-@8o9CzR#(H#5|QH;Yb#mgGI$qo~EVlsG0Kr!NnOSLpn1ov4nE4G|LEnrr2-{b!N5$T? zY9bH*Z2IPN*S9;!SgqT&xxuYG3%2aL4;TBoY*|nmh58nT9?RG&l_r|4ob$K)MA|n* z$zl`UMtNLdAqgYIKH#0Yy>995m6S&hjw}q3jbN5D?lP9~9dS$CjI>FXjg+_xzfdL495=VP}s9re6Z--m!A#<+c};KEZVfR^^vBD{nhu#YM#0TKE)wd;?&kZx!+V5 zd>Tv0f<-ihxC7ol%dp;A5oa;fD0yT(%Q@Sw;l}ib(~ob$K5O=^)o#9Ug)FbV+sd2Y zrPok(t75uJ4<#fEJ-Cc-9N=VVS{)aB?PW|Mv32RtQR-lVBj(gn%-n5A3l3*^vONT! zIQmX@)-}36GI)G@>F(>%?`1?`Z^{NNJDNxbH&wc}mL}|S#|wK;^440g7dS4PpW@|g zdEA@W{HplVjnswE+?04Y@hfJ#Z+&Rj{gpcMXPNS$;aIBC4^9J)jg%znQG~B~ao&?$ z>NZU_?_3q?mRoqVYUE{cZvDPwYT=57$JB=D`MB{1>}tv7@?Rf@7gQ5jD3JseEQwad zfnBj*wicB`9d6bt4Wsv|^g+sMX9D68=1tisJmG=?4WwngC+BHr_BU^%es{Jx&OKAw z9wpc95r;`O+a#WoSepZn_K&c4B2;g%F@DbzUKe|a=0y*@E3^g^Yn56R)fF7LooQt- zxWg)$)xP6lRV~N<@bMqq$wIlNLUK){;0sNR@HXjiSE_9Y@^TaO#j~$0w5ayn?8-X*zWl4rRX`hAFuiAaZ|DR& zZ*wiM?p#ymnQeI}dd*0t@IJ857kN?NMz0wDOO3A32z}*e7hkEjso2k=!YUv4EZI5P zGt}}wSB#8IYD)ALaC6?1tR5-HHW6DKNysCpytHwt{K>*Aqh4ZZj_a=1l#is;vOfEZ z$!!PcGCa6_sB}y-^W`}7>y4H{wL`@(pGvUVs(U*3XIE}fo=>UX;lG0AfyWjte>59d z6ymu>?N_tAa8mY)ATKh`7}J(&{`lU+a|A;QISFoN4?{{^AFbmHf*Rb^Lp%)qe+71L z{J*cMNR5@BZBhzY-NenGGR_wCYWMJjczI>a-hlanY6$9_&q z?LnL3iyz*)oRWPk!`ck>`raLnUL&q9Z$G~1kYbsTRUJF~)rXi;`j*RFK}2IwaG|N) zz~mNwTemzyAiV4$@$WE^94q;-DSLePdK|6a^ZNf|b9AC!m0BsS3Jo5&PNv@Rk4Ae2 z4UT@44;boKanKm4|10@y_zuGN%Nb4%x6Xu)9oBMVb1}Jir(~&fVuMD%Tx-@{TE%klwfq7-hapgKgNDqli`q&vOp-;?2v@@j#u& z29H$@mo{Lj8ktrj=TKv3ON71te@mbBJuTs!7M#WyQ(csyv52|xX1UbLCyOmo75lJ% zp-A#^n)W9=*9do(puu|uvNw*rN6wcibQ28%iwbDW=QMfte@e{%i7C17uQYAo7i`9W-9bpw8O%J0K=D7_Gyl5|nas;)NDc4rs2SD@A!;oNA+o z!$1#)=E@oEixU#)`Y$a(&v4v@*`NVy=!b)HibDTy{05ecF^!o_XruQ-{z1d%fsSypepd~YNMy$U6UZ{z&c#E=a{DPxh2%o^z(oR$UgA0t$DyBG_R9$j?q zFJ5EwXlJPwyl&u5bGnRV+-lA@ihoCAuBeV9=@)SSrq=bIlao(cc-O8pM-Y}ICkNw- zqh0MFJNK2;Jtk--fx0_~VF#(;#hERrm4BdW|H{~y&i(YD)VTwijg2R2p0d{Np@}eh z%mF=~2;*xTwTD`g&!Ex;-!QDyo(Oz<(>isBRdeP{sO78e625Wi)!MDg=hR{_K)glK zos=u!%KksRVAN(|<8#F=h+#b@#LUkjncOLtniCqo5dLYz_KY?5PL(GO%KwFCPHN5z z;o=X5cDU^JcM&}@*Xz*|eAUv&z9bZnsXTLE zXm?Q0^(b&B$$sT3=lh%yU6q##SH-vZ{6teExrP5q`PKr}`}1XG62Xdg_Q2qedZxWt z4=~`?Bl49nJ~xVdp^v73vMy9j-03loRnyDaV>--j*jVM|N65=d!@qmrolf*uIH{R9 zkLW?OH~;Zmcw=MZPr#VaO(YEk)4NcK?mU1NiFD74^Yp}B=(;XvNP5!`R6LXib1&V3>15_kg9rkRXqp)&q-3`2fatLE7oO@?YHs+c(^!P)i?;uIS3<|HO>t6CFr0-cY3)Rt4}wLEihN!X@j`_I#hXm>Z0V zCAFhXePK0RCj;|aO;RaUxFS?T_$K|B?)2#t6sioD(rEJVacRH>dQY#1Vw378bD>F+ z^-l3r=SVtt&tNv_9oM7pJ^=i>lB6l@f0#5Np>xk>xt%W~NF$zVYB5 zJbwUJp`tssjh#OJ3Qf&^tizH-Dd$Y>kR1x-dSZ3 zmY?%oU|`_1{`>5Nd(BOK{NZJUP&F#qvvYfkn}V`=J-m4DB+uP`LxX=EXJ=u|#2-8h zpMW42QIr7V%moFOF~yEBB&-ZwBaP6ic$eEu<%cHoYg zk(r^n_c<-~U0eCMSf>mA*yT@g!tXd$P9N$&nhsT~xR1V<4D`L6sA1mJiuvck5xl{o zZyjQ;hTqiq(mh4FOI}<=%>Ld=)~6$CxYRUy0G05}u@`y-sep^!5A#c3M5)npaWDgFP)0OkNS|I&Wp>wI@PstARUvN` z7Ier#hkW<2b8#qA594aZ^=|5#>yrsbf5$TZc+Nh-WuU< z8KL+b@gw`6qH{H=I_xg%+6uPa(A8r>Ma*F0K&$o#K-Crw1g(qWikIN7P1h>#leD$9&YmR0D`JrlOHd5jb6D-9p`zDfc z&?5H}I^rP3-1yecfo`gWF3#ZVRBoY1M@|?paIt;J6P+0gjb*Sp8BjOSfFW&YA&rCQ z6To=nkGNn(zus@F>oSk`eHD!{Ha}ju>53{fQMEjLK67bdGp-A;A%;`66K7G=Yf94t z(nOX-JM7hFpgBs|`IxTPIDgDOa(T7Kuw3$zmn6K0-?qH*mE1=n*&#utR4(KnW~mvl zQq%rYOC5zDK8)U0=&<=l=a!amz(4&Behj}qT8=@dy{Ll&H`J#^GW*y)&YY?Z|4igU zH#QWvI$^L8Js)Vl(mxHe%_-2+6vYjr8u5JgZ8jG$eMb$=4=@qIZaT=+4kg^`VuN;K zjC_sC2AG%h3kk`D39AxQWbpcE`5hu6MV*jW3fjjctTyMvo?*6gHa@l1lG zu(H(6Fwn|Kdpvo5QFuINh@nxM&)>UuJJIBrkZa6TWn@2KscC%L@s2I~=ly4ceb1_R zC`=tAVyaVC-eBQ+n4);99_3HGsSdJ#$n%rFVnX-kWAr^|=>w*`-;OgeM^Jb99~QGX z_npUrg@vUfjwb|~MU{+&UhOaSc)_$#bcH88gF-5fyVK?Zx{-9C=M!38QU*-SDWQz1 zvG6xReIgl4PHN$=rp7n6OS6%TOD2Plju4i%{7);@m@^#MXCH1-IE7HjUigW}beoj$ zcW+&4E+dolQ}*lBvs0r0>Jq*b`}%b1AZ(22Z>RpJM(PDbt5Lc3>8M$V>ta2{Mb@_p zNR0R?1md5NADOtE3N&8CNEu5w-Fbv2V6=}c$Gol7Big6fb%(be+BM^pY;1t^@r<`BAR35F7`3E|jnhrQei(K*%YSUmlTr=dNnRJD&E^Wf zEj`BFAn)+qf7j>4arm$^x<-l@K|bT~d~DOo1CO*QZ?wYc#kkCy^1x$quH?L_aa;q| z0J5HRe##gqEyV+`dcC?5FxYbatqb4h2*Q6`g;GR(_Dy~8AGaf{KH6TK(N>C`Urq>~ z5)aQhKGGXVc_a++d%h)lw?2s~G)zxxHZ{hRGtu<)UQcOiP7~=3S_gfi+yrmI^@r=1 zW{8RV^F4E%)=zQ?dCS}5JAy`a67yV9W*T^&wl-xJCC5g8D85&-)K33;CFg^mQuNgP z6AaBx&coa`4Lr#MUDAgcuI@rTu{d*A=#xkHKboC>xO62~$=N~F#nW@Aw~zf1?W~e^ z9rS{tv3g_Y9~gqd?vnoHw9il#%XKr32d_Y;Y*J`U<_itAsV;JBv%gC?k9BGl$$XTBXh zRpfb=`Y9kinp!hY4WGo9{c%&zKTi>X`e;8WH6R3#hJ|%szcw>mM`2u==2qq1SU!0z zyj8=}vHn>_fByQCm1RtizP|R1U|3PujXj(+^Ec}4pNu5vJ)T`aVDDONjJ$(!)#WNj z#sKO0;F4v9vF5$IRrrQ9sZZ-oiltuGmr=ElOcHhfiSJ;p8OUx-C&IKP3W zcW3JMubSH3q38-c3@Q?;MC0SD!g05ngg2+NLVf61EUNd{hQp3{K8U(^6x*$edO2?U zYw}1Fzao06a78A13Ox(AIZ-PW!_ibEoioszqs;066A8$t=x4}KdK~H0)YLFAbl9X~ zv(Y*QMZ=IK+D^Rj%b>Lc-I(&RC=t{6_3Osa&>L#Z_2IOW-1`nZjppxWqWrT~4FzcQ zAG7JSUu}2iNg#*In)fG`omyN_9@fE<;}B+PJimtMDlb5dv%YArCn67rHq+*KmioB( z_%A)ik9c|i4`pu|m1Wm;4TB0wgNPt0NQiVdD5yvX7Tp2@(hZUd(jn3zs7Od7(j_I` zBHbyl?Gckwj~tMi9jH{z5p78`9-EwE(k z0xm@akGEWb%I%N?YF}o{JG}0|%Hnj{-+VsUo2ljv!k>FyN&#BV!c{-s-jM7AACjbP zmpss^ugu}6VFN?*jHxKfDYu<&rkm8e0J=iz8#ijwyedV&dx`00+Mv8+u!5#0B@n3& z!5o1E`*-?R1AYB)W3B39;FuUIL{weXmBv(Y+8(*;pSC13WS|i7iT3;gUf5KYMcE>g zg-NEsSErXZNUXA!HgI1jpC4<$dl&v@NwAD`x%7m`BM?cA<6IBWL?#kN8ok&K~=158L;JW9D}&RldzZL?5C_ky!(*-y zx=qu!Hf9D0CZ8$%i)9*O`Ay4~j481bsf*Kl;OJfwOwRdrd))HT{-5o_(El?ql6wSC z&O8&%CLQcb?eeU*Pjz5F7F@!SixPH)c>_E1FRoj2j9p$$mol25z|xb{iJ*+CZNy z2WjSfU+xXyiQfQ17;vM{v77X<1K~dk9I$#Uk%f#%Ux4i#bm<^@4)b~Vz2B#&aN_r# zC8v9vR@!>gO#d6u!Lro{YF9*v(|nX><3b7S5J_0{n!?~ZW?{^B)R0JFo%ql-+V0`LndI4`&4o8Kt8l5i*e3M~Z>gUyL5 z+S(7L7P!3q;EHKw(T7dvL7ogA zG%cfqUzS~_dx5BrF#vMapL6aJ$8eeZTHsuyf?InuAeUp5?if!@d!S6qh z2!@L+_yZLQhG`L7rs)Po!ZMV0(E}4-x@+Ke_rydExSGuAyh?PcT3Q_oRoXwI-oN4H z{?$p1P!M|jp7@za*nKqxK%w8ugu9sZ#m|=S#U(D|1u7hQfF3qxP5FC|OnSY~1Lo;C znAXtJ(|duMfc@2`A>tke*|tf+Xo)QoWU*{ph{=d30_+u=14(J~kN$^@Wl-EB47BK6 z(bXU40pjZbg|4Ra+P&pc`HDA8X7NDTBr#~YejKipQLy0Qf#GU|S>dwJfAiaVKA#R7 zU|F?aWWQsW)YP^3*HtjGf1Ug?_$T(<=gSl-3XiaMN-A}Xh;{ZR$Hwvc?^URzS-(Z! zi6X2FJn)EgCIljWTzEGhW(9hCOXli=fg8d}1l-1{V_^$? z!QOyvhC4hM&G%&!zexg7invqd$NEkrs7QQZXB4)!4A(^BZM6I}XyBN!Q2J0BWxpf* z-7x)LrukzG+4~zU8e~+DRP|EaM+jp!c^GWTw$XQ*G(6RjJTBxyHemm2wNY06 zXIWCUuPrbtU;Z=)E&-@Je;RUs&I_4ZUtRqOWnlO<8jzAtfKL-}k%==EWxR1IiX7Hx z%qx!yXdUWUq(+Mf+(~!D+(*mLQ;@s0@|mY&q7U&3Vg%RpA10qCJ9&aZ|w8&j~Z5tHP*UQx2j?x6XIwlcJVyZp*t(wokVp^-snQ2k)w zh1Sf$cueum(X-%jidQ=tbUqfQ5zPZq^Pz$$!Ie0djEuV$HzCfP+| z?vZX~Y5ew``@e$=41$6K74BGw==~9+1fAKPpXQZ!Tt%}&LW+8_SLQ659zIdLocKGC z2I2?0D~@uXG4)8+ND!{f5Uwmee=+Lw5x$e}k@k&lgm8iUY{&(Es4P}4r&c*LyX5LN zvXx!tkA~Ru`HpV*RAxZWQhU5ebFD9-BeX8T#DQuBAU=4-thq;-5r!mOFR(#{IR*;f zDPM+oZIDqjYgNQSda5>n5J7~Wf^tZp#a~M87Q$!=J`Dv zZaTOO%jMZWwSIc7+?9K_tDRtm;^##d(T`qEIPhT8O5&dNod_%*<3EujHu)8`Ft0g; zrNW5Bb=1)Td>t(uM_2=G_h1ctv_Q|k^WxMRR4!ZTF5ApzR1Lrf;T0uEp!;uVYfFak z3&{oo_5xtclu`NL3;#bw;7C~+CuEOXu8H`}?ST>#w09P7>ln?wQ`cpkIId(y6Vhc8NqdgO;@5UX!wn#wKTZxoLL_*nr;b`15{ zDyCC$#^%8}38I$@h z5d(%M!y{#n-l(|6u?MFWrKbgDlOB!B(>q7Q@kC0;UpS+}d?O3XTOu~pEV_%=+C)}5 z$`q}U1@zwY#!P>S8>{yr^9Jt@X@?z&jRWS(`+fG5nYc7789D55?miPe-L08#?)}a} zPzVLr7m&tWqHY=m(HuF&8~kwA*>*7wdb-4|?VssSB_+MByThK8LN^hX0TG_z};5v_N+N;r~CgO zcDQ8lt|IrNaE*rjCrevf3vNF10tF|(&#J9;i;wdTApN$*!Nss^}gsdc0C8h78qES$ffBEuPW+MK~Nt&^% z*Bs?Xijw?AN$U+!!Ce9>s(li7rO#TQ-1OWoO45=qH{4Pd#eVdAu$#4Ny}p&lrhVz0 zM37^tx7c?w+@%Ch(r?#cwfal|a7w#*d_0wuqWeJZXQr!*r1y=p_aia=LGz@m~l9eyuhERk@mmQBgcd2lL9`MIC8panpxmXcrnff2~9CA(JZkP;T#e3r~ zsekV#h!HRW!wl`{Nkg-=BzgJ-k+hu_iMWv!RqF9o>DC4|BO|y$Ge3`P_8CU{w$M=$ zRfC@2^(P3zdBE>owDep5nsnC+i?x+f6FU@_IUX4^)3lptwhlOvY(o5(;dQ{DBhSt` z&XR9WQ;OGVE@mk!ThhPcCmADJEjD=A4JnI3NQkzUP_`v#L%!XKoT3e<-`0q@-Q1Bfk&`p^_&U9P9EcQbKR+@naak(! zVB*DvFD@iv>>Ptfhx+$?@WiLl?WRW&R?QcuBAFXAT--6}N;tIc76UqtrTnf)%bei( z%=6z(ieWMK!2BqCZOx*p~oR zm4|v5b>qLKiipXS~|pU1E8_9Jb>nIPxQ6YiFb)v zKHDwkdl~ogr819`;Ulpj8#6c<`QJaWFhnznLjOA3GFUwj8(KI{F$POtsPR=5&*;F+ z(c>KfT0MAO3X!x9A3R5%cqpA6Fm24H!-A{qu1sXb38bzxD^E!s=r)1Y_8Xu^0Af8 zP?)ebUq|W{@u3UI3ba9mdxH02aUtnSaz@5C^ZtI4?rtfEqd)*8-VmbtdGd|aM#Y^XE5!OInFFc731^koQAek=C~3L3;3YHJ&W_>m5Wr|rb_$esf5ANZzQk6WsH z43-RrLq!}Qt4`_J4hX=ep`p2ihc^o*Fte-UHFgP4heo>iOduvUDxtlv2(xXUT{L+&`H4iI{mo0QwKw`q4`T= z(n<%LGbwiejA$EIsht1PCSL4V>-QD$+%M*`eRKsR9)f~p2+l5L=;CrG z`=SRbz&8VrW?eer*YK-3{zrFl-mm@ep9%cuaLDA|$H%w9o60PZl$0c-pfD{Sg?tVg z#6J<26!5fE1niCBeZDnAat8C}ojXOuVYHU$_d`Qmd=DNpNz-(2y?b%o>R>mScNo4- ze7t<@+%bFprIQRz_5erp*cjg&pKOxRKHWw^NoU8-!%M~seSHv}hjQ}0SvlVhk2KTzS?C~s;cKW|A2gI~n^!3;NXIkc0bY7_OZBcxIDji8`JPdETgjf@bJGFGl&v{@EqL%#9;^ zO~@1O663oA-C=TCPtqId=R6}L4NP9-#Gofs^+3(e(&+H^)PC?FN5fkw@eUPvfKqRk zp-D?>Ibs&@AELIQSH4~#X8WC?qI)W4Q_M4$xeRu3;C_JEQbn5v{(FD2kWHWaeT5Mr zifC_-t6dmyUZRThY5tTHIyoi_qul>aatAmaL6;u#H}&M@=#Y}D>Qt=!3Cvx%z?*!x zBfI|yIVpW^-J<7B`pE2IidhsEBOz;o*@<)R78|<|tU=$o^XD4Sup^)TJ8R=)*XF(!O~jS1Y*mFL$m_1m4>%Ay5ByFL3|o7dG}${R1ZIir#pMD3jaRobm?z_*FJadhZhU&{hv#Ed?4!o~{S zsZBkX)>b!^%Y0Y(j_5KG{%|Ht7$EH2i%oH8J~b1lE(XplBunxCp$S&#YZ(^*FD1^) zSjBWYR#se744!9T7SN2~U0kw{>ll+BjDn5({^pF(q1NVGQgeeUZ1@G+tT-mcU=qxH4>sgYM^ge(4qk(pD0ioR7X`Y?s#*|=( z5h3QfR1wQ&<3=DDgkG+e8NTb(|7A zt98%T1Am{m*xPq@rODw8^rlN4Tyh)uo#~s9;;&zsT^gU;+~RL=Rpc9clCbTgu&1m! z=ujElI;}DP(RN9_k7=;-%Fg%x?9wzmzX9}ox<0O=T235NZa93pc~eb6Q`__w$=1~- zUd^Ko1bRAYqGzjy69K^e%*hx}hrXCwbqeMOWG_(u>JRHKH&Z9kMtpb+iI$H(y7^h#{*sOm*PJQFu-=@R&5`=^Z zhS?j843@7#=|RYtfh79=8AzTW?(>KGq>Ii9m*QL?dV0|eFIW=~!!sH~ctOReFul4;hDLoyG zT?x%@jDo|rhqWY6zf;gd3F(6?N1a+A6v{EGZJhJWdq2Cd9gak0O4EUl+0*J=bZ&x2 zgaBm!vdXR_8y*>ZxvX$bp@~l~Z2zwBFpgvV41(_^4X)x3@mO@?gEmG0oRSW--lLzJ~DMl1$ z#rVtYwY1>3-Ox?k2sc1sXC(B;V?oze-q5kZSeO{|xmzqPf>#&O$taB!CgSn-$m9)2 zbV9ed%BG;Fk^Qc>qFoHK-y5(GcL<0dO$k=O92Y@?%ycGIDk|Ced6Fkj{&MgQv?@dWo5PaQtLzbjxu6g&_u(*5dx}h<;$BB+uE`Z>9}6-p@@on zNEfb|$%_>TwL_;;qCyJIAY93?NT^O6FE6S+(bL6PNCLEl^Qjs*Iz?9*PIT09%ZS^z zM>FZol4TBDI4B{|5OZ(aIv-Vj%-=X)%q#Y$TU&E8L-&hYQmv-KgEzg6b4N#wGV*-A z2eX3n3y{v?0?iI@%n&KNeh=V{%ryTr#% zVqyFXzxUM^C_CRi@e9Ut!TwS6kn-nX&tMgSua)KA6=o`2jEkr^HVGH*w2nnG{>IAM z`_0Q>pSWzToC=4GYykZ|I8=S-1upDGg{CL^tG}N8NxNoyTjzNqCT;0fuCBv z1O>?-Q{uYei3wvl&W~L~aXY~$y;`;$gY%|nX$GyQ%%fHRn%)eg=qNec9dyYj4z(}G z^B#%WC*%5k*7AS!7duA*f-G_wDiQ*^q@p5pA9ZEyEiR}>A*%O!yx&K(i& zzAW|9guM;UXZda3V0+|e3^;@yQrOd-^0%HbXDa%amX>Om+6q#jd!T~rhSX}rouATu z&0(=JKYwSU>~1bXpvxd?8#z*|sU#R97#lOJW#O2r+E>!121vb&NQxD{N$) z;gQ!O$u%UPe&NzS@~t{8-&}+Ta#`n#(P3-J!bzY&#->C;L37lKF}$DeleXj}k!N<0 ze<{iSSp!Zhc~%>8i8iP+q%=R98UJB#;^P-u>>_lF3CqQTeVHXjNRZqgkoml$2|F87 ziketFdmH`v}Bh`G}3Cj2}P*KE9i?RlGOLGgV4 z_iUw5R-Bie#jYs!zt(E**&8o#%pr=;hKrfo?*L2bJRoivdl>SU43R*ZIY2J#f+Qp-wZ0^^+YNs~Mbx8x8dpJS=zX5X`Cb zEKz|_7%MZX&DuUToG3)fpc23a(7Hm3BI>GMGXoeA73rk#R{1@C7ml4JYH@PT@Yp>u z5zKf}Lc?$pmV}#s!xDDf=M>nZZx$_Alo<4h*)+V|@B!!iwR{^qjIRQK{=bCeVWZlh zdhKj^pz-`&!VsJ!q`%T^*?$1YrR#=FBi}R}!z`w62EbfNhb@%A^$729|LVuEDGNclGl3CoO_p-N@mK$j}n(We-UrZ zHbpY@_A73TFETZ%yCqr&W3~eyZ-V8FH+shVvbQ2~6ju~poP4%Ai+8OF&QX7>W@~GU zy9j^--bTu%YX=Jzrc0S4z>!&KNCIZ*1%Z>4v2) zOimUF$$~pl(H+&_P{c}j`_JlBwSX~+|3h43gs#-#D`DRcDQuwzMZ7XfDUWSZXWNG# zddzpy`uwaKp<}fh$i8$?3G&-bpDFf%t~vFq3pU9UkGi5!!b`WV@kuR(Nhyzfg&VWN5dH z38Yt2-;u=&FyBJ(qJV!A)g>{R$gMYdWh zN;bzu)WjJljNm2DYwCnMj{s^0FB76_!zbX+;L|Et^mg#4o9&O6rRj1qkg3YdzeRsN zqf!Fa8X3OjYa}+RI8bMq9o~Ly1nbGu1{D>ljy2`%Y)*}q;GM-D`V%(_IFoRbmaS9_ zc8;U09yP8=HA+#p2nD!q?F&Hoj>)*9yvH4@I)NC@W}XxZ+$hR!zBalzK2;fi||h5JdtEfj4n7jT4bIYZ*fCf5dY!M)_SC z$|N3>dh&`j+VOsD{ohdVdB00g(EWWG7|MeSCmx(#V6A;uR#x`w5*REsakUF0nFa#j znhiyP`^>W^-=}4$w2vi?5JOvJXHM{jtSw|~b5Hy(;>faHfQ?xYKibro&ah^+Ht{JL zPe3s4&k|C2vo4h8|s<+c;eQ=WlskU{UV&3N&KVnENP{+_2N`f1zP(O}j}yMuTn7s$^DW;fLs>YuMw=D-2gr6!{l6yTSD0;RZ8G<75sFmC^{G=VzW z9u_L`v%nO^VaLY#jlJ81>o&u3{k?_i$yQ1@&3n{_wkNpkvm>MR%!nNgrfZRt{NL(N zUDjZ2V|3H_s@m3^Uvd@k8NhweJuv}ecDG&0cSCVi0 zda_ep5q4W-WIeb`Msw=>=|h#Aq?D}*#?v)3959W926O}96zN6fy89Xo*%7C4@V!R- zvww^7@kI^|8K0zfopIh6z~MKJsx$Cug)0gPtCpRg118bW30V#SrvG4${q?vb=TKZP zX`|>sbNU; zci80xh#Q6XqZ!N~CiB%M$QkHiGFbxlK(? zw@O1SQa1z1P(aO180b;?g33I=V6e{AkVo}CFV%d9@`W)9b-P$HBL;}qhW|K39!JZ3 z6$nr%2)?RQK`!5Ly=mssx(h@V-nW}DW020gmz9L&8M^=NM1^nuA= zC?DjIi33G20}UZcv|d;Nli(;ARWfKLn4V%$myM=fIZuRw!tH%$HE3{GFkrFCDUr- zkKvq{pWplkt*`P;=(~5fA3Ok3IG6?k*p_>%9w94DOinhQPA4o0^8HJBYnudbJ96^@ zb@h(@U2SQ3$~T%omMHZ&6MiLN0kYB z{JUGR>}_q6G)nDEhKf4Bwd!%^0!u_*Cy-1ZJ8xvDD&3l z@yy%b0sq!dG}GKi->@y052iHS4Emt;Z8JOR=9SJ*o!nT4GabrlB1tWc!!9zn6W_|| zwsP6}uV>;whduRxoG=lJA|ru4=e$|+ZdYLwB`2kF#rLJ3y99=@HQfOOjMgBc897#s?o$^z>;Lzlr5qP9*4 z>VVViIrTHRa}vuAt=d^QdQC0rDSpsI`_XXoYx%+>>8coF?e^!l&*L$BD&k3u@?AG8 zb-cr~qHV2$9t~%Ng?pUy4YeS;^_tiICc-g>3Qr4}5vY$O8oxl`f2YA+H4S-N4@6GH zdOiw(O#30ri!hcCxn!wOdVxRGL!2(|jtY1GQAMQP+S#>SZ%>e%obj^n&B6_w-l!C1 z=#7%0(4ZJV%eOXU?umJ_x@+jQ8Wma`VlT)o44qjBt$mjJoMPlf4Q$>M zQtdp-+dP*xCn^;4RSGtk8?P1r&A{yi@9!(AwuoP`YP!Jo1GFB^@G-VVy8nKr{y{-6 z0Ba;7SD5ZZyAomez|w;D?3{gp9MWarSX^6Q-<_twguv5?|Nrv?kjUj)jElF$i@*xb zCxIDEVC7spT>hu+g7jz(Dhh!2oiNdZHK@#{LU5l5#lCo$PV0m1m87xA$m=sM8%GBt zuYU&%^3qe^%})-S_)(mGXfZ}3cI4t}$Hf4t`sw$S|Z@W4z2I%@Ru$;bubtGgKwJwlv+su{{ER1yN7b4!m?)C~5wQ?6vV5!o@bk5<~VekWV*ivnB+?Vo+bbI+gpn2|i2 zz#hO-%G+BD_D5cbn}&3r$&N*5XNn{HPGQ!=La*0Fe`HRCI^mAW6UBXeA5wFOcweVF z+cx9~*dqP!1#IdQKw0`q?b)6t%jTMNzsyJGiGn(*PdFI{W`IR_z}ZBJ1|aQ%^av+d zOmiK({*>HFZg@Jy zpij)JzN374e|;m+Zfmq6i){?cz0vT8-lz^PT{hDJVzc{F4AAE%ul}ZZkLl{TDoDy@wJzOO>xp0?D@4huxW32SWGADWbmbvi=0~aOTPVjF zTmjHpwCGs)^to~2)F&8nnWf-n(yLT#aYjz2GbYZexb3dC?#tBl@2$AWANFWJiFu>w zhhEW<72&IRjL8-$V{v?0txaeQl|QO1Yf(u>H#|IC!7lL$6w6Zc=P->|o6bCweFldi zf;hksDn}SPFb6Z8K+~uPW6zMm24(9_OuWI6u3>@^s@R(9pL8AdNC{EJ@Onhc>)Los-skL!PYtlA?rPcU= zeJBXfxc2~XMkxsEMN*=5yWcHIU-bhO(5-XoKzHs?AIVbb9JbQVp#j@DKjKC)gP z==9*abw?C0*|SGm7!O=&Z+PHc`w=JxS~4gk112{sC@Uhe#RO|e6o~jl6xCi-6`aJl ztsKyo%o%iqyWS0FfCY7$%%l~Gq_7f)>E9e49rRjr6Cv$lZz#R|IZgHSE=beWmLwEO zES{)}iFL$otlW>TJGH)gtdHQFXPkV){ui9lePGuM?)|*Mjgag`)b`A`%(Evwt3y+} z)5T{7!~_F*@46g7=7N&RK?PHF;~|x$GI>u|ws}oN^vtMJC3Cr1?^zV&oI_|$rXz@!z599blkiohjPKI-%0YY&DJS{}$13LYHoE-KS zZQKl1h&UFeMS~_bFzId$@_b=_4zuq_T6Ne5C>5}FH?7p)>`Y2foo6pv(+0`81zcF$ z@BW-U+l`g-WQktOAW*hhs?b1|3Uk|W zHxdcNhtOG*UTn0+Z!nKq2W=>QV;S61#X%2U0;v>0WTyx8lQ41qc)(SnMn)6Vf4pNp zbB6Xwo9Q=5n1&BRqCVxzk4`7oX!Bf^MKz(lan4Z{iQp< zD_mEO0Up$r!{xV*>Qwe3c;9g+ zKjDtYRlctS5E$iV%nZw6Izp}x%+x(b#~8l^VeR?8D$Hy@<E}4_2q-QJ$y?oz z*LMPhhjJNT?&RtxhoYF~tNE8UbjNi~qoEzhnlz(4;PsE{^+B}E<8lZ-zVnBz7@9Tu zDtc#D&-|4cE(h$I<$hWBafAo+Z69DG9h39M&SmlGoj$vg&obRHZC{=)lS{z&!A`tm;;W)EI0`@KX?H(4s} zEMhQxK4ZoyysOYTk1}FE8hBr8&zy%5Ze;SkCze>0=l99{ELC>bXC(V5dh+dkFaN4{Hn%~cs_Vwv9kc9 zMG}7ed2{bqNq|TEQvh4;@)T@$Bt6f!kidF5z72(MTQ{R~`2n*rZe6GWJL*_kcUShk zOL(@I7)o4GRHGf4YFUuY$`to+{6kM`8MdhMg`P|%RlH#MO8-Qyccu-=p#S_Vk;qhj z@=|x@^6tFA#!6?q_{udPXM84AbDF!X8@VK*QF!#^C9ZD7(v6P6@Gmr2$vha_t-O@^tD&pX`2;!>v_8q*=#5d z-=;&YhSeW$v%ICMk9J!*bb}_l)H3Gdz-tfvfZDdoPx-j08LC$K2(JGh{E%WLM#mj+$o5sHDJ z(pYo_@w+gr2-&T0l>HBKEPoP$8-qi6Vzx@&lY=(CnY^in%P3Id`^u%K|2j4oIwcj% zb+dL+UN@sI>h+9cnmMAlf2UFf;l1RXEE1ItBu!5#AvFR#I)U;^F~|A&8Nsrx1!(Ue zxcMb&KgJAXbs8k?9CgnpJZO=o?YQyo4i37)tCPa;8|m76>_x{|y>ALE)jo5UlY!xw=|69 zF5lktaFz7o{i{@}*gqij7X8tyijRH4Sv??iMP~VGxD9p~1~;dSs?Q&K9;SrsojCo* zZGKkuR`lEHs7mD#an7Nwy4<&Y5`-vj95Hb`p-y8!?x|VaI5L!i-1oGM#IMsg8Nj9| zG<)1?fq|9&tAa0KuqFCC*KW~197ki)O9usng%n+^5hL_VZ;CahK7XvD)bAGsBNGg!Hmw7WZ2k0LxYrBkL+&Xj*LD0g3cuYeF@IdD>X38kFZ53aci z#q0Ht(Dr$UXe?N|EwBr#w{q)cZ)CTcdH~Ztm*&_%ctPiFATM(BVeF&g;<=h? z3*(`p>I0sb0EF2CA`ux}HqCvq=^Axs0@k=CP!?Nm&0j&3x7i zz$pS5tOq6Td30>;t}jx*vNXtGFei)+=C_%{C*w64149yB80?6o!WYod1qDsKrT>i* z%%xc@zQ4Z(CY4Whj?8=pe}IyMR!=4JlHsGoJ8!pCG7W7z7G3-DJASskQE@nW5e-a> zG~px|^`JF_Y?ATp3(xML4mYT3Vh0ClTO3%F4b$q=-c_JJQT-5y@OaN8FZk0-FvbuM z2%d-|j$!`5^8;_}Yv+D|SpqW58yTKONH3eZ$o}E}K#8q7$q9Lc>}}NWaQzWcH_f-S zj(;V|H=pIYm@hhepzNT$y7$b?*Jn^}U8=A0*I{Wo-c*v-;Ov{V zQBW(DB57f3j6zi>KOYeFR%cp(srwmB@O^<$WoR?a*W7K$$;tF0qIJsbQ{nTGiRIPO z&c?;A*wBRYqe1Rv*s1mm!rK&HT$R?^3vAyj^4RwG?HgM(sMCk!zTUiA?-RyC#L0ul3 zB^Btr!qh5zno1(6kFPtR{}>g!P|ox(12YfAnp?Dk5aO({j1#rp3yu<)F~f2b$+%XG((19SFs@HoSZabA{q$ z)ne3JXUWy;hL25aiZ{Bpv3-N9>Yo&|g!nkH9kG?fb49mKr#qOcyzIUXjB2ZjA(x$D zY)WC!BdR9tk9$*b!dP$wm709hLnvxy#yY#qZ_k5eb^3)`0*?4s<*g{R*70o=sdNd< zzjM^7eqyPKro~-q>LKP;vQ+wl+I5mvep`h~vs8gB)7QtxCyouUc4Xhew~(awG$HI? zFiuehz9k@yd7W$6#J{rHM00bs1#4!6=n3Ip7q%7_IuEvemnCE$VbiBoWMdHK-pSqc zU7qYb;B_dtyt^xRv&~EKXgrPaKEve@Qo*q45eC^V>vqixR|!_WoXaM@sZ|yG^;|Z5 zeZ$`7dNW&ho`F1T#qM)@xwrAy-i(poHGCu?$#i%A{~{t(UhQQp%E3{4X!~tpZ$sN+u&Slx`BgW~69W@mwY|Nlk0g{b4gpoBJ*s1I ziyEk-<%@z9#|nl6Kl_AftmL|^{2Z*0P)AP2+21DFp*XkDn*^nmuEx0c<)B<1ko=`1 zP4HFb*6J(Ngoc~9MI7$Il?j_d%gVsnY^2N)x@~wUp^cuyX4#3)w$$c2K6zr3-mMCb z&DGZ%>(01#=V3j`0Bi2Cf<*ur@5RmTRvMOTj72=?cQ`A1d`)q9=KN;rDRUp!MiBTM=# z+AQ}II>VKaeOY)6kA8dfzQ~`j5o|tKfIZ{m!;S8g;dJvm(d9qH(%#7w0YQ@*QE&46S@u;MTk?q@GADqfj7=U8eBD7F zLBu7c*Tk_nl6Jfi$q#W_Zy- zKRD3E#i$C2^>2Nt@EX~FcS(s%a}*`KD?IYsi-IJ}P+Ch!VlJ2p|JwVL>n5vLom%k5pAr}HhK7sR``W8bi3_K*ng<9eE~DHwGWts0f3H?(zIRl! zdUo@c=GHj!2G+`|tHlQjOq;>oskuE9pk+v_a@RIX7`SE5kK+Hhj~dw1Ky6<1$j$mr3M3wp9NzqGk>dT1~Jm;w@-br92ZXR7g` zK-3Y3)_+dF2{d%7$2kBY9ZpG%x{xR^pHT1spcETP9xG?VbrMfh%; zP-#u$_oPPtbcd`(bwyW|70`KtEjoB7es^kZV>50Ip5Pw)BX72~Av zQibTP1I;0)dy+)<_iA-vnOu%&c!08~TEzsb!%9=#Wvj;-OoTvY4j`vMeB2a!pa*mI5yUHHNFjYA@oD~ZU>Yg)wIEr~YWmV2|&-)r#a>d~0)kW2F zFSLprMK2gu+-)n&l$7I`bSvFGb~mP0By^+7`ZExaG^mkqxVr^Gx6&*c3A%Z%do(oh zN$0Xr7jcE8=B4zm=yfosUUT_;pv|F{<`O9Hh^I+(dPKBE0zMZK87V0%i#=Rw&nGCC zs5BB!t-5qAExd$6@vzlac*@AIzZZ@moS}+M;p1W}ypuu4b0}i|(SsMiPaiW05fCia z`%r%UAMrQPkA((DxtwLSEt<<4nYa#sb_X2Mng9`ksY@F90oX;c>r{JU&K@2eG2XJu zu5#2+bur}O;%&R0c|G$`9TJ0J2I01`0+06H5_l;le-gqUAvG&EYV9~u~rUwgHev09x;d0mgaHk-c37i!aR)oJ4SUi5+xnq zjI{TP#)o6MXhkCe85O&%{e5sP^YuHLGzbK={^-BnslgMY1uk)~mfHt^))F7^)8K-h zD!AfF*x1;FXG5n~A2f#3!4J1`Mt}X0NS9KN^vSEf$aB5?`iELuUpU);U-K^$CCH)_ z2^vx-r=yEHI&5>&JPqlFFd3eRvJfgXn1o6amb`ZBCX05YE%8U9GJ`3b>RI1+`FP@L zRa@4-?3Jd38(42n_hfIcwH01uED%5;At$cU^0H5ok$n)Jog4KKdyYgUlH=YNg7iqV z5yXnla-w!!p%@x^f?CdNXyC9ixmHh=z0L!C>At?ck^o0JSQhYex#qIherR36rqNaW8^V(KrIwzQJNmwKB1^OvY35fM*R zRsVci`SO{n+cl#jV!SYpU*NIDo4|U$F1BQ?a9w5sg1+uI4G^2^<4Kirs+KG7ge{&rmYvfToGzI5DQQlnn!2xmau#Dp>gz4nFu z>S(KEbonbbBY~`eJH1i($DCzMO1A!4kqIPMLw;tC5IJyhapev!frsidekvG%2ggFX z^F!z`BK>!fSDV*`gkp&`9bSV4?>ZRwL!FQ=Jqdi2HmJyNeb6elqJ#PA@q71Ob=4Yq z3x8$~$bM#Kfi8R4=jy2eMl=%S)!*N`Eh&vNiPJ?1yaD*|d)z zKejE?*`{QiWDRgV`}76n*y&;)=BJu)i^dvc<>SZ6F*Mu9kL?jT@xP14yWO1pTA1@Y zR`1TsuaqS;Pt1Et&zV2OhH=HH=h4H&DETd}0}rDNu=+z#AZByBu1__B$4Z1)TVvxV zFw#MoG#wos8}B&;Sz=DI_EuEtajvmX1u!`TvuKKsuRYthS-d^xLl7V2pa}CdVGy(* zwFL087Sv{UcIac6c8s!yQi`pDXBu73elVz24|gGzA;pcY`B{M7dk!OWEVFvO{<0bx7y>)izVBBi9(}#@ph6Wf6lg@6MJvusC+u6xpx1C+M7~**qqxM4GJI!~R`c#^P z^v~Zse_$B$NFPrVWi<5xCaT;A&Q0&;4FP$az?r7M*O};Om2mb$&$Rk{rBqGc&Xgvm z37Y4wSI1W)1~>`W22Zf0uuupC;;|m4jd-fw9m?BK=H-f9nOR8SLcO$}XR)JC5#^xb zBz|sl#ox!l`_)dmCfF?_-gBUpY-$%E#|0JMQ=M=#+eJGe#DU3CWWcB8dBLi~8)FZC zLL#x>kGFSoJ?q<)htO7iZMKH<^;O!RN}tA(S)j{hZSMj81S2Ds1*LDGsC8*9U3+zZ zCu94_GBGrtO7tXjVRyaqws$j5;Ef5KMO+55ZG&8g1rFZD_UdH|mLkEh@b>d3{nZVT zmE&;9Yxz+mVjo$wj`pN4d)qv=RJvOxU9MJz^)4!^0aR!6z1dXI+=Iz*u|TJS^9$ui zk>#Xe|2I02j9(lBjra_VLr;cg3z%g3A(0=PczR0tCOiglU;HM@i^{dU{}!hgp1lL} zI0t$mh5FKh3ynsp%|NEgEKdp&adh9qSHb+vCK!0EFi)rpv!}Jex6jktn=CBLav-kY zntKI@3y$1#c5ez?my3=@_#~+5@t*I64V@U(kE1&0@BS&D7J3?8z#aW-@$$Iy=V;)bno!Ttnk_r;ckq} z-h>z1>c*PTf-wt0h`ZvdAKaHi7q~GY^cG@u3)JkgbxdI9&;ip<>}XydA&m&bBx(h- z4yIY}?s;ads=?HQ6?!(yt$|hn&9yQu!XisnL;bu5`4KC!(<5)C!bw4#b~Q9U7WD^_ zM(oo2JbD~%R7TMn$ zxH@==t5JJf<8?D0E|%9dDXtEDJ4=0PpMphIJ$#U%m2l5fFoqkhmV(=;%M-X~5ywXd zWE8oN1!A1STB>E8TPtjW|Crg3>(a8l4*q$E$jScE`-_rpp1TWwgd=H>jk5prCZ8 zbax6WC?z6@v;rd1-Q6u9-QC@N=R)`XzH{$6W86K4f9x3hec!d7nDbZD#&-_Af^m^? zSKYb@BV7#*xhQc1iy^(}29M2MVDPGqayKe5$bS?Vd&FezGXuO=uaP{i9L?2KLZG1Zgt6SIp( zMUc1BP`C$icJuw&G{yF-`Y?kUDNB)q5!3~Zb1(g+9i88Xi4H`M|FRDmWO+XJI#MUi zl0r6t-;mqPU$Q;5>>@qI1cTA=xAEUea>z6f7l>U#&@NBUbFjTdA@C4!Zo*j7E#Wrw zdjg%^lzq$iCAewlm^erRB5%@bE#Tcjx+RrBzKx5>vVgaSL?hk4b<5+ckoN|H*cf)+ z5jftGn`w`cf#fv*fPuT8Qpc9@hU>@fpf^hL9)?*H(RBJ;A6zQgw#8&hJ?T$f@3@UR z%N^t+KKx@Hb7ZnU&>AZ3t`bM+y)5=J4}?)@NE_jzh~h!4t9~^l$mxiJk{!|?VEHvPqppG47jb$)$o2n zZ}xfz*Ou_9@D$%q_^KdRWrYx44)YNy$h8X5!NkJaU&?L|gM}y-aC5vvj6Buy*V`XL ziWo->CsUtitnchzG!+_*-ewmF3i>oPU3jo&H}@3d9s+?7=OMwn*RMaHwq|B#rdKZs zvmbTM50GP*R_V$=_lr4&^2zyd;_%x0rWlW2`Wg+eg{ijZchgXbpjoQ5Ua+bTjX645_JmM7o zWv7fD{pS?;FU1^ZzNe8PjCr?ltT0bGZV;o8B zdOFNPl(;*0|Inj)r+NPuLE41bk!{`7wImFvHt5_WCRbx>UU$Hj@Yg+_ z_^Q7Dz05XzX#`0O73{sL)u5S1?q~})sHiU!v-!k{1v*V|V9P3zkEkiFnB~mSei~$b zan|J}rA|%hBHcJ-&bI(tAX)BqjAZzua76gSzbV_FA%QuI4IoehxA&{ccO+?W!Zj*2 zqHG12)zCS}ka@0Z*pr^R-QMH0H2u+Yr>;BnA)S2!?qEz%y_}@m1af7+#3iWs6tsSM zmCU#CxoyW8Iul0_`A)ogCg_|w?9PJmw9y-**^ zU8$P4iC!m9U=c`Ecw~Im?TIflK=>7e<*zr;Tg;QCr^J*Gg#G?c6ShY0e2g9|{p|pSQ`fai(o| z%k;(LP7^4CI(nutXg$XllY=YDNBnpk9;c?}Eu>9RP_;xWhwuv|suTSAlK^w<)=ZPI z3Hp*pRqJzv+*d$Y1#MnhiBq@2r&EGc;ybqRF7ki;ayZXX`N%Ec-zQG zueY;MO5bO3vAFuNNBWn;^tqavQQKP;3j9Argn!CTo-+qbJ^5(v6F_j=y&ALdz3#5w zGtM70#?Sid>+3h!D|8@EtB?Be?|#*bfJhy3;%rWVb?J65Y{3 z>>nd@Eahe>P+3-KV>Zw~$7S0te=a%Nh7>3Af|h>)Mkbr`74KjXl>h`_XlS8B9a~t* zJX#LtQhtL$6e%qn@0M)&${wzY=$4KjwIT%^%93po0*j)?u*lbVtgJ0RebU_7Ob+%# zpg-(xPc$rt?QR7me-K5n)Csn^HMV)_Hi3S2|Co)xkkaX}daIKbGiMdPlVIEVMbwJ{ zZzaiCc>Eh2wd}d}Z`U@>NZ|$DlSj9CU#D$%yi^P&wG89PEjf#fV_9vj zm!;tH<%ff=^k}1*|4ZDnMdA+p>_#d1X9PrVh+zN3Sf+5ZU3YP*(65dTc~j`P$s-A+rhrQrE~O~6KA^*e));O`M6G*1n4QeO=+tcd-k#Ch#l5C-Pj{cMmcnh`|JIWf z6;+-w?(vR_D1n#ft3oLg9o#3iBBd|xWUr0Iwn-Jl^ScQgphfuj6!T>@hX0n1mAOS) z#gno6Tfk0l`Db2*F-yeyC7k-upjQmd@BgmlT{Q4|_si!20S{)VBrt&pzTparRfYg;jNLO5)Jln#bk(TzrqJ63U^B2UlKF zDxA#*S=U)kv==}qJ0Zn&OEXGkOV%)GHAIUb!k5t4$*->}w1>t8<4i)YWm?!lC)QeXun z<^=mF;zop6jSv8G4ijBbDN@qsV^vHpG7Sv{uP{`j-1y7FWH3dAXq;C3YG%}akoXda z7~J)%rdjfVpYR<5r^s$6PPH&FHYuzrrz$frz~Y#=4dvgE<7^Z{yNZe#UVm>QveYtg ziR~MH$)bkGH@T~%IHl&SJpSUT+)>g5RHS+hDckVb)%7M5GG4sdx}6ErwZkj~+3$P@ z#C~x$HHs`#K1V+E7Ocpi@2F1Yyt63P*uZlmd+ z$!Xs}z71p4z2K-JAx*A4xVK1Sa)spCt7kcwhI%%Uo9*G}1WU$w$PVo9tH9kQD@l{( zTW~lk_;Ig;BMVD%euU*y0*-1^47z<~yI2A`ZctJDX>Y1Q)4>|GL6l=0dv>|t40T$d zbrKFjwD}kyAukZY>j#b7dcELD(C(;v40NC@APIpz{<>A4l}Fo4Hm_0{_^>c3e@&{< zg~WE(AGLA$3R-em20I}+5l%sNhw>l7M42!Xp1UxyKV*ZS0G0(n@v6n#uiMBc zuM{mZ29WVLf&FVAQpS`Dtr9wzOT(+@HH{DCQJm`8*06gbr4`o|dM(pcZqJ<4+4TAC z0T=MGzxS6i6Hdokjw6>AK9+bad$j>Fa(p`x;mfm`=gh%(8B%X$)}+jKvqeDsp&{zS zvWG7M4)x;L|B!g=ufa6P3`5c7QxqS%xbPu|NB*!K$&&~U269%5u?OIB^26$Xu*91i zIMk_n&h^|p@ksX^*Q~;ZfrSm;9(v^qnHz9wM3QC_to6|h?wge_8nl<0Ry(eIC$ll> zsX?k4**e(Q>wZ5f?tVKT_n1k_puLfQD8``eGtyKzpJPEbsW3x-Qu$!`#0mFV&RLzJ`1 z%E?{A{CUtNrw0K37am(9QYxc@kDW5RqyC0t$M&3UZ{)mVAJboUsels6j5q8{yM{o2 zTita9$qMKY`RsLY21L+EBBg|de}2>F-hQeS@m5XAV5Qoad-z*r+8>6O4ENf#M@~*o z37bkvN{aLZ=dZD=0w6}`K(d8yj3%#m8o9XllcqxE4Rg{dAYtaNt{&q|sRlalLv9IT z$!NHvl1r5+)~ewKIZ4quEPgHU=|USZ;!r;PPuXel-QUyK*LQt$GkKB?Tfs=377AxY zDFQ~nqF?aJ+7D*G-X+m45=vL`gFV!?Vv)sME8%2@3;j57K^58@nSzvo9#}PMN4dYXs@a2S zkwgyAk={V3u57k%Q+w@O^!u?ocQls76KZB+-<9LIlj7F*z3vH0H74;$23miTs!s zTtRX*i7El8YsHMMVFCw_lsT|d4n1Ib>*Ov}4(6L{s5^|mp%rWcTA&Uz7WDv3sYIx- zNr3301jpP;-YP`LMLK=Vc4}tg?!BaJ6Qnl4ej*`(2_9WlxBY2oVp5MR;qRSymb7Z$ zM09O}_{S?I*fh8VY^J5+0+b4sFiSOW`dOK)V)jTQ<3 zhp)=`4xn#uux{tCUv=B%g^_|9;{aChLHd?9U{$$S`fo&~;-n*$rz%#)vT`j#c*+`s z>xhbvZ)olYwlefvhtezOV-;+ebgCn9q-j$2A{GmFm#@klCz6URGy#G7ChzhKq)+Io z47U9w4tkCxc?M!c)xuc3#IjO2OXjq*)Ch)(THvT!fo0f(GrkgNtCVPd_UCz?_6qXd zXzIcJeliYRd488oz9{Y0)%ED{K@Ap!4)1VvA=?N;*}i6&zo{R-caEXU?aNCw5_J%F$+PmgyI&;M6W!VsbNYPw#=oEz9@JZWKjqOz+67M| z0bYZJ(hm80jywGZ{gAo#SSNb(j~s zFexZTe)RA=z?yD?#~aYU^b;Qg17mZ*IGq_%_mKhBp^R!xkn+hNl-uzx(8r+b-IF^8 zRMtYXB((gic(|85805}y+@Nrnc$PD$L&%^!wS%lQpeTjUhyxhN(?+P_QVAXxhokj+ zI{z5p(BzXtR?7~rXlN+leh1U7*=Rcn{BPwZ?%t-j<(c=@)IVTSNu%}kgo#h#Ri^-U z9{-Dpm=b%N^@B4I_G1h%na0i87!ou3zW0#bW=qqt#h0IPy zK?9Bm$oswzg4G`z>=0zG1vA`++)s}YfDv#NOMrLQ`g8)dG8OrvJ1#z+FV8V}`IO&3 zd#Cz)zG}VD>6Mwc>!Xq-z2Cj$$qw2H0t^Vp4VYOSg*jJl^j!&VtO5BF(KYhsy6bfF zg(AY<1p_QEr{SyHC%<^LD+P5ZjO|1Wrn!Y8aq{wG!#cxW!&>zl5uCoEpd9)G+{jWw z7~t+6`#)sm^C4Y27?}VhzrubvV9{&fw6y|QC<{a#JIjOhAQ2QZG`t5(K6Qf~$k*$H zgr5=a4>dL?C&y*7;9#o$H#zDYZg+Kti{9?`)G-5HqNZJ+h0RUB($<8hIJ0HcZS|_` z&$so`;95<0we|SiyHY>?+Aio}%ZV!v<4auSBwOurj;{~yqFgD)_AWJJ>G@o^f&MQu zsG-*W!gN(`^4uzvsqK&+ztqzQ$QWpY3&uRLjGT%^lT5``pftLdgKu?z_7-V`UCLTX z`#f0*$KN8$=!&-&1X_-`Y(AkUz(R&r0t(A_dbDXkza||c5M|i){RK}sh>#(0qRoEF zdcuNdkGcNE7(<^*Mb`N`GqQYOTmw~UD9mv_A0MGfOQmdP1qzD7W@t@i0%3{KmI@n1dWTshqtiU#rJ|IoBRI3F$;rD0-X8f_mC6FLB0V#i}M zSApPrKDd+@ucVa(J%G#txKnjuz*yL$ zI*1q?{E!PWeAJZ?4>TN-KHyFNdnoYyD#9aZ314%U7HbN!hFJ>`xQz;HhF(_y)#j z{`w|@b?)3b2vWTR3=B0BQy__1!7E6YwHkjz*hBkL2cHnPK6Hy=DQjh7AfQ*?AuRNpkd=H>?Zm!Bc|;gd$!xJ3pGVg%v&^J!zo z!l`Q`?x(IduZZo>)H?63B!DOT1%W*(obS!qr{OSrvh?t)X|XLY3V+1*orcl9?pm@h zairuz3j}M%p3^_ewUP|1SMF`EugbZ;fM2C;y*9KlT(bQH6J@hN} zPbcbs)dvV?pPXFya~XlDfSR5LAa)A*1Jk9ZBFxLiLGyH-fS?n!F~|t4w2}=8_(?|i z8JTpWFBy_IpmWYD%x7K%e zZ+Q|v*3euXs`p2*S99L&XkE;1+3MJe9|p%k2u$=Qdz~MVkfU1tfQYQo3Khcu;VKZs~11G z-gu;3;c*E4tA7i~MfVoJkxqT?GbEmB-sIfY6)$mXyhYI&)?HMwXu*Y;Zv~IH@L;;e zjxaUKOv{&QBu5+}fPoG~T#P_;8@LVw9Z~^jN#V)CB0@#+h1TCC4Y#XkUlLO{Bong^ z?4-_l@@AGH2$ySP1Ee#Lym!zO5Y^tg8+=zi2wZVFT+U}R9k}iR=PNVxdjfl7=aqAf zY^8f6fKeqA`BXBvE>0OV#H)i0{ ze97=8ri6)<+7aIAu*-FXKr7kuR%gTMdPD~b)Hau$+XjUm{Zf!n(AcywB&q=!FSnr) zmx|&EiI2a76pk?c0;Zs(@7Tf&(kUR-rn8zEHx&uu_QPH0uZ^I2=o(uk%(_y6EM%1vo%#Tm+}imCE;%L8w!$H#yP=irI%9SASO_edL8yR?&9!kn#O z(RX{=SYdQH0q2qBl^XSn{3n_=EQWVJ2F~8!m^R;Aorw#3vX)pGwclRj`vSle+=}yP z>K;U_`fIa-r(fWmI89i!gtPm?>tNBUx&YxI$UvJ*n3&q2`!aCxA2yrqQ8CwpiIp~U zzbYxY7kn2E)((V=4%P-zqUkbxk&PmX48cn;-64iTfCOs@-QUo36#YNo6y+-R&(RS z53RL@lj26nu{cYQ>PDH)`Lxrt%jJ=EZk8lZSG?!|C0$QPt8!i(2kMhb2c*4Oj-uB^%4~4>ev6NfuTqVW-u0$y6c=3WZ%)%7pZx(@f&ZJ#s!49w>12P_aqJaF z7)&ZWKG;65N|MG86JimKxv(9-RZJo#M$2IEkC--ES7Do!6I) zs{L4})%B1L=hy(NKHGOKJM0S_J%BaLX2ukY2*+!!i@&mmtp$a%r`KXxqC6NGV6rSP zxOS+3mP+lF`kz<+!YK76jznx$eQErdiDRY_nxUKOC#rq#@M=)%KL+nx_Gj@lW*c?? z zR0BO+hx=PGr^nv>G`qh_46M_PTwm<(^ZDY?5HNlJ5<^}p=Es#zBq1pY0pa+-mcj6* z-I9^!!9UtAcuM@?G=GI&F}QH$8>WN{3>)TArOFC_OkqzneqhFdp ziX5*`7!u=qWj)dG1Cw*t2Fi`$Vk()y1!+9@z?9}|(5a@#pUU#>^y!!k7lnW%C>%Pp z5r;`^#N`3<6l0es|D~i-c+7PsrK*m998BxK+LKBGVyYh&D=>%X7U*n1(D4qIxq_2_ zdAZ=p$w^4t;lV-AAo;)qS>wM_S0$D~pXh&FV3;N&njlFDr^n z9vCu!)CMvsit-md?!AixtSD^nxX+XrRs(-E-?E#5TSMA_Wv_2CvmU?2D$F#e6WRb2 zXE*7^EBo%BFG>KNyi77f%LU@+j}X}K-q$yoKDLMs+H;^uy3#cSK`V<$A0W(63P$c) zK(Ho^wEHd-BmLk33RLsyYX{#G4?9nGN;vrHAua|`hKIRX=h7)T3G2<>F2V(gi@OVhGFd_00%ZhDyrAae zE2$#qM)=nE%e8FV<`Rd$c0}vB?e(!P$21c87Nb-fy!2w{rXi6_!5?6GPDPm?1|$)W z1PExbAErj^E7FHb1V*(jxRK8z$w4prKcZ^Fi2Lrc9hhmIw0*o7!8opVKcYpKK>y>j z56{XTzxjt9G|Saa`zDi#lvk0%8Ydfs5Nyy4BMj<5UkBiTHKHgtFIh*2F?;vnuIv9e zW7PhOx5)mD|5Ay>Q0}jI?x|ya%f~OV6f8MUcyz4Z^-6#?sK7aG62R!#P=s=M48!7S zOSGE*MBRn8meXI!Q{En|AHdwe{^t79dBj!8VS00zqQD)Izne>juh z4KOPUNw7zla;>da`9!`1Y<|K?$}X zO@%WIKZrP6ITh|#REzCF29ne;G5YaxQe`m=62`7*pV2juKYBVv&vEK6Tkd^ry({aBf$PPRO_jmvmSfQ6Ju2 zQkvmeanH|Gs#%Ppy{pxEsIsT8p})_KhtJFR*_F|5A$MJ|MSY+L9{=TM$xnLX&1yyD zOFP1;I=2VaieLOeR*Z}Q4hKjO+XJd`c*`?auU@SHFrX#o^vJ-g%keWPg$YH~e9~)s z$Jp4nCS5FeVu$svk{Z|$uWLJZSrxjq<-24v1p|1TJ_-<%`J#}CVlBsIkm8issgS?5 zH#d7K3x%M3?uhP_1?hYrGnDw5M60a1JL9Nn!;!8O6sQ?`KP%4QK{)_E-47qo%xsI zpW(t)h5F1Fok?!w`?!Lu0|Q*_-Cl@GCte;DuGI}el*rIe$TC9WOh7|6FsG`_7tnou1aeg2nqWTJG5Efz zG>nvHK7lr-vO$p{AS|D?!BLO+qqY3qmz-YK1maDo;LrLVWC$m?L4fkV4_Q%hlaBsb zJD1g}ihtFlzpFGf8mqa&wZR|es*0u_WNopfi^^G+_ln6be!`fUS!e5wRB;(^89{0) z+(?`Clnlhk2vdkqM8urH<|Tr{GP)q;`EAB;(5}IcUj7Th=m7mjk09b88ln~49rMDm zYNYzS20ero0E;AHZO(v*uK{5VobF`Wn-7XQ***&W4!@etlbh6sYdm_6C#YVY%5*#+ za)VS7I4#t`BjR=FM5Mym-USMtgu#$vWNa$3TO=eT_$(dwL$c1T1`Sb8eVRfk-x|wR zO67`@uFgVu1BYy+`Ec1=lbD5RixPHrd8qG7V3=YMM~Rj^c-LC_iK_94v(~e9e5xp#VQ&?p z?K{|h&AkLchmS+NNOk)5e3y4$pCSb%ZmJfQXwhYQad?D8 z_3KBI04jC~<_Z3Hhgy4$K;K3fxtG${(%p}fkGP;iMKUts1v6__prDkUo;a5s@2HSD zPT|H;IE9!J4O(!K=9qMT?9*g2HXpO7KoGu5_Fj#;CS*ywESv8O&9$zP;3zYXPX*mp zD>(hx7Pe(CCM>)V1|k9w$|H~=k_!iD%fa?yJ(A;tXa^e_#-L~!gCW2$!()GmFxUuD z?9Hr&zjt+@q_mit)@pBhePtP2iUtnP34R!4T8kN2U0n?cS!rw0xd3$`0jmJAd`p{j zBu!r_kI1@`a#+c9!O4%A$N#rAZ=jxadvOG}-OmryCjvvAWns>4z3RYw;WED#!z@8Y z@1E|ryMv=?$n9{MZ+FPr26U`P`;f8;{0kZ|xa02z*_|wd5;>Kd4-zUC@rXp`zgG8U zrHIyEgU7ed19Xe1*vqGR@s6Mxnw;-0F0BJ8O{P-3x=PV9m-~qWiAcf~9$~c21%}eT z?0LF49k?SX5rG|GV@T@_BEY)Q(efr{m`swQR@{S^Z@dMC8mf4s^w-!Nk6WX+Tqx9B z9ZY-ZDdWy~v5R^ny+-WOhZ3X-ChbF49LCX&69XznP74DLM@>x#lJddqb*h@{&27AU z-oo*-{*keXxu=U}U}Zm?PnMev)W)zurs0vNJs-;LH%ZYbCqsd{p0WJMN@ggn!xz)< zo02ALBv-$)6%$IR&%Z`CSsi5FWfd0F9kA$u?8<3tt`bJc8{5#QXVe#YgZ}WV+gF>H z1C_uI&eS`O**rKLeVCmlni%ACH~+_{Q|I0KjfoZh^2Lf0-UB>>Ib#bJc!D^oW2F!V z_V~#YDjuGqs(lz8fIve_cEvPil;zh5iNxwUE`QAaIFCQP_!+-M=?gjy!lbPtSr{ z(jy6d0X)K^25@>Exwf>FWMV++$Ho&1y+3#0b%!WvgAj6!W*D*n)6((sKaBc-I_|h* z8v)HJ{&ub$NPn&Fyv$zbPom%kn>=k2JUwGciP5sJcIkm+^IeB4wbA$MExbp{4||l!!9sp7kV+{k z-WYQdA_RI_Q&V%_8Zbsx*md9u$h5nZAhC{{=HIguGa!>$dPDMcvWOSIWJC(GEPo3F zfwBja&h{2HPL;=xfF2VESO!~Sn)J%_%_?Qx+V&-dvfCL7;=|}-oSyxJ2Y#G9{x>xD z+n#@CctXuy{NqT~UK7S|K%essGs+EVqO@4w}PJf%f#kC{3ZO?ZR)`z=V}gra5_F zJA#u9t~MynU&gV+UJoL^!ESUt#&w4XD#whDXC+NNTd62En5)8J?qQi)L%KW}S5h!4 z1g|q5m3COxpnw8_j1(>m?RaI=Eb2NV{Lc4RN3U8*T60@0pu7qSx_&;7KDna<-jr~O zG^|l%zVANbjR4v`fuEYpW$mHY$8PiKWBa($#M3m#&A~J;^?VO^Je_Kv+fKP=5};%K zCMy=w9`R2qf$4qZTmAspA87Ao{Z08~%z#z&)p73N#`trqL?(|n(@u(C)e?odsn0vb!m>yx(I(kt98xv4B-A`B z^^Hbvg91eZB)!=N?K_&6ladO2xZp!-z*T}SS`dEvM~K}}DEas?GmmHQy+5AIF@8FS zLA})4*LVXOSDr=r2T;w?E`XD)jES-tP#pV>H>@aR?>Og^m9~~VF zrEn0BbVgU^7+*TcQ;qz}z-(JMFvlh9jS$(So18&GDpJX74+w_7Jn+^}J81^>8!9O! zw)9dGb!3202Xb) zMm4sz&47{WXp;PN4D6olJo2UbAd|My#!J4Eb}m*STfGk5DtKS4cg84SWU}(x@plqm z?8EH6YLd}l_%``{R|$rBGfE1eU+TR2drz(PvxeJa;n&7;>AA+ePV^rlNqqYs^{%Cv zwDvVU%np(F0O1ef0~yK#z$Z#88&N&l#I_X5b;K#0U$lhxE4&Kd2lFR^H0qxb$+${HMms6fx z`N>3)a3mL9WIllsn28%w==8fsDOSJdqi~Jn2r@s}8qH;P0Pz)Hp#zOH&E@i2q5bZ2 zA|B}yhlrfnVafV2n{!=E`bucV zeIaY)a&qtm<%Tcy6Sw__yjJ~5z({V>(*8Ue^1=~#DV*a}y^_JIGwCN$tA;`&Efp44 zXi2S*S9Z;}FdDxDGbLkE2SxT9I-ZWjP405=e=wz;d~r|RC-P8XGOF(CwePJngm0$l z7++EBcI=c^x}#iGRW%3hK@>#5&3u5YI za1{N~`I|w+B{rbCsTPbJ9HEGR=P0vL*JulEBz`L%)0D`q`CTv`8jZMw%r|$FQy!_A zx2dbIQZE|V*r!xR0Sz=8G(0}_uH9}U#@`#&!NG!%?B?&sF=p2RTWqC78-c8v7`PGF zK-Lhl%Ls!0A@~S{%tvza@$!RM=YHj!cheW#kl3_%D<-5)W@k)b^U~ag4LN|FR-s!L z6eo zq5!Iqtr~_Ydhm9+I>?|Ek`4YXntWy)qltX04wY{mM!myWn+Q z=tVcC!KoU-Pn&eJCn6SU3p^%r^mBHmte3{`q_2rVv!}k=%lCT@K{#!H)}f66?5M@^ z#e&D(QD^sa`B6e=0m3iCtNp#jG4XxxBCIZNhW@Pwf2H1=u)$kkk1@jn$0SLsy->TR zSfz8>jJL1C=Ea^R+1P8)p+Bd&%fQYP;z<3_S zqX1S735oY`2Qb)TuD%Xz^kzHNM)~WXp_r|N{DQ))?T|YOG(pckJj{;Ohled!F28c_ z6T!pI;4`b4xIdMRdMI8{sse`>k9PMEJJ z>U0I@ViY^w9!xRnIE!~mLqtWOeeW-K7i22kx(0EzN2~6qaUd>58eY-*WKMd0tYaN8 zY{oeWGI&0sd!751u^M&;+17k$+|hpdU?z8@Y7h5&K(8b--2L5ifQwsqB0E;N4`e-J z_yG~d_z{ThW*Y|^h!D7t#(@*%pM)B2LWE;e&~Rn{tZH=$!iQ%O?;^~WK+H~1J#0ey z014@{w%WSFwDe=@2d*k=^z0n=$EeXtGs?eNekx!^7bnrU36S;ks=}>l4CjUOSOuzC z!8kf7bDn)=N^hJRFsU@lcb?#|A^`Bv1oPnfA2EE8_4eLm;3ha1yg(fF=+UF5b`9I^ z7f6UQI(4wMoeAqrnRCA6TVx1ahvHq`=r>*L2q{V^D@8f{?j*S0{U$72U*H^E=i5kb zLkMM%!URW0OFw;j72$=EBxQ|qHy~%*@bUpD6{`z&b&^4a6Et8nC7u8|0ayn!bugfK z6-wBI2M;|K@dt4uldi$EbO;%F%qkQoz8o?@%6Bko3Ig&*1^dZ&#z_5&dk-PzApQY4 z2HydFW5S`s5mC6+DG6gKcwiI7(wN;go4Yph#`6JQUf1c1zZ$}cJSdJnLL|xj5i+#9 zKPv(CUA!oq#hZA&nH&n6PH0pd)Qo#UVB^tZj@X-R&D09YD^wwz)Y8Y-BvR#gT7xPk<#lGPYEB z>Tg;~p#zBK3QtcC4M7S3tSG4Iz$~9XWQ8TexBj|gy@vG4A-K@4QG3ceI{E+W)&ci7 zLG~r^SasdfKz5aYX%)5xIy%*usk~`@w;43g{mQHX5)CVAVsWZyGMn;x4B5q61$Py5bc<Fk_shCAGF#g23~ zfs~WO5B?86goO(~lV6UO@w*={Y5>l}!4nWkXN-AN(quby$_T*aAjfw_x*WY95=M5o zByzvqz-BZh1$Pi&DN^S1QBl6JYjZuCdb9j-N80nXMu(57^ zbrmN44!6`gBiX&RgTuov(1u9NLcr_cfNv#cQkHPrazas z>SmPrzly>CktO1IppHCEpr**k-H(_>L_}1fJqHcIaNO=y9J)c()X@uwtA@ht5bBrW zk^blEL&v6H^G(D)gWlEHiyh8#Bfz$Kfr~sj*)3-UatuUas0z5-aGhyESZQ=YtG<>*S0#^d^ORy)7wY=}6nJ&;yzq(giL63=*iC{k8Ldm5cmb>Qc?g0MDWDnK+qM1iVu3lI7ihOtD2 zGERyey}&TR;xY>Ov>1SV3MAEQ--ZG4g$yyQWj?-Qv8B@?6( z;FFC4-~>raX2V6Iz1y3cagewPP4HWg38I3R1zut+cPhFa*G>F^`$ysB7UcsaA} zF{_O?@gZ=B1)>jt2oQVp=p4Wp)G){65*{_meX}7hR_}@%v&zd!Mmo-h;CgI^p;kIBW8yK$Qnh3Dj8dF0cVs zDB24Gt;G!H_)XiLm`H`x_hny;sNu{Q6B8$&vA}ASbTxh!X=VbUX~~pjR#U zfE3~<5gW2)LC-8GB2p$X`~r}(P}Usqv-e1<3Mr}D$$aL|Fe&OKJLh4v;B4!@@p?z3 zKGy6M+h5E^qR*hqnIaeze@R}6K;=`j9pqxLzKIzEk9@=7Q_th@Re`$!mM$r+XNuV3ugxC&N~}yl26lqs|*H2PVD5nTj1Ldirm*gdMw;PmKfKDeky9}4d9tF zZRTYmV4*fiE>RIkEu<_4ticB=x!Jovz8EL=|8l`_mRVuv@`vkG{5W5;(vx=A;_khB zS}>jo{mw^;n|9*+#C9&1HCk<=7F|j944H*obC2ilnK>U~SoxYDxmrh;jxX&%2Ky~aKhR{hB~Mh?&$&q;L!Lp~e_8y_ z^vBN?Vv{Ha)3c$+MBz0LN;oQ$W$ehBXY%shZzVQ}j^>S*SR0&sa#kL5Gx2ROEkQO_ z7>_M2&?~oY-9qtz97d>q>)@aASz>XE2|P` zd5K8g;4-Mz?!%C*^LQLqS9s~&{b+rQ^+E-&45y)HC$wodep%)VZA~>leqg6{&vk%p zI_lE#S)IlWuP%KF###^wxNt#83R0P%APEQ{Kmr@z_&b#b?kwQ~WwzJ&6(@3s_wooQ z&DS}(Le5?-tI_YfD0ybXO`!LC33taCU4ZyYNX$z*Vr{CvuHKq;U_T%E!McS#?O4y2 zK=S8Kmt}9$@KTkmQ@&wS`Kr{dI~BcW%`J8~6epmqxh;5l#ERT+P&1-y0y;6|w3rIO zp3?+@RRB<7bPm;+QhkveJ5fXRXwL|5M1uE3IQ|5DcC;u^Sm;0pJ{=<->_oxTnmsvH z@>n3c8h&;~lBcXwt~|1!;?sT?Rj4Q{OTcltceL651t!bUu)M>7q#0~Rs|g+Jk0wv# z&oVdTiGlRy%u(3H3;PT z@uLAxsm6<5OUt6jUG*jELNy|Kup)p`9uW?`etkh(2LaK3tchLjw7c~>4~5p;V^-Vq zS7@50w$Ct)DxJLy!Kcpb7dNn0o}YbPMiB90Spde$YCR)m!Vy8kNJFN1X0FFjb#?d~ z7cv5=YcLR#K&Q^{HUzUlna8!7o6I86s?fN@ZS6gT9RfQK1BS|jIW5O8v^2Z-J= zP+yDVKGwjK+>=K4FX{@oZ!WkUt^IHb<7PFvLb;Y;PPeTQlm6rdQ;l0RzECC9FY(-_&K_s zeB|g=ONsVGg!jhCFkuHfokUlZ7DVg29pG7>i)GblnR8GrrtV)@9WtUp|i z6*Z{8?h2B@4G5*47F5+XD??vEB-T@*TUBWudzZxXTdb{ThaqvQ>%1fMzx-buYipty zSKeYIBd4c!4q_anSFAv^Dg3)b=PRHdE1U^8b^s^N{Rrb+E=9gr6Erx~@H{|6-$!ak zzaU4AY!i9JCI&JF(fX@<3H(C6$=%kyw+>k$1Ke*&yQuc<+2Jf3`1@yt^WK^kq_jRe zfr!OQxJ(1c1reo+5vjCMJ)(~(UwZV{M00odDg;y9K>V~2?g4o=?*?_!L6@-^CfwFA zf0R&>ymQ$W0^&A=-iNe)p{9^asdbNC(G{J_Z?3gxM5EiXZ8ecTgaP2?tR1_>M zw-em#OE;zGh$m@RL^(RXdm&fXWAJW)DV=wvAg(H{3X1$A2(!Aw#Z_=L^i9Oq$eJYS zb_~P}n99>x;tC<~JA}sE=zmB@j%>qs zIv9n+Be29Pi9L>2?Qv`9L(?apf{3p|3v6+Pd zh`fo;99&2Qg&O9o@j89OvHzkhlXz*@dUB_zGLD!VxKEl3e-Yewp{{XuGtiIm5tqOr z)ju3DueiW9UPvBu{ucG!xAk~r29SeJR(?hj<%4HYGQk=Gd5~O^A&YA4S)0_q#z){< zZ4qOpetUE)+^K!p1~>q>8Mq8Xx)CxN4nc0(xZS;S4y}6?at*jvzX=U3nlG(@Q583d z_aM?uO+x(~xqmVQC^kH{jgnEHSXWV&HqY7VuiNjtnTOe)Ko}ofz!=o+E$@6(hP+?w zhcHkXiM0nU#q3tm|JD1i`lUk{C~_4e)H>*~esdJIZD_SKp;*6UOF-_vw9&j+tfOAC_CrLy|jeARNI;0r?k2c-8-SrL=W$XpP zTWqIN_O@2v#x6jD@K)gRYUUvv);gRj#v3IKc78|bJqizub`?JSu@*pMm}DXF zug?&Xo*;xS_|1x3VV z8=ZW-ZBMu>^}l&!crMiIUDtKkI(wrdGvF#rSp&mB7tETi3nXs`Dzbgh)!N#+5I~+U zfa`(O$gJE9S}b^(sh#_9m0i1jeX7yNwyj>hVeR}P${sDl>mj{nKBwas$?}d{P9ya9 zx@yYZ?MzEtOi6fMpWNFD@IL0IwvxF0n~>-2jE-Q=7d`LGS5(^PS3{7F@ox<6KNi6@ z*#cfHh!Bwo4$BVY{%pB2!cl~VqP71b_wAktPz7YAe|83lLDw5>0X51{q>oQ{aa8O2 zf5`k*$wPM6*R=rRfvY&Pa}fe}rL?uR_a`GGZz3oWc+H?q*lyU>zTTBqtC%-vA!;+0 z)d6}nR#VjfA?)v^?A_8QxuUy%;(4c{ahWh*tH~!VOu9YyUsvB>V+1_^?rq3&y_Wp_ z`B*C5nVh`$t{%wN6r+pMoI{Rn+5h{||9KDTX){0b zcAvibfB1UKu&SbWUvv?oAYsrFA_7WEgAxi7DvCw7v~+h%NQZz(haw^+(%sS^-QC>{ z_nr9P`<%1yxz{f$`m8m_m?Pf!MM36g7C5FHx$ygVF31qtIry6eY~8H5)7LcIfiB11 zr%>la{md5E@83q8H1hTJwFRGA1t1hb2YDu4ulY6|U6E4;gqEeKa&Q1V>lB1O#N9mkW-`>P&8BO#ca2-0r_)84o-_iUnq`jxOn( zlt=PNL(y;J9h|CP_m{@^E~_7C67ec;UG@rf?BC|uF2}pYUQEZ14+OM_%6;*UAK0R{I|r|c zgOw3K%+(YGf*XH!5YndhGb~r+#UBmYjM_EOl9m3=Y*$e$QC-=PF5tEn`)a*g^nTIfIwQ^RF*)dV|U-1s#}nY3O7O zUasuwQ$hO3c;I9KqV?ZkT$&tJR&1j799qj>K@63Jb?Rvcvll@~9X*Ss831&_`Jx~p zj3u!Z_-mn-p7p)+tBfRs>t~w_ssVw}D?n&?$;n(VqJ%|fsqP&W%dS7oa4LEbP~lvB z-SsGI`OgZ*AlVHN)Og%>nPuQ-&~bF-XU}mGbnkLcnKuSj{LfOBXyq$Zs%}i*sP);U zMeR?|Nx!!uIG@En;3j||X+U77ZFt70kqa5-2eRm|X#M81r7F|kY5Qg zt5d&K={}m|m`rl>e#~l>L9Q(8dc8z#7faHOuYs?HgxBo?lFx7O5}@SdYSdtXT;XHT z%mCkb5LWK`t^WoLxB~+FvS;F4lac5}f;76W`Rg1pyYZ;_3rM|_Wk@ZI7d*1Wgm+-6OTf!tUZMJW}0(1>}I`nkr^!HUX?wu zRzpssuK?B|r%c=!%x&4p(^k7=q+v+R7NPXE>BB)ZpZ%}ke9#OiNfxd;Jq(eC5hiw3 z?C!+YT{Ql3(L@1iMRZWedTwEZ%uS z`{onI#d32>o08ssX4R$%)6K}Bf{oU4Dd5Pr#COE!hk)`Kgn%LUlhCsY^m<4#o$-av zuK%JCFqNS_XTQ|?8sz19q;+Vg~2a>UX3h}1O_(D#JK+_h3i&q@N%55HI z4OK3<2CaQ~BQflpHe(r$rPY~l{VcPQ7%v`digp4R(*I0M0v5e{?5>rpEKx71&L{KL?`8N+W(I>2+JRji{ z@M1~^l+kZ()EM!_-ZOrvv|5ss+!+FoS9=r8d6L)jO{bJxv3c6PSuVF9UIV`+)UvL8 z)#WQhq;*6YS*Y=@c;TJLuaV;-D+d5QI4;oWu7^oG0Mr|zy6hj=cP|`-knW?m9Cp^K zlt@pnyR4l`ejKUl8PSZgU%5bZCV=yonN#i8C-!^admlkDPEeF! zltbHyJc3I8Y0gO5E&+@M(iQmR`4NyqwclYBrUG+zAp9W$QQ{2-wg5{iYq9#d3+NUA z{BLaWgeqy#CaPev1ul5j{XEZkHD@&~QE8sdRBoEW)uS`(oh$1uYL8w%4i{xfby$}z za3@h$_j5zU^JRnUBfTr87kA|x1oDw;rxO4iUr*!=7=D9D4igiT^wW2@2l-^1FI?3w z{jO-4=h_J!na~1-t?l7kNuucU*SbC+j}Y-jD)KXZ3uRvrO3km69o~PfI?OL;E}WJa zqowFCzEv{V)MT7pu$bYsn}I{~hgy{ZyHa7|7G7!jij~m8!S(Ytc}k}qNIG?1C6645 zFDbXCLKix%*GcpKU&Vx`_5($!PlK@tcf0KaX0^NHIRfC;j;A7*ZAs;~dpb1xnANA; z*~a4GHOwJE-$`eKOKp)0=Q_Q!|&z5(s`y01zB2<_ePvW z0&eienJt5650b+Il$ilwm5|lSJt(jGxPsqTK7C*HjAB_qRo|z50X?f#(a8_X70j|Y z66#P7qY?Wx$r@gVT|*$mO6uw9eVv19dm#uiK+!V-t&u$2zbtr%^RrW8*Olb1Zl-^{ zPBU4~*^Dd#b(^=mA}}uUFwl!X0dBw(DJd<$a6>%X33n))hy|Sax3-A1(ayQoz7J>!6Boq~P%>mu(m> z$B_C&RbpG+)-QE{A&mmg6@VKNLJ#JJ3+yJNrHl;~z<@+>dq~3{dVL$93ji)-(B6Aa z$-vv+p_{NH27xSffJdnNW-0`t>SjB$R=PxM;Tc)ChlOLdt1ZjOU&-8kBz_|=w=ZZ^{J*!`ja8Bp5?rCk za_dEw;z`DT<-UV+_D(~QYHU9Fd& zBCt}Gc;4!29fg#Z9H|J6Zm~z!s=gND9Tk+Y68*n)ApJk5500iozzRz#47yM<2gd+r zLM(DJR%t3i!*Cj$Eh%j%H4G!{@7%v#nT*g~kU`dz=yaq%+5iSnkBG8e!1(6XCP_8g>If`aT z!a4ryA_rzmTIfllKUmklyl{yG;XqdDi`ktn~ojq$}gycMB@okumi8XD|z8 ze||8zh9d75h}Hf7cp*baU~;n#xm@!vwO}in70=x;~jBRW>()O7CZ$G~GWXLU5@!jUa|7LxH&=(#ac^8VCP zoWm-AoZT!LB9aMN^x_>OK^;g1vK}gOXsx;hF{oqTKs`MDLWlX7ADf&VKP*cvFOqD~ z`VJ>=+qC5BRi0FXJw3Q|^*@X#1X1cd-!RXna_M#lEhKiJ^@O0j!o}sGw^?KZxSr0Q4oQw;0Yw-#FWpbYN5?Ed<6ZG`&nog9lNsgm?+BdzlY zWO-6-QN_=T19`og&kzo!jIASdCAO&lJmY`%O!7#*Wga+!T7kktK@K=e9y>o<`$^6>v{6Gv#+!6<2}~za z`2X&McCYkfWFkW9t0!DXnw1+CE0l~I^QTHTdeBgD6-5^}SVaCMwWE?3MzPvb#cl-o zU*00ne7W=p<>XyT8_L;VHS1yKNT;_9F0@^Y{qFy^87a|@grqo)q95>FePTj*|>Gp_So zOSCx+e=%l~+}a}HLprnQp!5FPi$9!82`4jPK6BaRgHw8X*$cJ`)&0+o{c$<5pjN7U zu@Ol#YSSTiUopL~?@dZxrx$N1)KqHn2DLx8=Fmy^&8!`%XxVzs~fdl}ml~DqEXvz!i&2k$ILxJ|ril-!soE5k3Ws4kiOD z=|{$)m9A{R!*|4dJb&aZ2rrX5c&>|;R*;);u4|1(IW zH5wXp9Z&EmRiZOk1hYR~b9fS~grQ z!*YRRZI$}-k2m>++^$QQmp-!d_&s`Rh`;J!!kIQ8W@$*=;-_h^(fjQ^vZo)x+`o1! zbC~KXjIyRX0D_A2Yq*aH*;b2&9nTgJAc-#|59tV+6V-oQEEJ0@h1bA7Kp zY`}8;HqEIJa6GAL&<5WktU!ThFd0o+JlF46@30reusK6()6gp)k#bo1_5d``JDRdZ$xaYZB zMs5r8>63KMsu%EYaQS&4aM3i2Xo6U+rpZ_oqW&yrWe~%{2+ux!jI8plAitU{Cx;k1 zy6H?+m5nE1*jUfq(!Ui_Wkm-bH0u-jmL@+4!cyNTuY*=oG58|FuTk~Axy-D9Y(Y`Q z7vKq681=d&EWM<`{46}yKM*N};eCb`__Q+JasB?I*PmD0UMDxTx zf7H#hlC^Aw3>gA)Q)>U1fa}*OIpj1Cj-|)5r*t=_KyD9x&=7e`kDcjenC`TC2NQQB z6?Ez^`gbj8HR(PWu%9Lb3sZ!%TXib*ud0Fd0$ylag_8sNdJd(xU+G&RBkx@7@f@R`Or{Qc$5Yi@u$^e6 zm3^Llr(AvMCf78?rRB0AmNykcavDcHG#1pgeEESecusXCK6z#@u~)zPJJ5WJmeVy~7fj;xwaUu~3WxR(ILD6@gKhLl> zeBX82Z=#AKcIn@`aIDLmJQRef-r4SF8nfDd{+R*YozH{g(M~lwR$oI#^>Hc{r)aJ0 zwjn-4-;QC`*-56yf1dW0o7}q5XiTNE6WSkz-HO~m8*6g(0%y$fN7*iTqP#5({R}>k zTJCSu2F*QywlgG0x^Q$C<6`(_!P)xoRhq$@yr0L{0J*@iRZsPAvn+nXDMf$SzrcgX zudCnnGP8!r^eAQ#=ceuWLzH>B z{OsvvrCqlNf667_z*JT7F-M^-*JMw7bNQDF zO2F(n1;zt$vh(YYoQcTxtMWWIElMsLE46Fk^s**vCD(+@u>9g7-yp*i3)46ON1)h@(64p$$G^EF z@n^g$X5Ga%^b?`4&C0EtLZc@n5>`63=s&jMz2FCTBOUMe0dCcX6_uA=gMHe9r* zJ-ahpv5S?BEXjiu{x`efIZYl73%-Q`Mt@!7`ON1%uzPA>0!D3y`T3WQ>CI-eKh`$6 zd1}~x3vI!@a%k&0cd2KCT(?KYvqhWwfK}Hg=RJ}P!mp6XQ1v?%x5`EPB|hQQ%(eaV zzpR8SXHA_3R|v2(u-ALe&*gW_Fh}kk2Flc_%?i81G58Jq70%li3eeUog6RpTQ>&Cb z#^Y5c#%L$PN|e=fZM>)Hs9MjDA}j;-6*8d1cSX>@QJMPXk}=>tVuqj5itPF}4CGVk zBhTXmr|gGC%jY$ibNDt+A6?K`o} z=sgpZuHu2bPSI?e3w$eAoX{Ry-n$8w(0|dmA`9EDoBX(3Wc1`hf!~)=ej@Ja)G?8=VLs=tTkR8ZbvbwD6xQ4E=X%tSwz4@%OrAg7`sco` zat8@{7{6CCg@1N*!X^{Kb&Y9nFMEzrIS(&5`}dQ3bUk>6*WM&Aorki5X6lrmh#%@P z>5X>Hb5UusM;D$<=F14_-aoNA=Q4j|Y&bs_?kUT$pF^)u1rq zaon%UI|m~?p~+OZVWijD{AS~PX|nPyXV1C7gmlMMfi6(3?gRdJEGgPu4fAg z{y!nvl1_<4rLXD22Bg3w6k?uNxjcBhxVE_0>B|Xl)fG%{HoJTD6OIQ7{=RU0szQ3k z|KYdmPp9=>_5D?CQ$B$MBV<1Q9Gq{F^&Y7^f6&kF={@L}e@m5nXMxnOfU4mg&qh{G zna`zNO@LPaA4!qD*acPoWY`)PMoX=hvgc-Ex0aN6^qIP6hUi{w&3$r{68*#I12+`9 z$W6klKj(LFc;0?u^1+#8>OsHLYVDRTx4bj>^%CYnStJVGD-Qj`cK$%@UeNOhX8q{k z=QQnmTM9NdyDc%C3^n$f(=8TFzq1+*->qgAi8+6pof(TQFrcE(ZTv+l(I+vH7I3Ab z%{+RnFIj!&S%ez#hbtnNXdd@)Myu}-{xrBtsJ+u1Vb0y{&dtE*$WCU$E9gf(ex!(H?nOx|mGrKju<9zas`1Bi;yPcaIz$^jxk*EQ+C^aPbm={IuGsky zK4^X=I%_yG4^J1*Ows0CDDglY=SpDQ8p4z{^E>|^%M56$uNbp5Y*4|)e@{I*kB5(q zGnI2Mkrv>6!N+{V^V9Kaxiji-R{sbVJS+^?O#q!SUzuBjC%tt4f4ymx( zF*2?n=MDZs4K3_w>z5{=i7h&Agp zNH2bJK6l!;kcW4Ac?IfJsBydXV3i|1Zbemm2eO3zn`?d}s*ls}YNImlbWG`!mQXn= z$r~RW9ka@BF;36+yIec}h{;*K-x0#47@i)bc54^g^FF211S(7EjQ*HHmEQkJ#DXrE zUMTkO%Tm)9v3$N%8T8-d*jujK8h=!>_fe0us@nN-REa@mtGfXX4kM#P76sj}S1C>x zFB@KzHg@GcyXYX~WwiFFg}!i3bKOX>KKJVRr_KC5d{KDDDKA)OUBxY$O;6WL=>$Tw(7lzt- zHb&Fu9?zQ(9^`4N*SPI+S2yCV%40sqs?3_A*}chJg6CCwA@)>1YK7^1p-`mn#CDjI z#*F9`l{C>-hDIb}wGLnSyko%SqV|HJW4u~v@3%xqPRbP#AM(dCGGGoP`HM4L=Tyke z%`HaQMfJ2o4o6};yr6&=et^H=fW3}WGQZeel_5dEk#9_A)WbNug1hccry^QVY0NW} zlqJ5^*ePvm)tt_?VJxDVRlm#ot%veu7U%K)?U(^W?AuDW1&@G$fQ!6w zP%+eZnMp+0OS7}Gbu3r4L(aB-@#>l@z-ib2d}`v6eRBlrc9y(ZSHqUoj`pLm z3-es}d*f7^bvxt3*Bz6r8445!TcKB<6WxoF$&W8@V!O!t>ttI-YL=r-IYT6k z@&PLNmpRdo0mrU}rTMXtyCdIF*?McYtQ%HX$J}BBHKr>jRtelDPphVPwiY8<7H*s` zkH;A~Q)}tR4pU>OQfpl%k;Okh8IX4}O#Z{jbq|<{34rr0EG+B*k}s4?Wef*^fN2iA z%8u`^XbHtMz&|#;uY*I;>2}2ER`1rh_k+*tt!PxorWecRGIV!B`hOUIQTeNs|Jcli zftM$u<>ZKI`g5|P|2x~MiO+AZvl%;v6mA!8QnzqkGPqeF$(W-2dwQ1W{4B_;&fBJl zJKIJ5z!^Dd8SX5fB;iF)iN`y6fOr6+u77SWCjixF0Bn0V$5B?6xLsfix>=SFQ@hyB zr~f?F*R_*rMy&yAu^B{Up^}OPCFEovxjhyaSCoq`c?EnZ=-BCiB_?n$WX%m$3JxWi zr^@>!49z22cMGSP>z#74#4+t;%BX_SPS7ONT)FVnqmqPJ9LZT66@x#A|G9iatx}Is zS19!NzAp>I`Ha5jl97qptf6@qmU}5g(Z>R) z@rd^Ab!mYrAUeKU7NQTsCLtj~pl1+S)8*$o{?K-{nW*;kr+g40LGAPjRQhs(m^3^* zybok~Kjtxju#7q%8By7eqs7F=G8N_RvPa42oDi!_5C1(j%60b3ym}Ta;Dw8JQ+tQ{ zdr=XQxs+Tiliwjrbys7UXe7Z#?`lEQKq2a=iQg__ZU21Ulf)0q=lFXcHzfBlG8b0} zwh@)+f?QwJ;SM8yol&MDZAr|5z-v?FUU$z$0n{{|W5weL-5* z0$L5f^g5H??U~uw6x1`MZ)yE?EdF6!8DMU1-d|$F1{!U7#$9?`Fjyc3@8YD<0<8nY z(Uy)reIl&<bv?GD#pDgeKK)k8M4L}5H>*ZE?65@NGe5;nBkzuH&?sLK zYl&@e?OmW(Qk8dB<6pEd4wqCLkUne@`YXK~R{kq~JN)EFQr7g`E#ECUN5-rZD!j^1 zRV@0~4ab+=ei(%z6GAyXrtPdbefx}ci|%Z>WjsIdiT*a2rfMGRaJb2JYu zJkkf&h9NV&0QL!2o?+92crWO`0?=CxJ-Fdjsb%FS-*iRKrXR*ZN4R@?c zws8&CvC{8KhX(vWmwlRz#zrFh4eu%Jzu_yF>Hh3d6@M-F_FXYI zI8akmxX-4{nU$o%8U7RRGC#2;8;Mh~$Lo#jgMFDQN)rvGGEe^J^f2aTad2=jX0X1p z&?0+&yp(>THTPvUowcI6#k5$L$_L6-x5W8|p>)e|{<3ci<< z>?Z!S#DpXya#}I$ATkRbPh}OA6=Mf0nHBWXa1H2rLyNBQPze4lIQR+xqdrurn@Yx7 zX6o{oFnyi$~;(N2U%e&Nf3Lq~p`oApkq9*JRsSOP;^@sH*o5KSP>aj;dn%?nNa z2iD^jlWh0#NL|07ztO~%y~wFigPC7%JVW9<;pfA4k1u>?j)SmkgH^Au6g@36(}btH z2AtQ{e1|t7c^dYmWX%$y#P`(xzTu zIQloc&N7{H2R546uR5Zcg3N9S5vdXA&W`n=1&CL@-CQd}<})B%pR3c}euH1TS>(dx z>tA}j76B?V$+{Agvsxg^2;5*Ew2Ad~Q(|U$*G4UobQXc3&YqrdVA~Bk9S?pVykHAx z+s^lSwGBh8?nKnoY8w1(aCZ2$^rZJKQSSOl+P-mdFIDz=*2c(V=9-!tnB8%oqWrUz z$a@}!$u7RD@%02p%#WUy$tG$iz~q(bskQsONs7EDK8<7j z;MtqA#KzA1cWI~4%QNvZ?rmPyz-6PMd${CpXQw`CsgBwCA370|{AImobi_4Ey)N|S zS4*~$4ax7K>utul%-?6Py8g{(xc_{VL@bCQaZ5CNYAkz(^3#6Je0ezu`JRVQ)Ro~h zk+zzUzU~b1!zSmya=RhU=X)1sRxZkkPWZZ6GPlIkzTuGqigbnk(Nmir8 zx$5V1NB#PAD?v`VlbVBpbJ+eTW_%UN*$&U!OIvxkwBBs=7W?lw)Mi#7H1D|I|Iqtz z^mqE4*wLXX*Y4IG!a^0eEEOumhNjW*H_bKb*L!E0(vtMJNWJjsHl~7}DCGRA#wb;7 zQ)ON(@bQ)tY?<|oRnOFT>)YdMTE+(#L+aCFQ z56|QhUra^w;~`i0rB{uUp}C)rYiLmQqr^|gW}Rh*Z^1uQZz%65Ch1B<$k!Y4gnbEZ z%1IZeI%nTc=a>192Vn}@lLbdln(qCDvm)}AlB`u2{EN@i#5+&Z^sfP}zUYObvB9j$ zq{=K#gnW-t>v5CSoQ*yRsy9H;VY`@?+FxKojc`4I`g$k-xb>SJq7!2WTt`G6AV_eR z6w%oMsSZtWu~D4vtX10%6<}n zXoxccXw8EYz#rhBWpwU?x>jPRa)rtnT*sD+mM0O1z*|BT5Ds@&ngIsHSaLu|KFs6e zmVwb6!}#bGp~zz4)z=LHi7U)i^0^8#Ej^acI`$knU=^E9zr$JJr?;-V{fmh{r&e>8 zp)GDli3>yNV#EP;#p z-|I?yFizG*RJ^!pyLX3$z|ZIlsmbbnF5{JQ9b0NwPMP@}?te2rU$16e5yk?offd)y zEdFjn^lSQ~dI!m}d={JHN?LSrO;&=zs)ODb_$k+jiM?dgwL$P3;jZJSUA_ryX(A@s zb>O-pCZR7YoShIQzV|G=B3wCZw? zJU~QKm_Xd}XT$bH#=+@A97PmSBlY#8_1&@+GRo0ldgoO-D$xrN3fgLlaXGZphejBk zHC6j2sgv^Hx=y3J?0naIQ~j-@t$^|_|6QrUdmn!e|NLuHO!kO!e1aMhrz_o8&Ht*` zP}mk+Up~BIZb6|`ft+2&*a#K|*!IdhioL#D{iW+Gv!@Fs`h1ZpfL~}69XiZ zTcD2b)tY1w*a1j$(4>;Kw&sBuoCQd8&VeJqUO-;GUS|l9?qFT%IT_INDlevrsYyEh zmEP6)Cw>p5SC`1EAwl7oh{pK3y0_8G=~%jhi^5wf?quwEn0^x@!vpU(&SpxSP3MzT zJcx#8JP0Jm@?(b$`Z^Bw2^lSN{Yv=tW99ozXp)_&>o#hqO7o|`62!DyE{l}qKZR81N)XnZD z@K!&3=LU!3KY;JcFpxylDv=!l8ZcV`btGXt1Dm+P(lbQ97Ib=ie0|>m-YER&GtT-%+Knws z@mGYh)E~8nNsbr|%?ef@jYL7&z;BoJU0Wvq@1I?vyUr`kL)_ZQJ)-^c^Xm!PSZnz< zG`lEA9`rA`u5j6RQzf~0_Ppu%s+`1BIY6g=$*XEBVJ9}cOBOjn-lhRHYIk*{83c$j zhPcS_ppFg#!y}oRT3TA_T;w3;upORmP;$0XR%vpPEwSfL>5)1EF6-eB<4|N<`My%= zO6#?}HeOa2&TVF`LZEBUZS_s=jhaDGj525HwZDAk6XZ+<)VCUXA~ns@l$-CFbI=6P zeX0L|QJm~edVl5OTQwI&EPL~D$JZf`W}+2_S2}ru%=b4ndSjIuQt-m|cLPn*mJ~m_ z=$r4lI=@L+(#&2k>fg%IX3y_>)sesuGlb6@XZ4iXk(Ye+Ov=3!p6M}*>3K2`X5}{S z2%IAdVdvpYO+?WLM4q5N?aKmG!snm>zvBc(s3`H|tI3`6ff0QI>~epjHkMwY=(kNo zN^S;SYZpAr9sDcIEBY@?`cI1UUQ>-MK>V#t-MMJl$|#$#i{WW`l5OBTQ|^HOj~}D~ z;=dJ#9+a8v9)_b#Sc2pEj_TiHyIFsGYWi1SkJ2z9DxRq==OXF--%R&o1NT1}E-{Zi zYf!x6c#7%7Mm2u1&)HDWDG%-rw$=QTZ6bT#t=uDJLa~WF)hsi{1w!4|ZTIZDv?B17 zy?aS}n!FDqvqyKO=h zr&K~O&3i1y&?Zah3Fjz!nQ~#-SK*I2d)I}JxZ~K*TIY4og0gI4r=myZo(Z;n4zlU$ z9`n#aqvG1yOR;mEv8pLvozD|vQ=grfu9_So*&6q~I6ze3XR}w)oWdH06J9bBA0hj*$2TjBO)(<^^wXkO07nZ|jEKTDxZn`} zBOoP{osL4^ym}5sVNb#`gWP~4dila1}|PmViZ zO&_aiYimy|E6+o-dw9?WW!$Xy%i`0!I{A4ecsXA4EMjte!C6#rmmc8U&@ad zAL*ILj*M3fMl$;tKO7c!wTy**JEh_xSWi)Ky%?}qJeAVbQCotY>(Dy;HGnPW_z%=) z^O5>&?+Md;Gu{$@he0`3mhx?m^Fy#RCME_kGC)Fi3jS-^!=WVLasVW7zmc_!g3-wU z-qCSzTtH-SzV=QnFGC&4B5}pO>@?!&g3V5d{OL|>)vYdX>lap!66U83ivkPXeQPu%^h5kbtjJY@M&^q!kwofeT%KCB~W}O z5|K;AU!9mpF&Plq^dR zUyKCFJ;lpcVYMVEJk+#58flGa7UnQ&=K5mGo0uavg`+my%1VXyH4=?451)J+m32t; zFE;oAFPolSr-iiGdgUnyokOrqFDMub<=%&sw;*HFEjepgk3$eKP5q=Sue4z?oKS|65IxMVe z$55j?9sN=z`@aqGd{;Oqss?k%RkKzH86Iq?E^jH=4k32To zBX?Ykyy1`dB}&hc;UwJ;LuGxx7l%RX6V2`sQ*lOrv~Px0U?c-0A{0xED`46wRVga- zG#cmS;cw>X;uQ)Hv#S~llM~mpR>VBy%THmZVLGB#CZHW^I=i6WGa>Jle_7#Gf23p6;yGP9DLh@f65u$Zzr6H9@3f{pmcE?IwkVu- z@5$1GiPQF%a?+2U6j_!zd8vP@vS5kFQ0B*W5O%{*6WO%e-?HlGBT>Y4%M5y?CmgKI zhwQB@sC|dQ0$cyGne)TgbwEquiV(|asPiw4cBRc1Q$X1R((i4M`F|=Yc?mS<7(seR z^5YB~7VW1eN5Fkf1Y!vygeCy?alIVzj+-C3Ph^F3b#;IJVmu3KL$*uPJwwtogTByG zb2{fR`b0f0e3fB5X16i4fD%qRT@I5~$LqRhGM{r7HJbE3^s-=yMf!eO`goU?FdOp) zH;xwha|*xb6Y_==;W$f$4^#*a;XtWvkA0~|K;COrBc^stGVluKRxe{eScCd zvUFv7=C$D$uj4#Q_{&@48kiBEFRX`h@`4v|q+ZutF)R}0cL^P2x%sc+y8+4&TM&X> zgR=-KzK=kcG$bTMY&93;5CM>119l-I@Ux1u(+7xMMsu?tNMqC}wyEDk;Kxf2VrgG? zP{?xlBvDbWH$2ir_Ze=BJ=fver8%8sl7Wqy zjV{ZXc9Ns3(J^8z;asQXF>PaVe?Jz*yl4rxg!+-BR67m3pm&*W)TPc?;~ zjThu(JxFw>;@Y*EgTy=Tr0G}TkeH&{7(<=>_N1{r$^5;hO`jmIvgV0#UWmebTU~du zl*(V02w~wlC@`M)aKCFq!Q?8XheGkjnn*m6^3WqT_2Yr^sKD>AzgGA+MtPCtgN=;xHk_X)t($UiG9Vg zB@)vRZ(lGhD~wKw0hR9+W&*KD|7T@vg(XikmA4g_mWNMSjDo`AVw>iC( zWTkBF&2YWWH81-7sj)6aiYLDGom|PX;xJ1BH?Gr-TRPPt)GWF7Y%3nL!tzw*t%=Ra z9TRA#Ogh$2S&A~wH%{I&^KT*4dn%ZfBYzu9V*(^YIBWwE~}{98f=xbKHDF&ZUR=nEEkSfV@6p?mNjI z$)cnaCX|=}%8!6%*2rby;0Oi7&A|~J*Xe03m_6-W(C`a@BEUPI=mpT)0Zj*b5Wl(G zWya(V?P*U=+#66lIo-I3mL(GUF)GxpK>>e=4iP*vCWNxD&oPuy>A*SyyV?xv?+lz z16_1%b6H^}+EsaN1T|kVA{5HJ%e|Rgs;J-4yeIx$)Xb4y;9Ri8Ky+fjUgTnuF~oR& z&>WTK-1_pN+mQUIcx$M_-eO*4^Lf_FP2^fK_a|G|G5sjU>DQ9ga5}aqJdvO5hE=E%b7{#lp@6<4btP(a+Rt4Y?#vb+LErDZM<@ zl&DUP5|)z3mp>kMb$$O%c)TP2ya;nFK-{du=wJ6NF#lj$yL`w3P0Y=1FTY_#VXh;O z5}C^hTS5En>?aLZsHoaNU=I>_y*y8bsiNZIzo4(xWSA5H;$&e+w+ZxGI&`d!ZEg90 zSKPY?LX#<=l)oe8Lx-#!2X&bETd|#3c2mH#d4QP_U(JuJ@fh*92VWIhaOJp zJigl3*cyWCIhty$U5Oi5ik1n5GdnfiKgY+@EQ;Q z0S^a--+EW!uw~8pshX7v-Kd!RRzGUZ18<_KPFzu~@e0{)El9~!@w1!7zh#D|fosX4a@6rjy;MHe$Cq9^q+BE7i(jF2o*Y@o}LyVQnCtEJnIzygE9MmEP4VA!St#x@Q$#CG8=S3=8S8%G@0L8%wdE!c7 zcZ1TD7e1xp`vG5iWbm0P#R>na^}nA--@~Plzq@0-yC&tTgu*7n{x0VH#7#B1VW_S| zWU1#pp$@J|Ya!ciqWaN}{NQ3+9IL(J#U*`8!#mpwnT=A0=EQSb7!`KybJscd4;Cqv zn|H@mQVE_Kjg_wTTBNyM+;LP+TU&W5NG-Q$SMsX8frwyk(*^IR(6#2DV@V&MmzO7~ z1T$OTg2DSl|DKb&6>ltzQ5jP*G~s-Gis(EteVFW7wKZPS`BIrsb6wec1lw_Sm>&cu zYTrl;)`2OtEtFs7v(+Ev%$V?q)gS`Vpk$9I#@H?AG{{#t3ywMMQGz9Pb_7zEJ%A1# zR7cR6^~s?4S7*^K*Z}%oqRPq?s249@bf;++rRzaw4~i!qh=BK}Pqm2WF4$<=fxb!8 zNbhE7NT}&0vE-_IT9-aHM~3}+r~UPUZ5}xbn|E0Y6aiko^u^sIZxt6m;qhe{5^kI_ zqL#?&0nZ?hA*`I~_}I%A1Wa_SbYo>jB}d;Gij5HFILk0DGf#Tl5Qr}F=k9b+&|R&b zo3++575w@kGCj_|HzA8@XDiNQE5FCe=2v4tmbOdI3K)1w2m{vfC z%@~5tJ5qf{6>zVbovhp$P><6k?|{N!j$T1tOG zPjFf7)rQVvE`N263eT1i?#O-rC4O1-5p=R4XJ(hUvoIEtg7qplg8iu$>Xv2xFnni9 z#uTKbK-zylcqR3ke6AgXhw;)2Xli+XWi~akzY%HOO%q%z!f%WAmgp^E=_lOPE~7~y z9*wu#6dn0 z}+Q_S{*a>#;djers|r1Gsf;0 z!tXAd++i}UDX=Aj-?bBeRVryGmv50{X#XDV+6}+_Cs()@E{B*@&Rk#bW8}-hXU4}oN+(=n#ly$&`hQ?^H9}E56Qj9@$Bj;4<`8ehfFY7fez9Ab6H1u)WI1TNEqK;`R5t z-EA(s94eiog>-@a3H)2!C7%<|{MBdd)ek}yy%p*^k2UaX`bIvcNYNJQghL&0^35-P z`DulDTO$`jtC84C_vFzl4$#IQvdN)uxmTaYwY40wD83d&j-G-9?HgdC9_?Nb9T!zI z^w!D(nT!e4!GVETT_`Hc^iq%3t+zsNmtHhDFiO!n%Wk7{oTf0Z49zG{Zm13 z9Niw|)b@ijy`Q)wfTX1Sj}JYqud@2j;>Pxq5~gp@2GE13oI4h1nrl8^(B)BbFJq8> z^q!gGY-IDHTkt(Sc1%TFx}UE&sn+=_qwDKD@yR4_J=^xP6BCZ&Rkgctp)fS=xw1KN zPNPC?s(c*F8Yc_qhpexfZ;3L$&6#owruI8ler=S-%h~DHKIGbC>tla`smf{@f&&#pNx# z!Dj6cLKEP9&tga_kbz2fuvh>1bZ@O?p55b$sN}-Mw0BTpw+)N_Z1vN|O$UP|NaHfi zZUSA0!#lcKO82b?EJ0SBo%XzwR@Yu;OX09eCd+T0wRO07MMOSIt{dyR;37>j*vF=v z(W$3Z2Wk$*PB-N^%ro4^3qLVWhH_?9jRX4Wb*{zA{qRoewfdpwK^3VMsv~XtWSJGa zdzSTM>UJxuhGTsR|8_7%jh1W_G@2pYF*ccK_!GGE<3CtbZeL7WPtj@Ba^=Js#%IyR zM*Hvk``Zjs$I*w7B020pbWPks+F=( zSQd1(_onCYh*2?@B|XkAo4#TPli^ORIJzn?r^+Y1J4e{gwQ2L4^gEG>w>M7N-0JIj zMQhn6XO*Zse*rZHc0MHKeJ__W-A|0fsXxu(RqnHW`m~LXn%i%$W&vCrHe#o^5WQPM zt&hMz*Ue9jtk&GmqIMU08FD7?+`8SM;xG1$vMlP7R}MBoe@5S0;+`Y7*S<$AhR#w? z#Cg~1f0CF@DS@i#{Sy5XQ&Z<=<;F%tY_(XgsjP+uQ~3*no`#;+co*Hib!WI6p2Y7{ zNC+S{vbO)< zxbL-8Ft11~zn+uXlFL1LRCCn)nRr@Cc2 z$#LuUFj5um63=MtZjP#=l-@%=IEJMy(_XAS?ysXQL%&odAm2Kc^(Cr8F^Wu-C=4P8 zQ%|$AH#dX4zuk@g)mwp!=V12yFAMl>W(Z;)MSD%LoD7(V=_N}>J+u{qQTo%%BBws5 zU$FX}f6EdCr2iOEB@>ga$QjlgRXXLFUx{vA;>uBVx8pPG&Nq16P5S%NlI(y~F4-TV zwVZC!x5|>&U4$An)T~5o&@IJ*t@M>)W&-i@3T~t3bA>}2w5P#?N`(1kR!>QHd*$ZI z?U2{J3qt%HD_sr-*bXlD(Ch14iG>MIeCBvg!W%vXNyuE8O705|H>0CRbwC_}jm{vV zDk%B>4PJ?x_e6f7V~8p8(W_r-23m9AL||b6MqyKL-LPA{MMlANGKym@e#dw==mV_G zxA=dN!21VYlW{Fy>iJp?8@XYc-LKOH?<^#w=Bqwz8rc#bDS9_q34N>flwbJyEufd$ zN8Bdn1HU@1Lp5MUu)~`|v#*@VZI`r`4{nXKjVq3Q`JUF>1eEbHV+KpM6`<-WHM8!! zcCWqNs-8T;{UC6bk$CbK=DhP(qF$5{q;=cXp6YSBIaImBQmO3(VX+c} z7TFRUzJ`=9jou|#uBGp!y&vLC6XB~g1ZKP~w~#k;*06?D_xv+8T;(4u-O7DMtO*%& z!Jk6BvYQ5eQy^CLR-O6EcbO|21qD03>G8zEmeT#!-5$R-tZkb{@@7e!#6mEU800-Q za~nFV{CgJ~{Jhk9KIgjFG_;B@n?f!-M<3nZpV!r|2RCdjC)tg;)j(hWayhk<%#5~%g9qljJ zxhi^f2*euoc?#*>@h;lpPE)PPsJtXm3n|T2m8GhNQT#a%ci1&v3JilHPlMJg3`UF)@zhXPSweiwi9j@_KQuR(|KFqfP^^SnJB?S@WbhBn{l>@yOv|EK!Kgd zyQHLtQI!^S8KE*0|aYVP+k17rfBx0EMJf4DGwUkuHce-wZW2bfn_-cEuL~eOjB5vUqMMh

3=(YAvo6Lk>Zrv`w%nI$0v0fC+}uA=eo(Xsx}CO$WSfq z16WkNLR$GQc0XfeisizysBeE}d5aISJ6@3=_~Tz|<*X0ZuFO>{!4l29h3?ANgTk9Z zk_#^-zH)$o6$y_y355FYYP;{#Lh?#*oJqYkU`X(t7V44 zS1ZF?u}3LkURh9%bM0ka6c3@^%aNNG%5ZZ_Zt5V^0J(=Olml7ccxIzJoEyg|uJsj& ztRqmw#Am+;M8110$J0w-`icTR?aIx4OIz>%t`Zi zeADn!G5vjTY%^qf`SQ~ZxX|Us7$*bus#!S6i2K@fXE06^$)rEG+Pl)xd&eK*Z@py} z>KMYON4CFRgg`x94}5b5Up@D7E$B#?l$6Ax@)_eb$kh}Yv=f0J1tBV=g$Sfd`BOCs z#bFfHdhYRE&-<9BUezTp-ulK@z zA!15NPEO>oLJ3;pRUSvw3?wyGqTUfbWWjqqO7TJ9a&<&wl9j}SM+;5_Y12twLp}Fi z`FZ68Y?EjruBm9_p08eX7{9RY%^Rsj^y7>5nsDzq^Uo|Snmfjk%iQKLbY8^y&b?z# zkIMZR7V_{}gh5D6|FQ)=9;cyaa6~s zWSIFozUp}b?A5b_7PgL^X|6hs)w(44{3y;A3*qD6@{}G&)`(V0ypSs*L}JpDh^R=j z79GuZ#vuKEd|EaBlg}LY;nIkXy}tf!kWOJK&4Y&Ux0#v!;JsX+JF{9-JdHZex&*%d zfbWwvt-B|4M!MSjB0qR6Z=YViun zToIq4D%;Sk>K&Ow>E%c1l`~iBT^x~9NOp3vb=O`{gQH@Jqe8`yfLvpHaFfmDis8UV z`HE~C-1d$a)Q>ERc=+QdaJ58J8q^{5D(<+I<%Yn?7a>tG;=2V^%0nB|T+@sDQZm)w zSC3kyM}MakJPc*Oefuqhry--vs#Y=y!ATailFT6tE1)azy_~%7(|Y;RC5D}1;46tH zTs(h1_~S=W2+ic@=fB(8SYMyqMrmh&-2N{+exQL}d>ly81`6OBtX?(9KnLbqYA!(= z%2M|FTT^-EPe&?3>Yw=EcIu)Kv_xwTbTa>#^KW+ucQu+25F9;tVVUEo9#wbrDE_?= z>zRQt72mGroY&PDAx3UJk)eC+_DW}I8)Q7fk+^`JhZ7;vSjwl~xg?imlKmLde?PtR+=?i0naqH zY_ANzE`HacW>rUdXYZWmj;XjiKFhVq&w1&3U!cP9MKK_TvtOTpdyb<_Mi253`9Cip zA(`aw5W8zO{AvY}Z6IYr_%msMDE`heP!>QWoVnO%@8Do_xwu=GgQUm!t{r+X0BB@L z`$LJ>%9mUjeMRFugx`V^kA}+zW|2(%^wCgZzw_+XBRZj=uUY1AZa>+w-73x*ZEU~D zSFv$ZnvC9M5H0@5>(ary-_7mA?TxH8Vo+T-Tr?5ze!3~BnTPHiGTCHuucz-#j!)l%7Fzxw*wOFJ&pTOk3_lQf)QKzQRQ^t=h|KssOTHY5|@> z)z^hrrQdRARjv@grA2sy-QOw`yg?Yil*4i^-==y!YOgnA?sU zmCZq*fg&`DBGiq~d!c|a)|R9}v7n_-EONI;+hZk`_&nR^vB~6S8msD<&!Jo!w3Mv({E21IK2ZrJ%jx4n#u8u zj`z1?WrVulZ;=nZbU&viCV^_me{}alqKDVXUiH4R%b{7=pre{$J5dzV3(MYOW6jI> zKRP!V7~sScjv)RmW#aMI8L`$@mPx#DUe|4iEl6=2Z zortjFFk?{eInDrcVdp4D5el|aH>smh z*|vl`=C|98u`U~tNkO(6f@G0%b`s$twoc1N)sU%w^JLurg`-is?G#E)P{ZyX`dK}l zDO%UznhH_!k~yFAJFDH;i#p>%E7ra3F6Y4+cqArIkk&8ot`peERT@oR%@P4G&R1ae za8+bH9K8CovX2M9R<9Ko%0`rCmo+Q)39djwCs(8Lhv5jc@x#KyD=%nthT@9*&!2Bg zrXi)TD<&Emmtuvl?2gxdaGN{*ChXw<$#s=>GCa#^!quu&<+W5!@21UAJ5W}!Fk9wv zkP8+2P1cQkEZ`kZRTfIf8^MSHqh87th}_RdxdjKaTy)ymp!RMt@X=||A+ z7)g7scEbC~F^;v$H*=*%_{QIz1w6D?wKc!fR-KL2oL(QT*NJ*TKAvi0qdl?gX=9MY z;LFY7Vik!`R3M;gs^i?bWr;KA5>ZUF7v7A;+8tS~?O!7t(1BY6@CRd$Xu1eCbfB_O<+cX`z~} z;60R$g&>JZqz(A!%FElZYsi|5Jv=nr_uomd%TVhb;!dYa(YtLCc^Y<$qF2Dy(Tc*F6&6<^{z5KVip^)^U>eH2#!A(NI|g`kOtbrOqYoZ5B1jrD$$_O8!Ud>RT`IaB`OBul90yjy$w9LZxZuj@3oH znL3AsgUfuU=O=_~o{R{8PqCn)6&8vY={{|%vPBPFFZV_^m^SKUdg9`#)CZ#v+(RS4 zCMTOa=%}(cLJ{t#9lRezexh&uqkg12|P|nq=Peug49g~zbN(qYB)d}@ngLGysP zS4=3ba_wMIr+Cb+ns<);c-h&6O1?$&gLViaZmZjIx7nLp=VYV?w;Vot;M#S2b8&|Y zqocC=24&Y~4pO=!8#mj^!Q@)>NvpsJ>Q90B^(ASW0P;`>Rb6{|0lE+A1I2A{7b;Sw z@~c;i*ou_K+88AI@A*D{IMzzl%9<+>sr4!(w%CY|cmC><@b+!@Zec&UM_rxYQwNL} z$$G-iXPmFPV8_}=toPa#1Fz)O>x*i__vMtXk+YlYk5$^6S62jVWi23~qxK-S)`@|H zlPd>YiBlLKi$XuuSlcAk@Ijsw;q$*cCVCdUYdBn7F%n#!B-@?5%R48!lvdNQHe9n{ z3z+Sz=bf>Sczc_LoOfB+ch^==MYkSA+{~@>{5Z0Z_KqQTVW`lAI?+b{;cU)wgN;~5 zYL5xGQ>E#;4eS1)6>Jg*OeYZ!7JsO~67O!KrJ;}fZ5}#je`2e}!AG<3ensq6e2AXv zVkj)qY-zvVz$1^ z)tHcrv@$r(>~V&?gcP0vxxAdh+_YQrK^tfEC#Y{#AY5IMOAzi{Q4dDkS^RK`oZcU- zpVb#J#Y!QEEUQ;pW+w3~NCba(KIZo6I*oE98x2sMmTHfAq_2=AMoa214@<1hwf{Og zLPC^jpWcoQgp~X7(nJU9JnFluPr^0y%9=~oC}qgb`Z`wBpL)(Zz746QSA6@Rqe*~- z?;y)H@pF-k>7g@`V|&JcW z9cQNt8XhZGb@n?3GJb{OKi@W?&eoadP;l3&8M#Dbq-=lq5WXqC6EN%aENSu&rpHSA)~JsLABMWE7Lb zLQFw+gNc^_?MGISOypP{(nY$&Qz(dC#JgKiEuv5B#YkQh${LhI zFERckg`Iy7J#`U1k@)?GsKQjoRQB^eBixbp@rF(2hwaMc+1XGA%6jHS3hjDKl%DQx zR8Gf9?QhkM+L(jssodi8K>>6{Tk%}*ufJi@re{Zb4MS13?iG$mWx4c_4Q*l%Ka~e$ zm=X=jj&6p9#nN8IT7G`^F&F6b-rKicdxpz$>O>MM-ZG%-SIo9{k6(ggSUjhZkG;Ws zIRAlBtEj7D9QH#65hSB%hZME*BwM^YF8mV{GbaoY1IdV*@d%pOFuK_)Br)L@U zp=6-6yPiRTj#oI|?>b$RfS;LuFmFQWppWqOVNZrT6&QoLaMpsbs_qK=8RPjr|K|nI z$y~Y93zhXmYae25Tz*hcS*cy6Z_RtLh<>+#nuLz>f|wrGW;*SCHHy@)>YhC&))5w2 z)+mwonhS<0wAwGfzvJX#VrTub8+2bspj~qE$Xh)QT@ZJrr5m3uu!AC>fZODb05}`E zS6&?u42|;-HF(G9J-fotlExjtWxNEq90uzE9T<$hl! zgSPpTnKF|xmt^SxxrFv z(du3*=$m3}b?IP`aecgcoyX{0ZnR`xET6_ZzhMiJ@P_D40a814M{oA`_RQxaO3Bvk zdXv~`QLc%N1Nj(hXvb1!p2;W?X1?nC4ZI?kV&lxpE_mV8P1w?fB;aW$fcEr z{WJXK7Cp*5iy5_9r&FgNs!H2uj-@e?`?i1Dt6_R@BSFgJpUFzcvaF?f#Q2H!V}qYv z9@cU0q95++yu6~#%=CviZk&gY&Udk@C2sAO3zWYAwsSq#8Ot-b^=}hIc`H9?oajuT zy()1p#wMaZ^t4RymHc#Bn)!1EwnCWqmZ_+R%26^Ex$G8z=KUn%>RW7_4k8&U_V0!dq7J z>jm8p?vuaVVOi&x6>?RHCtN7HQN?70t30Rc@M$s0=c`z8Kp>e+$==!U>ni!VVFYmA zqcmDyB-#54J#JKO)0v1Pk~$Jx#$Kjl{3sJq{e)bB@?JRQWShVSeYGT3Bg!Hw~)4(|YU*wN1F; zy&i1GSs-G4Y1w-=lBkolAcjY5W=SodCzI|vX|>~w^CSkTyE{phqvMeIi@e9}NG#r@ zIaSmzkI{Ln50q`9423&kTXq;~7n{-v3!S+1@UpLyhf*|`E}LmQtN)VrTLKuL1BN10 zMpR^^WY$MNH<;8%^9DO9y4sIp4x#Ie`H5FxxmdEs{{_lvPK`l|4hP zcAWDQ6)QitEfynLA58tAV2E{}d+eg~=_}@nxYf%$DrbA&c{Vzqc|q^Ex7DfJHPFcA zo%29PHPXf>AHyh8!BmG&=3d)CSsE{bEfk!ANm z4HC)I5y@K+aEMjk<*+Hxprxm~AaBD-TI~>0XolK8OLj&23i;0qZZYNewb?7a4A(K5 z4I)W&SfQ8Bvbh~!!NS!VW&MX!FdoR)&v(^ZhD>AYwHd4Dr_q$X*BOs{@n^3-3VwoL zyR==jzpOS`D*9mJ(<}*Fn)bBX4tKt0osw?MCb6R{&ys31$|NwT7!Mc;Jl&8{a{49o z{Z(D5{rqRFp_S<-H9TH_Hnz7@iNPvwO7Q6jb}H{#tLC(H>nGbP1*Ua*not7@Efu`n zxPu}u#uC1vgVlY7+w%_!Qym4ezYi$088*;e{GZTW(} z$2;Y!>2Ua<4`1Bh(6NY37kewv z<3XH+h6w6_BW+H^=jEgOxi8q!9a9>`-;?wm<%;c{_!oYRGvA0q=JlL*B*l71=hsgW z-`;cA_p;Y8yU3?o+`K0+aP4x}M8wO>Y%9gfrs*GCwgSy0%LOSCf4OX(Z9m1mi02`3 zUuEH}8hyL%iR)OvTHFJ)hLifq!xZmu_OqsUw)urWYy4U;3lv-U23TtV=knmP;p;vE z+zfhkw1sjjPOTy3WJSYfP`P%a2byI%v^aPBf>UL1kJ*Jd3VfCP?=E5kP#0=eMX2Cp zwr!1}Mfu~S&f4Y}CM^=uB~Zj9s%Xe zX}$3xRD9q%j#^(tN^l@Zt`DiS5{r>C?5_I?gkm{JuqEPkcJj~#^)17X=W93zqB$ST zOnaKe@Klsl)?NCLo&70agPNKBSIjXAs~z2!aVH}qw9<+y>TqYcKPN{SuP>Zg>|*$h znhN#8H*;^_V&kz?FOC^&mUAzDwW|}_V1XxqwLxILssxScOh9cZQG z-uC;}!Cv1RZPBOYz9OiasAlzXsvyHi0b!G1D$1d`sds!VapSv@oVFw^4avm&!|4+-0d{Jxi<)4D#g1&D`FgoV%mR%lY0Y8C54dz8FLFnYOWb z&&9)IoKr$=L6@WKJANBuE8GNs+SY7M5x zQGx`EATXWRU*?x>L~{4ixT?8Sc(4pHzK(MCc`@0Z{r#z_1@9+o=qwzCl#u05B<AXhBH)f6-@+S*>=*f_R+VLrC4VdtZWDQL+jXl#YKp^uBy`$(j6P?`dBhC;$=*x+KXoNCZT@yn*IJoaD!i} z7tf3|ApbdEUUExrv?@?meYQ_fCUoU81r?<2bj4Xe&>iIlr`r9hYg)$D%47`avEd(R zc9-(}9;T!hGG(_f${V>&1+i?qd^Y%Sv36ukz3@!Kr%rR{L#lpN?R!!_rQ;_(uKl*p z%kRt@5S>O?#^T)}$5k2X`orq<;5$*b8;#pGVXO9!TB z!dVykuPxad;bi^R`bn;Ve*IW)Sh;r|(|;?TTdjn_u8tsRr(7`tql`QARc*)i@m=$M z6X!NmvE{YeC)$N2%DpPP#m*|_b3$g=?)j`5kGYEthW%(!ISG<$q$@0MHa+c=W^0wO z%Tp>W_B-gxUfoNZb&1R9aeZ^{>|*kdJYY}*Et@b(XI@{F%q)3^;-lvu!L`7o|KWVM zyg*-4O#8p3`jK8O&^sN+!qL{2Mrh2&aRGv1x&fN=whj(-%*;7G?tw}my#u{om&d9j zp)5zO+~h79lqL_=xw(cMLIHLhR3r|Y`}zCNE+lw3=*x?78^U_+K68%gx5Tqvw6)1N zMdWQXHl^q zyMr%NY$}T|{TjMFI9TT(%;bDr&=K39Ldf?4kbhGC?@ESHxo^q`ZS1IW8 z4BBt`WL}xRsS@aVeB-sLQl--li`hp!0=Afm_!>8bP|}1en7eGr<5xbfqRUxO9%owS zA{DSHvUH+6(>g0FE39@ID#uqS&6o3%zr-;ovn|v-N&3!uYWQ2MTuMsNYil=0BF}N_ z*Bj%@ZzA5UDO}GqY&Rb|+BLKtFUAs6WG#@YjIePYX*6dwlCJmc+v%4>kGWJ|^i_&< zq$r-lQ_Rk4uzjJO)bcVK!+5l3yN9!TXZ? za><9TPUam>``zOacFYhF~m5Hui(+CfQAN+@{yFUOz*= ze60dWlEb<1X9c$3ijKpTjNEJENtxnpPmPrK=`aY6pEPo!VzA;1+#LE^nUrgbBbB9U z+b!$XzRR;SH*RKxdnU}{DLxY~x8~Y@?5wm`m^O~S`&x!+d14Re2Klzb(;M6-=5nDc zzTzxl5lJ@*KS*`yDofs)l3G&ILdqX6$r>t_27>m=aqgl5R1y6LBLf#FkPQSWdU~FN zE)~Xo=wd!pWPtNm+6z53_2B+}j0;{MbJYy(vU~yq*}@p_%MyS((~TdiMVSs~#=mp? zk23!pPoe=9sNl|9qEiqtmsr&H@}JG)?|mX>*e`bAC_E^TZ3Qo-*`yu?z{ zxX~0e`57`-e~;~^t$rNJA+D^mXVo4x;B7$sp`8T2#ppX5w?fAhy1kJhdTSWfwFMrS3@mr8X$ZKS!A*DoahYLugTE}=ke z(r$oUdTgf{eOi0+EGFJZMvf<~a(?Aep!!v=r+!(Llk{cVYWEEE<#`#)Uv7|VYz%&! znb&CA@XIUuR>o&Uwjse38#w(qvbI#enutn=Mcx%7vO_}vJrJxYS_|1MlP~O9zeVgc zcLswO)vO<$M|F(;RJ3}3wSM+Tfls>@c9bRI?v}kqEiF|aHw`M^MJ7S8H7%UE{dvJL z=jQ1I69p6XK;6idl|KrHAACX3&D7A)#{k5S<~t-MA@GB?3JYGnIz8cZ9ctjJSKlgW zXtoo?LJw;h=cA3*;ZieV*PZ35Hu{9r2VNII%&_d+W(=>D;kRIFT1s1J6^;}Gi@BFU zc=*;Wb5w|rzrX(U7axc6{gfc#WGGZZRBd=h`hNT{9{NlToE1=4+M18C`jOtiFB6{j zAChLRBj!OtLF_!YC`m|E(l-%-LGeX|Dgo8Vpu*Rr!!bHbI$Gubmn6zlg*x?E+c~Q|`?G9g0wwtdlscN*7`0O|x z*5-fc1x2dmZ=egN9GX{fc$wPm4XkPd#-o)@YYjrmZ0W6K2#!UfJ)>(%@q<>!m}|%9 zt?K1pZ2wd@%Gsw<_*F@{H-qD}ktf$)S#xk!=+>#KZd8$m{LUcyUwre%IDKQ~v|?;I~U|Nn?4H5*+gp1##vBL9%rlZbj1 z86MsesqL<6toa!@REVZb9~|xf&S&#q<72B0 zMM9`>nx#^2N2hzluWEZW#F;p`-;r`0I?q@vX!GXS)+*ZP$K9gRMJ?|;rG4_t;~kce zP?>%BYx(G;a3R{}QSDB!iK2U>J^Q7g4$IQ75<`FoFV`9?%_9Gcweb z)5(QgN;+?uL%S-ZVHj}RUeB}!aY5Y>u-@d&@2gyT0wpnz`ZDd$dmL%&QoVXT8FVTE zzv4*F_p&!XYxFW(DH+sW$>qb%j6yohaKC7asol;JL7 z0Vx9v9VFvq3^j>bCx;-H*M8OvVJHwj*U&U6w6gLEGIVvgzP{kHG+g)||Nb|Rh;Ww< zqQjl!F#2PCQs^N_iia0;jS3i$28D;jjtljTIt=zZY$`vvMy*?K&~{zB(4OiAE%B_E z`WX+UbI&SPlh$DT?^mXlvA_$of*{Z{Gm1VaCC|4hwrJz zr4{z*$4hhV@SoDuo6pH4U?prDFp$y=h)@F3tgv61?y0)sb)iwfkJ<674IxVXbj=5Wu1+l>8*}iCJIa#jv&MK`)v!x@ z4ij2xxH7cX4D|y{B(}^$S&cYF>-@^E6u5bZ@B4>roi1=Ex_vok5WTNFZnk8IW-Z9h zbv&igw$WcO{OM31ARU4?wziaWeS}@mbN#9(PsXl}BAH%D*+BWb z^FQ?UfR2a=&kAn$%M)r*sdyrBl(}J}gt>n(DFk;%ZGlPQ2}Oz+;~uAO?gxwX01RKF z-MB#-FM?gW3#b{`n28_=CKW^}WDG^|pjA zAT>M)+1XNi+CFP{ekpG`Y6=Vtf9>@+Z-vpb&*iK(wjKPB=p!ZVf06L@zo?Y;%Pue5 zwzbG9XUb=mMQB`z)O8gp5&~ez$gUC~V#!kG;^M->!FiZ7zzK>5NSVL)05KWacV9wg zr<45!=Y=@OOznDMD!1Pu+!Z*8FqCwHutjmgu=zYxwa$S&8>5ZG252*a+$@W=wKXWg z^`uDfByb9GwHv-;7UrisUq)#us1XwT99Y?*Zc63-}j)mF+kl*!CK;x>g;LFriVMB zIFTx%Gx3k>!COpAom^c*gM%?%$Hb8PCWlqQfYH&@d*|k|+$D?JQvENPb1N&W5;Y6V z(oKG-p84lR0NQ#1W%#U$SIy3I#qfWK&SGCe8G=w2d;;B_mkb&J|N2ry?Om3@)6;Vu zl+}&z{wxiGLMtE_f_P0UwaHmaTEa19m)db^F2}9^@v)~l13z!v>o+Z(ou3D1Va*x`#6wC-nwpy0|KW&6 zQT$&TU_rk_kN>JW)o1_8Il7~9@+rUU;~k5|*@>cm{NW!8S^wOm%U~lma?d-x>F-y- z5ET{8uAu#MYsoc;2Gr(e_L89jDQVxIq3buFyV1>LYLT#n@u|}g9DuhO8T7u%P~n%I z2NKWl>3be0f)~7!vSZ}){-J>T-x98bZfV&}(C6^{#fvGu{o|MQIn!C=j?~K#dFKC8 zr9y5md`y{FAU>S5=Jn&0Bw&Usj`@={>u`J{eiQfa_dXRtRG$CXo8`LfPMCqVPlN88 zR>R0k|JHW`SzhG96%Dn=I-JUOq^p5!s`0_KkcMIFvJJC&R?gX@K0tytRqiCPWE?L z*jU)uO#pR1e7GbXFQ~d?EwVRxj*Q#%t)CwbXlfb(-oxeh`Ytbr2+pNTMj_ww($SIr z-n~yCOJxf>FV})p<2_mjG)++bG(m!LzhW;!$J!-pvk`7gg8kYw25hVPV~4`l8o~m` z&sML30g}Q^NsLw5Bm8IRI7%%nT=!)rVpl-=!^dwF}$` zioE*QVz40?=A#uMMhR{aHv}9$1LqVr2sjA0goJ9p97EZ4VPWB5E7bHeXSFEifbbj7 zLMVnr#q zxbTB0{Um7VGi+{^kGuFmbK}S~iO3?`1?kbTF>rQ(9-lL$=MIwaNOxISL7%NAg!%1$ z-3Jam78X_@f50F277?P`K+hUJB~XWWwo-l*Uv;JmY8AdKu=Dd zg(F~tM>=)PE-VV15vo#7@2DFsBO4aENbsLRa-6GvEqF<3T)z<*>O1s5t zaA%G_K(=&@#ZL>_Fdv3d6y}U)jrTWN`7?^JQD78h@<_Y0MG2^>sUKkWgMdDfx*_x= z&5n#zp5xAr2A%!)Ka(C_tZtw1I6Ynhoj&t2`?YaRH#n-9DhviD-eO(vhvZ16VR7ZR zZZkADW+v#}hHlpmn=73=cWwaW`bVl*85zax9UPRP3lv&6=sFQmy71w0@!&39sQ49J zT&0DMsF`2~<#*(V*$l9ZiOU+eVzX}cuOI_M_*#;4a@(4bM@Akab$H8nDbo8AVO3cltg@XEg%YlRCyx7xTQ3~TUe zX=&N5jn@vLk)x{Cb@%6TO0O~W6Uwwlslg5SCQq)cXzErL9SPJaf`l0K!thWlF>b7| zo~dxzHZ3%mi!S;Q6l8=*HJt3tq($UiLG=gBc)^u)?~+;Mhr(w6k@&z%w;*)$RV$V( zB}{abzfrsN*W#Vfjpa_5|2BO|bqCJ$+Et|+-OpYt6M$?`)IIB4(3U{_rl6iE--BSNDE=Pmm?PCA<@xl`uiYR zeD>^F^D@ly=kY;(hqN<~$NgmA2n3y+W<#F%vdXI$WRcHllN(e*+nq|!HvQ~vlp2T* zLSNn~NVk5`;UG}Y&pi#a!t}a`HxFij1{Av?P*7++^BBaC-~&uWH5&3ni2oEHAD=d! ztVo`pmHhQ0fTDYRe1r#>C8_9C!3k^8uyB7P3A&l#&5(`UW0-od8ZZnd?N7dz5S4E_ zDJj#I`kJmFQ1V*{P1?LFu%)4^`{+R(pdzHt0a%5NpJoMoRnT_<;u(V|P+!Ub$=SQ+ zL&0lxhh6#g?+27lkJmh)Q05XWik671JXBaF$>Wp|SbtQCimFBW;ywmuGxal|%F=L9 z1w~#ZRul2CLlB9}3ztcrzhliA7e3k3qjdR|BuD%$>k2BYcIF&)_BmLkxje6o_&oiM z-leoTmD$1JNJZMGHu`-=HL8)>9E8i`VH3t7f<6b^=tvXoS}mCj>9~9LOJQDW%0kYr zu6-Z_sM{^T!ST6g$?va(q|)Q9?02BPRb)BF9}l5Z&J|^tjU%%Z7F56=y~(mcEwg>E zDda6s6?Dx=fFP~JqqRI4jK~Zct-j2M+5tnfHQyO~&pNqdLh~hBQ@$kt52AU{!-blW zu`T_TI7-~PZssim4m?5}OaT4Na1ml~;2~bYqT@#%VrfPdKn;e1q5<@qKs@JM?fUqh zo*quB=D&h90Iw)|nwFpmdjNDbCw3kGM{MD*)Q$Fzm3@08dn=rOfI7oX>VLXO0e|-z z35l`o7yzNquq|~9$m!|nL4`!OI0zsi6Vp;e{ov-sW_p=;eK=S8^VG{bS{YU*Hu8Qo zy~EL{btxUP&F@4h)SaH})`K+JJKP)mVa^lkbJ0u|uMnjD+oiVC9?n`U@Ys}>?d9Uv z?olsO!|Dp%Fkgh##RIF0{Eu-lkx(9KEh#k=RHv1w_AxaA4<9UOWEIRgHxJL?!MAVU zK#m5KdIuoxGJN0;@@7l0*OKCe-PGVXEjVa6hnLC5#rGSHE9GK~B6ndc98&7$FQGqG6 zEtSW(=YAZg!Ly`p(=G1s=;-X#iF)m^dXIYSOdMi1h26CYD@{gFg|EymFE2lU#AGJW z9ps+)lO(-=|2{h^Dr!*gHxO{$fB=!ZR=+<_J}^A2dJK@GA5`DBA^N9KTU$E-1x(LG z>U|aDwC84LGvWBkPy?~zEkaF6wK)%njr3}EB+fYHOP;NDm|Mkn4 zOn3-+0ms!`9DeSh}HFb`+Srt~K! z-W+Ia6VFpFi023K%56|39_+SSrdL!P0Lvh4F!PI2`0G=&6c=RVNd`o!MWR(`Dt%?7Kq ztj8LARS!W62DE=p$})3U<9A8Bf65>udMEE#U(zh$Cuh7ONcpcMto?`g2~}8C!4&@| zhW<-9#up3Inx?|A5cQ@1Y9(KYkbOfBs+Yi<|AcS7;5WnZETGDGp|A@JnM@R;vexA@CP#L3z|{Ss9JOB3o^fD1%oFW zAhh|7hQYT9bdxN~KxC<#!BMHfWWwXDRhx_t3LGY?(Z`u#!rdt|W!Kt>+0W1B2Gd@p+Gd_GH zR|sy}(jHp+yv9$~2V>L`!yA+l?}AN5m5^;I{q7sI>}qSv(l`X86%9tX7f!Tm?N=xT zKh3pAj+k$4Z82}}!D6eZs*1?5XsL|avM&Kk-Uo&hsa0Cl8(rRK)vk+$oRIp203Tn{ zfGO7H%PbCXYC;G2Uv|8w^@SiOT4+AZi3D{J!CTP4Mp6w>*2L?!yad9;$R7;5<2BQd z;rOIRl7EOeX$+4AML$1GLHR9MtsghcTRv{&0?LJDY|R`B(H#X_&<+QWpVO!-R=1tN zeq>;}#m}TaGi3W1e3K@?0?u2VyjYhmHH?hJfS(W=6VooiUi&DH-yR|~?nw`Bt60*Y zp-2Zt1%go#0F!^da-aQn6+tK7-WS1M2p+9BYgF2_95_S5j6}p;5N7rZ3Ka>K|5kUi zIS-fXjyY7A1VNW8@KN+3+&kC};*|giJK}}N#biJ6*%}tQO)oD?>gXhPLd>Y><&-Eq zxOa860AO>$tq!i#v^3RS=9Pk3L}Cg&K%NoAS%C-8b(?_xU0SXy+#vB4(5N#B*7>|n zdjuYJ?6Jq0V;pXAP2kQoLK3)~J7033sQ z^V(Jr(7KAm{3Jv{@%B^XLF9&?rH-4@uMdG#tpt@@lBLwZ5IMFtW89WK5O3c>@JJso3J$LJse z>ol1G*>L9Ku;FG@NxQMFw;)3Hh&yAz6j_JPaO76JoNAJ~VFoj;QDx@?E^8qy2g8m} zjW--e-@xVI*qjAryZNk)cqWBzSgT(EF*Lvc1EMwBTb}}SL-_gf*@N9R1R@R<8{q+P zrxO;A2belBPl6z6umf5)IeE$?c7aL&O2`Q$Rsb19cl-p$Fu2{w5Dk1dqkf z^(Gv4d~$L#E}g>2$0<`|juUf`C3*$TPY@v27D^wve=iNmAAxtQ1Nvu@F+2#4<8oTp zS*={4go}PbTDO6lf@}^9WLsA*#3SYXfGa%*a+KlC3D?lDT_zDlZ*T(i03O_?rQHB% zq#`m=9Rvy) z7{vB5w&LNAVCsiMRrbt?JJs9U+Yu)~oTr2X;OHU=hYkj;KSS^x5eY{K!RT>DVSEA( zA+o<9+lGuTBFcBPm2g^evdL%h^KNoViYn|9B!dJV7?d@iU5Aywi7u$$gz2yboQg0c zVzl2|m4J$DG_O@)Mut&H0;n;AddIFc^yuNS8kdB)NN&PAXzK$Gmd!47KKt-f{A)2F z*+73I13?_lc*11SOwkXfW`K&8K3t`N!+rpc%S`BP^9g{{0pPGK%+vj@Pj?=!^dxz8 z)&cyIgBBddwz)__23=@dRUTBnFIkk28M-CJ#N<>}SLbMZ9GAj}$*x~dIlBagBhSG9 zaSDPI?SV%Ne^`QSSvoG+-EZluTMOMeuU+6_6crUqttRSBVf{W6nt=WY+psV`4@2ml zcRR``zOZf$zMdbd!mb6uVM?NyGmyQyx;oej=t*6F7-n1x1~`BF82aicLUTLxA^Bk$ zTyF^?7UqF>V14|>eF$WF5=dbpKM!b48L)tOj0L2#mAJ_QqNAd+PS%_8vKw`t%gf0< z6D;>!Io}WVM5P@5k;Lqe6L5r^&j$SVeB#xXRLn6VT*1x2kU3OVpj!NRz_fG;G7-5W za7bmJU4jO#3W}w_eY6Uc;S4wLYSH1yR8>{w+2%I+@kq1GT(xlF4B`avh~&WjY;##z z0mKfYa15YN@%}N0DO>F9{{F2X0)ao>!_3LJtQ1_$C6LHW0~h;8 zx@7bFD+4eM!{*FRtS9hf*^g5SwYGR&fT=p51;$}tRY@sgX?{K(Vql$yhciJU`NDgX zUdUWPx@iCkAxpj;pKcd;WI?n=xzo_rBm;R==}#OF;I`^J%Z^T9>WcYczmz(zjUxy% z$!!A4C`+Nmq{9GG-;|l{Z=|UBwYUYG@ps7LVtyospu~QB@Fr70-eB&4*`p3@OJc7^ zLIo8*zE0?G?VJHQXc7u1miZ12p!>SPMLWBdpWy(6&mf1w$ID#-GEOFfX zk!+gJ%+&!Yzz@mL@P%i@b$iJGWg*L31qmPU$9=YI;S9w9Yl5_`f{q)p5UjSbwQc+U z{T2<)IbPm!PLzBsOwP|55vTQ=-~~;CH&kLNuSf_r?~uO&9GD7t2MGWHcKKt`s?hn@ zMpFA0e+}lvY`cL~+t}HehYS|9%d&>MEVCRljhn)VP!E5`KLNLX6(HNwryuOq;U@B0 zI|~Znay)#KxRioVA>;%aFr|E2ApZaskgc!)Qt}X5db{oR{Q2|3Vm!-b6cFw}JVpkQ z(*`N%Mz`IuC!p5zEO+fOtnhh2FNj5gAB#--=-%T|bs>;ow}}AoZX(3Z2hp{e-D?oQ zyd@%FzeE5Y!)1zlJ%+AuegVEYs{_6&5=vYiDGvfZ2a@7PdtL*f_e;og!xFj-2oJ=| zz2J|8BZH7EL0f$IvyQSLc?I3B*f|{&0C>W6TPTrUs|-F6cY2JNl+s9lqk_aBylp`?!u!vk%<29lQ zn3$NV+6#D3nf+iE;UFv>c9`!VU9FhGg$P9}xmC>rcnXAmgdF`qTXeYcVdekp?OelR zOv5-Xtz1{J_HvpKu4-57T#2+2S8BUDTsf_Ftu-j4oWc|@Vq^xy33a@J5EWiHn?tEI*9_k=s7#X;bBJ6sGbRt;IzRx8HR zqd7^4qs>9y-ih-SS%QB#f0TZ`ZluXzCP*}q6>f5fNf_B^@1xN6Xe6%tE8aCVnU5KB zr*2cZHt6Vxt5}nzqy_{8sPXkY{e4E)!+=4P$s2YvLboV=>FhX{xdvBAdIV*$)YCSy zuG5*r<9NphKud9mwy>$9^7`lOfGIpLne3Hv9^D_cGe8u z2oY#@cB4A#?R+RO;m1C#0T(Nl8iG8u_|)b!4pYHf7cAJ^;WQ zQ3F26yf6rD;U=9=$L)odmQXf__pheqa8f|{c6kS=;9(KKL&?CZFxe6n7dX#!U8B(s z`g^+hz42WnewkXNq&RZ{04vSM)q)nX0))w z@Jf{yoSKttY22gVte4a-rt)Ndf1K(^7OsXa*teAXbg@TW58*cK3FsaN?b&e8R-@YO(=ynEKiMbykeB`f^(vj(uoRDL#ZIOc8@()y~mB=<{C@SNyj zVW{$9V$mp?+mYO6y^FJ!8PX%O5JgW+x5~`Q>N9w70eA6X@G?^lw4lwWB`110I5;q% zqBr4`+l-uiT$)9HuycRC7ZL_~zJAhlWb zFdpFAbJc&x`Tf~ymSn^>v|=qM`Poa~8sN}G_Qs>3DH!@L5_ zUG{?kV}#>vZct#u-Ob@f5^J2=Dt=#?50<`#1zlcX)XgEmQC2=TEH^a!VQ}cq{4eov z?hjJgnxewT)>Pd0&x)pH$ZBI-;Fhp3z5JC6rs!JDiFzl*ID5KMQ!nZE^Wypjd)V6A zQkuLvMfbYbhPThcA?n1t({G#T8wu^~_z@9SlvR0e-C3520bhcuHg}&G+%gJ2d8}o65CgT9((F7gwUm%2$ndnS zJr?l=T~JAoSHRcLG6okkBl8cCKklmBKldSuTbwCzr6Ht$z0v1 zY}apuzav!d3Y^#2PQEyy(ob-2!v7QDbO&N!U#q`*BHAfa=B90>Zi0#8*K`q4y-~bv zP0el@NP~g^Jff@tY)KqTnj1HyIfMTOVly}LB+sp{_9#^ z%t%GYyKli_jRNd!DuSk&5o^2~?j{HY>?hKOa8CejFE1-}5qTd1k&jdem57Y;H4=G$ zW#5b>yBDGWo+*PDZX?9V`C2o{?%{c8s$5Dx_2Qezuz4TNww-RVDt{hLu>6&Zut|#`S1Dw diff --git a/docusaurus/docs/protocol/primitives/geometric_pdf_vs_cdf.py b/docusaurus/docs/protocol/primitives/geometric_pdf_vs_cdf.py index 992652cf9..ca5cac5d2 100644 --- a/docusaurus/docs/protocol/primitives/geometric_pdf_vs_cdf.py +++ b/docusaurus/docs/protocol/primitives/geometric_pdf_vs_cdf.py @@ -3,7 +3,7 @@ # Define different ProofRequestProbability values p_values = [0.1, 0.25, 0.5, 0.75] # Modify as needed -k_values = np.arange(1, 21) # Range of k values +k_values = np.arange(0, 21) # Range of k values starting from 0 # Create subplots side by side fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6)) @@ -11,24 +11,26 @@ # Plot Geometric PDF for different p values for p in p_values: q = 1 - p - pdf_values = (1 - p) ** (k_values - 1) * p + pdf_values = p * (1 - p) ** k_values ax1.plot(k_values, pdf_values, marker="o", linestyle="-", label=f"p = {p}") -ax1.set_title("Geometric PDF for Different p Values") +ax1.set_title("Geometric PDF: Exactly k Failures Until 1st Success") ax1.set_xlabel("Number of Failures before First Success (k)") ax1.set_ylabel("Probability Pr(X = k)") +ax1.set_xticks(k_values) ax1.grid(True) ax1.legend() # Plot Geometric CDF for different p values for p in p_values: q = 1 - p - cdf_values = 1 - (1 - p) ** k_values + cdf_values = 1 - (1 - p) ** (k_values + 1) ax2.plot(k_values, cdf_values, marker="o", linestyle="-", label=f"p = {p}") -ax2.set_title("Geometric CDF for Different p Values") +ax2.set_title("Geometric CDF: ≤ k Failures Until 1st Success") ax2.set_xlabel("Number of Failures before First Success (k)") ax2.set_ylabel("Cumulative Probability P(X ≤ k)") +ax2.set_xticks(k_values) ax2.grid(True) ax2.legend() diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md index ead8f5ffd..e97424b5c 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md @@ -7,6 +7,7 @@ sidebar_position: 3 Probabilistic Proofs is a method to scale Pocket Network indefinitely. +- [Abstract](#abstract) - [Problem Statement](#problem-statement) - [Example Scenario](#example-scenario) - [High Level Approach](#high-level-approach) @@ -16,8 +17,9 @@ Probabilistic Proofs is a method to scale Pocket Network indefinitely. - [Defining a Single (Bernoulli) Trial](#defining-a-single-bernoulli-trial) - [Onchain Governance Parameters](#onchain-governance-parameters) - [Dishonest Supplier: Calculating the Expected Value](#dishonest-supplier-calculating-the-expected-value) - - [Modelling a Dishonest Supplier's Strategy using a Geometric Distribution](#modelling-a-dishonest-suppliers-strategy-using-a-geometric-distribution) + - [Modelling a Dishonest Supplier's Strategy using a Geometric PDF (Probability Distribution Function)](#modelling-a-dishonest-suppliers-strategy-using-a-geometric-pdf-probability-distribution-function) - [Expected Number of False Claims (Failures) Before Getting Caught (Success)](#expected-number-of-false-claims-failures-before-getting-caught-success) + - [Modelling a Dishonest Supplier's Strategy using a Geometric CDF (Cumulative Distribution Function)](#modelling-a-dishonest-suppliers-strategy-using-a-geometric-cdf-cumulative-distribution-function) - [Total Rewards: Expected Value Calculation for Dishonest Supplier Before Penalty](#total-rewards-expected-value-calculation-for-dishonest-supplier-before-penalty) - [Expected Penalty: Slashing amount for Dishonest Supplier](#expected-penalty-slashing-amount-for-dishonest-supplier) - [Total Profit: Expected Value Calculation for Dishonest Supplier AFTER Penalty](#total-profit-expected-value-calculation-for-dishonest-supplier-after-penalty) @@ -40,7 +42,6 @@ Probabilistic Proofs is a method to scale Pocket Network indefinitely. - [Normal Distribution](#normal-distribution) - [Non-Normal Distribution](#non-normal-distribution) - [Considerations for `ProofRequestProbability` (`p`)](#considerations-for-proofrequestprobability-p) - - [Geometric CDF vs Geometric PDF when revisiting value `p`](#geometric-cdf-vs-geometric-pdf-when-revisiting-value-p) - [Maximizing `Pr(X<=k)` to ensure `k or less` failures (Supplier escapes without penalty)](#maximizing-prxk-to-ensure-k-or-less-failures-supplier-escapes-without-penalty) - [Conclusions for Modelling](#conclusions-for-modelling) - [Morse Based Value Selection](#morse-based-value-selection) @@ -48,10 +49,31 @@ Probabilistic Proofs is a method to scale Pocket Network indefinitely. - [Calculating `p`: `ProofRequestProbability`](#calculating-p-proofrequestprobability) - [Calculating `S`: `ProofMissingPenalty`](#calculating-s-proofmissingpenalty) - [Future Work](#future-work) - - [](#) - - [Onchain Closed Feedback Loop](#onchain-closed-feedback-loop) - - [Reviewing External Literature](#reviewing-external-literature) -- [References](#references) + +## Abstract + +This document explains and walks through the mechanism of Probabilistic Proofs needed +to scale Pocket Network indefinitely. Precisely, it'll allow an unlimited number of +sessions that pair (Applications, Suppliers, Services) by requiring a single Claim +for each such session, but only require a proof probabilistically if it is below a +specific threshold. + +External stakeholders (i.e. DAO/Foundation) need to be involved in adjusting the +`ProofRequirementThreshold` by statistically analyzing onchain data, along with selecting +an appropriate `ProofRequestProbability` that balances scalability and security. These values +lead to calculating expected rewards and penalties of honest and dishonest Suppliers respectively, +which should drive the decision for what `SupplierMinStake` should be. Reasonably +selected values can be chosen to easily scale the network by `100x` without compromising +security. + +The results show that choosing a value of `20 POKT` for `ProofRequirementThreshold`, +the `95th percentile` of all Claims, along with a `ProofRequestProbability` of `0.01`, +can enable `100x` scalability of the network if the `Slashing penalty` for invalid/missing +proofs is set to `2,000 POKT`. As long as the minimum required stake for Suppliers exceeds +this value, the funds will be available for slashing staking is set to `2,000 POKT`. + +Under future work, we look at a potential attack vector that still needs to be considered, +along with further research on the topic. ## Problem Statement @@ -209,7 +231,7 @@ We note that `R` is variable and that `SupplierMinStake` is not taken into accou As will be demonstrated by the end of this document: - Reward per Claim (`R`) will be equal to the `ProofRequirementThreshold` (POKT) -- Penalty (`S`) will be equal to the `SupplierMinStake` (in POKT) +- Penalty (`S`) will be less than or equal to the `SupplierMinStake` (in POKT) ### Dishonest Supplier: Calculating the Expected Value @@ -218,7 +240,7 @@ The dishonest Supplier's strategy: - Submit false Claims repeatedly, hoping not to be selected for Proof submission. - Accept that eventually, they will be caught and penalized. -#### Modelling a Dishonest Supplier's Strategy using a Geometric Distribution +#### Modelling a Dishonest Supplier's Strategy using a Geometric PDF (Probability Distribution Function) The number of successful false Claims before getting caught follows a [Geometric distribution](https://en.wikipedia.org/wiki/Geometric_distribution): @@ -237,6 +259,29 @@ Recall: - **Failure**: The network does not catch a dishonest Supplier - **Success**: The network catches a dishonest Supplier +#### Modelling a Dishonest Supplier's Strategy using a Geometric CDF (Cumulative Distribution Function) + +Above, we have been tracking the probability that `Pr(X=k+1)`, the probability +of `k` failures (Supplier escapes without penalty) until a single success (Supplier) +is penalized. This can be modeled using a Geometric PDF (Probability Distribution Function). + +In practice, we need to track the likelihood of `k or less` failures `Pr(X<=k)`, +until a single success. This can be modeled using a Geometric CDF. + +To simplify the math, we'll be using the Expected Value of a Geometric PDF +due to its [simpler proof formulation](https://en.wikipedia.org/wiki/Geometric_distribution#Proof_of_expected_value), guaranteeing the results be **AT LEAST** +as secure when compared to the Geometric CDF. + +Visual intuition of the two can be seen below: + +![Geometric CDF for Different p Values](./geometric_pdf_vs_cdf.png) + +:::tip + +You can generate the graph above with `make geometric_pdf_vs_cdf.py` + +::: + #### Total Rewards: Expected Value Calculation for Dishonest Supplier Before Penalty $$ E[\text{Total Rewards}] = R \cdot E[K] = R \cdot \frac{q}{p} $$ @@ -258,7 +303,7 @@ $$ E[\text{Total Profit}] = E[\text{Total Rewards}] - S = R \cdot \frac{q}{p} - - **Expected Rewards per Claim**: $$ E[\text{Reward per Claim}] = R $$ - **No Penalties**: Since the honest Supplier always provides valid Proofs when required, they avoid penalties. -- **Expected Profit for Honest Supplier**: +- **Expected Profit for Honest Supplier (1 Claim)**: $$ E[\text{Total Profit}] = R $$ @@ -454,35 +499,7 @@ The number of relays in the network scales inversely to `ProofRequestProbability - `ProofRequestProbability` = 0.25 -> 4x scale - `ProofRequestProbability` = 0.1 -> 10x scale - `ProofRequestProbability` = 0.01 -> 100x scale - -##### Geometric CDF vs Geometric PDF when revisiting value `p` - -Up until now, we have been tracking the probability that `Pr(X=k)`, the probability -of `k` failures (Supplier escapes without penalty) until a single success (Supplier) -is penalized. This can be modeled using a Geometric PDF (Probability Distribution Function). - -$$ p = ProofRequestProbability $$ -$$ q = 1 - p $$ -$$ Pr(X=k) = (1-p)^{k-1}p $$ -$$ k = \frac{ln(\frac{Pr(X=k)}{p})}{ln(1-p)} + 1 $$ - -However, instead, we need to track the likelihood of `k or less` failures `Pr(X<=k)`, -until a single success. This can be modeled using a Geometric CDF (Cumulative Distribution Function). - -$$ x ∈ ℝ ∣ 0 ≤ x < 1 $$ -$$ p = ProofRequestProbability $$ -$$ P(X<=k) = 1 - (1 - p)^{k} $$ -$$ k = \frac{log(1 - P(X<=k))}{log(1 - p)} $$ - -Visual intuition of the two can be seen below: - -![Geometric CDF for Different p Values](./geometric_pdf_vs_cdf.png) - -:::tip - -You can generate the graph above with `make geometric_pdf_vs_cdf.py` - -::: +- `ProofRequestProbability` = 0.001 -> 1000x scale ##### Maximizing `Pr(X<=k)` to ensure `k or less` failures (Supplier escapes without penalty) @@ -496,9 +513,9 @@ perspective of what the probabilities of success and failure are. By modeling the attack using a geometric distributions and calculating expected values, we can: -- Determine `ProofRequirementThreshold` using statical onchain data -- Manually adjust `ProofRequestProbability = p` to adjust scalability -- Compute `SupplierMinStake = S` to deter dishonest behavior +- Determine `R = ProofRequirementThreshold` using statical onchain data +- Manually adjust `p = ProofRequestProbability` to adjust scalability +- Compute `S ≤ SupplierMinStake` to deter dishonest behavior - Determine the necessary penalty `S` to deter dishonest behavior. - Ensure that honest Suppliers remain profitable while dishonest Suppliers face negative expected profits. @@ -515,63 +532,28 @@ Choose `R = 20` since it is greater than `p95` of all Claims collected in Morse. See the original proposal from Morse available in [probabilistic_proofs_morse.md](./probabilistic_proofs_morse.md) and [Pocket_Network_Morse_Probabilistic_Proofs.ipynb](./Pocket_Network_Morse_Probabilistic_Proofs.ipynb) for supporting data. -### Calculating `p`: `ProofRequestProbability` +$$ R = 20 $$ -Choose `p = 0.05` to ensure high scalability. +### Calculating `p`: `ProofRequestProbability` -Choose `Pr(X<=k) = 0.99` to ensure that `99%` of the time, a dishonest Supplier will be penalized. +Choose `p = 0.01` to ensure high scalability. -$$ k = \frac{log(1 - P(X<=k))}{log(1 - 0.05)} $$ -$$ k = \frac{log(1 - 0.99)}{log(1 - 0.05)} $$ -$$ k ≈ 90 $$ +$$ E[K] = \frac{q}{p} = \frac{0.99}{0.01} = 99 $$ ### Calculating `S`: `ProofMissingPenalty` -1. **Expected Number of False Claims Before Getting Caught**: - - $$ E[K] = \frac{q}{p} = \frac{0.95}{0.05} = 19 $$ - -2. **Expected Total Rewards**: - - $$ E[\text{Total Rewards}] = R \cdot E[K] = 20 \cdot 19 = 380 $$ - -3. **Penalty**: - - $$ S = R \cdot \left( \frac{1 - p}{p} \right) = 10 \cdot \left( \frac{0.8}{0.2} \right) = 40 $$ - -4. **Expected Profit**: - - $$ E[\text{Total Profit}] = E[\text{Total Rewards}] - S = 40 - 40 = 0 $$ - -S=R⋅( -p -1−p -​ -) +$$ S = R \cdot E[K] = 20 \cdot 99 = 1980 ≈ 2,000 $$ ## Future Work -### - -### Onchain Closed Feedback Loop - -### Reviewing External Literature - -https://research.facebook.com/publications/distributed-auditing-proofs-of-liabilities/ -https://eprint.iacr.org/2020/1568.pdf - -## References - -`ProofRequestProbability (p)` is selected as `0.25` to enable scaling the network by `4x`. - -`BurnForFailedClaimSubmission` - Should be set to `k * ProofRequirementThreshold` to deter `k` failures or less. - -`Pr(X<=k)` must be as high as possible while keeping `k` reasonably low since it'll impact the penalty for honest but faulty servicers that fail to submit a Claim within the expiration window. We are selecting `Pr(X<=k) = 0.99` - -$$ k = \frac{log(1 - P(X<=k))}{log(1 - p)} $$ +1. **Attack Vector**: Account for the fact that a Supplier could be in multiple sessions at the same, so either: -$$ k = \frac{log(1 - 0.99)}{log(1 - 0.25)} $$ + - The number of sessions a supplier is in will need to be limited + - The minimum stake amount will need to be significantly higher than the penalty to enable slashing across multiple sessions at once -$$ k ≈ 16 $$ +2. **Optimal Reward Value**: Evaluating onchain Shannon data to determine the optimal value for `R` +3. **Closed Feedback Look**: Having `p` dynamically adjust onchain as a function of onchain data without intervention from the DAO / PNF (i.e. ) +4. Reviewing, comparing & contributing to **external literature** such as: -Selecting `k = 16` implies that `99%` of the time, an attacker will get a penalty of `BurnForFailedClaimSubmission`, making it not worthwhile to take the risk. + - https://research.facebook.com/publications/distributed-auditing-proofs-of-liabilities/ + - https://eprint.iacr.org/2020/1568.pdf From b6838165c25c8f60086640b73f70bdc00f2ce906 Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Thu, 31 Oct 2024 17:21:29 -0400 Subject: [PATCH 05/25] Made docusarusu work --- .../docs/protocol/primitives/gateways.md | 2 +- .../primitives/probabilistic_proofs.md | 51 +--- .../primitives/probabilistic_proofs_morse.md | 16 +- .../docs/protocol/primitives/relay_mining.md | 2 +- docusaurus/docusaurus.config.js | 2 + docusaurus/package-lock.json | 257 +++++++++++++++++- docusaurus/package.json | 5 +- docusaurus/src/css/custom.css | 12 +- docusaurus/yarn.lock | 119 +++++++- probabilistic_proofs.py | 38 --- 10 files changed, 403 insertions(+), 101 deletions(-) delete mode 100644 probabilistic_proofs.py diff --git a/docusaurus/docs/protocol/primitives/gateways.md b/docusaurus/docs/protocol/primitives/gateways.md index b44d0a5da..80124b44f 100644 --- a/docusaurus/docs/protocol/primitives/gateways.md +++ b/docusaurus/docs/protocol/primitives/gateways.md @@ -1,6 +1,6 @@ --- title: Gateways -sidebar_position: 4 +sidebar_position: 3 --- # Gateways diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md index e97424b5c..66827f03c 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md @@ -1,54 +1,9 @@ --- -title: Probabilistic Proofs -sidebar_position: 3 +title: Probabilistic Proofs (Shannon) +sidebar_position: 5 --- -## Probabilistic Proofs - -Probabilistic Proofs is a method to scale Pocket Network indefinitely. - -- [Abstract](#abstract) -- [Problem Statement](#problem-statement) -- [Example Scenario](#example-scenario) -- [High Level Approach](#high-level-approach) -- [Key Question](#key-question) -- [Guarantees \& Expected Values](#guarantees--expected-values) -- [Modeling an Attack](#modeling-an-attack) - - [Defining a Single (Bernoulli) Trial](#defining-a-single-bernoulli-trial) - - [Onchain Governance Parameters](#onchain-governance-parameters) - - [Dishonest Supplier: Calculating the Expected Value](#dishonest-supplier-calculating-the-expected-value) - - [Modelling a Dishonest Supplier's Strategy using a Geometric PDF (Probability Distribution Function)](#modelling-a-dishonest-suppliers-strategy-using-a-geometric-pdf-probability-distribution-function) - - [Expected Number of False Claims (Failures) Before Getting Caught (Success)](#expected-number-of-false-claims-failures-before-getting-caught-success) - - [Modelling a Dishonest Supplier's Strategy using a Geometric CDF (Cumulative Distribution Function)](#modelling-a-dishonest-suppliers-strategy-using-a-geometric-cdf-cumulative-distribution-function) - - [Total Rewards: Expected Value Calculation for Dishonest Supplier Before Penalty](#total-rewards-expected-value-calculation-for-dishonest-supplier-before-penalty) - - [Expected Penalty: Slashing amount for Dishonest Supplier](#expected-penalty-slashing-amount-for-dishonest-supplier) - - [Total Profit: Expected Value Calculation for Dishonest Supplier AFTER Penalty](#total-profit-expected-value-calculation-for-dishonest-supplier-after-penalty) - - [Honest Supplier: Calculating the Expected Value](#honest-supplier-calculating-the-expected-value) - - [Setting Parameters to Deter Dishonest Behavior](#setting-parameters-to-deter-dishonest-behavior) - - [Solving for Penalty `S`](#solving-for-penalty-s) - - [Example Calculation](#example-calculation) - - [Generalizing the Penalty Formula](#generalizing-the-penalty-formula) - - [Considering false Claim Variance](#considering-false-claim-variance) -- [Crypto-economic Analysis \& Incentives](#crypto-economic-analysis--incentives) - - [Impact on Honest Suppliers](#impact-on-honest-suppliers) - - [Impact on Dishonest Suppliers](#impact-on-dishonest-suppliers) - - [Analogs between Model Parameters and onchain Governance Values](#analogs-between-model-parameters-and-onchain-governance-values) - - [Parameter Analog for Penalty (`S`)](#parameter-analog-for-penalty-s) - - [Parameter Analog for Reward (`R`)](#parameter-analog-for-reward-r) - - [Considerations during Parameter Adjustment](#considerations-during-parameter-adjustment) - - [Selecting Optimal `p` and `S`](#selecting-optimal-p-and-s) - - [Considerations for `ProofRequirementThreshold`](#considerations-for-proofrequirementthreshold) - - [Modelling `ProofRequirementThreshold`](#modelling-proofrequirementthreshold) - - [Normal Distribution](#normal-distribution) - - [Non-Normal Distribution](#non-normal-distribution) - - [Considerations for `ProofRequestProbability` (`p`)](#considerations-for-proofrequestprobability-p) - - [Maximizing `Pr(X<=k)` to ensure `k or less` failures (Supplier escapes without penalty)](#maximizing-prxk-to-ensure-k-or-less-failures-supplier-escapes-without-penalty) -- [Conclusions for Modelling](#conclusions-for-modelling) -- [Morse Based Value Selection](#morse-based-value-selection) - - [Selecting `ProofRequirementThreshold`](#selecting-proofrequirementthreshold) - - [Calculating `p`: `ProofRequestProbability`](#calculating-p-proofrequestprobability) - - [Calculating `S`: `ProofMissingPenalty`](#calculating-s-proofmissingpenalty) -- [Future Work](#future-work) +_tl;dr Probabilistic Proofs is a method to scale Pocket Network indefinitely._ ## Abstract diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs_morse.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs_morse.md index ba84dfcb0..20eaf8034 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs_morse.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs_morse.md @@ -1,10 +1,14 @@ -# Probabilistic Proofs +--- +title: Probabilistic Proofs (Morse) +sidebar_position: 6 +--- + +:::warning + +This document was copied over from the [pocket-core](https://github.com/pokt-network/pocket-core) +repo for reference until Probabilistic Proofs are in production. Please see [Probabilisti Proofs (Shannon)](./probabilistic_proofs.md) as the primary source of truth. -

- @olshansk - Daniel Olshansky
- @RawthiL - Ramiro Rodríguez Colmeiro
- Feb 2023 -

+::: This is a specification & proposal that will be submitted to [forum.pokt.network](https://forum.pokt.network) after peer-review. diff --git a/docusaurus/docs/protocol/primitives/relay_mining.md b/docusaurus/docs/protocol/primitives/relay_mining.md index e15edf50a..95248c245 100644 --- a/docusaurus/docs/protocol/primitives/relay_mining.md +++ b/docusaurus/docs/protocol/primitives/relay_mining.md @@ -1,6 +1,6 @@ --- title: Relay Mining -sidebar_position: 3 +sidebar_position: 4 --- # Relay Mining diff --git a/docusaurus/docusaurus.config.js b/docusaurus/docusaurus.config.js index ba645e591..15d089abf 100644 --- a/docusaurus/docusaurus.config.js +++ b/docusaurus/docusaurus.config.js @@ -67,6 +67,8 @@ const config = { routeBasePath: "/", sidebarPath: "./sidebars.js", sidebarCollapsible: false, + remarkPlugins: [require("remark-math")], + rehypePlugins: [require("rehype-katex")], }, theme: { customCss: [ diff --git a/docusaurus/package-lock.json b/docusaurus/package-lock.json index c2c19f368..412927cb6 100644 --- a/docusaurus/package-lock.json +++ b/docusaurus/package-lock.json @@ -15,10 +15,13 @@ "@easyops-cn/docusaurus-search-local": "^0.40.1", "@mdx-js/react": "^3.0.0", "clsx": "^2.0.0", + "katex": "^0.16.11", "prism-react-renderer": "^2.3.0", "react": "^18.0.0", "react-dom": "^18.0.0", - "react-player": "^2.16.0" + "react-player": "^2.16.0", + "rehype-katex": "^7.0.1", + "remark-math": "^6.0.0" }, "devDependencies": { "@docusaurus/module-type-aliases": "^3.2.1", @@ -4034,6 +4037,12 @@ "integrity": "sha512-5+fP8P8MFNC+AyZCDxrB2pkZFPGzqQWUzpSeuuVLvm8VMcorNYavBqoFcxK8bQz4Qsbn4oUEEem4wDLfcysGHA==", "license": "MIT" }, + "node_modules/@types/katex": { + "version": "0.16.7", + "resolved": "https://registry.npmjs.org/@types/katex/-/katex-0.16.7.tgz", + "integrity": "sha512-HMwFiRujE5PjrgwHQ25+bsLJgowjGjm5Z8FVSf0N6PwgJrwxH0QxzHYDcKsTfV3wva0vzrpqMTJS2jXPr5BMEQ==", + "license": "MIT" + }, "node_modules/@types/mdast": { "version": "4.0.3", "resolved": "https://registry.npmjs.org/@types/mdast/-/mdast-4.0.3.tgz", @@ -8299,6 +8308,55 @@ "node": ">= 0.4" } }, + "node_modules/hast-util-from-dom": { + "version": "5.0.0", + "resolved": "https://registry.npmjs.org/hast-util-from-dom/-/hast-util-from-dom-5.0.0.tgz", + "integrity": "sha512-d6235voAp/XR3Hh5uy7aGLbM3S4KamdW0WEgOaU1YoewnuYw4HXb5eRtv9g65m/RFGEfUY1Mw4UqCc5Y8L4Stg==", + "license": "ISC", + "dependencies": { + "@types/hast": "^3.0.0", + "hastscript": "^8.0.0", + "web-namespaces": "^2.0.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/unified" + } + }, + "node_modules/hast-util-from-html": { + "version": "2.0.3", + "resolved": "https://registry.npmjs.org/hast-util-from-html/-/hast-util-from-html-2.0.3.tgz", + "integrity": "sha512-CUSRHXyKjzHov8yKsQjGOElXy/3EKpyX56ELnkHH34vDVw1N1XSQ1ZcAvTyAPtGqLTuKP/uxM+aLkSPqF/EtMw==", + "license": "MIT", + "dependencies": { + "@types/hast": "^3.0.0", + "devlop": "^1.1.0", + "hast-util-from-parse5": "^8.0.0", + "parse5": "^7.0.0", + "vfile": "^6.0.0", + "vfile-message": "^4.0.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/unified" + } + }, + "node_modules/hast-util-from-html-isomorphic": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/hast-util-from-html-isomorphic/-/hast-util-from-html-isomorphic-2.0.0.tgz", + "integrity": "sha512-zJfpXq44yff2hmE0XmwEOzdWin5xwH+QIhMLOScpX91e/NSGPsAzNCvLQDIEPyO2TXi+lBmU6hjLIhV8MwP2kw==", + "license": "MIT", + "dependencies": { + "@types/hast": "^3.0.0", + "hast-util-from-dom": "^5.0.0", + "hast-util-from-html": "^2.0.0", + "unist-util-remove-position": "^5.0.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/unified" + } + }, "node_modules/hast-util-from-parse5": { "version": "8.0.1", "resolved": "https://registry.npmjs.org/hast-util-from-parse5/-/hast-util-from-parse5-8.0.1.tgz", @@ -8318,6 +8376,19 @@ "url": "https://opencollective.com/unified" } }, + "node_modules/hast-util-is-element": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/hast-util-is-element/-/hast-util-is-element-3.0.0.tgz", + "integrity": "sha512-Val9mnv2IWpLbNPqc/pUem+a7Ipj2aHacCwgNfTiK0vJKl0LF+4Ba4+v1oPHFpf3bLYmreq0/l3Gud9S5OH42g==", + "license": "MIT", + "dependencies": { + "@types/hast": "^3.0.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/unified" + } + }, "node_modules/hast-util-parse-selector": { "version": "4.0.0", "resolved": "https://registry.npmjs.org/hast-util-parse-selector/-/hast-util-parse-selector-4.0.0.tgz", @@ -8438,6 +8509,22 @@ "url": "https://opencollective.com/unified" } }, + "node_modules/hast-util-to-text": { + "version": "4.0.2", + "resolved": "https://registry.npmjs.org/hast-util-to-text/-/hast-util-to-text-4.0.2.tgz", + "integrity": "sha512-KK6y/BN8lbaq654j7JgBydev7wuNMcID54lkRav1P0CaE1e47P72AWWPiGKXTJU271ooYzcvTAn/Zt0REnvc7A==", + "license": "MIT", + "dependencies": { + "@types/hast": "^3.0.0", + "@types/unist": "^3.0.0", + "hast-util-is-element": "^3.0.0", + "unist-util-find-after": "^5.0.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/unified" + } + }, "node_modules/hast-util-whitespace": { "version": "3.0.0", "resolved": "https://registry.npmjs.org/hast-util-whitespace/-/hast-util-whitespace-3.0.0.tgz", @@ -9419,6 +9506,31 @@ "graceful-fs": "^4.1.6" } }, + "node_modules/katex": { + "version": "0.16.11", + "resolved": "https://registry.npmjs.org/katex/-/katex-0.16.11.tgz", + "integrity": "sha512-RQrI8rlHY92OLf3rho/Ts8i/XvjgguEjOkO1BEXcU3N8BqPpSzBNwV/G0Ukr+P/l3ivvJUE/Fa/CwbS6HesGNQ==", + "funding": [ + "https://opencollective.com/katex", + "https://github.com/sponsors/katex" + ], + "license": "MIT", + "dependencies": { + "commander": "^8.3.0" + }, + "bin": { + "katex": "cli.js" + } + }, + "node_modules/katex/node_modules/commander": { + "version": "8.3.0", + "resolved": "https://registry.npmjs.org/commander/-/commander-8.3.0.tgz", + "integrity": "sha512-OkTL9umf+He2DZkUq8f8J9of7yL6RJKI24dVITBmNfZBmri9zYZQrKkuXiKhyfPSu8tUhnVBB1iKXevvnlR4Ww==", + "license": "MIT", + "engines": { + "node": ">= 12" + } + }, "node_modules/keyv": { "version": "4.5.4", "resolved": "https://registry.npmjs.org/keyv/-/keyv-4.5.4.tgz", @@ -9913,6 +10025,25 @@ "url": "https://opencollective.com/unified" } }, + "node_modules/mdast-util-math": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/mdast-util-math/-/mdast-util-math-3.0.0.tgz", + "integrity": "sha512-Tl9GBNeG/AhJnQM221bJR2HPvLOSnLE/T9cJI9tlc6zwQk2nPk/4f0cHkOdEixQPC/j8UtKDdITswvLAy1OZ1w==", + "license": "MIT", + "dependencies": { + "@types/hast": "^3.0.0", + "@types/mdast": "^4.0.0", + "devlop": "^1.0.0", + "longest-streak": "^3.0.0", + "mdast-util-from-markdown": "^2.0.0", + "mdast-util-to-markdown": "^2.1.0", + "unist-util-remove-position": "^5.0.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/unified" + } + }, "node_modules/mdast-util-mdx": { "version": "3.0.0", "resolved": "https://registry.npmjs.org/mdast-util-mdx/-/mdast-util-mdx-3.0.0.tgz", @@ -11166,6 +11297,81 @@ } ] }, + "node_modules/micromark-extension-math": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/micromark-extension-math/-/micromark-extension-math-3.1.0.tgz", + "integrity": "sha512-lvEqd+fHjATVs+2v/8kg9i5Q0AP2k85H0WUOwpIVvUML8BapsMvh1XAogmQjOCsLpoKRCVQqEkQBB3NhVBcsOg==", + "license": "MIT", + "dependencies": { + "@types/katex": "^0.16.0", + "devlop": "^1.0.0", + "katex": "^0.16.0", + "micromark-factory-space": "^2.0.0", + "micromark-util-character": "^2.0.0", + "micromark-util-symbol": "^2.0.0", + "micromark-util-types": "^2.0.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/unified" + } + }, + "node_modules/micromark-extension-math/node_modules/micromark-factory-space": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/micromark-factory-space/-/micromark-factory-space-2.0.0.tgz", + "integrity": "sha512-TKr+LIDX2pkBJXFLzpyPyljzYK3MtmllMUMODTQJIUfDGncESaqB90db9IAUcz4AZAJFdd8U9zOp9ty1458rxg==", + "funding": [ + { + "type": "GitHub Sponsors", + "url": "https://github.com/sponsors/unifiedjs" + }, + { + "type": "OpenCollective", + "url": "https://opencollective.com/unified" + } + ], + "license": "MIT", + "dependencies": { + "micromark-util-character": "^2.0.0", + "micromark-util-types": "^2.0.0" + } + }, + "node_modules/micromark-extension-math/node_modules/micromark-util-character": { + "version": "2.1.0", + "resolved": "https://registry.npmjs.org/micromark-util-character/-/micromark-util-character-2.1.0.tgz", + "integrity": "sha512-KvOVV+X1yLBfs9dCBSopq/+G1PcgT3lAK07mC4BzXi5E7ahzMAF8oIupDDJ6mievI6F+lAATkbQQlQixJfT3aQ==", + "funding": [ + { + "type": "GitHub Sponsors", + "url": "https://github.com/sponsors/unifiedjs" + }, + { + "type": "OpenCollective", + "url": "https://opencollective.com/unified" + } + ], + "license": "MIT", + "dependencies": { + "micromark-util-symbol": "^2.0.0", + "micromark-util-types": "^2.0.0" + } + }, + "node_modules/micromark-extension-math/node_modules/micromark-util-symbol": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/micromark-util-symbol/-/micromark-util-symbol-2.0.0.tgz", + "integrity": "sha512-8JZt9ElZ5kyTnO94muPxIGS8oyElRJaiJO8EzV6ZSyGQ1Is8xwl4Q45qU5UOg+bGH4AikWziz0iN4sFLWs8PGw==", + "funding": [ + { + "type": "GitHub Sponsors", + "url": "https://github.com/sponsors/unifiedjs" + }, + { + "type": "OpenCollective", + "url": "https://opencollective.com/unified" + } + ], + "license": "MIT" + }, "node_modules/micromark-extension-mdx-expression": { "version": "3.0.0", "resolved": "https://registry.npmjs.org/micromark-extension-mdx-expression/-/micromark-extension-mdx-expression-3.0.0.tgz", @@ -14384,6 +14590,25 @@ "jsesc": "bin/jsesc" } }, + "node_modules/rehype-katex": { + "version": "7.0.1", + "resolved": "https://registry.npmjs.org/rehype-katex/-/rehype-katex-7.0.1.tgz", + "integrity": "sha512-OiM2wrZ/wuhKkigASodFoo8wimG3H12LWQaH8qSPVJn9apWKFSH3YOCtbKpBorTVw/eI7cuT21XBbvwEswbIOA==", + "license": "MIT", + "dependencies": { + "@types/hast": "^3.0.0", + "@types/katex": "^0.16.0", + "hast-util-from-html-isomorphic": "^2.0.0", + "hast-util-to-text": "^4.0.0", + "katex": "^0.16.0", + "unist-util-visit-parents": "^6.0.0", + "vfile": "^6.0.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/unified" + } + }, "node_modules/rehype-raw": { "version": "7.0.0", "resolved": "https://registry.npmjs.org/rehype-raw/-/rehype-raw-7.0.0.tgz", @@ -14469,6 +14694,22 @@ "url": "https://opencollective.com/unified" } }, + "node_modules/remark-math": { + "version": "6.0.0", + "resolved": "https://registry.npmjs.org/remark-math/-/remark-math-6.0.0.tgz", + "integrity": "sha512-MMqgnP74Igy+S3WwnhQ7kqGlEerTETXMvJhrUzDikVZ2/uogJCb+WHUg97hK9/jcfc0dkD73s3LN8zU49cTEtA==", + "license": "MIT", + "dependencies": { + "@types/mdast": "^4.0.0", + "mdast-util-math": "^3.0.0", + "micromark-extension-math": "^3.0.0", + "unified": "^11.0.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/unified" + } + }, "node_modules/remark-mdx": { "version": "3.0.1", "resolved": "https://registry.npmjs.org/remark-mdx/-/remark-mdx-3.0.1.tgz", @@ -16100,6 +16341,20 @@ "url": "https://github.com/sponsors/sindresorhus" } }, + "node_modules/unist-util-find-after": { + "version": "5.0.0", + "resolved": "https://registry.npmjs.org/unist-util-find-after/-/unist-util-find-after-5.0.0.tgz", + "integrity": "sha512-amQa0Ep2m6hE2g72AugUItjbuM8X8cGQnFoHk0pGfrFeT9GZhzN5SW8nRsiGKK7Aif4CrACPENkA6P/Lw6fHGQ==", + "license": "MIT", + "dependencies": { + "@types/unist": "^3.0.0", + "unist-util-is": "^6.0.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/unified" + } + }, "node_modules/unist-util-is": { "version": "6.0.0", "resolved": "https://registry.npmjs.org/unist-util-is/-/unist-util-is-6.0.0.tgz", diff --git a/docusaurus/package.json b/docusaurus/package.json index d0f369e1d..08392366b 100644 --- a/docusaurus/package.json +++ b/docusaurus/package.json @@ -21,10 +21,13 @@ "@easyops-cn/docusaurus-search-local": "^0.40.1", "@mdx-js/react": "^3.0.0", "clsx": "^2.0.0", + "katex": "^0.16.11", "prism-react-renderer": "^2.3.0", "react": "^18.0.0", "react-dom": "^18.0.0", - "react-player": "^2.16.0" + "react-player": "^2.16.0", + "rehype-katex": "^7.0.1", + "remark-math": "^6.0.0" }, "devDependencies": { "@docusaurus/module-type-aliases": "^3.2.1", diff --git a/docusaurus/src/css/custom.css b/docusaurus/src/css/custom.css index b1fcd84b7..0e25b9956 100644 --- a/docusaurus/src/css/custom.css +++ b/docusaurus/src/css/custom.css @@ -4,6 +4,8 @@ * work well for content-centric websites. */ +@import "katex/dist/katex.min.css"; + :root { --ifm-color-primary: #1f2327; --ifm-color-primary-dark: #1c2023; @@ -41,9 +43,10 @@ --ifm-navbar-height: 81px; /* Font Family */ - --ifm-font-family-base: "Inter", system-ui, -apple-system, Segoe UI, Roboto, Ubuntu, - Cantarell, Noto Sans, sans-serif, BlinkMacSystemFont, "Segoe UI", Helvetica, Arial, - sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol"; + --ifm-font-family-base: "Inter", system-ui, -apple-system, Segoe UI, Roboto, + Ubuntu, Cantarell, Noto Sans, sans-serif, BlinkMacSystemFont, "Segoe UI", + Helvetica, Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", + "Segoe UI Symbol"; /* Search highlight color */ --search-local-highlight-color: var(--mantine-primary-color-filled); @@ -187,7 +190,8 @@ nav.menu li > .menu__list-item-collapsible .menu__link { /* docs accordion */ .docs-wrapper .mantine-Accordion-item { - border-left: calc(0.0625rem * var(--mantine-scale)) solid var(--_item-border-color); + border-left: calc(0.0625rem * var(--mantine-scale)) solid + var(--_item-border-color); border-bottom: none; } diff --git a/docusaurus/yarn.lock b/docusaurus/yarn.lock index 5c2dcf935..acdba768d 100644 --- a/docusaurus/yarn.lock +++ b/docusaurus/yarn.lock @@ -2197,6 +2197,11 @@ resolved "https://registry.npmjs.org/@types/json-schema/-/json-schema-7.0.15.tgz" integrity sha512-5+fP8P8MFNC+AyZCDxrB2pkZFPGzqQWUzpSeuuVLvm8VMcorNYavBqoFcxK8bQz4Qsbn4oUEEem4wDLfcysGHA== +"@types/katex@^0.16.0": + version "0.16.7" + resolved "https://registry.npmjs.org/@types/katex/-/katex-0.16.7.tgz" + integrity sha512-HMwFiRujE5PjrgwHQ25+bsLJgowjGjm5Z8FVSf0N6PwgJrwxH0QxzHYDcKsTfV3wva0vzrpqMTJS2jXPr5BMEQ== + "@types/mdast@^3.0.0": version "3.0.15" resolved "https://registry.npmjs.org/@types/mdast/-/mdast-3.0.15.tgz" @@ -4832,6 +4837,37 @@ hasown@^2.0.0: dependencies: function-bind "^1.1.2" +hast-util-from-dom@^5.0.0: + version "5.0.0" + resolved "https://registry.npmjs.org/hast-util-from-dom/-/hast-util-from-dom-5.0.0.tgz" + integrity sha512-d6235voAp/XR3Hh5uy7aGLbM3S4KamdW0WEgOaU1YoewnuYw4HXb5eRtv9g65m/RFGEfUY1Mw4UqCc5Y8L4Stg== + dependencies: + "@types/hast" "^3.0.0" + hastscript "^8.0.0" + web-namespaces "^2.0.0" + +hast-util-from-html-isomorphic@^2.0.0: + version "2.0.0" + resolved "https://registry.npmjs.org/hast-util-from-html-isomorphic/-/hast-util-from-html-isomorphic-2.0.0.tgz" + integrity sha512-zJfpXq44yff2hmE0XmwEOzdWin5xwH+QIhMLOScpX91e/NSGPsAzNCvLQDIEPyO2TXi+lBmU6hjLIhV8MwP2kw== + dependencies: + "@types/hast" "^3.0.0" + hast-util-from-dom "^5.0.0" + hast-util-from-html "^2.0.0" + unist-util-remove-position "^5.0.0" + +hast-util-from-html@^2.0.0: + version "2.0.3" + resolved "https://registry.npmjs.org/hast-util-from-html/-/hast-util-from-html-2.0.3.tgz" + integrity sha512-CUSRHXyKjzHov8yKsQjGOElXy/3EKpyX56ELnkHH34vDVw1N1XSQ1ZcAvTyAPtGqLTuKP/uxM+aLkSPqF/EtMw== + dependencies: + "@types/hast" "^3.0.0" + devlop "^1.1.0" + hast-util-from-parse5 "^8.0.0" + parse5 "^7.0.0" + vfile "^6.0.0" + vfile-message "^4.0.0" + hast-util-from-parse5@^8.0.0: version "8.0.1" resolved "https://registry.npmjs.org/hast-util-from-parse5/-/hast-util-from-parse5-8.0.1.tgz" @@ -4846,6 +4882,13 @@ hast-util-from-parse5@^8.0.0: vfile-location "^5.0.0" web-namespaces "^2.0.0" +hast-util-is-element@^3.0.0: + version "3.0.0" + resolved "https://registry.npmjs.org/hast-util-is-element/-/hast-util-is-element-3.0.0.tgz" + integrity sha512-Val9mnv2IWpLbNPqc/pUem+a7Ipj2aHacCwgNfTiK0vJKl0LF+4Ba4+v1oPHFpf3bLYmreq0/l3Gud9S5OH42g== + dependencies: + "@types/hast" "^3.0.0" + hast-util-parse-selector@^4.0.0: version "4.0.0" resolved "https://registry.npmjs.org/hast-util-parse-selector/-/hast-util-parse-selector-4.0.0.tgz" @@ -4928,6 +4971,16 @@ hast-util-to-parse5@^8.0.0: web-namespaces "^2.0.0" zwitch "^2.0.0" +hast-util-to-text@^4.0.0: + version "4.0.2" + resolved "https://registry.npmjs.org/hast-util-to-text/-/hast-util-to-text-4.0.2.tgz" + integrity sha512-KK6y/BN8lbaq654j7JgBydev7wuNMcID54lkRav1P0CaE1e47P72AWWPiGKXTJU271ooYzcvTAn/Zt0REnvc7A== + dependencies: + "@types/hast" "^3.0.0" + "@types/unist" "^3.0.0" + hast-util-is-element "^3.0.0" + unist-util-find-after "^5.0.0" + hast-util-whitespace@^3.0.0: version "3.0.0" resolved "https://registry.npmjs.org/hast-util-whitespace/-/hast-util-whitespace-3.0.0.tgz" @@ -5576,6 +5629,13 @@ jsonfile@^6.0.1: optionalDependencies: graceful-fs "^4.1.6" +katex@^0.16.0, katex@^0.16.11: + version "0.16.11" + resolved "https://registry.npmjs.org/katex/-/katex-0.16.11.tgz" + integrity sha512-RQrI8rlHY92OLf3rho/Ts8i/XvjgguEjOkO1BEXcU3N8BqPpSzBNwV/G0Ukr+P/l3ivvJUE/Fa/CwbS6HesGNQ== + dependencies: + commander "^8.3.0" + keyv@^4.5.3: version "4.5.4" resolved "https://registry.npmjs.org/keyv/-/keyv-4.5.4.tgz" @@ -5921,6 +5981,19 @@ mdast-util-gfm@^3.0.0: mdast-util-gfm-task-list-item "^2.0.0" mdast-util-to-markdown "^2.0.0" +mdast-util-math@^3.0.0: + version "3.0.0" + resolved "https://registry.npmjs.org/mdast-util-math/-/mdast-util-math-3.0.0.tgz" + integrity sha512-Tl9GBNeG/AhJnQM221bJR2HPvLOSnLE/T9cJI9tlc6zwQk2nPk/4f0cHkOdEixQPC/j8UtKDdITswvLAy1OZ1w== + dependencies: + "@types/hast" "^3.0.0" + "@types/mdast" "^4.0.0" + devlop "^1.0.0" + longest-streak "^3.0.0" + mdast-util-from-markdown "^2.0.0" + mdast-util-to-markdown "^2.1.0" + unist-util-remove-position "^5.0.0" + mdast-util-mdx-expression@^2.0.0: version "2.0.0" resolved "https://registry.npmjs.org/mdast-util-mdx-expression/-/mdast-util-mdx-expression-2.0.0.tgz" @@ -5998,7 +6071,7 @@ mdast-util-to-hast@^13.0.0: unist-util-visit "^5.0.0" vfile "^6.0.0" -mdast-util-to-markdown@^2.0.0: +mdast-util-to-markdown@^2.0.0, mdast-util-to-markdown@^2.1.0: version "2.1.0" resolved "https://registry.npmjs.org/mdast-util-to-markdown/-/mdast-util-to-markdown-2.1.0.tgz" integrity sha512-SR2VnIEdVNCJbP6y7kVTJgPLifdr8WEU440fQec7qHoHOUz/oJ2jmNRqdDQ3rbiStOXb2mCDGTuwsK5OPUgYlQ== @@ -6240,6 +6313,19 @@ micromark-extension-gfm@^3.0.0: micromark-util-combine-extensions "^2.0.0" micromark-util-types "^2.0.0" +micromark-extension-math@^3.0.0: + version "3.1.0" + resolved "https://registry.npmjs.org/micromark-extension-math/-/micromark-extension-math-3.1.0.tgz" + integrity sha512-lvEqd+fHjATVs+2v/8kg9i5Q0AP2k85H0WUOwpIVvUML8BapsMvh1XAogmQjOCsLpoKRCVQqEkQBB3NhVBcsOg== + dependencies: + "@types/katex" "^0.16.0" + devlop "^1.0.0" + katex "^0.16.0" + micromark-factory-space "^2.0.0" + micromark-util-character "^2.0.0" + micromark-util-symbol "^2.0.0" + micromark-util-types "^2.0.0" + micromark-extension-mdx-expression@^3.0.0: version "3.0.0" resolved "https://registry.npmjs.org/micromark-extension-mdx-expression/-/micromark-extension-mdx-expression-3.0.0.tgz" @@ -7890,6 +7976,19 @@ regjsparser@^0.9.1: dependencies: jsesc "~0.5.0" +rehype-katex@^7.0.1: + version "7.0.1" + resolved "https://registry.npmjs.org/rehype-katex/-/rehype-katex-7.0.1.tgz" + integrity sha512-OiM2wrZ/wuhKkigASodFoo8wimG3H12LWQaH8qSPVJn9apWKFSH3YOCtbKpBorTVw/eI7cuT21XBbvwEswbIOA== + dependencies: + "@types/hast" "^3.0.0" + "@types/katex" "^0.16.0" + hast-util-from-html-isomorphic "^2.0.0" + hast-util-to-text "^4.0.0" + katex "^0.16.0" + unist-util-visit-parents "^6.0.0" + vfile "^6.0.0" + rehype-raw@^7.0.0: version "7.0.0" resolved "https://registry.npmjs.org/rehype-raw/-/rehype-raw-7.0.0.tgz" @@ -7947,6 +8046,16 @@ remark-gfm@^4.0.0: remark-stringify "^11.0.0" unified "^11.0.0" +remark-math@^6.0.0: + version "6.0.0" + resolved "https://registry.npmjs.org/remark-math/-/remark-math-6.0.0.tgz" + integrity sha512-MMqgnP74Igy+S3WwnhQ7kqGlEerTETXMvJhrUzDikVZ2/uogJCb+WHUg97hK9/jcfc0dkD73s3LN8zU49cTEtA== + dependencies: + "@types/mdast" "^4.0.0" + mdast-util-math "^3.0.0" + micromark-extension-math "^3.0.0" + unified "^11.0.0" + remark-mdx@^3.0.0: version "3.0.1" resolved "https://registry.npmjs.org/remark-mdx/-/remark-mdx-3.0.1.tgz" @@ -8842,6 +8951,14 @@ unique-string@^3.0.0: dependencies: crypto-random-string "^4.0.0" +unist-util-find-after@^5.0.0: + version "5.0.0" + resolved "https://registry.npmjs.org/unist-util-find-after/-/unist-util-find-after-5.0.0.tgz" + integrity sha512-amQa0Ep2m6hE2g72AugUItjbuM8X8cGQnFoHk0pGfrFeT9GZhzN5SW8nRsiGKK7Aif4CrACPENkA6P/Lw6fHGQ== + dependencies: + "@types/unist" "^3.0.0" + unist-util-is "^6.0.0" + unist-util-is@^6.0.0: version "6.0.0" resolved "https://registry.npmjs.org/unist-util-is/-/unist-util-is-6.0.0.tgz" diff --git a/probabilistic_proofs.py b/probabilistic_proofs.py deleted file mode 100644 index 9e3226257..000000000 --- a/probabilistic_proofs.py +++ /dev/null @@ -1,38 +0,0 @@ -import numpy as np -import matplotlib.pyplot as plt -from matplotlib import cm - -def pdf(x, p): - return np.log(x/p) / np.log(1-p) - -# Line Graph -x = np.linspace(0.01, 1, 200) - -# Points -xp = np.linspace(0.01, 1, 20) - -# Plot the actual functions -ps = [0.25, 0.5, 0.75, 0.9] -colors = cm.get_cmap('hsv', len(ps)+1) -for i, p in enumerate(ps): - color = colors(i) - y = pdf(x, p) - yp = pdf(xp, p) - plt.plot(x, y, label=f'p = {p}', color=color) - # Select only the points where y > 0 and plot them as dots - x_pos = xp[np.where(yp > 0)] - y_pos = yp[np.where(yp > 0)] - plt.plot(x_pos, y_pos, 'o', color=color) - - -# Add a horizontal line at y = 0 -plt.axhline(y=0, color='gray', linestyle='--') - -# Add legend, axis labels, and title -plt.legend() -plt.xlabel('Probability(X=k)') -plt.ylabel('k (num failures)') -plt.title('Number of failures until a single success') - -# Display the plot -plt.show() \ No newline at end of file From c49d344f2181ab56070abf787ee0b4f367aa49ba Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Tue, 17 Dec 2024 12:11:06 -0800 Subject: [PATCH 06/25] Update package log --- docusaurus/package-lock.json | 274 ++++++++++++++++++++++++++++++++++- docusaurus/package.json | 5 +- docusaurus/yarn.lock | 27 +++- 3 files changed, 296 insertions(+), 10 deletions(-) diff --git a/docusaurus/package-lock.json b/docusaurus/package-lock.json index d061a1ca4..769b8733f 100644 --- a/docusaurus/package-lock.json +++ b/docusaurus/package-lock.json @@ -15,10 +15,13 @@ "@easyops-cn/docusaurus-search-local": "^0.40.1", "@mdx-js/react": "^3.0.0", "clsx": "^2.0.0", + "katex": "^0.16.17", "prism-react-renderer": "^2.4.0", "react": "^18.0.0", "react-dom": "^18.0.0", - "react-player": "^2.16.0" + "react-player": "^2.16.0", + "rehype-katex": "^7.0.1", + "remark-math": "^6.0.0" }, "devDependencies": { "@docusaurus/module-type-aliases": "^3.2.1", @@ -4034,6 +4037,12 @@ "integrity": "sha512-5+fP8P8MFNC+AyZCDxrB2pkZFPGzqQWUzpSeuuVLvm8VMcorNYavBqoFcxK8bQz4Qsbn4oUEEem4wDLfcysGHA==", "license": "MIT" }, + "node_modules/@types/katex": { + "version": "0.16.7", + "resolved": "https://registry.npmjs.org/@types/katex/-/katex-0.16.7.tgz", + "integrity": "sha512-HMwFiRujE5PjrgwHQ25+bsLJgowjGjm5Z8FVSf0N6PwgJrwxH0QxzHYDcKsTfV3wva0vzrpqMTJS2jXPr5BMEQ==", + "license": "MIT" + }, "node_modules/@types/mdast": { "version": "4.0.3", "resolved": "https://registry.npmjs.org/@types/mdast/-/mdast-4.0.3.tgz", @@ -8299,6 +8308,72 @@ "node": ">= 0.4" } }, + "node_modules/hast-util-from-dom": { + "version": "5.0.1", + "resolved": "https://registry.npmjs.org/hast-util-from-dom/-/hast-util-from-dom-5.0.1.tgz", + "integrity": "sha512-N+LqofjR2zuzTjCPzyDUdSshy4Ma6li7p/c3pA78uTwzFgENbgbUrm2ugwsOdcjI1muO+o6Dgzp9p8WHtn/39Q==", + "license": "ISC", + "dependencies": { + "@types/hast": "^3.0.0", + "hastscript": "^9.0.0", + "web-namespaces": "^2.0.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/unified" + } + }, + "node_modules/hast-util-from-dom/node_modules/hastscript": { + "version": "9.0.0", + "resolved": "https://registry.npmjs.org/hastscript/-/hastscript-9.0.0.tgz", + "integrity": "sha512-jzaLBGavEDKHrc5EfFImKN7nZKKBdSLIdGvCwDZ9TfzbF2ffXiov8CKE445L2Z1Ek2t/m4SKQ2j6Ipv7NyUolw==", + "license": "MIT", + "dependencies": { + "@types/hast": "^3.0.0", + "comma-separated-tokens": "^2.0.0", + "hast-util-parse-selector": "^4.0.0", + "property-information": "^6.0.0", + "space-separated-tokens": "^2.0.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/unified" + } + }, + "node_modules/hast-util-from-html": { + "version": "2.0.3", + "resolved": "https://registry.npmjs.org/hast-util-from-html/-/hast-util-from-html-2.0.3.tgz", + "integrity": "sha512-CUSRHXyKjzHov8yKsQjGOElXy/3EKpyX56ELnkHH34vDVw1N1XSQ1ZcAvTyAPtGqLTuKP/uxM+aLkSPqF/EtMw==", + "license": "MIT", + "dependencies": { + "@types/hast": "^3.0.0", + "devlop": "^1.1.0", + "hast-util-from-parse5": "^8.0.0", + "parse5": "^7.0.0", + "vfile": "^6.0.0", + "vfile-message": "^4.0.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/unified" + } + }, + "node_modules/hast-util-from-html-isomorphic": { + "version": "2.0.0", + "resolved": "https://registry.npmjs.org/hast-util-from-html-isomorphic/-/hast-util-from-html-isomorphic-2.0.0.tgz", + "integrity": "sha512-zJfpXq44yff2hmE0XmwEOzdWin5xwH+QIhMLOScpX91e/NSGPsAzNCvLQDIEPyO2TXi+lBmU6hjLIhV8MwP2kw==", + "license": "MIT", + "dependencies": { + "@types/hast": "^3.0.0", + "hast-util-from-dom": "^5.0.0", + "hast-util-from-html": "^2.0.0", + "unist-util-remove-position": "^5.0.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/unified" + } + }, "node_modules/hast-util-from-parse5": { "version": "8.0.1", "resolved": "https://registry.npmjs.org/hast-util-from-parse5/-/hast-util-from-parse5-8.0.1.tgz", @@ -8318,6 +8393,19 @@ "url": "https://opencollective.com/unified" } }, + "node_modules/hast-util-is-element": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/hast-util-is-element/-/hast-util-is-element-3.0.0.tgz", + "integrity": "sha512-Val9mnv2IWpLbNPqc/pUem+a7Ipj2aHacCwgNfTiK0vJKl0LF+4Ba4+v1oPHFpf3bLYmreq0/l3Gud9S5OH42g==", + "license": "MIT", + "dependencies": { + "@types/hast": "^3.0.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/unified" + } + }, "node_modules/hast-util-parse-selector": { "version": "4.0.0", "resolved": "https://registry.npmjs.org/hast-util-parse-selector/-/hast-util-parse-selector-4.0.0.tgz", @@ -8438,6 +8526,22 @@ "url": "https://opencollective.com/unified" } }, + "node_modules/hast-util-to-text": { + "version": "4.0.2", + "resolved": "https://registry.npmjs.org/hast-util-to-text/-/hast-util-to-text-4.0.2.tgz", + "integrity": "sha512-KK6y/BN8lbaq654j7JgBydev7wuNMcID54lkRav1P0CaE1e47P72AWWPiGKXTJU271ooYzcvTAn/Zt0REnvc7A==", + "license": "MIT", + "dependencies": { + "@types/hast": "^3.0.0", + "@types/unist": "^3.0.0", + "hast-util-is-element": "^3.0.0", + "unist-util-find-after": "^5.0.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/unified" + } + }, "node_modules/hast-util-whitespace": { "version": "3.0.0", "resolved": "https://registry.npmjs.org/hast-util-whitespace/-/hast-util-whitespace-3.0.0.tgz", @@ -9419,6 +9523,31 @@ "graceful-fs": "^4.1.6" } }, + "node_modules/katex": { + "version": "0.16.17", + "resolved": "https://registry.npmjs.org/katex/-/katex-0.16.17.tgz", + "integrity": "sha512-OyzSrXBllz+Jdc9Auiw0kt21gbZ4hkz8Q5srVAb2U9INcYIfGKbxe+bvNvEz1bQ/NrDeRRho5eLCyk/L03maAw==", + "funding": [ + "https://opencollective.com/katex", + "https://github.com/sponsors/katex" + ], + "license": "MIT", + "dependencies": { + "commander": "^8.3.0" + }, + "bin": { + "katex": "cli.js" + } + }, + "node_modules/katex/node_modules/commander": { + "version": "8.3.0", + "resolved": "https://registry.npmjs.org/commander/-/commander-8.3.0.tgz", + "integrity": "sha512-OkTL9umf+He2DZkUq8f8J9of7yL6RJKI24dVITBmNfZBmri9zYZQrKkuXiKhyfPSu8tUhnVBB1iKXevvnlR4Ww==", + "license": "MIT", + "engines": { + "node": ">= 12" + } + }, "node_modules/keyv": { "version": "4.5.4", "resolved": "https://registry.npmjs.org/keyv/-/keyv-4.5.4.tgz", @@ -9913,6 +10042,25 @@ "url": "https://opencollective.com/unified" } }, + "node_modules/mdast-util-math": { + "version": "3.0.0", + "resolved": "https://registry.npmjs.org/mdast-util-math/-/mdast-util-math-3.0.0.tgz", + "integrity": "sha512-Tl9GBNeG/AhJnQM221bJR2HPvLOSnLE/T9cJI9tlc6zwQk2nPk/4f0cHkOdEixQPC/j8UtKDdITswvLAy1OZ1w==", + "license": "MIT", + "dependencies": { + "@types/hast": "^3.0.0", + "@types/mdast": "^4.0.0", + "devlop": "^1.0.0", + "longest-streak": "^3.0.0", + "mdast-util-from-markdown": "^2.0.0", + "mdast-util-to-markdown": "^2.1.0", + "unist-util-remove-position": "^5.0.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/unified" + } + }, "node_modules/mdast-util-mdx": { "version": "3.0.0", "resolved": "https://registry.npmjs.org/mdast-util-mdx/-/mdast-util-mdx-3.0.0.tgz", @@ -11166,6 +11314,81 @@ } ] }, + "node_modules/micromark-extension-math": { + "version": "3.1.0", + "resolved": "https://registry.npmjs.org/micromark-extension-math/-/micromark-extension-math-3.1.0.tgz", + "integrity": "sha512-lvEqd+fHjATVs+2v/8kg9i5Q0AP2k85H0WUOwpIVvUML8BapsMvh1XAogmQjOCsLpoKRCVQqEkQBB3NhVBcsOg==", + "license": "MIT", + "dependencies": { + "@types/katex": "^0.16.0", + "devlop": "^1.0.0", + "katex": "^0.16.0", + "micromark-factory-space": "^2.0.0", + "micromark-util-character": "^2.0.0", + "micromark-util-symbol": "^2.0.0", + "micromark-util-types": "^2.0.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/unified" + } + }, + "node_modules/micromark-extension-math/node_modules/micromark-factory-space": { + "version": "2.0.1", + "resolved": "https://registry.npmjs.org/micromark-factory-space/-/micromark-factory-space-2.0.1.tgz", + "integrity": "sha512-zRkxjtBxxLd2Sc0d+fbnEunsTj46SWXgXciZmHq0kDYGnck/ZSGj9/wULTV95uoeYiK5hRXP2mJ98Uo4cq/LQg==", + "funding": [ + { + "type": "GitHub Sponsors", + "url": "https://github.com/sponsors/unifiedjs" + }, + { + "type": "OpenCollective", + "url": "https://opencollective.com/unified" + } + ], + "license": "MIT", + "dependencies": { + "micromark-util-character": "^2.0.0", + "micromark-util-types": "^2.0.0" + } + }, + "node_modules/micromark-extension-math/node_modules/micromark-util-character": { + "version": "2.1.1", + "resolved": "https://registry.npmjs.org/micromark-util-character/-/micromark-util-character-2.1.1.tgz", + "integrity": "sha512-wv8tdUTJ3thSFFFJKtpYKOYiGP2+v96Hvk4Tu8KpCAsTMs6yi+nVmGh1syvSCsaxz45J6Jbw+9DD6g97+NV67Q==", + "funding": [ + { + "type": "GitHub Sponsors", + "url": "https://github.com/sponsors/unifiedjs" + }, + { + "type": "OpenCollective", + "url": "https://opencollective.com/unified" + } + ], + "license": "MIT", + "dependencies": { + "micromark-util-symbol": "^2.0.0", + "micromark-util-types": "^2.0.0" + } + }, + "node_modules/micromark-extension-math/node_modules/micromark-util-symbol": { + "version": "2.0.1", + "resolved": "https://registry.npmjs.org/micromark-util-symbol/-/micromark-util-symbol-2.0.1.tgz", + "integrity": "sha512-vs5t8Apaud9N28kgCrRUdEed4UJ+wWNvicHLPxCa9ENlYuAY31M0ETy5y1vA33YoNPDFTghEbnh6efaE8h4x0Q==", + "funding": [ + { + "type": "GitHub Sponsors", + "url": "https://github.com/sponsors/unifiedjs" + }, + { + "type": "OpenCollective", + "url": "https://opencollective.com/unified" + } + ], + "license": "MIT" + }, "node_modules/micromark-extension-mdx-expression": { "version": "3.0.0", "resolved": "https://registry.npmjs.org/micromark-extension-mdx-expression/-/micromark-extension-mdx-expression-3.0.0.tgz", @@ -14384,6 +14607,25 @@ "jsesc": "bin/jsesc" } }, + "node_modules/rehype-katex": { + "version": "7.0.1", + "resolved": "https://registry.npmjs.org/rehype-katex/-/rehype-katex-7.0.1.tgz", + "integrity": "sha512-OiM2wrZ/wuhKkigASodFoo8wimG3H12LWQaH8qSPVJn9apWKFSH3YOCtbKpBorTVw/eI7cuT21XBbvwEswbIOA==", + "license": "MIT", + "dependencies": { + "@types/hast": "^3.0.0", + "@types/katex": "^0.16.0", + "hast-util-from-html-isomorphic": "^2.0.0", + "hast-util-to-text": "^4.0.0", + "katex": "^0.16.0", + "unist-util-visit-parents": "^6.0.0", + "vfile": "^6.0.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/unified" + } + }, "node_modules/rehype-raw": { "version": "7.0.0", "resolved": "https://registry.npmjs.org/rehype-raw/-/rehype-raw-7.0.0.tgz", @@ -14469,6 +14711,22 @@ "url": "https://opencollective.com/unified" } }, + "node_modules/remark-math": { + "version": "6.0.0", + "resolved": "https://registry.npmjs.org/remark-math/-/remark-math-6.0.0.tgz", + "integrity": "sha512-MMqgnP74Igy+S3WwnhQ7kqGlEerTETXMvJhrUzDikVZ2/uogJCb+WHUg97hK9/jcfc0dkD73s3LN8zU49cTEtA==", + "license": "MIT", + "dependencies": { + "@types/mdast": "^4.0.0", + "mdast-util-math": "^3.0.0", + "micromark-extension-math": "^3.0.0", + "unified": "^11.0.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/unified" + } + }, "node_modules/remark-mdx": { "version": "3.0.1", "resolved": "https://registry.npmjs.org/remark-mdx/-/remark-mdx-3.0.1.tgz", @@ -16100,6 +16358,20 @@ "url": "https://github.com/sponsors/sindresorhus" } }, + "node_modules/unist-util-find-after": { + "version": "5.0.0", + "resolved": "https://registry.npmjs.org/unist-util-find-after/-/unist-util-find-after-5.0.0.tgz", + "integrity": "sha512-amQa0Ep2m6hE2g72AugUItjbuM8X8cGQnFoHk0pGfrFeT9GZhzN5SW8nRsiGKK7Aif4CrACPENkA6P/Lw6fHGQ==", + "license": "MIT", + "dependencies": { + "@types/unist": "^3.0.0", + "unist-util-is": "^6.0.0" + }, + "funding": { + "type": "opencollective", + "url": "https://opencollective.com/unified" + } + }, "node_modules/unist-util-is": { "version": "6.0.0", "resolved": "https://registry.npmjs.org/unist-util-is/-/unist-util-is-6.0.0.tgz", diff --git a/docusaurus/package.json b/docusaurus/package.json index 9d603bb4d..72c7129db 100644 --- a/docusaurus/package.json +++ b/docusaurus/package.json @@ -21,10 +21,13 @@ "@easyops-cn/docusaurus-search-local": "^0.40.1", "@mdx-js/react": "^3.0.0", "clsx": "^2.0.0", + "katex": "^0.16.17", "prism-react-renderer": "^2.4.0", "react": "^18.0.0", "react-dom": "^18.0.0", - "react-player": "^2.16.0" + "react-player": "^2.16.0", + "rehype-katex": "^7.0.1", + "remark-math": "^6.0.0" }, "devDependencies": { "@docusaurus/module-type-aliases": "^3.2.1", diff --git a/docusaurus/yarn.lock b/docusaurus/yarn.lock index 6bb62ca87..24e6873aa 100644 --- a/docusaurus/yarn.lock +++ b/docusaurus/yarn.lock @@ -4838,12 +4838,12 @@ hasown@^2.0.0: function-bind "^1.1.2" hast-util-from-dom@^5.0.0: - version "5.0.0" - resolved "https://registry.npmjs.org/hast-util-from-dom/-/hast-util-from-dom-5.0.0.tgz" - integrity sha512-d6235voAp/XR3Hh5uy7aGLbM3S4KamdW0WEgOaU1YoewnuYw4HXb5eRtv9g65m/RFGEfUY1Mw4UqCc5Y8L4Stg== + version "5.0.1" + resolved "https://registry.npmjs.org/hast-util-from-dom/-/hast-util-from-dom-5.0.1.tgz" + integrity sha512-N+LqofjR2zuzTjCPzyDUdSshy4Ma6li7p/c3pA78uTwzFgENbgbUrm2ugwsOdcjI1muO+o6Dgzp9p8WHtn/39Q== dependencies: "@types/hast" "^3.0.0" - hastscript "^8.0.0" + hastscript "^9.0.0" web-namespaces "^2.0.0" hast-util-from-html-isomorphic@^2.0.0: @@ -4999,6 +4999,17 @@ hastscript@^8.0.0: property-information "^6.0.0" space-separated-tokens "^2.0.0" +hastscript@^9.0.0: + version "9.0.0" + resolved "https://registry.npmjs.org/hastscript/-/hastscript-9.0.0.tgz" + integrity sha512-jzaLBGavEDKHrc5EfFImKN7nZKKBdSLIdGvCwDZ9TfzbF2ffXiov8CKE445L2Z1Ek2t/m4SKQ2j6Ipv7NyUolw== + dependencies: + "@types/hast" "^3.0.0" + comma-separated-tokens "^2.0.0" + hast-util-parse-selector "^4.0.0" + property-information "^6.0.0" + space-separated-tokens "^2.0.0" + he@^1.2.0: version "1.2.0" resolved "https://registry.npmjs.org/he/-/he-1.2.0.tgz" @@ -5629,10 +5640,10 @@ jsonfile@^6.0.1: optionalDependencies: graceful-fs "^4.1.6" -katex@^0.16.0, katex@^0.16.11: - version "0.16.11" - resolved "https://registry.npmjs.org/katex/-/katex-0.16.11.tgz" - integrity sha512-RQrI8rlHY92OLf3rho/Ts8i/XvjgguEjOkO1BEXcU3N8BqPpSzBNwV/G0Ukr+P/l3ivvJUE/Fa/CwbS6HesGNQ== +katex@^0.16.0, katex@^0.16.17: + version "0.16.17" + resolved "https://registry.npmjs.org/katex/-/katex-0.16.17.tgz" + integrity sha512-OyzSrXBllz+Jdc9Auiw0kt21gbZ4hkz8Q5srVAb2U9INcYIfGKbxe+bvNvEz1bQ/NrDeRRho5eLCyk/L03maAw== dependencies: commander "^8.3.0" From 790d1e9f18690ce2c9b124ce6a7c6e13a0d718f9 Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Tue, 17 Dec 2024 12:18:55 -0800 Subject: [PATCH 07/25] Apply suggestions from code review Co-authored-by: Bryan White Co-authored-by: Redouane Lakrache --- .../primitives/probabilistic_proofs.md | 28 +++++++++---------- 1 file changed, 14 insertions(+), 14 deletions(-) diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md index 66827f03c..282f2e3db 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md @@ -15,19 +15,19 @@ specific threshold. External stakeholders (i.e. DAO/Foundation) need to be involved in adjusting the `ProofRequirementThreshold` by statistically analyzing onchain data, along with selecting -an appropriate `ProofRequestProbability` that balances scalability and security. These values -lead to calculating expected rewards and penalties of honest and dishonest Suppliers respectively, -which should drive the decision for what `SupplierMinStake` should be. Reasonably -selected values can be chosen to easily scale the network by `100x` without compromising +an appropriate `ProofRequestProbability` that balances scalability and security. In turn, these values +are used to derive on-chain reward and penalty amounts for honest and dishonest Suppliers, respectively. +The penalty amount is then used to derive `SupplierMinStake`. +Reasonably selected values can be chosen to easily scale the network by `100x` without compromising security. The results show that choosing a value of `20 POKT` for `ProofRequirementThreshold`, the `95th percentile` of all Claims, along with a `ProofRequestProbability` of `0.01`, can enable `100x` scalability of the network if the `Slashing penalty` for invalid/missing proofs is set to `2,000 POKT`. As long as the minimum required stake for Suppliers exceeds -this value, the funds will be available for slashing staking is set to `2,000 POKT`. +this value, staked collateral will be available for slashing, if needed. -Under future work, we look at a potential attack vector that still needs to be considered, +In future work, we will look at a potential attack vector that still needs to be considered, along with further research on the topic. ## Problem Statement @@ -37,13 +37,13 @@ _tl;dr Too many on-chain Proofs do not scale due to state bloat and excessive CP The core limiting factor to Pocket Network's scalability is the number of required on-chain Proofs. For details on how Proofs are generated and validated, see the [Claim & Proof lifecycle](./Claim_and_Proof_lifecycle.md) section. -In every session, for every `(Application, Supplier, Service)` tuple, there is a -single on-chain Merkle required Proof to prove the Claimed work done. +For every session (i.e. `(Application, Supplier, Service)` tuple), it is possible to construct a +Merkle Proof which proves the Claimed work done, which can be stored on-chain. These Proofs are large and costly to both store and verify. Too many Proofs result in: - **State Bloat**: Full Node disk space grows too quickly because blocks are large (i.e.,full of transactions containing large Proofs), increasing disk usage. -- **Verification Cost**: Block producers (i.e. Validators) must verify all these Proofs on every block, increasing CPU usage. +- **Verification Cost**: Block producers (i.e. Validators) MUST verify ALL Proofs (once), correlating average CPU usage with the average throughput of on-chain Proofs. :::note @@ -105,7 +105,7 @@ flowchart TD %% Is Probabilistic Proof Required ISPPR{"Is P(Gov.ProofRequestProbability) == 1 ?
(omitting rand seed details)"} %% Is Proof Available - ISPA{"Is Proof Available?"} + ISPA{"Is Proof Available AND Valid?"} SC --> ISCAT @@ -115,7 +115,7 @@ flowchart TD ISPPR --> |No| NP ISPPR --> |Yes| ISPA - ISPA --> |"Yes
(Assume Proof is valid)"| DR + ISPA --> |"Yes"| DR ISPA --> |No| SLASH PR --> ISPA @@ -243,7 +243,7 @@ $$ E[\text{Total Rewards}] = R \cdot E[K] = R \cdot \frac{q}{p} $$ This represents the Supplier's earnings before the penalty is applied. -If the Supplier chooses to leave the network at this point in time, they will +If the Supplier chooses to leave the network at this point in time, it will have successfully gamed the system. #### Expected Penalty: Slashing amount for Dishonest Supplier @@ -295,7 +295,7 @@ Assume: - Reward Per Claim: `R = 10` - ProofRequestProbability: `p = 0.2` -- `q = 0.8` +- Probability No Proof Requested: `q = 0.8` Calculate the expected profit for a dishonest Supplier: @@ -406,7 +406,7 @@ To select appropriate values: - Simulate scenarios to verify that dishonest Suppliers have a negative expected profit. - Ensure honest Suppliers remain profitable. -To illustrate the relationship between `p`, `S`, the following chart +To illustrate the relationship between `p`, `S`, see the following chart: ![Penalty vs. ProofRequestProbability](./Peanlty_vs_ProofRequestProbability.png) From c92fc1a82c2cf7a4111a203aa58ebe5b60e97664 Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Tue, 17 Dec 2024 12:28:00 -0800 Subject: [PATCH 08/25] A few TODOs --- .../primitives/probabilistic_proofs.md | 19 +++++++++++++------ .../primitives/probabilistic_proofs_morse.md | 4 ++-- 2 files changed, 15 insertions(+), 8 deletions(-) diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md index 282f2e3db..d68909bdf 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md @@ -58,14 +58,19 @@ TODO_IN_THIS_PR: Reference the papers from justin taylor, Alin Tomescu, and axel Consider the hypothetical scenario below as an extremely rough approximation. -Network state and parameters: +TODO_IN_THIS_PR: Turn this into a table. + +Network parameters: + +- Session duration: `1` hour + +Network state: - Median Proof Size: `1,000` bytes - Number of services: `10,000` - Number of applications: `100,000` - Number of suppliers: `100,000` - Number of suppliers per session: `10` -- Session duration: `1` hour - Number of Proofs per session: `1` Conservative (simple) scenario: @@ -195,7 +200,7 @@ The dishonest Supplier's strategy: - Submit false Claims repeatedly, hoping not to be selected for Proof submission. - Accept that eventually, they will be caught and penalized. -#### Modelling a Dishonest Supplier's Strategy using a Geometric PDF (Probability Distribution Function) +#### Modeling a Dishonest Supplier's Strategy using a Geometric PDF (Probability Distribution Function) The number of successful false Claims before getting caught follows a [Geometric distribution](https://en.wikipedia.org/wiki/Geometric_distribution): @@ -214,7 +219,7 @@ Recall: - **Failure**: The network does not catch a dishonest Supplier - **Success**: The network catches a dishonest Supplier -#### Modelling a Dishonest Supplier's Strategy using a Geometric CDF (Cumulative Distribution Function) +#### Modeling a Dishonest Supplier's Strategy using a Geometric CDF (Cumulative Distribution Function) Above, we have been tracking the probability that `Pr(X=k+1)`, the probability of `k` failures (Supplier escapes without penalty) until a single success (Supplier) @@ -223,6 +228,8 @@ is penalized. This can be modeled using a Geometric PDF (Probability Distributio In practice, we need to track the likelihood of `k or less` failures `Pr(X<=k)`, until a single success. This can be modeled using a Geometric CDF. +TODO_IN_THIS_PR: Remove the paragraph below. + To simplify the math, we'll be using the Expected Value of a Geometric PDF due to its [simpler proof formulation](https://en.wikipedia.org/wiki/Geometric_distribution#Proof_of_expected_value), guaranteeing the results be **AT LEAST** as secure when compared to the Geometric CDF. @@ -421,7 +428,7 @@ You can generate the graph above with `penalty_vs_proof_request_prob.py` - **Threshold Value**: Set the `ProofRequirementThreshold` low enough that most Claims are subject to probabilistic Proof requests, but high enough to prevent excessive Proof submissions. - **Short-Circuiting**: Claims above the threshold always require Proofs, eliminating the risk of large false Claims slipping through. -##### Modelling `ProofRequirementThreshold` +##### Modeling `ProofRequirementThreshold` `ProofRequirementThreshold` should be as small as possible so that most such that most Claims for into the probabilistic bucket, while also balancing out penalties @@ -464,7 +471,7 @@ maximize `Pr(X<=k)` to ensure `k or less` failures (Supplier escapes without pen This does not affect the expected reward calculations above, but gives a different perspective of what the probabilities of success and failure are. -## Conclusions for Modelling +## Conclusions for Modeling By modeling the attack using a geometric distributions and calculating expected values, we can: diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs_morse.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs_morse.md index 20eaf8034..f373da097 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs_morse.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs_morse.md @@ -33,7 +33,7 @@ This is a specification & proposal that will be submitted to [forum.pokt.network - [Flow](#flow) - [Scaling Benefits](#scaling-benefits) - [Block Data Verification](#block-data-verification) -- [Attack Modelling](#attack-modelling) +- [Attack Modeling](#attack-modeling) - [Approach](#approach) - [Definitions](#definitions) - [Example](#example) @@ -136,7 +136,7 @@ This goes to show that reducing the number of Proofs & Claims submitted on-chain ![img2](https://user-images.githubusercontent.com/1892194/236548602-bb6cbc2a-aa2a-4b92-ae75-d40eda80685f.png) ![img1](https://user-images.githubusercontent.com/1892194/236548608-be569088-a19a-4759-8d7b-2c4f8c5e7ae8.png) -## Attack Modelling +## Attack Modeling In order to select the values for the three parameters, the attacker's likelihood of adversarial reward & penalty must be modeled. From 05d7407c6dfdbaaf6921e2c038b8d5aecc41d795 Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Tue, 17 Dec 2024 12:46:44 -0800 Subject: [PATCH 09/25] Update docusaurus/docs/protocol/primitives/probabilistic_proofs.md Co-authored-by: Redouane Lakrache --- docusaurus/docs/protocol/primitives/probabilistic_proofs.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md index d68909bdf..89dc6c123 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md @@ -216,8 +216,8 @@ $$ E[K] = \frac{q}{p} $$ Recall: -- **Failure**: The network does not catch a dishonest Supplier -- **Success**: The network catches a dishonest Supplier +- **Success**: The network **does** catch a dishonest Supplier +- **Failure**: The network **does not** catch a dishonest Supplier #### Modeling a Dishonest Supplier's Strategy using a Geometric CDF (Cumulative Distribution Function) From fe31c762f096126f45f24a9e5701eb55b511ff09 Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Tue, 17 Dec 2024 12:47:33 -0800 Subject: [PATCH 10/25] Update docusaurus/docs/protocol/primitives/probabilistic_proofs.md Co-authored-by: Redouane Lakrache --- docusaurus/docs/protocol/primitives/probabilistic_proofs.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md index 89dc6c123..c38e2b636 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md @@ -514,7 +514,7 @@ $$ S = R \cdot E[K] = 20 \cdot 99 = 1980 ≈ 2,000 $$ - The minimum stake amount will need to be significantly higher than the penalty to enable slashing across multiple sessions at once 2. **Optimal Reward Value**: Evaluating onchain Shannon data to determine the optimal value for `R` -3. **Closed Feedback Look**: Having `p` dynamically adjust onchain as a function of onchain data without intervention from the DAO / PNF (i.e. ) +3. **Closed Feedback Loop**: Having `p` dynamically adjust onchain as a function of onchain data without intervention from the DAO / PNF. 4. Reviewing, comparing & contributing to **external literature** such as: - https://research.facebook.com/publications/distributed-auditing-proofs-of-liabilities/ From 56a127610c069c10074e2d3889e8075e203834d7 Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Tue, 17 Dec 2024 12:58:25 -0800 Subject: [PATCH 11/25] Update docusaurus/docs/protocol/primitives/probabilistic_proofs.md Co-authored-by: Bryan White --- docusaurus/docs/protocol/primitives/probabilistic_proofs.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md index c38e2b636..85c79f832 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md @@ -118,7 +118,7 @@ flowchart TD ISCAT --> |Yes| PR ISPPR --> |No| NP - ISPPR --> |Yes| ISPA + ISPPR --> |Yes| PR ISPA --> |"Yes"| DR ISPA --> |No| SLASH From b37e10f77fc6ed22e655d6d2538b7d1ec7f68e75 Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Tue, 17 Dec 2024 12:59:47 -0800 Subject: [PATCH 12/25] Update docusaurus/docs/protocol/primitives/probabilistic_proofs.md Co-authored-by: Bryan White --- docusaurus/docs/protocol/primitives/probabilistic_proofs.md | 1 + 1 file changed, 1 insertion(+) diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md index 85c79f832..03e179597 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md @@ -214,6 +214,7 @@ $$ P(X = k+1) = q^k \cdot p $$ $$ E[K] = \frac{q}{p} $$ +:::note Recall: - **Success**: The network **does** catch a dishonest Supplier From 0659d9b8be668e6adaab1641282bf51893e41036 Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Tue, 17 Dec 2024 13:00:33 -0800 Subject: [PATCH 13/25] Update docusaurus/docs/protocol/primitives/probabilistic_proofs.md Co-authored-by: Bryan White --- docusaurus/docs/protocol/primitives/probabilistic_proofs.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md index 03e179597..b3290d4ca 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md @@ -354,7 +354,7 @@ $$ E[\text{Total Profit}_{\text{Honest}}] = R $$ Dishonest Suppliers face: -- A high penalty `S` that wipes out their expected gains. +- A high penalty (`S`) that wipes out their expected gains. - The risk of getting caught earlier than expected, resulting in a net loss. - Increased uncertainty due to the probabilistic nature of Proof requests. From a4f346c304294ed9bd5cd478031dfcba344446da Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Tue, 17 Dec 2024 13:00:45 -0800 Subject: [PATCH 14/25] Update docusaurus/docs/protocol/primitives/probabilistic_proofs.md Co-authored-by: Bryan White --- docusaurus/docs/protocol/primitives/probabilistic_proofs.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md index b3290d4ca..19245a5db 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md @@ -482,7 +482,7 @@ By modeling the attack using a geometric distributions and calculating expected - Determine the necessary penalty `S` to deter dishonest behavior. - Ensure that honest Suppliers remain profitable while dishonest Suppliers face negative expected profits. -This approach allows the network to scale by reducing the number of on-chain Proofs while maintaining economic incentives that discourage dishonest behavior. +This approach allows the network to scale by reducing the number of on-chain Proofs while maintaining economic (dis)incentives that deter dishonest behavior. ## Morse Based Value Selection From e2505bacc29a8412a915daa70e018808c823bf03 Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Tue, 17 Dec 2024 13:00:57 -0800 Subject: [PATCH 15/25] Update docusaurus/docs/protocol/primitives/probabilistic_proofs.md Co-authored-by: Bryan White --- docusaurus/docs/protocol/primitives/probabilistic_proofs.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md index 19245a5db..34d9164f6 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md @@ -486,7 +486,7 @@ This approach allows the network to scale by reducing the number of on-chain Pro ## Morse Based Value Selection -As of writing (October 2024), Shannon is not live and only Morse can be used to approximate realistic values. +As of writing (October 2024), Shannon MainNet is not live; therefore, data from Morse must be used to approximate realistic values. ### Selecting `ProofRequirementThreshold` From 8f8d32044bb326348c0be9b1d6354cb8db981ef9 Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Tue, 17 Dec 2024 13:01:06 -0800 Subject: [PATCH 16/25] Update docusaurus/docs/protocol/primitives/probabilistic_proofs.md Co-authored-by: Bryan White --- docusaurus/docs/protocol/primitives/probabilistic_proofs.md | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md index 34d9164f6..51f5b58de 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md @@ -490,7 +490,11 @@ As of writing (October 2024), Shannon MainNet is not live; therefore, data from ### Selecting `ProofRequirementThreshold` -Choose `R = 20` since it is greater than `p95` of all Claims collected in Morse. Units are in `POKT`. +Choose `R = 20` since it is greater than `p95` of all Claims collected in Morse. + +:::info +Units are in `POKT`. +::: See the original proposal from Morse available in [probabilistic_proofs_morse.md](./probabilistic_proofs_morse.md) and [Pocket_Network_Morse_Probabilistic_Proofs.ipynb](./Pocket_Network_Morse_Probabilistic_Proofs.ipynb) for supporting data. From f953a9810bc5543a139df3791f4355e06a7c5810 Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Tue, 17 Dec 2024 13:01:15 -0800 Subject: [PATCH 17/25] Update docusaurus/docs/protocol/primitives/probabilistic_proofs.md Co-authored-by: Bryan White --- docusaurus/docs/protocol/primitives/probabilistic_proofs.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md index 51f5b58de..f1ad4685d 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md @@ -476,9 +476,9 @@ perspective of what the probabilities of success and failure are. By modeling the attack using a geometric distributions and calculating expected values, we can: -- Determine `R = ProofRequirementThreshold` using statical onchain data -- Manually adjust `p = ProofRequestProbability` to adjust scalability -- Compute `S ≤ SupplierMinStake` to deter dishonest behavior +- Determine `R = ProofRequirementThreshold` using statical onchain data. +- Manually adjust `p = ProofRequestProbability` to adjust scalability. +- Compute `S ≤ SupplierMinStake` to deter dishonest behavior. - Determine the necessary penalty `S` to deter dishonest behavior. - Ensure that honest Suppliers remain profitable while dishonest Suppliers face negative expected profits. From 5f16e9c420555f7cb7a339525ef8c25f9e04126b Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Tue, 17 Dec 2024 13:01:25 -0800 Subject: [PATCH 18/25] Update docusaurus/docs/protocol/primitives/probabilistic_proofs.md Co-authored-by: Bryan White --- docusaurus/docs/protocol/primitives/probabilistic_proofs.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md index f1ad4685d..3f9a96344 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md @@ -456,7 +456,7 @@ See [Pocket_Network_Morse_Probabilistic_Proofs.ipynb](./Pocket_Network_Morse_Pro Accept the fact that the majority of the block space is taken up by Proofs. -The number of relays in the network scales inversely to `ProofRequestProbability`. For example: +The number of on-chain relays (proofs) required by the network scales inversely to `ProofRequestProbability`. For example: - `ProofRequestProbability` = 0.5 -> 2x scale - `ProofRequestProbability` = 0.25 -> 4x scale From 24649dc28a2c1939f5044af3bd68f07ed1b8a6ba Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Tue, 17 Dec 2024 13:01:40 -0800 Subject: [PATCH 19/25] Update docusaurus/docs/protocol/primitives/probabilistic_proofs.md Co-authored-by: Bryan White --- docusaurus/docs/protocol/primitives/probabilistic_proofs.md | 1 + 1 file changed, 1 insertion(+) diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md index 3f9a96344..d08349713 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md @@ -219,6 +219,7 @@ Recall: - **Success**: The network **does** catch a dishonest Supplier - **Failure**: The network **does not** catch a dishonest Supplier +::: #### Modeling a Dishonest Supplier's Strategy using a Geometric CDF (Cumulative Distribution Function) From 79580b8b60e19cd2d8afa7aa3aa0a5cc2497f04e Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Tue, 17 Dec 2024 13:03:04 -0800 Subject: [PATCH 20/25] Update docusaurus/docs/protocol/primitives/probabilistic_proofs.md Co-authored-by: Bryan White --- docusaurus/docs/protocol/primitives/probabilistic_proofs.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md index d08349713..3740a8821 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md @@ -106,7 +106,7 @@ flowchart TD SLASH[Slash Supplier Stake] %% Is Claim Above Threshold - ISCAT{ Is
Claim.ComputeUnits > Gov.ProofRequirementThreshold ? } + ISCAT{ Is
Claim.ComputeUnits >
Gov.ProofRequirementThreshold ? } %% Is Probabilistic Proof Required ISPPR{"Is P(Gov.ProofRequestProbability) == 1 ?
(omitting rand seed details)"} %% Is Proof Available From c9c7fed5584a411778978a5e92a5b47019bd4711 Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Tue, 17 Dec 2024 13:03:10 -0800 Subject: [PATCH 21/25] Some nits --- .../primitives/probabilistic_proofs.md | 37 ++++++++++--------- 1 file changed, 19 insertions(+), 18 deletions(-) diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md index 3740a8821..930ef2b4c 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md @@ -62,32 +62,28 @@ TODO_IN_THIS_PR: Turn this into a table. Network parameters: -- Session duration: `1` hour +- **Session duration**: `1` hour +- **Number of suppliers per session (per app)**: `20` +- **Number of services per session (per app)**: `1` -Network state: +Network state (conservative scenario): -- Median Proof Size: `1,000` bytes -- Number of services: `10,000` -- Number of applications: `100,000` -- Number of suppliers: `100,000` -- Number of suppliers per session: `10` -- Number of Proofs per session: `1` +- **Number of (active) services**: `10,000` +- **Number of (active) applications**: `100,000` +- **Number of (active) suppliers**: `100,000` -Conservative (simple) scenario: +Assumptions for the purpose of an example: -- Number of active applications: `10,000` -- Number of services used per application per session: `5` -- Number of suppliers used per application per session: `10` -- 1 Proof per (service, supplier) pair for each app -- Total time: `1` day (`24` sessions) +- **Median Proof Size**: `1,000` bytes +- **Total time**: `1` day (`24` sessions) Total disk growth per day: ```bash -10,000 apps * 1 Proof/(service,supplier) * 10 suppliers/app * 5 services/session * 24 sessions * 1,000 bytes/Proof = 12 GB +10,000 apps * 1 Proof/(service,supplier) * 20 suppliers/app * 1 services/session * 24 sessions * 1,000 bytes/Proof = 4.8 GB ≈ 5 GB ``` -A very simple (conservative) scenario would result in `12 GB` of disk growth per day, amounting to more than `4 TB` of disk growth in a year. +**CRITICAL**: A very simple (conservative) scenario would result in `5 GB` of disk growth per day, amounting to almost `2 TB` of disk growth in a year. This discounts CPU usage needed to verify the Proofs. @@ -180,7 +176,7 @@ to model the probability of a dishonest Supplier getting caught when submitting - All other outcomes - Does not include _short-circuited_ (i.e. Claim.ComputeUnits > ProofRequirementThreshold) -### Onchain Governance Parameters +### Conceptual Parameters: Onchain, Modeling, Governance, Etc - **ProofRequestProbability (p)**: The probability that a Claim will require a Proof. - **Penalty (S)**: The amount of stake slashed when a Supplier fails to provide a required Proof. @@ -230,7 +226,7 @@ is penalized. This can be modeled using a Geometric PDF (Probability Distributio In practice, we need to track the likelihood of `k or less` failures `Pr(X<=k)`, until a single success. This can be modeled using a Geometric CDF. -TODO_IN_THIS_PR: Remove the paragraph below. +TODO_IN_THIS_PR: Remove the paragraph below. From Bryan: `This paragraph confuses me a bit. The previous paragraph says that we need to use a CDF but then this paragraph seems to turn around and say that this actually don't? I feel like this and the above paragraph should be combined and rephrased a bit.` To simplify the math, we'll be using the Expected Value of a Geometric PDF due to its [simpler proof formulation](https://en.wikipedia.org/wiki/Geometric_distribution#Proof_of_expected_value), guaranteeing the results be **AT LEAST** @@ -342,6 +338,8 @@ While the expected profit is `0`, the variance in the number of successful false Claims can make dishonest behavior risky. The Supplier might get caught earlier than expected, leading to a net loss. +TODO_IN_THIS_PR: Incorporate this from Ramiro: `Variance works both ways, hence my previous comment. This can be a justification for changing the calculation of S as I suggest. This is because the attacker might not be caught until much later and result in a net profit.` + ## Crypto-economic Analysis & Incentives ### Impact on Honest Suppliers @@ -395,6 +393,8 @@ By tweaking `p` and `S`, the network can: - **Lower `p`** reduces the number of Proofs required --> improves scalability --> requires higher penalties. - **Higher `S`** increases the risk for dishonest Suppliers --> lead to social adversity from network participants. +TODO_IN_THIS_PR: Explain how `How does a high slashing penalty increase the risk of dishonest suppliers?` + #### Selecting Optimal `p` and `S` To select appropriate values: @@ -518,6 +518,7 @@ $$ S = R \cdot E[K] = 20 \cdot 99 = 1980 ≈ 2,000 $$ - The number of sessions a supplier is in will need to be limited - The minimum stake amount will need to be significantly higher than the penalty to enable slashing across multiple sessions at once + - It could be a multiple of its provided services count. 2. **Optimal Reward Value**: Evaluating onchain Shannon data to determine the optimal value for `R` 3. **Closed Feedback Loop**: Having `p` dynamically adjust onchain as a function of onchain data without intervention from the DAO / PNF. From aadb39c13c388c554673ce5f9d5f31d3e51d5ffb Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Tue, 17 Dec 2024 13:05:36 -0800 Subject: [PATCH 22/25] Update docusaurus/docs/protocol/primitives/probabilistic_proofs.md Co-authored-by: Bryan White --- .../docs/protocol/primitives/probabilistic_proofs.md | 9 ++++----- 1 file changed, 4 insertions(+), 5 deletions(-) diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md index 930ef2b4c..12dfd3487 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md @@ -219,12 +219,11 @@ Recall: #### Modeling a Dishonest Supplier's Strategy using a Geometric CDF (Cumulative Distribution Function) -Above, we have been tracking the probability that `Pr(X=k+1)`, the probability -of `k` failures (Supplier escapes without penalty) until a single success (Supplier) -is penalized. This can be modeled using a Geometric PDF (Probability Distribution Function). +So far, we've considered the probability given by `Pr(X=k+1)`: the probability +of `k` "failures" (👆) until a single "success" (👆). This can be modeled using a Geometric PDF (Probability Distribution Function). -In practice, we need to track the likelihood of `k or less` failures `Pr(X<=k)`, -until a single success. This can be modeled using a Geometric CDF. +In practice, we need to track the likelihood of `k or less` "failures" `Pr(X<=k)`, +until a single "success". This can be modeled using a Geometric CDF. TODO_IN_THIS_PR: Remove the paragraph below. From Bryan: `This paragraph confuses me a bit. The previous paragraph says that we need to use a CDF but then this paragraph seems to turn around and say that this actually don't? I feel like this and the above paragraph should be combined and rephrased a bit.` From 918b2155f95b1a971877e06cef58ffc734cccda5 Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Tue, 17 Dec 2024 13:06:38 -0800 Subject: [PATCH 23/25] Update docusaurus/docs/protocol/primitives/probabilistic_proofs.md Co-authored-by: Bryan White --- docusaurus/docs/protocol/primitives/probabilistic_proofs.md | 1 - 1 file changed, 1 deletion(-) diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md index 12dfd3487..1b9414de7 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md @@ -454,7 +454,6 @@ See [Pocket_Network_Morse_Probabilistic_Proofs.ipynb](./Pocket_Network_Morse_Pro ::: -Accept the fact that the majority of the block space is taken up by Proofs. The number of on-chain relays (proofs) required by the network scales inversely to `ProofRequestProbability`. For example: From 4b767c2623f80b07cb45721992bb124722ebe3d1 Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Tue, 17 Dec 2024 13:47:02 -0800 Subject: [PATCH 24/25] Incoporating everyone's feedback before doing the hard work --- .../primitives/probabilistic_proofs.md | 183 ++++++- .../Peanlty_vs_ProofRequestProbability.png | Bin ...t_Network_Morse_Probabilistic_Proofs.ipynb | 0 .../Probabilistic_proofs_coverage.ipynb | 448 ++++++++++++++++++ .../geometric_pdf_vs_cdf.png | Bin .../geometric_pdf_vs_cdf.py | 0 .../penalty_vs_proof_request_prob.py | 0 geometric_probability_distribution.py | 29 -- 8 files changed, 612 insertions(+), 48 deletions(-) rename docusaurus/docs/protocol/primitives/{ => probabilistic_proofs}/Peanlty_vs_ProofRequestProbability.png (100%) rename docusaurus/docs/protocol/primitives/{ => probabilistic_proofs}/Pocket_Network_Morse_Probabilistic_Proofs.ipynb (100%) create mode 100644 docusaurus/docs/protocol/primitives/probabilistic_proofs/Probabilistic_proofs_coverage.ipynb rename docusaurus/docs/protocol/primitives/{ => probabilistic_proofs}/geometric_pdf_vs_cdf.png (100%) rename docusaurus/docs/protocol/primitives/{ => probabilistic_proofs}/geometric_pdf_vs_cdf.py (100%) rename docusaurus/docs/protocol/primitives/{ => probabilistic_proofs}/penalty_vs_proof_request_prob.py (100%) delete mode 100644 geometric_probability_distribution.py diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md index 1b9414de7..4fe2f4767 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs.md +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs.md @@ -5,13 +5,12 @@ sidebar_position: 5 _tl;dr Probabilistic Proofs is a method to scale Pocket Network indefinitely._ -## Abstract +## Abstract -This document explains and walks through the mechanism of Probabilistic Proofs needed -to scale Pocket Network indefinitely. Precisely, it'll allow an unlimited number of -sessions that pair (Applications, Suppliers, Services) by requiring a single Claim -for each such session, but only require a proof probabilistically if it is below a -specific threshold. +This document describes the mechanism of Probabilistic Proofs, which is what allows +Pocket Network to scale verifiable relay throughput to match an arbitrarily large demand. +Precisely, it allows an unlimited number of ["sessions"](./session.md) which pair (Applications and Suppliers for a given Service) by requiring the creation of a single on-chain Claim +for each such session, but only probabilistically requiring an on-chain proof if it's total reward amount is below a specific threshold. External stakeholders (i.e. DAO/Foundation) need to be involved in adjusting the `ProofRequirementThreshold` by statistically analyzing onchain data, along with selecting @@ -30,6 +29,90 @@ this value, staked collateral will be available for slashing, if needed. In future work, we will look at a potential attack vector that still needs to be considered, along with further research on the topic. +## Table of Contents + +- [Relationship to Relay Mining](#relationship-to-relay-mining) +- [Problem Statement](#problem-statement) +- [Example Scenario](#example-scenario) +- [High Level Approach](#high-level-approach) +- [Key Question](#key-question) +- [Guarantees \& Expected Values](#guarantees--expected-values) +- [Modeling an Attack](#modeling-an-attack) + - [Defining a Single (Bernoulli) Trial](#defining-a-single-bernoulli-trial) + - [Conceptual Parameters: Onchain, Modeling, Governance, Etc](#conceptual-parameters-onchain-modeling-governance-etc) + - [Dishonest Supplier: Calculating the Expected Value](#dishonest-supplier-calculating-the-expected-value) + - [Modeling a Dishonest Supplier's Strategy using a Geometric PDF (Probability Distribution Function)](#modeling-a-dishonest-suppliers-strategy-using-a-geometric-pdf-probability-distribution-function) + - [Expected Number of False Claims (Failures) Before Getting Caught (Success)](#expected-number-of-false-claims-failures-before-getting-caught-success) + - [Modeling a Dishonest Supplier's Strategy using a Geometric CDF (Cumulative Distribution Function)](#modeling-a-dishonest-suppliers-strategy-using-a-geometric-cdf-cumulative-distribution-function) + - [Total Rewards: Expected Value Calculation for Dishonest Supplier Before Penalty](#total-rewards-expected-value-calculation-for-dishonest-supplier-before-penalty) + - [Expected Penalty: Slashing amount for Dishonest Supplier](#expected-penalty-slashing-amount-for-dishonest-supplier) + - [Total Profit: Expected Value Calculation for Dishonest Supplier AFTER Penalty](#total-profit-expected-value-calculation-for-dishonest-supplier-after-penalty) + - [Honest Supplier: Calculating the Expected Value](#honest-supplier-calculating-the-expected-value) + - [Setting Parameters to Deter Dishonest Behavior](#setting-parameters-to-deter-dishonest-behavior) + - [Solving for Penalty `S`](#solving-for-penalty-s) + - [Example Calculation](#example-calculation) + - [Generalizing the Penalty Formula](#generalizing-the-penalty-formula) + - [Considering false Claim Variance](#considering-false-claim-variance) +- [Crypto-economic Analysis \& Incentives](#crypto-economic-analysis--incentives) + - [Impact on Honest Suppliers](#impact-on-honest-suppliers) + - [Impact on Dishonest Suppliers](#impact-on-dishonest-suppliers) + - [Analogs between Model Parameters and onchain Governance Values](#analogs-between-model-parameters-and-onchain-governance-values) + - [Parameter Analog for Penalty (`S`)](#parameter-analog-for-penalty-s) + - [Parameter Analog for Reward (`R`)](#parameter-analog-for-reward-r) + - [TODO_IN_THIS_PR: Explain `p`](#todo_in_this_pr-explain-p) + - [Considerations during Parameter Adjustment](#considerations-during-parameter-adjustment) + - [Selecting Optimal `p` and `S`](#selecting-optimal-p-and-s) + - [Considerations for `Proof.ProofRequirementThreshold` an `ProofRequirementThreshold`](#considerations-for-proofproofrequirementthreshold-an-proofrequirementthreshold) + - [Normal Distribution](#normal-distribution) + - [Non-Normal Distribution](#non-normal-distribution) + - [Considerations for `ProofRequestProbability` (`p`)](#considerations-for-proofrequestprobability-p) + - [Maximizing `Pr(X<=k)` to ensure `k or less` failures (Supplier escapes without penalty)](#maximizing-prxk-to-ensure-k-or-less-failures-supplier-escapes-without-penalty) +- [Conclusions for Modeling](#conclusions-for-modeling) +- [Morse Based Value Selection](#morse-based-value-selection) + - [Selecting `ProofRequirementThreshold`](#selecting-proofrequirementthreshold) + - [Calculating `p`: `ProofRequestProbability`](#calculating-p-proofrequestprobability) + - [Calculating `S`: `ProofMissingPenalty`](#calculating-s-proofmissingpenalty) +- [TODO_IN_THIS_PR: Above Threshold Attack Possibility](#todo_in_this_pr-above-threshold-attack-possibility) +- [Future Work](#future-work) + +## Relationship to Relay Mining + +I think it may be worth noting that while probabilistic proofs reduce the number of on-chain proofs (block size), it will drive up supplier min stake amount as it's scaled. I think relaymining helps to mitigate this by taking the scaling pressure off of probabilistic proofs by reducing the size of each proof. Additionally, relaymining has the effect of minimizing the "max claim persistence footprint size": + +```mermaid +--- +title: Scaling Up Relay Throughput (w/ respect to block size) +--- +flowchart + +subgraph pp[Probabilistic Proofs] +prob[proof requirement probability: **decreases**] +thres["threshold (limited by target percentile): **increases**"] +pen[penalty: **increases**] +end + +prob <-."negative correlation yields constant security guarantees ⛓️".-> pen + + +thres --"**minmizes**"---> pn +pen --"**maximizes**"---> smin + +subgraph rm[RelayMining] +diff[mining difficulty: **increases**] +end + +%% Holding num relays constant: +pn[num on-chain proofs] +cn["num on-chain claims (pruned over time)"] +ps[size of on-chain proofs] + +smin[Supplier min stake] + +prob --"**minimizes**"--> pn +diff --"**minimizes**"--> cn +diff --"**minimizes**"--> ps +``` + ## Problem Statement _tl;dr Too many on-chain Proofs do not scale due to state bloat and excessive CPU usage._ @@ -183,6 +266,13 @@ to model the probability of a dishonest Supplier getting caught when submitting - **Reward per Claim (R)**: The reward received for a successful Claim without Proof. - **Maximum Claims Before Penalty (k)**: The expected number of false Claims a Supplier can make before getting caught. +:::note + +Note that `k` is not an on-chain governance parameter, but rather a modeling parameter used +to model out the attack. + +::: + We note that `R` is variable and that `SupplierMinStake` is not taken into account in the definition of the problem. As will be demonstrated by the end of this document: @@ -215,7 +305,7 @@ Recall: - **Success**: The network **does** catch a dishonest Supplier - **Failure**: The network **does not** catch a dishonest Supplier -::: + ::: #### Modeling a Dishonest Supplier's Strategy using a Geometric CDF (Cumulative Distribution Function) @@ -233,7 +323,7 @@ as secure when compared to the Geometric CDF. Visual intuition of the two can be seen below: -![Geometric CDF for Different p Values](./geometric_pdf_vs_cdf.png) +![Geometric CDF for Different p Values](./probabilistic_proofs/geometric_pdf_vs_cdf.png) :::tip @@ -331,6 +421,30 @@ This makes the expected profit for dishonest behavior `0`: $$ E[\text{Total Profit}_{\text{Dishonest}}] = R \cdot \frac{q}{p} - S = 0 $$ +TODO_IN_THIS_PR, incorporate feedback from ramiro: + +``` +This value will provide the attacker no expected return, but also no penalty. +In fact, the expected cost of sending an attack is 0 POKT. +An attacker can keep sending claims to the network because at the end of the day s/he will not lose money. This enables spam in the network. + +We can model this using the quantile function (or "percent point function"), the inverse of the CDF. +Sadly I found no closed form for the geometric function (because it is a step function), but we can calculate it easily (is a really small iterative process). + +For example, to be sure that in 95% of all the attacks the attacker is punished (or breaks even in a marginal number of samples), we should set the slash amount (S) approx 3x from what you use here (~6K POKT for the numbers in this example). +Doing this will penalize the attacker/spammer with an average of 4K POKT per attack try. + +If you want I can create small notebook with the procedure and simulation. + + +Some notes: + +The CDF of the E(Geom(p=0.01)) is 63%, meaning that 37% of all attacks result in net profit (some very large). +I use 95% in the example but this can be less, like 75%, resulting in lower S and hence lower min stakes while adding net loss to the attacker). Any value above 63% will result in net loss for the attacker. +``` + +Source: https://gist.github.com/RawthiL/9ed65065b896d13e96dc2a5910f6a7ab + ### Considering false Claim Variance While the expected profit is `0`, the variance in the number of successful false @@ -348,13 +462,24 @@ Their expected profit remains: $$ E[\text{Total Profit}_{\text{Honest}}] = R $$ +:::danger + +TODO_IN_THIS_PR: Honest faulty suppliers will also be affectd and peanlized, +which was not an issue before. + +What about non-malicious faults (e.g. network outage)? In this case, I would argue that there's definitely a potential for impact on honest suppliers. +Do you see it differently? +Is it worth mentioning that possibility here? + +::: + ### Impact on Dishonest Suppliers -Dishonest Suppliers face: +Dishonest suppliers must contend with substantial penalties that erase their +anticipated profits, coupled with a heightened risk of early detection and ensuing net losses. -- A high penalty (`S`) that wipes out their expected gains. -- The risk of getting caught earlier than expected, resulting in a net loss. -- Increased uncertainty due to the probabilistic nature of Proof requests. +Furthermore, the inherently probabilistic nature of Proof requests introduces +additional uncertainty, making dishonest behavior both less predictable and more costly. ### Analogs between Model Parameters and onchain Governance Values @@ -369,7 +494,7 @@ always has in escrow. This amount can be slashed and/or taken from the Supplier ### Parameter Analog for Reward (`R`) -_tl;dr `R` = `ProofRequirementThreshold`_ +_tl;dr `R` = `Proof.ProofRequirementThreshold`_ In practice, the reward for each onchain Claim is variable and a function of the amount of work done. @@ -380,8 +505,12 @@ short-circuits this entire document. Therefore, `R` can be assumed constant when determining the optimal `p` and `S`. +### TODO_IN_THIS_PR: Explain `p` + ### Considerations during Parameter Adjustment +TODO_IN_THIS_PR: Add a mermaid diagram for this. + By tweaking `p` and `S`, the network can: - Increase the deterrent against dishonest behavior. @@ -396,6 +525,8 @@ TODO_IN_THIS_PR: Explain how `How does a high slashing penalty increase the risk #### Selecting Optimal `p` and `S` +TODO_IN_THIS_PR: Add a mermaid diagram for this. + To select appropriate values: 1. **Determine Acceptable Proof Overhead (`p`)**: @@ -416,7 +547,7 @@ To select appropriate values: To illustrate the relationship between `p`, `S`, see the following chart: -![Penalty vs. ProofRequestProbability](./Peanlty_vs_ProofRequestProbability.png) +![Penalty vs. ProofRequestProbability](./probabilistic_proofs/Peanlty_vs_ProofRequestProbability.png) :::tip @@ -424,13 +555,11 @@ You can generate the graph above with `penalty_vs_proof_request_prob.py` ::: -#### Considerations for `ProofRequirementThreshold` +#### Considerations for `Proof.ProofRequirementThreshold` an `ProofRequirementThreshold` - **Threshold Value**: Set the `ProofRequirementThreshold` low enough that most Claims are subject to probabilistic Proof requests, but high enough to prevent excessive Proof submissions. - **Short-Circuiting**: Claims above the threshold always require Proofs, eliminating the risk of large false Claims slipping through. -##### Modeling `ProofRequirementThreshold` - `ProofRequirementThreshold` should be as small as possible so that most such that most Claims for into the probabilistic bucket, while also balancing out penalties that may be too large for faulty honest Suppliers. @@ -450,7 +579,7 @@ such that 95% of Claims fall into the category of requiring a proof. :::note -See [Pocket_Network_Morse_Probabilistic_Proofs.ipynb](./Pocket_Network_Morse_Probabilistic_Proofs.ipynb) for more details from Morse backing the fact that the majority of the block space is taken up by Proofs. +See [Pocket_Network_Morse_Probabilistic_Proofs.ipynb](./Pocket_Network_Morse_Probabilistic_Proofs.ipynb) for more details from Morse, supporting the fact that the majority of the block space is taken up by Proofs. ::: @@ -489,7 +618,7 @@ As of writing (October 2024), Shannon MainNet is not live; therefore, data from ### Selecting `ProofRequirementThreshold` -Choose `R = 20` since it is greater than `p95` of all Claims collected in Morse. +Choose `R = 20` since it is greater than `p95` of all Claims collected in Morse. :::info Units are in `POKT`. @@ -510,6 +639,22 @@ $$ E[K] = \frac{q}{p} = \frac{0.99}{0.01} = 99 $$ $$ S = R \cdot E[K] = 20 \cdot 99 = 1980 ≈ 2,000 $$ +## TODO_IN_THIS_PR: Above Threshold Attack Possibility + +above threshold attacks possibilities. + +We should investigate above threshold attacks possibilities. + +Supplier adds fake serviced relays to the SMT. +Submits the claim. +If the closest proof corresponds to a: +a. Fake relay -> Do not submit the proof and face slashing. +b. Legit relay -> Submit the proof and be rewarded for fake relays. + +This is interesting, you talk about inflating the tree with fake relays. I think that the effect will be a reduction of the catch probability that is proportional to the fake relays ratio. +Supose that you inflate your tree by a X%, then you have a a chance of being requested a proof given by ProofRequestProbability and a X/100 chance that the requested proof is a fake relay. +I think that in practice this can be modeled as a reduced ProofRequestProbability, so we can add a security factor there. + ## Future Work 1. **Attack Vector**: Account for the fact that a Supplier could be in multiple sessions at the same, so either: diff --git a/docusaurus/docs/protocol/primitives/Peanlty_vs_ProofRequestProbability.png b/docusaurus/docs/protocol/primitives/probabilistic_proofs/Peanlty_vs_ProofRequestProbability.png similarity index 100% rename from docusaurus/docs/protocol/primitives/Peanlty_vs_ProofRequestProbability.png rename to docusaurus/docs/protocol/primitives/probabilistic_proofs/Peanlty_vs_ProofRequestProbability.png diff --git a/docusaurus/docs/protocol/primitives/Pocket_Network_Morse_Probabilistic_Proofs.ipynb b/docusaurus/docs/protocol/primitives/probabilistic_proofs/Pocket_Network_Morse_Probabilistic_Proofs.ipynb similarity index 100% rename from docusaurus/docs/protocol/primitives/Pocket_Network_Morse_Probabilistic_Proofs.ipynb rename to docusaurus/docs/protocol/primitives/probabilistic_proofs/Pocket_Network_Morse_Probabilistic_Proofs.ipynb diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs/Probabilistic_proofs_coverage.ipynb b/docusaurus/docs/protocol/primitives/probabilistic_proofs/Probabilistic_proofs_coverage.ipynb new file mode 100644 index 000000000..7e8b9e252 --- /dev/null +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs/Probabilistic_proofs_coverage.ipynb @@ -0,0 +1,448 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "import pandas as pd\n", + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "import seaborn as sns\n", + "import datetime\n", + "from copy import deepcopy\n", + "\n", + "from scipy import stats\n" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [], + "source": [ + "# Minimum stake = Penalty\n", + "SupplierMinStake = 2e3 # POKT\n", + "# Total POKT that can be claimed without requiering mandatory proof\n", + "ProofRequirementThreshold = 20 # POKT\n", + "# Probability that a claim below the threshold will requiere proof\n", + "ProofRequestProbability = 0.001" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Expected claims passed before begin requiederd a proof: 999.0 (same with scypi: 999.0)\n" + ] + } + ], + "source": [ + "# This is the expected number of claims before being requested for a proof\n", + "# According to https://en.wikipedia.org/wiki/Geometric_distribution (mode 0)\n", + "E_false_claims_before_proof = (1-ProofRequestProbability) / ProofRequestProbability\n", + "\n", + "# For ease calculations we will use the scipy implementation \n", + "# https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.geom.html\n", + "\n", + "# Here we show that both achieve the same mean, more testing in the appendix\n", + "print(f\"Expected claims passed before begin requiederd a proof: {E_false_claims_before_proof} (same with scypi: {stats.geom.mean(ProofRequestProbability, loc=-1)})\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The integral of the PMF is de CDF wich tells us the proportion of the total draws that we expect to see below a given threshold in the support of the PDF.\n", + "\n", + "The CDF has domain on the same as the PDF and codomain is the total sample proportion below that domain point.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The expected number claims passed before begin requiederd a proof represents a coverage of 63.23%\n", + "This means that 36.77% of the trials will pass MORE claims before being requieres a proof\n" + ] + } + ], + "source": [ + "coverage_of_mean = stats.geom.cdf(E_false_claims_before_proof, ProofRequestProbability, loc=-1)\n", + "print(f\"The expected number claims passed before begin requiederd a proof represents a coverage of {coverage_of_mean*100:.2f}%\")\n", + "print(f\"This means that {(1-coverage_of_mean)*100:.2f}% of the trials will pass MORE claims before being requieres a proof\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So we want to go the other way arround, we want to know the value in the domain of the CDF that give us an specific value in the codomain.\n", + "\n", + "More simply, we want to answer: To have X% of samples included, wich is the value that I must select?\n", + "\n", + "and specific to our problem: In 95% of all trials, which is the number of claims we expect to pass before a proof is enforced?\n", + "\n", + "The answer to this is the [quantile function](https://en.wikipedia.org/wiki/Quantile_function) or the percent point function, provided in scypi as `ppf`:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "In the 95.00% of the trials, the number of claims that pass before requiering a proof is lower than 2994\n", + "(Just to check, these two should be simmilar: 0.95 , 0.95)\n" + ] + } + ], + "source": [ + "COVERAGE = 0.95\n", + "E_false_claims_before_proof_COVERAGE = int(stats.geom.ppf(0.95, ProofRequestProbability, loc=-1))\n", + "\n", + "print(f\"In the {COVERAGE*100:0.2f}% of the trials, the number of claims that pass before requiering a proof is lower than {E_false_claims_before_proof_COVERAGE}\")\n", + "\n", + "print(f\"(Just to check, these two should be simmilar: {stats.geom.cdf(E_false_claims_before_proof_COVERAGE, ProofRequestProbability, loc=-1):0.2f} , {COVERAGE:0.2f})\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now lets test what happens when we use either the expected valu or the selected number of trials for a given coverage (through using the PPF)" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The slashing for:\n", + "\tExpected trials:\t\t 19980\n", + "\t95.00% coverage of trials:\t 59880\n" + ] + } + ], + "source": [ + "# Slashing according to the selected coverage\n", + "Slash_COVERAGE = int(E_false_claims_before_proof_COVERAGE*ProofRequirementThreshold)\n", + "Slash_E = int(E_false_claims_before_proof*ProofRequirementThreshold)\n", + "\n", + "print(f\"The slashing for:\\n\\tExpected trials:\\t\\t {Slash_E}\\n\\t{COVERAGE*100:0.2f}% coverage of trials:\\t {Slash_COVERAGE}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The number of trials for 95.00% is 2994\n" + ] + } + ], + "source": [ + "# We can can also calcualte the PPF using a simple loop:\n", + "def cdf_theo(x,p):\n", + " # theoretical CFG\n", + " return 1.0-((1.0-p)**(np.floor(x)+1.0))\n", + "current_coverage = 0\n", + "current_trials = 0\n", + "while current_coverage < COVERAGE:\n", + " current_trials += 1.0 # This can be much coarse if we want\n", + " current_coverage = cdf_theo(current_trials, ProofRequestProbability)\n", + "\n", + "print(f\"The number of trials for {100*current_coverage:0.2f}% is {int(current_trials)}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Numerical Simulation\n", + "\n", + "But lets not belive and test is the hard way... through sampling..." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# This is the number of times that the attacker will engage in sending fake claims\n", + "samples = 1e8" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# So we run this though the geometrical distribution, sampling from it directly.\n", + "# It will return the number of fake claims that passed before the attacker was requested a proof.\n", + "attackers_sample = stats.geom.rvs(ProofRequestProbability, loc=-1, size=int(samples), random_state=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The total proffit/cost of the attacker will be:\n", + "\tExpected trials coverage 358130120.0\n", + "\t95.00% coverage of trials:-3989641869880.0\n", + "We can see that the attacker actually made proffit!\n" + ] + } + ], + "source": [ + "# Now we calculate the proffit of the attacker, that will be equal to the number\n", + "# of samples passed before the requested proof, multiplied by the maximum reward\n", + "# that can be claimed without mandatory proof and minus the slashing of the \n", + "# missing proof\n", + "attacker_proffit_E = np.sum(ProofRequirementThreshold*attackers_sample)-samples*Slash_E\n", + "attacker_proffit_COVERAGE = np.sum(ProofRequirementThreshold*attackers_sample)-samples*Slash_COVERAGE\n", + "\n", + "print(f\"The total proffit/cost of the attacker will be:\\n\\tExpected trials coverage {attacker_proffit_E}\\n\\t{COVERAGE*100:0.2f}% coverage of trials:{attacker_proffit_COVERAGE}\")\n", + "print(\"We can see that the attacker actually made proffit!\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "This is an average proffit/cost per trial of:\n", + "\tExpected trials coverage 3.5813012\n", + "\t95.00% coverage of trials:-39896.4186988\n" + ] + } + ], + "source": [ + "# While I cheatead a little by setting the seed to a case where this happens, it \n", + "# is only to highlight that using the expected number of trials is bad coverage.\n", + "# Why? because the expected proffit is zero, but the variance is high\n", + "\n", + "# This is the average cost (per trial) for the attacker is very near zero\n", + "attacker_average_per_attack_proffit_E = attacker_proffit_E/samples\n", + "attacker_average_per_attack_proffit_COVERAGE = attacker_proffit_COVERAGE/samples\n", + "\n", + "print(f\"This is an average proffit/cost per trial of:\\n\\tExpected trials coverage {attacker_average_per_attack_proffit_E}\\n\\t{COVERAGE*100:0.2f}% coverage of trials:{attacker_average_per_attack_proffit_COVERAGE}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Standard deviation of the number of claims before proof requiered: 999.81 (or mathematically: 999.50)\n" + ] + } + ], + "source": [ + "# We can suspect this by looking at the standard deviation\n", + "print(f\"Standard deviation of the number of claims before proof requiered: {np.std(attackers_sample, ddof=1):0.2f} (or mathematically: {np.sqrt((1-ProofRequestProbability)/(ProofRequestProbability**2)):0.2f})\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since we know that the distribution domain is only positive integers, having a standard deviation larger than the expected value gives us the intuition that the odds for a profitable attack are not in our favor. In other words, it is possible (not probable) to claim a VERY large number of claims before being requiered a proof, but is not possible to be requiered a proof with less than 1 fake claim.\n", + "\n", + "By using a larger coverage we set the per-trial proffit negative (by a given margin) and hence the variations expected from this non-normal distribtion cannot ever offset this negativity, resulting in a negative proffit for all but the extreme cases.\n", + "\n", + "Finally we can see this in the shape of the distribution that is packed near zero but there is a long tail of trials with very high rewards for the atacker." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAGwCAYAAABvpfsgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzeUlEQVR4nO3de1yP5/8H8Nen6Hxy7EAq5JxyKmEYTU5z3Kg1JYYhQ3LaEBtjNqfM2HxHmPOG+TpEyzkJOZNGi2zrMFIpKvW5fn/4dX/dOuhTn1afvJ6Px+cxn+u67ut+33c3vXfd133dCiGEABERERGVmlZFB0BERESk6ZhQEREREZUREyoiIiKiMmJCRURERFRGTKiIiIiIyogJFREREVEZMaEiIiIiKqNqFR1AVaZUKvH333/D2NgYCoWiosMhIiKiEhBC4MmTJ7CysoKWVsnGnphQlaO///4b1tbWFR0GERERlcKDBw9Qv379ErVlQlWOjI2NAbz4gZiYmFRwNERERFQS6enpsLa2ln6PlwQTqnKUf5vPxMSECRUREZGGUWW6ToVPSl+zZg1sbW2hp6cHFxcXnD9/vtj2u3fvRrNmzaCnpwcHBwccOnRIVi+EwLx582BpaQl9fX24ubnhzp07sjaLFi1Cp06dYGBgADMzs0L3Ex8fj379+sHAwAB169bF9OnTkZubW6ZjJSIioqqpQhOqnTt3wt/fH4GBgbh06RIcHR3h7u6O5OTkQtufPXsWnp6eGD16NC5fvoxBgwZh0KBBuHHjhtRm6dKlCAoKwrp16xAZGQlDQ0O4u7sjKytLapOTk4P3338f48ePL3Q/eXl56NevH3JycnD27Fls2rQJwcHBmDdvnnpPABEREVUNogI5OzuLiRMnSt/z8vKElZWVWLx4caHthw0bJvr16ycrc3FxEePGjRNCCKFUKoWFhYX4+uuvpfrU1FShq6srtm/fXqC/jRs3ClNT0wLlhw4dElpaWiIxMVEqW7t2rTAxMRHZ2dklPr60tDQBQKSlpZV4GyIiIqpYpfn9XWFzqHJychAVFYXZs2dLZVpaWnBzc0NERESh20RERMDf319W5u7ujn379gEA4uLikJiYCDc3N6ne1NQULi4uiIiIgIeHR4lii4iIgIODA8zNzWX7GT9+PG7evIk2bdoUul12djays7Ol7+np6SXaHxERvbg78Pz584oOg94A1atXh7a2tlr7rLCE6uHDh8jLy5MlLQBgbm6O27dvF7pNYmJioe0TExOl+vyyotqURFH7eXkfhVm8eDEWLFhQ4v0QEdGLua+JiYlITU2t6FDoDWJmZgYLCwu1rRPJp/zUaPbs2bIRtPzHLomIqGj5yVTdunVhYGDAhZCpXAkh8PTpU2m+tqWlpVr6rbCEqnbt2tDW1kZSUpKsPCkpCRYWFoVuY2FhUWz7/P8mJSXJTlBSUhKcnJxKHJuFhUWBpw3z91tUbACgq6sLXV3dEu+HiOhNl5eXJyVTtWrVquhw6A2hr68PAEhOTkbdunXVcvuvwp7y09HRQbt27RAWFiaVKZVKhIWFwdXVtdBtXF1dZe0BIDQ0VGpvZ2cHCwsLWZv09HRERkYW2WdR+7l+/brsacPQ0FCYmJigRYsWJe6HiIiKlz9nysDAoIIjoTdN/jWnrnl7FXrLz9/fHz4+Pmjfvj2cnZ2xcuVKZGZmwtfXFwDg7e2NevXqYfHixQCAyZMno1u3bli2bBn69euHHTt24OLFi/jhhx8AvFiAa8qUKVi4cCHs7e1hZ2eHuXPnwsrKCoMGDZL2Gx8fj5SUFMTHxyMvLw9XrlwBADRu3BhGRkbo1asXWrRogREjRmDp0qVITEzEnDlzMHHiRI5AERGVA97mo3+buq+5Ck2ohg8fjn/++Qfz5s1DYmIinJycEBISIk0Aj4+Pl72UsFOnTti2bRvmzJmDTz/9FPb29ti3bx9atWoltZkxYwYyMzMxduxYpKamokuXLggJCYGenp7UZt68edi0aZP0Pf+pvePHj6N79+7Q1tbGgQMHMH78eLi6usLQ0BA+Pj74/PPPy/uUEBERkQZSCCFERQdRVaWnp8PU1BRpaWl89QwRUSGysrIQFxcHOzs72f/4EpW34q690vz+rvBXzxAREZFm6N69O6ZMmVKu+xg5cqRsmo6mYEJFRERUCiNHjoRCoSjw6d27d0WHJvNvJEHEdaiIiIhKrXfv3ti4caOsjA8vvZk4QkVERJVSZmbmv/YpLV1dXVhYWMg+NWrUAACcOHECOjo6OH36tNR+6dKlqFu3rrS2Yffu3eHn5wc/Pz+Ympqidu3amDt3Ll6e3pydnY2AgADUq1cPhoaGcHFxwYkTJ2RxhIeHo3v37jAwMECNGjXg7u6Ox48fY+TIkTh58iRWrVoljaDdu3cPAHDjxg306dMHRkZGMDc3x4gRI/Dw4UPZ+ff29oaRkREsLS2xbNmyYs/F77//DoVCUeBtJytWrECjRo0AvFh3bPTo0bCzs4O+vj6aNm2KVatWFduvra0tVq5cKStzcnLC/Pnzpe+pqan46KOPUKdOHZiYmKBHjx64evVqsf2qGxMqDWU76yBsZx0st/4zMzOlv3xl+cem0sjMBBSKF5+qcDxEbwAjI6N/7VMe8m+1jRgxAmlpabh8+TLmzp2L//znP7LXm23atAnVqlXD+fPnsWrVKixfvhz/+c9/pHo/Pz9ERERgx44duHbtGt5//3307t0bd+7cAQBcuXIFPXv2RIsWLRAREYEzZ87g3XffRV5eHlatWgVXV1eMGTMGCQkJSEhIgLW1NVJTU9GjRw+0adMGFy9eREhICJKSkjBs2DBpv9OnT8fJkyfx66+/4ujRozhx4gQuXbpU5PE2adIE7du3x9atW2XlW7duxQcffADgxXqT9evXx+7du3Hr1i3MmzcPn376KXbt2lWmc/3+++8jOTkZhw8fRlRUFNq2bYuePXsiJSWlTP2qpHze00xClO5t1SVlM/OAsJl5QO395svIyBAABACRkZFRbvv512RkCAG8+FSF4yGqIp49eyZu3bolnj17VqAu/9+gf+NTGj4+PkJbW1sYGhrKPosWLZLaZGdnCycnJzFs2DDRokULMWbMGFkf3bp1E82bNxdKpVIqmzlzpmjevLkQQoj79+8LbW1t8ddff8m269mzp5g9e7YQQghPT0/RuXPnIuPs1q2bmDx5sqzsiy++EL169ZKVPXjwQAAQMTEx4smTJ0JHR0fs2rVLqn/06JHQ19cv0NfLVqxYIRo1aiR9j4mJEQBEdHR0kdtMnDhRDB06VPru4+MjBg4cKH23sbERK1askG3j6OgoAgMDhRBCnD59WpiYmIisrCxZm0aNGonvv/++yP0Wd+2V5vc351AREVGllJGRUdEhvNbbb7+NtWvXyspq1qwp/VlHRwdbt25F69atYWNjgxUrVhToo2PHjrJFJl1dXbFs2TLk5eXh+vXryMvLQ5MmTWTbZGdnS6/quXLlCt5//32V4r569SqOHz9e6OhcbGwsnj17hpycHLi4uMiOq2nTpsX26+HhgYCAAJw7dw4dO3bE1q1b0bZtWzRr1kxqs2bNGmzYsAHx8fHSflR5PVxhx5KRkVHg1UXPnj1DbGxsqftVFRMqIiKqlAwNDSs6hNcyNDRE48aNi21z9uxZAEBKSgpSUlJUOq6MjAxoa2sjKiqqwPvm8pOh/PfSqSIjIwPvvvsuvvrqqwJ1lpaWuHv3rsp9Ai/ed9ujRw9s27YNHTt2xLZt2zB+/HipfseOHQgICMCyZcvg6uoKY2NjfP3114iMjCyyTy0tLdmcMkD+upiMjAxYWloWmFcGAGZmZqU6jtJgQkVERFROYmNjMXXqVKxfvx47d+6Ej48PfvvtN9lbQF5NJs6dOwd7e3toa2ujTZs2yMvLQ3JyMt56661C99G6dWuEhYVhwYIFhdbr6OggLy9PVta2bVv88ssvsLW1RbVqBVOBRo0aoXr16oiMjESDBg0AAI8fP8bvv/+Obt26FXvMXl5emDFjBjw9PfHHH3/Aw8NDqgsPD0enTp0wYcIE2TkqTp06dZCQkCB9T09PR1xcnOxYEhMTUa1aNdja2hbbV3nipHQiIqJSys7ORmJiouyT/6RcXl4ePvzwQ7i7u8PX1xcbN27EtWvXCjwtFx8fD39/f8TExGD79u1YvXo1Jk+eDODFRG8vLy94e3tjz549iIuLw/nz57F48WIcPPjiwaTZs2fjwoULmDBhAq5du4bbt29j7dq1Uhy2traIjIzEvXv38PDhQyiVSkycOBEpKSnw9PTEhQsXEBsbiyNHjsDX1xd5eXkwMjLC6NGjMX36dBw7dgw3btzAyJEjZYlgUYYMGYInT55g/PjxePvtt2FlZSXV2dvb4+LFizhy5Ah+//13zJ07FxcuXCi2vx49emDLli04ffo0rl+/Dh8fH9lonZubG1xdXTFo0CAcPXoU9+7dw9mzZ/HZZ5/h4sWLJfgpqgcTKiIiolIKCQmBpaWl7NOlSxcAwKJFi3D//n18//33AF7cSvvhhx8wZ84c2SP93t7eePbsGZydnTFx4kRMnjwZY8eOleo3btwIb29vTJs2DU2bNsWgQYNw4cIFaeSoSZMmOHr0KK5evQpnZ2e4urri119/lUaeAgICoK2tjRYtWqBOnTqIj4+HlZUVwsPDkZeXh169esHBwQFTpkyBmZmZlDR9/fXXeOutt/Duu+/Czc0NXbp0Qbt27V57ToyNjfHuu+/i6tWr8PLyktWNGzcOQ4YMwfDhw+Hi4oJHjx7JRqsKM3v2bHTr1g39+/dHv379MGjQIGkZBuDFS44PHTqErl27wtfXF02aNIGHhwfu378ve5qyvPFdfuWoPN/ll79kwr0l/dTab77MzEzp/nxGRoZGzGUoVmYmkD/5MiMD0PTjIaoi3vR3+XXv3h1OTk4F1lmi8sd3+RERERFVMkyoiIiIiMqIT/kRERFVkMIe9SfNxBEqIiIiojJiQkVERERURkyoiIiIiMqICRURERFRGTGhIiIiIiojJlREREREZcSEioiIqBSePHmCKVOmwMbGBvr6+ujUqVOB99KNHDkSCoVC9undu/dr+16zZg1sbW2hp6cHFxcXnD9/XlaflZWFiRMnolatWjAyMsLQoUORlJSk1uMj1TChIiIiKoWPPvoIoaGh2LJlC65fv45evXrBzc0Nf/31l6xd7969kZCQIH22b99ebL87d+6Ev78/AgMDcenSJTg6OsLd3R3JyclSm6lTp+K///0vdu/ejZMnT+Lvv//GkCFDyuU4y9Pz588rOgS1YUJFRESkomfPnuGXX37B0qVL0bVrVzRu3Bjz589H48aNsXbtWllbXV1dWFhYSJ8aNWoU2/fy5csxZswY+Pr6okWLFli3bh0MDAywYcMGAEBaWhp+/PFHLF++HD169EC7du2wceNGnD17FufOnSuy3+zsbMycORPW1tbQ1dVF48aN8eOPP0r1J0+ehLOzM3R1dWFpaYlZs2YhNzcXAPDDDz/AysoKSqVS1ufAgQMxatQo6fuvv/6Ktm3bQk9PDw0bNsSCBQukPoAXLzJeu3YtBgwYAENDQyxatAh5eXkYPXo07OzsoK+vj6ZNm2LVqlWy/eTm5uKTTz6BmZkZatWqhZkzZ8LHxweDBg2S2iiVSixevFjqx9HRET///HOx51qdmFAREVHllJn5731UlJubi7y8vAIv1dXX18eZM2dkZSdOnEDdunXRtGlTjB8/Ho8ePSqy35ycHERFRcHNzU0q09LSgpubGyIiIgAAUVFReP78uaxNs2bN0KBBA6lNYby9vbF9+3YEBQUhOjoa33//PYz+/6Xxf/31F/r27YsOHTrg6tWrWLt2LX788UcsXLgQAPD+++/j0aNHOH78uNRfSkoKQkJC4OXlBQA4ffo0vL29MXnyZNy6dQvff/89goODsWjRIlkc8+fPx+DBg3H9+nWMGjUKSqUS9evXx+7du3Hr1i3MmzcPn376KXbt2iVt89VXX2Hr1q3YuHEjwsPDkZ6ejn379sn6Xbx4MTZv3ox169bh5s2bmDp1Kj788EOcPHmyyHOiVoLKTVpamgAg0tLS1N63zcwDwmbmAbX3my8jI0MAEABERkZGue3nX5ORIQTw4lMVjoeoinj27Jm4deuWePbsWcHK/L+z/8anFFxdXUW3bt3EX3/9JXJzc8WWLVuElpaWaNKkidRm+/bt4tdffxXXrl0Te/fuFc2bNxcdOnQQubm5hfb5119/CQDi7NmzsvLp06cLZ2dnIYQQW7duFTo6OgW27dChg5gxY0ah/cbExAgAIjQ0tND6Tz/9VDRt2lQolUqpbM2aNcLIyEjk5eUJIYQYOHCgGDVqlFT//fffCysrK6m+Z8+e4ssvv5T1u2XLFmFpaSl9ByCmTJlSaAwvmzhxohg6dKj03dzcXHz99dfS99zcXNGgQQMxcOBAIYQQWVlZwsDAoMB5Gz16tPD09Cx0H8Vde6X5/c13+REREZXCli1bMGrUKNSrVw/a2tpo27YtPD09ERUVJbXx8PCQ/uzg4IDWrVujUaNGOHHiBHr27PmvxXrlyhVoa2ujW7duhdZHR0fD1dUVCoVCKuvcuTMyMjLw559/okGDBvDy8sKYMWPw3XffQVdXF1u3boWHhwe0tF7c7Lp69SrCw8NlI1J5eXnIysrC06dPYWBgAABo3759gf2vWbMGGzZsQHx8PJ49e4acnBw4OTkBeHGLMykpCc7OzlJ7bW1ttGvXTroFeffuXTx9+hTvvPOOrN+cnBy0adOmFGdMdUyoNJztrIMAgHtL+lVwJEREapaRUdERFKtRo0Y4efIkMjMzkZ6eDktLSwwfPhwNGzYscpuGDRuidu3auHv3bqEJVe3ataGtrV3gib2kpCRYWFgAACwsLJCTk4PU1FSYmZkV2uZV+vr6pThCuXfffRdCCBw8eBAdOnTA6dOnsWLFCqk+IyMDCxYsKHRy/Mu3Rg0NDWV1O3bsQEBAAJYtWwZXV1cYGxvj66+/RmRkZIljy/j/a+XgwYOoV6+erE5XV7fE/ZQFEyoiIqqcXvnFW1kZGhrC0NAQjx8/xpEjR7B06dIi2/7555949OgRLC0tC63X0dFBu3btEBYWJk24ViqVCAsLg5+fHwCgXbt2qF69OsLCwjB06FAAQExMDOLj4+Hq6lpovw4ODlAqlTh58qRs7lW+5s2b45dffoEQQhqlCg8Ph7GxMerXrw/gRVI0ZMgQbN26FXfv3kXTpk3Rtm1bqY+2bdsiJiYGjRs3fs0ZkwsPD0enTp0wYcIEqSw2Nlb6s6mpKczNzXHhwgV07doVwIuRr0uXLkmjWC1atICuri7i4+OLHIUrb0yoiIiISuHIkSMQQqBp06a4e/cupk+fjmbNmsHX1xfA/0Zshg4dCgsLC8TGxmLGjBlo3Lgx3N3dpX569uyJwYMHSwmTv78/fHx80L59ezg7O2PlypXIzMyU+jU1NcXo0aPh7++PmjVrwsTEBJMmTYKrqys6duxYaKy2trbw8fHBqFGjEBQUBEdHR9y/fx/JyckYNmwYJkyYgJUrV2LSpEnw8/NDTEwMAgMD4e/vL93SAwAvLy/0798fN2/exIcffijbx7x589C/f380aNAA7733HrS0tHD16lXcuHFDmtxeGHt7e2zevBlHjhyBnZ0dtmzZggsXLsDOzk5qM2nSJCxevBiNGzdGs2bNsHr1ajx+/FhK/oyNjREQEICpU6dCqVSiS5cuSEtLQ3h4OExMTODj46PKj7Z0SjzbilT2b0xKL6/J6ZyUTkT/hmInpVdyO3fuFA0bNhQ6OjrCwsJCTJw4UaSmpkr1T58+Fb169RJ16tQR1atXFzY2NmLMmDEiMTFR1o+NjY0IDAyUla1evVo0aNBA6OjoCGdnZ3Hu3DlZ/bNnz8SECRNEjRo1hIGBgRg8eLBISEgoNt5nz56JqVOnCktLS6GjoyMaN24sNmzYINWfOHFCdOjQQTqemTNniufPn8v6yMvLE5aWlgKAiI2NLbCPkJAQ0alTJ6Gvry9MTEyEs7Oz+OGHH6R6AGLv3r2ybbKyssTIkSOFqampMDMzE+PHjxezZs0Sjo6OUpvnz58LPz8/YWJiImrUqCFmzpwp3n//feHh4SG1USqVYuXKlaJp06aievXqok6dOsLd3V2cPHmyyPOhzknpiv8/QCoH6enpMDU1RVpaGkxMTNTad/7cqXzqnkOVmZkpPU6bkZFR4J63xsnMBP7/eJCRoTG3EoiquqysLMTFxcHOzq7AEgRERVEqlWjevDmGDRuGL774olR9FHftleb3N2/5ERERUaV2//59HD16FN26dUN2dja+/fZbxMXF4YMPPqjo0CRc2JOIiIgqNS0tLQQHB6NDhw7o3Lkzrl+/jt9++w3Nmzev6NAkHKEiIiKiSs3a2hrh4eEVHUaxOEJFREREVEZMqIiIiIjKiAkVERERURkxoSIiIiIqI5UnpcfFxeH06dO4f/8+nj59ijp16qBNmzZwdXXlGiJERET0RipxQrV161asWrUKFy9ehLm5OaysrKCvr4+UlBTExsZCT08PXl5emDlzJmxsbMozZiIiIqJKpUS3/Nq0aYOgoCCMHDkS9+/fR0JCAqKionDmzBncunUL6enp+PXXX6FUKtG+fXvs3r27vOMmIiLSCMHBwTAzM6voMP5VCoUC+/btK7L+3r17UCgUuHLlyr8WU3kr0QjVkiVLZC9yfJWuri66d++O7t27Y9GiRbh375664iMiojfUq6/YKk+leX3XyJEjkZqaWiBxOHHiBN5++208fvwYZmZmGD58OPr27VuiPoODgzFlyhSkpqaqHI8msba2RkJCAmrXrl3RoahNiRKq4pKpV9WqVQu1atUqdUBERERVib6+PvT19Ss6jEpFW1sbFhYWFR2GWpXqKb/Y2FjMmTMHnp6eSE5OBgAcPnwYN2/eVGtwREREmu7VW35Xr17F22+/DWNjY5iYmKBdu3a4ePEiTpw4AV9fX6SlpUGhUEChUGD+/PkAgMePH8Pb2xs1atSAgYEB+vTpgzt37sj2s379elhbW8PAwACDBw/G8uXLZfuNjY3FwIEDYW5uDiMjI3To0AG//fabrA9bW1ssXLgQ3t7eMDIygo2NDfbv349//vkHAwcOhJGREVq3bo2LFy++9rgTEhLQp08f6Ovro2HDhvj555+luldv+Z04cQIKhQJhYWFo3749DAwM0KlTJ8TExLz2vFUWKidUJ0+ehIODAyIjI7Fnzx5kZGQAeHGggYGBag+QiIioKvHy8kL9+vVx4cIFREVFYdasWahevTo6deqElStXwsTEBAkJCUhISEBAQACAF7cXL168iP379yMiIgJCCPTt2xfPnz8HAISHh+Pjjz/G5MmTceXKFbzzzjtYtGiRbL8ZGRno27cvwsLCcPnyZfTu3Rvvvvsu4uPjZe1WrFiBzp074/Lly+jXrx9GjBgBb29vfPjhh7h06RIaNWoEb29vCCGKPc65c+di6NChuHr1Kry8vODh4YHo6Ohit/nss8+wbNkyXLx4EdWqVcOoUaNee94qC5WXTZg1axYWLlwIf39/GBsbS+U9evTAt99+q9bgiIiIKrMDBw7AyMhIVpaXl1fsNvHx8Zg+fTqaNWsGALC3t5fqTE1NoVAoZLfD7ty5g/379yM8PBydOnUC8OLJe2tra+zbtw/vv/8+Vq9ejT59+kgJWJMmTXD27FkcOHBA6sfR0RGOjo7S9y+++AJ79+7F/v374efnJ5X37dsX48aNAwDMmzcPa9euRYcOHfD+++8DAGbOnAlXV1ckJSUVe9vu/fffx0cffSTtKzQ0FKtXr8Z3331X5DaLFi1Ct27dALzIN/r164esrCzo6ekVe94qA5VHqK5fv47BgwcXKK9bty4ePnyolqCIiIg0wdtvv40rV67IPv/5z3+K3cbf3x8fffQR3NzcsGTJEsTGxhbbPjo6GtWqVYOLi4tUVqtWLTRt2lQa8YmJiYGzs7Nsu1e/Z2RkICAgAM2bN4eZmRmMjIwQHR1dYISqdevW0p/Nzc0BAA4ODgXK8qf8FMXV1bXA99eNUL28b0tLS9l+VD1v/zaVEyozMzMkJCQUKL98+TLq1aunlqCIiIg0gaGhIRo3biz7vO534fz583Hz5k3069cPx44dQ4sWLbB3795yjzUgIAB79+7Fl19+idOnT+PKlStwcHBATk6OrN3Lt9EUCkWRZUqlUu0xFrefijpvJaVyQuXh4YGZM2ciMTERCoUCSqUS4eHhCAgIgLe3d3nESCXwbz5eTEREZdOkSRNMnToVR48exZAhQ7Bx40YAgI6OToFbhs2bN0dubi4iIyOlskePHiEmJgYtWrQAADRt2hQXLlyQbffq9/DwcIwcORKDBw+Gg4MDLCwsynWZo3PnzhX43rx58zL1WdR5qwxUTqi+/PJLNGvWDNbW1sjIyECLFi3QtWtXdOrUCXPmzCmPGImIiKqEZ8+ewc/PDydOnMD9+/cRHh6OCxcuSImGra0tMjIyEBYWhocPH+Lp06ewt7fHwIEDMWbMGJw5cwZXr17Fhx9+iHr16mHgwIEAgEmTJuHQoUNYvnw57ty5g++//x6HDx+WRnmAF3OO9uzZgytXruDq1av44IMPymWUKd/u3buxYcMG/P777wgMDMT58+dlc7VU8brzVhmonFDp6Ohg/fr1iI2NxYEDB/DTTz/h9u3b2LJlC7S1tcsjRiIioipBW1sbjx49gre3N5o0aYJhw4ahT58+WLBgAQCgU6dO+PjjjzF8+HDUqVMHS5cuBQBs3LgR7dq1Q//+/eHq6gohBA4dOiTdIuvcuTPWrVuH5cuXw9HRESEhIZg6darsHbvLly9HjRo10KlTJ7z77rtwd3dH27Zty+1YFyxYgB07dqB169bYvHkztm/fLo2oqep1560yUIjXPfdIpZaeng5TU1OkpaXBxMRErX0XdouvNCv9FiUzM1N6ciUjIwOGhoZq67tCZGYC+U/iZGQAmn48RFVEVlYW4uLiYGdnJ/vlT2U3ZswY3L59G6dPn67oUCql4q690vz+LtGyCf7+/iUOcPny5SVuS0REROrxzTff4J133oGhoSEOHz6MTZs2FbtEAalXiRKqy5cvl6izl+/VEhER0b/n/PnzWLp0KZ48eYKGDRsiKChIWgeKyl+JEqrjx4+XdxxERERUBrt27aroEN5opXqXX74HDx7gwYMH6oqFiIiISCOpnFDl5uZi7ty5MDU1ha2tLWxtbWFqaoo5c+ZI7xQiIiJSBZ+Pon+buq85ld/lN2nSJOzZswdLly6VlpWPiIjA/Pnz8ejRI6xdu1atARIRUdWV/9j/06dPoa+vX8HR0Jvk6dOnAKC2FyyrnFBt27YNO3bsQJ8+faSy1q1bw9raGp6enkyoiIioxLS1tWFmZia9r83AwIAPOFG5EkLg6dOnSE5OhpmZmdrW0FQ5odLV1YWtrW2Bcjs7O+jo6KgjJiIieoNYWFgAeP3LdonUyczMTLr21EHlhMrPzw9ffPEFNm7cCF1dXQBAdnY2Fi1aVOol5YmI6M2lUChgaWmJunXrci4u/SuqV6+u9re7lCihGjJkiOz7b7/9hvr168PR0REAcPXqVeTk5KBnz54qB7BmzRp8/fXXSExMhKOjI1avXg1nZ+ci2+/evRtz587FvXv3YG9vj6+++gp9+/aV6oUQCAwMxPr165GamorOnTtj7dq1sLe3l9qkpKRg0qRJ+O9//wstLS0MHToUq1atklYGB4AjR44gMDAQN2/ehJ6eHrp27Yply5YVOjpHRERlp62tzVeYkcYq0VN+pqamss/QoUPRv39/WFtbw9raGv3798eQIUNgamqq0s537twJf39/BAYG4tKlS3B0dIS7u3uRw75nz56Fp6cnRo8ejcuXL2PQoEEYNGgQbty4IbVZunQpgoKCsG7dOkRGRsLQ0BDu7u7IysqS2nh5eeHmzZsIDQ3FgQMHcOrUKYwdO1aqj4uLw8CBA9GjRw9cuXIFR44cwcOHDwsklkRERERABb/Lz8XFBR06dMC3334LAFAqlbC2tsakSZMwa9asAu2HDx+OzMxMHDhwQCrr2LEjnJycsG7dOgghYGVlhWnTpiEgIAAAkJaWBnNzcwQHB8PDwwPR0dFo0aIFLly4gPbt2wMAQkJC0LdvX/z555+wsrLCzz//DE9PT2RnZ0NL60XO+d///hcDBw5EdnZ2kU8EZGdnIzs7W/qenp4Oa2trvsuvMuC7/IiIqIRK8y6/Mi3sWRY5OTmIioqCm5vb/4LR0oKbmxsiIiIK3SYiIkLWHgDc3d2l9nFxcUhMTJS1MTU1hYuLi9QmIiICZmZmUjIFAG5ubtDS0kJkZCQAoF27dtDS0sLGjRuRl5eHtLQ0bNmyBW5ubsU+Xrl48WLZSJ61tbWKZ4WIiIg0kcqT0gHg559/xq5duxAfH4+cnBxZ3aVLl0rUx8OHD5GXlwdzc3NZubm5OW7fvl3oNomJiYW2T0xMlOrzy4prU7duXVl9tWrVULNmTamNnZ0djh49imHDhmHcuHHIy8uDq6srDh06VOwxzZ49W/Yi6fwRKiIiIqraVB6hCgoKgq+vL8zNzXH58mU4OzujVq1a+OOPP2RrU2myxMREjBkzBj4+Prhw4QJOnjwJHR0dvPfee8WurKqrqwsTExPZh4iIiKo+lROq7777Dj/88ANWr14NHR0dzJgxA6Ghofjkk0+QlpZW4n5q164NbW1tJCUlycqTkpKKXBfCwsKi2Pb5/31dm1cnvefm5iIlJUVqs2bNGpiammLp0qVo06YNunbtip9++glhYWHSbUEiIiKifConVPHx8ejUqRMAQF9fH0+ePAEAjBgxAtu3by9xPzo6OmjXrh3CwsKkMqVSibCwMOmVNq9ydXWVtQeA0NBQqb2dnR0sLCxkbdLT0xEZGSm1cXV1RWpqKqKioqQ2x44dg1KphIuLC4AXy9HnT0bPl/8or1KpLPEx/ttsZx0sdLI6ERERlS+VEyoLCwukpKQAABo0aIBz584BeDEhXNUHBv39/bF+/Xps2rQJ0dHRGD9+PDIzM+Hr6wsA8Pb2xuzZs6X2kydPRkhICJYtW4bbt29j/vz5uHjxorSgqEKhwJQpU7Bw4ULs378f169fh7e3N6ysrDBo0CAAQPPmzdG7d2+MGTMG58+fR3h4OPz8/ODh4QErKysAQL9+/XDhwgV8/vnnuHPnDi5dugRfX1/Y2NigTZs2qp4yIiIiquJUnpTeo0cP7N+/H23atIGvry+mTp2Kn3/+GRcvXlR5nabhw4fjn3/+wbx585CYmAgnJyeEhIRIk8rj4+NlI0WdOnXCtm3bMGfOHHz66aewt7fHvn370KpVK6nNjBkzkJmZibFjxyI1NRVdunRBSEgI9PT0pDZbt26Fn58fevbsKS3sGRQUJDvGbdu2YenSpVi6dCkMDAzg6uqKkJAQvryTiIiIClB5HSqlUgmlUolq1V7kYjt27MDZs2dhb2+PcePG8X1+LynNOhYlVdytPXWsR8V1qIiI6E1Vmt/fKo9QaWlpyUaNPDw84OHhoWo3RERERFVGqdahevz4MX788UdER0cDAFq0aAFfX1/UrFlTrcERERERaQKVJ6WfOnUKdnZ2CAoKwuPHj/H48WMEBQXBzs4Op06dKo8YiYiIiCo1lUeoJk6ciGHDhmHt2rXSUgJ5eXmYMGECJk6ciOvXr6s9SCIiIqLKTOURqrt372LatGlSMgW8WKPJ398fd+/eVWtwRERERJpA5YSqbdu20typl0VHR8PR0VEtQRERERFpkhLd8rt27Zr0508++QSTJ0/G3bt30bFjRwDAuXPnsGbNGixZsqR8oiQiIiKqxEqUUDk5OUGhUMhWQp8xY0aBdh988AGGDx+uvuiIiIiINECJEqq4uLjyjoOIiIhIY5UoobKxsSnvOIiIiIg0VqkW9oyNjcXKlStlC3tOnjwZjRo1UmtwRERERJpA5af8jhw5ghYtWuD8+fNo3bo1WrdujcjISLRs2RKhoaHlESMRERFRpabyCNWsWbMwderUAk/0zZo1CzNnzsQ777yjtuCIiIiINIHKI1TR0dEYPXp0gfJRo0bh1q1bagmKiIiISJOonFDVqVMHV65cKVB+5coV1K1bVx0xURnZzjoI21kHKzoMIiKiN4bKt/zGjBmDsWPH4o8//kCnTp0AAOHh4fjqq6/g7++v9gCJiIiIKjuVE6q5c+fC2NgYy5Ytw+zZswEAVlZWmD9/Pj755BO1B0hERERU2amUUOXm5mLbtm344IMPMHXqVDx58gQAYGxsXC7BEREREWkCleZQVatWDR9//DGysrIAvEikmEwRERHRm07lSenOzs64fPlyecRCREREpJFUnkM1YcIETJs2DX/++SfatWsHQ0NDWX3r1q3VFhwRERGRJlA5ofLw8AAA2QR0hUIBIQQUCgXy8vLUFx0RERGRBlA5oYqLiyuPOIiIiIg0lsoJlY2NTXnEQURERKSxVE6oACAmJgarV69GdHQ0AKB58+aYNGkSmjZtqtbgiIiIiDSByk/5/fLLL2jVqhWioqLg6OgIR0dHXLp0Ca1atcIvv/xSHjESERERVWoqj1DNmDEDs2fPxueffy4rDwwMxIwZMzB06FC1BUdERESkCVQeoUpISIC3t3eB8g8//BAJCQlqCYqIiIhIk6icUHXv3h2nT58uUH7mzBm89dZbagmKiIiISJOofMtvwIABmDlzJqKiotCxY0cAwLlz57B7924sWLAA+/fvl7UlIiIiquoUQgihygZaWiUb1OIin0B6ejpMTU2RlpYGExMTtfZtO+vga9vcW9Kv1P1nZmbCyMgIAJCRkVFgRXyNk5kJ/P/xICMD0PTjISKiclOa398qj1AplUqVAyMiIiKqylSeQ0Waw3bWwRKNZBEREVHZMKEiIiIiKiMmVERERERlxISKiIiIqIyYUBERERGVUakSqtjYWMyZMweenp5ITk4GABw+fBg3b95Ua3BEREREmkDlhOrkyZNwcHBAZGQk9uzZg4yMDADA1atXERgYqPYAiYiIiCo7lROqWbNmYeHChQgNDYWOjo5U3qNHD5w7d06twRERERFpApUTquvXr2Pw4MEFyuvWrYuHDx+qJSgiIiIiTaJyQmVmZoaEhIQC5ZcvX0a9evXUEhQRERGRJlE5ofLw8MDMmTORmJgIhUIBpVKJ8PBwBAQEwNvbuzxiJCIiIqrUVE6ovvzySzRr1gzW1tbIyMhAixYt0LVrV3Tq1Alz5swpjxiJiIiIKjWVXo4shEBiYiKCgoIwb948XL9+HRkZGWjTpg3s7e3LK0YiIiKiSk3lhKpx48a4efMm7O3tYW1tXV5xEREREWkMlW75aWlpwd7eHo8ePSqveIiIiIg0jspzqJYsWYLp06fjxo0b5REPERERkcZR6ZYfAHh7e+Pp06dwdHSEjo4O9PX1ZfUpKSlqC46IiIhIE6icUK1cubIcwqDyZDvrIO4t6VfRYRAREVVZKidUPj4+5REHERERkcZSOaECgLy8POzbtw/R0dEAgJYtW2LAgAHQ1tZWa3BEREREmkDlhOru3bvo27cv/vrrLzRt2hQAsHjxYlhbW+PgwYNo1KiR2oMkIiIiqsxUfsrvk08+QaNGjfDgwQNcunQJly5dQnx8POzs7PDJJ5+UR4xERERElZrKI1QnT57EuXPnULNmTamsVq1aWLJkCTp37qzW4IiIiIg0gcojVLq6unjy5EmB8oyMDOjo6KglKCIiIiJNonJC1b9/f4wdOxaRkZEQQkAIgXPnzuHjjz/GgAEDyiNGIiIiokpN5YQqKCgIjRo1gqurK/T09KCnp4fOnTujcePGWLVqVXnESERERFSpqTyHyszMDL/++ivu3LmD27dvAwCaN2+Oxo0bqz04IiIiIk1QqnWoAMDe3h729vbqjIWIiIhII6mcUAkh8PPPP+P48eNITk6GUqmU1e/Zs0dtwRERERFpApXnUE2ZMgUjRoxAXFwcjIyMYGpqKvuoas2aNbC1tYWenh5cXFxw/vz5Ytvv3r0bzZo1g56eHhwcHHDo0CFZvRAC8+bNg6WlJfT19eHm5oY7d+7I2qSkpMDLywsmJiYwMzPD6NGjkZGRUaCfb775Bk2aNIGuri7q1auHRYsWqXx8REREVPWpPEK1ZcsW7NmzB3379i3zznfu3Al/f3+sW7cOLi4uWLlyJdzd3RETE4O6desWaH/27Fl4enpi8eLF6N+/P7Zt24ZBgwbh0qVLaNWqFQBg6dKlCAoKwqZNm2BnZ4e5c+fC3d0dt27dgp6eHgDAy8sLCQkJCA0NxfPnz+Hr64uxY8di27Zt0r4mT56Mo0eP4ptvvoGDgwNSUlKQkpJS5mMmIiKiqkchhBCqbGBnZ4fDhw+jWbNmZd65i4sLOnTogG+//RYAoFQqYW1tjUmTJmHWrFkF2g8fPhyZmZk4cOCAVNaxY0c4OTlh3bp1EELAysoK06ZNQ0BAAAAgLS0N5ubmCA4OhoeHB6Kjo9GiRQtcuHAB7du3BwCEhISgb9+++PPPP2FlZYXo6Gi0bt0aN27ckF6vUxrp6ekwNTVFWloaTExMSt1PYWxnHVSp/b0l/VRqn5mZCSMjIwAv1hgzNDRUaftKJzMT+P/jQUYGoOnHQ0RE5aY0v79VvuU3f/58LFiwAM+ePVM5wJfl5OQgKioKbm5u/wtGSwtubm6IiIgodJuIiAhZewBwd3eX2sfFxSExMVHWxtTUFC4uLlKbiIgImJmZSckUALi5uUFLSwuRkZEAgP/+979o2LAhDhw4ADs7O9ja2uKjjz567QhVdnY20tPTZR8iIiKq+lROqIYNG4bHjx+jbt26cHBwQNu2bWWfknr48CHy8vJgbm4uKzc3N0diYmKh2yQmJhbbPv+/r2vz6u3EatWqoWbNmlKbP/74A/fv38fu3buxefNmBAcHIyoqCu+9916xx7R48WLZfDJra+ti2xMREVHVoPIcKh8fH0RFReHDDz+Eubk5FApFecRVoZRKJbKzs7F582Y0adIEAPDjjz+iXbt2iImJKfI24OzZs+Hv7y99T09PZ1JFRET0BlA5oTp48CCOHDmCLl26lGnHtWvXhra2NpKSkmTlSUlJsLCwKHQbCwuLYtvn/zcpKQmWlpayNk5OTlKb5ORkWR+5ublISUmRtre0tES1atWkZAp4sXgpAMTHxxeZUOnq6kJXV7fY464o+XOuVJ1LRURERK+n8i0/a2trtUyw1tHRQbt27RAWFiaVKZVKhIWFwdXVtdBtXF1dZe0BIDQ0VGpvZ2cHCwsLWZv09HRERkZKbVxdXZGamoqoqCipzbFjx6BUKuHi4gIA6Ny5M3JzcxEbGyu1+f333wEANjY2ZTlsIiIiqoJUTqiWLVuGGTNm4N69e2Xeub+/P9avX49NmzYhOjoa48ePR2ZmJnx9fQEA3t7emD17ttR+8uTJCAkJwbJly3D79m3Mnz8fFy9ehJ+fHwBAoVBgypQpWLhwIfbv34/r16/D29sbVlZWGDRoEIAXI029e/fGmDFjcP78eYSHh8PPzw8eHh6wsrIC8GKSetu2bTFq1ChcvnwZUVFRGDduHN555x3ZqBURERERUIpbfh9++CGePn2KRo0awcDAANWrV5fVq7JW0/Dhw/HPP/9g3rx5SExMhJOTE0JCQqRJ5fHx8dDS+l/O16lTJ2zbtg1z5szBp59+Cnt7e+zbt09agwoAZsyYgczMTIwdOxapqano0qULQkJCpDWoAGDr1q3w8/NDz549oaWlhaFDhyIoKEiq19LSwn//+19MmjQJXbt2haGhIfr06YNly5aperqIiIjoDaDyOlSbNm0qtt7Hx6dMAVUllWkdqnwlnUPFdaiIiOhNVZrf36V6yo+IiIiI/kflOVREREREJMeEioiIiKiMmFARERERlRETKiIiIqIyKnNClZ6ejn379iE6Olod8RARERFpnFK9HPnbb78FADx79gzt27fHsGHD0Lp1a/zyyy9qD5DUy3bWwVIvuUBERESFUzmhOnXqFN566y0AwN69eyGEQGpqKoKCgrBw4UK1B0hERERU2amcUKWlpaFmzZoAgJCQEAwdOhQGBgbo168f7ty5o/YAiYiIiCq7Ur0cOSIiApmZmQgJCUGvXr0AAI8fP5a93oWIiIjoTaHySulTpkyBl5cXjIyMYGNjg+7duwN4cSvQwcFB3fERERERVXoqJ1QTJkyAs7MzHjx4gHfeeUd6eXHDhg05h4qIiIjeSConVADQvn17tG/fXlbWr1/JXrpLREREVNWonFDl5eUhODgYYWFhSE5OhlKplNUfO3ZMbcERERERaQKVE6rJkycjODgY/fr1Q6tWraBQKMojLiIiIiKNoXJCtWPHDuzatQt9+/Ytj3iIiIiINI7Kyybo6OigcePG5RELERERkUZSOaGaNm0aVq1aBSFEecRDREREpHFUvuV35swZHD9+HIcPH0bLli1RvXp1Wf2ePXvUFhwRERGRJlA5oTIzM8PgwYPLIxYiIiIijaRyQrVx48byiIP+ZbazDgIA7i3h+mFERERlpfIcKiIiIiKSK9VK6T///DN27dqF+Ph45OTkyOouXbqklsCIiIiINIXKI1RBQUHw9fWFubk5Ll++DGdnZ9SqVQt//PEH+vTpUx4xEhEREVVqKidU3333HX744QesXr0aOjo6mDFjBkJDQ/HJJ58gLS2tPGIkIiIiqtRUTqji4+PRqVMnAIC+vj6ePHkCABgxYgS2b9+u3uiIiIiINIDKCZWFhQVSUlIAAA0aNMC5c+cAAHFxcVzsk4iIiN5IKidUPXr0wP79+wEAvr6+mDp1Kt555x0MHz6c61MRERHRG0nlp/x++OEHKJVKAMDEiRNRq1YtnD17FgMGDMC4cePUHiARERFRZadyQqWlpQUtrf8NbHl4eMDDw0OtQRERERFpklIt7Hn69Gl8+OGHcHV1xV9//QUA2LJlC86cOaPW4IiIiIg0gcoJ1S+//AJ3d3fo6+vj8uXLyM7OBgCkpaXhyy+/VHuARERERJWdygnVwoULsW7dOqxfvx7Vq1eXyjt37sxV0jVQ/jv9iIiIqPRUTqhiYmLQtWvXAuWmpqZITU1VR0xEREREGqVU61DdvXu3QPmZM2fQsGFDtQRFREREpElUTqjGjBmDyZMnIzIyEgqFAn///Te2bt2KgIAAjB8/vjxiJCIiIqrUVF42YdasWVAqlejZsyeePn2Krl27QldXFwEBAZg0aVJ5xEhERERUqamcUCkUCnz22WeYPn067t69i4yMDLRo0QJGRkblER8RERFRpadyQpVPR0cHLVq0UGcsRERERBpJ5YQqKysLq1evxvHjx5GcnCy9hiYfl04gIiKiN43KCdXo0aNx9OhRvPfee3B2doZCoSiPuIiIiIg0hsoJ1YEDB3Do0CF07ty5POIhIiIi0jgqL5tQr149GBsbl0csRERERBpJ5YRq2bJlmDlzJu7fv18e8RARERFpHJVv+bVv3x5ZWVlo2LAhDAwMZO/zA4CUlBS1BUf/jvz3+d1b0q+CIyEiItJMKidUnp6e+Ouvv/Dll1/C3Nyck9KJiIjojadyQnX27FlERETA0dGxPOIhIiIi0jgqz6Fq1qwZnj17Vh6xEBEREWkklROqJUuWYNq0aThx4gQePXqE9PR02YeIiIjoTaPyLb/evXsDAHr27CkrF0JAoVAgLy9PPZERERERaQiVE6rjx4+XRxxEREREGkvlhKpbt27lEQcRERGRxlJ5DhURERERyTGhIiIiIiojJlREREREZaRSQiWEQHx8PLKyssorHqpAtrMOSq+hISIiopJTOaFq3LgxHjx4UF7xEBEREWkclRIqLS0t2Nvb49GjR+UVDxEREZHGKdVK6dOnT8eNGzfKIx4iIiIijaPyOlTe3t54+vQpHB0doaOjA319fVl9SkqK2oIjIiIi0gQqJ1QrV64shzCIiIiINJfKCZWPj095xEFERESksUq1DlVsbCzmzJkDT09PJCcnAwAOHz6MmzdvliqINWvWwNbWFnp6enBxccH58+eLbb979240a9YMenp6cHBwwKFDh2T1QgjMmzcPlpaW0NfXh5ubG+7cuSNrk5KSAi8vL5iYmMDMzAyjR49GRkZGofu7e/cujI2NYWZmVqrjIyIioqpN5YTq5MmTcHBwQGRkJPbs2SMlIVevXkVgYKDKAezcuRP+/v4IDAzEpUuX4OjoCHd3dylRe9XZs2fh6emJ0aNH4/Llyxg0aBAGDRokmyS/dOlSBAUFYd26dYiMjIShoSHc3d1l62d5eXnh5s2bCA0NxYEDB3Dq1CmMHTu2wP6eP38OT09PvPXWWyofGxEREb0ZFEIIocoGrq6ueP/99+Hv7w9jY2NcvXoVDRs2xPnz5zFkyBD8+eefKgXg4uKCDh064NtvvwUAKJVKWFtbY9KkSZg1a1aB9sOHD0dmZiYOHDgglXXs2BFOTk5Yt24dhBCwsrLCtGnTEBAQAABIS0uDubk5goOD4eHhgejoaLRo0QIXLlxA+/btAQAhISHo27cv/vzzT1hZWUl9z5w5E3///Td69uyJKVOmIDU1tchjyc7ORnZ2tvQ9PT0d1tbWSEtLg4mJiUrn5XXKcwHOe0v6ITMzE0ZGRgCAjIwMGBoaltv+/hWZmcD/Hw8yMgBNPx4iIio36enpMDU1Ven3t8ojVNevX8fgwYMLlNetWxcPHz5Uqa+cnBxERUXBzc3tfwFpacHNzQ0RERGFbhMRESFrDwDu7u5S+7i4OCQmJsramJqawsXFRWoTEREBMzMzKZkCADc3N2hpaSEyMlIqO3bsGHbv3o01a9aU6HgWL14MU1NT6WNtbV2i7Sob21kH0XxuSEWHQUREpDFUTqjMzMyQkJBQoPzy5cuoV6+eSn09fPgQeXl5MDc3l5Wbm5sjMTGx0G0SExOLbZ//39e1qVu3rqy+WrVqqFmzptTm0aNHGDlyJIKDg0ucnc6ePRtpaWnShyvKExERvRlUTqg8PDwwc+ZMJCYmQqFQQKlUIjw8HAEBAfD29i6PGCvEmDFj8MEHH6Br164l3kZXVxcmJiayDxEREVV9KidUX375JZo1awZra2tkZGSgRYsW6Nq1Kzp16oQ5c+ao1Fft2rWhra2NpKQkWXlSUhIsLCwK3cbCwqLY9vn/fV2bVye95+bmIiUlRWpz7NgxfPPNN6hWrRqqVauG0aNHIy0tDdWqVcOGDRtUOk4iIiKq2lROqHR0dLB+/XrExsbiwIED+Omnn3D79m1s2bIF2traKvfVrl07hIWFSWVKpRJhYWFwdXUtdBtXV1dZewAIDQ2V2tvZ2cHCwkLWJj09HZGRkVIbV1dXpKamIioqSmpz7NgxKJVKuLi4AHgxz+rKlSvS5/PPP4exsTGuXLlS6BwyIiIienOpvLBnvgYNGqBBgwZlDsDf3x8+Pj5o3749nJ2dsXLlSmRmZsLX1xfAi1fd1KtXD4sXLwYATJ48Gd26dcOyZcvQr18/7NixAxcvXsQPP/wAAFAoFJgyZQoWLlwIe3t72NnZYe7cubCyssKgQYMAAM2bN0fv3r0xZswYrFu3Ds+fP4efnx88PDykJ/yaN28ui/PixYvQ0tJCq1atynzMREREVLWonFDl5eUhODgYYWFhSE5OhlKplNUfO3ZMpf6GDx+Of/75B/PmzUNiYiKcnJwQEhIiTSqPj4+Hltb/BtI6deqEbdu2Yc6cOfj0009hb2+Pffv2yRKdGTNmIDMzE2PHjkVqaiq6dOmCkJAQ6OnpSW22bt0KPz8/9OzZE1paWhg6dCiCgoJUPR1EREREqq9D5efnh+DgYPTr1w+WlpZQKBSy+hUrVqg1QE1WmnUsSqo816ECAGVOFh6seA8A16EiIqI3S2l+f6s8QrVjxw7s2rULffv2VTlAIiIioqqoVJPSGzduXB6xEBEREWkklROqadOmYdWqVVDxTiERERFRlVWiW35DhgyRfT927BgOHz6Mli1bonr16rK6PXv2qC86IiIiIg1QooTK1NRU9p3rMBERERH9T4kSqo0bN5Z3HEREREQaS+U5VEREREQkp/KyCW3atCmw9hTwYoVyPT09NG7cGCNHjsTbb7+tlgCJiIiIKjuVR6h69+6NP/74A4aGhnj77bfx9ttvw8jICLGxsejQoQMSEhLg5uaGX3/9tTziJSIiIqp0VB6hevjwIaZNm4a5c+fKyhcuXIj79+/j6NGjCAwMxBdffIGBAweqLVAiIiKiykrlEapdu3bB09OzQLmHhwd27doFAPD09ERMTEzZoyMiIiLSAConVHp6ejh79myB8rNnz0ovH1YqlbIXEZNmaz43pKJDICIiqtRUvuU3adIkfPzxx4iKikKHDh0AABcuXMB//vMffPrppwCAI0eOwMnJSa2BEhEREVVWKidUc+bMgZ2dHb799lts2bIFANC0aVOsX78eH3zwAQDg448/xvjx49UbKREREVElpXJCBQBeXl7w8vIqsl5fX7/UARERERFpGi7sSURERFRGJRqhqlmzJn7//XfUrl0bNWrUKHRhz3wpKSlqC46IiIhIE5QooVqxYgWMjY0BACtXrizPeIiIiIg0TokSKh8fn0L/TERERESlnJSuVCpx9+5dJCcnQ6lUyuq6du2qlsCocrGddRAAcG9JvwqOhIiIqPJROaE6d+4cPvjgA9y/fx9CCFmdQqFAXl6e2oIjIiIi0gQqJ1Qff/wx2rdvj4MHD8LS0rLYCepEREREbwKVE6o7d+7g559/RuPGjcsjHiIiIiKNo/I6VC4uLrh79255xEJERESkkUo0QnXt2jXpz5MmTcK0adOQmJgIBwcHVK9eXda2devW6o2QiIiIqJIrUULl5OQEhUIhm4Q+atQo6c/5dZyUTkRERG+iEiVUcXFx5R0HERERkcYqUUJlY2NT3nGQhuB6VERERAWVaFL6uXPnStzh06dPcfPmzVIHRERERKRpSpRQjRgxAu7u7ti9ezcyMzMLbXPr1i18+umnaNSoEaKiotQaJBEREVFlVqJbfrdu3cLatWsxZ84cfPDBB2jSpAmsrKygp6eHx48f4/bt28jIyMDgwYNx9OhRODg4lHfcRERERJVGiRKq6tWr45NPPsEnn3yCixcv4syZM7h//z6ePXsGR0dHTJ06FW+//TZq1qxZ3vESERERVToqr5Tevn17tG/fvjxiISIiItJIKq+UTkRERERyTKioVGxnHZSWUCAiInrTMaEiIiIiKiMmVERERERlpHJC9ccff5RHHEREREQaS+WEqnHjxnj77bfx008/ISsrqzxiIiIiItIoKidUly5dQuvWreHv7w8LCwuMGzcO58+fL4/YiIiIiDSCygmVk5MTVq1ahb///hsbNmxAQkICunTpglatWmH58uX4559/yiNOIiIiokqr1JPSq1WrhiFDhmD37t346quvcPfuXQQEBMDa2hre3t5ISEhQZ5xUSXHpBCIiojIkVBcvXsSECRNgaWmJ5cuXIyAgALGxsQgNDcXff/+NgQMHqjNOIiIiokpL5VfPLF++HBs3bkRMTAz69u2LzZs3o2/fvtDSepGb2dnZITg4GLa2tuqOlYiIiKhSUjmhWrt2LUaNGoWRI0fC0tKy0DZ169bFjz/+WObgiIiIiDSByglVaGgoGjRoII1I5RNC4MGDB2jQoAF0dHTg4+OjtiCJiIiIKjOV51A1atQIDx8+LFCekpICOzs7tQRFREREpElUTqiEEIWWZ2RkQE9Pr8wBkebhi5KJiOhNV+Jbfv7+/gAAhUKBefPmwcDAQKrLy8tDZGQknJyc1B4gERERUWVX4oTq8uXLAF6MUF2/fh06OjpSnY6ODhwdHREQEKD+CImIiIgquRInVMePHwcA+Pr6YtWqVTAxMSm3oIiIiIg0icpP+W3cuLE84iAiIiLSWCVKqIYMGYLg4GCYmJhgyJAhxbbds2ePWgIjIiIi0hQlSqhMTU2hUCikPxMRERHR/5QooXr5Nh9v+VFR8pdOuLekXwVHQkRE9O9SeR2qZ8+e4enTp9L3+/fvY+XKlTh69KhaAyMiIiLSFConVAMHDsTmzZsBAKmpqXB2dsayZcswcOBArF27Vu0BEhEREVV2KidUly5dwltvvQUA+Pnnn2FhYYH79+9j8+bNCAoKUnuARERERJWdygnV06dPYWxsDAA4evQohgwZAi0tLXTs2BH3799Xe4BERERElZ3KCVXjxo2xb98+PHjwAEeOHEGvXr0AAMnJyVzskwDw3X5ERPTmUTmhmjdvHgICAmBrawsXFxe4uroCeDFa1aZNG7UHSERERFTZqZxQvffee4iPj8fFixcREhIilffs2RMrVqwoVRBr1qyBra0t9PT04OLigvPnzxfbfvfu3WjWrBn09PTg4OCAQ4cOyeqFEJg3bx4sLS2hr68PNzc33LlzR9YmJSUFXl5eMDExgZmZGUaPHo2MjAyp/sSJExg4cCAsLS1haGgIJycnbN26tVTHR0RERFWbygkVAFhYWKBNmzbQ0vrf5s7OzmjWrJnKfe3cuRP+/v4IDAzEpUuX4OjoCHd3dyQnJxfa/uzZs/D09MTo0aNx+fJlDBo0CIMGDcKNGzekNkuXLkVQUBDWrVuHyMhIGBoawt3dHVlZWVIbLy8v3Lx5E6GhoThw4ABOnTqFsWPHyvbTunVr/PLLL7h27Rp8fX3h7e2NAwcOqHyMREREVLUphBBClQ0yMzOxZMkShIWFITk5GUqlUlb/xx9/qBSAi4sLOnTogG+//RYAoFQqYW1tjUmTJmHWrFkF2g8fPhyZmZmyxKZjx45wcnLCunXrIISAlZUVpk2bhoCAAABAWloazM3NERwcDA8PD0RHR6NFixa4cOEC2rdvDwAICQlB37598eeff8LKyqrQWPv16wdzc3Ns2LChRMeWnp4OU1NTpKWlqX1+WXnPUVLmZOHBivcAANZTf4aWjp7KfVSqBT4zMwEjoxd/zsgADA0rNh4iIqq0SvP7W+WXI3/00Uc4efIkRowYAUtLS+mVNKWRk5ODqKgozJ49WyrT0tKCm5sbIiIiCt0mIiIC/v7+sjJ3d3fs27cPABAXF4fExES4ublJ9aampnBxcUFERAQ8PDwQEREBMzMzKZkCADc3N2hpaSEyMhKDBw8udN9paWlo3rx5kceTnZ2N7Oxs6Xt6enrRB/8GsJ11sHIlVUREROVE5YTq8OHDOHjwIDp37lzmnT98+BB5eXkwNzeXlZubm+P27duFbpOYmFho+8TERKk+v6y4NnXr1pXVV6tWDTVr1pTavGrXrl24cOECvv/++yKPZ/HixViwYEGR9URERFQ1qTyHqkaNGqhZs2Z5xFJpHT9+HL6+vli/fj1atmxZZLvZs2cjLS1N+jx48OBfjJKIiIgqisoJ1RdffIF58+bJ3udXWrVr14a2tjaSkpJk5UlJSbCwsCh0GwsLi2Lb5//3dW1enfSem5uLlJSUAvs9efIk3n33XaxYsQLe3t7FHo+uri5MTExkHyIiIqr6VE6oli1bhiNHjsDc3BwODg5o27at7KMKHR0dtGvXDmFhYVKZUqlEWFiYtL7Vq1xdXWXtASA0NFRqb2dnBwsLC1mb9PR0REZGSm1cXV2RmpqKqKgoqc2xY8egVCrh4uIilZ04cQL9+vXDV199JXsCkIiIiOhlKs+hGjRokFoD8Pf3h4+PD9q3bw9nZ2esXLkSmZmZ8PX1BQB4e3ujXr16WLx4MQBg8uTJ6NatG5YtW4Z+/fphx44duHjxIn744QcAgEKhwJQpU7Bw4ULY29vDzs4Oc+fOhZWVlRR78+bN0bt3b4wZMwbr1q3D8+fP4efnBw8PD+kJv+PHj6N///6YPHkyhg4dKs2t0tHReeNueZZF/tOInJxORERVmcoJVWBgoFoDGD58OP755x/MmzcPiYmJcHJyQkhIiDSpPD4+XrbeVadOnbBt2zbMmTMHn376Kezt7bFv3z60atVKajNjxgxkZmZi7NixSE1NRZcuXRASEgI9vf89+r9161b4+fmhZ8+e0NLSwtChQ2Uvd960aROePn2KxYsXS8kcAHTr1g0nTpxQ6zkgIiIizabyOlQAkJqaip9//hmxsbGYPn06atasiUuXLsHc3Bz16tUrjzg10pu+DtXLKnyEiutQERFRCf0r61Bdu3YNbm5uMDU1xb179zBmzBjUrFkTe/bsQXx8PDZv3qxy4ERERESaTOVJ6f7+/hg5ciTu3Lkju4XWt29fnDp1Sq3BUdVhO+tguY+qERERVRSVE6oLFy5g3LhxBcrr1atX5KKYRERERFWZygmVrq5uoa9U+f3331GnTh21BEVERESkSVROqAYMGIDPP/8cz58/B/BimYL4+HjMnDkTQ4cOVXuARERERJVdqRb2zMjIQN26dfHs2TN069YNjRs3hrGxMRYtWlQeMVIVwrlURERUFan8lJ+pqSlCQ0Nx5swZXLt2DRkZGWjbti3c3NzKIz4iIiKiSk/lhCpfly5d0KVLF3XGQkRERKSRVEqolEolgoODsWfPHty7dw8KhQJ2dnZ47733MGLECCgUivKKk4iIiKjSKvEcKiEEBgwYgI8++gh//fUXHBwc0LJlS9y/fx8jR47E4MGDyzNOqmI4j4qIiKqSEo9QBQcH49SpUwgLC8Pbb78tqzt27BgGDRqEzZs3w9vbW+1BEhEREVVmJR6h2r59Oz799NMCyRQA9OjRA7NmzcLWrVvVGhwRERGRJihxQnXt2jX07t27yPo+ffrg6tWragmKiIiISJOUOKFKSUmBubl5kfXm5uZ4/PixWoIiIiIi0iQlTqjy8vJQrVrRU660tbWRm5urlqDozcBFPomIqKoo8aR0IQRGjhwJXV3dQuuzs7PVFhQRERGRJilxQuXj4/PaNnzCj0ojf5Tq3pJ+FRwJERFR6ZQ4odq4cWN5xkFERESksVR+OTIRERERyTGhIiIiIiojJlRUafCpPyIi0lRMqIiIiIjKiAkVERERURkxoaJKh7f9iIhI0zChIiIiIiojJlREREREZcSEiiolPvFHRESahAkVERERURkxoaJKjSNVRESkCZhQEREREZUREyoiIiKiMmJCRRqBt/6IiKgyY0JFREREVEZMqEijcJSKiIgqIyZURERERGXEhIo0DudTERFRZcOEioiIiKiMmFCRxuJIFRERVRZMqIiIiIjKiAkVaTyOVBERUUVjQkVERERURkyoqMrgSBUREVUUJlRU5TCpIiKifxsTKiIiIqIyYkJFVRJv/xER0b+JCRURERFRGVWr6ACIylP+KNW9ud0rNhAiIqrSOEJFb4Tmc0MqOgQiIqrCmFARERERlRETKnrjNJ8bwgnrRESkVkyo6I3FJwGJiEhdmFDRG4+JFRERlRUTKqL/x6SKiIhKiwkV0Us4WkVERKXBhIqoEEysiIhIFVzYk6gYLydV95b0q8BIiIioMuMIFVEJcdSKiIiKwhEqIhW9mlRx5IqIiJhQEZURbwsSERETKiI14ugVEdGbiQkVUTkqbM4VkywioqqHCRXRv4xJFhFR1VMpnvJbs2YNbG1toaenBxcXF5w/f77Y9rt370azZs2gp6cHBwcHHDp0SFYvhMC8efNgaWkJfX19uLm54c6dO7I2KSkp8PLygomJCczMzDB69GhkZGTI2ly7dg1vvfUW9PT0YG1tjaVLl6rngIlekf8EYWEfIiKq/Cp8hGrnzp3w9/fHunXr4OLigpUrV8Ld3R0xMTGoW7dugfZnz56Fp6cnFi9ejP79+2Pbtm0YNGgQLl26hFatWgEAli5diqCgIGzatAl2dnaYO3cu3N3dcevWLejp6QEAvLy8kJCQgNDQUDx//hy+vr4YO3Ystm3bBgBIT09Hr1694ObmhnXr1uH69esYNWoUzMzMMHbs2H/vBNEbryRJFUe4iIgqlkIIISoyABcXF3To0AHffvstAECpVMLa2hqTJk3CrFmzCrQfPnw4MjMzceDAAamsY8eOcHJywrp16yCEgJWVFaZNm4aAgAAAQFpaGszNzREcHAwPDw9ER0ejRYsWuHDhAtq3bw8ACAkJQd++ffHnn3/CysoKa9euxWeffYbExETo6OgAAGbNmoV9+/bh9u3bJTq29PR0mJqaIi0tDSYmJmU6T68q75ELZU4WHqx4DwBgPfVnaOnolev+ypt+Thai//94mk/9Gc80/HjUjQkZEdH/lOb3d4WOUOXk5CAqKgqzZ8+WyrS0tODm5oaIiIhCt4mIiIC/v7+szN3dHfv27QMAxMXFITExEW5ublK9qakpXFxcEBERAQ8PD0RERMDMzExKpgDAzc0NWlpaiIyMxODBgxEREYGuXbtKyVT+fr766is8fvwYNWrUKBBbdnY2srOzpe9paWkAXvxg1E2Z/VTtfcr6z8mS70soy3V/5S0vJwv5P4W87KdQavjxqFuDqbsrOgSV3FjgXtEhEFEVlv97W5UxpwpNqB4+fIi8vDyYm5vLys3NzYscBUpMTCy0fWJiolSfX1Zcm1dvJ1arVg01a9aUtbGzsyvQR35dYQnV4sWLsWDBggLl1tbWhR6LpvjrO++KDkEtTPP/UEWO501murKiIyCiN8GTJ09gamr6+oaoBHOoqpLZs2fLRs+USiVSUlJQq1YtKBQKte0nPT0d1tbWePDggdpvJWoKngOeA4DnAOA5AHgO3vTjB9R/DoQQePLkCaysrEq8TYUmVLVr14a2tjaSkpJk5UlJSbCwsCh0GwsLi2Lb5/83KSkJlpaWsjZOTk5Sm+TkZFkfubm5SElJkfVT2H5e3serdHV1oaurKyszMzMrtK06mJiYvLF/efLxHPAcADwHAM8BwHPwph8/oN5zUNKRqXwVumyCjo4O2rVrh7CwMKlMqVQiLCwMrq6uhW7j6uoqaw8AoaGhUns7OztYWFjI2qSnpyMyMlJq4+rqitTUVERFRUltjh07BqVSCRcXF6nNqVOn8Pz5c9l+mjZtWujtPiIiInpzVfg6VP7+/li/fj02bdqE6OhojB8/HpmZmfD19QUAeHt7yyatT548GSEhIVi2bBlu376N+fPn4+LFi/Dz8wMAKBQKTJkyBQsXLsT+/ftx/fp1eHt7w8rKCoMGDQIANG/eHL1798aYMWNw/vx5hIeHw8/PDx4eHtLw3gcffAAdHR2MHj0aN2/exM6dO7Fq1aoCE+KJiIiIICqB1atXiwYNGggdHR3h7Owszp07J9V169ZN+Pj4yNrv2rVLNGnSROjo6IiWLVuKgwcPyuqVSqWYO3euMDc3F7q6uqJnz54iJiZG1ubRo0fC09NTGBkZCRMTE+Hr6yuePHkia3P16lXRpUsXoaurK+rVqyeWLFmi3gMvpaysLBEYGCiysrIqOpQKw3PAcyAEz4EQPAdC8By86ccvROU4BxW+DhURERGRpqvwW35EREREmo4JFREREVEZMaEiIiIiKiMmVERERERlxIRKA61Zswa2trbQ09ODi4sLzp8/X9EhqWzx4sXo0KEDjI2NUbduXQwaNAgxMTGyNt27d4dCoZB9Pv74Y1mb+Ph49OvXDwYGBqhbty6mT5+O3NxcWZsTJ06gbdu20NXVRePGjREcHFzeh1ci8+fPL3B8zZo1k+qzsrIwceJE1KpVC0ZGRhg6dGiBxWY1+fgBwNbWtsA5UCgUmDhxIoCqeQ2cOnUK7777LqysrKBQKKT3kOYTQmDevHmwtLSEvr4+3NzccOfOHVmblJQUeHl5wcTEBGZmZhg9ejQyMjJkba5du4a33noLenp6sLa2xtKlSwvEsnv3bjRr1gx6enpwcHDAoUOH1H68hSnuHDx//hwzZ86Eg4MDDA0NYWVlBW9vb/z999+yPgq7dpYsWSJro6nnAABGjhxZ4Ph69+4ta1OVrwMAhf7boFAo8PXXX0ttKtV1UGHPF1Kp7NixQ+jo6IgNGzaImzdvijFjxggzMzORlJRU0aGpxN3dXWzcuFHcuHFDXLlyRfTt21c0aNBAZGRkSG26desmxowZIxISEqRPWlqaVJ+bmytatWol3NzcxOXLl8WhQ4dE7dq1xezZs6U2f/zxhzAwMBD+/v7i1q1bYvXq1UJbW1uEhIT8q8dbmMDAQNGyZUvZ8f3zzz9S/ccffyysra1FWFiYuHjxoujYsaPo1KmTVK/pxy+EEMnJybLjDw0NFQDE8ePHhRBV8xo4dOiQ+Oyzz8SePXsEALF3715Z/ZIlS4SpqanYt2+fuHr1qhgwYICws7MTz549k9r07t1bODo6inPnzonTp0+Lxo0bC09PT6k+LS1NmJubCy8vL3Hjxg2xfft2oa+vL77//nupTXh4uNDW1hZLly4Vt27dEnPmzBHVq1cX169fr9BzkJqaKtzc3MTOnTvF7du3RUREhHB2dhbt2rWT9WFjYyM+//xz2bXx8r8fmnwOhBDCx8dH9O7dW3Z8KSkpsjZV+ToQQsiOPSEhQWzYsEEoFAoRGxsrtalM1wETKg3j7OwsJk6cKH3Py8sTVlZWYvHixRUYVdklJycLAOLkyZNSWbdu3cTkyZOL3ObQoUNCS0tLJCYmSmVr164VJiYmIjs7WwghxIwZM0TLli1l2w0fPly4u7ur9wBKITAwUDg6OhZal5qaKqpXry52794tlUVHRwsAIiIiQgih+cdfmMmTJ4tGjRoJpVIphKj618Crv0SUSqWwsLAQX3/9tVSWmpoqdHV1xfbt24UQQty6dUsAEBcuXJDaHD58WCgUCvHXX38JIYT47rvvRI0aNaRzIIQQM2fOFE2bNpW+Dxs2TPTr108Wj4uLixg3bpxaj/F1CvtF+qrz588LAOL+/ftSmY2NjVixYkWR22j6OfDx8REDBw4scps38ToYOHCg6NGjh6ysMl0HvOWnQXJychAVFQU3NzepTEtLC25uboiIiKjAyMouLS0NAFCzZk1Z+datW1G7dm20atUKs2fPxtOnT6W6iIgIODg4wNzcXCpzd3dHeno6bt68KbV5+Xzlt6ks5+vOnTuwsrJCw4YN4eXlhfj4eABAVFQUnj9/Lou9WbNmaNCggRR7VTj+l+Xk5OCnn37CqFGjZC8Tr+rXwMvi4uKQmJgoi9fU1BQuLi6yn7uZmRnat28vtXFzc4OWlhYiIyOlNl27doWOjo7Uxt3dHTExMXj8+LHURlPOS1paGhQKRYF3oy5ZsgS1atVCmzZt8PXXX8tu9VaFc3DixAnUrVsXTZs2xfjx4/Ho0SOp7k27DpKSknDw4EGMHj26QF1luQ4q9OXIpJqHDx8iLy9P9ssDAMzNzXH79u0KiqrslEolpkyZgs6dO6NVq1ZS+QcffAAbGxtYWVnh2rVrmDlzJmJiYrBnzx4AQGJiYqHnIr+uuDbp6el49uwZ9PX1y/PQiuXi4oLg4GA0bdoUCQkJWLBgAd566y3cuHEDiYmJ0NHRKfALxNzc/LXHll9XXJvKcPyv2rdvH1JTUzFy5EiprKpfA6/Kj7mweF8+nrp168rqq1Wrhpo1a8ra2NnZFegjv65GjRpFnpf8PiqLrKwszJw5E56enrKX3n7yySdo27YtatasibNnz2L27NlISEjA8uXLAWj+OejduzeGDBkCOzs7xMbG4tNPP0WfPn0QEREBbW3tN+462LRpE4yNjTFkyBBZeWW6DphQUYWbOHEibty4gTNnzsjKx44dK/3ZwcEBlpaW6NmzJ2JjY9GoUaN/O0y169Onj/Tn1q1bw8XFBTY2Nti1a1el+iX/b/nxxx/Rp08f6X2aQNW/Bqh4z58/x7BhwyCEwNq1a2V1L79XtXXr1tDR0cG4ceOwePFi6Orq/tuhqp2Hh4f0ZwcHB7Ru3RqNGjXCiRMn0LNnzwqMrGJs2LABXl5e0NPTk5VXpuuAt/w0SO3ataGtrV3gSa+kpCRYWFhUUFRl4+fnhwMHDuD48eOoX79+sW1dXFwAAHfv3gUAWFhYFHou8uuKa2NiYlLpkhYzMzM0adIEd+/ehYWFBXJycpCamipr8/LPuiod//379/Hbb7/ho48+KrZdVb8G8mMu7u+4hYUFkpOTZfW5ublISUlRy7VRWf4tyU+m7t+/j9DQUNnoVGFcXFyQm5uLe/fuAaga5+BlDRs2RO3atWXX/ptwHQDA6dOnERMT89p/H4CKvQ6YUGkQHR0dtGvXDmFhYVKZUqlEWFgYXF1dKzAy1Qkh4Ofnh7179+LYsWMFhmQLc+XKFQCApaUlAMDV1RXXr1+X/aOS/w9vixYtpDYvn6/8NpXxfGVkZCA2NhaWlpZo164dqlevLos9JiYG8fHxUuxV6fg3btyIunXrol+/fsW2q+rXgJ2dHSwsLGTxpqenIzIyUvZzT01NRVRUlNTm2LFjUCqVUsLp6uqKU6dO4fnz51Kb0NBQNG3aFDVq1JDaVNbzkp9M3blzB7/99htq1ar12m2uXLkCLS0t6TaYpp+DV/3555949OiR7Nqv6tdBvh9//BHt2rWDo6Pja9tW6HWg0hR2qnA7duwQurq6Ijg4WNy6dUuMHTtWmJmZyZ5y0gTjx48Xpqam4sSJE7LHXZ8+fSqEEOLu3bvi888/FxcvXhRxcXHi119/FQ0bNhRdu3aV+sh/ZL5Xr17iypUrIiQkRNSpU6fQR+anT58uoqOjxZo1ayrNsgHTpk0TJ06cEHFxcSI8PFy4ubmJ2rVri+TkZCHEi2UTGjRoII4dOyYuXrwoXF1dhaurq7S9ph9/vry8PNGgQQMxc+ZMWXlVvQaePHkiLl++LC5fviwAiOXLl4vLly9LT7AtWbJEmJmZiV9//VVcu3ZNDBw4sNBlE9q0aSMiIyPFmTNnhL29vexx+dTUVGFubi5GjBghbty4IXbs2CEMDAwKPCperVo18c0334jo6GgRGBj4rz0uX9w5yMnJEQMGDBD169cXV65ckf37kP+k1tmzZ8WKFSvElStXRGxsrPjpp59EnTp1hLe3d5U4B0+ePBEBAQEiIiJCxMXFid9++020bdtW2Nvbi6ysLKmPqnwd5EtLSxMGBgZi7dq1BbavbNcBEyoNtHr1atGgQQOho6MjnJ2dxblz5yo6JJUBKPSzceNGIYQQ8fHxomvXrqJmzZpCV1dXNG7cWEyfPl22BpEQQty7d0/06dNH6Ovri9q1a4tp06aJ58+fy9ocP35cODk5CR0dHdGwYUNpHxVt+PDhwtLSUujo6Ih69eqJ4cOHi7t370r1z549ExMmTBA1atQQBgYGYvDgwSIhIUHWhyYff74jR44IACImJkZWXlWvgePHjxd67fv4+AghXiydMHfuXGFubi50dXVFz549C5ybR48eCU9PT2FkZCRMTEyEr6+vePLkiazN1atXRZcuXYSurq6oV6+eWLJkSYFYdu3aJZo0aSJ0dHREy5YtxcGDB8vtuF9W3DmIi4sr8t+H/PXJoqKihIuLizA1NRV6enqiefPm4ssvv5QlG0Jo7jl4+vSp6NWrl6hTp46oXr26sLGxEWPGjCnwP85V+TrI9/333wt9fX2RmppaYPvKdh0ohBBCtTEtIiIiInoZ51ARERERlRETKiIiIqIyYkJFREREVEZMqIiIiIjKiAkVERERURkxoSIiIiIqIyZURERERGXEhIqIiIiojJhQEb3GvXv3oFAopPfIVQa3b99Gx44doaenBycnp0LbCCEwduxY1KxZs8TxV8SxKhQK7Nu3r8Tt58+fX+Qxl5eRI0di0KBBZe4nPDwcDg4OqF69ulr6q+oSExPxzjvvwNDQEGZmZhUdTqFUvX7VSV3XJakHEyqq9EaOHAmFQoElS5bIyvft2weFQlFBUVWswMBAGBoaIiYmpsBLPfOFhIQgODgYBw4cQEJCAlq1avUvR1k+AgICijzmys7f3x9OTk6Ii4tDcHBwRYdT6a1YsQIJCQm4cuUKfv/994oOp1AJCQno06dPRYdBlQATKtIIenp6+Oqrr/D48eOKDkVtcnJySr1tbGwsunTpAhsbG9SqVavINpaWlujUqRMsLCxQrVq1Uu+vMjEyMirymCu72NhY9OjRA/Xr1y/1iEtZrpt/gzrji42NRbt27WBvb4+6dev+6/svCQsLC+jq6pZ6+8r+86SSY0JFGsHNzQ0WFhZYvHhxkW0KuxW0cuVK2NraSt/zh8i//PJLmJubw8zMDJ9//jlyc3Mxffp01KxZE/Xr18fGjRsL9H/79m106tQJenp6aNWqFU6ePCmrv3HjBvr06QMjIyOYm5tjxIgRePjwoVTfvXt3+Pn5YcqUKahduzbc3d0LPQ6lUonPP/8c9evXh66uLpycnBASEiLVKxQKREVF4fPPP4dCocD8+fML9DFy5EhMmjQJ8fHxUCgU0jkICQlBly5dYGZmhlq1aqF///6IjY0t8pzm5eVh1KhRaNasGeLj4wEAv/76K9q2bQs9PT00bNgQCxYsQG5ubpF9AMCGDRvQsmVL6OrqwtLSEn5+fkW2nTlzJpo0aQIDAwM0bNgQc+fOxfPnz6X6V3/OpfmZ5uTkwM/PD5aWltDT04ONjU2x11a+BQsWoE6dOjAxMcHHH38s+2WoVCqxePFi2NnZQV9fH46Ojvj5558B/O9W6qNHjzBq1CgoFApphOrkyZNwdnaWzs2sWbNk57Oo6+Z119urHj16BE9PT9SrVw8GBgZwcHDA9u3biz3e4OBgmJmZYd++fbC3t4eenh7c3d3x4MGDAj+P//znP7Czs4Oenh4AID4+HgMHDoSRkRFMTEwwbNgwJCUlyfpfu3YtGjVqBB0dHTRt2hRbtmyR6mxtbfHLL79g8+bNUCgUGDlyZKEx5v/8Fy1aBCsrKzRt2hQA8ODBAwwbNgxmZmaoWbMmBg4ciHv37knb5eXlwd/fX/q7MGPGDPj4+Mhuodna2mLlypWy/Tk5Ocn+zr16y+91+1VnvHwVb+XChIo0gra2Nr788kusXr0af/75Z5n6OnbsGP7++2+cOnUKy5cvR2BgIPr3748aNWogMjISH3/8McaNG1dgP9OnT8e0adNw+fJluLq64t1338WjR48AAKmpqejRowfatGmDixcvIiQkBElJSRg2bJisj02bNkFHRwfh4eFYt25dofGtWrUKy5YtwzfffINr167B3d0dAwYMwJ07dwC8uMXQsmVLTJs2DQkJCQgICCi0j/ykLCEhARcuXAAAZGZmwt/fHxcvXkRYWBi0tLQwePBgKJXKAn1kZ2fj/fffx5UrV3D69Gk0aNAAp0+fhre3NyZPnoxbt27h+++/R3BwMBYtWlTk+V67di0mTpyIsWPH4vr169i/fz8aN25cZHtjY2MEBwfj1q1bWLVqFdavX48VK1YU2R5Q/WcaFBSE/fv3Y9euXYiJicHWrVtliXdhwsLCEB0djRMnTmD79u3Ys2cPFixYINUvXrwYmzdvxrp163Dz5k1MnToVH374IU6ePAlra2skJCTAxMQEK1euREJCAoYPH46//voLffv2RYcOHXD16lWsXbsWP/74IxYuXCjb96vXTUmvt5dlZWWhXbt2OHjwIG7cuIGxY8dixIgROH/+fLHH/fTpUyxatAibN29GeHg4UlNT4eHhIWtz9+5d/PLLL9izZw+uXLkCpVKJgQMHIiUlBSdPnkRoaCj++OMPDB8+XNpm7969mDx5MqZNm4YbN25g3Lhx8PX1xfHjxwEAFy5cQO/evTFs2DAkJCRg1apVxf5sYmJiEBoaigMHDuD58+dwd3eHsbExTp8+jfDwcBgZGaF3795SErxs2TIEBwdjw4YNOHPmDFJSUrB3795iz8XrlGS/lSleUjNBVMn5+PiIgQMHCiGE6Nixoxg1apQQQoi9e/eKly/hwMBA4ejoKNt2xYoVwsbGRtaXjY2NyMvLk8qaNm0q3nrrLel7bm6uMDQ0FNu3bxdCCBEXFycAiCVLlkhtnj9/LurXry+++uorIYQQX3zxhejVq5ds3w8ePBAARExMjBBCiG7duok2bdq89nitrKzEokWLZGUdOnQQEyZMkL47OjqKwMDAYvt59dgL888//wgA4vr160KI/x3r6dOnRc+ePUWXLl1Eamqq1L5nz57iyy+/lPWxZcsWYWlpWezxfPbZZ0XWAxB79+4tsv7rr78W7dq1k76/+nMuzc900qRJokePHkKpVBa535f5+PiImjVriszMTKls7dq1wsjISOTl5YmsrCxhYGAgzp49K9tu9OjRwtPTU/puamoqNm7cKH3/9NNPRdOmTWVxrFmzRupXiMKvm5JcbyXRr18/MW3atCLrN27cKACIc+fOSWXR0dECgIiMjBRCvPh5VK9eXSQnJ0ttjh49KrS1tUV8fLxUdvPmTQFAnD9/XgghRKdOncSYMWNk+3v//fdF3759pe8DBw4UPj4+xR6Dj4+PMDc3F9nZ2VLZli1bCpzX7Oxsoa+vL44cOSKEEMLS0lIsXbpUqs//O53/b40QQtjY2IgVK1bI9vfq372Xr9+S7Lc846WKVTUmVdAb46uvvkKPHj0KHZUpqZYtW0JL63+Ds+bm5rIJ29ra2qhVqxaSk5Nl27m6ukp/rlatGtq3b4/o6GgAwNWrV3H8+HEYGRkV2F9sbCyaNGkCAGjXrl2xsaWnp+Pvv/9G586dZeWdO3fG1atXS3iERbtz5w7mzZuHyMhIPHz4UBqZio+Pl50DT09P1K9fH8eOHYO+vr5UfvXqVYSHh8tGpPLy8pCVlYWnT5/CwMBAtr/k5GT8/fff6NmzZ4lj3LlzJ4KCghAbG4uMjAzk5ubCxMSk2G1U/ZmOHDkS77zzDpo2bYrevXujf//+6NWrV7H7cHR0lB2fq6srMjIy8ODBA2RkZODp06d45513ZNvk5OSgTZs2RfYZHR0NV1dX2cMVnTt3RkZGBv788080aNAAQMHrpqTX28vy8vLw5ZdfYteuXfjrr7+Qk5OD7OzsAj+zV1WrVg0dOnSQvjdr1gxmZmaIjo6Gs7MzAMDGxgZ16tSRHZe1tTWsra2lshYtWkjbdejQAdHR0Rg7dqxsX507dy52JKooDg4O0NHRkb5fvXoVd+/ehbGxsaxdVlYWYmNjkZaWhoSEBLi4uMiOs3379mW6jfa6/Va2eEm9mFCRRunatSvc3d0xe/bsAnMqtLS0Cvzj8vLcm3zVq1eXfVcoFIWWFXYbrCgZGRl499138dVXXxWos7S0lP5saGhY4j7Lw7vvvgsbGxusX78eVlZWUCqVaNWqVYGJsX379sVPP/2EiIgI9OjRQyrPyMjAggULMGTIkAJ958+dednLyVhJREREwMvLCwsWLIC7uztMTU2xY8cOLFu2rNjtVP2Ztm3bFnFxcTh8+DB+++03DBs2DG5ubtKcJ1VlZGQAAA4ePIh69erJ6soyYTnfq9dNSa+3l3399ddYtWoVVq5cCQcHBxgaGmLKlClqmRRd0dd1YeenXbt22Lp1a4G2Lyd+r1PSf1NU3W95xUsViwkVaZwlS5bAyclJmsyZr06dOkhMTIQQQvo/fnWup3Tu3Dl07doVAJCbm4uoqChpcnXbtm3xyy+/wNbWtkxP05mYmMDKygrh4eHo1q2bVB4eHi6NBpTWo0ePEBMTg/Xr1+Ott94CAJw5c6bQtuPHj0erVq0wYMAAHDx4UIqlbdu2iImJKXYO1MuMjY1ha2uLsLAwvP32269tf/bsWdjY2OCzzz6Tyu7fv1+ifanKxMQEw4cPx/Dhw/Hee++hd+/eSElJQc2aNQttf/XqVTx79kxKEs+dOwcjIyNYW1ujZs2a0NXVRXx8vOzn9jrNmzfHL7/8Irtmw8PDYWxsjPr16xe5XWmut/DwcAwcOBAffvghgBeT6H///Xe0aNGi2O1yc3Nx8eJF6fqLiYlBamoqmjdvXuxxPXjwAA8ePJBGqW7duoXU1FRpf82bN0d4eDh8fHxkMb4unpJo27Ytdu7cibp16xY5umlpaYnIyMgCf6fbtm0rtalTpw4SEhKk7+np6YiLiyvTfsszXqpYnJROGsfBwQFeXl4ICgqSlXfv3h3//PMPli5ditjYWKxZswaHDx9W237XrFmDvXv34vbt25g4cSIeP36MUaNGAQAmTpyIlJQUeHp64sKFC4iNjcWRI0fg6+uLvLw8lfYzffp0fPXVV9i5cydiYmIwa9YsXLlyBZMnTy5T/DVq1ECtWrXwww8/4O7duzh27Bj8/f2LbD9p0iQsXLgQ/fv3lxKvefPmYfPmzViwYAFu3ryJ6Oho7NixA3PmzCmyn/nz52PZsmUICgrCnTt3cOnSJaxevbrQtvb29oiPj8eOHTsQGxuLoKCgcpl4u3z5cmzfvh23b9/G77//jt27d8PCwqLYpQxycnIwevRo3Lp1C4cOHUJgYCD8/PygpaUFY2NjBAQEYOrUqdi0aRNiY2Ol49y0aVORfU6YMAEPHjzApEmTcPv2bfz6668IDAyEv7+/7Bbmq0pzvdnb2yM0NBRnz55FdHQ0xo0bV+Cpu8JUr14dkyZNQmRkJKKiojBy5Eh07Nix2ATfzc1N+nt66dIlnD9/Ht7e3ujWrRvat28P4MV1HhwcjLVr1+LOnTtYvnw59uzZU6bb+fm8vLxQu3ZtDBw4EKdPn0ZcXBxOnDiBTz75RHowYfLkyViyZAn27duH27dvY8KECUhNTZX106NHD2zZsgWnT5/G9evX4ePjA21t7TLttzzj/fbbb1W6vU7qxYSKNNLnn39e4JZc8+bN8d1332HNmjVwdHTE+fPn1fKPc74lS5ZgyZIlcHR0xJkzZ7B//37Url0bAKRRpby8PPTq1QsODg6YMmUKzMzMiv3FWJhPPvkE/v7+mDZtGhwcHBASEoL9+/fD3t6+TPFraWlhx44diIqKQqtWrTB16lR8/fXXxW4zZcoULFiwAH379sXZs2fh7u6OAwcO4OjRo+jQoQM6duyIFStWwMbGpsg+fHx8sHLlSnz33Xdo2bIl+vfvLz2x+KoBAwZg6tSp8PPzg5OTE86ePYu5c+eW6bgLY2xsjKVLl6J9+/bo0KED7t27h0OHDhX7s+rZsyfs7e3RtWtXDB8+HAMGDJA9Pv/FF19g7ty5WLx4MZo3b47evXvj4MGDsLOzK7LPevXq4dChQzh//jwcHR3x8ccfY/To0cUmqEDprrc5c+agbdu2cHd3R/fu3WFhYVGiVbYNDAwwc+ZMfPDBB+jcuTOMjIywc+fOYrdRKBT49ddfUaNGDXTt2hVubm5o2LChbLtBgwZh1apV+Oabb9CyZUt8//332LhxI7p37/7amEoS86lTp9CgQQMMGTIEzZs3x+jRo5GVlSWNAE2bNg0jRoyAj48PXF1dYWxsjMGDB8v6mT17Nrp164b+/fujX79+GDRoEBo1alSm/ZZnvA8fPix2GRQqXwrBGW1ERFSI4OBgTJkypcBISFU1cuRIpKamVtirZEizcYSKiIiIqIyYUBERERGVEW/5EREREZURR6iIiIiIyogJFREREVEZMaEiIiIiKiMmVERERERlxISKiIiIqIyYUBERERGVERMqIiIiojJiQkVERERURv8Hmjo2ZeGb7xgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(dpi=100)\n", + "b = plt.hist(attackers_sample, bins=256, density=True)\n", + "plt.vlines([E_false_claims_before_proof], ymax=np.max(b[0]), ymin=0, colors=[\"black\"])\n", + "plt.vlines([E_false_claims_before_proof_COVERAGE], ymax=np.max(b[0]), ymin=0, colors=[\"red\"])\n", + "plt.xlabel(\"Number of fake claims before a proof requiered.\")\n", + "plt.ylabel(\"Density (higher means more probable)\")\n", + "plt.legend([\"Expected value\", f\"{COVERAGE*100:0.2f} coverage\", \"Histogam bins\"])\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Appendix\n", + "\n", + "Just to show that scipy is the same as used math in the PR" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABW4AAAJOCAYAAAAnP56mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hT1RvA8W+SpumeQFsoo+ypIBsZRUal7CGCg70UZIkMlb2R+RMZAooCDmSqoIBslCmITGWUXVpaulfa5P7+KI2ErhTaBsr7eZ4+kHvPve97b26Sk5Nzz1EpiqIghBBCCCGEEEIIIYQQ4qmhtnYCQgghhBBCCCGEEEIIIcxJw60QQgghhBBCCCGEEEI8ZaThVgghhBBCCCGEEEIIIZ4y0nArhBBCCCGEEEIIIYQQTxlpuBVCCCGEEEIIIYQQQoinjDTcCiGEEEIIIYQQQgghxFNGGm6FEEIIIYQQQgghhBDiKSMNt0IIIYQQQgghhBBCCPGUkYZbIYQQQgghhBBCCCGEeMpIw60Qz5B9+/ahUqnYt2+ftVMRFlCpVEyaNClX9rV69WpUKhUnTpzIlf09jmvXrqFSqVi9erVp2aRJk1CpVFbL6VmS9hxeu3bNtMzf3x9/f3+r5SSEEEIUJFJXzh29evXCycnJqjlIvenJ9OrVi1KlSpkty83vJkKI/CMNt+KpExQUxJAhQyhfvjwODg44ODhQuXJlBg8ezN9//23t9HLNN998w8KFC60WP61im/an1WopXbo0PXr04OrVq6ZyaY11D5crVKgQDRo04MMPP+TGjRvZ7vvhv27duuU418z2pVKpGDRo0BOdhye1ffv2p74ClNvPR0Hg7+9P1apVM1wXFhb2RBXbGTNmsGXLlsdPLgM7d+6kb9++VK1aFY1Gk64inhM5vWaNRiNff/01devWxcPDA2dnZ8qXL0+PHj04cuTIY+chhBDi8UhdOX+FhIQwatQoKlasiIODA46OjtSsWZNp06YRGRlpKufv72+qX6nValxcXKhQoQJvv/02u3btynDfpUqVyrSOlpiYmE9HmLvSftTP6G/ZsmXWTs8qVCoVQ4YMyXDdhg0bHvvHhjt37jBp0iT++uuvJ0vwEUuXLuW1116jRIkSqFQqevXq9dj7WrJkiVmnj+zExsYyceJEqlatiqOjI56enlSvXp1hw4Zx586dx85DiGeZjbUTEOJhP//8M6+//jo2Nja8+eabvPjii6jVai5evMimTZtYunQpQUFBlCxZ0tqpPrFvvvmGs2fPMnz4cIu3ady4MQkJCdja2uZaHkOHDqV27dokJydz8uRJPv/8c7Zt28aZM2coWrSoqVz37t0JDAzEaDQSERHB8ePHWbhwIYsWLWLVqlUZNgCm7fthj9vg1KJFC3r06JFuefny5R9rf7ll+/btfPbZZ0994y08+fNRsmRJEhIS0Gq1uZxZwTJjxgy6dOlChw4dzJa//fbbdOvWDZ1Ol+N9fvPNN3z//fe89NJLZq/Lx5HTa3bo0KF89tlntG/fnjfffBMbGxv++ecffvnlF0qXLk29evWeKB8hhBCWk7py1nK7rnz8+HECAwOJjY3lrbfeombNmgCcOHGCWbNmceDAAXbu3Gkq7+vry8yZMwGIi4vj8uXLbNq0ibVr19K1a1fWrl2brh5VvXp13n///XSxc7O+bw1Lly5N12u3bt26Fm//JPWm58WdO3eYPHkypUqVonr16mbrVqxYgdFofKz9zp49m5iYGOrUqUNwcPAT5bhkyRIKFSpkUeNvcnIyjRs35uLFi/Ts2ZP33nuP2NhYzp07xzfffEPHjh2fuB4sxLNIGm7FU+PKlSt069aNkiVLsnv3bnx8fMzWz549myVLlqBWP38dxRMTE7G1tUWtVmNnZ5er+27UqBFdunQBoHfv3pQvX56hQ4fy1VdfMW7cOFO5l156ibfeests2+vXr9OyZUt69uxJpUqVePHFFzPd95MqX758uvgiZ570+VCpVLl+/T0qLi4OR0fHPI1hLRqNBo1G81jbzpgxgxUrVqDVamnTpg1nz57N5ewyFhISwpIlS+jfvz+ff/652bqFCxdy7969fMlDCCGE1JWzkhd15cjISDp27IhGo+HUqVNUrFjRbP306dNZsWKF2TJXV9d09dVZs2YxdOhQlixZQqlSpZg9e7bZ+mLFihXIOm6XLl0oVKjQY2//JPUmS8XHx+Pg4JCnMazlSTpa7N+/39TbNj+HzNiyZQunTp1i3bp1vPHGG2brEhMT0ev1+ZaLEE+T5+9TXTy15syZQ1xcHF9++WW6iiiAjY0NQ4cOpXjx4mbLL168SJcuXfDw8MDOzo5atWrx448/ptv+6tWrvPbaa3h4eODg4EC9evXYtm2bWZm0W8rXr1/P5MmTKVasGM7OznTp0oWoqCiSkpIYPnw4RYoUwcnJid69e5OUlJQu1tq1a6lZsyb29vZ4eHjQrVs3bt68aVrv7+/Ptm3buH79uunWobSej2k5fPfdd3z88ccUK1YMBwcHoqOjMx236+jRowQGBuLu7o6joyMvvPACixYtsvTUm3nllVeA1NvwslOyZElWr16NXq9nzpw5OYoTHBzMxYsXSU5Ofqw8H3XhwgXs7e3T9co9dOgQGo2GMWPGmJZt3bqV1q1bU7RoUXQ6HWXKlGHq1KkYDIZ0+83q3Pbq1YvPPvsMMB/OISN79+5FpVKxefPmdOu++eYbVCoVhw8fztExR0REUKdOHXx9ffnnn39ytO3D7t+/z6hRo6hWrRpOTk64uLjQqlUrTp8+bVYuozFuH5VVmUeHH0i7le78+fO88cYbuLu707BhQ9P67F5HAJcuXaJz5854e3tjZ2eHr68v3bp1Iyoq6rHORWbScr18+TK9evXCzc0NV1dXevfuTXx8vNkxxsXF8dVXX5muh7QeBhmN1WapokWLWlQBT05OZvLkyZQrVw47Ozs8PT1p2LCh6RbNnFyzkPo+oCgKL7/8crp1KpWKIkWKmB5nNt5xZsf9yy+/0KRJE5ydnXFxcaF27dp88803ZmUseW+z5DMgu/MCcPfuXXr37o2vry86nQ4fHx/at2//WM+XEELkBakrlzLLIa/rysuXL+f27dvMnz8/XaMtgJeXFx9//HGW+4DUBsj//e9/VK5cmcWLF+eojhIfH8/FixcJCwuzeJvMnD59mhkzZtCxY8fH2v6vv/6icOHC+Pv7Exsb+9h5/P333/Tq1YvSpUtjZ2eHt7c3ffr0ITw83KycJfWmzMpkdB2kDZP1559/0rhxYxwcHPjwww8BSEpKYuLEiZQtWxadTkfx4sUZPXp0umt3165dNGzYEDc3N5ycnKhQoYJpH7kpLdfz58/TtGlTHBwcKFasmNn3rX379pnupOvdu7fpdZJWB89ojFtLlSxZ0qI5LLKrO5UqVYpz586xf/9+U35ZjVF85coVgAzrnXZ2dri4uJgeZzbecUbHbTQaWbRoEdWqVcPOzo7ChQvz6quvpps7ZO3atdSpUwcHBwfc3d1p3LixWY96SK2/NmrUCEdHR5ydnWndujXnzp3L0XmB1F77AQEBFCpUCHt7e/z8/OjTp0+m50Y836THrXhq/Pzzz5QtWzZHt9CcO3eOl19+mWLFijF27FgcHR1Zv349HTp0YOPGjaaKSUhICA0aNCA+Pp6hQ4fi6enJV199Rbt27diwYUO6CszMmTOxt7dn7NixXL58mU8//RStVotarSYiIoJJkyZx5MgRVq9ejZ+fHxMmTDBtO336dMaPH0/Xrl3p168f9+7d49NPP6Vx48acOnUKNzc3PvroI6Kiorh16xYLFiwASPdr5tSpU7G1tWXUqFEkJSVlervUrl27aNOmDT4+PgwbNgxvb28uXLjAzz//zLBhwyw+l2nSPjA9PT0tKl+/fn3KlCmT4dhdMTEx6SqaHh4eqNVqxo0bx1dffUVQUJBFlYrExMQMK60uLi7Y2tpSqVIlpk6dygcffECXLl1o164dcXFx9OrVi4oVKzJlyhTTNqtXr8bJyYmRI0fi5OTEnj17mDBhAtHR0XzyySemctmd24EDB3Lnzh127drFmjVrsszf39+f4sWLs27dunTX27p16yhTpgz169fP9jykCQsLo0WLFty/f5/9+/dTpkyZbLfJ7Pm4evUqW7Zs4bXXXsPPz4+QkBCWL19OkyZNOH/+fJ7fkvTaa69Rrlw5ZsyYgaIogGWvI71eT0BAAElJSbz33nt4e3tz+/Ztfv75ZyIjI3F1dc31XLt27Yqfnx8zZ87k5MmTrFy5kiJFiph6z6xZs4Z+/fpRp04dBgwYAGDRc5NbJk2axMyZM005REdHc+LECU6ePEmLFi1ydM0Cplttf/jhB1577bVc65WyevVq+vTpQ5UqVRg3bhxubm6cOnWKX3/91dTDwpL3Nks/A7I7LwCdO3fm3LlzvPfee5QqVYrQ0FB27drFjRs3nmhMYSGEyC1SV87fuvKPP/6Ivb19rtw9ptFo6N69O+PHj+fQoUO0bt3atC45OTld/Sxt7OJjx47RtGlTJk6cmONhueLi4ti9ezfbtm1j+/bt3Lp1CycnJzp16pTj/I8fP05AQAC1atVi69at2NvbZ7vN/fv3zR5rNBrc3d3ZtWsXV69epXfv3nh7e3Pu3Dk+//xzzp07x5EjR/J00tvw8HBatWpFt27deOutt/Dy8sJoNNKuXTsOHTrEgAEDqFSpEmfOnGHBggX8+++/pnkLzp07R5s2bXjhhReYMmUKOp2Oy5cv8/vvv+dJrhEREbz66qt06tSJrl27smHDBsaMGUO1atVo1aoVlSpVYsqUKUyYMIEBAwbQqFEjABo0aJAn+WQku7rTwoULee+993BycuKjjz4CUn/wyExavfPrr7/m448/zrVroW/fvqxevZpWrVrRr18/UlJSOHjwIEeOHKFWrVoATJ48mUmTJtGgQQOmTJmCra0tR48eZc+ePbRs2RJIref37NmTgIAAZs+eTXx8PEuXLqVhw4acOnXKVF/M7ryEhobSsmVLChcuzNixY3Fzc+PatWts2rQpV45XFECKEE+BqKgoBVA6dOiQbl1ERIRy79490198fLxpXbNmzZRq1aopiYmJpmVGo1Fp0KCBUq5cOdOy4cOHK4By8OBB07KYmBjFz89PKVWqlGIwGBRFUZS9e/cqgFK1alVFr9ebynbv3l1RqVRKq1atzHKrX7++UrJkSdPja9euKRqNRpk+fbpZuTNnzig2NjZmy1u3bm22bZq0HEqXLm12rA+v27t3r6IoipKSkqL4+fkpJUuWVCIiIszKGo3GdPvOaF9ffPGFcu/ePeXOnTvKtm3blFKlSikqlUo5fvy4oiiKEhQUpADKJ598kum+2rdvrwBKVFSU2b4z+gsKClIURVF69uxp9jgrme0LUL799ltTOYPBoDRs2FDx8vJSwsLClMGDBys2NjamY0nz6HlVFEUZOHCg4uDgYLqWLD23gwcPVjJ7KwWUiRMnmh6PGzdO0el0SmRkpGlZaGioYmNjY1YuI19++aUCKMePH1eCg4OVKlWqKKVLl1auXbuW5XaKkv3zkZiYaHoNpAkKClJ0Op0yZcoUs2WA8uWXX5qWTZw40ez4MyqT2flI27Z79+5m5Sx9HZ06dUoBlB9++CHbc/CoJk2aKFWqVMlw3b179zLNtU+fPmZlO3bsqHh6epotc3R0VHr27Jluv2nP4cPXfJMmTZQmTZrkKPfM3jsURVFefPFFpXXr1llun9U1m5EePXoogOLu7q507NhRmTt3rnLhwoV05R69FtI8etyRkZGKs7OzUrduXSUhIcGsbNpry9LXn6WfAdmdl4iIiGzf54QQwpqkrvyf/Koru7u7Ky+++GKWZR6WVd1CURRl8+bNCqAsWrTItKxkyZIZ1s/S6iBpx5NdPTHNlStXlP/9739KQECAotPpFEApU6aMMnToUGXnzp1KUlKSRfvp2bOn4ujoqCiKohw6dEhxcXFRWrdubXYdZSatPvDoX9pzmVE9/Ntvv1UA5cCBA6ZlltSbMiqjKOmvg7RtAWXZsmVmZdesWaOo1Wqza19RFGXZsmUKoPz++++KoijKggULFEC5d+9etufgUYAyePDgDNf98MMPmeb69ddfm5YlJSUp3t7eSufOnU3Ljh8/nmm9u2fPnulePzm5ltJkVq+1tO5UpUoVi+u68fHxSoUKFUzXS69evZRVq1YpISEh6cpmVod+9Lj37NmjAMrQoUPTlU17D7h06ZKiVquVjh07pvtOlFYmJiZGcXNzU/r372+2/u7du4qrq6tpuSXnJe294NHvqEJkRoZKEE+F6OhoIP0v6ZDaU7Fw4cKmv7TbfO/fv8+ePXvo2rWrqSdhWFgY4eHhBAQEcOnSJW7fvg2kTsZTp04ds9uwnZycGDBgANeuXeP8+fNmMXv06GF2W3LdunVRFCXd7Qt169bl5s2bpKSkALBp0yaMRiNdu3Y15RMWFoa3tzflypVj7969Fp+Tnj17Zvtr9qlTpwgKCmL48OG4ubmZrbP0F8o+ffpQuHBhihYtSuvWrU23eaf9+miJtOctJibGbPmECRPYtWuX2Z+3tzeQ2uNOURSLe7K1b98+3b527dpF06ZNTWXUajWrV68mNjaWVq1asWTJEsaNG5fuWB4+r2nXTqNGjUy3o0HunNtH9ejRg6SkJDZs2GBa9v3335OSkmLx2Ga3bt2iSZMmJCcnc+DAgRxNPpLZ86HT6Uzj4RkMBsLDw023f508eTJnB/kYBg0aZPbY0tdRWo/aHTt2mA1XkJ+5NmrUiPDwcNN7mLW5ublx7tw5Ll26lGv7/PLLL1m8eDF+fn5s3ryZUaNGUalSJZo1a2Z6j82JXbt2ERMTw9ixY9ONQ5j22rLk9ZeTz4Dszou9vT22trbs27ePiIiIHB+TEELkNakrp5fXdeXo6GicnZ0tzic7mdWX69atm65+ljb0l7+/P4qiWNTb9pNPPqFMmTIMHTqU+/fvM336dC5cuMDly5dZtGgRLVq0yPGEZ3v37iUgIIBmzZqxadOmHE0UtnHjRrNjWrduHWBeD0+7oy5totO8rnfqdDp69+5ttuyHH36gUqVKVKxY0eyaTBs+Lu2aTLt+tm7d+tiTfuWEk5OT2fcDW1tb6tSpw9WrV/M8tiXyou5kb2/P0aNH+eCDD4DU74t9+/bFx8eH9957L8NhV7KzceNGVCoVEydOTLcu7T1gy5YtGI1GJkyYkG6M8LQyu3btIjIyku7du5tdJxqNhrp165quE0vOS9q19PPPP+fasIGiYJOhEsRTIa1SlNF4ScuXLycmJoaQkBCzD6/Lly+jKArjx49n/PjxGe43NDSUYsWKcf369QxvK6tUqRKQOslW1apVTctLlChhVi6tgejRMcNcXV0xGo1ERUXh6enJpUuXUBSFcuXKZZhPTgaJ9/Pzy7ZM2rAGD+eeUxMmTKBRo0ZoNBoKFSpEpUqVsLHJ2VtD2vP2aOW2WrVqNG/e/LFze5ivr69F+ypTpgyTJk3igw8+oGrVqhleG+fOnePjjz9mz5496Rrc0sYdy41z+6iKFStSu3Zt1q1bR9++fYHUYRLq1atH2bJlLdrH22+/jY2NDRcuXDA1glsqs+cjbdynJUuWEBQUZDbWr6VDZjyJR691S19Hfn5+jBw5kvnz57Nu3ToaNWpEu3bteOutt3JlmISMvtA9+t7g7u4OpN7O9vC4W9YyZcoU2rdvT/ny5alatSqvvvoqb7/9Ni+88MJj71OtVjN48GAGDx5MeHg4v//+O8uWLeOXX36hW7duHDx4MEf7s+S1ZUmZnHwGZHdedDods2fP5v3338fLy4t69erRpk0bevTokePXmRBC5AWpK6eX13VlFxeXdI2sTyKz+nKhQoVypb5ctmxZypYty+XLlzl9+jSurq6mCb4yO99ZSUxMpHXr1tSsWZP169fn+PtB48aNM5yc7P79+0yePJnvvvuO0NBQs3W5PUfBo4oVK5au8frSpUtcuHCBwoULZ7hNWo6vv/46K1eupF+/fowdO5ZmzZrRqVMnunTpkisTAj5a7/T19U23zN3dnb///vuJY+WGvKo7ubq6MmfOHObMmcP169fZvXs3c+fOZfHixbi6ujJt2rQc7e/KlSsULVoUDw+PLMuo1WoqV66caZm0H//TGvQflfY9wJLz0qRJEzp37szkyZNZsGAB/v7+dOjQgTfeeCNHP46I54c03IqngqurKz4+PhnOlJ5WiXx00Pm0XzpHjRpFQEBAhvu1tDHsUZnNYJrZcuXBuJxGoxGVSsUvv/ySYdmczMppydhRuSE3GlfPnj1LkSJFnoqGK8A0iPydO3cIDw83qzxERkbSpEkTXFxcmDJlCmXKlMHOzo6TJ08yZsyYPP8FvUePHgwbNoxbt26RlJTEkSNHWLx4scXbd+rUia+//ppFixYxc+bMXMlpxowZjB8/nj59+jB16lTTOMTDhw/P8fnIrPdKRhO/pXn0Ws/J62jevHn06tWLrVu3snPnToYOHcrMmTM5cuQIvr6+mca0s7MjISEhw3VpvXczmpU6u/cAa2vcuDFXrlwxnY+VK1eyYMECli1bRr9+/Z54/56enrRr14527drh7+/P/v37uX79epaTWGT13D+JnHwGWHJehg8fTtu2bdmyZQs7duxg/PjxzJw5kz179lCjRo08OQYhhLCU1JXTy+u6csWKFfnrr7/Q6/U57qmakbTn7nHPeXY6duxIx44d+eeff9i2bRs///wzo0ePZsSIEZQrV47WrVvTunVrGjdubNHx6HQ6AgMD2bp1K7/++itt2rTJlTy7du3KH3/8wQcffED16tVxcnLCaDTy6quv5nm9M6Nrxmg0Uq1aNebPn5/hNmk/Rtjb23PgwAH27t3Ltm3b+PXXX/n+++955ZVX2LlzZ6bXPqSey5zWO5/2Oifkfd2pZMmS9OnTh44dO1K6dGnWrVtnarhVqVQZnou8rneuWbMmw4bph3/YyO68qFQqNmzYwJEjR/jpp5/YsWMHffr0Yd68eRw5ciRH74Pi+SANt+Kp0bp1a1auXMmxY8eoU6dOtuVLly4NpP4yn13DY8mSJfnnn3/SLU+7LT4nt5tnpUyZMiiKgp+fH+XLl8+ybG4Mtp426dHZs2dzrWdrTh0+fJgrV65YfKt/Xlu2bBm7du1i+vTpzJw5k4EDB7J161bT+n379hEeHs6mTZto3LixaXlQUJDZfiw9tzl9Hrt168bIkSP59ttvSUhIQKvV8vrrr1u8/XvvvUfZsmWZMGECrq6ujB07NkfxM7JhwwaaNm3KqlWrzJZHRkZm2FMiK2k9UCMjI82WX79+3eJ95OR1BKk/PlSrVo2PP/6YP/74g5dffplly5Zl+Yt8yZIl2bNnDwkJCekq8WnvFY/7vpCXk2pYwsPDg969e9O7d29iY2Np3LgxkyZNMjVQ5lZ+tWrVYv/+/QQHB1OyZEmz5/7h21Effe4ffm1l9uXVktdfTj4DIPvzkhb3/fff5/333+fSpUtUr16defPmsXbt2mz3L4QQeU3qyo8XDx6vrty2bVsOHz7Mxo0b6d69+xPlYTAY+Oabb3BwcDAbjiIvVKhQgQoVKjBy5Eiio6PZuXMnP//8M9988w0LFy6kVKlS6eq9GVGpVKxbt4727dvz2muv8csvv+Dv7/9EuUVERLB7924mT55sNmHd4w7xlFv1ztOnT9OsWbNsrzm1Wk2zZs1o1qwZ8+fPZ8aMGXz00Ufs3bs3y+srs9cXPFm909p1Tsi+7pQbObq7u1OmTBmzH67c3d0zHDYio3rnjh07uH//fqa9bsuUKYPRaOT8+fNUr1490zIARYoUsfgu0OzqlPXq1aNevXpMnz6db775hjfffJPvvvsuVzpbiIJFxrgVT43Ro0fj4OBAnz59CAkJSbf+0V/UihQpgr+/P8uXLyc4ODhd+Xv37pn+HxgYyLFjxzh8+LBpWVxcHJ9//jmlSpXK8raInOjUqRMajYbJkyeny1dRFMLDw02PHR0dn/h2oJdeegk/Pz8WLlyYrsKSH7/GXr9+nV69emFra2sai8hSwcHBXLx4MVfH9QkKCuKDDz6gc+fOfPjhh8ydO5cff/yRr7/+2lQm7dfrh8+PXq9nyZIlZvuy9Nw6OjoC6SuMmSlUqBCtWrVi7dq1rFu3jldffTXHjaPjx49n1KhRjBs3jqVLl+Zo24xoNJp018sPP/zwWOOXuri4UKhQIQ4cOGC2/NHzmxVLX0fR0dGmMfPSVKtWDbVane0YWIGBgSQnJ7N8+XKz5UajkaVLl2Jra0uzZs0szvlhjo6OFl8Pue3h9xhI7blUtmxZs/ORk2v27t276cY1hNTXzO7du1Gr1abG17QK7cPPfdqY2Q9r2bIlzs7OzJw5k8TERLN1ac+3Ja+/nHwGZHde4uPj0+VSpkwZnJ2dH2s8NSGEyAtSV865J6krDxo0CB8fH95//33+/fffdOtDQ0Mtum3bYDAwdOhQLly4wNChQ3N0h1ra/AthYWEWb/MwFxcXunTpwurVq7l79y5Hjx7lvffes3h7W1tbNm3aRO3atWnbti3Hjh17rDzSZFQPB1i4cOFj7S+juofBYODzzz+3eB9du3bl9u3brFixIt26hIQE4uLigNQhHh6V1shnSb3zyJEj/Pnnn2bLIyMjWbduHdWrV3+s4QVy+j0kN1lad8pJvfj06dMZXuvXr1/n/PnzVKhQwSzWxYsXzd7HTp8+ze+//262befOnVEUhcmTJ6fbb9p12KFDB9RqNVOmTEnX6zutTEBAAC4uLsyYMSPD769peVhyXiIiItK9Biy9lsTzSXrciqdGuXLl+Oabb+jevTsVKlTgzTff5MUXX0RRFIKCgvjmm29Qq9Vmtz9/9tlnNGzYkGrVqtG/f39Kly5NSEgIhw8f5tatW5w+fRqAsWPH8u2339KqVSuGDh2Kh4cHX331FUFBQWzcuDFXxiWC1DfladOmMW7cOK5du0aHDh1wdnYmKCiIzZs3M2DAAEaNGgVAzZo1+f777xk5ciS1a9fGycmJtm3b5iieWq1m6dKltG3blurVq9O7d298fHy4ePEi586dY8eOHblyXJA6WcDatWsxGo1ERkZy/Phx02Dva9asyfEYmuPGjTM9B5ZMUPbvv/9m2OvNy8uLFi1amCbEsLe3NzVmDhw4kI0bNzJs2DCaN29O0aJFadCgAe7u7vTs2ZOhQ4ea8n/0w9PSc1uzZk0Ahg4dSkBAABqNhm7dumV5LD169KBLly4ATJ06Ndtjz8gnn3xCVFQUgwcPxtnZ+Yl6PLdp04YpU6bQu3dvGjRowJkzZ1i3bp2pp05O9evXj1mzZtGvXz9q1arFgQMHMvzCkxlLX0d79uxhyJAhvPbaa5QvX56UlBTWrFmDRqOhc+fOWcZo27YtLVu2ZMSIERw7dowGDRoQHx/Pjz/+yO+//860adMyHessOzVr1uS3335j/vz5FC1aFD8/vwzHDcyJv//+mx9//BFIHbMwKirK9GXxxRdfNL13VK5cGX9/f2rWrImHhwcnTpxgw4YNDBkyxCw/sOyavXXrFnXq1OGVV16hWbNmeHt7Exoayrfffsvp06cZPny46YeHli1bUqJECfr27csHH3yARqPhiy++oHDhwty4ccO0TxcXFxYsWEC/fv2oXbs2b7zxBu7u7pw+fZr4+Hi++uori19/ln4GZHde/v33X5o1a0bXrl2pXLkyNjY2bN68mZCQkGxfz0IIkV+krpy/dWV3d3c2b95MYGAg1atX56233jJ9hp48eZJvv/2W+vXrm20TFRVlqq/Gx8dz+fJlNm3axJUrV+jWrVuO633Hjh2jadOmTJw4MdsJyk6cOMGJEyey3WdOOwzY29vz888/88orr9CqVSv279//2HNAuLi40LhxY+bMmUNycjLFihVj586dFvUAzkiVKlWoV68e48aNM/Wo/O6779L9sJ+Vt99+m/Xr1zNo0CD27t3Lyy+/jMFg4OLFi6xfv54dO3ZQq1YtpkyZwoEDB2jdujUlS5YkNDSUJUuW4Ovrm20v6rFjx/LDDz/QuHFjBg4cSMWKFblz5w6rV68mODiYL7/88rGOv0yZMri5ubFs2TKcnZ1xdHSkbt26Fo3/nJWffvrJ9N6QnJzM33//bap3tmvXjhdeeMHiulPNmjVZunQp06ZNo2zZshQpUiTTcWJ37drFxIkTadeuHfXq1cPJyYmrV6/yxRdfkJSUZPYa6NOnD/PnzycgIIC+ffsSGhrKsmXLqFKlitkcJk2bNuXtt9/mf//7H5cuXTINyXHw4EGaNm3KkCFDKFu2LB999BFTp06lUaNGdOrUCZ1Ox/HjxylatCgzZ87ExcWFpUuX8vbbb/PSSy/RrVs3Ux1327ZtvPzyyyxevNii8/LVV1+xZMkSOnbsSJkyZYiJiWHFihW4uLgQGBj4RM+dKKAUIZ4yly9fVt555x2lbNmyip2dnWJvb69UrFhRGTRokPLXX3+lK3/lyhWlR48eire3t6LVapVixYopbdq0UTZs2JCuXJcuXRQ3NzfFzs5OqVOnjvLzzz+bldm7d68CKD/88IPZ8i+//FIBlOPHj5stnzhxogIo9+7dM1u+ceNGpWHDhoqjo6Pi6OioVKxYURk8eLDyzz//mMrExsYqb7zxhuLm5qYASsmSJbPM4eF1e/fuNVt+6NAhpUWLFoqzs7Pi6OiovPDCC8qnn36a8QnO5lgfFRQUpACmPxsbG8XDw0OpW7euMm7cOOX69euPte+ePXsqgBIUFJRlfEVRzOI/+tekSRNFURRl0aJFCqBs3LjRbNsbN24oLi4uSmBgoGnZ77//rtSrV0+xt7dXihYtqowePVrZsWPHY53blJQU5b333lMKFy6sqFQq5eG3VUCZOHFiuuNJSkpS3N3dFVdXVyUhISHb41eUjK9Bg8GgdO/eXbGxsVG2bNmS6bbZPR+JiYnK+++/r/j4+Cj29vbKyy+/rBw+fFhp0qSJ6fwqyn/XwpdffmlalvYaeFh8fLzSt29fxdXVVXF2dla6du2qhIaGpjsfmb1+0mT3Orp69arSp08fpUyZMoqdnZ3i4eGhNG3aVPntt98yPRePHvekSZOUihUrKjqdTnF0dFTq1aunrF27Nl3ZzHJNe14evo4vXryoNG7cWLG3t1cApWfPnpmWffQcZyZt24z+0vavKIoybdo0pU6dOoqbm5vpvXP69OmKXq83lcnqmn1UdHS0smjRIiUgIEDx9fVVtFqt4uzsrNSvX19ZsWKFYjQazcr/+eefSt26dRVbW1ulRIkSyvz58zM8bkVRlB9//FFp0KCBYm9vr7i4uCh16tRRvv32W7Mylry3WfIZkN15CQsLUwYPHqxUrFhRcXR0VFxdXZW6desq69evz/a5EUKI/CZ15fypK6e5c+eOMmLECKV8+fKKnZ2d4uDgoNSsWVOZPn26EhUVZSrXpEkTs89nJycnpVy5cspbb72l7Ny5M8N9lyxZUmndunWmsdOOJ6P65KPSznV2f15eXtnuq2fPnoqjo6PZsrCwMKVy5cqKt7e3cunSpWzzyKx+d+vWLaVjx46Km5ub4urqqrz22mvKnTt30h2npfWmK1euKM2bN1d0Op3i5eWlfPjhh8quXbvSXQdNmjRRqlSpkmFOer1emT17tlKlShVFp9Mp7u7uSs2aNZXJkyebnuPdu3cr7du3V4oWLarY2toqRYsWVbp37678+++/mZ6LR4+7X79+SrFixUzfp9q0aaMcOXIkXdnMcu3Zs6fpdZBm69atSuXKlRUbGxuzenpGZS29ltK+p2X0l7Z/S+tOd+/eVVq3bq04OzubfXfLyNWrV5UJEyYo9erVU4oUKaLY2NgohQsXVlq3bq3s2bMnXfm1a9cqpUuXVmxtbZXq1asrO3bsyPC4U1JSlE8++USpWLGiYmtrqxQuXFhp1aqV8ueff5qV++KLL5QaNWqYroEmTZoou3btMiuzd+9eJSAgQHF1dVXs7OyUMmXKKL169VJOnDhh8Xk5efKk0r17d6VEiRKKTqdTihQporRp08a0DyEepVKUp2h0ayGEeA6kpKRQtGhR2rZtm25cWSGEEEIIIYQQQgiQMW6FECLfbdmyhXv37tGjRw9rpyKEEEIIIYQQQoinlPS4FUKIfHL06FH+/vtvpk6dSqFChTh58qS1UxJCCCGEEEIIIcRTSnrcCiFEPlm6dCnvvPMORYoU4euvv7Z2OkIIIYQQQgghhHiKSY9bIYQQQgghhBBCCCGEeMpIj1shhBBCCCGEEEIIIYR4ykjDrRBCCCGEEEIIIYQQQjxlbKydQH4zGo3cuXMHZ2dnVCqVtdMRQgghhBA5oCgKMTExFC1aFLX6+e2DIHVaIYQQQohnU07qs89dw+2dO3coXry4tdMQQgghhBBP4ObNm/j6+lo7DauROq0QQgghxLPNkvrsc9dw6+zsDKSeHBcXl3yJmZyczM6dO2nZsiVarbbAxbNGTDnGghGzoMezRkw5xoIRU46xYMSUY8wb0dHRFC9e3FSne17ld51WrueCEVOO8dmPZ42YcowFI6YcY8GIKcdYMGLmpD773DXcpt1K5uLikq8Ntw4ODri4uOTbRZ6f8awRU46xYMQs6PGsEVOOsWDElGMsGDHlGPPW8z48QH7XaeV6Lhgx5Rif/XjWiCnHWDBiyjEWjJhyjAUnJlhWn31+BwYTQgghhBBCCCGEEEKIp5Q03AohhBBCCCGEEEIIIcRTRhpuhRBCCCGEEEIIIYQQ4inz3I1xK4QQQojnj9FoJCkpCRsbGxITEzEYDHkeMzk5OV/jWSNmXsTTarVoNJpc2ZcQQgghhBDPMmm4FUIIIUSBptfrCQoKwmAw4O3tzc2bN/NlYitFUfI1njVi5lU8Nzc3vL29n/sJyIQQQgghxPNNGm6FEEIIUWApikJwcDAajYZixYoRHx+Pk5MTanXejxZlNBqJjY3Nt3jWiJnb8RRFIT4+ntDQUAB8fHyeeJ9CCCGEEEI8q6ThVgghhBAFVkpKCvHx8RQtWhQHBwdSUlKws7PLt0ZNvV6fb/GsETMv4tnb2wMQGhpKkSJFZNgEIYQQQgjx3JLJyYQQQghRYKWNu2pra2vlTEROODg4AKlj6AohhBBCCPG8koZbIYQQQhR4Mlbqs0WeLyGEEEIIIaThVgghhBBCCCGEEEIIIZ460nArhBBCCCGEEEIIIYQQTxlpuBVCCCGEyIbBqHD4Sjhb/7rN4SvhGIyKtVPKE/v27eOll15Cp9NRtmxZVq9enWX5xMRE3n33XV588UVsbGzo0KFDvuQphBBCCCHE88DG2gkIIYQQQjzNfj0bzOSfzhMclWha5uNqx8S2lXm1qo8VM8tdQUFBtG7dmkGDBrFu3Tp2795Nv3798PHxISAgIMNtDAYDdnZ2DBkyhM2bN+dzxkIIIYQQQhRs0nArhBBCCJGJX88G887akzzav/ZuVCLvrD3J0rdeypPGW39/f6pWrQrAmjVr0Gq1vPPOO0yZMiXPJu5atmwZfn5+zJs3D4BKlSpx6NAhFixYkGnDraOjI/Pnz8fFxYXDhw8TGRmZJ7kJIYQQQgjxPJKhEoQQQgjx3FAUhXh9ikV/MYnJTPzxXLpGW8C0bNKP54lJTM50Hwl6g+n/ipKz4RW++uorbGxsOHbsGIsWLWL+/PmsXLky0/IHDx7ExcUFX19fXFxccHJySve3bt26TLc/fPgwzZs3N1sWEBDA4cOHc5S3EEIIIYQQIndIj9s8lqLXs+Pzzzm+bx+amzd5dcAAbGxtrZ2WEEII8VxKTDZSY/auXNmXAtyNTqTapJ0WlT8/JQAHW8urXsWLF2fBggWoVCoqVKjAmTNnWLBgAf3798+wfK1atTh58iSxsbE4OTmhVqf/fd7LyyvTeHfv3k233svLi+joaBISErC3t7c4dyGEgPz/LlTQ41kj5vNwjPFxsUwfOYB/T5/h2Pbv+Wj+5zg4OuVZPGvElGMsGDHlGAtOzJyQHrd5aO2ECRR3dqHte+8xfeNG2r73HsWdXVg7YYK1UxNCCCHEU65evXpmwyLUr1+fS5cuYTAYMixvb29P2bJlKV26NGXLls3wz9nZOb/Sf64cOHCAtm3bUrRoUVQqFVu2bMl2m5xOBCfEk0rR69mxfDnH16xhx/LlpOj1eRovv78LFfR4/8V0fiSmcx4fY/7Fs0bMd9o3o5SrGzM+/5YNR88y4/NvKeXqxjvtm+VJPGvElGPMG3KMz348a8XMKelxm0fWTphAj6lT091eGaJPosfUqQC8NWVK/icmhBBCPMfstGrOTmqRYW/URx0Luk+vL49nW25179rU8fNIt9xoNBITHYOzizNqtRp7reaxcrbUwYMHadWqVZZlli9fzptvvpnhOm9vb0JCQsyWhYSE4OLiIr1tsxEXF8eLL75Inz596NSpU7blH2ciOFHw5GevwrUTJvDB7Dnc1SelLti4Ee/3R/HJmNF58p0kv78LFfR4WcfU5/Mx5k08a8R8p30zlv+4J128MIOB5T/ugfbNWLp1d67Fs0ZMOUY5xmcl5vNwjI9LetzmgRS9ng9mz8lyTLzRc+bk+a/cQgghhDCnUqlwsLWx6K9RucL4uNqR2VRgKsDH1Y5G5Qpnug97W43p/zmdVOzo0aNmj48cOUK5cuXQaDJuAE4bKuHAgQOcPHmSv/76K91fu3btMo1Xv359du82r5zu2rWL+vXr5yjv51GrVq2YNm0aHTt2tKj8wxPBVapUiSFDhtClSxcWLFiQx5mKp0V+9tZMawwzNdo+kNbImNsx8/u7UEGPlxbz/Vmzsow5atasXD3G/IxnjZjxcbFs3LY/y3gbtx8gPi42V+JZI6YcY+7Hs0ZMOcbcj2d5zP25GvNxSY/bPLBr5ap0FaOHKUBwUhK7Vq6i1bvv5F9iQgghhLCYRq1iYtvKvLP2JCowq9ilNcFObFsZjTpnDbKWunHjBiNHjmTgwIGcPHmSTz/9lHnz5mVaPm2ohOjoaFxcXCzqVfywQYMGsXjxYkaPHk2fPn3Ys2cP69evZ9u2baYyixcvZvPmzWYNvBcvXsTW1pb79+8TExPDX3/9BUD16tVzFP95ktlEcMOHD890m6SkJJKS/qtfRkdHA5CcnExycnKe5PmwtBj5EctaMfMr3reTJ9Nr+vRMe2sajUa6T5z4xHGMRiPxYWF8MHt2pl9MVcDwmTOJjohAURQMKSmkpKRgSEnBkGIgxZCCwWD4b7nBSEpKMr5ubnSrVRsMKSgGIzN3/EpMQgJDX27Iv5cvWfRdqH6xYng6O6MoCgqpk0d6OzoyrWFDHizg40OHuBUbw+iatajs6YGiwG83rrP6/HnTziLi4yyK930Tfxr4+QEw5c8/ORdxn2FVq9LA2xuAIyEhzPv774x3YPqvQnRiomXxGjWmfsmSnIuIYOLJk1mUztiKhg1x1+kA+PjIEUKzuC4VICQ5mYoeHjg/2CbDSIrCJ7VqUdzRAUUx8sO162y4foNm3l4MrFQx9fiS9XTbvd+ieGVdXXHU2qAAw0qXpIKzE4qicCA8nO9v3eVFV2fer1EF5cFx9tp/DKPRiFqjRvXgs1MxKhgMRhJSUiyKWdrFmSpOjnxUu7Lpw3jk4b+J0qeg1qhRp+1XUTCkZDC00INTXsvennuZDD2UVuxeSgoV3T1w0GlRa9L2C4bkzLdr5uZCS3c3FBRC9cnMv30XB7WaT2pX5EzwfYtj2mnMP8PrODvR0dMdgDiDgWk37wCwsFYFdA6pPfVXnL/BybAoVGoVaq2GuKRki+L9r0IFyjk5APDh9ZsowJRqpSnklrrs+8t32B98H5VKhdr2vx+PDXpD6gl5SKLBaFHMpTWrcksxsO3GPVCp0GSz3zSFtDaMLOptejzt+m3LzmkhT+zVahRjxvu1V6sZX7yo6fHKkHtcTUziLd8i1PcrDMBf4TGsOH/D4mNMex6nlSiG+sGP99/eC+dMfALtvTxoWd4HgMvR8Sw4HQSQeh4eXNfGFAXFYMxRvNZF3OlU2ReAuwlJTP3zCigKaq0G1YNLSklRMBqMme7vPR8vYi28dip6euBop01dZlAwpmS+375ehShjZwfA0ZhYtt6PpLKDPYNrlubvG+GP/dp4vZAHLzqmXqtn4xP45l44pXQ6RtUuY+o0MfboP8Q8eI9Q2aQui0u05BgNTB/ej0lL1mRa7nHlpK4hDbd54E5QUK6WE0IIIYR1vFrVh6VvvcTkn84THJVoWu7tasfEtpV5tapPnsXu0aMHCQkJ1KlTB41Gw7BhwxgwYECexfPz82Pbtm2MGDGCRYsW4evry8qVK81u3Q8LC+PKlStm23Xt2pWbN2+aHteoUQNI/dIsMvY4E8HNnDmTyZMnp1u+c+dOHBwc8izXR+3alTuT+z3NMfMyniE5mdGffJJlQ+roOZ9g8PBAHxtLSQ8P1ElJqJOSOH3xIjeC75IYH098QjwJiYkkJCYSn5REvF5PnF5PfHIycSkpxBsMxBmN1La3524WPRQVIDwlhcGLF+foOGra2/Pq6f8aOb+9fIlwg4GOYWHcSrKsR+SJsDAICzNbVtrWlviHGhSOBF3lsl5PD1SUcnQE4GZEBL+Hmg/rYong69dJjIgA4MKtmxyPjyfk4j8k3gkGIDQmmj8fyedJBN+8SVJUFJHx8Zy6H57j7ePOncfBJvXr+vVwy7a/EhcHcXFZlom/dAlFl9p4ci8sjDORkVRSQFFSGzOMBgPXEhIsinc9MREefDTahkfjlZjaCGKMjOVCbBy+qHC8dNtU/kJMbBZN1Za5maSniFqDZ9B/5+RqTDzhWTTAZKSS1rJhSW4mJ0MOGliaOzhS0ZDasKRLSeFSQiKuajW+wfGcjrbstZEa03xZDZ09lZXU6yFSUXEpMfXHg5KhSahVqfuNjkowLc8JGyNUftA0dCkxCQUoej+ZwtGp11J8xEP7tezSyJYSnUyKXp/j/aYYFaqgNT0OSU6xaLubiVmfe1e12my/kfoULiUm4RhnwPdGPADnY+JydH7TnscqaFE/aI1NSDZwKTEJ24T/9ns3Pv6//SZmtjfL4qkS/9uvPimJSwmJOd5vCUXNJcWyTgk3k5IhybLXRxHDf+f4jCH1Witlo8X3Rjynoy3bR0avDTeDyrTf24bUa9VFpab4zf8uqutxiTl+j0hz9uhhtm/f/ljbZiU+Pt7istJwmweKPvglN7fKCSGEEMJ6Xq3qQ4vK3hwLuk9oTCJFnO2o4+eRZz1t02i1WhYuXMjSpUvzNM7D/P39OXXqVKbrJ02axKRJk8yW/f3334/Vw1fkzLhx4xg5cqTpcXR0NMWLF6dly5a4uLjkefzk5GR27dpFixYt0Gq12W/wDMbMj3i/LllCSDYNqSHJevq8/z4Ap8tXQPugx9DCO3fYFhOdo3hRxsx7Pz2svLMzPi6u2GjUaNRq1Go1NmoNGo0aTdq/Go1pWSnPQrg2bIjKRgNqDYP27yMhJYXSjRqjP38Ovv0225j9GzSgQoWKoFKhUqUOZePi6EiR+vVBpQJUTDh+nKj4OOpUr04RDw9QqWh9J5iily+bemxeOHOGhb/9lm280p074f1gHPDxZ88SFhXFSxUq4F04tTdd87Awvv73X1N5g2IkyZBEeGQ4EVERxCfEExcfx80Ll9lzMzTbeCdLqzjrryYx3o5qn9tBCng090DtkNqzMO58HAmXM//iPj44GM2D594m00F7zL1czg2Ds4bYc5k33s4NvYfNg/3GK0aq2dtxQ2dg0euOaNRqMKiou9iRoxFZNwAD1HVzROVih0qlYpOjke3aBFRqNfE2Who6eaGys+WXftVRoUatUtHqeyPxkXF4lfPG3csNVBAfEU/wP8HE343k99DIbGM28nLHu2wxjr/ZFBuNBlQq2m7zICI0ikLFPHH38kCFiqT4RG4/aDRWoYIH14sKQKXCGBwG0dm/npqX8qZ83Wp4ensCkJKcws1Lt3iwm//2/+D/Dq7O/OSe+p6clGyg151iaDQqLrZuSMjW3yD4TrYxA8oUw7diGVJ3m7pjDxdHdhZKHU8/xWCgX8ViqIBLLRvg4uEKgP+pC/heuo69vT1FihXmz32H2Xzy38zCmFzxdWNvo7oADKxYDICQRrVQfAoBUP/8FVzOXcJWp8Pb978fHe9cv5NuwtSgs//w66WbZCesegmqN6jHuyfPobbRULTEf71dQ2+Hok9K+u8EP8ROq+Vgyf/K1v0xka0Xr2Ubr/NLFShVuQKJ8Rk3vGrUag6VLm567H/7LrUSknCsUIrwahUAKBEeyeB9Rwk6c57t/2Z/jIHli+NXrTK/lylh6vn50t17lI6Np3DJYoTXqgqAR0wcQ3b+joKCt68XWpvUz5/I+5HERMdy9e/z/GLBOX21TDF8/OtwrUZ5DCnJ2GjUDNtzgpTkFJxcdKSkJGNvp8WYYiAqIhZDSgrhkTEoRiOKomA0GjEqCjtcbIi4bdnwAM2Ku2DjoqWomy3FXW25H6XHkGLkr9vxpHVuNgIYFb7RxrDeEIfRCAm2Bqp7ORFto+Z923DsHCxrVK1byJEkjfl18aM2np3JqS3TSTZGqns5odaoGKkNQ6VS0bGiDe94uxAVr5CgwMl7Rgo7qFDFG/n1eky2Md0LuRAYGGhRfjkRbcH7TxppuM0DLfr1xXvECEL0SRn+oqgCvHU6WvTrm9+pCSGEEOIxaNQq6pfxtHYaooB4nIngdDodugxugdZqtfnWkGqNeNaImVvxjEYj1//6i9+3bOHooUOcvHCRP0PuWrStCnDWaEguUhgnNzfUjk7UdneDsDCcHBxwcnTExdkZZ2dnXFxccHF3T/3z8MTF0xPXQp64eXlx/Jdf6DR6dLbxFs6a/URDuE0b/YHp/5X0erw3bsr2u9CSvXuznYzt7a6vpVvmCdR56HF8XCzrXN0IMxgyjVfIxgZ96/p8ExPE3Xt3CU0KJSwujN23b+JX1o+opCgi3CPYunYriTGJVJlVBb02tYH99he3iTgQYba/whpN1vE0Gg5VBtdyasCWC6pkjClGXvAvjFtxN+xs7AjbcYebiTfR6rRodVps7Wyx1dmis9Ohs9NhsNNha2+Pvb09wbduU3jb6WxjvjL2XQIbtSUyPBKdrQ6dVoedzi71X1s70zIHnQM6Wx02moybA5ZUWczVN4dnG6/Hslm8+/qQDPeRkWHDMl+35PvF/GtBzG6LpqSL+UZ/i1MwiY+L5YAF183Ws5dwcHTKeYAMBPT4kK8siLnp9MXHivnKI3OPxsfFUsqCePP2Hs0yXpMc5GBpzAk/7MLB0YknbRF5a4Il8TR8feBErjyPHYdATOR9yhQqkm3MqZ/ORaNRkxAbTUJcDInxsXj6eJAQH0diQhx//XmMxIQERnapR+vS9SAliZXbjvP7mZt0q1eCgBaekGLPErWGE1ezec+x0bDjym1+vbLZtPz2SCdefSH1R/VhvyTyv2N6Pmpky/RXUnvc/xtuoMLijH+gseh9zkaDm2MsG88Z6VtDy+TmqfWXqEQFt9nZN4j+l6jl8e4kx+Nqa4dGrcZGrcJGoyZFrZCoUbDRqLG11+LjpsPGRpNaRqOmYtUq9K9SDNQaTl27z7IdFyhb1J1qXhr+/ORgtjG79Xg7T+ogOdmnNNzmARtbWz4ZM9o08+XD0n4bmDN6dJ7NGiuEEEIIIZ5e9evXT3fbnUwEZ10pej07Pv+c4/v2obl5k1cHDMhxXd0QFUXC2bOs/+orvtu1i9N37hD6mBMp/fzZZwS++67ZsscZ9da7fHm8Px6frx1KHv4ulNn44Ln1XSg+OZ5PNs3DR6slzGDINJ6PjQ3dW72ZbnvnGs6ULFoSSB3eJfpWNEqKQmxULLaFbFGr1Dh7OaP30WPnYoeDiwOGFAOFLtzPOp5Wy5tNh9KvYz/sNHbYvGGD7aO35ne2/Dj1yXrqFfEgLDIu05i+znZ8/PbE1DjlLN93Rvp1GsBK57HZxuvXKfeG78nvmA6OTnRu3YTlP+7JNF7nwMa51mhrjZjPwzHqbG0p421P2O3YTOOV8bJHl/Z+YzSSFHufiNBgYiNCiYuOIDYynLjoSOJio4iNjiIuJprYmBji4mOJjY0jLi4exZDM0j4vgT6OP0/8Q/FC9oSFZB6zuKc9NQNet+gYBrvtwV6buuWBAwms+TuZyuprBGhTf6wND0uyKN69kFjTMp0NJGucwdEBNLYULRJJJe8IPIt4QzE/0Nji4m6k1Qt/o7PVYqu1QWdrg61Wi61WS2h4BEHXI7KN2bZdC7oPLIdf8aJQrRJobHBS1Byq/Q9aWztsbG3R6uzQ2to9+NcerZ296bGNzh6tzoFDm1fywfvjs403b8F0/LsPtei8ZqQGsHxE6v8NyXrKrPHM9tpp8ebwx46XW6ThNo+8NWUKAB/MnmM2eL23Tsec0aNN64UQQgghHrVv3z5rpyByIDY2lsuXL5seBwUF8ddff+Hh4UGJEiUYN24ct2/f5uuvvwYsmwhO5J+1EyaY19k3bsT7/VF8MibzOrsxMZHECxf4bOFCDh8/zsjCRfB80Iv67/Awdj0YK1UDVHB15aUyZahVuzZ1mjen45tvEqrXZ9mQ2rJfv1w5tvxsRH3YW1Om8Pvp39m4bb/Z5C+FbGzoHNg4R9+FboTe4NLdS+id9dyIvsHVsKusHraayDuRlJ1dluiT0dxKTOQFOzuCk80nmymk0eCj1fJ3YiIaBw0Ong7Yu9jj6OqIs6szflX8CKwRiKutK646Vy5/e5ki7kWo+WJNirgUwVHriLqH+TAw+mQ9Lj4uVCPzeP84KgzvMjx9Y+1jstXa0nbW+xiGz8k0ZttZ7z+z8awVc+nW3dC+WabX6dKtu7PY+tmIaY1jbPFKHY4dPcbNsIRHYmoo7mlPi1fqZLF1eorRSEL0fSJDbxF1L5iosGAiw0OIuh/GsT8OcuR2LC95OWUa78jtWBa2L8z7DewhJYFv/9LTe2vOBpO11cDS+qlDbwTfSuZkSEKWMU+GxOKgBRc7DfZaNXa2GuxtbbC3tcHO1gZ7nRZ7nS12OluUGs3B0QVsdLxme40qDe7TuFZlqF4JbOyoYbudCXvXZBvvl1UzaPH2+2gyeI2MGQljHlnmDWzPpBe8IVlPqcKO1Mgi5r2kRN6a9l26eBrg5bL+OTm9NOn6LqGDP8g2XqMug3K036xotLZ88MEQps9cnGnMDz4YkuH5zG/ScJuH3poyhW4ff4y3kxPhycnMfPttRq1cKT1thRBCCCEKkBMnTtC0aVPT47SxaHv27Mnq1asJDg7mxo0bpvWWTAQn8sfaCRPoMXVqukbUEH2S6e65bh9/zOmdOzm8fTu3L/7DADc3Ev/9F1JSWH0tiPNJSTSOiiLA2QVtiRK0rlOHIinJ1G3egrrt2+HkaT7Myty//87XhlRrdCiZuHwiyx70uKtgq8NerSLBqPCvPollP+6hyPKJTB6YOtme0Wjk0q1LHDlzhNMXTnPx0kWuXb1G6I1Qou5EkRKbgvOLzpQc8V/P2LCgMIzxRvT39Dh7OgPwd2JihvHSvowvXrOYQZ2y+dJvwRQktlpbxkwfw5RBUzKNN2HhhFxtYARM52vOh7OoEGtjinndSeGdGaNN65/VeNaKuXTrbubFxTJ95AD+PX2G8i9W46P5n+dqL1Rrx2zxSh1+3rePqvaO2KEiEYXIhIQcN6BawpCsZ9jEudyKSkEFVPX6L+a5kDjuhcQy6KM5ODvoaFGrLCRGQWI001b/wpVboYxtXY4KnkBiFKv2BTHmxztEJRpJyWa47pMPempmFA/gRngCPJjHzFGbOnKwk06Fo60aJ50GRzstTnZaHO1scXLQ4Whvh5ODPY6ODjg5OeLo4IQS2AaVzgkftz2waUW2Mbd9tSjHvUPbtoC2jyxrVbkTvnO+5dSD/T4aLywkluJuNpk22j4OjdaWRZNH0WX4rExjblg49pmNl6bTsJkADJswx+z1EZWYwEfjhpjWW53ynImKilIAJSoqKt9ivuDurgDKukmT8iWeXq9XtmzZouj1+nyJZ42YcowFI2ZBj2eNmHKMBSOmHGPuSUhIUM6fP68kJCQoBoNBiYiIUAwGQ57GTJPf8awRM6/iPfy8PcoadbmnUX6fh4L4vpSclKR42+oUUttPM/zTqlSKnUplemwDyl/lyivnK1RU/mnwsjK9USNlTJs2yok1a5Xk+/ctjr1m/Ph0sX10OmXN+PF5cqxpx/vTp58qH3XurPz06adKclJSnsRJ0icpOs+sz6vaTq2UbVxWcSvtpqjt1FmWBRTXiq5Kj+09lA8Pfqgs+2uZMuXLKcp3u75T7kbetSiezlOnJOlz93gnLJuQLq7OU6dMWDYhV+M8KkmfpCxev1jpMrSLsnj94lw/LmvHs1bMgvgepyiKsnHhWEWVwWtC9eBv48KxOdpfij5JCQ26oCTd+ltRgg4pyrmtytHVHyvT+gUow9rXUppXLpTt6xlQijmrFGWii+nvRa/U94Ff3nQwLVvZ1s78fUOF4m6vVkp5aJUXfR2VJhU8lAZlXC2Kt3X+CEW5f01RYu8phsRYxfgE9ZYUfZLi62qT4XlNO7fF3WyUlFy8btOex0djPu7zmJO4vq42ZjGLu9kUmHhpUvRJym9r5yvTBrRVfls7P1efu8zkpB4nPW7zgaeTE0REcO9O9jNICiGEEEIIIfLerpWrzHqgZiRZUUgGHNRqXihcmJoVK+I+5D18GtTHxseHDzOY9dwSaXfm/fr55xzZt496/v6PNa5uTtjY2hIwcCCG4sUJCAzEJo8mfPvipy9ICs/6vBoTjVw+8N/wIqhA56HDw9cDn5I+lC5TmsrlK/NS5ZeoX60+RdyLmO/gRfOHaT1gMzNm+pg86QH7UZ+PWLFlBfsO7cO/oT/9O/TP9TiPstXaMqDDAHxtfQkMDMzzifvyO561YuY3Q7KeA+s/4+yBvTjFXsW/6+Bc702Y1vs1o2FZFFJ7+Q+dOJcXX27J/ZBbhAXf4N7d24SF3iXs3j3uhd/Hw05hdocSEBcG8eGUmXmd61EKx/o5UruYBoBDh5P4eGfWr/lHebnaQbmWoHMBOxfe7X6Z+/FGyga8DOXKg86FDh0V6o1KwrWQD65FiuHk4Y1KbT50Sdot/bejUjIdfsbXzYbWQ2bBg/OrzqBcTjzcOzSzOycWThqVq89np2Ez2QCm3sxpfN1sWDhpVJ71DO00bCbt353MvvWfceTAXuo1bpon16q14qXRaG1p3HUIsU6laRwYiOYpe8+Rhtt84OniCtzkXkiotVMRQgghhBBCAHeCgiwqN7FLFz5ety7XG1XzqyE1PxiNRnYc2cHPR37m2O1jFm1TuUVl3uz2JrWq1KJu1bq4Oro+dvy0W+hnfzTbrNFY56ljzPQxeXKLPTwfDYwi921aNM68Ae7zn/AdPJpFk3OpAc5o4O7Vc2xdad7I9ygFuB2VQtnar2RapqyHmtkv3TY99nRQcT1KIcLgAB6+4FiIGikp9DXepZCnO1FRMSz79Uy2Kc6bMwseGkZgQJv0ZTwf/GXFGo2oYJ2G1OelUfNpb0S1Bmm4zQeFPNwBCHswSYEQQgghhBDCuor6WTCgKVC36SsyR0UGrodcZ+XGlWz7ZRvnD58nKTwJlY2KEkNLWLT9e4Pey37M2RywVg9YIXJi06JxdBk+K13v0NtRKXQZPosNkGWjX0L0fW7/c4rbV85zK+gSt28EcftOMM6aJKYFekH0HYi5S+35kdyKzqgPano2KvB2saGwi45CLg4UcnOmsKc7hQp5UNzXF15rBw6e4FiI3f1scCpcHBudnWn7pg/+ILUH7M8W9IDNzUmmnpfeqCCNms8rabjNB0UKFwYgLOK+lTMRQgghhBBCADR48QUcVWrilIxnvVGROoFXi3598zexp5Q+Wc+GPRv47sfvOLL3CPcu3jPr3qbSqij2YjEGtxjMx6s/Rn9fn+m+dJ46+rTtk+s5Sg9Y8TSzZOiC4RPnUt6vBH8cPcrtWze4fecut0PvczsshlsRiUQkZPx+VcpNxbQX/psEs6SrmoQUhfD4bGb1AnauXUDTN4ZbdAxu2ay3Zg/Y56E3qng+ScNtPijs5Q1AWFSUlTMRQgghhBBCRG7cSPCkyUz19mZkcPp5KNIaGOaMHl1getvqk/Wm3qi39Lcs6o16Lugcn//wObt27uLS0UukxJrfdu3k60T1htXp2KYjvdv1xt059U7D2Bmx+T7mrBCPKz/Gm1WMRn5ePiXboQtuRqWwbNowPjuenGk5B60KX3dbink4UayIO8V8ilCqZCno+jq4FAMXHw5+XBijolg0/mvj19590sMzY60esNKIKgoqabjNB4WLFQUgLDbOypkIIYQQ4rEYDXD9D4gNAScvKNkA1BprZ5Xr9u3bx8iRIzl37hzFixfn448/plevXlmWnzt3LqdOnSI6Oppy5crxwQcf8Oabb5rKrF69mt69e5ttp9PpSExMzKvDECJTKXo9C7p1J+DcObQqFV27vU4he3tGz51nNlGZt07HnNGjeWtK5o2Pz5KJyyeajf+64X8beN/z/XTjv+pT9JwOO82h24c4eP0gW7ptQUn+r8lHY6/Br5YfzVo2o2/nvtSuVDvDeNYac1aInMrN8WYVo5F71y9y+dTvXDp7ksuXLnA56AaXb4VxKSSWqETLhi5wdXGlTQ0txbw8KVbUh2K+JfAtVZZiZSpTrNyLuHoVTzdJ16NUgAas0vsVrNcDVoiCSBpu80GFqlV5w82N0p6FrJ2KEEIIIXLq/I/w65jUcePSuBSFV2dD5XbWyyuXBQUF0bp1awYNGsS6devYvXs3/fr1w8fHh4CAgAy3OXz4MFWqVOHDDz/Ex8eHn3/+mR49euDq6kqbNv/NNOLi4sI///xjeqxSqTLanRB5yhAbx2s1arDl8iVOurnxvylTKTRkMG+rVHSfOJFfP/+cI/v2Uc/fn1cHDCgwPW0nLp+YYe/XpPAkpgyaQkxSDCUqlOB/U/7HvXv3KPVRKVMZxwqOaBO11G5Sm67tutI9oDsOOgeL4sqYs+Jp91jjzSoKxIbC/aucObqf77Zu53LQTS7fDuNySBzRSZY1zmalRd/xTH9o4q4nYa3eryA9YIXILdJwmw/Kv/ACH3t5o9LpUBRFvqwIIYQQz4rzP8L6HvDo17ro4NTlXb/Ok8Zbf39/qlatCsCaNWvQarW88847TJkyJc/qEcuWLcPPz4958+YBUKlSJQ4dOsSCBQsybbgdN24c0dHRuLi4oFarGTZsGDt37mTTpk1mDbcqlQpvb+88yVsISyTfvs3Nd96lRUI8O1RqWvTvT+H3hpjW29jaEjBwIIbixQkIDMSmgDQw6JP1zP5odpZlFk9eTOmJpQk6HAQKOMY78krVV3i52MvU7lybIk5FHju+jDkrnlaWjTf7Ce3rl0MTfYMPP9vILyeCmNZUR+vSqQ2gly4kM2N9gtm2KqC4u5ZyPq6ULeFN2dJlKFe5GmWr1aZklTpUKlM8XyfuAun9KsSzThpu84HGwwMAJSkJY1w8GidHK2ckhBBCPKcUBfRxkM0thkDq8Ai/jCZdo23qjgBVak/c0v4ZD5tgNEJyPOg1qfG0DpCDRtevvvqKvn37cuzYMU6cOMGAAQMoUaIE/fv3z7D8wYMHadWqVZb7XL58udkwBg87fPgwzZs3N1sWEBDA8OHDLc4ZICoqikqVKpkti42NpWTJkhiNRl566SVmzJhBlSpVcrRfIR7X/SNHCHt/FIbwcJqX8uPCmjWUbNo0+w0LgC9++sJsqIKMJN9PpkhMEepOrEu7xu1o37g9Nhr5migKtoMbllkw3qyBg0vew7+UDdcux/PXrRTOB6fQuow9uBanem0v3okJpWzZMpStVI1yL9TF74UG2Dm7Zbpfaw1dIL1fhXh2ySdyPlDZ2xMORCQlUTT4Dq7lylk7JSGEEOL5lJKAelal7MtZREkdPmFW8QzXqnlk9uUP74Ct5T/eFi9enAULFqBSqahQoQJnzpxhwYIFmTbc1qpVi5MnTxIbG4uTkxPqDBqnvby8Mo139+7ddOu9vLyIjo4mISEBe3v7bHNev349x48fZ/ny5aZlFSpU4IsvvuCFF14gKiqKuXPn0qBBA86dO4evr2+2+xTiSax4/30mfvopXxcvTulqL1B86RK0Pj7WTivfXL1x1aJy9RzrMWf4nDzORgjrSU6M58Ifv/DX779x6uQJdhw5a9F2wepiULsd7xVT8YbRmZdefgUq1gYbHaWBJaNyloc1hy4QQjybpOE2H6hUKroGXSVYr2ff0aM0kYZbIYQQQmSjXr16ZsMi1K9fn3nz5mEwGNBo0vfwtbe3p2zZsmZDF+SnvXv30rt3b1asWGHWm7Z+/frUr1/f9LhBgwZUqlSJ5cuXM3Xq1HzNUTw/DCkpjAoMZOGuXQD84OzC0nVrUTs+P3e+xSXEsf/gfovKli5ROo+zEcJyhmQ9B9Z/xtkDe3GKvZrj2/qjQ2+RePM0RVJuw93T/H3iCLVnnkRvyHkuPi2GQOuh1M++qMVk6AIhRE5Iw20+8dDZEZ+SQkxIiLVTEUIIIZ5fNvYYx96yrFHz+h+wrkv25d7cACUbpFtsNBqJjonBxdk5NZ7Wsgl9HteTDpXg7e1NyCP1lJCQEFxcXLLtbbt//37atm3LggUL6NGjR5ZltVotNWrU4PLly1mWE+JxxYaH061ePbY9uMaGNG3Kwp07Uds8H199jEYjkz6fxLzJ84i/G59teZ2njj5t++RDZkJkb9Oicea9UT//Cd/Bo1k0OX1vVMVoJPjSaTz0t7GLuAh3/2bG17/x0bZgBtfWsjgw9bOrjEEh2QAuOhXVS7pRo1JpXnihOh8uWE1orCFfx5tNI0MXCCEs9XzUXp4CXzRpgvOlS/iU8rN2KkIIIcTzS6VKHa7AkobbMq+AS9HUicgy+1rnUjS1XGZj3GoNlsd7xNGjR80eHzlyhHLlymXY2xaefKiE+vXrs337drNlu3btMustm5FDhw7RrVs3Zs+ezYABA7IsC2AwGDhz5gyBgYHZlhUip679dZq2TZtyNjICG5WKRe8O5t3Fn1o7rXzz7c5vGT5yOKHnQgGwdbOl+ivVObbpWKbbjJk+Blvp6SeeApsWjaPL8FnpPnFvR6XQZfgsFl6/ShHvopz68yh/nb/CX9fCCY01sKeHA039Ups2StomA3ArXgflXwXvF3D0rsb17oXwrVIP1UOfjW6eha0y3qwQQuSENNzmE8XZCYCU++FWzkQIIYQQFlFr4NXZsL4HZPa17tVZGTfa5oIbN24wcuRIBg4cyMmTJ/n000+ZN29epuWfdKiEQYMGsXjxYkaPHk2fPn3Ys2cP69evZ9u2baYyixcvZvPmzezevRtIHR7h9ddfZ+jQoXTu3Jm7d+8CYGtri8eDyVmnTJlCvXr1KFu2LJGRkXzyySdcv36dfv365fSUCJGl39evp9PbbxOq1+NmY8P6JUtokcmY0AVNcGwwvSb1Yue8nQCobdW07NmSr2Z/RRH3IkxcPpHZH802m6hM56ljzPQxTB442VppC2FiSNYzbOLcTKcDBRi2YH26dWoVBBm8aFrtFfB+gfadynJvQVkKlSxvVi6j0ehlvFkhxLNAGm7zScqD8bQM9yOsnIkQQgghLFa5HXT9Gn4dkzoRWRqXoqmNtpXb5VnoHj16kJCQQJ06ddBoNAwbNsyiHq2Py8/Pj23btjFixAgWLVqEr68vK1euJCAgwFQmLCyMK1eumB5//fXXxMfHM2vWLGbNmmVa3qRJE/bt2wdAREQE/fv35+7du7i7u1OzZk3++OMPKleunGfHIp4/a8aPZ8D06SQqCmWdnPjpl1+o2LChtdPKc7H6WFaeWcma82uIKxaHWqemStMqrF60mpfKv2QqN3ngZD7q8xErtqxg36F9+Df0p3+H/tLTVjwdjAYOfjHBrPE0M5W87GjyUjlqVK9B9fqvUK1JW+xdPEzrnR78WUrGmxVCPO2k4TafHAgN5aebN6i7dSsLxoy2djpCCCGEsFTldlCxdeqYt7Eh4OSVOqZtHvW0TaPValm4cCFLly7N0zgP8/f359SpU5munzRpEpMmTTI9/vLLL1m0aFGWPXwXLFjAggULcjtVIYDU8Vw/7tiRmT/+CEATX182HT6Mh6+vlTPLW4n6RN6b+R7bDm3D8y1PABpUbsDK0ytpWCHjBmtbrS0DOgzA19aXwMBAtDKmprAWo5GIfw/z9bKFXLn4N//zTyD4eJhFm44fMZDuYxbmajoy3qwQ4mkmDbf5JMJg4HB8PLpbN62dihBCCCFySq0Bv0bWzkII8ZD4qCjeql+fzRcuANC3fn2W7tmD1s7OypnlHUVROHj7IJM3T2bP5D2gQOlmpZn6xlT8i/ujUqmy34kQ+cyYksLZA1tJDDpOHcebcP13UsLCGb4oFoDx1ZzwcbMDErLdl0+J0nmcrRBCPF2k4TafOD8Y5y08NtbKmQghhBBCCPFsSwkP5yN/fzZfuIAGmNOnDyNXrbJ2Wnnq4PmDfH3ra44EHwEX8G3rS7NqzVgyYgkOOgdrpycKKEOyngPrP+Psgb04xV61aBgBxWjk3IGf2Pfzd+w9+Dv7z94mPN5I01Ia9vRMHUKwsLsLg14pjF/5Kqh7DKdRufr4bnTldlRKZtOB4utmQ6Mug3L/IIUQ4ikmDbf5xKVQYQDuJ2T/K6IQQgghnm9p48MKIdJL/Odfbr3zDj2S9JxwcWXMlMm0GTbM2mnlmTNXztBjeA9O/3KaMlPK4FzcmbcqvUW/7v1wsXWxdnqiANu0aJz5xF2f/4Tv4NEsmmw+cZdiNHLh9+3s++lb9h44xP6zt7gXZzTbl4NWhbN7YZRXRqEq3QR8XmTph+ZDEiyaPIouw2dlNh0oCyeNkrFnhRDPnaei4fazzz7jk08+4e7du7z44ot8+umn1KlTJ8Oy/v7+7N+/P93ywMBAs1mPnzZOXkUACE9KyqakEEIIIYQQIiP7li3Da/nnkJCAi58fv/36K7rSftZOK0/ci7xH73G9+eXLXzAmpTaCFb1ZlHXvrcPXuWCP4Susb9OicXQZPitd79fbUSl0GT6LFaG3SDbA3gOH2HfmJqGxBrNy9lp4uXxh/OvXpGlgZ2q92h1be8csY3YaNpMNYN5YTGpP24WTzBuLhRDieWH1htvvv/+ekSNHsmzZMurWrcvChQsJCAjgn3/+oUiRIunKb9q0Cb1eb3ocHh7Oiy++yGuvvZafaeeYk5cXAImKQsy9ezgXLmzljIQQQgghhHg6pej17Pj8c47v24fm5k0C+vdnbp8+fPTNNwz09GRs6zb4LlqIxs3N2qk+Nn2ynhVbVrDv0D5u6W/Rv0N/bLW2pBhSGDl3JMtnL0cfkfq9x7OiJ3PnzqVX617WTVo8FwzJeoZNnJvhkAUKqT1gxy1cx734/0rY2UCDcoXwr/8STQM7UfvVN9A5Ouc4dqdhM2n/7mT2rf+MIwf2Uq9xU4uGZxBCiILK6g238+fPp3///vTu3RuAZcuWsW3bNr744gvGjh2brrzHg7Fi03z33Xc4ODg89Q23OldXbFUq9IpC8OUr0nArhBBCCCFEBtZOmMAHs+dwV//gTrWNG/EeOZJXHB1RgNgSJSm+4nPUts9uQ87E5ROZ/dFsksJTj3HD/zbwvuf7NO/SnN93/k5kUCQA9kXsGTZ+GNPfnY5arbZixuJ5cnDDMrMer49SgHvxCi8Vd6Rds/o0bdWROoFvYufkmivxNVpbGncdQqxTaRoHBqLRarPfSAghCiirNtzq9Xr+/PNPxo0bZ1qmVqtp3rw5hw8ftmgfq1atolu3bjg6Zn3bhbWp1Go8tLbc1ScRci2I8vXrWTslIYQQQgghniprJ0ygx9Sp6Xr6hSQn821kJKMbN2bm3r3PdCPmxOUTmTJoSrrlSeFJbFueOvSbxkFD50GdWTFlBS6OMo6tyD8XDm1j8cK5FpUdNbgf3ccszNuEhBDiOWfVhtuwsDAMBgNeD4YRSOPl5cXFixez3f7YsWOcPXuWVVnMIJuUlETSQ+PKRkdHA5CcnExycvJjZp4zaXE87O24q08iOOhansZO23d+HZ81YsoxFoyYBT2eNWLKMRaMmHKMuRtHURSMRiOKktoUlPY4r+V3PGvEzKt4ac9XcnIyGo3GbF1+vi5E/krR6/lg9pwsb89ec/Qo01NSntnetvpkPbM/mp1lGbVOzd9n/6ayX+V8yko87/45soP1K+ax/tdDnL1j+WTaPiVK52FWQggh4CkYKuFJrFq1imrVqmU6kRnAzJkzmTx5crrlO3fuxMHBIS/TS8flQQXzzyOH0W3fnufxdu3alecxrB1TjrFgxCzo8awRU46xYMSUY3xyNjY2eHt7ExsbaxojPyYmJk9jPiq/41kjZm7H0+v1JCQkcODAAVJSzG/XjY+Pz9VY4umxa+Wq/4ZHyIACBCclsWvlKlq9+07+JZaLvvjpC9PwCJkxJhk5cOqANNyKPPXv0V38sHIe6385yN+3/3tf1WqgRVVvjl4K5X68McMfUlSkThjWqMugfMtXCCGeV1ZtuC1UqBAajYaQkBCz5SEhIXh7e2e5bVxcHN999x1TpqS/zehh48aNY+TIkabH0dHRFC9enJYtW+Likj+3HSUnJ7Nr1y58PD3h3j3stFoCAwPzPF6LFi3Q5tN4QPkdU46xYMQs6PGsEVOOsWDElGPMPYmJidy8eRMnJyd0Oh0xMTE4OzujUqnyLGYaRVHyNZ41YuZVvMTEROzt7WncuDF2dnZm69LunhIFz52goFwt9zS6euNqrpYTIicuH9+d2li7/QB/3YozLbdRQ4tq3nTt1I72/cbhXrQUmxaNo8vwWajArPE27Z1+4aRRMmGYEELkA6s23Nra2lKzZk12795Nhw4dgNRb43bv3s2QIUOy3PaHH34gKSmJt956K8tyOp0OnU6XbrlWq823L8NpCnl4AhAWHp4vsa1xjPkdU46xYMQs6PGsEVOOsWDElGN8cgaDAZVKhVqtNjUspj3O0X6MBk6GnuRe/D0KOxTmpSIvoVFrstwmbeiAx4n3uJ405r59+xg5ciTnzp2jePHifPzxx/Tq1SvT8levXqVMmTLplh8+fJh69R5/PP+05yuj6yO/XxMi/xT188vVck+j0hbeWm5pOSGydT+IPWs+4YP5azh5I9a0WKOG5lWK0LVjOzr0H4uHr/l7eadhM9kADJs412yiMl83GxZOGkWnYTPz6wiEEOK5ZvWhEkaOHEnPnj2pVasWderUYeHChcTFxdG7d28AevToQbFixZg50/yDYdWqVXTo0AFPT09rpP1YChd60HB7/76VMxFCCCGEpX67/huzjs0iJP6/O4S8HLwYW2cszUs2t2JmuSsoKIjWrVszaNAg1q1bx+7du+nXrx8+Pj4EBARkue3OnTupVq2a6fGzVD8TT48W/friPWJEpsMlqABvnY4W/frmb2K56JVar4AGMGReRuepo0/bPvmWk3i2GJL1HFj/GWcP7MUp9ir+XQen6/l67fQhjP/soHTkQbhzCsdbKZy8EY9GBa9UKUzXDm3o0H8chUqUyzJWp2Ezaf/uZPat/4wjB/ZSr3HTDOMJIYTIO1ZvuH399de5d+8eEyZM4O7du1SvXp1ff/3VNGHZjRs30vUY+eeffzh06BA7d+60RsqPrfYLL/DWgYPUK1LE2qkIIYQQwgK/Xf+NkftGojwyyl9ofCgj941kvv/8PGm89ff3p2rVqgCsWbMGrVbLO++8w5QpU/JsCIRly5bh5+fHvHnzAKhUqRKHDh1iwYIF2Tbcenp6ZjvMlRDZsbG15ZMxo3l76tR069Ku+jmjR2PzjE5MlpiSSIcRHbJstAUYM30MttIwJjKwadE48x6wn/+E7+DRLJo8ik4934XzW5g5dyEfbr5KvxpaVrSzB5WaOo2asbp4EQJ7fkDhUhVyFFOjtaVx1yHEOpWmcWAgGrnrQQgh8pXVG24BhgwZkunQCPv27Uu3rEKFCqZZjJ8lTRo2osIPG7Bz97B2KkIIIcRzSVEU4pPjLRpGwGA0MPPYzHSNtoBp2axjs6jrXTfDYROMRiMJKQnYJNugVquxt7HPUaPrV199Rd++fTl27BgnTpxgwIABlChRgv79+2dY/uDBg7Rq1SrLfS5fvpw333wzw3WHDx+meXPzRuiAgACGDx+eba4dOnQgMTGR8uXLM3r0aNq1a5ftNkJk5K0pU5jz6aeciYw0W+6t0zFn9GjeymZ+i6eVwWhgzIExqAJVeEV50axWMzau3Gg2UZnOU8eY6WOYPDD9xMpCpI05++gn0q2oFLoMn8WGPxbRqZKWes4pqIAIjSe0mQ4V26JyKkxPayQthBDiiT0VDbfPC42HOwAGGSpBCCGEsIpEQyKNv2uca/sLiQ+hwXcNLCp79I2jOGgdLN538eLFWbBgASqVigoVKnDmzBkWLFiQacNtrVq1OHnyJLGxsTg5OWXYOJ12R1NG7t69m269l5cX0dHRJCQkYG9vn24bJycnpk2bxiuvvIKNjQ0bN26kQ4cObNmyRRpvxWOJi4jgUlQUAAv6DyDsfjj1/P15dcCAZ7anrdFoZPqR6ey5uQc7Wzu2rdtGTa+afDn1S1ZsWcG+Q/vwb+hP/w79paetyJAhWc+wiXMz+BkxlQIM/zWR9i39afxqB+5MaIB3mar5maIQQog8Ig23+Ujl5kZYSgqRd+5Q1trJCCGEEOKpVq9ePbMeuvXr12fevHkYDAY0mvQ9fO3t7SlbtizR0dG4uLjky4RohQoVYvDgwaZ4tWvX5s6dO3zyySfScCsey6+ff06iouCt0/HOp//j119/JSAwEJtn+PbsjkM78vul3/Hp5sNs/9nU9KoJgK3WlgEdBuBr60tgYKBMvCcydXDDMrMJwjJyM1rhoMOr+NcbgAxcI4QQBYc03OajeK2WxlcuAxAbEYGju7uVMxJCCCGeL3YaOw53O2xRo+afIX/y7u53sy23pNkSU0PMw4xGIzExMTg7O5uGSshLTzpUgre3NyEhIWbLQkJCcHFxybC3bWbq1q3Lrl27LC4vxMN+2rABgJZVq+bLjw95bcjMIfz42Y8A9OnUp0BNaCjyx1+71jN+4kSLygbfuJrH2QghhMhv0nCbj9x8fNCpVNir1YRfuyYNt0IIIUQ+U6lUOGgdLGoQalC0AV4OXoTGh2Y4zq0KFV4OXjQo2iDTMW5TbFIsjveoo0ePmj0+cuQI5cqVy7C3LTz5UAn169dn+/btZst27dpF/fr1c5T3X3/9hY+PT462EQJSXzM7z5wBoG2XLlbO5snN+XoOn338GQDNejVjzsA5Vs5IPCuMKSn8+uUs5i1YyJ4L4RZv51OidB5mJYQQwhqk4TYfqdVq/nq5Icq9exS2kVuhhBBCiKeZRq1hbJ2xjNw3EhUqs8Zb1YM57sfUGZNho21uuHHjBiNHjmTgwIGcPHmSTz/9lHnz5mVa/kmHShg0aBCLFy9m9OjR9OnThz179rB+/Xq2bdtmKrN48WI2b97M7t27gdQJ1AwGAw0aNECtVrNp0ya++OILVq5c+XgHLZ5rJ378keCkJOxUKloNHGjtdJ7INzu+YdyAcWCEaq9WY+eqndZOSTwLkhOJOLSKl98YxYW7iQBoVNC5Xin2nbnBvVhjhuPcqgBfNxsadRmUr+kKIYTIe9Jwm89sPT1JuncPQ4RMUCaEEEI87ZqXbM58//nMOjaLkPj/hhHwcvBiTJ0xeXrbc48ePUhISKBOnTpoNBqGDRvGgAED8iyen58f27ZtY8SIESxatAhfX19WrlxJQECAqUxYWBhXrlwx227u3LncvHkTGxsbKlasyPfff0+XAtBbUuS/v7dtw16l4uUSJXB0dyc5OdnaKT2Wfaf20fO1nhiTjPjW8uXIliMFYtgHkXcSw25id3YdHFuBe3wYHtpknHUqBrSpw3sTFlDyhfpsWjSOLsNnoQKzxtu0kdAXThqFRia3E0KIAkcabvOZjYc7SUDKfWm4FUIIIZ4FzUs2p2nxppwMPcm9+HsUdijMS0VeyrOetmm0Wi0LFy5k6dKleRrnYf7+/pw6dSrT9ZMmTWLSpEmmxz179qRjx475NhmaKNiaRUfzR9lyaEeMsHYqj+38tfMEvhpISkwK7mXd+XPnnzjoHKydlnhKxV//i+ED3mLjwfP8O8QRTwc1uBbni0864d10AC5FfE1lOw2byQZg2MS5ZhOV+brZsHDSKDoNm2mFIxBCCJHXpOE2n625foOfb96gx8/beKdDB2unI4QQQggLaNQaanvXtnYaQhRYKWFhJP59Bp1aTdlOHa2dzmO5e/8uLzd/mYTQBBy8HTi06xBF3ItYOy3xtFEUCDoAhxdj/+8Ojv8dx/0EhU3BRek/ZgZUak95TcZf0zsNm0n7dyezb/1nHDmwl3qNm+LfdbD0tBVCiAJMGm7z2bXEBI7Ex1Pr6pXsCwshhBBCCPEcCPttNygKdpUro81iEr2nVVxCHLVb1ibySiRaFy2/bP+FyqUqWzst8RTRx8eyfuFYVq5ew4+dFVx0KlQqNQv6N0VTrTMNOw8EC+5c0Ghtadx1CLFOpWkcGIhGK3OnCCFEQSYNt/mscKFCAITJUAlCCCGEyMS+ffusnYIQ+arvxx9x8eZNZr3yCn7WTiaHjEYj9TrW49aft1Dr1Kxev5rGNRpbOy2RDwzJeg6s/4yzB/biFHs1w96vEXeC+Hzqe3z67Q5uPxjiYNVpZ0YM7g/13sHfs4w1UhdCCPGMkIbbfFbEyxuAsMhI6yYihBBCCCHEUyA5IYHfr10jymDAp3Eja6eTYwH9Aji74yyoYdaKWbwR8Ia1UxL5YNOicebjzX7+E76DR7Nocup4s1dP7mfhpJF8seMUcfrU6cS8nTW893oLekz4FIqXtWL2QgghnhXScJvPihT1ASA8NtbKmQghhBBCCGF9SSdPssOvNEdtNNTv0sXa6eTINxe+4V/Xf1HZqhgyZQgfvP2BtVMS+WDTonF0GT4L5ZHlt6NS6Dx8FvUWLeHYtWiMDwpUK+rAyIFv0f39T9A5uuR7vkIIIZ5d0nCbz7xKlAAgLD7eypkIIYQQQghhfbH79uOi0dClc2c0Ns/O15Od13Yy69gsXKq7MHv7bD5oJo22zwNDsp5hE+ema7QFTMuOBEUD8OoLXowc+T7N334flQXj1wohhBCPenZqRgWEV8mSANxPSrJyJkIIIYQQQliXoijE7t0LgLO/v3WTyYFVP61iwb8LUBVS8XqF1xlVd5S1UxL55OCGZf8Nj5CFLyb1p/fEz/MhIyGEEAWZ/OyXz3zKpo5lFGc0khAdbeVshBBCCCGEsJ7Tv/5K598P8UVUJI7161s7HYts/2M7A7sN5J8p/1CDGoyrMw6VSmXttEQ+Cb5x1aJydnYOeZyJEEKI3KBPTmHZdz/x1baDLPvuJ/TJ2f84l5+k4TafuRcvjs2Dit3dS5esnI0QQgghhBDWs3nVKv5OTOS4jQ1qR0drp5Otu3F3mXF2BlpPLe6+7izqtAiNWmPttEQ+cnZ1s6icT4nSeZuIEEKIJzZ+4SqcC/kwtEdnNq+Yx9AenXEu5MP4hausnZqJNNzmM7VajbtWC8DdoCArZyOEEEIIIYT1/HLgAACBzZpZOZPsRSVFMWjXIKJ0UTSd1ZRjvx3D3dnd2mmJ/GI0knJiDcM/mpZlMRVQ3M2GRl0G5U9eQgghHsv4hauYNqIf+ugws+X66DCmjej31DTeSsOtFXja2QEQcv26lTMRQgghhCUUg4G4o8eI+nkbcUePoRgM1k4pT+zbt4+XXnoJnU5H2bJlWb16dZblJ0+ejLu7OxqNBpVKZfpzfKjn5OrVq83WqVQq7B7UhcTzLeTKFf68dw+AjoOe7kauqLgoOs/pzJWoKxSxL8Kqdqso5VPK2mmJ/BL8N3z5KjY/D+GdmjYUdUmdKubRATLSHi+cNAqN1jZfUxRCCGE5fXIKcyaOzbLMnEnjnophE6Th1goKPfgyE3r7tpUzEUIIIUR2onfu5HKz5tzo2ZM7o0Zxo2dPLjdrTvTOndZOLVcFBQXRunVrmjZtyl9//cXw4cPp168fO3bsyHSb999/n4sXL3L79m2Cg4MJDg6mcuXKvPbaa2blXFxcTOuDg4O5Lj9eC+DHJUswAuWdnSlXr56108mUPllP7da12T1hNzG7Y1jaYik+Tj7WTkvkg4g7QQxpU4NdYxrAzaOgdWToh9MJCo5g48KxFHM1n+vb182GDQvH0mnYTCtlLIQQIjuJSXqGTJqfrqfto/RR91ixfls+ZZU5m+yLiNzm6eICwcGEBgdbOxUhhBBCZCF6505uDxsOimK2PCUkJHX5ooW4tGyZ63H9/f2pWrUqAGvWrEGr1fLOO+8wZcqUPJsEadmyZfj5+TFv3jwAKlWqxKFDh1iwYAEBAQEZbuPk5ISXlxcuLi6o1WpOnz7N+fPnWbZsmVk5lUqFt7d3nuQtnl3btqV+GXq1Th0rZ5I5o9GI/5v+XNp/CZWNirEdxlLevby10xJ5zJiSwuqpgxgz70vC4oz85qnm3GdvoXl1BlrXYgB0GjaT9u9OZt/6zzhyYC/1GjfFv+tg6WkrhBBPmTOXgtjwyz72H/qD86f/JCzoAkpyokXbXr1xK4+zy5403FpBs6pVcQkNpbKbjIklhBBC5CdFUTDGx4M6+5uOFIOBkGnT0zXaPtgRqCBk+gwc69dHpUk/OZHRaMSYkIDRxgbUalT29jlqdP3qq6/o27cvx44d48SJEwwYMIASJUrQv3//DMsfPHiQVq1aZbnP5cuX8+abb2a47vDhwzRv3txsWUBAAMOHD7c455UrV1K+fHkaNWpktjw2NpaSJUtiNBp56aWXmDFjBlWqVLF4v6Lg0cfHs/fyZQDav/mWlbPJ3Gvvv8bhHw6DCsYuGMugTk/3kA7iyf356zoGv/suR4OiAajsbc/ieTPQvD48XVmN1pbGXYcQ61SaxoGBaB7MZSKEEOLx6JNTWP7dT+w9+Ac3og0M7NYOW63lTZeRMXFs2nWQHXsP8efxY9z85zT6yNB05VQ2tigp+mz3V7qEb47yzwvScGsF3V55heZnz+Hq6WHtVIQQQojnipKYyKX6DXJpZ6k9b/+tnXVvwZAH/1Y4+ScqBweLd1+8eHEWLFiASqWiQoUKnDlzhgULFmTacFurVi1OnjxJbGwsTk5OqDNonPby8so03t27d9Ot9/LyIjo6moSEBOzt7bPMNzExkXXr1jF2rPl4YRUqVOCLL77ghRdeICoqirlz59KgQQPOnTuHr6/1K8PCOvZ89TXRBgPuNjY0fvMNa6eToRFzR7Bp4SYA3hrzFjOGzLByRiIvhd+8zEcDOvL5r2dRACdbFZMGtGfoJ+vQ2ln+3i2EEOLxjF+4ijkTx5qGMNi8Yh6jhhRi9ORZTB3eN115o9HIv7fD+Sdcz6kbkRw4epK9s/qA8dFxaVU4+fhRpkoN6tWrS9vmTWhS+wU8fYpnOVyCrWth+ndtnZuH+Fik4dYKbDw8ATDcj7ByJkIIIYR4WtWrV8+sh279+vWZN28eBoMBTQY9fO3t7SlbtizR0dGmoQvy0+bNm4mJiaFnz55my+vXr0/9+vVNjxs0aEClSpVYvnw5U6dOzdccxdNj67ffANCsQkVsbK1/a7k+Wc+KLSvYd2gft/S3iEuIY+HYhQA0easJa2ausW6CIs8YkvWsmtifDxetJTzeCMAbDcvwyaoNFC1f3brJCSHEc2L8wlVMG9Ev3XJ9dJhp+QeDevD3zShO3Yjgh2/XcvjbRdiVrYtnq6EAKAZnVGo1Gns3ipZ/gRdr1qZFk4Z0ebUJPoXS3/E+evKsDGOa1k+amaPevnnF+hk8j1xduJeSQuiN6xS3di5CCCHEc0RlZ0e5E8ctatSMP3GCmwMGZluu+OfLcahVK91yo9FIdEwMLs7OqB8MlZCXnnSoBG9vb0JCQsyWhYSE4OLikm1vW0gdJqFNmzZZ9uoF0Gq11KhRg8sPbpMXz6edJ08C0KZ9OytnAhOXT2T2R7NJCk8CYMP/NpjWVW5Rmd9W/2at1EQeO/bTVwx+7z1OXI8BoGpRexbPm0OTbkOsnJkQQjw/9MkpzJk4Nssy094fyPLfb+JQpjYA8RFGUuKjSA65Qo0SbtQo7k71Em4U63OBGhVKWVTXT+vF+3AvX0jtaTt60swMe/lagzTcWsGJW7doeeUyJYPvcM3ayQghhBDPEZVKhdrBwaLKnOPLL2Pj7U1KSEjG49yqVNh4eeH48ssZjnGL0Yg6JcXieI86evSo2eMjR45Qrly5DHvbwpMPlVC/fn22b99utmzXrl1mvWUzExQUxN69e/nxxx+zLWswGDhz5gyBgYHZlhUF07m9e7kaF4cN0Pbdd62ay8TlE5kyaEqm69u1bYeNRr4yFTThNy4xtl8HVu06jwK46FRMeacz7878Gq1d3v7IJoQQwtyK9duyHLIAAKOB+IsHqVC7MTWKu1Pxlddw7tmE9s0a4OL4+MPZTB3el/GDe7L8ux/Ze/APmjZqkONxdfPa05PJc8Tbzw81gMFg7VSEEEIIkQmVRoPXh+O4PWw4qFTmjbcPhjDw+nBcxo22ueDGjRuMHDmSgQMHcvLkST799FPmzZuXafknHSph0KBBLF68mNGjR9OnTx/27NnD+vXr2bZtm6nM4sWL2bx5M7t37zbb9ssvv8THxyfDHr9TpkyhXr16lC1blsjISD755BOuX79Ov36Z35omCrYtK1YAUNfHB49ixayWhz5Zz+yPZmdZZsHkBUweNBlbrfWHcxC5wGiAP78kZsNE1u69gwL08C/P7BUb8C5bzdrZCSHEc+NWSBhrf9zFjt/2cnTPLxZt07V1c74Y/Uqu52KrtWFQt7aUcNEQGBiI9ilqtAVpuLWKCjVqcLp8BTQqFUa9HvVTMK6XEEIIIdJzadkSFi0kZMZMUu7eNS238fLC68NxqevzSI8ePUhISKBOnTpoNBqGDRvGgAED8iyen58f27ZtY8SIESxatAhfX19WrlxJQECAqUxYWBhXrlwx285oNPLVV1/Rq1evDHsDR0RE0L9/f+7evYu7uzs1a9bkjz/+oHLlynl2LOLptu/QIQAC/f2tmscXP31hGh4hM0nhSXzx0xcM6jQon7IST8KQrOfA+s84e2AvTrFX8e86GM2DRvfLBzdS9vwiCD5NKXv4rFtZyncYRcPO2Q+JI4QQ4slcvhHM5WgVx4Luc+xaOHsWDCch6GSO9lGz2vNZd5SGWyvQurujsbEBgwFDRATqbMaCE0IIIYT1uLRsiXOzZsSf+JOUe/ewKVwYh1o186ynbRqtVsvChQtZunRpnsZ5mL+/P6dOncp0/aRJk5g0aZLZMrVazfXr1zPt4btgwQIWLFiQm2mKZ5ghJob5zi78VbwEjUeMsGouV29czdVywro2LRrHsIlzuRX1YDbxz3/Cd/BoFnz4Dr/u+o0vfrvA/l4ONCrvCa98TJ9afUCGwRBCiCzpk1NY/t1P7D34BzeiDRYPIxAclcCxoPsc/jeExcM6E3f3Gr6D16BxSp0kzNa3Mkr0XcpWq02Dhi/z5cJZJMfez3R/tq6F6d+1da4d17NEPqmsQKVWo3F3xxAWhuH+fbTScCuEEEI81VQaDY5161g7DSGeeXGHDmFjMNCgalVK1q5t1VxKlyidq+WE9WxaNI4uw2fx6Gjkt6NS6DrmU5r5aVCAA8lVafTez+BU2BppCiHEM2X8wlVmE3dtXjGPUUMKMXryLLOJu4xGIwdOnOX7n3Zy4OAB7kXF4xDw34+zemPqEGOFk+4Q2PxF6vh5UnO0P8U8HE1linh6MG1E5sNojZ4086kadzY/PZ9H/RSYGxzM33eDmX7gAM0qVbJ2OkIIIYQQQuS52H37AHCy8jAJAH3a9mG45/Ash0vQeero07ZPPmYlcsqQrGfYxLnpGm0BFEAFXAgzcnD9Mhq+JsMiCCGEJcYvXJVhQ6o+OoxpI/rx75Ug7HQ6/vj9ENfPnSA55qHeshobSjYfzAslC1OnlAeF6qykec2KlC1ZNNN4aQ3BDzcUQ2pP29GTZpo1FD9vpOHWSs7Gx3E0Pp6gS5esnYoQQgghnjL7HjRuCVGQpOj1tFz8GS/Yavmk5kvWTgdbrS1jpo9hyqApmZYZM32MTEz2lDu4Ydl/wyNkQAFuxyikpGQ9nrEQQohU+uQU5kwcm2WZ9Yunmz1WaWzwKFWZF2vX59XmTenbNQAPZ4cHay0bm3bq8L6MH9yT5d/9yN6Df9C0UQOLh2YoyJ7vo7ciT2dnuHuX0Dt3rJ2KEEIIIYQQee7AunWci4/jZpKG1Q0aWDsdAPp27MuMMTMwJhkxJhpNy3WeOsZMH8PkgZOtmJ2wRLCFYxBbWk4IIZ53K9ZvM+v1mhmX4uVp2CyQNgGv0L31K7g5O2a7TXZstTYM6taWEi4aAgMD0T7njbYgDbdWU8TdA4DQe/esnIkQQghR8ClKRjfRiqeVPF8FU5mQUJYU8yW2ciVs7e2tnQ4AHy74kJSoFJx8nZgxdwYH/jiAf0N/+nfoLz1tnxE+Fo5BbGk5IYR4HoXGJPLl5l18vepzboVFWbRNv3eGMm/c4DzOTEjDrZUUKlwIgLDwcCtnIoQQQhRcGo0GAL1ej06ns3I2wlLx8fEAaLVaK2cicpPh99/xd3Ki6HtDrZ0KAMnGZIJfDMZ3kC89avRgUKdBlLAr8aCHj1x7zwLFaOTIvh1ZllEBvm42NOoyKH+SEkKIZ8C9iChWbdhOKO6cj3Pg4t0Y4i7+QdiBn9G4FLFoH6VL+OZxlgKk4dZqihRJfSGERUZaNxEhhBCiALOxscHBwYF79+6h0WjQ6/UkJiaiVqvzPLbRaMzXeNaImdvxFEUhPj6e0NBQ3NzcTA3v4tmnv3WbpEuXQKPBqVFDa6cDwK5ruwhNCqWMfxkmdpkIxuy3EU+PuIhQ+rSuy/rD10zLVGA2SZnqwb8LJ41CIz2ohRDPMX1yCut/3c/6rds5enAf9678jWJIwbXhm7i93B2AGvUakqTtS7tWLflwxOAsh0uwdS1M/66t8yn755s03FpJYZ/U2fTCY2KtnIkQQghRcKlUKnx8fAgKCuLGjRskJCRgb2+PSqXKfuMnpChKvsazRsy8iufm5oa3t3eu7U9Y39rZszh8L5TO9epTyc3N2ulgNBpZfWY1AN0qdsNWY0uyMdm6SQmLXT6+m44d2nL2TgJaDfxv1FsU9i7K8EnzzSYq83WzYeGkUXQaNtOK2QohRO7QJ6ew/Luf2HvwD25EG7KduOvQn+f44oet7N+zm+tnjmFING9/0rl5UcPPi5Hda/By2UJ4ONoCqY2xkdExTBvRL9N9j54087mfNCy/yFm2kiLFU7uUh8fHWTkTIYQQomCztbWlXLlyxMfHs3//fho3bpwvt0EnJydz4MCBfItnjZh5EU+r1UpP2wLo681b2H//PsUc7HnV2skAK7euZEv/LXi39ub111+3djoiB35ZOZ033htPZKKCt7OGDV9+xsudBwLQYfBU9q3/jCMH9lKvcVP8uw6WnrZCiAJh/MJVzJk41tQLdvOKeYwaUojRk2cxdXhfAIJu3WXF9z/xy46dXPzzdxLvB5vtQ61zpETV2jT2f4Wer7XDv3a1TO+YStvnwzEhtaft6EkzTetF3pOGWyvxKVUKgPtJSdZNRAghhHgOqNVqdDodKSkp2NnZ5Uujpkajydd41ohpjWMUz57okBD+uHMbgI79Mu+9k59mzZ1FcngyXtFeuNu5WzsdYQlFYcPUnnSduAYFqF/GlQ3b9lK0Qg1TEY3WlsZdhxDrVJrGgYFo5H1JCFEAjF+4KsPer/roMKaN6MfRq+HYl2/A/m8XE/XH9/8VUGsoVLoqdRr681q7QLoF+mOns/zHrKnD+zJ+cE+Wf/cjew/+QdNGDbLt5Styn5xtK/EqWxaAKIMBfXw8tg4OVs5ICCGEEEKI3Pfz0qUkKwol7O2p1qKFtdNh36l9BB0OAmDmh3IL/TMhKQa2vEOL+B8p56mmae3KLNrwOzpHF2tnJoQQeUqfnMKciWOzLLNn9ScUG7QKu1I1SLlylKp1GtK2VUv6vNYGn0JP9uOkrdaGQd3aUsJF82DyTmlGzG9yxq2kcKlSqEmdA+HulSuUqFbN2ikJIYQQQgiR637asgWAljVq5NtEfVkZM20MKFCybkma125u7XRENu6cPYTP3hGowv/F1VHH0Q2zcPN/19ppCSFEvvh07aYsJwkDMMSEEeAZyZSPhuHtOiafMhP5xfo1p+eUxsYGN5vUdvOQoCArZyOEEEIIIUTuM6Sk8Nv58wC079rVytnAteBrnPj5BABjPpAvt0+7n5ZOolKtxizefhacfaD3L9JoK4Qo8C4E3WTwxPmUrv0Ko/q/ZdE2zsYYvF3t8jgzYQ3S49aKPO3suB8bS8j169ZORQghhBBCiFz3x/r1hCUn46hW06Kv9ScyGTFzBEa9ETc/NwZ2HGjtdERmjEY4MIfLW2YRnaSw+ZoDg/vtRe3qY+3MhBAi1xmNRrbsPsyX323k9z07iLh2AVBytI/SJXzzJjlhddJwa0UdypYl9Pp1CmvkaRBCCCGEEAXP1q+/BsC/dGl0Tk5WzSUmPobta7YD0Htw76di2AaRgcQo2DwI/tnO8Hq2eFRpSvdpP6B2sO71I4QQuSkyJo6l325lw+atnD28F33UPbP1Lr7lqeffkre6tKNfjzeyHC7B1rUw/bu2zuuUhZVIi6EVDW3chJgdO/CyciVWCCGEEEKIvPDrkSMAtG7VysqZwMeLP0YfqcfW3Zap7061djoiAxd+3864d97g69ZGXBzsULVZQM8ab1o7LSGEyJA+OYXl3/3E3oN/cCPawMBu7bDNYvKu0OhE9lwM5bcLoXwzoQ8JN86Y1qlsdBSvWocWr7ZmcI8u1KhUxrTu38mzmDaiX6b7HT1pZpZxxbNNnlkrsvH0ACAl4r6VMxFCCCGEECJ3XfvrL85FRaEC2r9r3XFJjUYjXy39CoC2PdviaO9o1XxEels+/Yi3R80kVq8w2smdZT/8CsVesnZaQgiRofELVzFn4lhTT9jNK+YxakghRk+exdThqUMDKYrC6RsRjJ0wiaP7f8O5w0TUdqkd93Qlq2OIukuVev506dCOd97ogLtLxp360vb3cDxI7Wk7etJM03pRMEnDrRUZXVwJTUkm4dp1ilg7GSGEEEIIIXLR5s8+A6CGpydFK1a0ai6Lf1hM1LUo1Do188bMs2ouwpwhWc+kPi2ZtnY/AE0qeDBl3UEoVtnKmQkhRMbGL1yVYQ9YfXQY00b048Tf56nepid7LoYSEp3EnW1bSQ6/gc3VP2kQ0J7mFYvQcOBcXiy52uJhe6YO78v4wT1Z/t2P7D34B00bNci2h68oGOQZtqK1f51izJUrvPrjVn5ZMN/a6QghhBBCCJFrtu3cBcCrLze0ciYwd95cAOq2q0tJ75JWzkakiQy+xput6rP99F0AhneoxZxv96O1c7ByZkIIkTF9cgpzJo7NssyvX87nnFt91Lb2ONhqaNilLxUKO/Ben9ep7Ff8sWPbam0Y1K0tJVw0BAYGopVG2+eCPMtWVMTHBw2QnJRk7VSEEEIIIYTINbHh4Ry6eQOADn37WDWXX4/8ys3jN0EFsz+cbdVcxH/O7ttKx9e6cjlMj50NrJg8mLc+XGzttIQQIksr1m/LcqKwNKVjzzJ51GDq+nlgp301HzITBZU03FpRx9ZtqL1pM3alS1s7FSGEEEIIIXKN4fRp1pYoyXGNhppt2lg1l72Re/Hq4oWX3otG1RtZNReR6of5H9B73Dzi9Aol3bVs/m4NNVq+bu20hBAiSzt+/5P5//vUorI1/QrTpHzhPM5IPA+k4daK7LyKoFapMNyXycmEEEIIIUTBEb//AFXs7Gj4RneLx+/LC+EJ4fx27zcKtynM6larrZbH88qQrOfA+s84e2AvTrFXadSxPxP6BDD7+z8AaFa5EN9t/51CJctbOVMhhMjYv3ejGfHhJA78soXYu0EWb1e6hG8eZiWeJ9arRT3w2WefUapUKezs7Khbty7Hjh3LsnxkZCSDBw/Gx8cHnU5H+fLl2b59ez5lm7s0Hh4AGKKiUFJSrJyNEEII8X/27j0+5/r/4/jj2uGabezANqdhzudTREiRs5AiEpEiihyWHApziqhEpUQoHb6RJFKOkXMKOZ+POY0ZdmLXab8/1H7ffTdsbNdnu/a8325u7fpc789ez3enba+9P++3iMj9S0pKIm79egDyNmpkaJYFhxdgcVioFlSNGsE1DM2S2yyePoKwYF+adgtn5KxlNO0Wjp9fvuSm7etP12PFzr/VtBWRbGft9r28v/oIzab+RvNpG/n117W3mrZuHhSp8hDuefLe8X6zfzC9Oz3upLTi6gxt3C5YsIDw8HAiIiLYuXMn1atXp0WLFly6dCnN8RaLhWbNmnHq1CkWLVrE4cOHmT17NkWLFnVy8szh5u/Pa+fP0+PMaSKPHzc6joiIiIjIfdu5bBlD/9rFeosFn7p1DctxNfYqo14cxfU/rvNshWcxmUyGZcltFk8fQcdBb3P2esrFKYn2W38d3L42UxZuwcMrjwHpRERSSkpK4vDFWN5etpu8hUrStG513vvxd45eisPT3cTDT/bkldHvcerMOc7t3cqISdPu+PmGjpmEWQeHSSYx9N+kqVOn0rt3b3r27AnAzJkzWb58OXPnzmX48NSn9M2dO5fo6Gi2bNmCp6cnAGFhYc6MnKncPDzYdiOBqzYb544cpVD58kZHEhERERG5L9/Nns2SmBji8+fnZS8vw3KMmD6C6J3RJPydQJOpTQzLkdvYrRYGRrxL0m3eNwGL1v/FO1YL7p5mZ0YTEUnmcDhYtv53vv1lA5cK1eX45XgArG5emNzdqehxmb5PN6ZppYL4e7dOce/4QS8CMCVieIqDysz+wQwdMyn5fZHMYNiKW4vFwo4dO2jatOn/h3Fzo2nTpmzdujXNe5YuXUq9evXo168fBQsWpEqVKkycOBG73e6s2Jku/z+/Zb54+pSxQUREREREMkG9GzfpERhItw4dDMvgSHJwsshJgtsG06VfF/KYtbLTWTYumplqpe1/SwL+vmZj46KZzgslIi7PYrUx89tlfLF8IzO/XYbFmvr/Qw6Hg8WrN9O0y8vkKxRG+yb1+XbqSI78HYnZ3Y2mFUN458NPOH3uAqunhdOhVij+3p5p1hs/6EVioy7wwfzvebL3a3ww/3tiL59X01YynWErbqOiorDb7RQsWDDF9YIFC3Lo0KE07zlx4gS//vorXbt25eeff+bYsWO88sorWK1WIiIi0rwnMTGRxMTE5NcxMTEAWK1WrFZrJs3mzv6tk1a9Ar4+HI+P4+KZM5mW5071soqza2qOrlHT1esZUVNzdI2amqNr1NQcs7amZE+2qCjKnT3LsJCClHl9qGE5Np/bzHn385R+pjQfdPzAsBy50YUzJzJ1nIjI3YyaNifF6tcfZr/HkP5BDB37NmMH9OSHNZv5eN7XbF2znBtRZ5PvM7l7UqxafYY3CaVrszr45Um7SXs7Zk8P+j7TluJ+7rRu3RpPbY8gWSBH/VvlcDgICQlh1qxZuLu7U6tWLc6dO8c777xz28btpEmTGDt2bKrrq1atwsfHJ6sjp7B69epU13z/2fJhz65dmX7IWlr1spqza2qOrlHT1esZUVNzdI2amqNr1NQcM1dCQoLTaknGxf22AYA8lSvjWTDEsBxfHPgCgA5lO5DXfOdDZCRzFS5eKlPHiYjcyahpc5gwuFeq65aYKCYM7sXbo17HFnc1+brJ3ZPi1RvwVMcOvPZiF4qGFHBmXJEMM6xxGxQUhLu7O5GRkSmuR0ZGUqhQoTTvKVy4MJ6enri7uydfq1ixIhcvXsRisWA2p94jacSIEYSHhye/jomJoVixYjRv3hw/P79Mms2dWa1WVq9eTbNmzZL35v3X94UKwblzeLi50bp169t8hsyrl1WcXVNzdI2arl7PiJqao2vU1Bxdo6bmmDX+fXpKsqfPPp5BYHw8LR5+2LAMP274kW/DvyWkVQhdO3Q1LEdu1bBqGKF+Js7FJKW5z60JCA3woGHHvs6OJiIuxmK1MSUi9flI/80WdxXcPQmr0YCnOnRkSO9nKRwU6KSEIvfPsMat2WymVq1arF27lvbt2wO3VtSuXbuW/v37p3lPgwYN+Oabb3A4HLi53dqe98iRIxQuXDjNpi2Al5cXXmkciuDp6em0HzDuVDMkKAiAK9HRmZ4nu8zRleoZUVNzzPn1jKipObpGTc3RNWpqjplfS7KnG7GxRKxfT4LDwcYihQk1KMeoSaOI3x+PV4gXhfMWNihF7vTXT59R6Y8RTG+Zh44Lb2CCFM1b0z9/nTZmiA4mE5H7Nnvh8hSHg93OxBmfM6LPs05IJJL5DDucDCA8PJzZs2fzxRdfcPDgQV5++WXi4+Pp2bMnAN27d2fEiBHJ419++WWio6MZOHAgR44cYfny5UycOJF+/foZNYX7Fhxya4/fy1ev3mWkiIiIiEj2tWr2ZyQ4HISYzdQz6GCyPcf3sG/1PgBGDx9tSIbcatvSeTzc4SWe+OYqLVu1YdH7Qynqn3KdUGiAB4umDeepgZMMSikiruCm1c6SnX8zYvjr6RofFa1+i+Rchu5x27lzZy5fvszo0aO5ePEiNWrUYMWKFckHlp05cyZ5ZS1AsWLFWLlyJYMHD6ZatWoULVqUgQMHMmzYMKOmcN9CitxaBRAVG2twEhERERGRe7ds4UIAmlaqjLuHMT9mvPbWayTZkwipHEKX5l0MyZAb7fn1e1p1fpF4SxJWcyBuHWbxVL4Anug3nvULZ7BtwzoeeqQxjTr100pbEbknDoeDhau38ldcPpbvuUBsoo2btvTdW6q4Uc+AiNw/ww8n69+//223Rli/fn2qa/Xq1WPbtm1ZnMp5QkJv/Q/kig7aEBEREZEcyuFwsHL3XwC0fepJQzJcvnaZ9QvXA/DKgFcMyZAbHd2+luZPdObazSTqlfZnycZ95MkXAIC7p5lHOvUnLm8pHmndGndtdSIiGbRpx34mTP+U35Yv4mb0RYq+Mg+PfEEUDfDmiTcn8vGIl1IcPva/zP7B9O70uBMTi2QuQ7dKEChYvAQA0TdvGpxERERERO7VjBkzCAsLI0+ePNStW5ft27ffcfy0adMoX7483t7eFCtWjMGDB3MzB38/uHvFCs7evInZZOLxvsYcOjVs6jBs8TZ8CvkwoueIu98g9+3Mvt9p2rIVkXF2qof6snzDX+TNX9DoWCKSw/0dGcVLb04muGwNGtauwsovP+Rm9AXczHmo6xfLf3o/xMahjZnevyPDx79zx881dMwkzJ6Gr1kUuWf6t9dghUqVBOCazYbNYsHjNoesiYiIiEj2tGDBAsLDw5k5cyZ169Zl2rRptGjRgsOHDxMSEpJq/DfffMPw4cOZO3cu9evX58iRIzz//POYTCamTp1qwAzu3w9z5gBQPzSUfMHBTq9vsVpYMHsBAE/3ehqzHsfPcpEn9tGsyaOcuWqlXIgXqzZsJ7BImNGxRCSHuploYdr875kz93OO/7meJJvln3dMFK5ch85duvLGK90JDvRPcd/4QS8CMCVieIqDysz+wQwdMyn5fZGcSo1bg4WUKgXcOm310okTFKlQwdhAIiIiIpIhU6dOpXfv3skH7M6cOZPly5czd+5chg8fnmr8li1baNCgAc8+e+uE67CwMLp06cLvv//u1NyZ6ZeNGwF4vGlTQ+pP/mIyCRcT8PD14J3X7rz6Su7f1fMnafHoQxy5lEjxQE/W/LqBkJKVjI4lItmIxWrj02+XsW7jFs7E2OnzTLs0V74uWbuFdz6axfY1S1NseeBbMIzm7TsxauBL1KxY+o61xg96kVH9evDpt0tZt3ELjRvWv209kZxG/xYbzOzjQ+fgEPLYrBATY3QcEREREckAi8XCjh07GDHi/x/Nd3Nzo2nTpmzdujXNe+rXr89XX33F9u3bqVOnDidOnODnn3/mueeeu22dxMREEhMTk1/H/PN9o9VqxWq1ZtJsbu/fGmnVunT8ODsvXwagbe/emZbnTjX/10fTPgLgkY6PEOAbcE8ZMlIvszi7ZmbUi4u+yOMNa7L7bDwF87rzy/KlFCpX87afMyfOMTvXM6Km5ugaNZ1ZL+KDz3lv3BvJK2B/mP0eQ/oH8droiYwd8DxRcYks3X2ByRPGcnLt18n3ufv4U6vx4wzo8wIdmz+cfFh9ejKbgBc7tKS4nzvNmjXDRJLhXx9doZ4RNXPTHNNDjdts4K1atbCcPIl/ktFJRERERCQjoqKisNvtFCyYcl/PggULcujQoTTvefbZZ4mKiuLhhx8mKSkJm81G3759eeONN25bZ9KkSYwdOzbV9VWrVuHj43N/k8iA1atXp7q27fMvcABlfX05dOkSh37+Octr/rcth7Zwaf8lcId2D7fj5/usf7d6WcHZNe+1nu1mHB+M6sfWE9cJyGNiwsghHL2UyNF0/D3PKXPMKfWMqKk5ukbNrK73n1XbWPDx26muW2KimDTkJb79dQdUbYMDEzcKlAd3DwpXrEPjxo14ouEDeJk9wBHHihUr7jmD/jm6Rk1XnmNCQkK6x6pxmw24588PJ09ivxptdBQRERERyWLr169n4sSJfPzxx9StW5djx44xcOBAxo8fz6hRo9K8Z8SIEYSHhye/jomJoVixYjRv3hw/P78sz2y1Wlm9ejXNmjXD09MzxXtzhg4FoNVDD9G6dWun1Pxvwz+4tR1F5SaVeaXHK1leLzM5u+b91LNZbtKlUUU2HL2Or9nEsm8+pW6b57O05r1w9XpG1NQcXaOmM+pZrDY6de91xzGn1synWOXW1CyRn3atn+HhyT0pWTRzDjXUP0fXqJkb5hiTgSfu1bjNBuz+fly0WvE4fZqs/7ZbRERERDJLUFAQ7u7uREZGprgeGRlJoUKF0rxn1KhRPPfcc/TqdeuH26pVqxIfH89LL73Em2++mfxo6H/z8vLCy8sr1XVPT0+n/VCTVj1LQgLrjx8H4MnnnsuSLHea4x8H/+DQ+lsrm8e/MT5T6jv776kRNTNcz+HgxNxe/LbvHF4esHTOezz8ZO+srXmfXL2eETU1R9eomZX1Zi38OcUBYWlJstzgxTKJjH7p4SzJAPrn6Co1XXmOGamR+rtCcbqxv2/nsRPHmf3jj0ZHEREREZEMMJvN1KpVi7Vr1yZfczgcrF27lnr16qV5T0JCQqrmrLu7OwBJSTlr76w18z4n1m4nv4cHD3fp4vT6Pxz5Af+6/hStVZQnH33S6fVzhaQk+OV1yl9ZwW/P52PxR2N4rNtgo1OJSDbjcDhYtnJNusZev3Ipi9OIuA6tuM0GggrkxwO4ERtrdBQRERERyaDw8HB69OhB7dq1qVOnDtOmTSM+Pp6ePXsC0L17d4oWLcqkSZMAaNu2LVOnTqVmzZrJWyWMGjWKtm3bJjdwc4qi584xJDgYr8pV8DCbnVo73hrPuvh1FOtTjA8afeDU2rnJuQVDKHroM8BEtZc/o1q1p42OJCLZyLlLV3hjyscs/uZz4i6cSNc9pYqHZnEqEdehxm02MPSZLvQ6fQa/WrWNjiIiIiIiGdS5c2cuX77M6NGjuXjxIjVq1GDFihXJB5adOXMmxQrbkSNHYjKZGDlyJOfOnSM4OJi2bdvy1ltvGTWFe5Z3xw5eyF+AosOHO7324qOLibPGUdK/JI8Wf9Tp9XODt/u2YdLny/mpiw8N+30EatqKyD8Wr97MhHens3v9TzgsN25ddDdjcjORZE287X1m/2B6d3rcSSlFcj41brMB75AQTCYT9mgdTiYiIiKSE/Xv35/+/fun+d769etTvPbw8CAiIoKIiAgnJMs6iSdPYjl9Gjw98W1Q36m1b1puMvqN0XjU9aB7ve64mbQDXGazbf2UlStXEJMIf+RtRsPaPY2OJCIGuxYbz6ips/n6i8+4enJ/8nWfkOI88UwPJg3tz2ffLWPC4NsfUDZ0zCTMnmpFiaSX/mvJBjzyBwJgv6rGrYiIiIjkDN9Pm87p69dp1bgR7nnzOrX2+NnjOfXjKTzXedJiUAun1s4Vdi/AY+Uwfn7Wh+8dzek2aZHRiUTEQCej4vnox81Mf7Uj9hv/bPHo5k7pBx9j8Kv9eLlL2+QnS8YPehGAKRHDUxxUZvYPZuiYScnvi0j6qHGbDUTabAw6dw7bpUusvftwERERERHDfbRwAVsvXgQ3N2o4ufZO+07yPZCPhnUaks87n5Oru7ajK2ZR9vfhQBLeDfrSrdVkoyOJiAFuJlqYt3wTW676svFoFElJSZi8/TF7edP8qa5MGjGAKmXC0rx3/KAXGdWvB59+u5R1G7fQuGF9+jzTTittRe6B/qvJBjwCAlkVF4s7YLfZcPfQPxYRERERyb7sMTHUtju46uVF+z59nFr7r0t/cdb/LGUHleXzDp87tbarWzP/XR5/4XXCHzIzMbwnppZvg8lkdCwRcaKL12/y0Y+bmfLqM9gTb1C033zczV40Lh9CswU/0PHRGulqwJo9Pej7TFuK+7nTunVrPNW0Fbkn+i8nGyhUuhQAdiDq9GkKli5tbCARERERkTuI37SJl/PnZ+CDD1K6YUOn1p5/YD4AbUq3Idgn2Km1XdnWJXN4otdQLHY4Yi2Io8103N20d7CIK7BYbXz67TLWbdzCmRh7qtWvNpudRb/t5NdzJtYeuoTNZsNhcsfNw4P2JZN4/dnGFMvvY+AMRHIvfSXOBsy+vvi5uwNw8dgxg9OIiIiIiNxZ7D8HruVr3MipdTft2cSXk77EctnCcxWfc2ptV7Z77SJad+lNgjWJ5lVC+ObXfbibvYyOJSKZYNS0OeQLKsyA7h34YfZ7DOjegXxBhRk1bQ7Hz1yg4ysj8CtUgq7tmrNy71nsjiTqlg7mg88XciXyPB/076CmrYiBtOI2m8jv5UVMQgKRp04ZHUVERERE5LZsiYn8uGQJdTBRolEjp9Ye9tYwolZF4X3VmzJDyji1tqs68vtqmrd/hms3k2hQJoDFG/bi5etndCwRyQSjps1hwuBeqa5bYqKYMLgXE15zB4cdADcvH1oUtjCkaxPKFdTe4SLZhRq32USQjw+nEhKIPHvW6CgiIiIiIre1/quv6Hf0KMGenlyoVs1pdU9Hnmbbj9sAeC38NafVdWVn9m6jacvWXIqzU7OYLz9t+AvfwBCjY4lIJrBYbUyJGH7nQQ47+YqWoXP3Xrw1pA8h+QOckk1E0k+N22yiQL58EBXF5fPnjY4iIiIiInJbP379NQANSpfB3Wx2Wt0hk4fgSHTgV8KPVzu96rS6rsJutbBh4Qz2bVhH3rgTVKzdiKZNGvH3NRsVCuZh5W9/EFC4hNExRSSTzF64HEtM1F3HTZz8Dv27ts/6QCJyT9S4zSaCAgIAuBQZaWwQEREREZE7WPnnnwC0bdvGaTXjb8az7ItlAPR4uQduOjQrQxZPH8HAiHc5e91268KsZXi6gdUBJQI9Wf3rBoJLVjQ2pIhkql83bU3XuJNnzmVxEhG5H2rcZhNBBQoAcDnq7r8RExERERExwtGtWzkaG4s70K5fP6fVjfgkgsToRMwBZt569S2n1XUFi6ePoOOgt0n6n+tWx62/vv5iB0IrPej0XCKS+ZKSkth2IprZG0+watvedN1TqnhoFqcSkfuhxm02ERIcDEDU1asGJxERERERSduPs2YBUDukIEElnPNYvcPhYM5HcwBo1a0V+Xx0aE562a0WBka8m6pp+y8TMPmzRfSd+AXuns7b9kJEMtfNRAsR0+fy2+kELuYrD0DAI92J37eWJFvibe8z+wfTu9PjzoopIvdAzxhlEyFFigAQFRNrcBIRERERkbT9sm49AK0efdRpNecsncO1E9dwM7sxdfhUp9V1BRsXzfz/7RHSkAT8fc3GxkUznRdKRDJNfKKNeZtPUrHDIKYMe5ld33+M2d1Et4eKs2FUG958Z8Yd7x86ZhJmT63nE8nO9F9oNhFS9NbjCVfi4wxOIiIiIpK7JCYm4uXlZXSMbO/GtWtsu3DrIN0ne/d2Wt13pr4DQO02tSlVtJTT6rqCC2dOZOo4Ecke9h07xby1e1lz0YvrN6zYSzfEHLCYxi1aM++1hhTOf+vJhPGDXgRgSsTwFAeVmf2DGTpmUvL7IpJ9acVtNlGweDEArty8aXASEREREdf2yy+/0KNHD0qVKoWnpyc+Pj74+fnx6KOP8tZbb3H+/HmjI2ZLh1auxJqURAkfH6o0ecwpNfed2cepbacAmPTGJKfUdCWFi6ev0Z3ecSJirBWb/qRak6eoVqEsMyYM5/oNK2EFfJjUpT7RF/5mxRcfJDdt/zV+0IvERl3gg/nf82Tv1/hg/vfEXj6vpq1IDqEVt9lE8YoVae/nR5CnmSSHA5NOyhURERHJVD/88APDhg0jNjaW1q1bM2zYMIoUKYK3tzfR0dHs27ePNWvWMH78eJ5//nnGjx9P8D/nEORmNouFlbNmsWzFCgCaVq+OWxZ/r2qxWpi9ZDbTZk4DoMRDJXislnOaxa6kYce+FH35Nc7dZrsEExAa4EHDjn2dG0xE0s3hcPDpwuVMensKf+/elHzdx9PEe+3L0b5OGdzdTHf8HGZPD/o+05bifu60bt0aT22PIJJj6L/WbKJgmTJMLHxrn1tHTAzuAQHGBhIRERFxMVOmTOH999+nVatWaTYeO3XqBMC5c+f48MMP+eqrrxg8eLCzY2YrX40ezeuTp3DR8v+H2yz+4w8ajR5Nt3HjsqRmxKcRTH5zMolX/r/m+f3nifg0grF9xmZJTVfl7mmmXvnCLNr+d6r3/m3zTBszRAeTiWRDNxMtjPlwHp9+OJ1rZw7+c9VEWK1HGfXGMF54qqWh+UTEOdS4zSbczGbc8ubFEReHLfqqGrciIiIimWzr1q3pGle0aFHefvvtLE6T/X01ejTdx48n6X+uX7PZ6D5+PECmN28jPo1gXN/Un9Maa02+ruZtBpzcyHv1r3HgpBuR8XAlwZH8VmiAB9PGDOGpgdqCQsTZLFYbn367jHUbt3Amxk6fZ9olHxJ2+ep1Bo+fxqIvPiUx+gIAJg8zNR57gnfGjqDJQzWNjC4iTqbn8bMRq78/561Wrp87a3QUEREREZe2b9++2763ZMkS5wXJpmwWC69PnpKqaQskXxs6ZQo2iyXTalqsFia/OfmOYya/ORmLNfNqurQbV+GHPhT3N7FvVl8ir91gzVdTmfBSW9Z8NZWTl+LVtBUxwKhpc8gXVJgB3Tvww+z3GNC9A/mCCtN31Ls0ffYVChctxtfvjyEx+gLuPn4079af/UeOsXPlQjVtRXIhNW6zkR67/6LpieOsXrPG6CgiIiIiLq1FixacPHky1fXvv/+erl27GpAoe1n92ZwU2yP8ryTgQmIiqz+bk2k15y6bm2J7hLQkXklk7rK5mVbTVSU5HOz8sAfEnIP8pTC1moy7p5lHOvWnSusXeaRTf22PIGKAUdPmMGFwLywxUSmuW2Ki+HTC66z9zyfYb8SSp0ARerw+nshzZ1n55YdULFnMoMQiYjQ1brORAvny4QHEXI6661gRERERuXe9evWiadOmXLx4MfnaggUL6N69O59//rlxwbKJ82k0te9nXHqcOHMiU8flZl+/PYBaw5YRvjIRnpoNXnmNjiSS61msNqZEDL/zIHcPhr/zKdcvnObzKSMpEJDPOeFEJNvSHrfZyMzOnbn5wxJCqlYxOoqIiIiISxs7dizR0dE0bdqUDRs2sGLFCnr16sWXX35Jhw4djI5nuCIlS2bquPQoVbxUpo7LrU7t3kS/cR8DkL/SoxBa2+BEIgIwe+HyVCttU7HbCC1cMHm/WxERrbjNRvIGh2AymbBFXzU6ioiIiIjL+/DDD6levToPPfQQvXv35j//+Y+atv9o1utFCpm9MN3mfRNQ2MuLZr1ezLSaL7R9Aa8CXncc41XAixfavpBpNV2N3WrhuafbEpOYRIMyAYz4ZKnRkUTkH1v3HknXuBNndOaNiPw//RonG3HPnx8Ae3S0wUlEREREXM/SpambWE899RQbN26kS5cumEym5DHt2rVzdrxsxcNs5p1hQ+k+fjwmSHFI2b/N3ClDh+Jhzrx9Us2eZoa9NYxxfcfddsywt4Zh1t6st/X2K+3YdPQa+bxMfPndUtzNd26Ei0jWm//jakaMHE30zbSOe0ytVPHQLE4kIjmJGrfZyF9Rl3n73FmKr/iFOe+9a3QcEREREZfSvn372743d+5c5s69deiVyWTCbrc7KVX21W3crQbq65OnpDiorJCXF1OGDk1+PzON7TOWfZf3sXTqUmxXbcnXvQp4MeytYYztMzbTa7qKP5bPZ8zclQB89GYfStZoaHAikdztm59+ZegbIzm3d+utCx5mPPIWwBZ35bb3mP2D6d3pcSclFJGcQI3bbCTWzY01cXFUOKtHI0REREQym8PhMDpCjtNt3DieGTmSFbNmsW39eh5q1IiWL72UqStt/1fxBsUpX7Q8teJqkXAsgUYPN6J3+95aaXsH8Vcv0e2Fl7A5oFO9Ejz35gyjI4nkWgtX/MaQ4SP5e/emWxdMblR5tC2fvPsWKzduY8LgXre9d+iYSdrfVkRS0P8RspGQ4sUBiL550+AkIiIiIiK3eJjNtOjTB3uxYrRo3RoPT88sq+VwOJjdfTamQBOT5kzCUdxB69at8czCmq4gvEsTjlxKJNTfg5nf/YrJTUeZiDjb96s28tqIUZze+dutCyY3KjZszcfvvEWjOtUAeLhWZQCmRAxPcVCZ2T+YoWMmMX5Q5u0bLiKuQV/Rs5FC/5zKG221akWIiIiIiOQ6fx76k/iz8cQdiKNu6bpGx8kRfpwxilkr92EC5s94h8CipYyOJJKrLF23lVIPPkbHFo/807Q1Ub5BK1Zv+ZMDvy1Lbtr+a/ygF4mNusAH87/nyd6v8cH874m9fF5NWxFJk1bcZiOFypYFwJaUxNWzZynwzwpcEREREZHc4PvV3wOQv2R+AvMFGpwm+7t4bC+9hk0E4LWOD9G46yBjA4nkIr9s2sGrrw3n+PY1/1wxUbZecz6YMoGWD9e+471mTw/6PtOW4n7u/zxVoNaMiKRNK26zER9/f3z+eazpwtGjBqcREREREXGujZs3AlD+gfIGJ8n+khwOenZoRlS8gxqhvkz4fKXRkURyhWOXYnn1P7vo8d73yU3b0nWa8tP6bRzZsuKuTVsRkYzQr3WymQJeXiTcuEHk6dNUMTqMiIiIiIgTHdp1CIBHGjxicJLs7+DCcWw4GEkeD/j6m//g5etndCQRl7Z22y4++GETe9xKkZQE3uXqUa1VN8YNeYUnHqtndDwRcVFq3GYzBby9+fvGDS79/bfRUUREREREnOZq7FWunrwKwFNNnzI4TTZ36RCVjn3CX3182V3kWSo1bGt0IpEcy2K18em3y1i3cQtnYuz0eaYd5v/auuBUVDxDP/qW78a9hJt3Por2mUPLGiUY2LQslYvovz0RyVraKiGbKZA3HwCR588bnERERETENd24cYMSJUpw6NCh5Gtr1qzhgQce4Pjx4xQpUsTAdLnX979+D3YwB5qpXUGPGt+WLRG+7wW2m5St24KOwz81OpFIjjVq2hzyBRVmQPcO/DD7PQZ070C+oMKMmjaHo+evMuS73TSZ+hu/xwfh4V+Q0HLVmPdsJWZ1r03lIv5GxxeRXECN22wmKODW//wvX4w0OImIiIiIa/L29qZ06dL89NNPydeWLl1KjRo1sNlsXLx40cB0udeK9SsAKF6lOG5u+jHldqb0bc1vv+8CnwLwxMdgMhkdSSRHGjVtDhMG98ISE5XiuiUmigmDe1GhXCm+234SuyOJxyoVZt2mrZzetYEmtSsalFhEciN9R5TNBBcoAEDUlai7jBQRERGRe9W6dWuWL1+e/Prnn3+mdevWAJjUCDPEzu07AahVt5bBSbKvDd9+wPA5v/LY/AQOVRkK+QoaHUkkR7JYbUyJGH7HMY74a4QlHOaHV+ozr2cdHq5cwknpRET+nxq32UxwUDAAl6OjDU4iIiIi4rpatWrFli1biImJ4ciRI/z99980b97c6Fi5lsPh4Oz+swC0bNTS4DTZ1I2r1Dz+ET1reNKreWUqtO5rdCKRHGv2wuWpVtqmpVP9CtQsHuiERCIiadPhZNlMSOFCAERdv25wEhERERHXVblyZQoXLszKlSs5d+4c9erVw8/PjwsXLhgdLVfasm8L1utWTO4mnmz0pNFxsp+kJPhpMPmskczpWQV77/VGJxLJ0U6cOZup40REsooat9lM5SpVaO/nT9UCQUZHEREREXFp/26XcOHCheRtEsQYS9YuASB/mfz4++rAn/91aMl7lN+3GJO7J3SYjbu3n9GRRHIsh8PBwcNH0jW2VPHQLE4jInJn2iohm6n9UD0mFi7Mc4F6HENEREQkK/3buN2wYYMatwbbtHkTABUf0KE//+vkXxup02Uorb5O4FqtgVBUewCL3Kv/LF9HwfIP8MsXH9x1rNk/mN6dHndCKhGR29OK22zGI/+thq09OpqkpCQdjiEiIiKSRZo0aUJcXBwFCxakSpUqRsfJ1Qp1KESJEiXo1ryb0VGyFVviTbp1bEtsYhJxpnzka37nw5REJG0Xrt/grR928nGfNiRZEjB5eFHygYc5sX3tbe8ZOmYSZk+1TETEWFpxm8UsVguzlsziq1+/YtaSWVisljuOd8+fnxsOB2cT4rFcu+ackCIiIiK5kLe3Ny+88AK9evVKca1OnToGpsp9EqwJnLKeIl+1fDzx8BNGx8lWJr3yBFuOXyefl4kvv1uKu6fZ6EgiOUrUtVimrjpM43fX89Oha/g/1JGKDR/n9117Of77Gka+/xlmv5TbFJr9gxn5/meMH/SiQalFRP5ftmjczpgxg7CwMPLkyUPdunXZvn37bcd+/vnnmEymFH/y5MnjxLTpF/FpBH6F/ejfqT+LPlhE/0798SvsR8SnEbe9x83bm4bHj9HsxAmO79njxLQiIiIiuc+MGTMYOXJk8uvixYuzdetWAxPlPvuv7MeeZKegT0EK+RYyOk628fuyLxg7bxUAM0a9TMkaDQ1OJJJz2B1JvBIxlSLFwpg8dxE3rQ7qhOVn/VfTOLDhJx6sUhaA8YNeJDbqAh/M/54ne7/GB/O/J/byeTVtRSTbMHzd/4IFCwgPD2fmzJnUrVuXadOm0aJFCw4fPkxISEia9/j5+XH48OHk19lxO4GITyMY13dcquuJVxKTr4/tMzbNe/ObzVgTE4k+qxMsRURERMS1zfp8Fhc3XqR6u+pGR8k24q5cpNsLL2FPgs71w+g24kOjI4nkGJuORjFh+QG2LF+PNS4a+75fmDnyBVpULpRm78Ds6UHfZ9pS3M+d1q1b46ntEUQkGzF8xe3UqVPp3bs3PXv2pFKlSsycORMfHx/mzp1723tMJhOFChVK/lOwYEEnJr47i9XC5Dcn33HM5Dcn33bbhJUtW/FX2XJUL1w4K+KJiIiIiGQba35cQ9TPUSSdSDI6SrYxuEsTjkVZKBbgwSff/YrJzfAf20SyvZWbd9Bx0iK6zfmdQxdjCX3sOTq/OpKT21fTskrhbLngS0Tkbgz9VZLFYmHHjh2MGDEi+ZqbmxtNmza94yNqcXFxlChRAofDwQMPPMDEiROpXLlymmMTExNJTExMfh0TEwOA1WrFarVm0kxSmr1kNolXEu84JvFKIrOXzOal9i+les83KIgEkwnL5cv3lPHfe7JqftmhpuboGjVdvZ4RNTVH16ipObpGTc0xa2uKa0hKSiJPnTwEmgNp37K90XGyhR8+fIPPVh/ABHwx4x0Ci5Q0OpJItnbk1Dm69hvCn78sJE/xKhTpMpHn6oUxsElZAn2fNjqeiMh9MbRxGxUVhd1uT7VitmDBghw6dCjNe8qXL8/cuXOpVq0a169f591336V+/frs37+f0NDQVOMnTZrE2LGptyRYtWoVPj4+mTOR/7F+0/p0jws1p85cMCEef2D/1q1cvY/9e1evXn3P9+aUmpqja9R09XpG1NQcXaOm5ugaNTXHzJWQkOC0WpL1zsSeweMBD0rWLkn7R9obHcdw5w/vovfwW0/uDXm6Ho2fHWRsIJFsLCY+gZ5DxrFk3oc4Em99bQjJH8iSPrWpGpa9nsoVEblXOW7zlnr16lGvXr3k1/Xr16dixYp8+umnjB8/PtX4ESNGEB4envw6JiaGYsWK0bx5c/z8/LIk41nLWRZ9sOiu4xo93IjWrVunuv7Fd9/xn3Nneez4cYa+806G61utVlavXk2zZs3w9PTM8P33wtk1NUfXqOnq9YyoqTm6Rk3N0TVqao5Z49+np8Q17L68G4BKBSrh6e6cf4eyK4fNRs+OLbmS4KBGqC/j560wOpJItuRwOHjz/c94f+IYEqMvAJCvaFneensKr3Zrb2w4EZFMZmjjNigoCHd3dyIjI1Ncj4yMpFCh9J0o6+npSc2aNTl27Fia73t5eeHl5ZXmfVn1A0bv9r15rcBrd9wuwauAF73b904zw9nERH6NiyPgxIn7ypiVc8wuNTVH16jp6vWMqKk5ukZNzdE1amqOmV/rfsyZM4cXX7z9aeGxsbEMHjyYzz777L7qSPr88MsP3Lhyg6rlqxodxXAfDX2WVfsukccDvvl2IV6+WbPIRCS7s1htfPrtMtZt3MKZGDt9nmmH+Z8Dw75cuobBg8O5cmIvAJ75CtB78Bu8P3JA8hgREVdi6C73ZrOZWrVqsXbt2uRrDoeDtWvXplhVeyd2u529e/dSOBsd5GX2NDPsrWF3HDPsrWGYPc1pvhdS8FbT+sp1rSgRERERyUzh4eG0adOGixcvpnpv5cqVVK5cmT/++MOAZLnTD+/9wPExx4n/K97oKE5nt1rYsPAj9v08h7WfvsEHn996Yu/dQV2o2CD1U3kiucGoaXPIF1SYAd078MPs9xjQvQP5ggrzwrCJlG/Qiu5PNOPKib2YPL1o8dyrnDt9nBljw9W0FRGXZfjxpOHh4cyePZsvvviCgwcP8vLLLxMfH0/Pnj0B6N69e4rDy8aNG8eqVas4ceIEO3fupFu3bpw+fZpevXoZNYU0je0zltEzR+NVIOVqX68CXoyeOZqxfVLvu/uvkNCiAFyJj8vSjCIiIiK5ze7du4mPj6dy5cr85z//AW6tsn3xxRdp27Yt3bp1488//zQ4Ze5wMfoi109fB6Bjs44Gp3GuxdNHEBbsS9Nu4YyctYxWr77LDRs8VyeYVyZ/ZXQ8EUOMmjaHCYN7YYmJSnHdEhPFvClvcmTLCsBE5Ubt2LF7Pyvmf0BwoL8xYUVEnMTwX0t17tyZy5cvM3r0aC5evEiNGjVYsWJF8oFlZ86cwc3t//vLV69epXfv3ly8eJHAwEBq1arFli1bqFSpklFTuK2xfcby5gtv8tSAp1g+czk+hXy4eubqbVfa/qtg8eIAXLlxwxkxRURERHKNsLAw1q1bx7Rp0+jduzdff/01e/fuJW/evGzevJkHH3zQ6Ii5xndrvoMkyBOch6qlc89WCYunj6DjoLdJ+p/rF2KT+Gr7Zdp/+CZPDZxkSDYRo1isNqZEDL/zIHdPvlmyki5tGjsnlIhINmB44xagf//+9O/fP8331q9fn+L1+++/z/vvv++EVJnD7GlmWJ9hLJ+5nBtRN7A5bJi5S+O2ZEkArlgsOByOFI1rEREREbl/ffr0YcOGDSxZsgRfX19++uknqlbNPc3D7GD1b6sBCKsaZmwQJ7JbLQyMeDdV0xYgCTABg8a8yxOvjMX9Los9RFzJ7IXLU620TcVuJVrbCYpILqOOoBPUqVgHN283kmxJrP1z7V3HFy5TBgBLUhIxkZeyOp6IiIhIrrJ582aqV6/OoUOHWLFiBa1ataJevXpMnz7d6Gi5yu4/dgPwYN3cs8p546KZnL1uu+37ScDf12xsXDTTeaFEsoETZ85m6jgREVeRocbttWvXmDdvHi+88AJNmjShXr16tGvXjoiICLZs2ZJVGXM8Nzc3AooHALBu67q7js8XHEwekwmAi8ePZWU0ERERkVzltdde47HHHqNt27bs3LmT5s2bs3DhQubMmcOECRNo1KgRJ0+eNDqmy7PZbZw/cB6A1o1zz0FcF86cyNRxIq4gKSmJBPd86RpbqnhoFqcREcle0tW4PX/+PL169aJw4cJMmDCBGzduUKNGDZo0aUJoaCjr1q2jWbNmVKpUiQULFmR15hypUFghAHbs2pGu8fnNtx6Nijx1KqsiiYiIiOQ6P/74I2vWrOG9994jT548ydc7d+7Mvn378Pf3p1q1agYmzB3W7VyHLd6Gm9mNdo+0MzqO0xQuXipTx4nkdL/9sYfOH67h56gA3PMF3XGs2T+Y3p0ed1IyEZHsIV173NasWZMePXqwY8eO2x4CduPGDZYsWcK0adP4+++/GTJkSKYGzelKlyzNAQ5w7ED6VtDm9/bmfGIikadPZ3EyERERkdxjz549+Pj4pPlewYIF+fHHH/nyyy+dnCr3+XHtjwAElQ3Cxyvtfx6uqGHHvoS+/BrnrtvS3OfWBIQGeNCwY19nRxNxqriEm3R59Q2Wf/ERvlWaULjNAJq/OIxfpr1+23uGjpmE2TNbHNMjIuI06Vpxe+DAAaZMmXLbpi2At7c3Xbp0YevWrfTs2TPTArqKSqVu/b27dOwSDofjruOD8t56VOTSuXNZmktEREQkN7ld0/a/Pffcc05Ikrtt3boVgMq1KhucxLncPc289vwTt23aAkwbM0QHk4lLm7VwOYVKVeCnue+TZLeS1xrNT/3q8fP7Qxj5/meY/VKuvDX7BzPy/c8YP+hFgxKLiBgnXY3bAgUKJH8cE3P7UxyPHTuWarzcUq1ENXADW5yNv479ddfxQf7+AFyKjMziZCIiIiK5w9tvv01CQkK6xv7+++8sX748ixPlXkf/OgpAo4cbGRvEAL9t/h0A7/9ZOBga4MGiacN5auAkA1KJZL2TZy9SvWkH+nRuQ3zkaTx8/Rk04QPO7d1KucIBAIwf9CKxURf4YP73PNn7NT6Y/z2xl8+raSsiuVaGnzN4/PHHWbNmDV5eXimuHz58mCZNmnD2rE55TIuvly8PvfEQV3yvcN3r+l3HB+UPBODy5ctZHU1EREQkVzhw4AAlSpTg6aefpm3bttSuXZvg4GAAbDYbBw4cYNOmTXz11VecP3+e+fPnG5zYNZ29fJbYv2MBeLrZ0wanca5tP85lyZ9ncTPB9lWLiTx/im0b1vHQI41p1KmfVtqKS3I4HIRP/IgZb4/GFn/rZ+HqTTvww7yPKBlaKNV4s6cHfZ9pS3E/d1q3bo2ntkcQkVwsw/8HzJs3L08++SRLly7Fw+PW7QcPHuSxxx6jU6dOmR7QlTRs2pBfTv3C0etHaUzjO46tW7kyl/bsoXpgoJPSiYiIiLi2+fPns3v3bj766COeffZZYmJicHd3x8vLK3klbs2aNenVqxfPP/98isPLJPN8t/o7SALvgt5UDKtodBynSXI4GDH81v6dPRpXoErjJylvtRKXtxSPtG6Nu6enwQlFMt+vv+/m2Z69iDz4JwC+BcN4/8MZ9H66tcHJRERyhgw3bhcvXkzTpk3p2rUr3377Lfv376dJkyZ07dqVqVOnZkVGl1E+sDy/nPqFQ9GH7jq2fdOm1F23Ht+CBZ2QTERERCR3qF69OrNnz+bTTz9l9+7dnDlzhhs3bhAUFESNGjUICrrzqeZy/45fPY53SW9KVyhtdBSnWv3FO6w/FI3ZHcZMm2d0HJEsFROfwLP93+TnL2eQZLdi8jDT5vlX+Wb6BPL66JdiIiLpleHGrbe3N8uXL6dRo0Z06tSJDRs20L17d955552syOdSCpsKc/nnyyxJWMLURnducrsH5gfAfiXaGdFEREREchU3Nzdq1qxJzZo1jY6S69jK2SgdUZoRdUYYHcVpHDYbI8ZMAKBfuwcpXvUhgxOJZJ2ffz/A00+0JiHyNACFK9fl289n80jtqgYnExHJedLVuP3fA8nc3NxYsGABzZo1o0OHDowaNSp5jJ+fX+andBFhecOIXBgJJrgYfZFC+VPv5/Mv9/yBxDscXL5wnpJOzCgiIiLiyux2O++++y5Lly7FYrHQpEkTIiIi8Pb2NjparuBIcrDn8h4Aaobknqb59x+MYOeZOPKaTYyYqr2TxTVdjbcw6ZeDLPjjb+zmfHj4BjDgzQm8M+xl3NzSdS66iIj8j3Q1bgMCAjCZTKmuJyUlMXPmTD799FOSkpIwmUzY7fZMD+kqyoaWpUiTItgCbBy9cvSOjdu/4+N58OgR8hwzccOJGUVERERc2cSJExkzZgxNmzbF29ub6dOnc+nSJebOnWt0tFxh37l9XI+7jq+vL2UDyxodxylsiTcZOflDAIZ0eYzgsAoGJxLJXA6Hg/BJM1iXUIzrdk9MJhMvvPkew9rUoETREKPjiYjkaOlq3K5bty6rc+QaTwx/go3nNnLefv6O4wqVLgNAEhAXFUVe7bcmIiIict/mz5/Pxx9/TJ8+fQBYs2YNjz/+OJ999plWhDnBJ198woGIA5RvUR6PrrnjpPjPJ7zCkUuJBPm6Ef7OF0bHEclUJy7H0eypZzmxaRn5arXloa6vMfHJqtQOy290NBERl5Cu75YeffTRrM6Ra5TPX56N5zZy6OqdDyjLFxLMn5Uq422zYb6Z6KR0IiIiIq7tzJkztG79/6eZN23aFJPJxPnz5wkNDTUwWe6w86+dYIdiBYsZHcUpbsREM+bDLwF4s9eT5AsuanAikYyxWG18+u0y1m3cwpkYO32eaYfZ04NEm52Z608wY90x4orUweSxiia1K7Lg1YaYPfRLMBGRzJI7fs2djZQLLIflkoXfzv0G9W4/zs3NDb/gYGwXL2KPvgKh+iZPRERE5H7ZbDby5El5ormnpydWq9WgRLlLwWcLUu6hcvR5pI/RUZxixogXOHfdRrEAD/qO/8zoOCIZMmraHKZEDMcSEwXAD7PfY0j/IJo82ZXT1rzEF7v1A22LFs0ZPO45apYvYWRcERGXpMatk3lFe3Fk6BGOmY9hed2C2dN827Hu+QOxXbyILTraiQlFREREXFdSUhLPP/88Xl5eyddu3rxJ37598fX1Tb62ePFiI+K5tOuJ1zkZcxJzkJkmVZsYHSfLWWOjeO/LnwAYO7AnefIFGBtIJANGTZvDhMG9Ul23xETxyxfTwcNM1UGf81a3R2lTrXCaZ+KIiMj9U+PWyR6u9jBuXm44Eh389tdvNHuw2W3HfnH+AhvPnqXv6jV0atTIeSFFREREXFSPHj1SXevWrZsBSXKfPZf3AFDCrwSBeQINTpP1PP+Yyeae3szc78tzIz4wOo5IulmsNqZEDL/jGJPJjcWvNqJM8cJOSiUikjupcetkZk8zgSUDuXLoCmu3rr1j43ZfbAzr4uN45MhhJyYUERERcV3z5s0zOkKu9f7773N63WkqPVPJ6ChZL+4SbP2YUoFuTPlgFnjlufs9ItnE7IXLk7dHuJ0k601WbtxOma5POCmViEjupF3DDVCqYikA/tz15x3HBQfeWolw+fLlLM8kIiIiIpKVfv/1d2J3xeJ3w8/oKFnu4pIxYI2HIg9AxbZGxxHJkBNnzmbqOBERuXf31Lh95ZVXiIqKSvWxpE/16tUBOLL/yB3HBQeHABClPW5FREREJAezWC1cPHQRgDaN2xicJmud2r2JsJ6f8MyiBG42HAHa+1NymAC/fOkaV6p4aBYnERGRe2rcfvXVV8TExKT6WNLnkTqPABB5NPKO44ILFQQg6vr1LM8kIiIiIpJVVmxbgeOmA7c8brSq18roOFlqxSdvkGiDKwSQp2Jzo+OIZMi0z79n3Ijwu44z+wfTu9PjTkgkIpK73dMet0lJSWl+LOnTsl5LMIHlmoUDpw5QKSztfb4KFi0KQFRsrDPjiYiIiIhkqmW/LgOgUIVCmD3NBqfJQpEH6FtoDw/18cWz0wyj04ik202rndbPD2LdNx8B4JE3P7a42z/5OXTMJMyeOjJHRCSraY9bAwQHBONbxBeAlVtW3nZcSOitR0+ib9xwSi4RERGR3CI+Pt7oCLnK79t+B6Bq7aoGJ8liv44HkqjR+EkqP9bJ6DQi6bL37HXafLiJfZYCADzQshPnz5xg5PufYfYLSjHW7B/MyPc/Y/ygF42IKiKS66hxa5Ci5W6tpt3y55bbjilU6tYhZtEWi1MyiYiIiOQWBQsW5IUXXmDTpk1GR8kVTuw5AcBjDR8zOEnWOfjrAo5v/QlMbvDYKKPjiNzVzUQLI2b/xJMfb+bYpThK1HiYOct+Y8cvCwgO9Gf8oBeJjbrAB/O/58ner/HB/O+JvXxeTVsRESdS49YglatWBmD/3v23HVOodGkAEhwO4nVAmYiIiEim+eqrr4iOjuaxxx6jXLlyvP3225w/f97oWC7p2NljxJ+/tcK5UzPXXIWa5HDw8iuvUGFGHF9frw3B5YyOJHJHfxw8SZGKDzD51We4ee0SrasWYtWgR3ihzSMpxpk9Pej7TFt6PN6Qvs+01fYIIiJOpsatQR6q/RAAZw+fve0Y/8KF8fznFNqLx445JZeIiIhIbtC+fXuWLFnCuXPn6Nu3L9988w0lSpSgTZs2LF68GJvNZnREl/Hd6u8AyFs0L2GFw4wNk0VWfTGZ3w5H4+4GDXuONzqOyG0lJSXx9e+nee6rA8TftGIiiRermpnx7AME+rrw/tMiIjnUPTVuTf80E//3Y0m/lvVbAhB7NparsVfTHOPm5kZ+T08ALpw46bRsIiIiIrlFcHAw4eHh7Nmzh6lTp7JmzRo6duxIkSJFGD16NAkJCUZHzPHWbVoHQOnqpQ1OkjUcNhsjIt4CoF+7OhSv+pDBiUTStu/oKXrM3sybP+zjph2a95vI1j92MfblZ/VzvYhINnVPjdukpKQ0P5b0q1KyCp5+nngW8GTbwW23HVfA2xuAS2dOOyuaiIiISK4RGRnJlClTqFSpEsOHD6djx46sXbuW9957j8WLF9O+fXujI+Z4+3bsA+Cheq7Z0Fw0bRi7/o4nn5eJEVO/NDqOSJrenPoZNWpU58e50zB7uDHy8Yr8OOIp6lTVth4iItnZPW1QExsbm+bHkn5ubm50+7Ibf1z9g4SA26/kCPLNC9evc+ncOSemExEREXFtixcvZt68eaxcuZJKlSrxyiuv0K1bNwICApLH1K9fn4oVKxoX0gXctNwk8lAkAG0btzU4Teaz3kxg5JQZAAzp0oSgEmqCSfbyd2QULTr15OCGn25dOL+PxX3qUKVYAWODiYhIumiPWwNVLnLrgLJD0YduO6ZxubJ09Pcn1NvHWbFEREREXF7Pnj0pUqQImzdv5q+//qJ///4pmrYARYoU4c033zQmoIv4ZesvOBIduHu70+KhFkbHyXSfj3+Fo5cTCfZ1Y/A7XxgdRySFGV//SJkKlW81bU1uNO78EucO/aWmrYhIDqIjIQ1UPn95AI5cPXLbMX2bNePqhYsUCNIXVxEREZHMcuHCBXx87vyLcW9vbyIiIpyUyDVdy3uN4gOLE+YWhoe7a/3ocSMmmjEffQ3Am72fIl9QEYMTidxyLTaex7v3Y8uS+UASefIX5qNZc3ixQyujo4mISAZpxa2Bgm3BnJx8kgU9FmCzp31ysUf+Ww1bW3TaB5iJiIiISMbly5ePS5cupbp+5coV3N3dDUjkmo4kHMGvph+du3c2Okqm+2hET87H2Cge6EnfCXOMjiMCwPerNhJargpblnwBJFG9aQdOHt6vpq2ISA6lxq2BqodVJ+FYAomXE9m6d2uaY9wCA4iz27lw9qyT04mIiIi4rtsdsJuYmIjZbHZyGte1+/JuAKoHVzc4Sea6duE0k+bd2jN03KCeePn6GZxIcjuL1Ub7l16nY6vHiL94Cg/fAMbPmM9fqxdRKCjQ6HgiInKPXOt5pRwmjzkP9V+vz0XzReLyxqU5ZtXhw3Q5dpQa0VfY5eR8IiIiIq7mgw8+AMBkMvHZZ5+RN2/e5PfsdjsbNmygQoUKRsVzKUf+PsKfX/yJT1kfqnapanScTPXukO5cveGgUiFvuo340Og4kotYrDY+/XYZ6zZu4UyMnT7PtGP7nsO07/wsV47vASCsViNWfPcl5UuGGpxWRETuV7obtwcOHKBSpUp3HPPVV1/RrVu3+w6VmzR5vAmLjy7meOzxNN8PDr31xTYuMdGZsURERERc0vvvvw/cWnE7c+bMFNsimM1mwsLCmDlzplHxXMrClQu5vPQy+Yrlw+9d11mRevHYXt7/biMAb70xGHdPrdAW5xg1bQ5TIoZjiYkC4IfZ7/Fa/yBMnt5YrvyNm9mHviPG8+HoQbi56eFaERFXkO7Gba1atRg/fjyvvfYaJpMpxXuRkZH07t2bdevWqXGbQeUCywFwOPpwmu/Xffhh/ixbjrz58jkzloiIiIhLOnnyJACNGzdm8eLFBAbqEeKsctnjMgENAqhWrprRUTLVldVTqRhkwiNPPp7oN97oOJJLjJo2hwmDe6W6bv2niZu3cGlWLF9Kg5p3XmwlIiI5S7p/DffVV18xZcoUHnnkEY4fP57ieqVKlbh27Rq7dulh/owK9QzlyporLJu+LM33vQsWxMfNDUd8PA6tuhURERHJFOvWrVPTNotdL3Sd0N6hDBoxyOgomSf6JJUvL+OP3r4sW/glJq1qFCewWG1MiRh+5zEJMTxYpZyTEomIiLOke8Vthw4daNiwIX369KF69eqMGTOGjRs3snr1aiZMmMDgwYNTrcSVuyvtX5oLX10A4NSFU4QVDkvxvpufH3h4gM2GPToat8KFDUgpIiIikvOFh4czfvx4fH19CQ8Pv+PYqVOnOimVa7I6rOyP2g+42MFk6yeBw4qp9GME125ndBrJJWYvXJ68PcLtWK5fZvbC5fTr+oSTUomIiDNk6HCykJAQfvjhB7p27crQoUPx9fXl999/p2pV1zpswJlCg0PxDvHmxqUb/Lz5Z17p+EqK900mE+9eu8rxa9eY9uef1Gjb1qCkIiIiIjnbrl27sFqtyR/fjhYj3L8th7dw7dQ1gksGE+YfZnScTLFv/RIWfzifwQ+ZyddktNFxJBc5ceZspo4TEZGcI0ON26tXr9KvXz9+/PFHhg8fzoIFC+jSpQvz58/ngQceyKqMLq9IuSIcv3ScTX9sStW4BdgSG8uh+HhOHTlCDefHExEREXEJ69atS/NjyXxzv5rLsYnHsDWw4dbVNbYTePO1fizdmchpUzHmTNLPPuI85y9GpmtcqeKhWZxEREScLd3fRf30009UqlSJ48ePs2PHDiZOnMiePXto2LAh9erVY9SoUdhstqzM6rIqVq0IwL49+9J8v4CvLwCRZ/UbVBEREZHsaMaMGYSFhZEnTx7q1q3L9u3b7zj+2rVr9OvXj8KFC+Pl5UW5cuX4+eefnZQ26/3x+x8AVK3uIk/mndnGsyWvUjHIjaETPzI6jeQSNpud9i+9zrcfTAB38x3Hmv2D6d3pcSclExERZ8nQHrcREREMHz4ct3824ff19eWTTz7hqaeeolevXixbtoy//vorq7K6rDoP1OEnfuLM4TNpvh/k5wcXLnDpwkUnJxMRERFxHU899VS6xy5evDjdYxcsWEB4eDgzZ86kbt26TJs2jRYtWnD48GFCQkJSjbdYLDRr1oyQkBAWLVpE0aJFOX36NAEBAemumd2d2nsKgKYNmxobJDMkJcGasXSu4kmn517A9FALoxNJLnD6/GUeadORM7s2ABBcugqXj+y87fihYyZh9szQA7UiIpIDpHvF7R9//MEbb7yR3LT9b82aNWPv3r3UqlUrU8PlFi3q3/rmL+ZMDPE34lO9H5Q/PwCXL19yai4RERERV+Lv75/uPxkxdepUevfuTc+ePalUqRIzZ87Ex8eHuXPnpjl+7ty5REdHs2TJEho0aEBYWBiPPvoo1au7xiFe+07s48alG2CCjk07Gh3n/h1bA2e2gLsXpkYjjE4jucB3KzdQoWp1zuzagMndk14j3ubiwT8Y+f5nmP2CUow1+wcz8v3PGD/oRYPSiohIVkr3r+SqVat2x/f9/PyYM2fOfQfKjWpXqI27jzv2BDtr/ljDE4+kPAk0OOjWF+eoK1eMiCciIiLiEubNm5fpn9NisbBjxw5GjPj/hp6bmxtNmzZl69atad6zdOlS6tWrl3x2RHBwMM8++yzDhg3D3d09zXsSExNJTExMfh0TEwOA1WpNPnAtK/1bIz21FqxcAIBfcT+C/YPvOV9GamaGtOo57Dbat+/E4yUsvNi3Dx4+IZCJebLDHF2tZk6v1y/iPT6bMpokuxWvwELM+/JrOjZviN1uZ3S/7gx/6VlmL/yJDVt+55H6dendqQ1mT48sna/+vXGNmpqja9TUHF2jZkbqpKtxu23bNh566KF0fcKEhAROnjxJ5cqV0x0it3NzcyO4TDAX91zk122/pmrchoQUBCDq+nUj4omIiIjIbURFRWG32ylYsGCK6wULFuTQoUNp3nPixAl+/fVXunbtys8//8yxY8d45ZVXsFqtREREpHnPpEmTGDt2bKrrq1atwsfH5/4nkk6rV6++65hlPy8DoHCZwpmyb296amam/663f8VcVhy4xpbjJoI6lcQ7i/YhNnKOrlozp9WLS0hk1LTZnNy+BoCQCg8yYfhAfGyxqf47KhlopuTjDQFYs3rVfdXNCP174xo1NUfXqKk55uyaCQkJ6R6brsbtc889R6lSpejVqxetW7fG95/Dsv7bgQMH+Oqrr5g3bx6TJ09W4zaDSlcszcU9F9mxa0eq94KLFAbgSmyss2OJiIiIuIwHHniAtWvXEhgYSM2aNTGZTLcdu3Pn7feSvF8Oh4OQkBBmzZqFu7s7tWrV4ty5c7zzzju3bdyOGDGC8PDw5NcxMTEUK1aM5s2b4+fnl2VZ/2W1Wlm9ejXNmjXD09PzjmN7v9EbgGZNm9G6dWun1MwM/1vPejOB13p1AiD82SZ06Nory2tmNWfXM6JmTqy3Ycd+nuv4NLHnjoHJjcefH8B3Mybh4ZH2CvycOMfsXlNzdI2amqNr1MwNc/z3yan0SFfj9sCBA3zyySeMHDmSZ599lnLlylGkSBHy5MnD1atXOXToEHFxcTz55JOsWrWKqlVd5PRYJ3qg5gNsXrCZEwdPpHqvUPHiAFxJuOHsWCIiIiIu44knnsDLywuA9u3bZ8rnDAoKwt3dncjIyBTXIyMjKVSoUJr3FC5cGE9PzxTbIlSsWJGLFy9isVgwm1OfHu/l5ZWc/b95eno67Yea9NSLvxFP1NEoAJ5s9mSmZDNqjnMjXuV4lIVgXzdee+fLLM2Q3f45ukLNnFJvzIefM/71/jgS4/Hw9efdj+cysHv6DlLMKXPMSTU1R9eoqTm6Rk1XnmNGaqSrcevp6cmAAQMYMGAAf/75J5s2beL06dPcuHGD6tWrM3jwYBo3bkz+fw7RkoxrVLcRH/Ihl49dxuFwpDgErmBYSQCu/Ne+ZiIiIiKSMf+9mvV2K1szymw2U6tWLdauXZvcDHY4HKxdu5b+/funeU+DBg345ptvUnzPd+TIEQoXLpxm0zYn+XHDjyRZk/DI60Gjmo2MjnPPEq5FMXbGNwCM6vM0eQuk3YQXuVc2u4Nnhkzi+2kjAchfqiprfvqBmhVLG5xMRESyk3QfTvavkJAQ+vTpg7e3d1bkybWa1WkG7mCLt7Hj8A4erPhg8nuFSpcCIM5h50ZsLN758hkVU0RERMSl/Pnnnxw8eBCASpUqUatWrQx/jvDwcHr06EHt2rWpU6cO06ZNIz4+np49ewLQvXt3ihYtyqRJkwB4+eWX+eijjxg4cCCvvvoqR48eZeLEiQwYMCDzJmaQn9fd2osztEpoioUIOc1HI3pyIcZOiUBPXho3y+g44mIuxd7k1W928bu9JO75gqjzWGvWfDsLnzypV9WLiEjulqHGrcPhoEyZMuzfv5+yZctmVaZcKZ9PPoo3LE6cKY7j147zIP/fuM1frBjugB2IPH6csBo1jIopIiIi4hLOnj1Lly5d2Lx5MwEBAQBcu3aN+vXr8+233xIaGpruz9W5c2cuX77M6NGjuXjxIjVq1GDFihXJB5adOXMmRROzWLFirFy5ksGDB1OtWjWKFi3KwIEDGTZsWKbO0Qh/bP8DgBoP1jA2yH24ev4Ukz5fDsC4wS/i5Zv1ewhL7vH9uj95e8s1Lscm4heQn3d/3kjnhysYHUtERLKpDP0a3M3NjbJly3LlypVMDTFjxgzCwsLIkycPdevWZfv27em679tvv8VkMmXaHmVG6zquK0V6FOGaz7UU1909PAj8Z/+LyBOp98AVERERkYzp1asXVquVgwcPEh0dTXR0NAcPHsThcNCrV8YPoerfvz+nT58mMTGR33//nbp16ya/t379ej7//PMU4+vVq8e2bdu4efMmx48f54033kix521OdXrPaQCaPdLM4CQZY7da2LDwI/b9PIdBXVty7WYSlQt703X4dKOjiYtISkqiU/836dikLie3/ky5gnlZ+urDatqKiMgdZfj5pbfffpvXX3+dffv2ZUqABQsWEB4eTkREBDt37qR69eq0aNGCS5cu3fG+U6dOMWTIEBo2bJgpObKD8vnLA3A4+nCq99qEhvK0fwDeNpuzY4mIiIi4nN9++41PPvmE8uXLJ18rX748H374IRs2bDAwWc51/OJxTD4mTB4mOjbpaHScdFs8fQRhwb407RbOyFnL+M/mWwsl2jR8AHfPnL3nsGQPMTetvPzVTlb9dQqSHBRKOMWSfg0oHZzX6GgiIpLNZbhx2717d7Zv30716tXx9vYmf/78Kf5k1NSpU+nduzc9e/akUqVKzJw5Ex8fH+bOnXvbe+x2O127dmXs2LGUKlUqwzWzqwr5K+CwOPhj5x+p3hvT8BHGFipECe0tLCIiInLfihUrhtVqTXXdbrdTpEgRAxLlfMdvHqfM+DI88Z8nCAkMMTpOuiyePoKOg97m7PXUiyOmLNzM4ukjDEglrmT/uWu0+3ATK/ZfJLhhFwZOnsWeNYvwMWf4uBkREcmFMvzV4v3338dkMmVKcYvFwo4dOxgx4v+/IXJzc6Np06Zs3br1tveNGzeOkJAQXnzxRTZu3HjHGomJiSQmJia/jomJAcBqtab5zXpW+LfO3eoFOYI40PcAOOB019MUKfD/PzS4BQYCYLl8+a6fJ731MpOza2qOrlHT1esZUVNzdI2amqNr1NQcs7bm/XrnnXd49dVXmTFjBrVr1wZuHVQ2cOBA3n333UypkdvsvrwbgFqhGT/gzQh2q4WBEe+SdIcxg8a8yxOvjNXKW7kn/ce+z5zPZhPcaQLFggP4uOsDVC8WYHQsERHJQTLcuO3SpQs2mw1fX9/7Lh4VFYXdbk8+uOFfBQsW5NChQ2nes2nTJubMmcNff/2VrhqTJk1i7Nixqa6vWrUKHx+fDGe+H6tXr77rGHOAGbvVzif/+YR6peolXw+6fg0Pu52TGzdhLVAg0+plNmfX1Bxdo6ar1zOipuboGjU1R9eoqTlmroSEhHu+NzAwMMUChPj4eOrWrYuHx61viW02Gx4eHrzwwgsuc4aCM+28uBOA6sHVDU6SPhsXzUxzpe2/koC/r9nYuGgmjboMcF4wyfGuxcbTuMPz/LV6EQCFzm/ip3FvE+irXwCIiEjGpLtxe/nyZbp3786aNWtwOBw8+OCDfPXVV5QpUyYr86UQGxvLc889x+zZswkKCkrXPSNGjCA8PDz5dUxMDMWKFaN58+b4+TnnhFir1crq1atp1qwZnv8cMnY73T7rxu/Xf6fKg1VoXa518vWRs2Yx5dhRuuT15YtZn2Zavczi7Jqao2vUdPV6RtTUHF2jpuboGjU1x6zx79NT92LatGmZF0RSiE2IZWHnhXgV9aLk2pJGx0mXC2fSd+hvesdJ7mOx2vj022Ws27iFMzF2+jzTjj/2HaF1uyeJOXsEMNGqxwCWfvYOHh45//BBERFxvnQ3bocNG8Zff/3FuHHjyJMnD59++im9e/dm3bp191w8KCgId3d3IiMjU1yPjIykUKFCqcYfP36cU6dO0bZt2+RrDocDAA8PDw4fPkzp0qVT3OPl5YWXl1eqz+Xp6em0HzAyUrN6ieps37udY9ePpRgb8s+q5Ni4uHTnzq5zzMn1jKipOeb8ekbU1Bxdo6bm6Bo1NcfMr3WvevTokYlJ5L/9sP4HHDcc2C7ZqBRayeg46VK4ePrOykjvOMldRk2bw5SI4VhiogD4YfZ7DO7rh8NqIcl6E3cfP97+cDZDXuhkcFIREcnJ0t24Xb16NZ9//jktWrQAoE2bNlSsWJHExMQ0G6PpYTabqVWrFmvXrk1+HM3hcLB27Vr69++fanyFChXYu3dvimsjR44kNjaW6dOnU6xYsXvKkZ1UyF8BgEPRKbeK6PZEex7btJnAWjljzzARERGRnOLmzZtYLJYU15z1ZJarcBR3UHZyWSq7V8bNLcPnHxuiYce+hL78Gueu29Lc59YEhAZ40LBjX2dHk2xu1LQ5TBjcK9V1e8KtJwLyBBXlt19/pU7Vcs6OJiIiLibdjdvz589Tvfr/71dVtmxZvLy8uHDhAmFhYfccIDw8nB49elC7dm3q1KnDtGnTiI+Pp2fPngB0796dokWLMmnSJPLkyUOVKlVS3B8QEACQ6npOVditMKffP83Ri0e5eeYmecx5AMhXpDB53NywR0cbnFBEREQk54uPj2fYsGEsXLiQK1eupHrfbrcbkCrn2hO1B6+CXrR5oI3RUdLN3dPM9LFD6DDo7VTv/bsT8rQxQ3QwmaRgsdqYEjH8jmMcFgs1KmiltoiI3L8M/Trc3d091eukpDudw3p3nTt35t1332X06NHUqFGDv/76ixUrViQfWHbmzBkuXLhwXzVykopFKxJ/OJ7EyETW71yffN09f34AbFevGpRMRERExHUMHTqUX3/9lU8++QQvLy8+++wzxo4dS5EiRZg/f77R8XKUpKQkdl/aDeScg8n+9dTASTQo7Z/qemiAB4umDeepgZMMSCXZ2eyFy5O3R7gdS8xlZi9c7qREIiLiytK94jYpKYly5cqlOIk3Li6OmjVrpngcKvoeVoT2798/za0RANavX3/Hez///PMM18vOPNw9KFCyAJcPXmbttrW0fKglABZvb964cJ7os3+zOiEBs4+PwUlFREREcq5ly5Yxf/58GjVqRM+ePWnYsCFlypShRIkSfP3113Tt2tXoiDnGjsM7+POdP8lXPh+Vu1Y2Ok7GxF3muyfdmLPDTKEGzxJ56QoPPdKYRp36aaWtpOnEmbOZOk5ERORO0t24nTdvXlbmkP9SsmJJLh+8zI5dO5Kv+YSEsCwmBjtw8fhxiletalxAERERkRwuOjqaUqVuPcrs5+eXvPjg4Ycf5uWXXzYyWo6zaNUiYv6Mwf2aO94e3kbHyZjd31DY187ILg2wPj+Ln3/+mUdat8bdyQcKSs5Rqnhopo4TERG5k3Q3bnUKr/PUrFmT7Yu3c3T/0eRr7h4eBHh6csVqVeNWRERE5D6VKlWKkydPUrx4cSpUqMDChQupU6cOy5YtSz5DQdJn4+aNAJSvUd7gJBmUlAQ7vrj18QP6WUfuzuFI4rp/adzzBWGPvf12CWb/YHp3etyJyURExFXljCNfc5lHHnwEgMijkTgcjuTr+fPcOqjs0unThuQSERERcRU9e/Zk9+5b+7IOHz6cGTNmkCdPHgYPHszrr79ucLqc5dCuQwA0bNDQ4CQZ89uCj2g6bQ8/HnOHKh2MjiPZ3NWYONoOnc6sTafJ3+SlO44dOmYSZs90r5ESERG5LX01yYZa1GsBJrDGWDlw8gBVSlcBoICPD0djY4k8e87ghCIiIiI52+DBg5M/btq0KQcPHmTnzp2UKVOGatWqGZgsZ7kae5XoE7e2mXiq2VMGp8mYTz+axtqTdkqXK8oTXnnBajU6kmRTZy5dpcZDDbl68gCFOrzBxyNfZvejpZgSMTzFQWVm/2CGjpnE+EEvGphWRERciRq32VABvwLkLZqXuLNxrNy6MrlxG+TnB5GRXLpwweCEIiIiIq4lLCyMsLAwo2PkOIvXLQY7mAPM1KlYx+g46RZ1+gjfbzsBwEuDhhucRrKzo5GxPD9vJ9aAMNzznGbkkw/SsVYoHWu9yKh+Pfj026Ws27iFxg3r0+eZdlppKyIimUpbJWRToeVubWa/5c8tydeCAwMBuHz5kiGZRERERFzJ2rVradOmDaVLl6Z06dK0adOGNWvWGB0rR1m5fiUAxaoUw80t5/xo8eXUEVjs8EDxvNRq2dXoOJJNbTxymac+2cK5azep2WkQazdto1/XJ5LfN3t60PeZtvR4vCF9n2mrpq2IiGS6DH93tW7duqzIIf+jcrXKAOzfsz/5WlCBAgBcjrr9RvgiIiIicncff/wxLVu2JF++fAwcOJCBAwfi5+dH69atmTFjhtHxcoyd23cCUKtuLYOTpF+Sw8GsBT8D8FLXJw1OI9nVS29OpmWr1sTE36R2iUCWvPoIj9aqbHQsERHJZTL8K8GWLVsSGhpKz5496dGjB8WKFcuKXLle/dr1+Z7vOXfk//ezDS5YEICoa9cMSiUiIiLiGiZOnMj7779P//79k68NGDCABg0aMHHiRPr162dgupzB4XBwZt8ZAFo2amlwmvTb9P1MDkXexMfTRJdBE42OI9mMzWan6bN9+e27zwAoG7OTr3qNJo+nu8HJREQkN8rwittz587Rv39/Fi1aRKlSpWjRogULFy7EYrFkRb5cq0X9FgDEnY/j8rXLAIQUKQJAVGysYblEREREXMG1a9do2TJ1s7F58+Zcv37dgEQ5z7b927Bet2JyN/FU45xzMNnsGdMA6PJoBfxCQo0NI9nK1Zg4yjdokdy0bdatH6s+iVDTVkREDJPhxm1QUBCDBw/mr7/+4vfff6dcuXK88sorFClShAEDBrB79+6syJnrVC5ZGU9/T0iCldtu7R0WUvTWN5bRCQlGRhMRERHJ8dq1a8cPP/yQ6vqPP/5ImzZtDEiU8/yw9tbfv/yl8+Pv629wmvSJPnuchZuPAvDSgGEGp5HsZP/xM5SqVocT29eCmwevjpvGqi8/ylF7N4uIiOu5r93TH3jgAQoVKkSBAgV4++23mTt3Lh9//DH16tVj5syZVK6sPYDux8N9Hub4zePYgmwAFAorAcCVmzeNjCUiIiKSI33wwQfJH1eqVIm33nqL9evXU69ePQC2bdvG5s2bee2114yKmKNs2rwJgAoPVDA4Sfp9NXUEiTaoHurLg48/Z3QcySaW/7adDu3bkXgtEnfvfHw092v6PtPW6FgiIiL31ri1Wq38+OOPzJ07l9WrV1O7dm0++ugjunTpwuXLlxk5ciRPP/00Bw4cyOy8uUqbTm2Yt28eZ21nAShYqhQA1+12LDduYPb2NjKeiIiISI7y/vvvp3gdGBjIgQMHUnzPGhAQwNy5cxk5cqSz4+U4h3cdBuCRBo8YnCR9khwOZn/7EwAvdXkCk1ZSCjD18+94ve/zOBIT8C5QlJ+WL+exutWNjiUiIgLcQ+P21Vdf5T//+Q9JSUk899xzTJkyhSpVqiS/7+vry7vvvkuRf/ZjlXtXIfDW6oVD0YcACClVimZ58xHo7s6NyEjMYWEGphMRERHJWU6ePGl0BJeRYE3A/3F/3I640allJ6PjpMu2pfPYd+EG3p7QNVyHkgn0fmMyn739BiQ5CCpTnW1rf6F08cJGxxIREUmW4cbtgQMH+PDDD3nqqafw8vJKc0xQUBDr1q2773C5Xel8pYnZFcP68+uxtbDhYTbzUZUq2K9exStRh8GJiIiIZIakpCQATCaTwUlyjv1X9pP3gbyUergUNcrUMDpOusz68B0AOjcsj3+hEganESPZbHYe69ybjYvnAVDh4cf5fcVC/Hx9DE4mIiKSUoafD4qIiODpp59O1bS12Wxs2LABAA8PDx599NHMSZiLlfAvwd8f/825786xac+tPcTc8+cHwH412shoIiIiIjne/PnzqVq1Kt7e3nh7e1OtWjW+/PJLo2PlCLsv3zqQuHpwDnmk/MY1vOPOkMcDXnr1daPTiIFuWOzUbN01uWnbovur7P9tqZq2IiKSLWW4cdu4cWOio1M3Da9fv07jxo0zJZTcksech+INihPQIIDjV48D4B4QwHW7nevnzhmcTkRERCTnmjp1Ki+//DKtW7dm4cKFLFy4kJYtW9K3b99Ue+FKaosWLiLuQBwV8uaQg8n2fsfHrTy5MLEWD7XraXQaMcil2Js8M2srV4o/irtPAIMmfMCKLz7ATfsdi4hINpXhrRKSkpLSfIzsypUr+Pr6Zkoo+X/Pv/U83x/9nviAeABe3b6dn44d5e2lSxnWoYPB6URERERypg8//JBPPvmE7t27J19r164dlStXZsyYMQwePNjAdNmbw+Hg1+m/Yo214t0oBxyWm5QEOz4HIKBhL1CTLlfaefwCr353kHPXblCweGm++X03jaoUNzqWiIjIHaW7cfvUU08Bt/b+ev7551NslWC329mzZw/169fP/IS5XPn85QE4fPXWqb0FAvwBuBoVZVgmERERkZzuwoULaX7vWr9+fS5cuGBAopzj8MXD+FTy4eapm7R/tL3Rce7q2KYfid+9m+qhvlAtZxykJpnr3TkLGP7qSwS1H07FB+ox7/kHCQvSoiMREcn+0v3rZn9/f/z9/UlKSiJfvnzJr/39/SlUqBAvvfQSX331VVZmzZUq5K9Akj2JHXt3ABDxdCd2lS3HwAcfNDiZiIiISM5VpkwZFi5cmOr6ggULKFu2rAGJco5jN45R7OVidJzbkXw++YyOc1eTx79JjU/jidgTCj75jY4jWchitTHz22V8sXwjM79dhsVq4+vfTzP2/ZnYb8TgfmAFi1+ur6atiIjkGOlecTtv3q3N28PCwhgyZIi2RXCSYnmKceDlAyRZkjjW8Rj5ixThppsb9uirRkcTERERybHGjh1L586d2bBhAw0aNABg8+bNrF27Ns2Grvy/HHUw2c0YHFdO4ukGTZ9+0eg0koVGTZvDlIjhWGJuPZn4w+z3CO8XRGCTlwhs8SrVqlTmlzlT8PM1G5xUREQk/TK8wVNERISatk4U5BeEd/5be4f9suUXPPIHAmBP44A4EREREUmfDh06sH37doKCgliyZAlLliwhKCiI7du38+STTxodL1vbvHczSY4kaoTUMDrK3e1bxJy2npybUJ2HO/Q1Oo1kkVHT5jBhcK/kpu2/bLFRXF4ykSqOE2z6z4f4+foYlFBEROTepGvF7QMPPMDatWsJDAykZs2aaR5O9q+dO3dmWji5pUi5Ihy7eIzNf2zm0TqFGHXhPD4bNvAfo4OJiIiI5EBWq5U+ffowatQobfWVQZHRkazoswJ3H3dKHC5hdJy7++dQsuBHdSiZq7JYbUyJGH7HMWvnTcE6ZRBmzwyfzS0iImKodH3leuKJJ5IPI2vfvn1W5pE0VKpaiWMbjrF/736sj3RjaUwMgQkJRscSERERyZE8PT35/vvvGTVqlNFRcpzF6xZDEnh6e1KuaDmj49zRqd+Xk7h3J+ULekP1LkbHkSwye+HyVCtt/5fl+mVmL1xOv65POCmViIhI5khX4zYiIiLNj8U56j5Ql6Us5cyhMxQqXQqAazYbNosFD7P2aBIRERHJqPbt27NkyRIGDx5sdJQcZc3GNQCUqJr9V9u+PWY4n66IZ2yncoz2LWB0HMkiJ86czdRxIiIi2YmeFckBWjRowZu8SczZGLwLBQOQBFw6cYIiFSoYG05EREQkBypbtizjxo1j8+bN1KpVK9UZDgMGDDAoWfa2+89bB5M9WPdBg5PcWdyVi3yzbj8Aj7R/3tgwkqVKFQ/N1HEiIiLZSboat4GBgXfc1/a/RevQrExXs2xNPPJ6YIuzsW73BgLcPbhmtxGpxq2IiIjIPZkzZw4BAQHs2LGDHTt2pHjPZDKpcZsGh8PB+QPnAWjduLXBae5swfQ3iU1MomywF4927m90HMlCbu4mwMStpS1pM/sH07vT407LJCIiklnS1bidNm1aFseQO3FzcyO4dDAXdl9g3e/ryJ/Hi2vxNi6eOm10NBEREZEc6eTJk0ZHyHEOnD2ALc6GydNEu4btjI5zR7O+/A6A3k+3wKRDyVzWtM+/J/ylrtypaQswdMwkHUwmIiI5Urq+evXo0SOrc8hdlK5Umgu7L7Br1y7y+/hwIj6eS+e0T5OIiIhIRm3bto1ly5ZhsVho0qQJLVu2NDpSjrD94HYAgssF4+vte5fRxtm95ju2n4rF0x16DJlkdBzJIuM+ms+YQS+SZLdRpEo9nnm2Kx+9PSbFQWVm/2CGjpnE+EEvGphURETk3qWrcRsTE4Ofn1/yx3fy7zjJXLUeqMWm/2zi+MHj1MyXDy5f5tK5c0bHEhEREclRFi1aROfOnfH29sbT05OpU6cyefJkhgwZYnS0bO/Q4UMAVHqgksFJ7mz2tLcAaP9gCUJKZu+scm+GTP6E90b0hyQHJWs35q/1P+Hn68OkIX349NulrNu4hcYN69PnmXZaaSsiIjlaup4bCgwM5NKlSwAEBAQQGBiY6s+/1yVrNK7TGICo41EEBdz6+3wp8pKRkURERERynEmTJtG7d2+uX7/O1atXmTBhAhMnTjQ6VrZmsVqYtWQWp/46BcDD9R42NtAdJFyL4ss1ewB46WXtbeuKPl2xg6kjB0OSg4oNH+fAphX4+foAYPb0oO8zbenxeEP6PtNWTVsREcnx0vWV7NdffyV//vwArFu3LksDSdqaPtgUk7sJe4KdPN5mAKKuRN3lLhERERH5b4cPH2bBggW4u7sD8NprrzF69GguXbpESEiIwemyn4hPI5j85mQSryQmX5vy5hTc3NwY22esgcnStnD6m8QkJlGqgJnHnh1kdBzJZHM3nWTS+osEPTGU4gnH2Lb0Szw83I2OJSIikmXS1bh99NFH0/xYnMfX2xf/4v5cO3UNm7sNgKhr14wNJSIiIpLDJCQkpNjay2w2kydPHuLi4tS4/R8Rn0Ywru+4VNctVy3J17Nb83bWlwsA6N2hKW4eWm3pKhwOB1N+/IOZv99auDLohS6MaFUBk8lkcDIREZGsdU/fzVy9epU5c+Zw8OBBACpVqkTPnj2TV+VK1uj6dlfWXVtHwNYCsAGi7rLfsIiIiIik9tlnn5E3b97k1zabjc8//5ygoKDkawMGDDAiWrZhsVqY/ObkO46Z/OZk3nzhTcyeZielurN9639k6/HreLjB86+/bXQcySQOh4PHnunLpl++p2DXKQzt+AgDmpRR01ZERHKFDDduN2zYQNu2bfH396d27doAfPDBB4wbN45ly5bxyCOPZHpIuaVulbr89sdvxOWzABAVH29wIhEREZGcpXjx4syePTvFtUKFCvHll18mvzaZTLm+cTt32dwU2yOkJfFKInOXzaXvU32dlOrOZr8/HoB2tYtRqExVg9NIZnA4khix8A+2/LoSe1w0TfwuMbBpWaNjiYiIOE2GG7f9+vWjc+fOfPLJJ8l7g9ntdl555RX69evH3r17Mz2k3FIhfwUAovPH0zxvPsL+6zE/EREREbm7U6dOGR0hRzhx5kSmjstqN2OvMn/VTgBe6vuywWkkM9jsDoYv3suiv6Io2GUCbYOi+ThioNGxREREnCrDjdtjx46xaNGi5KYtgLu7O+Hh4cyfPz9Tw0lKpf1Kc37+ea6fsbCyaCi4uZHkcGByczM6moiIiIi4kFLFS2XquKzmdXwlK7v5sPBYHpo997rRceQ+xSXcpMu4OewlDHc3E++/0Jgna4YaHUtERMTpMtzxe+CBB5L3tv1vBw8epHr16pkSStKW3yc/CXsSuHAs7tYFhwP79evGhhIRERERl/NC2xfwKuB1xzFeBbx4oe0LTkp0Z6adX1CnqDvvjhmmQ8lyuKsxcVSs35SfJr/KzYPrmPHsA2raiohIrpWu72r27NmT/PGAAQMYOHAgx44d46GHHgJg27ZtzJgxg7ff1iEAWa1BzwYcjj1M4jYzN+JukHDhAn6BgUbHEhEREREXYvY0M+ytYYzrO+62Y4a9NSx7HEx2+TCc2QImd6jZ1eg0ch8ir1yjWoOmXDq8A5OHF+FtH6RllUJGxxIRETFMuhq3NWrUwGQykZSUlHxt6NChqcY9++yzdO7cOfPSSSpPPvskM3fP5Mn5RziVcJMVGzfSolIlo2OJiIiIiIsZ22csAJPfnJzioDKvAl4Me2tY8vtGGz3wRS4evsHgLk2p6FfE6Dhyj05fuMwDDR4j+uQ+3Mw+zPjiW/o+09boWCIiIoZKV+P25MmTWZ1D0ql8YHkAfMzukABXzp03OJGIiIiIuKqxfcby5gtvMnvJbNZvWk+jhxvRu33v7LHSFrgZe40ZP24lOsHBE30eoqLRgeSeHD55lgcbPkbsuaO458nLF9/9SNc2jxkdS0RExHDpatyWKFEiq3NIOpXxL0PcgTgGlgqmcVwoxStWMDqSiIiISI50/Phx5s2bx/Hjx5k+fTohISH88ssvFC9enMqVKxsdL9swe5p5qf1LhJpDad26NZ6enkZHSuZ1cjWLn87DwqNetOw53Og4cg92HTzOw40eI+HSGTx8A/jux+W0b1Lf6FgiIiLZwj3v3H/gwAHOnDmDxWJJcb1du3b3HUpuLzRfKH9/8DfX/YMxB+TBFh1tdCQRERGRHOe3336jVatWNGjQgA0bNvDWW28REhLC7t27mTNnDosWLTI6oqSDaecXPBrmwaPPD4VssgpY0m/zrgM0adqUxOgLmP2D+XnFSpo8VNPoWCIiItlGhhu3J06c4Mknn2Tv3r0p9r01mUwA2O32zE0oKXi4e1CgdAGuRtoAsEdfNTiRiIiISM4zfPhwJkyYQHh4OPny5Uu+/thjj/HRRx8ZmEzSLeoYnNoIJjeo2c3oNJJBKzfvoG3rllhjoshToAhr16yhfg1tdiEiIvLf3DJ6w8CBAylZsiSXLl3Cx8eH/fv3s2HDBmrXrs369euzIKL8r1IVS3Hw5k2Gnj/PtJUrjI4jIiIikuPs3buXJ598MtX1kJAQoqKiDEgkGfXWkN4M/OUmx/LWA/9Qo+NIBny/ahNtWjTBGhOFb8Ewtm3eqKatiIhIGjLcuN26dSvjxo0jKCgINzc33NzcePjhh5k0aRIDBgzIiozyP2rWrMklm52fYmPYcPy40XFEREREcpyAgAAuXLiQ6vquXbsoWrSoAYkkIxLjY5i2aAMfbLewP08to+NIBqz+8xCdnmiFLf46fqFl2fX7ZqqXL2V0LBERkWwpw41bu92e/DhZUFAQ58+fB24dYHb48OHMTSdperTOoyQmOQC4Eh9vcBoRERGRnOeZZ55h2LBhXLx4EZPJhMPhYPPmzQwZMoTu3bsbHU/u4sdPxhIV76CwnzuP93rT6DhyGxarjZnfLuOL5RuZ+e0yNhyKZNDSU+Sr/QT5S1Vlz/bNlC1RxOiYIiIi2VaG97itUqUKu3fvpmTJktStW5cpU6ZgNpuZNWsWpUrpN6XO0Lxuc4b/27i9edPgNCIiIiI5z8SJE+nXrx/FihXDbrdTqVIl7HY7zz77LCNHjjQ6ntzF7M/nA/Biu4fx8MpjcBpJy6hpc5gSMRxLzK2tR36Y/R7u+YLI3+QlWj3XjxnPVCO/n6/BKUVERLK3DDduR44cSfw/qzzHjRtHmzZtaNiwIQUKFGDBggWZHlBSC8wXiCMoD5y3cs1qxW6z4e6R4X+UIiIiIrmW2Wxm9uzZjBo1in379hEXF0fNmjUpW7as0dHkLo7vWMea/VGYgBeHTDA6jqRh1LQ5TBjcK9V1e2wUl5dMJOzhMPL71TMgmYiISM6S4W5fixYtkj8uU6YMhw4dIjo6msDAQEwmU6aGk9vLV74wnI/FDlw5c4YQrXYWERERSbdNmzbx8MMPU7x4cYoXL250HMmAz94dBUDzqiGEVX/Y4DTyvyxWG1Miht9xzNTxbzJ2QE/Mnlp8IiIicicZ3uP2v/3999/8/fff5M+fX01bJ6tUszp53W7947uoA8pEREREMuSxxx6jZMmSvPHGGxw4cMDoOJJO1psJzPtpGwAvvfiCwWkkLbMXLk/eHuF2LNcvM3vhciclEhERybky3Li12WyMGjUKf39/wsLCCAsLw9/fn5EjR2K1Wu8pxIwZMwgLCyNPnjzUrVuX7du333bs4sWLqV27NgEBAfj6+lKjRg2+/PLLe6qbk9V/sD5+/zRuI0+dMjaMiIiISA5z/vx5XnvtNX777TeqVKlCjRo1eOeddzh79qzR0eQOln06nsg4OwXzutO2zyij40gaTpxJ339D6R0nIiKSm2W4cfvqq68ya9YspkyZwq5du9i1axdTpkxhzpw5DBgwIMMBFixYQHh4OBEREezcuZPq1avTokULLl26lOb4/Pnz8+abb7J161b27NlDz5496dmzJytXrsxw7ZysZb2W+P7TuD117IjBaURERERylqCgIPr378/mzZs5fvw4Tz/9NF988QVhYWE89thjRseT25g1Zy4APdvUwzOPj8FpJC2liodm6jgREZHcLMObCn3zzTd8++23tGrVKvlatWrVKFasGF26dOGTTz7J0OebOnUqvXv3pmfPngDMnDmT5cuXM3fuXIYPT703UqNGjVK8HjhwIF988QWbNm1Ksf+uq6tQogJ53G81bvfs3WlwGhEREZGcq2TJkgwfPpzq1aszatQofvvtN6MjSRpO7d7Eqr23Fnf0GjLO4DRyO1bb3Z/CNPsH07vT405IIyIikrNluHHr5eVFWFhYquslS5bEbDZn6HNZLBZ27NjBiBEjkq+5ubnRtGlTtm7detf7k5KS+PXXXzl8+DCTJ09Oc0xiYiKJiYnJr2NiYgCwWq33vLVDRv1bJ7Pr+Xqb4cZNLkVFpvjcWVXvTpxdU3N0jZquXs+Impqja9TUHF2jpuaYtTUzy+bNm/n6669ZtGgRN2/e5IknnmDSpEmZWkMyx5x3R5IENK0cROlajY2OI2mY/+NqXnup+13HDR0zSQeTiYiIpEOGv1r279+f8ePHM2/ePLy8vIBbzdG33nqL/v37Z+hzRUVFYbfbKViwYIrrBQsW5NChQ7e97/r16xQtWpTExETc3d35+OOPadasWZpjJ02axNixY1NdX7VqFT4+zn28avXq1Zn6+YKLFYDoGK7FXuPnn3/O8nrp4eyamqNr1HT1ekbU1Bxdo6bm6Bo1NcfMlZCQkCmfZ8SIEXz77becP3+eZs2aMX36dJ544gmnf38o6WNLvMmcpZsA6N2zh8FpJC1L1m6h5zNP4bDcoGDF2jzXvScfTIpIcVCZ2T+YoWMmMX7QiwYmFRERyTnS1bh96qmnUrxes2YNoaGhVK9eHYDdu3djsVho0qRJ5idMQ758+fjrr7+Ii4tj7dq1hIeHU6pUqVTbKMCtb8rDw8OTX8fExFCsWDGaN2+On5+fU/JarVZWr15Ns2bN8PT0zLTPu2bOdNh9kriEm7Ru3TrL692Js2tqjq5R09XrGVFTc3SNmpqja9TUHLPGv09P3a8NGzbw+uuv06lTJ4KCgjLlc0rWOb/5PxTxTcJmd6P9y2OMjiP/Y+22XTz9xOM4bsaRv2QVdm9cTcECAbz12kt8+u1S1m3cQuOG9enzTDuttBUREcmAdH3V9Pf3T/G6Q4cOKV4XK1bsnooHBQXh7u5OZGRkiuuRkZEUKlTotve5ublRpkwZAGrUqMHBgweZNGlSmo1bLy+v5JXB/83T09NpP2BkVc3aVWvScv2fFPH2BBN4eqT83K4wx+xWz4iammPOr2dETc3RNWpqjq5RU3PM/FqZYfPmzZnyecQ5il/4hT9fysvFCi9g9slrdBz5L9v2HKJ1yxbY4q+Rr2hZdm7+lYIFAgAwe3rQ95m2FPdzp3Xr1niqaSsiIpIh6frKOW/evCwpbjabqVWrFmvXrqV9+/YAOBwO1q5dm6FtFxwOR4p9bHOL9s3bUef7nzl08ya/7fqNpg82NTqSiIiISLa1dOlSWrVqhaenJ0uXLr3j2Hbt2jkpldzV9bNw7NZ2HIWa9jM4jPy3vUdP8thjTbFcv4xPSHG2b1xLicLBRscSERFxGff8K8/Lly9z+PBhAMqXL09w8L19gQ4PD6dHjx7Url2bOnXqMG3aNOLj4+nZsycA3bt3p2jRosmHREyaNInatWtTunRpEhMT+fnnn/nyyy/55JNP7nUqOZb5n8f68nu4s3bnBjVuRURERO6gffv2XLx4kZCQkORFA2kxmUzY7XbnBZM72rFgMhVv2PGv8AgElTE6jvzj+JkL1H+kCTeunMMrsBAb1q2hQsl7exJTRERE0pbhxm18fDyvvvoq8+fPx+FwAODu7k737t358MMPM3ygQ+fOnbl8+TKjR4/m4sWL1KhRgxUrViQfWHbmzBnc3NxS1H/llVc4e/Ys3t7eVKhQga+++orOnTtndCo5nkf+/DiSkjC5mQh8IMDoOCIiIiLZ2r/fu/7vx5J92W1Wnn5zDtEJNtbOrc9DRgcSAM5dukLthk2Iu3gSz3z5WbVqFbUqlTU6loiIiMtxu/uQlMLDw/ntt99YtmwZ165d49q1a/z444/89ttvvPbaa/cUon///pw+fZrExER+//136tatm/ze+vXr+fzzz5NfT5gwgaNHj3Ljxg2io6PZsmVLrmzaAth8fal25DCPHj3G4aO7jI4jIiIikmPMnz8/za22LBYL8+fPNyCRpMV0ejN+Zgfenm7UeOIVo+MIcMNip9nzr3HtzEHcffxYsuwXHqld1ehYIiIiLinDjdvvv/+eOXPm0KpVK/z8/PDz86N169bMnj2bRYsWZUVGuQ1vPz+8/1mN/PeRQwanEREREck5evbsyfXr11Ndj42NTd6yS4xjt1rYsPAjrvzxPR+18uKPGb3Jky/A6Fi5nsXm4OWvdxBfuT0BNZrz9XdLaf1oHaNjiYiIuKwMb5WQkJCQvI3BfwsJCSEhISFTQkn6rWnQAJ/IS/T97jiHeh6iQokKRkcSERERyfaSkpIwmUyprp89exZ/f38DEsm/Fk8fwcCIdzl73ZZ8LfTHz5h+PZCnBk4yMFnulmixMmjhbtYfvox3Hi8W/fAfHgzLb3QsERERl5bhxm29evWIiIhg/vz55MmTB4AbN24wduxY6tWrl+kB5c4KFi7MzUuX8TljZcXWFWrcioiIiNxBzZo1MZlMmEwmmjRpgofH/387bLfbOXnyJC1btjQwYe62ePoIOg56m6T/uX7uup2Og95mEah5awCbzU6tFh05E+OgYIu+zHqutpq2IiIiTpDhEDFg9QAAy09JREFUxu20adNo2bIloaGhVK9eHYDdu3eTJ08eVq5cmekB5c48Am99wxTo7s7WP7cy6JlBxgYSERERycbat28PwF9//UWLFi3Imzdv8ntms5mwsDA6dOhgULrczW61MDDi3VRNW4AkwAQMGvMuT7wyFndPs5PT5V5JSUm89O437F+/DEwmxr/ej0fKBRsdS0REJFfIcOO2atWqHD16lK+//ppDh27tq9qlSxe6du2Kt7d3pgeUO/vp4gWWnz/PTYeDC3v2GR1HREREJFuLiIgAICwsjM6dOyc/QSbG27hoZortEf5XEvD3NRsbF82kUZcBzguWy7236gi/XstPgTbhdK1TjIHPaEW6iIiIs2SocWu1WqlQoQI//fQTvXv3zqpMkgEHYmJYHhtDbW9v/j78t9FxRERERHKEHj16GB1B/seFMycydZzcvw9WHeCjdScBeP/NV3nuoRIGJxIREcld3DIy2NPTk5s3b2ZVFrkHwcG3HlOyJSURezaWa3HXjA0kIiIikgPY7Xbeffdd6tSpQ6FChcifP3+KP+J8hYuXytRxcn96DBnPkK6tsMVFM7xVBTVtRUREDJChxi1Av379mDx5Mjbb7R9jEucJKVwYAAuAA1b9vsrQPCIiIiI5wdixY5k6dSqdO3fm+vXrhIeH89RTT+Hm5saYMWOMjpcrNezYl1B/D0y3ed8EFAvwoGHHvs6MlSu9OnYa898bjTXqDDUt++n7aGmjI4mIiORKGd7j9o8//mDt2rWsWrWKqlWr4uvrm+L9xYsXZ1o4ubuCRYsCcCPp1jEO639fz5OPPGlkJBEREZFs7+uvv2b27Nk8/vjjjBkzhi5dulC6dGmqVavGtm3bGDBAe6g6m7unmeljh9Bh0Nup3vu3mTttzBAdTJbFRk2bw0djXwOgTpuu/DhzosGJREREcq8MN24DAgJ00m42ElK8OACxdjsAu3btMjKOiIiISI5w8eJFqlatCkDevHm5fv06AG3atGHUqFFGRsvVnho4ifIT3+fwpcQU10MDPJg2ZghPDZxkULLc4Z05C5jwWl9IclCl0RNs/uEL3Nwy/JCmiIiIZJIMN27nzZuXFTnkHhUqdWuPr2v/bF1x4qAOaxARERG5m9DQUC5cuEDx4sUpXbo0q1at4oEHHuCPP/7Ay8vL6Hi5VtTpwxz5p2n7nymDOX7sGA890phGnfpppW0W+3TBcob17QEOG6XrNGXHqkV4eLgbHUtERCRXS/evTx0OB5MnT6ZBgwY8+OCDDB8+nBs3bmRlNkmHQmXKAGADfE0moo5HYbNr/2ERERGRO3nyySdZu3YtAK+++iqjRo2ibNmydO/enRdeeMHgdLnXz/OnkQTUCPWlw6DJVGn9Io906q+mbRb7z/J1vNK9E0m2REKr1eevdcswe2Z4jY+IiIhksnR/NX7rrbcYM2YMTZs2xdvbm+nTp3Pp0iXmzp2blfnkLnwDA/FxcyPB4cDf04P4m1a2H9xudCwRERGRbO3tt/9/H9XOnTtTvHhxtm7dStmyZWnbtq2ByXK3n37+BYA2jWobnCT3WP7bdp7r1B6HJYHgsjXZs3EleX3yGB1LREREyEDjdv78+Xz88cf06dMHgDVr1vD444/z2Wefad8jg+U3m0m4eZOgYF/On7vGmm1rqF1E3+yKiIiIpFe9evWoV6+e0TFyNUtCHCt3nQGgTafnjQ2TS2z4cy9Ptm2FPSGGgBIV2b1lLYF+eY2OJSIiIv9Id+P2zJkztG7dOvl106ZNMZlMnD9/ntDQ0CwJJ+lTwNuHszdvUqpsKJENvEgqlGR0JBEREZFsZ+nSpeke265duyxMImnZtHgWMYlJhOR158FW3bAn6XvazGSx2vj022Ws27iFMzF2HqxWiebNmmGNjSZvoZLs3PQrhYMCjY4pIiIi/yXdjVubzUaePCkfmfH09MRqtWZ6KMmYAvnywtVoShQqzLGWcC3fNYg3OpWIiIhI9tK+fft0jTOZTNjt9qwNI6l4XNhBs1LulCpTHjcPD+z6OSPTjJo2hykRw7HERAHww+z3MLmbSbJb8A4KZevGXykZWsjglCIiIvK/0t24TUpK4vnnn09xyu7Nmzfp27cvvr6+ydcWL16cuQnlroL8/QFwXL91KNnhq4dpZm5mZCQRERGRbMfhcBgdQW4nKYlHzPtZ9ZwvSU9PNDqNSxk1bQ4TBvdKdT3JbgHgmRdfpkqZMCenEhERkfRI9+a0PXr0ICQkBH9//+Q/3bp1o0iRIimuifPVKVeO1vnyUTWwIIkXEzm8/jBX4q4YHUtEREREJH2ijsLVk+BuxlTmMaPTuAyL1caUiOF3HPP1zGlYrDYnJRIREZGMSPeK23nz5mVlDrkPz7dqRet9+/ErWoyBU3/kxqUb7AjZwXM8Z3Q0ERERkWxp3Lhxd3x/9OjRTkoiAHt/mUtQrIPCNR4Gr3xGx3EZsxcuT94e4XYs1y8ze+Fy+nV9wkmpREREJL3SveJW7o3damHDwo/Y9/McNiz8CLvVkuk13APz36oVfZXQyqGYC5v5bedvzFoyC0sW1BMRERHJ6X744YcUfxYuXMjkyZN57733WLJkSYY/34wZMwgLCyNPnjzUrVuX7du3p+u+b7/9FpPJlO79d13VqxNnU2RqHN+czG90FJdy4szZTB0nIiIizqXGbRZaPH0EYcG+NO0WzshZy2jaLZywYF8WTx+RqXU8CuTHnpTE/v1/cXr3aSwXLOxfup/+nfrjV9iPiE8jMrWeiIiISE63a9euFH/27dvHhQsXaNKkCYMHD87Q51qwYAHh4eFERESwc+dOqlevTosWLbh06dId7zt16hRDhgyhYcOG9zOVHM8eF4U14TomoF67542O41JKFQ/N1HEiIiLiXGrcZpHF00fQcdDbnL2ecr+oc9dtdBz0dqY2b/dGRlLtyGF6/LELS3TKFbaJVxIZ13ecmrciIvJ/7N13eI3nG8Dx75nZSxJJSIi991aU2qulVGmV2rN2japdtYmWllI1qrU7jKqZolZrU2oLIpPscebvj1R+TTOR5CRxf64rl573fd73vp+EOuf2vPcjhMiEo6MjM2bMYMqUKc903eLFixkwYAB9+vShYsWKrFixAltbW9asWZPuNUajkXfffZcZM2ZQsmTJF009X1Pd8ef3vnYEz6lJieovdxE7uw3o1h6No1uGY7RO7gzo1j6XMhJCCCHEs5DCbQ4w6nWMnLYQcxrnnh4bNX1htrVNcC5SBDMQncFOyfMmz5O2CUIIIYQQmYiMjCQyMjLL43U6HWfOnKFFixbJx5RKJS1atODEiRPpXjdz5kwKFy5Mv379XijfAuH6XgDca3WwcCIFz/Z9R1G5FMlwzPjpc9Bqsrz1iRBCCCFykfwNnQOObluRaqXtv5mB+xEGjm5bQdMeI1443m8BZzhSqjTOKhX1b9wgzpy6gJsYnsianWsY/ObgF44nhBBCCJHfffbZZylem81mHj16xIYNG2jbtm2W7xMWFobRaMTDwyPFcQ8PD65du5bmNceOHePrr7/m/PnzWY6TmJhIYmJi8uuoqCgA9Ho9er0+y/d5Xk9jZHcsoz6RhEu/4gwYSrXA/K/751TM9OR2vJyOeeavm/Tu3hV9zGMKV25ERMC1FBuVaZ3cGTtlNlOH9crRORf0n2NB+32TF+JZIqbMsWDElDkWjJgv0xyzQgq3OeBRwO1sHZeZ2yEPqatUolYoKKRWEadPe+Xt7WyKJ4QQQgiR3y1ZsiTFa6VSibu7O71792bSpOzdj+DfoqOjee+991i1ahVubhk/wv5vc+bMYcaMGamO79u3D1tb2+xMMUP79+/P1vvd/3MPoz99wOsVrOlVPQwu7cnxmJnJ7Xg5EfNJTDzDxk5CH/MYm8LFmTt+KA62Vhz88yrB4U/wcHWhee0KaNQq9uxJ/T3PCQX951gQft/ktXiWiClzLBgxZY4FI2ZBnmNcXFyWx0rhNgd4Fctan7KsjstMyWIleWI0YqNUUkil4kE6lfuS2RRPCCGEECK/u3PnTrbcx83NDZVKRXBwcIrjwcHBeHp6php/69Yt7t69S8eOHZOPmf5pd6VWq/n7778pVapUqusmTZrEmDFjkl9HRUXh4+NDq1atcHR0zJa5ZESv17N//35atmyJRqPJtvtO+nYuBhNYFypKu/YpWyXkVMz05Ha8nIqZkKijQsNWxAXfRW3vwv5fdlG3SjkA2rVtUyDm+DLHs0RMmWPBiClzLBgxZY4FI+bTJ6eyQgq3OaBx18F4DxnLw0hDmn1uFYC3s5rGXbOnbUHfjn0ZMGAy4XoDKhRpjrFytaJvx77ZEk8IIYQQQiTRarXUqlWLgwcP0qlTJyCpEHvw4EGGDx+eanz58uW5dOlSimMff/wx0dHRLF26FB8fnzTjWFlZYWVlleq4RqPJtQ81ORFvz7HzAHTs2DHd++b3OeZ2zEZv9uHhpeMo1Fq++W4rr9SsnKPxsqqg/xzle1owYsocC0ZMmWPBiFmQ5/gsMaRwmwNUGi1LZ4yj66i5KCBV8dYMLJk2BpVGmy3xtBot15RwOjqKmtY2aY6ZMHsC2myKJ4QQQgiR3yUkJPD5559z+PBhQkJCkle9PnX27Nks32vMmDH07t2b2rVrU7duXfz8/IiNjaVPnz4A9OrVi6JFizJnzhysra2pXDllIc3Z2Rkg1fGC7taZw1wNSkClhDY9R1k6nQLhvTEzOL1rIwCT5i6jZ8fmFs5ICCGEEC9CCrc55M2Rc9gGjJy2MM2Nyh4GZM/jeU8V8yjC6bDHaLRKSEh5bszCMcwYlLonmhBCCCHEy6pfv37s27ePrl27UrduXRSKtJ9ayoq3336b0NBQpk6dSlBQENWrV2fv3r3JG5YFBASgVCqzK/UCY/fGLwFoXLYQzl7FLZxN/jdn5Xd86zcTgDcGjGP22AEWzkgIIYQQL0oKtznozZFzeGPoDPy3LOfkkcPUb9KMy38eZ5TfNsZ9tpWGLb6ldrue2RLLrZALANWr1uC9Ed05fPQwu77fRWJYIvGJ8dkSQwghhBCioNi1axd79uzhlVdeyZb7DR8+PM3WCAD+/v4ZXrt27dpsySG/2bnvMAAdWjSxcCb5348Hj/PxiP5gNlG52RvsWDHP0ikJIYQQIhvIP/3nMJVGS5Nuw6ncrh9Nug1nxKLNdK7jjd4Ib/fqR2RwQLbEKezuDkD4kwgGdhrIe83fo12PdgBs/257tsQQQgghhCgoihYtioODg6XTeGlFhTzgt2thAHTsOdTC2eRvl2/e5e0unTDp4ilctiYndm2SFd5CCCFEASF/o+cyhVLJ1z8ewbeQhtvhOvq/0Rjzf3qqPY/Cnl4AhEVGJh+bNHgSKCDkSghHzx994RhCCCGEEAXFokWLmDBhAvfu3bN0Ki+l/d99jt4IZdytKFuvpaXTybfCI6Jp3LwdushQbNx9OHVwD/a21pZOSwghhBDZRAq3FuBSpASb1n6FWgnbTgWwYlKvF76ne9EiAITFRCcfq16mOt41vQGY8+WcF44hhBBCCFFQ1K5dm4SEBEqWLImDgwOFChVK8SVy1q6ffwKgQ6NqFs4k/zKZzAz9cg9RoQ9R2TiwZ9cufL09LJ2WEEIIIbKR9Li1kHod32fu0J8Yt+xHRi/eSIMWr1O9Zbfnvp9HsWIAPI5P2c+2e8/uLDyzEP8f/TF8YUCtkh+5EEIIIUSPHj14+PAhn376KR4eHi+0OZl4NiaDnt2nbwDQsWsPC2eTfy3Y9zenIu0p9v4SPm5elKZ1q1o6JSGEEEJkM6niWdCYpdvx/92bsNAQXH6fCU3agtXz9Vrz8PUF4LFOl+L4xL4TWTJpCfEh8az+aTWD3xz8omkLIYQQQuR7x48f58SJE1SrJis+c9vp3RsIjTXhaKWg0ZsDLZ1OvrT28F986X8HgMUDWtG5hreFMxJCCCFETpBWCRakUCrZuOc4R0aUpTj3YecoMJuf616epUoDkGA2Ex0amnzc1dGV2h1r4/yKM2djzmZH2kIIIYQQ+V758uWJ/8+TSiJ37NqyDoA2NYujsba1cDb5z+ff/ki/dvWIu/UHI5qXkaKtEEIIUYBJ4dbCHD190by9BhQquLyNR/s+e777eBRG+88jfkE3b6Y498XnX+A9wJsLqgvE6eNeOGchhBBCiPxu7ty5jB07Fn9/f8LDw4mKikrxJXJOYshNbDXQoX07S6eS79wKjeHjOYswJcTgEnia0S3KWDolIYQQQuQgKdzmBcXqY2gyifH7EyjdcRSX/X985lsolUpctVoAgu/eTXGuRuEa+Dj4EGeI42DAwWxIWAghhBAif2vTpg0nTpygefPmFC5cGBcXF1xcXHB2dsbFxcXS6RVcEfdZ8EoM4eOdeGvIZEtnk688jtXRd+0fOLcbR6U3BnNq71bpzSyEEEIUcNLjNo9QNh7NpZhFxOmD2eM3nMoNWoCV/TPdw9XGhkeJiYTcv4+1k1PycYVCweulXmfhTwuZc3oOHZd3zO70hRBCCCHylcOHD1s6hZfT9b0AWJesD4WKWDiZ/CMuUcegDX9yLzyOYu4O/DjND2d7K0unJYQQQogcJoXbPEKpVrP+J3+Oz2jOG8WjYc+H0PnLZ7rHq8WLU9xowkWh5L8d22pZ1+LWtFvcUtzij2F/UKdinexLXgghhBAin3n11VctncJLKej0T3gClG1t6VTyDZPJRK0Wb/IwTkGx9kNY07sOrlK0FUIIIV4KUrjNQ9x9y/PGtM2wriNc+A5KNIbq72T5+kmtWhH1805c3Vw58Z9zdcrVoWjtokQrotl7c68UboUQQgjxUjty5EiG55s0aZJLmbw8Yp+E4Dt6NyWclRx9ux5ulk4on+jYbwzXju0GhZKRH42gjIeDpVMSQgghRC6Rwm1e49sImk7i4U+zGPB2HxZ97USFRu2zdKnapRAAxsePwcMj1fll3y1jyvEpnDKewmw2S08sIYQQQry0mjZtmurYv98bGY3GXMzm5XD+l/UYTZBgUuFarr6l08kXxs5Zzp61SwHoN2E2A7q0tHBGQgghhMhNsjlZXtR4LGN+d+SX6zq6vf0W8ZHhWbpM5eqKwWwmMigozfOtfFtho7bhXtQ9LoReyM6MhRBCCCHylSdPnqT4CgkJYe/evdSpU4d9+/ZZOr0C6RX7e4R+6MD2aT1QKOVjSGbW7NjLkimjAWjU+X1Wz5lo4YyEEEIIkdvkHVNepFSxdONePOxVXA6MZ2S3rD2qt+3SRape/5uhO3aked5WY0vL4i1JfJTInK/nZGfGQgghhBD5ipOTU4ovNzc3WrZsybx58xg/fryl0yt4TCa4vg9nawU12/WydDZ53rEzVxjUqztmo57iNV/l4OZVlk5JCCGEEBYghds8yrN0FTZ+MQ8FsGrfX3w/b2Sm17j80x7hcUxMumPKRJfhxqQbbJ+1nSfRT7IrXSGEEEKIAsHDw4O///7b0mkUOOZH5yEmCLT2Sa3BRLruPQqldfv2GGIjcfQuwx8HfkKrkQ53QgghxMtICrd5WPP3xvJxz6YADJz6OddP7c9wfIvmzTlWqjSbqldPd0zPVj2xdrfGGG9k3jfzsjFbIYQQQoj84+LFiym+Lly4wN69exk8eDDVM3gvJZ7PrI8nUG91DNvDSoHaytLp5FlxCYnUb96euOB7aBzd+G3/L7i7OFk6LSGEEEJYiBRu87hpa37l1XKFiNGZebtrZxKiI9Id61CkCIXUaniS/hi1Sk3TTk0B2LhhY/YmK4QQQgiRT1SvXp0aNWpQvXr15P9u164dOp2O1atXWzq9Amfn4ZOcfmgiyrG8pVPJs0wmE6+80ZOgq3+g0Fjz3dbtVC9fytJpCSGEEMKCpHCbx6k0Wr77aT9udkrOP4hlbPem6Y91dQXAHB+PQqdLd9ykIZMAeHDmARdvXczWfIUQQggh8oM7d+5w+/Zt7ty5w507d7h37x5xcXEcP36c8uWluJidAv8+x5/3klp5tes1wsLZ5F3dP5jC+X3bAAUz/b6ia6us7XMhhBBCiIJLCrf5QJFyNdmw9BMAvthzgW1LPkxznNLOjgVhYYwNfEhUYGC692tSownuFd3BDLOWz8qRnIUQQggh8rLixYun+PLx8cHa2trSaRVIe779HIC6vg54lKxs4WzyDp3ewIpNO1m3+yhvDBjH1i8+BaD7B5P5eOh7Fs5OCCGEEHmBFG7ziTb9JjGx+ysA9Ju0iNtn/VONUSgU7ImO4pfoaB4/fJjh/bq80wWAvVv3YjKZsj1fIYQQQoi86NChQ1SsWJGoqKhU5yIjI6lUqRJHjx61QGYF165f9gHQ8bWGFs4k75ji9zUObl6M6NWFH1Yt4pd1nwHgVak+G/1mWDg7IYQQQuQVeaJwu3z5cnx9fbG2tqZevXqcPn063bGrVq2icePGuLi44OLiQosWLTIcX5DMWrufV0o7E5Vo5u03O5IYm/oDh6uNDQDRoWEZ3mvywMkoNApiHsSw5eCWHMlXCCGEECKv8fPzY8CAATg6OqY65+TkxKBBg1i8eLEFMiuYEqKfsP9i0pNgHbr3tXA2ecMUv6/5ZHR/dFGp368/unKSaZ99Y4GshBBCCJEXWbxwu3nzZsaMGcO0adM4e/Ys1apVo3Xr1oSEhKQ53t/fnx49enD48GFOnDiBj48PrVq14mEmK0wLArWVDd//+CuFbJX8eS+G+YPbpxrjamcHQNTj8Azv5e3uTfkmSf3b/Fb6ZXuuQgghhBB50YULF2jTpk2651u1asWZM2dyMaOC7fDmL4jTmynqpKZa866WTsfidHoD86dNzHDM/OmT0OkNuZSREEIIIfIyixduFy9ezIABA+jTpw8VK1ZkxYoV2NrasmbNmjTHb9y4kaFDh1K9enXKly/P6tWrMZlMHDx4MJcztwyfSnVZt2gqPSqrGel9Aa7uSnHezckJgOgnEZnea0DfAQCc2XuG6LjobM9VCCGEECKvCQ4ORqPRpHterVYTGhqaixkVbLt+3ApAhwYVUCgt/tHD4lZt2Z3mStt/00WGsmrL7lzKSAghhBB5mUXfPel0Os6cOUOLFi2SjymVSlq0aMGJEyeydI+4uDj0ej2FChXKqTTznA6Dp/HdwvE4Wingp6Hw5F7yOfd/vg+RUZGZ3mfYW8OwKmSFIdbAgvULcixfIYQQQoi8omjRoly+fDnd8xcvXsTLyysXMyq4zCYTO3+/AkDHzrLaFuB2wINsHSeEEEKIgk1tyeBhYWEYjUY8PDxSHPfw8ODatWtZuseECRMoUqRIiuLvvyUmJpKYmJj8+ulGFHq9Hr1e/5yZP5uncbI13qsfobp3HMXDM3w7ri1vLvkdrY09rk8Lt9HRmcZToKBhh4YcXn+YDes2MKXflOdOJ0fmmIfiWSKmzDH/x7NETJljwYgpcywYMWWOORvzebVr144pU6bQpk0brK2tU5yLj49n2rRpdOjQ4YViiCSX/H/gfoQBGw281n24pdPJE0oW887WcUIIIYQo2CxauH1Rc+fOZdOmTfj7+6d64/3UnDlzmDEj9c6s+/btw9bWNqdTTGH//v3Zej8b53fZuOIU689d5bd7Dej4wTx0hqR+WJGxsVmK17RWUw6vP8zd03dZ9e0qihYq+kI5Zfcc81o8S8SUOeb/eJaIKXMsGDFljgUjpswxe8XFxb3Q9R9//DE7duygbNmyDB8+nHLlygFw7do1li9fjtFoZPLkydmR6ktv1/erAWhe2Qsbx5fn6biMvNm2OSMd3DBGp98uQevkzoBuqfeyEEIIIcTLx6KFWzc3N1QqFcHBwSmOBwcH4+npmeG1CxcuZO7cuRw4cICqVaumO27SpEmMGTMm+XVUVFTyhmZp7SacE/R6Pfv376dly5YZ9lR7HlGBN9l0cR7VtfdoX0ZNTJ268MsvRMQnZCleO9qx/cx2YorHYF3LmnYV2j1XHjk5x7wQzxIxZY75P54lYsocC0ZMmWPBiClzzBlPn556Xh4eHhw/fpwhQ4YwadIkzGYzAAqFgtatW7N8+fJUT4OJ57Pz0HEAOrZpaeFM8gaDwUidZm2wKlqBuGtH0x03fvoctJp8vb5GCCGEENnEou8ItFottWrV4uDBg3Tq1AkgeaOx4cPTf5xq/vz5zJ49m19//ZXatWtnGMPKygorK6tUxzUaTa59wMjJmF1HzaV+oUi8b38HO4fh5jIIgIexMaz+oA+DPvsaKzv7DO/x0aSP+OTUJ+y+u5u+Vfu+UD65/X0tKD/HvBTPEjELejxLxJQ5FoyYMseCEVPmmP2xXlTx4sXZs2cPT5484ebNm5jNZsqUKYOLi0s2ZCgA4kLucTMoafPb9r1GWDibvKHTgHE8vPg7CrUVPUZNY/ua5Sk2KtM6uTN++hxmjepnwSyFEEIIkZdYfGvXMWPGsGrVKtatW8fVq1cZMmQIsbGx9OnTB4BevXoxadKk5PHz5s1jypQprFmzBl9fX4KCgggKCiImJsZSU7A473f8wKs6074P551xSX1qnxiNjFyzBR8nZ6a1b5rh9W1KtEGj1HD9yXWuPc5ab2EhhBBCiPzOxcWFOnXqULduXSnaZjPbwN95NNaePyZWo2j5WpZOx+L81m5n99qlAAz9eA7fLZlOdNgjPlu/nc4DxvLZ+u1EhwZK0VYIIYQQKVj8GZy3336b0NBQpk6dSlBQENWrV2fv3r3Jj6gFBASgVP6/vvzll1+i0+no2jXlzrTTpk1j+vTpuZl63qG2YtoOHbMuxGD+z6kwo5FZe36D9k2Zsds/zcudrJyobKjMrnW7GH50OAdWH8jxlIUQQgghRAF2fS9qpYLarbpZOhOLO3v1Jh8O7weYqdr8TZZNGw2AVqNmcPeOFHNU0a5dOzTSHkEIIYQQ/5En3h0MHz483dYI/v7+KV7fvXs35xPKZxJjY/jy4B+pirYAZkABrNh3jI9iY9Jtm1BRUZENv23gyLkjxC2Pw9YqdzduE0IIIYQQBYNJl4DixkEUAGVbWzodi4pLSKRlhzcxxEbiULQM/jvWWTolIYQQQuQjFm+VIF7cV6MGEGo0pnveDIQYjHw1akC6Y0b2GEmRVkUoOqQoJx6dyIEshRBCCCHEy+DQpmUUn/+IqcdU4FXD0ulYVMseg3h8+xJKKzt2/bgdF8eM954QQgghhPg3KdwWAA9u333hcTZWNoz6ZBT2FezZdWdX9iQmhBBCCCFeOrt/2Mz9KDMP8QDly/tx4+Mlqzn+Y9IK24/nf06T2lUsnJEQQggh8puX951UAeJd0jdbxr1e6nUA/B/4E5EQ8WJJCSGEEEKIl4/ZzKcNE9jVw4ZhQwZZOhuLOXTqAnMmjgSg8Zt9mDGij4UzEkIIIUR+JIXbAmCg3yrcVaqkPmJpUACFVSoG+q3K8D7lCpWjSHQRAtYHMHHJxGzPUwghhBBCFHBh17GJDaB9BTtqduhv6WwsIjwimjfe7IJJF4dbqWrs3filpVMSQgghRD4lhdsCwMrOniGtGwGkW7wtYaMl6NbFTO9V+GFhHh94zJY1W7IxQyGEEEII8VK4vjfpV9/GYPVy9nNt2vk9YgJvobZz5sDuHdhaW1k6JSGEEELkU1K4LSBm7PZnSrtXcVOpUhx3UCqp72jDqZh4mjZrSsClkxneZ8rQKaCCJzef8MvxX3IwYyGEEEIIUdD0n7SQiQcSeOhS39KpWITfNn8uH90NCiWLV6yhWrmSlk5JCCGEEPmYFG4LkBm7/bkfGcHSvt0YXLUMa7x9OF6mLJt/3UVpNy13H+tp2rQJ96+cTvceZX3KUqJeCQDmr5ifW6kLIYQQQoh87vGDW6w99oB5v+vQ+zS0dDq57kpgJF+ej8fz3fm8PWIqH/TsbOmUhBBCCJHPSeG2gLGys2fIim9pM3MBr9atiwqwvxvK4d+OUcpNy53Heia/3xoiH6Z7j969egNwfNdxEnQJuZS5EEIIIYTIz37d+BlGM1QuYoNvtUaWTidXRSXoGbrxLIkGE22bNeK7xVMtnZIQQgghCgAp3BZg9i1bYjKbOb3pe7wr1uGw/1F61XHhi5ZGWNs+3eLtuF7jUNur0T3R8fnmz3M5ayGEEEIIkR/t3LkLgA5Nalo4k9xlMpl45Y1e3PjrEkWdbVjcrRpKZXo7TwghhBBCZJ0UbgswQ/36vHb7Fu1/+omgGzfwqVSXdfsuYF/YF57cgXUdiH54PdV1djZ21GlbB4Cvv/k6l7MWQgghhBD5jSExgV/O3AGgQ9deFs4md/X68FMu79tE8PeTmNexFM62WkunJIQQQogCQgq3BZh7pYq429lhBDYtXJh00NkH3t8FzsWY+cNVatWoSuDf51JdO2rQKACuH7tOQEhA7iUthBBCCCHyneM/riYiwYyrrZL6r79v6XRyzR93H3PMVAabUnV4b8QkGlUqbumUhBBCCFGASOG2gOvU7DUAduza9f+DzsWI6Pwday6YuBGayK5pnSA6KMV1XZt1xbGYI2a9mVlfzsrFjIUQQgghRH6zc9tGANrVKYVK83KsOA2NTmTYxrNgZU//mV+yZu5Hlk5JCCGEEAWMFG4LuHdGjQTgeGAgwbduJR93Ll4F/8OH+KKLFwPLR8DaDimKt0qlkjZvtQHgx00/5mbKQgghhBAin9l19DwAHTq+btlEcolOb6DLxKUERyVQurA9c7pUQ6mUj1ZCCCGEyF7y7qKAq/jqq1R0csIIbHnaLuEfvtUaMWTVcXD0hvAbRK1oR/Cty8nnpwyZAgoIuxbGwTMHczlzIYQQQgiRH9z84yDXghNQK6F1zxGWTidXtOv1AUe/mEDUwRWs6FkTOyu1pVMSQgghRAEkhduXQKdXmwKwfeeu1CddfOH9XURpvWjz2UWaNapD8O2k4m3lUpUpVqcYAPO+mJdL2QohhBBCiPxk98YVADQp54qTRzELZ5PzPl3xLQc3Jc25X9d2lC7sYOGMhBBCCFFQSeH2JdBjxAcA/P7wAaF37qQeUKgEj9t9xf1oBVeDEnjtlbqE3PkLgHffexeAcxfPYTQZcy1nIYQQQgiRP+zc7w9Ah5avWjaRXHDy4jWmjh4CQO123Vk4caiFMxJCCCFEQSaF25dA5ebNKe/oiAHYvGBBmmN8qzfh8P69FHVS81dQPK+9UpvQO1eZ0GcC1eZVw3O4J6eDTudu4kIIIYQQIk+LCnnAb9fCAOjwbsEuYkbFxtG245sYE2JwLlaBg1u+tnRKQgghhCjgpHD7kuj0atIKiO270miX8I/SdZpzeN9eijiqufIontca1UIX+ogujbsA8POtn3MlVyGEEEIIkT8c/P5zDCYoW9iKMnWbWzqdHNX8rb5EBFxFZWPPLzt34Ghna+mUhBBCCFHASeH2JfHOiJEAHHvwgLB799IdV6Zucw7v24OXo4rLgfE0f6UWr9rVAODXa78SGhmaK/kKIYQQQoi8r5NPBGcG2vH5yM6WTiVHjZmzjD9/2QzALL+V1K9a3sIZCSGEEOJlIIXbl0SVFs0p6+CAwWxmy4KFGY4tW68lh3/djZejikuBcQxv9zZxP8Zyfvh5Znw5I5cyFkIIIYQQeZrJiOLmfmp6qWj1zjBLZ5NjfjnyB37TPgSgeY/BTBr4joUzEkIIIcTLQgq3L5FOTZoAsO3nnzIdW65+aw79shNPBxWXHsYRdycMs87M3gN7czpNIYQQQgiRHzz4E+LCwdoJfOpZOpscERweQddub2HWJ+BRvhZ71n1u6ZSEEEII8RKRwu1L5J0PPqCs1ooaOj3GqKhMx5dv2JZDv/yMh72K0LtxlJxSEuue1tyPvp8L2QohhBBCiLxswSdT6P1jPCdNVUGlsXQ62c5kMtG4Y3figu+hcXDl8J4f0GrUlk5LCCGEEC8RKdy+RKq1bs0vrVrS39mZ6EOHsnRNhVfacWjPj7gawRRvQqFQsOXcuhzOVAghhBBC5HUbdv/O+gt6bilKWDqVHNFnwqfcOPErKJQs/3o9FUr4WDolIYQQQrxkpHD7knFo3QaA6L2/Zvmaio07cGj3Dxj/jABg1+VNGGJkkzIhhBBCiJdWRACftYQxDaxo03OkpbPJdhfuR3DgASitHeg6ZAID3mpn6ZSEEEII8RKSwu1LxrF1K+JMJrbt2c3jBw+yfF2lJh35YcpXhG4M5MjYq6yZ0QziI3IuUSGEEEIIkXdd/5WmvmoW9W+Gq09pS2fzwnR6Ays27WTd7qMsXv8jg9efRlO8Bu8s2Mrmzz+xdHpCCCGEeElJ4fYlY1WmDO8HBzPm/n22LV78TNfWeu0tiqg9MSWY+OLYPX6b0oyIR/cw6nUc2bKMy3u+5siWZRj1uhzKXgghhBBC5AnX/9mwtmxry+aRDab4fY2DmxcjenXhh1WLmNi/G3/Mexf1vdMs7/8aSqV8ZBJCCCGEZci7kJdQ6wYN8NFoiLtw8ZmvHTpoNACXzsXRavl56lQrSzE3W1r0HMPHX+2kRc8x+LrbsWPppOxOWwghhBBC5AGxj4MZuXwP+24ZMJdtY+l0XsgUv6/5ZHR/dFFhKY4bo8O4tWkmC1ast1BmQgghhBBSuH0pTVm4gL0lStImNBRjTMwzXdu3Y19sPGwwJZqwLm7LzVAdgVHGFGMeRhroOmquFG+FEEIIIQqgA98v47OTCQz5xQBuZS2dznPT6Q3MnzYxwzHzp09CpzfkUkZCCCGEEClJ4fYl5FipElalSmHW6Yg5fPiZrlUqlTR/szkAhkRTmmPM//w6avpCaZsghBBCCFHA7PxxOwAdXqmCIh+3EVi1ZXeqlbb/pYsMZdWW3bmUkRBCCCFESvn3nZZ4bgqFAofWrdCZzRxdv+GZr588bDIAcfcSUDup0xxjBu5HGDi6bcWLpCqEEEIIIfIQk9HA7lPXAejwZjcLZ/NibgdkbaPerI4TQgghhMhuaVfdRIEXXaMGjW/eIPHGdYIfBeHs5Znla+tXqk+hsk48vh6J1kuLITL9x8ceBdzOjnSFEEIIIUQecG7/FoKijdhrFTTpOsTS6byQksW8s3WcEEIIIUR2kxW3L6kSjRrhZm2Nzmxm++LFz3z9a6/WAkAfps9wnFexks+VnxBCCCGEyHt2b1kLQOvqPljZOVg2mRc0oFt7NPaFMhyjdXJnQLf2uZSREEIIIURKUrh9SSmVSt545RUAtu3Y/szX+836BoVWgT5Mj7aoNs0xGiV4Fc+/G1YIIYQQQoiU9vz2BwAd2rWxcCYvTqlQYOXglOGY8dPnoNXIQ4pCCCGEsAwp3L7Eug8eDMDhO3eICg5+pmuLehTDt5YXAGq7tN/M6k1Q57V2bF384YslKoQQQgghLC4m6BZn78eiANq+N8LS6byw3uNmEvPoDijVqO1dUpzTOrnz8ZLVzBrVz0LZCSGEEEJI4falVqdTJ4rb2pJoNrN9yZJnvn7s6I8AiA+Ix6qYFTalbLD2scbbWcVXk9+ncRkXohPNdBu7kA861iQxNiq7pyCEEEIIIXKYUa/jyJZl/LzWD4A6vg54lKxk2aRe0K+/n+H75XMB6DV6KrGPQ/hs/XY6DxjLZ+u3Ex0aKEVbIYQQQlicFG5fYkqlkjcaNABg27Ztz3z9oDcHoXZQY04wkxiQSPyteBLuJxCqUvPApxiHLgUysXtSO4Zlu87RqJI3d84fzdY5CCGEEEKInLNj6SR83e1o0XMMW07eB+Daoxh2LJ1k4cyeX1xCIt3f6YnZoMOrUj2+mT8ZrUbN4O4d6d2+MYO7d5T2CEIIIYTIE6Rw+5LrMSRpN+BDt28THRr6TNfOWj0LQ7Qh1fHE8ERmDp7JrLVzmPP9MXZ/NYtCtkr+vBdNjQav8uPnk7MldyGEEEIIkXN2LJ1E11FzeRCZ8v1edKKZrqPm5tvi7ZuDPiQi4BpKa3t2b92IUikfiYQQQgiRN8m7lJdc3c6d8bGxIcFsZvvixVm+TqfXMW/yvAzHzJs8D51eR7sBH3Pu5O80KOVEZIKZUVPmkPDzeDDoXjR9IYQQQgiRA4x6HSOnLcScxrmnx0ZNX4hRn7/ez3236xC/blgOwKipc6lRoZSFMxJCCCGESJ8Ubl9ySqWSN+rXB2D79u1Zvm7NzjUkhidmOCYxPJE1O9cAUKxKfX67HMi4LvXY3NUG67Mr4Zu2EHH/+ZMXQgghhBA54ui2FalW2v6bGbgfYeDothW5l9QLehIVw4C+74PZROn6rVg4cailUxJCCCGEyJAUbgXdBw0G4OCtW8SEh2fpmtsBt595nMbalgXbTlJv3BawdoKHf7JhUA12rZz57EkLIYQQQogc8yiL7/WyOi4vaNtzMHGh99E4FGLf1nUoFApLpySEEEIIkSEp3AoavNUVb2sb4k0mdixekqVrShYr+fzjyreHQUf4i3IM3BFOx8HT8F/YC4z6Z0lbCCGEEELkEK8svtfL6jhLW7p+B6d2bgTgk8XLKeHtaeGMhBBCCCEyJ4VbgVKp5PV6dQHYunVLlq7p27EvVq5WGY6xcrWib8e+aZ908aXUhwcY2K4m7cqoaRL9I6zrCFGBz5K6EEIIIYTIAY27DsbbSU16a1IVgI+zmsZdB+dmWs8lMl7P13+GoXErTo3WbzG+f3dLpySEEEIIkSVSuBUA9Bg8mJo2NtRJSMQUH5/peK1Gy4TZEzIcM2H2BLQabbrnrewcWfrTGX7c8j1KaycIOEHsZw3x37jomfMXQgghhBDZR6XRsnTGOIBUxdunr/2mj0OVwXu9vGLGz1eIsi1KvTEr2bdptaXTEUIIIYTIMrWlExB5wytvv83mVavRP3xIzNGjOLZqlek1MwbNAGDe5HkpNirTFNLg2daTDk06ZCm2pnpX8KkBW3szfOVp1p0fx+S9O5m+Zl+++DAghBBCCFEQvTlyDtuAkdMWptiozNtZjd/0cbw5co7lksuiH07fYse5hygV4PdOXdycHS2dkhBCCPHcjEYjarWahIQEjEZjrsTU6/W5GjO34+VETI1Gg0qlyobMpHAr/qFQKHBo3ZrHa9YQvffXLBVuIal4O7nvZFb9uAr/Y/40btiYLee3cHzRcdqdace98/ewtbLN/EaupTC+/ys2PzfEfP4in3z7G8f+9OK7nw/hVabaC85OCCGEEEI8jzdHzuGNoTPw37Kck0cOU79JM5p2G5Yv/nH98s27dGtRF/vq7ZkwcTy1irtYOiUhhBDiuZjNZoKCgnjy5Amenp7cv38/1zbZNJvNuRozt+PlVExnZ2c8PT1f+H5SuBXJHFu34tZXX7F9+zZGT/kYO5esvbnVarQM7DQQb6037dq1o3bF2jT5rAlh18LoMLADh9YdytJ9VNZ2fLHnAo3njWLg1M/wv/aYGjVrsfGLeTR/b+yLTE0IIYQQQjwnlUZLk27DibEvSZN27VBpNJZOKVNms5k+kxdjiH6M8fZJhjctbemUhBBCiOcWFBREREQE7u7umEwmHBwcUCpzp/upyWQiJiYGe3v7XImZ2/GyO6bZbCYuLo6QkBAAvLy8Xuh+UrgVyayqVKFH4EMC4uMp9dln9Jg27bnu07BKQz5a9BGzhszi8PrDLGixgA/f+zDL1/eY4EfNV9vyVpc3uRQYR8te45h26Bc+/moPKo0Wo17HkS3LuXzkMPYxt/PNqg8hhBBCCJE7Nv9xnxDfVnh01LJqzFvY21pbOiUhhBDiuRiNRiIiIihcuDAuLi5ERUVhbW2dq0VNnU6XazFzO15OxLSxsQEgJCSEwoULv1DbBNmcTCRTKpW0rVWL8lZWJJw7/0L3mjl4JvW61APgo2Efcf7Gs92vXP3WnLxyj34tKmAGpq89SJsaRVkzrT++7na06DmGj7/aSYueY/B1t2PH0kkvlK8QQgghhCgYAsLjmLXrLxQKBbPGDaVj03qWTkkIIYR4bnq9HgBb2yy0oRR5xtOf19Of3/OSwq1IYcGSJezwLUHD+/cxJSZmfkEGfl33K84lnTFEG2jduTUJuoRnut7W2Y3V+/9i3czB2GoUHLgSRr+ZX6fYHAPgYaSBrqPmSvFWCCGEEOIlp9MbaNPrA6Iin1C3RCH6Niph6ZSEEEKIbJFb/V5F9siun5cUbkUK9jVrovb0xBQbS+yxYy90Lyc7J37a9hNKayUhV0J4Y+gbz3WfXlO+5OTe7ajT+d1q/ufXUdMXYtTrni9ZIYQQQgiR7709/COu7llDyMbxzOtcCZVSPuQKIYQQIv+yeOF2+fLl+Pr6Ym1tTb169Th9+nS6Y69cuUKXLl3w9fVFoVDg5+eXe4k+J53ewIpNO1m3+ygrNu1EpzdkfpEFKZRKHFu3ItZk5PCaNS98vyY1mvDhvKT+tvvW7MNvk99z3Sc8+D4GU/rnzcD9CANHt614rvsLIYQQQoj87ceDx/lx9RIA+g4dRYnCjhbOSAghhBCW4O/vT82aNbGysqJ06dKsXbs2w/EJCQkMHTqUatWqoVar6dSpU67kmRUWLdxu3ryZMWPGMG3aNM6ePUu1atVo3bp18s5r/xUXF0fJkiWZO3cunp6euZzts5vi9zUObl6M6NWFH1YtYkSvLji4eTHF72tLp5ahR+XK88rNm7y7aRPx0dEvfL+5I+ZS641aYIbxg8dz+dblZ88p4Ha2jhNCCCGEEAVHVGwc7733HpgMFKvRhOXTR1s6JSGEECLPMZrMnLgVzk/nH3LiVjhGkznzi/KZO3fu0L59e5o1a8b58+cZNWoU/fv359dff033GqPRiLW1NcOHD6dFixa5mG3m1JYMvnjxYgYMGECfPn0AWLFiBbt372bNmjVMnDgx1fg6depQp04dgDTP5yVT/L7mk9H9Ux3XRYUlH581ql9up5UlVV7viItGQ7BOx86ln9Ht48kvfM/9G/bjW8WXqHtRtOrSirt/3EWr0Wb5eq9iJbM0rrCXz/OmKIQQQggh8qnX+4wk5tFt1HZO7N3+ba7tQi2EEELkF3svP2LGzr94FPn//Ye8nKyZ1rEibSp75UjMpk2bUrlyZQA2bNiARqNhyJAhzJw5M8d69q5YsYISJUqwaNEiACpUqMCxY8dYsmQJrVu3TvMaOzs7Fi9ejKOjIydOnCAiIiJHcnseFntHo9PpOHPmTIpKtlKppEWLFpw4ccJSaWULnd7A/GkZF5bnT5+UZ9smqNRqOtSqBcCWTd9nyz1dHFzYtnUbSisljy48osvILs90feOug/F2UpPZH2u3v9bAjQPPn6gQQgghhMhXVm3dw29bk55o++jTJVQoIf+QL4QQQvzb3suPGPLt2RRFW4CgyASGfHuWvZcf5VjsdevWoVarOX36NEuXLmXx4sWsXr063fFHjx7F29sbR0dH7O3t0/zauHFjutefOHEi1arZ1q1b59tao8VW3IaFhWE0GvHw8Ehx3MPDg2vXrmVbnMTERBITE5NfR0VFAaDX69Hr9dkW599WbtqJLioswzG6yFCGT1/Ekskj0Gqy98fwdF4vMr+3evfm6xMn2HftGtGPH2Pt4PDCMZtWb8rwmcP5bMJnnLp/ihMPTlDbo3YWM1KweNoY3h4zHwX/35As6UzS6zcqWFPN+gFs7IKpZHOCaozCvXyDLN4/c9nxfc3L8SwRs6DHs0RMmWPBiClzLBgxZY45G1MIgEdhTxgxuD9gplLT15kxoo+lUxJCCCFynNlsJk6XtcWARpOZaT9fIa2mCGaSairTf/6LV0q7pbmpp8lkIl5nRK0zoFQqsdGonmm1rI+PD0uWLEGhUFCuXDkuXbrEkiVLGDBgQJrja9euzZEjR7C3t0/3CZr/1hL/LSgoKM1aY1RUFPHx8djY2GQ597zAoq0ScsOcOXOYMWNGquP79u3D1tY2R2IePno8S+NWfTqR1Qtn4Fy0ND4ly1KxfBnqVymLr2ehbMlj//79z32tyc2NwhoNIXo9n40ZS+XOnbIl5mvlXuPO3Dvc8bzD2ENjGeYwDHulfZburS3ZkDnDu/D5+h95GGVMPl7UScXw9zpRuemb3Az+mZKh+7h+eh81+v1Al/ol6NBnHDauRbMUIyte5PuaH+JZImZBj2eJmDLHghFT5lgwYsocs1dcXFyuxRJ5X9seA0h4/AgrZw/2bn7xjXWFEEKI/CBeb6Ty9Ox5/2UGgqISqDJ9X5bG/zWzNbbarJcT69evn6LQ26BBAxYtWoTRaESlUqUab2NjQ8mSJXF0dJTWR1iwcOvm5oZKpSI4ODjF8eDg4GzdeGzSpEmMGTMm+XVUVBQ+Pj60atUKR8ec2Wk2IMrID6sWZT5QpcGsi+fJnUs8uXOJiwdhE6B1cqdYpdqM/sSPat5OVC7imOU/FDq9gVVbdnHk+CmaNKzHgG4dnntFb4eaNVlz6hTn//yT8au+ynCsXq9n//79tGzZEo1Gk+HYZq2a8d6v73E78jYHNQdZ3mI5alXWcmzXrh0j5+k4sm0Ff/z+G3VeeZUmXQejSu6X+xbGx7f5cdTbJBgusPHYHXb9OZyP+nRk6KdrsLJ7/p/5s8wxO+R2PEvELOjxLBFT5lgwYsocC0ZMmWPOePr0lBCzv9zAhQPbAQWLlq3Eu7CrpVMSQgghxAs6evQo7du3z3DMypUreffdd9M85+npmWat0dHRMd+ttgULFm61Wi21atXi4MGDdOrUCUhafn3w4EGGDx+ebXGsrKywsrJKdVyj0eTYB4xB3V9n3HC3DNslaJ3cCQ8M4NCpc+w6cIRTp05z+6/zxATdRRcZyv17d5n/6w0AVEoFcb8sxNPdlQEfjKVF3UqUdrdH+Z8l7FP8vmb+tInJcX9YBRNGujF+xtzn2gite9++rDl1in3XrmJKTMTKPvOVsVn5vmo0Gha9uog3177JppmbiOgQwY6lO7Kcl0ajoVmPEcQ7laZZu3ap43mUY+L356n/+meMmfAR5+7HMuHLn/lqaxHmTxlD5+GzUbzAv9rk5O+dvBDPEjELejxLxJQ5FoyYMseCEVPmmP2xhLhxL5Dp40cC0LBTL4a9+4aFMxJCCCFyj41GxV8z095o679O33nM+9/8kem4tX3qULdE6ifATSYT0VHRODg6JLdKeBanTp1K8frkyZOUKVMmzdW28OKtEho0aMCePXtSHNu/fz8NGmRfK83cZNFWCWPGjKF3797Url2bunXr4ufnR2xsLH36JPWm6tWrF0WLFmXOnDlA0oZmf/31V/J/P3z4kPPnz2Nvb0/p0qUtNo//0mrUjJ8xl09G9093zPjpc7C3teb1Zg14vdn/f/MEh0ewbe9v3AiOJt7dg/P3I3gU+oSg8/4EYWZO2TeY/3s49lZqHO4fxyYuiCavNCAoOISVsyekiqOLCkvO41mLt83efx/34cMJ1evZtXw5XSakvv/zKu1Smld1r3Lp9iV+/uZnjnxwhCalm2Tb/QGa9hjBH10Hs372cD5avIZbYTq6jJzLq198xeKly6nZunu2xhNCCCGEEDnPZDLR5q33MMQ8wc7Dl93rl1s6JSGEECJXKRQKbLVZK6A2LuOOl5M1QZEJafa5VQCeTtY0LuOebo9bg1aFrVb9XK0LAgICGDNmDIMGDeLs2bN8/vnnLFqU/lPqL9oqYfDgwSxbtozx48fTt29fDh06xJYtW9i9e3fymGXLlvHDDz9w8ODB5GPXrl1Dq9Xy+PFjoqOjOX/+PADVq1d/5hyyk0ULt2+//TahoaFMnTqVoKAgqlevzt69e5Mr5wEBASl+SIGBgdSoUSP59cKFC1m4cCGvvvoq/v7+uZ1+hp4WSf+9AhaSVtqOnz4n3SKqh6tzqhUDt4Mes6bYKk6du4hLlVJcehBJTKKBW/67SbhzhsObM25jADB/+iSmDOv9TG0T1FotHWrU4JvTp9n63XfZWrgFWPrhUi7eukhQ2SBmnJvBNu9tuFi7ZGsMlUZLn+lf8dYHM5k3qjsLN/3Gb38/pnabHvR+bQazv/yeImWrZ2tMIYQQQgiRc7acukVgeCQoVaxZuxZnBztLpySEEELkWSqlgmkdKzLk27NpbvYOMK1jxTSLttmhV69exMfHU7duXVQqFSNHjmTgwIE5EgugRIkS7N69m9GjR7N06VK8vb1ZvXo1rVv/f4VyWFgYt27dSnFdt27duH//fvLrp/VHszmtcnfusXiX3+HDh3Pv3j0SExM5deoU9erVSz7n7+/P2rVrk1/7+vpiNptTfeW1ou1Ts0b1IzrsEZ+t307nAWP5bP12okMDn3nla0nPQnwyuh/71y9ly6AGXJreij0jGtP3/V5Uea0zVi7pLxF/ShcZyjsjPubW/aBnit3tn9XPe69cQZfNm4EolUr2LN9D2VJlCYkL4ePfP8ZkNmVrjKfsXT2ZtcGfv8+e4J1GpTADaw9do2yVmszq15q4yPAciSuEEEKIl8Py5cvx9fXF2tqaevXqcfr06XTHrlq1isaNG+Pi4oKLiwstWrTIcLz4v8CIeGb/epvCXafz4fLtdGvzqqVTEkIIIfK8NpW9+LJnTTydrFMc93Sy5sueNWlT2SvHYms0Gr788ksiIyN5/Pgxs2fPTrFZWU5o2rQp586dIzExkVu3bvH++++nOD99+nTu3r2b4tjFixcxGo2pao6WZvHCbUGn1agZ3L0jvds3ZnD3js+9Udi/qVVKKhZxZPnUEVw8uINhH07J0nXbV8yj1rsf0nDOQfqv+5PZO04xc/kGzl69me5vxhZ9++Km0RBpNLL7iy/SHKPTG1ixaSfrdh9lxaad6PSGLM/FTmPHwlcXolVq2b17N+9PfT/L1z6PYlXqs/HoTU78+DX1SzoSqzMzdc0+3m1UAi5uhTzwh1IIIYQQ+cvmzZsZM2YM06ZN4+zZs1SrVo3WrVsTEhKS5nh/f3969OjB4cOHOXHiRPLGuQ8fPszlzPMXo9HEh9suEJ1goEYxFz4d0NHSKQkhhBD5RpvKXhyb8BrfD6jP0u7V+X5AfY5NeC1Hi7bixUnhtgAoWcw7S+M0jm5YeZQiMDKBA1eDWfrtz0wb3ov6TVtT65MDvPf1Keb+co2ZX37HoVMXMBiMqLVa2lerBsCWb79Ndc8pfl/j4ObFiF5d+GHVIkb06oKDmxdT/L7Ocv7lCpWjs7Yz95bcY8OcDWz4ZUOWr31e9d/oy/EbT/hu7kiKuWgYV8cIO/rD6haYA06lGm/U6ziyZRmX93zNkS3LMOp1OZ6jEEIIIfKHxYsXM2DAAPr06UPFihVZsWIFtra2rFmzJs3xGzduZOjQoVSvXp3y5cuzevXq5E16RfreGzuDn5Z+jMYYz+Ju1VCr5KOMEEII8SxUSgUNSrnyRvWiNCjlmmPtEUT2kXc7BcCAbu3ROrplOEbr5E5M2CNubpjM5oH1mdqhIvVKFMLeqyTWRcryOFbH0RthfHnob6Z90Jvm9atjZeeIe5nqBJmsaGxnR62oKOJjYpPvOcXvaz4Z3T9FD1/4/4Zoz1K8/eitjyjbrCwYYWCvgdwLuvds34TnoFAq6THBj5sPwnjl/RmgtYeHfzLtvSb0eKUk9y4eB2DH0kn4utvRoucYPv5qJy16jsHX3Y4dSyfleI5CCCGEyNt0Oh1nzpyhRYsWyceUSiUtWrTgxIkTWbpHXFwcer2eQoVS7+Qskvz5dwCbvphP7OWDvKq5RUl3e0unJIQQQohM+Pv74+fnZ+k08jWLbk4msodWo2b8jLl8Mrp/umPGT5+DVqNGq4F6JV2pV9KVvo3GwqKxxOsMXA+O4XJgJCcv3+TbomWIfHgTky6OsJsX2A/8Vqo0rmo1Lb2KcKVQUYqVrcDlY/syzOtZNkRTKpUc3nKYMlXKEBcUR7Muzbh59OZz7SD4rDS2jtBkHNR4j4ifP2bxp6uJ1d/hrTltOeNVja5LjqbaefFhpIGuo+ayDXhz5Jwcz1EIIYQQeVNYWBhGozF5c92nPDw8uHbtWpbuMWHCBIoUKZKi+PtfiYmJJCYmJr+OiooCQK/Xo9frnyPzZ/M0Rm7E+m/MuIREZuy7R+FuM3C4f5zl00blSB6WnGNuxZQ55v94logpcywYMWWO+TemXq/HbDZjMpmS21w+fZ0bcjtmQZnj05+XXq9HpVKlOPcsv1+kcFtAPN3wbP60iSlWwGqd3Bk/fU6GG6LZaNVU83Gmmo8z79Yrzuf9/iIuIZEDJ86y/8gp/jhzhmN/n+MNjLSys+X3gKtEBFzNNCddZCirtuxm2LtvZGkORdyKsG7jOrq17sad43fo/XFvNnya820Tkjl44PzuKo4Vbsm3iybyeulQSnx2LFXRFpJ2YVQAo6Yv5I2hM1BptLmXpxBCCCEKjLlz57Jp0yb8/f2xtrZOd9ycOXOYMWNGquP79u3D1tY2J1NMYf/+/bkSR28wcvDPqwSHP2Hx3svcdahCoeIVmfB6Ofbu3ZujsXNrjpaMKXPM//EsEVPmWDBiyhzzX0y1Wo2npycxMTHodEltG6Ojo3MsXnpyO2Z+n6NOpyM+Pp4jR45gMKTcCyouLi7L95HCbQEya1Q/pgzrzcpNP3P46HGaNW7IoO6vP9eGaLbWVrzerAGvN2sAQOyJE5zs+R7xWi0fzv6MTVu3cv/80Uzvs3zPnzywKUlxBzCG3KZN47qUKpZ+4+uur3Wl14RerJu9jo3zN9LhtQ683eLtFGN0egMrN+3k8NHjBEQZn3uO6aneshvVW7yF/9IhPIhame44M3A/wsDRbSto2mNEtsUXQgghRP7h5uaGSqUiODg4xfHg4GA8PT0zvHbhwoXMnTuXAwcOULVq1QzHTpo0iTFjxiS/joqKSt7UzNHR8fknkEV6vZ79+/fTsmVLNBpNjsaa9tlaFs38KMViBJWDG12GfsQ7nYfnWNzcnKOlYsoc8388S8SUORaMmDLH/BszISGB+/fvY29vj5WVFdHR0Tg4OKBQ5E5/WrPZnKsxczteTsVMSEjAxsaGJk2apPrH+adPTmWFFG4LGK1GzeDuHSnmqKJdu3ZosqmgaV2rFt0C7vHYYOBnWyPFx41leM/MC7ePzbZ8fzqA+NtnCNk6DQCNfSHcipXGt0x5qlWtSqO6NWjTqA6uzg4ArJm5ht+P/M7Nozfp07MPr1x6BW/3pA3Ypvh9nWJV8Q+rFjFuuBvjZ8zNcFXxM1MoeJSY/qqXf3sUcDv74gohhBAiX9FqtdSqVYuDBw/SqVMngOSNxoYPT7/IOH/+fGbPns2vv/5K7dq1M41jZWWFlZVVquMajSbXPpzmRrwpfl8zZ9zAVMeN0WFsmTeGsp6O2fueLw25/T21REyZY/6PZ4mYMseCEVPmmP9iGo1GFAoFSqUyuaj49HVueNo6ILdi5na8nIr59OeV1u+NZ/m9IpuTiSxRabV0qFaNOjY2JJ49m6UN0TSObiwf8y7Dm5WmiqcN1oWSVtrqYx7z6K/TnPhpPStmjaNnx+a4uThh41YU31rNaP3ecFq27IuVuzXxwfG89tZrmEymbN0MLSu8ipXM0rjoqIhsjSuEEEKI/GXMmDGsWrWKdevWcfXqVYYMGUJsbCx9+vQBoFevXkya9P9NTefNm8eUKVNYs2YNvr6+BAUFERQURExMjKWmkCfo9AbmT5uY4Zj50yeh0xsyHCOEEEIIUVBI4VZk2TI/P9YVK07VGzfRKGD8jLkZjp8wYy5dahdjXOtyHPjsQ+LDAwkKe8K6H/cxcPI86nXsiUeF2qjtnAEzCeGB3Dvrz4HvvuTLqR+BnTUKlYIbv92gZt8uzPlodIbxsvuNfOOug/F2UpPZIvlBn67jldLObJo/Gl18bLbFF0IIIUT+8Pbbb7Nw4UKmTp1K9erVOX/+PHv37k3esCwgIIBHjx4lj//yyy/R6XR07doVLy+v5K+FCxdaagp5wqotu1P9A/1/Pd1DQQghhBDiZSCtEkSW2devj8rZGeOTJ8T98cdzbYjm4epMrzda0uuNlimOX71znwPH/uTEmfNcuXyZ+7f+Rq91xKGtDWG7DnFx409o3DQY49PPTxcZyhff/cSo3l2yZb4qjZalM8bRddRcFJBik7KnrxuVdubk7QiO34rk+AQ/vGZ/zqA3mzJo8hI8S1fJljyEEEIIkfcNHz483dYI/v7+KV7fvXs35xPKh24HPMjWcUIIIYQQ+Z2suBVZplCrcWjZgnCDgf1ffQUkbYgWHfaIz9Zvp/OAsXy2fjvRoYHP3HusQgkfPnivM9/5zeDCge08vnOZyKu/8+c3P1GkbnHMBjNmgxmFVcbrX0f36Ya9py8lar/Ga90HMWKmHxt3HeJhSPhzzfnNkXPY5jeRok4p/43D21nNdr+JHL3xhIBr55n+fnM8HVQ8ijIyfe1B9k9oCNv7w/0/wGxO5+5CCCGEEOKpksW8s3WcEEIIIf7DZIQ7R+HStqRfTUZLZ5Qj/P39qVmzJlZWVpQuXZq1a9dmOv6dd96haNGi2NnZUb16dTZu3JhizNq1a1EoFCm+/rvpWE6QFbfimVwvVpzXbt3E+d49OqxciVqrzbEN0ZRKBcXd7Pn9R38q1KxIobYuKDQKHn71MP2LzCZig+8RG3yPu2cOcxj4/J9TGgdXChX1pUr9ZrzbfyilCztQqrAdHg5WGTafPmcuTajZkWoeEdhqIE4P1+IdOWcuzZuAV5lqTPvmAJOWx7Bj2RQ2bvyWbhUS4dJWuLSVzQ+LkODzKm+Pnou1g3O2fG+EEEIIIQqaAd3aM2qwC4aYJ+mO0Tq5M6Bb+1zMSgghhCgg/voZ9k6AqMD/H3MsAm3mQcXXLZdXNrtz5w7t27dn8ODBbNy4kYMHD9K/f3+8vLxo3bp1mtecOHGCSpUq8dFHH+Hl5cWuXbvo1asXTk5OdOjQIXmco6Mjf//9d/Lrp5vF5SQp3Ipn0uDdd3AcMoTHBj37Vq2m3bChOR7T18uXQ6cOMeBAfxQqBbHXYkm4k4BCq8CsM5NwPwFIeiN/4NBhTp2/wtmLV/j72jUe3LnJk8C76GMeo48OJ/haODFqZ254/AWA2WjgwbKeOLgXpce0r6jo60Wpwva4KBKo6OvBwtXf88no/gBciPp3Vo+Tjz9dXay1taf7+CV0H78EAs/B6VWYLmxl8va/ufXkGvqL2+k/eDjU6QdOslJECCGEEOLf1Col1g4uxGRQuB0/fQ7abFokIIQQQrw0/voZtvQiZRNIIOpR0vFu63OkeNu0aVMqV64MwIYNG9BoNAwZMoSZM2fmWNFzxYoVlChRgkWLFgFQoUIFjh07xpIlS9It3E6aNImoqCgcHR1RKpWMHDmSffv2sWPHjhSFW4VCgaenZ47knR551yOeidbWljaVK7HpwgW2rP0mVwq3AA2K1adSYiNO/LWHmIsxGCL+vwmZ2kmNxlXD2A/m0LhmJRrXrJTq+nuPQvnt9HlOn7+MzsYVPD24GRrDjet/Y0qIISroHnuuR/HLjWgAQn/4lLjrJyCT/5HMnz6JKcN6p/4AUaQGdPoCfZPJ9A8cyKZdB+lRNhGOLYbfl7IvsQbaqp14tdswFBms9hVCCCGEeFmMm/cFMY9ug1KN2tYhxcrbjPZQEEIIIV46ZjPosrg5uskIv4wnVdE26UaAImklbsmmoFSlcb0J9HGgU4FSCRrbTGsl/7Zu3Tr69evH6dOn+fPPPxk4cCDFihVjwIABaY4/evQo7dtn/HTNypUreffdd9M8d+LECVq0aJHiWOvWrRk1alSWcwaIjIykQoUKKY7FxMRQvHhxTCYTNWvW5NNPP6VSpdQ1qOwkhVvxzLr17MmmCxfYfeECBp0OtVabK3HLKQqzZdn9VMcNkQYMkQaUNgHpXlvcyz3NTdHiEhpyrHcdzv99B/sS5bkVEsut0Bj2xT4GzJn2p9VFhlKpSXtebdqMpo1foVnD2ng5WqNUJv1PzKpQUSau3M0Egx7F9V/g9FeY7xxhzGp/roQeosrYiQzv3ZV3P1yAnUvh5PvGx8WxYMoIrl85z4UjO/lw1mfY2No+w3dLCCGEECL/uPcwhM9nTwGgw/sfsH3FfFZu+pnDR4/TrHFDBnV/XVbaCiGEEE/p42Budj3Ja05qnzDXJ82zSsD53wc+CgStXZbv7uPjw5IlS1AoFJQrV45Lly6xZMmSdAu3tWvX5siRI9jb26fb1tLDwyPdeEFBQanOe3h4EBUVRXx8PDY2NpnmvGXLFv744w9WrlyZfKxcuXKsWbOGqlWrEhkZycKFC2nYsCFXrlzB2zvnnqqWdz/imbUfOhSniRMJ0+s5sGYNbQYPzvGYOr2O+R/Pz3DMvMnzmNx3MlpN1gvJttZaWjWsSauGNVMcNw25Qt+Jn7JuwZRM73Hz5D5untzHtiM9cG78Llq1ksKKGO7v+pziZcozYPRHFHe1w9ejBV4926MLOEej0324c/AKlwLjGDRnPROWbKBvuzoMmzyfz/3ms/mHX3gU80/R+NczrPhqDW93bsuS9buzPDchhBBCiPyic9/hGGIjsC1cjO8+m51jeygIIYQQInfVr18/RVuEBg0asGjRIoxGIypV6hW+NjY2lCxZMrltQW47fPgwffr0YdWqVSlW0zZo0IAGDRokv27YsCEVKlRg5cqVzJo1K8fykXdA4plpbW1pXbESWy5dZMs33+RK4XbNzjUkhidmOCYxPJE1O9cw+M0Xz0epVFKnWhXWZWGsb+1mGHSJuJStRJxSgc5g4sadvwk5f5RH9+8RUPKN5LFBG8ah1Mfi6uVD7Rav451wg+Pnr3P3iYHFO06zeEfTNGMExZhZumEP0F6Kt0IIIYQoUH46cpZz+7YBsNDvcxzsMl8JI4QQQrzUNLZJK1+z4t5x2Ng183HvboPiDVMdNplMREVH4+jgkFRI1eTs08Av2irB09OT4ODgFMeCg4NxdHTMdLXtb7/9RseOHVmyZAm9evXKcKxGo6FGjRrcvHkzw3EvSgq34rl0e/cdtky8yK5z5zDodM/U3+R53A64na3jsmJAt/aMGeqGLios3TFaJ3f+Pr4v+dE9g9HEo8gETl0qwq7iEJlgxrWCB/fCY7kbHosuLACzLo4Hofd5cPH/96ldRInJZOZsUNqtGf7pOsPmH3/h07i4HGmboNMbWLlpJ4ePHicgyiiPJAohhBAix+mNJr48G4NH99mUNNxjSI+Cs6u1EEIIkWMUiqy3Kyj1GjgWSdqILM0+t4qk86VeS7/HrcaYFO85VsCeOnUqxeuTJ09SpkyZNFfbwou3SmjQoAF79uxJcWz//v0pVsum5dixY3Tv3p158+YxcODADMcCGI1GLl26RLt27TId+yKkKiOeS4dhw3CcPJlQvZ5D33xDs759czReyWIlszROocy+ArJWo2b8jLl8Mrp/umP+u7OxWqXEp5AtPq/WoOurNVKMNRpNnO1xnpPnr3Dhyt/cuHGDgLu3CAsM4EzIQ6q66kn7f6JJzMCjaDMt6pXHqV53uvcbio+LLd4uNrjbqnB2eP5i7hS/r5k/bWJykfqHVYsYN9yN8TPmyiYgQgghhMgxa47d4VpQNF4VarFr7FhLpyOEEEIUPEoVtJkHW3qRtCTs33WHf2oobeamXbTNBgEBAYwZM4ZBgwZx9uxZPv/8cxYtWpTu+BdtlTB48GCWLVvG+PHj6du3L4cOHWLLli3s3v3/p5eXLVvGDz/8wMGDB4Gk9ghvv/02I0aMoEuXLgQFBQGg1WopVKgQADNnzqR+/fqULl2aiIgIFixYwL179+jfP/2aUXaQwq14Llb29rSuUIGtly+zZe3aHC/c9u3Yl1GuozJtl7Bg/AKeRDxhxccrsqUXytOi5b+LmvB8OxurVErqVC5DncplUp0zmUz079SICztPZHqft4qGsPPYV6wymAnwaIJCoeT+0u4oVWoc3Ivg6umNd7HilCjhS6WypalesQx1qpTD0S7twu4Uv6/TLE7rosKSj0vxVgghhBDZ7Y8rN1mw/TjYujKpXQUK2eXOhrdCCCHES6fi69BtPeydkLQR2VOORZKKthVz7omXXr16ER8fT926dVGpVIwcOTJLK1qfV4kSJdi9ezejR49m6dKleHt7s3r1alq3bp08JiwsjFu3biW/Xr9+PXFxccydO5e5c+cmH3/11Vfx9/cH4MmTJwwYMICgoCBcXFyoVasWx48fp2LFijk2F5DCrXgBXd95h60ffcTOs2dZZjDkaCytRsuE2ROYOXhmumPsi9oT8zCGVdNWseenPfzw7Q/UqVDnhWPPGtWPKcN65+jOxkqlkhJlKwOZF24TDWYO/R2J18NFnBm7gwOG6qz2iOfoPSNPYiN4cvcvbp4E/xRXKdA4FMKxcFHcPIviXcyX9m92o0al8sybNjHDePOnT2LKsN7SNkEIIYQQ2cZkMtHl3T48+OsP6r0/hbdq5exjhkIIIcRLr+LrUL59Us/bmGCw90jqaZtDK22f0mg0+Pn58eWXX+ZonH9r2rQp586dS/f89OnTmT59evLrb775hqVLl2a4ynfJkiUsWbIku1PNVO5vzyYKjI7Dh2OvVBGi07G4f3/+2LCBX1euTOp5mwNmDJrB1BVTsXK1SnHcytWKqSumEn4nnHcmvINCo+Dh2YfUr1mfoZ8OxWQyvXDspzsb927fmMHdO+ZIEXPcTD+87BWk1+xBARRxUNCg50d0rVeMntVt8SKM99QHONTLlgqF1bxRqwi93niV+m264FOtEXaevig0VoAZfXQ44bcu8vfvv3Dw+y+Zu/043Wd9gz6DHr4AushQ5n31XbZ8H1PcV29gxaadrNt9lBWbdqLT52zxXwghhBB5x49/3CYk/Almo5FpvVqn2G1aCCGEEDlEqYISjaFK16Rfc7hoK16cFG7Fc7NxcKCSmysAk7/7jtnbt9Pxgw/wcXDk26lTcyTmjEEziHoUxbIty+g6oivLtiwj6lEUMwbNQKvRsnHuRvaf2I9beTdMCSa+nPwlvvV9OXv9bI7kk51sbG15u3NbgFTF26evu3VqS5P3p7H15D3mHwqF7t9D9Xc5HmLLXyEGfjoTyPqffuPK4R00tHvImnFdePLwFtdu3+fbnQcZP/9LOg8aT43Wb9GkdjXsDNFZym3q8N6ore2w8yhOkUr1qNr8Tdr0HsGQqQtZsnYb+0+cJTwia/eCpPYMDm5ejOjVhR9WLWJEry44uHkxxe/rLN9DCCGEEPlTTKKB+Qfv4fHOHEYu3UybRrUtnZIQQgghRJ4kzz6L5/bt1KmcCglJdTxYl0ivWbMA6Dkz/dYGz0ur0TKw00C8td60a9cOjUaT4nzzWs15ePEh7016j62fbeX+H/epW6MuQ6cOxe9Dv2zpfZtTlqzfDbRn8w+/8Cjm/w3DPR0UvN2p7T/n/6GxgfLtoHw7GrRdzMFGX7Jj03p+PHaZh5EGNh+/w+bji7CauIiWVYrQuWM7Puz7IW7FyybfYvlGA8O3Jv23AqjqocRWA3F6uBhsStGy3KxPIC4kgLiQAB79BZfSyF9l40DdwQuoWK0mXk42mMLuEh96lzo1atCobg08nayZ+fk3Fumpq9MbWLlpJ4ePHicgypjt7S6EEEIIkTWL910nKCoBXzd75g5qYul0hBBCCJFDnvaHFc8v71awRJ5m0On4cN78NM89LfaNnz8/x9omZEar0bJ54WZ+PfYrrmVdMcYZ+Xzi59TpWYeQuNTF5rxkyfrd3AqOYcaYfrzbuhYzxvTjVlBMyqLtf6itrHmt52iW7TpHQFg8J3/+hglvN6SMuxWJBth1LpB+M1fjUaIczSq48vnY7ty/8gcDurVH6+hG3aJKPO0VXAg2ceKBiQvBJjztFdQtqkTr5E5gyGMOnDiL37rtDJm6iLa9R1K1+ZsUqVwfOw9flFobAIzx0dyLVXLgaggbTt5j+TcbWfLRBwyc9AmN5x+m9KRdzJkyIcP5z582MdvbJsgKXyGEECJv2LL3NxbN+ghTYhyz3qiMtUYe0RRCCCGESI8sNxPPZf/qrwnSJaZ73gw8Skxk/+qvaTt0SO4l9h8t67bkwaUHvDvhXX766ieiq0XT+afOTKw7kQ4lO+TZfmo2trZMmvsle/bsSXNVcUaUajX1Or5PvY7vM8dk4q+ju9ixbhk/HDjOufux+F97jP+1zXzz3VbOznyVT9t78OH3YSlW1wIExZgJijEz8r06eLm74OXuQvP6NdKMaTKZuB8czoVrN7FxK0ZwrIFHkfHse1yGi2E1cSxRHoVKSVTARYwx4Rnmr4sKw9rOAVtXLxxdC1PI3QMPTy86vdOXsiWL4eFojYPaSNFCDlhbZb779BS/ry2ywlcIIYQQKen0BgYOGkxUwDWKOWlpUvYtS6ckhBBCCJGnSeFWPJfAO3eydVxOstZas33Jds6NOsfcS3P5K/wvPjr2EZ+t+gy/QX5UKlHJ0inmGIVSSaVXX6fSq68zBbhz/ig/rlnCjr2HaesTj/H+n/jtjklVtIWk4rsC2L5zHwv1OlSa9IukSqWS4l7uFPdyT3H8w9YzgaR2GSaTmQ8+ucEXWcjbrE8gNugOsUF3eARcAa451kbjEgrAkyMbiDqxBc/G3aj11jA8Ha1x0hj569fv8fEuQknfYpT1LUYZ36LMnzYxw1jzp09iyrDeOdI2QdozCCGEEP/Xb8JsIgOuobSy5bsv5lk6HSGEEEKIPE8qCOK5FClRIlvH5YYaxWvwrc+3fHP5GxZuW8iB+Qeovrw6aw+u5Z067+TZ1bfZqUT1xoz+rDGjAXNUEL+tGMuDqO/SHW8G7kcY2LN6Nh2HzHih2Eqlgoqlimdp7NCpCyldoji37t0n4MFDggIDqVK3POEJCoKjEngc+xgwk6Cw4vLDKC4/jEIXepdH6z975rx0kaEsWv8T497vjEaVfd1jpvh9ndT2ISoMgB9WLWLccDfGz5grK3yFEEK8dC78fZvvlie12er5wSSqlMk77xGFEEIIIfIqKdyK59Kyfz88R48mWJeY5mpNBeCh0fBar/dyO7UMaZQaBlYdiFe0F72+7QVFYe7VufwZ+ycf1/8YVxtXS6eYaxSOnjwyu2c+EHh96Eyqzl5I4+pladz0NRq//h5FylZ/5pgDurVnzFC35GJmWrRO7iz5eGSGK1MNHzbl73sPiYg3kaCyITgqkSvXrNgd0IXwkCAiw0OIjwjFEBuRpbwW/3SKlTes0f25jagr/pRv9iavvN4Td3srHFR6bp4+jK9PEUoV96aMrzdlihXJMD9LtWeQFb5CCCHyqi69BmHSxeFcvAKrPs34aRghhBBCCJFEPtGL56LWalkwYTy9Zs1CASmKt0/Xrba1t+fVUqXYvG8/xatVtUCW6ev4SkceXn3IyrMrWX9jPQcCDnD86nFa0pJPhn5i6fRyjVexklkee/FhHBcfnmf57vPw4WJKumppUq0EjRs1onH7HpSu3QyFMuMVq1qNmvEz5vLJ6P4ogKoeSmw1EKeHi8EmzMD46XMyLTaq1SoqlSqW8mC9Yszu3SLFocXfbGVs326Zzk1t7wJAVMgDYoPucuthGGHnAwHQhdzh0TejU16gUKKxc8basRAOhdxwdnXHzb0wnp6eeHkUZtmcqRnGy4n2DLLCVwghRF41d9X33Dp9ABRKVn+1Uv5RUQghhBAii+Rdk3huPWcm9S79cN78FBuVeVpZMb1zZ6Zt306QXk/N2rVYu2ABHUeNslCmabO1smV0g9G0LdeWj45+xIElBzh94TRbt21l9/rdlPYubekUc1zjroPxHjKWh5GGdFdOezurOXH8JCf2buao/0GOnP2bCw9iuR2u4/ahv1l76G+Y+TUe9ioaVyqK30dDKFqnHXhUAmXqnaJnjepHzNkdbP7hFy4Em5KPe9kreLtz22wtMg7v2ZlJozJf4Xvnm3HE6k2ce9OHy3/dQOtSGLVLEcJidFz9K54DFesS8ySMhKhwDLFRYDahj3mMPuYx0YE3CXzGvHSRobwzbQWFFLEU8fSgeFEvSnh7Uap4EYq6F0KZSQH8v2QDNiGEEHlVeEQ00yeMAaDhG+/RpVVjC2ckhBBCCJF/SOFWvJCeM2fS/eOP2fvVV5z096d+06a0GTgQtVbLK4cO8VbnzlyNiuKN0aMZ++uvzPnpJ9Ta9De5soTyhcrzXdvv6Ly7M3sv7eX64etUrFyRSfMmMWNQUl9XnV7Hqh9X4X/Mnwe6BwzoNABtBpt15RcqjZalM8bRddTcdFdO+00fR9EKtehaoRZd/1l4GhkcwPGdGzh6cC9Hz1zm9O0IgmOM/PhHAOtOfQpn54CVI6tvFSZU5UHXHu9TptEboLZix9JJLN2wJ1WhOCjGzNINe2hcaxJvjpyTLfP79wrf9IyfPgdrKw3WVtCiblVa1P3P6vB2FWBc1+SXCYk6btx7yLU797l9P5CA+4E8DHpEcFAw4aEhBN6+RmzwvUxzO/j7n0QcWZfquEKlRm3njLWDC/bOhXB0LoSLqxvu7u54ehSmbcfOFPNyw9XOCnst2FtpZAM2IYQQeVbXQWNJfBKE1smdHav9LJ2OEEII8VIzmoycDTlLaFwo7rbu1CxcE1UaC67yO39/f8aMGcOVK1fw8fHh448/5v333093/N27dylVqlSq4ydOnKB+/fo5mGnm5NO1eGFqrZbWgwZh9PGhdbt2qDUaACq99hp/3L3L4OYt+PbcWRbu3csJX182799P0UqVLJx1StZaa3756he2vL2F/n37Ex0QzczBM9m6dSstWrXgq/lfkRietKp422fbGOs6lgmzJyQXdvOzN0fOYRswctpCHkQako97O6vxmz4uzSKqk0cx2vafTNv+kwFIiI7gj1++48YZf2zLG+D+aUiMYsWeQM48MlE8zJ8yR+0xetZg2McH0lzdayapWDxq+kLeGDoDVTYVxp+uNP13GwFIWmk7fvqcZ16Jam2lpUrZElQpm/amKss3/sTwnp0yvU/FUj7cj2xEdEQ48dER6GMiMOniMRsN6KPC0EeFEf0QHv3nuj1PPFE7ugHw+NBqov/8Gcym1AH+RRcZyrDpCxn0ThdKentSyMkhK1PNlLRnEEIIkZFd/qfw37YGgEmz5uPh6mzZhIQQQoiX2IF7B5h7ei7BccHJxzxsPZhYdyItirfI4Mr85c6dO7Rv357BgwezceNGDh48SP/+/fHy8qJ169YZXrtv3z6qVKmS/NrV1fL7IEnhVuQoOxcXNpw9Q5MxYxi1dCm/P3pEjRo1WOfnR9uhQy2dXirdmnej7dW2dPmgC/u/2c/Vg1e5evBqqnGJ4YnMHJzUKqKgFG/fGDoD/y3LOXnkMPWbNKNpt2FZLp5aOzjTuNtQGnf752dqNEDwZfrEzMH36AmalFOAMYKjvx8jKCb9IqMZuB9h4Oi2FTTtMSIbZpZk1qh+TBnWm5Wbfubw0eM0a9wwx1aGZnUDtsMrp6HVzEpx/ElUDDfuBXLn/iPuPAzkYWAwQSEhhISG8jg0lMgn4VQr60OEDh7H6AiLi8y0aPvU6k8nsfrTSQAo1FZo7ByxsnPC1tEJe0cX2g+aSDFvb5xttUQH3iL+SQiVK1WgaoWyONtqcbRWo1Aoku8nG7AJIYTIiMFg5P3+A8FkpHjNV5n+wfuWTkkIIYR4aR24d4Ax/mMw/2cZVUhcCGP8x7C46eIcKd42bdqUypUrA7BhwwY0Gg1Dhgxh5syZKT5fZqcVK1ZQokQJFi1aBECFChU4duwYS5YsybRw6+rqiqenZ47k9bzk067IFQMWL6ZemzZ07dqVG9HRdBg2jPF79/LJjh2o1Hnrt6GDrQP7vt7H+jfX0/v13pBBXWze5HlM7ju5wLRNaNJtODH2JWnSrh2qf1ZOP9/N1FCkOsMWbmYYgNkM4Td5NPcD4NdML/9w0se03/sTVWrUpmrDVpSq2QSl+gXyAVSYqKi8R5TiOhWVRVFl9IN9AVltz5BWsdHF0Z66VcpSt0rZLMV6Mq4Rc1Z8y4IJQzIdq7R2wKSLA5MRsyERXWQoushQogMhGNheuyfq6wkAPD64iug/f8KxXhdcmvYBwBwdSuC6UWjtnLC2c+TJ/esZxps3dTx9urbHt0jhZ+7Zmx5LrfCVYrEQQjy7YdMWEn7rIgqNNVvXrbJ0OkIIIUSBYjabidPHZWms0WRkzuk5qYq2QPKxuafnUs+zXpptE0wmE/GGeNR6NUqlEhu1zTMVXdetW0e/fv04ffo0f/75JwMHDqRYsWIMGDAgzfFHjx6lffv2Gd5z5cqVvPvuu2meO3HiBC1apCxCt27dmlFZ2HepU6dOJCQkULZsWcaPH8/rr7+e6TU5TT55ilxTtVUrzt65Q//XXmPzxYvM3bmT476+bDp0CK+yWStU5aa4xLgMi7aQtPJ2zc41DH5zcO4klV8pFOBWBq9a7chK4fbPe9H8uf4QrD8EzKdjeSt+HtMwacMzj8ocCzBSsUFrCnmn7kGTlh1LJ6VsBfHVTryHjWfpjLRbQbyo7G7PkB4XR3s+Gd2fpbOnZLrCNzo0ELVKyaOwJ9x9GExAYDAPgkIIDAohODSM6q1qEaOHJ3F6fr/pza2gMrh5+WClVRGnM6KLjcTwz1dW3h7oox9TyscL7/5f4OZTCicbDZHn9xFy0Z9yDVrSsN1bONlosFWauHxkD25uhfByd6OIhxtFPdwp5uWOu4tjctHXUit8pR2EEEI8u/CYRL7fuh2ArgPHUKdyGQtnJIQQQhQs8YZ4GmxqkG33C44LpuGmhlkae+qdU9hqbLN8bx8fH5YsWYJCoaBcuXJcunSJJUuWpFu4rV27NkeOHMHe3j7dRUAeHh7pxgsKCkp13sPDg6ioKOLj47GxsUl1jb29PZ988gmvvfYaarWa7du306lTJ3788UeLF2+lcCtylb2rK5suXKDJ8A8Y+8Vyjjx8SI0qVfj2iy9o0S9vFUFuB9zO0ri9F/fSvll7fFx8cjij/K9x18F4DxnLw0hDmn1uFYCbnZKJfd7g8l9XuXjzAVcCY6hQyAwPz8DDM4TGmmi8MAYFED27LHbFqoBHJf4Ms8HaqwLl6rdEY/3/v0R2LJ1E11FzU8V7GGmg66i5bIMcK97mRnuGZ13hW7SwK0ULu/JKjYrp37THshQvE/RGgp9Ec75XXe4/CuHbzds4tfPbLOVn1trxJE7Pkzg9j69fJfrySWLsvLldKAAAfUQQgSs/TPtipRq1jT1qG3sSHgdlGGfO5LHUrF6V6pUr4mitxsFag1b9Yit9pR2EEEI8n9l7ruLS6WNKPPqD9YumWDodIYQQQlhQ/fr1U6zQbdCgAYsWLcJoNKJSpV7ha2NjQ8mSJXF0dMy2pzcz4+bmxrBhw5Jj1qlTh8DAQBYsWCCFW/FyGrrsc+q1ac3b3btzKzaW89OmU91kwrVfPxS59AczMyWLlczSuAsJF6jQsAJ2KjtGzBjBgLYDKGxbOIezy59UGi1LZ4yj66i5KCBFMfXp/8ZXzB6fopBq1CUS//AviLsLwVd49Mfv+BY6iBojdroguBkEN/czdm0sR+4Z0aigopcdVUsVoVL5sizc8Euubob2b1qNmsHdO1LMUUW7du3Q5FDxLadX+FprVBQv7Ezx15L+RVcBWSrczl/9PT27vE50opHIeD1/1rHiyuVXcSlaEpfiZYiM03E/APZXbUhcdBQJMZHo4qIxxMeAyQAmA4bYCAyxEZnGMsZF8k7/YXh0nZb0OiGGh8t7o7a2Q2Nrj5WtPTb2jtjaOWDv6ISDoyPOzs64ODtTyMUZd1cX3F0LUbN6NbzcC2GtVjB/2sSM5zd9ElOG9c7Woqq0gxBC5HfHb4Wx4+xDlCoV6z4di7VV/m8nJYQQQuQ1NmobTr1zKktjzwSfYejBzPcY+qL5F9TyqJXquMlkIjo6GgcHh+RWCTnpRVsleHp6EhwcnOJYcHAwjo6Oaa62TU+9evXYv39/lsfnFPlUJiymVocOnL11izXv96H1nTuELlpM/J9n8JzzKZpChSydHn079mWU6ygSwxPTHaN11VK7am22zd9GrDmW9ffWs3nrZmp61KSysTJtK7alUolKuZh13vfmyDlsg5StCwBvZzV+01O3LlBprbAvUQOoAZU6U/U1uDMBEiNDIPI2BF+G4L9w+GEDDlbhRCeaufAglgsPbsBvNzLMJac2Q3vKqNdxZMtyLh85jH3M7Wfa8O1Z5cUN2Eb26opWo8brn2N1fFtAl/82vK8MH6T8S9lkMhEWEcW9wFAeBoeyfM23HPjuy0zzsrK2xd5KTUyiAVNCDGZDIvqYRPQxj4kDnmRhbh7vzsfauyIJARcznB+ALjKU2m3eomrVarg4O+Hi7ISbizNuhZwp7OqMh5sLnm6FcHVyyNK/FL9M7SCkUCxEwRQVG8d7IyZjKt+K3o3LUd3H2dIpCSGEEAWSQqHIcruChkUa4mHrQUhcSJp9bhUo8LD1oGGRhun2uDWoDdhqbJ9rBeypUykLzCdPnqRMmTJprraFF2+V0KBBA/bs2ZPi2P79+2nQ4NlaS5w/fx4vL6/MB+Yw+ZQkLMrRw4ORe3YTsXUrwZ/M5u7Bg3T0LcHSZZ/zaq9eFs1Nq9EyYfYEZg6eme6YibMnMuOdGZypdYbVP60munw0F0IvcCb4DNsXb+fDSx/iWcWTdp3aMbbPWCr6ZvB4+kvkzZFzeGPoDPy3LOfkkcPUb9LsmYuaVk6FwakwFKsPwK4OizGbTNy7dJyLv+/j4pnT7Dp8glN3ojK916OfZ3H51naW+IdQu2oFhvR5B1xKQKESYOOS1KP3GeV2X13IvRW+L7IBW1YolUoKF3KmcCFn6lQuw8Og0CwVbmdPGs2wd1tjNJmJiEng2qAGBIWGExT6mNDHTwh7/ITHTyJ48iSCqKhIoiMjiYmJIi4mioTYGHSx0RQqVAidUoExJitlXrh06EcuHfox40EKJb7vzKRI5QZJheVbf3D3t+34VKxJ024DsbdSY62GTyeOzPA286dNzJEVvrldLJa+wUIUXG8PncTtPV9hd+kYY2eds3Q6QgghhABUShUT605kjP8YFChSFG8V/zz7OqHuhDSLttkhICCAMWPGMGjQIM6ePcvnn3/OokWL0h3/oq0SBg8ezLJlyxg/fjx9+/bl0KFDbNmyhd27dyePWbZsGT/88AMHDx4EkjZQMxqNNGzYEKVSyY4dO1izZg2rV69+9glnMyncCotTKBS4dOuGTZUqTG3ZkgvRUQweNIgjBgNuffo8026F2W3GoBkAzJs8L8XKWytXKybMnpB8vla5WtQan/RIwaOYR+y9vZcJhgnEmGMIuhjEmotrWDNrDV7VvGjfqT3j+oyjXLFy6cbV6XWs+nEV/sf8eaB7wIBOA9Dm0EpNS1FptDTpNpwY+5I0adcOlUbzwvdUKJX4VmuEb7VGvA40+v4zmr2TcTEMwMsqjvNnT7PmYAJ3bt1giOPB5HMVv4jDysqKkkUKUaq4NyVLlaZU+cqUrFyHYpXqpein+5Sl+urmptzagA2yvsJ3QLeklbsqpQJXR5uM+/hmwGw2s3RDIqN3Zj62aJWGWNvYEh8XQ0JsDInxMejjYzEkxGFKjAPMYDYRj4aHEfEARP19gyeXTxBhUBNU4j4A8XfPY0qMzTCWLioMKysrVFa2qKxt0VjZUrXLB5Ss8Qq2WhUxD/7m76M/412qPM0798TOSo29lYpLxw9hZ63FxckBV5ekVcHuhRxxcXTI9XYQllpVDLLKV4icdicslgsJLqgc3BkyfDjOtgXrfYsQQgiRn7Uo3oLFTRcz9/RcguP+30bAw9aDCXUn0KL4f5+MzD69evUiPj6eunXrolKpGDlyJAMHDsyxeCVKlGD37t2MHj2apUuX4u3tzerVq2ndunXymLCwMG7dupXiuoULF3L//n3UajXly5dn8+bNdO3aNcfyzCr5xCLyDOsKFVh5+jTmFi3oFZ9A2PwFJJw9S5HZs1E5OVksrxmDZjC57+TkQmrTRk0zLKR62XvRp2of+lzpw8krJ1nyzRIO/HyAxzce8+j8I1afX83qGaspUq0IHd7swLj3x1HG5/+7LU9bOS1FoXjbZ9sY6zo2RaFYZE1WNkPzdlbTeOqvXDl7gpnO+/G21UMxK3hyl/jHgVwNNQAGzj+IhdP3gRPJ16sUUMxFQykvJ0p6e1KyhC++pcoyeuZSi/TVzc3WDJB3N2B7UQqFgqE9OjLhg8yLxbfP/JZuXJPJROiTKILCHqO2ccSgSGrj8FdDRy40KoetszvFqpQlOtHAzyGnCMlKcmYTxoQYjAkx6ICbwREE3kzKMebyGcL3buEv3xpcsK+bfEnAkmGYdXHP8B34P11kKC2Hzcb8OADPosVp2aUnNloVdlYqrv15HK0KXJwdcXZwoJCTA26FHHF1dsLN2RGNOuW/2Ov0Bov0DQZpByFETjObzXz84yW0Jerw1tytzBvc2NIpCSGEEOI/WhRvQTOfZpwNOUtoXCjutu7ULFwzx1baPqXRaPDz8+PLLzN/ijK7NG3alHPn0n/6Z/r06UyfPj35de/evencuXOuboiWVfIJQuQpLkWKsOXKFZ58/z0hc+YSc+Agcw8c5NXp02nU/W2L5aXVaBnYaSDeWu9/HkHP2urQ+pXqs3nhZlgIxy8dx+8bPw7sPMCTm08IPB/IV+e/4qvpX1G0elE6vtkRW1tbFo9ZnOo+ieGJyS0bpHibdVnZDM1v+jhUJRtRtWQjqnb9MMX12oQYrrTx5/aVM9y+foVbt25z+34gtx494XZYAokGuPNYz53HYXAlDLicaU5P++p+++lwXh8wCWfP4tmyIZ8lWjNAwdmA7b+yo1isVCrxcHXGw9U5xfFXSjeG11MWNRwf1+LkN5nnNWHBCpo1qE3Yk0geR0ThVaIsalsnYnUGrpUxccpFh72rF+Xq+hCbaCQ20cCukhVJjI1GnxCHPiEOY2I8Jl08pPnPC6mdO3+B6D9+QOtVjtM2/9+s4MEXwzFGh6Z7nUJthUprjUprjdraBrPRmKW+wW8MnEDNKhVwcLDD0d4OJwd7nB3scXFywMXJnkKODrg42me5CPoytYPI7WKxFKfFUz+ee8DvN8OxUiuZ+3btPPeBRwghhBBJVEoVdTzrWDoN8Qzk3bXIcxQKBYXeeQebqtXY+f77TDvzJ8p3ejDrlz18+M03mAwGfv3qK/7w90d1/z5tBg5Erc37j+M1rNKQhosbwmI4dvEYft/4cXDnQSJuRfDw7ENWXFyB2j7jP5LzJs9jct/JBa5tQk561s3Q/k1lbU/Fxh2o2LhDqnMmg4FHNy9w+9Ipbl+9wK0b17l97z6nrt7nZpgu07zen74Kpq/CWg1FnLR4udhSxM2JIh5uFPHywsu7GEWKlaJIyfIUKV0ZR3fvdAu8lmzNUFA3YHsaD/JWO4iZI/ulP996xaFfx9TH3/8j1SGj0cTCNZuZOPCdTHOrX7MKsUUdsXEpTOXqRYjTGYnXG9nvU5LYCEcMifEYEuMx6RIw6RJ4WhA2GxIxGBIxxEWS/haPqe3fvp69azMu8AIoVBqU/xSGfRp3pWyLHthoVZhjwjnz/SLsnVxoM3gKn03NeJXvnMlj8SrsRiEnJ5wc7HB0sMPJwRYnB3tcnRywtbZ6huxfnk3mpFexeOrewxDeaf0KtrXeYMy44RR3tbN0SkIIIYQQBYYUbkWeZVO5Es13bKdls2bsvX2bievXs2X3bh5ERxOi+6cwtn07nmPHsWDCeHrOTH8TsbymUdVGNFrSCJbAkXNH8Fvrx4kzJwj6PSjD6xLDE1mzcw2D3xycS5kWDNmxGdp/KdVqipavRdHytfj32kn/LPbVddBCtA4SDHA7XMftcB3cjADupTneRgN7B5emSY0yYO/B6UAzR65HUL1aZUZOW2CR1gwFeQO2pwpqOwiVSsno999i6rgRmRaLd30+Je24/U6mOmQymYiIjiP0cQThkdE8jozmSWQUEZHR7PM/yq41SzLNrZB3Kcy6ougS4zHoEjDoEjDpEjHqEjAb/l8CNhv1GOP1GOOjCYuMxvAoaSNCXchdHp37DZWdC+FedTFEZ1wENsZFMuzdTmmes6/RnsJthmKtVqLWxXBt5TDUWmte/WgDNlo11hol13/9licBf6O1tkZrZcXF33anea+n5kweS+mSpahSvRpWaiValZLw4Ic42NlS1MsDG60arUr5TP3dc7tYbMlexSLv6dRnGAlh91Ge30nfhgssnY4QQggh8hB/f39Lp5DvSeFW5GmuxYqx+8YN5vbsyZTvv+dseHiqMcG6RHrNmgWQr4q3TzWp0YQmNZow3m88C37P/APP8PeGM2vWLIqXKU6lSpWoX6M+Leq2oLhn8RfKo6BviJYTm6GlJat9de+ExKJPiCXo9hUCb/1F4L0bBN6/R2DgQwKDQgkMfcKjxzEERiQSkWAmXg+FDI/gXlIn1P1HEvn4cCJtS+3iQaQx3XyetmYY3L46derUxa2wF64eRXD1Ko5b0RK4epdKc4O1zFhqlW9u9/EFaQfxLMVipVJJISd7CjnZpzo3qHtHHLZtyLRQ/ODCsXRjGgxGImPikgrCUTE8jowiMioWOxdXHFw9iNcZCQkpxlHPuRjM8DDayP4s5K22d0GpUmPUJ2LSJ2LW6wAzSrUWo8lMrM6IITIaXUQIerWWvx5FJ18bcu408bdSr2pOjzEukkEjRuHZfTaQVIAOWNgZAJ+Rm1Ba26NQQMSBFURf9kepsUKl0aL651eNlTVqrRaN1gqt1gqN1orrpw9lGHPe1AnUbNwSO2stoQ/vEREahJ2tNXa2Ntjb2uBga4udrTUOtjY42NviaGeDtZU2zeKxJXsVi7xnzY69nN+/DYBFfp9jb2tt4YyEEEIIIQoWeUct8jylUsn4tWtZvHUb4QZ9qvNPVxWOnz+f7h9/nC/aJqSlZLGSWRpnjDMSeD6QwPOBnNh6gtWsBkDrosXN140SZUtQuXJl6teoT/M6zfEp7JPpPWVDtOyT5b66Gi0qjRbfao3wrdYow3vGRYTx6NYlfByVkBgG0UFUNPvzruEcdqZIuJX5Y+Wr919l9f6raZ47MsCdxhU9wbYQu6/r+O5UCK/VKkO/zs3AxgWzjQuHzt/D1dMH1yK+uHgWY+S0hbm+ytdSfXylHUT2yI5CsVqtwtXZAVdnhwwiedLrtSoALN/4E/uXZ56b34pvGPbuG8mvTSYTUbHxJOpNoNaQoE8qGF9sd4DY+ETKVatNgt5EosHICc9hPAi4S1x8POf//IM7f2ZcRAWwsbXHp5ANiXoTcTE6FGorzIZEFOqktgxmM+jjY5M3okv9N9+z0UeHM2TRRqyLVeXJ4TVEnd6R+UUKZVI7CrUGO5/yVOk3D61aSdj1c1nqVbxqy+4U31NR8MQlJDJy+DAAKjd9g8Hd02jVIoQQQgghXogUbkW+sH/112kWbZ8yA48SExnatClLPv8c63LlUdnnrx5rfTv2ZZTrqOTiaVqsClnx1fqvOH3pNJcuX+LO9TuE3A4hMTwR3RMdgU8CCTwXyO+bf2clKwHwbudNu1HtKOVcCl87XxLvJdK8TnOKuBUBkoq2Tzc++7ec3hCtIK/wfZG+ummxdXajVK1mKY51bjCMzjOSWjN89XvmrRlaVymMVqMmPDKWsOgEwmP0PI4zYQZc1HEQcQ8i7nH2TCLfHUvENjaAfs7HAYhONNNibnTGAf7l6Srf7dO70+2dXmDlQFicmdBoHe5FiuFWxBe0dvAMj4JbaoWvJYrFKkxUVN4jSnGdisqiqDDlSJyncrNYnNurirPaO3hAt/YpjimVSpwd/vN3iKsdVYs3T3X9G9V7J//38o0/Mbxn5oXbTyZ/yLB3X/v/gTkJmEwmdEYTOqOZRL2JB30qERIWTkxsHFExccTExRMbH09sXDyxcXHExyUQFx/PqZMn+fv3PZnGdFXGUbaYM38VdsfgURyTXodRr8Nk1GPS6zAb9WD61+p9swmzIRGjIZHEuFgePIkHIPbRo0xjAdwOeJClcSL/em/0NGIe3UZl68iOtV9YOh0hhBBCiAJJCrciXwi8cydL4344fZrR7/YEhQJtsWJ8FvEEey8ver/3HiUaN0ZTuPBzxTfodDm+IZpWo2XC7AlpFlGfmvDpBHq170Wv9r1SHA8MC+TgHwc5ce4Ely5f4u6Nu4TeCSUxPBGDg4Hjgcc5HnichIcJ3Jx8E6WNkmbrmlHCvgTrP1qfYV45sSHay7DCNyf66qYlq60Zdp+5nyq2Ua8jIigAJ40B9FEQF07rUn9gW/kclYvYQaVCEP+YuEePqOR1grBoHeFxRgxZrCNeObYbNAcB+P6UjhF7E3iropotb9mCQolJY0/pRcE42GhwtNXiZGeNo51t0gZRjvY4OTrh6OSMg6MjY+ettsgK39wuFltqVXFuFotnjerHRwN7sGDKCK5fOU/ZStX5cNZn2Ng+e8uOzOR27+DnLRRDUrHYWqnEWgNYg3s5Xyjnm2nM5Rt/YngWCrdD29Zm2LuvwNBX0h2j0xuIjo0nOjYu6SsugejYOMwKFR7exdEZTGz+OYIlOzMNR8li3pkPEvnWyYvX+OFrPwAGjZtGmeJFLJuQEEIIIUQBJYVbkS8UKVEiS+NaFCuO2sMDQ3AwCXfvsvrGDeLMJupduIjRygqVmxu/WVtz0WSkRu3a1G7ZioqvNsmwCPvt1Kl8OG8+Qbp/VsLm4IZoT4uW8z+aS/EYBTZKBfEmM/fszYz/dGK6Rc0ibkV4r+17vNf2vRTH74fe527EXYLNwdyKuMXR0KMEuASgKqQiOC6YW2duoXusyzCnxPBEqretTrWa1fDy8MLb05viRYpTuWxlSniWQKt6tkLZy7TC1whc02o5b22Fs1ZLY0CVzTH+3ZoBwNrHGoVWgVlnJuF+AvD/1gxpXevqUzrFsbrl2lI35W8jPIHLo5L+22wysWfVJ3QYPC3T3MqXLQPFfCAxCmzu4GITjIuN8umNiImO5M5jPaAH4p5h1ik9XeF79IMSNK3iA1pbOiy/gkKpws7GClvrpF6ednY22NnZYWdnj529PXb2jtg5OGJn74StgxPly5fHzdMbtLYkGmBELreDeFlWFaeK9+sZVn29LsfiPV3Fu2DaeMrbRGCrgTg9XEtw4cPp83KsHYQCqOqhTI53MThphXt2FoohZbE4vZjpFYvTyj+zVhQ1hr3N8mmjsiWeyJ9MJhPdeg3ArE/EvUx1Pp82ytIpCSGEEEIUWHmicLt8+XIWLFhAUFAQ1apV4/PPP6du3brpjt+6dStTpkzh7t27lClThnnz5tGuXbtczFjktpb9++E5ejTBusR0VxV6Wlmx4dpV1FothvBwIi5c4MMvv+TSlSuUK+6L6d49jGFh7H4UyE9RUXD4MCxYgI1SSXkXF6qUKEH16jWo1awpNdu0wb5QIb6dOpVes2alipmTG6KVeWjGOQb+1v2/ZYJnjJYyD9OaecZ83H3wcf9/j9sJdSfAOAiJCuFB/AM+ufMJd7kLJH0Py2qtkovF1//1vb568CpXD6bsj+rZwxO31m7Ya+xRP1JzbfU1PEt70mVSF1ysXShkXYjbp27jZOOEbxFfShYtiY+7D/Mmz8swXk6t8P13MfzSip2Msx+TYTE8P8V8c+Qc3r5yku2bj1I82IyNEuJNZm47qujyduNsLYYplEra9J2I94RZPPyn8FbJww5rFCRg5kpwLJC0yrfbF2fhn5/jB0PgA/ineWccJERhG/uEUw3/IPJxMFFPwol8Ek5UZASRkRFERUUTGRVNVEwc1wJCuBSY9Ji2Io14T3+fPgp9AqExmM1m9lyITvP/FRn5trMN71ZN2rRuwZGE5PmlF/N+hIFG5d3xdnfBxlqLtZUWaysrrK2tsLa2xsbGGmtrG16rW5lqFcuA2prHMXpOXbmDS6FC1K9TC9RWoLbmfmAIw6csSC4Kp/U9zclVxQCV/xMzJ4rFuR3vqRqKm7gTgREb9HoFRsy4m59QQ3Ez22PNGtWPmLM72LxjT4p4nnaxvP1muxzbZG7fwoHcjzCliunjrKTVuOwrFud2PJE36PQGVm7ayeGjx/ly2wHuXzgGSjXr16xCqVRaOj0hhBBCiALL4u+qN2/ezJgxY1ixYgX16tXDz8+P1q1b8/fff1M4jcfajx8/To8ePZgzZw4dOnTgu+++o1OnTpw9e5bKlStbYAYiN6i1WhZMGE+vWbPS3fBp/vjxyStn1a6uuL32GtNf+38PQVN8PInXr/PmuvU4HfmNS3fvcu3JE+JNJs6Fh3MuPJz1f/4Jq1ehBErY2fEwLi7DFXfZvSFa+oViXbYWigs7FqawY2FaVW3FD/xAVWtrHun1KYrF7ioVXhoNFxMSKNW4FFqtlsjHkcQ+iSU+Mh4rl6RNdGL0MUTdjyLsWhixuli239iefI+/x/+NPix1b+IM44Un8MHqD2jfqj2GWAN3Lt7BzdWN2nVrY6O2wVZtiy5Wh5OdEw42Dpl+YJy2cho/jpqPg97I38b/9290j1Tx46j5QPav8M3tmNNWTuOvDSdx1sPfxn99T40q/tpwkmm1pmVrvKerfGfPWcb9sHgu/1NYhKSfo4+bDZMnDU+7wKhQJPW31dqhdvSibseKmcbz//4zmr0zkpoe9unGOxscg1eLodC6A+aEGL6zO0hsTBRxsTHExsQQGxtLbFzcP18JxMYnEhufSFyintgEPbGJBtxcC4GVAnSxBMUk/SnMLObJ21FwOyrD/Je320O1Oknfi4t3DbRbF0cFNyV/DbNPHtPYL5pH0eZM4/m62+Fsp/lfe/cd19TV/wH8c7PDCFuGCOLAibh3xYGCVarWVR9bsdq6W1GLrW3dj6JWxVln627r01/VupU6cA9QHKioSJ0MF7IJSc7vDyQlECBobkLx+369qM3NvfdzT8bNl8PJuZCIhBjlVw2fd/IChGI8eKlCyLYrcFRYYO2YjoBIAgglWLn/Gh48y4BEIin0I4VUKoNIJMI3S7agSSmZ46f/AE9vH0jllmjYsD4gEAECEVLTs6DSACKJDGKZPP9fqQUEopLLCnWeEuOnLyw1j6/O6TlhK5CbyeF6mm7mnLAVAIzfOX3i8AmocoS4nqmbd+LwCexYOsXondNNuLvYr7KAKie7WKZKJTd6B7Wp84h5TV3yU7F5qQHAq2kHBLZvbqajIoQQQgh5N5i943bx4sX4/PPP8emnnwIAVq9ejX379uHnn3/GN998U2z9pUuXIjAwEKGhoQCA2bNnIyIiAitWrMDq1atNeuzEtAo6LHWmLUD+SNsFk8uetkAgl0Pu64shixehYIZYlVKJG5GRiIqIwOWoKFy9fRvXk5PxQqVCfKFfRvUpuCDa9o6d8F6DBlh2/RoeZmbCysIClpaWsLKygrW1AtYKa1jZ2MDa1hbWtrawsreHwt4e1o5OsHd1gZWDAzihECqlEqHzF5i0o3hY0DCstf0KMamZxXKfqdV4plajia0lzh25UWwELGMMaco0vMh5gTtN7+BMvTPIFeTCs7EnXua8xIucF0irmYZUy1Rkp2YjLz0P0OR32l7LySkxr5FMhv1X9+OMxRlk3spEwrwESFwk8J7nrV33zvd3kPsoF+AAgVQAoVQIkUwEsUwMsUwMiVwCqVwKqUwK2fkHpeYJvlmI5p2bw0JigbjLccjNyoVUIoVUIoVMKoNMkv8jl8nz/18qg4XUAnKpHHKpHFZyK8ilcnCvL7SlzFNizzeLSs0UfrPIaKOKTZ1XIOLoBVxOztCfmZyBiKMX8GHZ10wzyHv9RqF16Hc4/7jkvNZVrfDeZ3MBsQQCAB/V7/nmgYyhj9cinJ08s9Q2NnW2Quf3GqJ69erIyc5GdnYOcnKykZObi5yc3Px/c5Wo06Q6UNsOUOVApkxGU4+b8LIXA7bugCoXUOVApUlHU2erMvMuJWdopxhIeXQPuP8YAPAiSY2dFzPhZs0B7ZO02/6yJxNnHqpRkrIymzhbofn7gyHkANU0hfb+T7dnYdctFYriAIiFgFjIQSQo+JeDWMihhbsUVWSyMvPaejuhip0VREIBhEJB/r8CIUQi4evbBf+KIBQKUNfDCaOCWuR3KnNCLNh+GnkaDUb3bg8bKwv8sGBFqZnzF6xAbk4WxBIphEIhBEIRhEIhbBUKtG/ZCOAEACfEhau3kJunhm/9OlAoFIBAgJTnqXiS/BwCoRBCkRhMo8GCMvIWLFiBXkPHQyiRAZwA2Tm5YOAglckhFIkBTgAGDuA4cAaMZFTnKfHDD6Vn/vDDCqN1iJs6j5jX1CU/lThHdELUUUxd8pPRR5ETQgghhD9MrUZWVDRUT59C5OQEi+bNwAmNPaGf+R0/fhwTJ05EbGwsqlWrhu+//x5Dhw4tcf2ZM2dilp4+JQsLC2S+7hvauHGjtu+ygFQqRU5OjlGPvSizdtwqlUpER0djypQp2mUCgQD+/v44e/as3m3Onj2LiRMn6iwLCAjArl27+DxUUkF8PGsWPvr+exxcuxbnjh9H644d3+pCYSKJBI26dkWjrl21yzQaDR5dj8X8L7/Aj5GRZe4j8e+/kfniBf66/zeulPMNO9jWDt85O4OTyXAkI12nQ7qogo7izl5ecLV3gPB1Z0bBv4LXnRlCoRCNq3mgV7Om4ARC5IFhxZEjEAqFGBMQAIlECk4owImbt3D7yWPcTcsusbMYAO6l52DTN1MgFArh6uiIdj4++aMmwWHfmTNQMw38W7RA6xr5F7y5dfE+7j3JQw2BDZr3/BwcOECQ36l58vJJbNlxuNTO6aQ8Fdon28Lmgj2ksEV8zUxIbCSwi5Xi+dN0KDV5QJYQaqn0nw1zAORoAOS+/snHMYYnanWpeY/ScxH2xQhIXaV4fvi53hHCRR8TDoD16w83RTNrCH0socphsLaQImnzAzzK0j+lR8GyhLQcNHdzgFguef1QcuAEHATgYG8tg0AogFMtJ9jVd0FmWi4cHK0Rt+86OE4A396N8TQlAxyAxJuJeHTrERLKeA4T0nIwsENDuLq7wq6KHRxqueLli3Q4OCjw4FI8NGoNGrRriMdJLwAATx89xfMnz193RnPgOA4cB3CcABzHQaNWY/+h86Vm7th/Ai5j+qNu8/q4//gpOI5DaspLPE18lr+/whtxBRn/LHVzsoelXAaJTAL7qo64lVjy6HcAuJWUjfHBH0IsEr1+fRbHgYOzky1srCzBcQJUq+2Je/efwEIugwXHIf1VOtw83PDk+UtkpKfj3tPSM+89y4afzAUPX2rgZFcFVV3zOzar1qqGu38/hlQsgb2FDA9fvMI+pROepWci2yYXQ4a1Q9KjJEyJ/Wef3drcxc6/LpX6Wn34LBsjejSCs7MbnCyl4DQMe+WOSM9VIlmSijFBT5CWmoXvYm0BpgGYBp7uL+DkqIRGowHTaKBmDBoNg0QIQKXCuduvymxjUw9LCDQcpp6U5E91wRjSVTI0cC6+pUjAwVKS/94QiAVIy82/aJ6VWABoGB4+K/5HoqJ5VR2kSMh+pXO/kONgJc3fLyfmkKHUQMMYLMVCJCfEo8rzaEilHB6nqbA9Kg+5uRo8jz2HdKUat5JKfx7/TsnBih83ghMLkKXSQKVhsBAL4CwDEn0kUFhzuP9ShS1X8vAyQwM/DyEcLPJfY3eea3DtaaELuWkYHj8r/keUwnkJKTn4YUB9tKguQfzzPPweq0Jiqhptqgrgap3fUfsgVYOoxPz9chx03i+2MiEEAg4CAYdcMOTkqnA/qfTMW0nZGN3OFSKxCNGPslHQHcxp/wPYycX5neQiDkqOIUepgaVUAJGKQ+/GVVDNRY7bKVk4cj2l1PcjByA+ORsR25YgcOhkPWuRfwtlngoLphcfRFHYghlTMHVsME2NQQghhPwLpB0+jOS5YVAl/TPQQ+TiAudvp0DRrZsZj8y4EhIS0KNHD4waNQrbtm3DkSNH8Nlnn8HV1RUBAQF6t5k0aRL+85//wNr6n2/1dunSBS1atNBZT6FQIC4uTnubK+F3T2Mya5X17NkzqNVqODs76yx3dnbGrVu39G6TlJSkd/2kQi+8wnJzc5Gb+09HTlpa/lda8/LykJdXcgeNMRXkVNY8k2dyHDoPGwZ1tWro3LUrGMcZPde1Xl1079fPoI7bGn0/RBU/P4w5egwPExORnpGOjIKvZWdnIzM7B5m5OchUKpGVl4fMvDxkqdXIVKth8fqEwHJy8DAt3aBjO/nkCfDkSanr9FYo0P7iRQBApkaDsDu3AQB9rsdC/jpzY8Fcv2V4pVZjxOLFAIAOlpZY7f7PnLnDbschlzFE1KiJquL8uUFXpaRg48sXBrWlKAYgRa3C8T9v4IVGg+0envhSbg9kAj9teICtz56Wa3+OQiGeqUsebcjweoTYIf3nj5LIOQ7RXnXybzwFRm5+iJOZmZjr4go3WwcMTX9Y6vapGjVSn2XovS+6tnf+c3Q1A1MOncCfaWmY5OSEOfYOAICry89i+oP75TreVI0a7e9n4v2XKQBS8MOvJ7Hh5QsMs7PHV6+npHl09h5GJNwr135Lk6JSofre86j111V89Pr1Vx6rqrrDzyp/KoGFKclI1WhKXT9VrcbKX/eVud+5Lq7ws7EBAERmZOCLx4/gI5Nhu2d17Tqfx99Foqr4aFJ9meFbdwEAJjk54f2C5yg7G2Mf3EdVsRgRNWpq1//m/t+4/oZ/jWUAnqrVWLvvKuTcNUR7v3794TZGPsp//ZVHb4UNetsosEdd+ns1Va3GpQf5+456pP81W1j+OcJVe7vpozjkvD5HPE5XYoe69HNOqlqN1JTiF6rzkcmw3tNde7vLk/znaLuHJ3xy5UA08NPz51j07J/2xBr4tk5RqbCA2aClyBIDHuc/R6uqusNPbAXEADtepeL7pPLvt7Q815tWuBPLMPpxcrn3qz1HAJiS+AR/ppX93Keq1Vh3sfTnWnseVwE/pKToniMuqPFI+QIjDThHMABPVWr8tnkLugyeYFCbysuU9c27bN3/9hWbHqEo5aunWPe/fRg7uJeJjooQQgghbyLt8GE8Hh+SPxCjEFVycv7ypUt46bzt2LGjdlrTLVu2QCwWY/To0Zg1axZvnZ6rV6+Gl5cXFi1aBACoV68eTp06hfDw8BI7bq2srODs7AyFQgGBQIArV67gxo0bxb7Zz3EcXFxceDnuklT6P4+HhYVh5sziczsePnwYFhYWJj2WiIiISp1njkw+89QuLnCWSJCiVJZ4QbQqEgng54dTYjGcA7rBWc96JWEaDZhSibtqNQS5ubA/dBjY/luZ2/X29oazkxM0Gk3+j1oDDcv/V800UKvVqO/oiJdeXuA0DLlKJYI0amgYQ3bTJsgDB2g0qCWXoX58PG6kl91hXEMuh51cjhq2tsiq4fV6GBeD79OnUGo00HhUQ7ZECjAGJwA+mvzOUsYA9vrRYwx4pczF49ySRxUXcJRK4SgQgqtSBTlWVuDAYA2G2tnFO3QKK/o8MbWq1I7bAk5iEazL8ZVeqUCAnCpOYK8/9Kq8SkUNxiCxs8H9jLI7twDAUSSEpZ75QJ9ZSiDhBBCKBFBkWqB6nhJSG0skyUVgAHLllqj+VJbfPsaQmWdYGx+pVXgoBoQiAWQKGTxzZJDZyPBQDIAxpFlK4Zkkfb1fAJrir/qCJdmvp2AoS3yeElWcreEpL9gvA9Ppfy358mFpAoa/oQIn4JBu4HVvHIVCyIWlr5wlYEhgeQA45NiJ4flCCgcLKR6INVAr1ZBYSeBiKUVeJsMzVdltLMhUcUCCJr8zKc1WDM+nUjhKRHggYVDnqCCyFMPBUgJPjr1+HHTbnq3WGPSYOoqEsJOK8VDGkJelgkgugsJKAg9NfkczU5fewV1AIuRwV6k0aF1HkVDbUVgWC6EQ914/DlIbCdwtpFBqGJ5ZAHefGpin53m0Ff2zX4m1GC6WUoiVQryyEuBeXh4EIg6wFcMj8/VrTa0BGJCtMexxvatUwtXBAg6WEnhwDFnWQtxT5YETclDZiuHxqmC/rFixW1h58uyd5PB48Xq/Gqb3PafP32olpEwAoUwIC2sxHLOEhr9WS3ken2jykKtmEEgEEFmL4JEjgUghyn/cGUO6jQCecgky89QG5b18lob9+/cb1Kbyysoq/bOAGMe9B4+Muh4hhBBCjIcxBo2BNRFTq5H83zn661jGAA5InjMXlm3a6J02QaPRQJOdDY1IBAgE4OTycnW6btq0CcOHD8eFCxcQFRWFESNGwMPDA59//rne9U+ePIkePXqUus81a9Zg8ODBeu87e/Ys/P39dZYFBAQgJCTE4GNev349vL298d577+ksz8jIgKenJzQaDZo2bYq5c+eiQYMGBu/3TZi149bR0RFCoRDJyck6y5OTk0vswXZxcSnX+lOmTNGZWiEtLQ3VqlVDt27d8ueoM4G8vDxERESga9euEL8elViZ8syRaaq8jNBQDJ0zp+QLooWGIqiXcUaZdB4wAOE7dyC5lI5iF6kUv1y6VO6pIdrpWdYUQMc1axD0xRdlbr90wQIEjBxZbPkpPev6AJhTwn4OGZi3SE9eAwDflrmlrv0/rkTvkLJHfK374Qe8P2ZsOff+j1+LZMKAzPULF5aZ2bqE5YOK5BnSxo7fTkGn13kdACzVs46hr+QZ44Ixd+2vZa6n/qAz/Fdswh0D91uSk+OCAQPyRgwfgBkrNhm8364A9D0D52F4G0vKHKpn3U6l7MfgvGHF8zqXsG5ZZhj6uOrJNNSNQv9/zYjP43k9y/wBFL3k14wxn2Du+u1lZmqCOqLTj1v0PkddYfi5pzx5437cgnEG7rckXcqROeLTfpjx4xaD9utfwvK+5chr2KoN3n//fYPyyivNgG+LkLdXw8O97JXKsR4hhBBCjIdlZ+N28xZlr2jQzvJH3t5u0bLU1Qp64upcigZXjoGQ1apVQ3h4ODiOQ506dXDt2jWEh4eX2HHbvHlznDhxAlZWViVejLzoN/ELK+mb+mlpacjOzoZcLi/1eHNycrBt27Zi192qU6cOfv75ZzRq1AivXr3CwoUL0bZtW8TGxsLdncd6iJlZy5Yt2bhx47S31Wo1q1q1KgsLC9O7/oABA1jPnj11lrVp04aNHDnSoLxXr14xAOzVq1dvftDlpFQq2a5du5hSqayUeebINGXelqlTmYtEypDfd8sAMFeplG2ZOpWXLA5gXKEsvL7NAUbPzMvNZS4SabG8wrmuUinLy8391+ZVEYtLzXMWi42WZ45Mc7QxMyOdOQmFpWY6iUQsMyP9X5lnjkxqoznbKDRxG42XZ45Mc7SxKHPUchUR349DrjKPSRSOep/ngh+JjRPLVebxks9Y5a4vzZVJbfz355kjk9pYOTKpjf/ezOzsbHbjxg2WnZ3N1Go1e/nyJctLT2c36tQ1y486M9PgY/fz82OffvqpzrJdu3YxkUjEVCqV3m0K2qhWq9/o8apduzabO3euzrJ9+/YxACwrK6vMzF9++YWJRCKWlJRUao5SqWQ1a9Zk33//vd77Cz9vRZWnjjPwC6j8mThxItatW4dNmzbh5s2bGD16NDIzM7VXahsyZIjOxcvGjx+PgwcPYtGiRbh16xZmzJiBqKgojBv3tuNWCNHv41mz8DA9DXuWL8d3fftiz/LleJCWho/1XHHQGFmbp06Fs0Sqs9xFKsXmqVONnimSSPDD1/kXjyn6RQftqOLJk9/44m8VIW/R67+SlZS38JtvjJZnjkxztNHC0gp9e/iVmtn3/Q6wsLT6V+aZI5PaaPw8wzP9TNxG4+WZI9McbSTmIRGLMHnmvFLXmTwjjC5MRgghhJgBJ5ejzqVog36qrV1j0D6rrV2jd/vaURfhfOwoakddzB9tW8aI1bd18uRJuLu7Q6FQwMrKSu/Ptm3bSty+pG/qKxSKMkfbAvnTJPTs2bPUUb0AIBaL0aRJE9y9e9ewhr0hs1daAwcOxNOnTzFt2jQkJSWhcePGOHjwoPYBevDggc7Q6LZt2+KXX37B999/j2+//Ra1a9fGrl27tJMdE8IHkUSCgJEjoa5WDQHvvw8Rj9MzfDxrFj76/nscXLsW544fR+uOHRE4YoRRO96K5gFA6PwFSFL+M/+si1SKBZMnG72z2Hx585FUaE5PZ6kUP/CQZ45Mc7Rx1Z9HgF5d8Me+SDwtNKeno0iEvu93yL//X5xnjkxqI7Xx35JpjjYS85gdMhwAsGD6NzoXKpPYOGHyjDDt/YQQQggxLY7jIDBwugLLdu0gcnGBKjkZeue55TiInJ1h2a6d3jluodFAoFJBYGFR4tQFpTl/Xneis3PnzqF27doQ6svC20+V0KZNm2LXWoiIiECbNm3KPNaEhAQcO3YMu3fvLnNdtVqNa9eu8TY9mFaZY3IrGZoqoXJkUhuNLy83l+1Zvpx917cv27N8uVG/Wv8u5pkj0xxtzMxIZ9+OGMT6tWrIvh0xiNevR5sjzxyZ1MbKkUlt5A9NlZDPlI9DrjKPLdv8B+vz+SS2bPMfvE6PUFhlr73MkUlt/PfnmSOT2lg5MqmN/95MfVMllHcagVeHDrEbdevl/xSe+uD1sleHDpW47dtMXeDn58esrKzYhAkT2K1bt9gvv/zCLC0t2erVq3nJY4yxe/fuMQsLCxYaGspu3rzJVq5cyYRCITt48KB2neXLl7POnTsXy/zuu++Ym5ub3mkcZs6cyQ4dOsTi4+NZdHQ0++ijj5hMJmOxsbF6j8NYUyWYfcQtIaRiMOWo4nchzxyZ5mijhaUVZqzYhP379+P999/n/eKEps4zRya1sXJkUhtJZSIRizDqoyB4KISvn2v6FYIQQgj5N1F06wYsXYLkuWFQJSVpl4ucneH87ZT8+3kyZMgQZGdno2XLlhAKhRg/fjxGjBjBW56Xlxf27duHCRMmYOnSpXB3d8f69esREBCgXefZs2eIj4/X2U6j0WDTpk0YOnSo3tHAL1++xOeff46kpCTY2dmhWbNmOHPmDOrXr89bW4AKMFUCIYQQQgghhBBCCCGEP4pu3WDdpQuyoqKhevoUIicnWDRvpn96BCMSi8VYsmQJVq1axWtOYR07dsTly5dLvH/GjBmYMWOGzjKBQID79++XOD1DeHg4wsPDjXmYBqGOW0IIIYQQQgghhBBCKjlOKIRlq5bmPgxSDuWfVZgQQgghhBBCCCGEEEIIr2jELSGEEEIIIYQQQgghxKiOHz9u7kP416MRt4QQQgghhBBCCCGEEFLBUMctIYQQQgghhBBCCCGEVDDUcUsIIYQQQgghhBBCSAXGGDP3IZByMNbzRR23hBBCCCGEEEIIIYRUQGKxGACQlZVl5iMh5VHwfBU8f2+KLk5GCCGEEEIIIYQQQkgFJBQKYWtri5SUFGg0Gmg0GuTk5EAgMM1YTI1GA6VSabJMU+cZO5MxhqysLKSkpMDW1hZCofCt9kcdt4QQQgghhBBCCCGEVFAuLi4AgKdPnyI7OxtyuRwcx5kkmzFm0kxT5/GVaWtrq33e3gZ13BJCCCGEEEIIIYQQUkFxHAdXV1fY2dnhyJEj6NChw1t/Bd9QeXl5OHHihMkyTZ3HR6ZYLH7rkbYFqOOWEEIIIYQQQgghhJAKTigUQqVSQSaTmaxT09SZ70Iby4MuTkYIIYQQQgghhBBCCCEVDHXcEkIIIYQQQgghhBBCSAVDHbeEEEIIIYQQQgghhBBSwbxzc9wyxgAAaWlpJsvMy8tDVlYW0tLSTDaRsynzzJFJbawcmZU9zxyZ1MbKkUltrByZ1EZ+FNRwBTXdu8rUNS29nitHJrXx359njkxqY+XIpDZWjkxqY+XILE89+8513KanpwMAqlWrZuYjIYQQQgghbyo9PR02NjbmPgyzoZqWEEIIIeTfzZB6lmPv2HAFjUaDJ0+ewNraGhzHmSQzLS0N1apVw8OHD6FQKCpdnjkyqY2VI7Oy55kjk9pYOTKpjZUjk9rID8YY0tPT4ebmBoHg3Z31y9Q1Lb2eK0cmtfHfn2eOTGpj5cikNlaOTGpj5cgsTz37zo24FQgEcHd3N0u2QqEw2YvOHHnmyKQ2Vo7Myp5njkxqY+XIpDZWjkxqo/G9yyNtC5irpqXXc+XIpDb++/PMkUltrByZ1MbKkUlt/PdnGlrPvrvDFAghhBBCCCGEEEIIIaSCoo5bQgghhBBCCCGEEEIIqWCo49YEpFIppk+fDqlUWinzzJFJbawcmZU9zxyZ1MbKkUltrByZ1EZSmdDruXJkUhv//XnmyKQ2Vo5MamPlyKQ2Vp5MQ71zFycjhBBCCCGEEEIIIYSQio5G3BJCCCGEEEIIIYQQQkgFQx23hBBCCCGEEEIIIYQQUsFQxy0hhBBCCCGEEEIIIYRUMNRxy7OVK1eievXqkMlkaNWqFS5cuMBb1okTJxAUFAQ3NzdwHIddu3bxlgUAYWFhaNGiBaytrVGlShX07t0bcXFxvGauWrUKjRo1gkKhgEKhQJs2bXDgwAFeMwubN28eOI5DSEgIbxkzZswAx3E6P3Xr1uUtDwAeP36Mjz/+GA4ODpDL5fDx8UFUVBRvedWrVy/WRo7jMHbsWF7y1Go1pk6dCi8vL8jlctSsWROzZ88Gn1N8p6enIyQkBJ6enpDL5Wjbti0uXrxotP2X9X5njGHatGlwdXWFXC6Hv78/7ty5w2vmjh070K1bNzg4OIDjOMTExPCWl5eXh6+//ho+Pj6wtLSEm5sbhgwZgidPnvCWCeS/P+vWrQtLS0vY2dnB398f58+f5y2vsFGjRoHjOCxZsoS3vKFDhxZ7XwYGBr5xniGZAHDz5k188MEHsLGxgaWlJVq0aIEHDx7wkqfv3MNxHH744Yc3yjMkMyMjA+PGjYO7uzvkcjnq16+P1atX85aXnJyMoUOHws3NDRYWFggMDHyr978hn/c5OTkYO3YsHBwcYGVlhb59+yI5OfmNM0nFQzWt8VA9yx9T1rSmrmcBqmmNUdOaup4tK5OPmray17OGZBq7pjV1PWtIprFrWlPXs4ZkUk2bjzpuebR9+3ZMnDgR06dPx6VLl+Dr64uAgACkpKTwkpeZmQlfX1+sXLmSl/0XFRkZibFjx+LcuXOIiIhAXl4eunXrhszMTN4y3d3dMW/ePERHRyMqKgqdO3dGr169EBsby1tmgYsXL2LNmjVo1KgR71kNGjRAYmKi9ufUqVO8Zb18+RLt2rWDWCzGgQMHcOPGDSxatAh2dna8ZV68eFGnfREREQCA/v3785I3f/58rFq1CitWrMDNmzcxf/58LFiwAMuXL+clDwA+++wzREREYMuWLbh27Rq6desGf39/PH782Cj7L+v9vmDBAixbtgyrV6/G+fPnYWlpiYCAAOTk5PCWmZmZifbt22P+/PlvnGFoXlZWFi5duoSpU6fi0qVL2LFjB+Li4vDBBx/wlgkA3t7eWLFiBa5du4ZTp06hevXq6NatG54+fcpLXoGdO3fi3LlzcHNze6Oc8uQFBgbqvD9//fVXXjPj4+PRvn171K1bF8ePH8fVq1cxdepUyGQyXvIKty0xMRE///wzOI5D37593yjPkMyJEyfi4MGD2Lp1K27evImQkBCMGzcOu3fvNnoeYwy9e/fGvXv38Oeff+Ly5cvw9PSEv7//G38+G/J5P2HCBOzZswe///47IiMj8eTJE3z44YdvlEcqHqppjYvqWX6YuqY1dT0LUE1rjJrW1PVsWZl81LSVvZ41NNOYNa2p61lDMo1d05q6ni0rk2raQhjhTcuWLdnYsWO1t9VqNXNzc2NhYWG8ZwNgO3fu5D2nsJSUFAaARUZGmjTXzs6OrV+/nteM9PR0Vrt2bRYREcH8/PzY+PHjecuaPn068/X15W3/RX399desffv2JsvTZ/z48axmzZpMo9Hwsv8ePXqwYcOG6Sz78MMP2eDBg3nJy8rKYkKhkO3du1dnedOmTdl3331n9Lyi73eNRsNcXFzYDz/8oF2WmprKpFIp+/XXX3nJLCwhIYEBYJcvXzZKVll5BS5cuMAAsPv375ss89WrVwwA++uvv3jLe/ToEatatSq7fv068/T0ZOHh4W+dVVJecHAw69Wrl1H2b2jmwIED2ccff2yyvKJ69erFOnfuzGtmgwYN2KxZs3SWGet8UDQvLi6OAWDXr1/XLlOr1czJyYmtW7furfMYK/55n5qaysRiMfv999+169y8eZMBYGfPnjVKJjEvqmn5R/Xs2zN3Tct3PcsY1bSMGbemNXU9W1ZmAWPWtJW9ni0pk8+a1tT1bEmZRRmzpjV1Pasvk2raf9CIW54olUpER0fD399fu0wgEMDf3x9nz54145Hx59WrVwAAe3t7k+Sp1Wr89ttvyMzMRJs2bXjNGjt2LHr06KHzfPLpzp07cHNzQ40aNTB48OC3+opFWXbv3o3mzZujf//+qFKlCpo0aYJ169bxlleUUqnE1q1bMWzYMHAcx0tG27ZtceTIEdy+fRsAcOXKFZw6dQrdu3fnJU+lUkGtVhf7C6tcLud9tAkAJCQkICkpSef1amNjg1atWlXa8w+Qfw7iOA62trYmyVMqlVi7di1sbGzg6+vLS4ZGo8Enn3yC0NBQNGjQgJeMoo4fP44qVaqgTp06GD16NJ4/f85blkajwb59++Dt7Y2AgABUqVIFrVq14v1r0QWSk5Oxb98+DB8+nNectm3bYvfu3Xj8+DEYYzh27Bhu376Nbt26GT0rNzcXAHTOPwKBAFKp1Gjnn6Kf99HR0cjLy9M559StWxceHh6V+pzzrqCall9UzxqPOWtaU9SzANW0ANW0xlZZ61nAdDWtuetZwDQ1rSnrWYBq2sKo45Ynz549g1qthrOzs85yZ2dnJCUlmemo+KPRaBASEoJ27dqhYcOGvGZdu3YNVlZWkEqlGDVqFHbu3In69evzlvfbb7/h0qVLCAsL4y2jsFatWmHjxo04ePAgVq1ahYSEBLz33ntIT0/nJe/evXtYtWoVateujUOHDmH06NH48ssvsWnTJl7yitq1axdSU1MxdOhQ3jK++eYbfPTRR6hbty7EYjGaNGmCkJAQDB48mJc8a2trtGnTBrNnz8aTJ0+gVquxdetWnD17FomJibxkFlZwjnlXzj9A/lxEX3/9NQYNGgSFQsFr1t69e2FlZQWZTIbw8HBERETA0dGRl6z58+dDJBLhyy+/5GX/RQUGBmLz5s04cuQI5s+fj8jISHTv3h1qtZqXvJSUFGRkZGDevHkIDAzE4cOH0adPH3z44YeIjIzkJbOwTZs2wdramvevPy1fvhz169eHu7s7JBIJAgMDsXLlSnTo0MHoWQXF5ZQpU/Dy5UsolUrMnz8fjx49Msr5R9/nfVJSEiQSSbFfMCvzOeddQjUtP6ieNT5z1rSmqGcBqmkLVNbzD2C6mrYy17OAaWtac9ezgGlqWlPWswDVtIWJzJZMKpWxY8fi+vXrJvnLa506dRATE4NXr17h//7v/xAcHIzIyEheit2HDx9i/PjxiIiIeKv5acqj8F/MGzVqhFatWsHT0xP/+9//ePkLmkajQfPmzTF37lwAQJMmTXD9+nWsXr0awcHBRs8r6qeffkL37t2NMtdRSf73v/9h27Zt+OWXX9CgQQPExMQgJCQEbm5uvLVxy5YtGDZsGKpWrQqhUIimTZti0KBBiI6O5iXvXZaXl4cBAwaAMYZVq1bxntepUyfExMTg2bNnWLduHQYMGIDz58+jSpUqRs2Jjo7G0qVLcenSJV5H7xT20Ucfaf/fx8cHjRo1Qs2aNXH8+HF06dLF6HkajQYA0KtXL0yYMAEA0LhxY5w5cwarV6+Gn5+f0TML+/nnnzF48GDez+/Lly/HuXPnsHv3bnh6euLEiRMYO3Ys3NzcjD7yTSwWY8eOHRg+fDjs7e0hFArh7++P7t27G+XiNab8vCfEHEz1Gqd61vjMWdOaop4FqKat7ExZ01bmehYwbU1r7noWME1Na8p6FqCatjAaccsTR0dHCIXCYlefS05OhouLi5mOih/jxo3D3r17cezYMbi7u/OeJ5FIUKtWLTRr1gxhYWHw9fXF0qVLecmKjo5GSkoKmjZtCpFIBJFIhMjISCxbtgwikYi3UWiF2drawtvbG3fv3uVl/66ursV+SahXrx7vX2cDgPv37+Ovv/7CZ599xmtOaGiodoSCj48PPvnkE0yYMIHXUSc1a9ZEZGQkMjIy8PDhQ1y4cAF5eXmoUaMGb5kFCs4x78L5p6DAvX//PiIiIngfbQsAlpaWqFWrFlq3bo2ffvoJIpEIP/30k9FzTp48iZSUFHh4eGjPP/fv38ekSZNQvXp1o+fpU6NGDTg6OvJ2/nF0dIRIJDLLOejkyZOIi4vj/fyTnZ2Nb7/9FosXL0ZQUBAaNWqEcePGYeDAgVi4cCEvmc2aNUNMTAxSU1ORmJiIgwcP4vnz5299/inp897FxQVKpRKpqak661fGc867iGpaflA9a3zmqmlNVc8CVNMWqIznH1PXtO9SPQvwW9Oas54FTFPTmqOeBaimLUAdtzyRSCRo1qwZjhw5ol2m0Whw5MgR3uevMhXGGMaNG4edO3fi6NGj8PLyMstxaDQa7fwnxtalSxdcu3YNMTEx2p/mzZtj8ODBiImJgVAo5CW3sIyMDMTHx8PV1ZWX/bdr1w5xcXE6y27fvg1PT09e8grbsGEDqlSpgh49evCak5WVBYFA93QnFAq1fx3lk6WlJVxdXfHy5UscOnQIvXr14j3Ty8sLLi4uOueftLQ0nD9/vtKcf4B/Ctw7d+7gr7/+goODg1mOg69z0CeffIKrV6/qnH/c3NwQGhqKQ4cOGT1Pn0ePHuH58+e8nX8kEglatGhhlnPQTz/9hGbNmvE2n1uBvLw85OXlmeUcZGNjAycnJ9y5cwdRUVFvfP4p6/O+WbNmEIvFOuecuLg4PHjwoFKdc95VVNOaBtWzb89cNa2p6lmAalqAalq+VOZ6FuC3pjVnPQuYpqY1Zz0LUE1LUyXwaOLEiQgODkbz5s3RsmVLLFmyBJmZmfj00095ycvIyND5C1JCQgJiYmJgb28PDw8Po+eNHTsWv/zyC/78809YW1tr5/ywsbGBXC43eh4ATJkyBd27d4eHhwfS09Pxyy+/4Pjx47yd9K2trYvNb2ZpaQkHBwfe5j376quvEBQUBE9PTzx58gTTp0+HUCjEoEGDeMmbMGEC2rZti7lz52LAgAG4cOEC1q5di7Vr1/KSV0Cj0WDDhg0IDg6GSMTvqSgoKAhz5syBh4cHGjRogMuXL2Px4sUYNmwYb5mHDh0CYwx16tTB3bt3ERoairp16xrt/V/W+z0kJAT//e9/Ubt2bXh5eWHq1Klwc3ND7969ect88eIFHjx4gCdPngCAtnhxcXF5o79Qlpbn6uqKfv364dKlS9i7dy/UarX2HGRvbw+JRGL0Njo4OGDOnDn44IMP4OrqimfPnmHlypV4/Pgx+vfvb/Q8Dw+PYoW7WCyGi4sL6tSpY/Q8e3t7zJw5E3379oWLiwvi4+MxefJk1KpVCwEBAW+UV1amh4cHQkNDMXDgQHTo0AGdOnXCwYMHsWfPHhw/fpyXPCD/l77ff/8dixYteuN2lSfTz88PoaGhkMvl8PT0RGRkJDZv3ozFixfzkvf777/DyckJHh4euHbtGsaPH4/evXu/8cUjyvq8t7GxwfDhwzFx4kTY29tDoVDgiy++QJs2bdC6des3yiQVC9W0xkX1LD/MUdOasp4FqKY1Rk1r6nq2rEw+atrKXs+WlclHTWvqetaQTMC4Na2p61lDMqmmfY0RXi1fvpx5eHgwiUTCWrZsyc6dO8db1rFjxxiAYj/BwcG85OnLAsA2bNjASx5jjA0bNox5enoyiUTCnJycWJcuXdjhw4d5y9PHz8+PjR8/nrf9Dxw4kLm6ujKJRMKqVq3KBg4cyO7evctbHmOM7dmzhzVs2JBJpVJWt25dtnbtWl7zGGPs0KFDDACLi4vjPSstLY2NHz+eeXh4MJlMxmrUqMG+++47lpuby1vm9u3bWY0aNZhEImEuLi5s7NixLDU11Wj7L+v9rtFo2NSpU5mzszOTSqWsS5cub/1Yl5W5YcMGvfdPnz7d6HkJCQklnoOOHTvGSxuzs7NZnz59mJubG5NIJMzV1ZV98MEH7MKFC7zk6ePp6cnCw8N5ycvKymLdunVjTk5OTCwWM09PT/b555+zpKSkN84rK7PATz/9xGrVqsVkMhnz9fVlu3bt4jVvzZo1TC6XG+09WVZmYmIiGzp0KHNzc2MymYzVqVOHLVq0iGk0Gl7yli5dytzd3ZlYLGYeHh7s+++/f6vznSGf99nZ2WzMmDHMzs6OWVhYsD59+rDExMQ3ziQVD9W0xkP1LH9MXdOasp5ljGpaY9S0pq5ny8rko6at7PVsWZl81LSmrmcNzTRmTWvqetaQTKpp83GMGWFWX0IIIYQQQgghhBBCCCFGQ3PcEkIIIYQQQgghhBBCSAVDHbeEEEIIIYQQQgghhBBSwVDHLSGEEEIIIYQQQgghhFQw1HFLCCGEEEIIIYQQQgghFQx13BJCCCGEEEIIIYQQQkgFQx23hBBCCCGEEEIIIYQQUsFQxy0hhBBCCCGEEEIIIYRUMNRxSwghhBBCCCGEEEIIIRUMddwSQgAAf//9NziOQ0xMjLkPRevWrVto3bo1ZDIZGjdubPT9b9y4Eba2ttrbM2bM4CXnbRU9zjeVlJSErl27wtLS0ij7M5aK+NqrTJRKJWrVqoUzZ84AKPvxViqVqF69OqKiokx4lIQQQsjbq4g1BdWz+aieJW+D6lnyLqOOW0IqiKFDh4LjOMybN09n+a5du8BxnJmOyrymT58OS0tLxMXF4ciRI3rXKXjciv7cvXu3zP0PHDgQt2/fNvZhV1jh4eFITExETEyMWdqt73lq3749qlWrhsTERDRs2PCN923oLwNqtRrz5s1D3bp1IZfLYW9vj1atWmH9+vVvnF3RrV69Gl5eXmjbtq1B60skEnz11Vf4+uuveT4yQgghlQ3Vs8VRPWtcVM9SPWsIqmdJZSIy9wEQQv4hk8kwf/58jBw5EnZ2duY+HKNQKpWQSCRvtG18fDx69OgBT0/PUtcLDAzEhg0bdJY5OTmVuX+5XA65XP5Gx1aSt2kv3+Lj49GsWTPUrl37jffxtu3bsGEDAgMDtbclEgmEQiFcXFxK3IYxBrVaDZHo7T+yZs6ciTVr1mDFihVo3rw50tLSEBUVhZcvX771visixhhWrFiBWbNmlWu7wYMHY9KkSYiNjUWDBg14OjpCCCGVEdWzuqieNS6qZ6meNRTVs6SyoBG3hFQg/v7+cHFxQVhYWInr6Pv605IlS1C9enXt7aFDh6J3796YO3cunJ2dYWtri1mzZkGlUiE0NBT29vZwd3cvVhwC+V/natu2LWQyGRo2bIjIyEid+69fv47u3bvDysoKzs7O+OSTT/Ds2TPt/R07dsS4ceMQEhICR0dHBAQE6G2HRqPBrFmz4O7uDqlUisaNG+PgwYPa+zmOQ3R0NGbNmgWO4zBjxowSHxOpVAoXFxedH6FQiMWLF8PHxweWlpaoVq0axowZg4yMDO12Zf1Vu2PHjggJCdFZ1rt3bwwdOlR7u3r16pg9ezaGDBkChUKBESNGAABOnTqF9957D3K5HNWqVcOXX36JzMxM7XY//vgjateuDZlMBmdnZ/Tr16/E4yiwa9cu7TYBAQF4+PChzv1//vknmjZtCplMhho1amDmzJlQqVTa4/zjjz+wefNmcBynbcODBw/Qq1cvWFlZQaFQYMCAAUhOTtbus+D1tn79enh5eUEmkwEAUlNT8dlnn8HJyQkKhQKdO3fGlStXymyDra2tzvNkb29f7KtOx48fB8dxOHDgAJo1awapVIpTp07hypUr6NSpE6ytraFQKNCsWTNERUXh+PHj+PTTT/Hq1SvtyIeSXi+7d+/GmDFj0L9/f3h5ecHX1xfDhw/HV199pV2nevXqWLJkic52jRs31tlnamoqRo4cCWdnZ+17Ze/evdr7T58+jY4dO8LCwgJ2dnYICAjQFtMajQZhYWHw8vKCXC6Hr68v/u///k+77cuXLzF48GA4OTlBLpejdu3a2veqUqnEuHHj4OrqCplMBk9Pz1LPF9HR0dpfGEuiVqsxbNgw1K1bFw8ePAAA2NnZoV27dvjtt99K3I4QQgjRh+pZqmdLQ/Us1bNUzxJSPtRxS0gFIhQKMXfuXCxfvhyPHj16q30dPXoUT548wYkTJ7B48WJMnz4dPXv2hJ2dHc6fP49Ro0Zh5MiRxXJCQ0MxadIkXL58GW3atEFQUBCeP38OIP/DvXPnzmjSpAmioqJw8OBBJCcnY8CAATr72LRpEyQSCU6fPo3Vq1frPb6lS5di0aJFWLhwIa5evYqAgAB88MEHuHPnDgAgMTERDRo0wKRJk5CYmKhTiBhKIBBg2bJliI2NxaZNm3D06FFMnjy53Pspy8KFC+Hr64vLly9j6tSpiI+PR2BgIPr27YurV69i+/btOHXqFMaNGwcAiIqKwpdffolZs2YhLi4OBw8eRIcOHUrNyMrKwpw5c7B582acPn0aqamp+Oijj7T3nzx5EkOGDMH48eNx48YNrFmzBhs3bsScOXMAABcvXkRgYCAGDBiAxMRELF26FBqNBr169cKLFy8QGRmJiIgI3Lt3DwMHDtTJvnv3Lv744w/s2LFDW4z2798fKSkpOHDgAKKjo9G0aVN06dIFL168MNrj+s0332DevHm4efMmGjVqhMGDB8Pd3R0XL15EdHQ0vvnmG4jFYrRt2xZLliyBQqFAYmJiqa8XFxcXHD16FE+fPn3j49JoNOjevTtOnz6NrVu34saNG5g3bx6EQiEAICYmBl26dEH9+vVx9uxZnDp1CkFBQVCr1QCAsLAwbN68GatXr0ZsbCwmTJiAjz/+WPtL5dSpU3Hjxg0cOHAAN2/exKpVq+Do6AgAWLZsGXbv3o3//e9/iIuLw7Zt23R+yS3q5MmT8Pb2hrW1td77c3Nz0b9/f8TExODkyZPw8PDQ3teyZUucPHnyjR8nQggh7yaqZ6meLQnVs1TPAlTPElJujBBSIQQHB7NevXoxxhhr3bo1GzZsGGOMsZ07d7LCb9Xp06czX19fnW3Dw8OZp6enzr48PT2ZWq3WLqtTpw577733tLdVKhWztLRkv/76K2OMsYSEBAaAzZs3T7tOXl4ec3d3Z/Pnz2eMMTZ79mzWrVs3neyHDx8yACwuLo4xxpifnx9r0qRJme11c3Njc+bM0VnWokULNmbMGO1tX19fNn369FL3ExwczIRCIbO0tNT+9OvXT++6v//+O3NwcNDe3rBhA7OxsdHeLvrY+vn5sfHjx+vso1evXiw4OFh729PTk/Xu3VtnneHDh7MRI0boLDt58iQTCAQsOzub/fHHH0yhULC0tLRS21b4OAGwc+fOaZfdvHmTAWDnz59njDHWpUsXNnfuXJ3ttmzZwlxdXUs89sOHDzOhUMgePHigXRYbG8sAsAsXLjDG8h8TsVjMUlJSdNqiUChYTk6OTl7NmjXZmjVrSmwHACaTyXSeq507d2pfe5cvX2aMMXbs2DEGgO3atUtne2tra7Zx48YSH6PCz2VJYmNjWb169ZhAIGA+Pj5s5MiRbP/+/TrreHp6svDwcJ1lhV+Lhw4dYgKBQPuaL2rQoEGsXbt2eu/LyclhFhYW7MyZMzrLhw8fzgYNGsQYYywoKIh9+umnerf/4osvWOfOnZlGoymrqYwxxsaPH886d+6ss6zg8T558iTr0qULa9++PUtNTS227dKlS1n16tUNyiGEEEIYo3qWMapnS0L1bD6qZ6meJaS8aI5bQiqg+fPno3Pnzm/0V/kCDRo0gEDwz6B6Z2dnncnyhUIhHBwckJKSorNdmzZttP8vEonQvHlz3Lx5EwBw5coVHDt2DFZWVsXy4uPj4e3tDQBo1qxZqceWlpaGJ0+eoF27djrL27VrZ9DXk4rq1KkTVq1apb1taWkJAPjrr78QFhaGW7duIS0tDSqVCjk5OcjKyoKFhUW5c0rSvHlzndtXrlzB1atXsW3bNu0yxhg0Gg0SEhLQtWtXeHp6okaNGggMDERgYCD69OlT6jGJRCK0aNFCe7tu3bqwtbXFzZs30bJlS1y5cgWnT5/WjkgA8r8yVFp7b968iWrVqqFatWraZfXr19futyDP09NTZ461K1euICMjAw4ODjr7y87ORnx8fKmPVXh4OPz9/bW3XV1dSxwtUPRxnThxIj777DNs2bIF/v7+6N+/P2rWrFlqXlH169fH9evXER0djdOnT+PEiRMICgrC0KFDDb6gQ0xMDNzd3bWvd3339+/fX+99d+/eRVZWFrp27aqzXKlUokmTJgCA0aNHo2/fvrh06RK6deuG3r17ay/EMHToUHTt2hV16tRBYGAgevbsiW7dupV4rNnZ2dqvAxY1aNAguLu74+jRo3rnxpPL5cjKyipx34QQQkhpqJ4tH6pnqZ41FNWz/6B6lrwLqOOWkAqoQ4cOCAgIwJQpU3TmnwLyvy7FGNNZlpeXV2wfYrFY5zbHcXqXaTQag48rIyMDQUFBmD9/frH7XF1dtf9fUGiaiqWlJWrVqqWz7O+//0bPnj0xevRozJkzB/b29jh16hSGDx8OpVJpUKFr6GNdtL0ZGRkYOXIkvvzyy2Lrenh4QCKR4NKlSzh+/DgOHz6MadOmYcaMGbh48aJBV5LVJyMjAzNnzsSHH35Y7L6SCh1D6Wufq6srjh8/Xmzdso7fxcWl2HNVUqFbNHfGjBn4z3/+g3379uHAgQOYPn06fvvtN/Tp06fsRhQiEAjQokULtGjRAiEhIdi6dSs++eQTfPfdd/Dy8irzeS/rAiCl3V8wJ92+fftQtWpVnfukUikAoHv37rh//z7279+PiIgIdOnSBWPHjsXChQvRtGlTJCQk4MCBA/jrr78wYMAA+Pv768wpVpijoyOuXbum9773338fW7duxdmzZ9G5c+di97948cKgi6IQQggh+lA9Wz5Uz1I9Wx5Uz+ajepa8C2iOW0IqqHnz5mHPnj04e/asznInJyckJSXpfBAXzNNkDOfOndP+v0qlQnR0NOrVqwcAaNq0KWJjY1G9enXUqlVL56c8xa1CoYCbmxtOnz6ts/z06dOoX7++UdoRHR0NjUaDRYsWoXXr1vD29saTJ0/KtQ8nJyckJiZqb6vValy/fr3M7Zo2bYobN24Ue4xq1aqlvYKtSCSCv78/FixYgKtXr+Lvv//G0aNHS9ynSqVCVFSU9nZcXBxSU1N1npu4uDi9mYVHqhRWr149PHz4UOeiEDdu3EBqamqpz0PTpk2RlJQEkUhULKtg7iq+eHt7Y8KECTh8+DA+/PBD7UUOJBKJds6t8ipoa8HFNoo+72lpaUhISNDebtSoER49eoTbt2/r3V+jRo1w5MiRErOkUikePHhQ7LErPFLEyckJwcHB2Lp1K5YsWYK1a9dq71MoFBg4cCDWrVuH7du3448//ihxLrYmTZrg1q1bxQp3IH8kxLx58/DBBx8Uu2gLkH/hloJRE4QQQsiboHr27VA9S/WsoaiepXqWVF404paQCsrHxweDBw/GsmXLdJZ37NgRT58+xYIFC9CvXz8cPHgQBw4cgEKhMEruypUrUbt2bdSrVw/h4eF4+fIlhg0bBgAYO3Ys1q1bh0GDBmHy5Mmwt7fH3bt38dtvv2H9+vXayewNERoaiunTp6NmzZpo3LgxNmzYgJiYGJ2vY72NWrVqIS8vD8uXL0dQUFCpF5YoSefOnTFx4kTs27cPNWvWxOLFi5Gamlrmdl9//TVat26NcePG4bPPPoOlpSVu3LiBiIgIrFixAnv37sW9e/fQoUMH2NnZYf/+/dBoNKhTp06J+xSLxfjiiy+wbNkyiEQijBs3Dq1bt0bLli0BANOmTUPPnj3h4eGBfv36QSAQ4MqVK7h+/Tr++9//6t2nv7+/9nW2ZMkSqFQqjBkzBn5+fsW+1lV0uzZt2qB3795YsGCB9peIffv2oU+fPqVu+6ays7MRGhqKfv36wcvLC48ePcLFixfRt29fAPlXzs3IyMCRI0fg6+sLCwsLvaNQ+vXrh3bt2qFt27ZwcXFBQkICpkyZAm9vb9StWxdA/vO+ceNGBAUFwdbWFtOmTdN5bfv5+aFDhw7o27cvFi9ejFq1auHWrVvgOA6BgYGYMmUKfHx8MGbMGIwaNQoSiQTHjh1D//794ejoiK+++goTJkyARqNB+/bt8erVK5w+fRoKhQLBwcGYNm0amjVrhgYNGiA3Nxd79+7V/kKzePFiuLq6okmTJhAIBPj999/h4uJS4siQTp06ISMjA7GxsTpfLS3wxRdfQK1Wo2fPnjhw4ADat2+vve/kyZOYPXv2Gz9nhBBCCNWzb4fqWapnqZ6lepYQGnFLSAU2a9asYl/9qlevHn788UesXLkSvr6+uHDhwlvNHVbUvHnzMG/ePPj6+uLUqVPYvXu39q/OBaMK1Go1unXrBh8fH4SEhMDW1rbEv4KX5Msvv8TEiRMxadIk+Pj44ODBg9i9ezdq165tlHb4+vpi8eLFmD9/Pho2bIht27YhLCysXPsYNmwYgoODMWTIEPj5+aFGjRro1KlTmds1atQIkZGRuH37Nt577z00adIE06ZNg5ubG4D8r1/t2LEDnTt3Rr169bB69Wr8+uuvaNCgQYn7tLCwwNdff43//Oc/aNeuHaysrLB9+3bt/QEBAdi7dy8OHz6MFi1aoHXr1ggPD4enp2eJ++Q4Dn/++Sfs7OzQoUMH+Pv7o0aNGjr7LWm7/fv3o0OHDvj000/h7e2Njz76CPfv34ezs3OZj8+bEAqFeP78OYYMGQJvb28MGDAA3bt3x8yZMwEAbdu2xahRozBw4EA4OTlhwYIFevcTEBCAPXv2ICgoCN7e3ggODkbdunVx+PBhiET5f8ucMmUK/Pz80LNnT/To0QO9e/cuNvfYH3/8gRYtWmDQoEGoX78+Jk+erB0h4e3tjcOHD+PKlSto2bIl2rRpgz///FO7/9mzZ2Pq1KkICwtDvXr1EBgYiH379sHLywtA/miLKVOmoFGjRujQoQOEQiF+++03AIC1tTUWLFiA5s2bo0WLFvj777+xf//+Et9/Dg4O6NOnT6m/QIaEhGDmzJl4//33cebMGQDA2bNn8erVK/Tr18+g54cQQggpCdWzb47qWapn9aF6tjiqZ0llxjF9480JIYQQUilcvXoVXbt2RXx8vN4LsegzcOBA+Pr64ttvv+X56AghhBBCCCkd1bPkXUYjbgkhhJBKrFGjRpg/f77OvGalUSqV8PHxwYQJE3g+MkIIIYQQQspG9Sx5l9GIW0IIIYQQQgghhBBCCKlgaMQtIYQQQgghhBBCCCGEVDDUcUsIIYQQQgghhBBCCCEVDHXcEkIIIYQQQgghhBBCSAVDHbeEEEIIIYQQQgghhBBSwVDHLSGEEEIIIYQQQgghhFQw1HFLCCGEEEIIIYQQQgghFQx13BJCCCGEEEIIIYQQQkgFQx23hBBCCCGEEEIIIYQQUsFQxy0hhBBCCCGEEEIIIYRUMNRxSwghhBBCCCGEEEIIIRXM/wNGw3/jknYMkwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p_values = [0.1, 0.25, 0.5, 0.75] # Modify as needed\n", + "k_values = np.arange(0, 21) # Range of k values starting from 0\n", + "\n", + "fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))\n", + "# Plot Geometric PDF for different p values\n", + "for p in p_values:\n", + " q = 1 - p\n", + " pdf_values = p * (1 - p) ** k_values\n", + " ax1.plot(k_values, pdf_values, marker=\"o\", linestyle=\"-\", label=f\"p = {p}\")\n", + "\n", + " pdf_geom = stats.geom.pmf(k_values, p, loc=-1)\n", + " ax1.plot(k_values, pdf_geom, marker=\"o\", linestyle=\"-.\", color=\"black\")\n", + " # pdf_nbin = stats.nbinom.pmf(k_values, 1, p)\n", + " # ax1.plot(k_values, pdf_nbin, marker=\"o\", linestyle=\"-.\", color=\"black\")\n", + "\n", + "ax1.set_title(\"Geometric PDF: Exactly k Failures Until 1st Success\")\n", + "ax1.set_xlabel(\"Number of Failures before First Success (k)\")\n", + "ax1.set_ylabel(\"Probability Pr(X = k)\")\n", + "ax1.set_xticks(k_values)\n", + "ax1.grid(True)\n", + "ax1.legend()\n", + "\n", + "# Plot Geometric CDF for different p values\n", + "for p in p_values:\n", + " q = 1 - p\n", + " cdf_values = 1 - (1 - p) ** (k_values + 1)\n", + " ax2.plot(k_values, cdf_values, marker=\"o\", linestyle=\"-\", label=f\"p = {p}\")\n", + "\n", + " cdf_geom = stats.geom.cdf(k_values, p, loc=-1)\n", + " ax2.plot(k_values, cdf_geom, marker=\"o\", linestyle=\"-.\", color=\"black\")\n", + "\n", + "ax2.set_title(\"Geometric CDF: ≤ k Failures Until 1st Success\")\n", + "ax2.set_xlabel(\"Number of Failures before First Success (k)\")\n", + "ax2.set_ylabel(\"Cumulative Probability P(X ≤ k)\")\n", + "ax2.set_xticks(k_values)\n", + "ax2.grid(True)\n", + "ax2.legend()\n", + "\n", + "# Adjust layout and display the plots\n", + "plt.tight_layout()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAHHCAYAAABA5XcCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gUVReHf7M1m957DxB6QguEKjX03lGpAn6AKCiCSlMBBSmCCIo0RZCOUoREEg0SeicJENIJ6T2bzdb7/RF23M1uQupmdzPv8+wDOXNn5pxzp5y599x7KUIIAQMDAwMDAwMDgwasxlaAgYGBgYGBgUFfYQIlBgYGBgYGBoZKYAIlBgYGBgYGBoZKYAIlBgYGBgYGBoZKYAIlBgYGBgYGBoZKYAIlBgYGBgYGBoZKYAIlBgYGBgYGBoZKYAIlBgYGBgYGBoZKYAIlBgYGBgYGBoZKYAIlHUJRFNasWdPYajQZSkpKMGfOHDg7O4OiKLz//vuNrVKTJSkpCRRF4Ztvvqm3Y65ZswYURSEnJ+e1Zb29vTFjxgz677///hsUReHvv/+mZTNmzIC3t3e96VcVt27dQvfu3WFmZgaKonD//n2dnLe6HDhwABRFISkpSU2+adMm+Pr6gs1mIzAwEAAgk8mwbNkyeHh4gMViYfTo0TrXl6H2VFbXDY22e1BfMZpASVnZyp+JiQlatGiBhQsXIjMzs7HV00pUVBTWrFmDgoKCxlalzsyYMUPN/5aWlggICMDmzZshFosbRaf169fjwIEDePfdd/HLL7/grbfeol/Yyh+LxYKtrS2GDBmCa9euNYqeDU1paSnWrFmj9YGkDDaUP1NTU7Ru3RqfffYZioqKdK+sHlGV3+qCVCrFhAkTkJeXh61bt+KXX36Bl5dXvZ5DFeULSfnj8/lwcnLCG2+8gfXr1yM7O7taxwkNDcWyZcvQo0cP7N+/H+vXrwcA7Nu3D5s2bcL48eNx8OBBfPDBBw1mS125cOFCjT5W33jjDTXfCQQCtG/fHtu2bYNCoWg4RfWM9u3bw9PTE1WteNajRw84OTlBJpPpUDPdwGlsBeqbzz//HD4+PigrK8O///6LXbt24cKFC3j8+DFMTU0bWz01oqKisHbtWsyYMQPW1taNrU6d4fP5+OmnnwAABQUFOHnyJD788EPcunULv/32m871CQ8PR7du3bB69WpapvxqmjJlCoYOHQq5XI5nz57h+++/R9++fXHr1i20a9dO57o2JKWlpVi7di2A8ge/Nnbt2gVzc3OUlJQgNDQU69atQ3h4OK5evQqKonSobcPw9OlTsFhVfxfu2bNH7eVXHb/Vhvj4eCQnJ2PPnj2YM2dOvR33dbz33nvo0qUL5HI5srOzERUVhdWrV2PLli04duwY+vXrR5d96623MHnyZPD5fFoWHh4OFouFvXv3gsfjqcnd3NywdetWndlSWy5cuICdO3fWKFhyd3fHhg0bAAA5OTk4fPgwPvjgA2RnZ2PdunUNpKl+MW3aNCxfvhxXrlxB7969NbYnJSXh2rVrWLhwITgcowsrjC9QGjJkCDp37gwAmDNnDuzs7LBlyxb8/vvvmDJlSiNrZ9xwOBy8+eab9N//+9//0LVrVxw9ehRbtmyBq6urxj6EEJSVlUEgENS7PllZWWjdurXWbR07dlTTtVevXhgyZAh27dqF77//vt510XfGjx8Pe3t7AMD8+fMxbtw4nDp1CtevX0dwcLDWfUpLS/Xu46MyVF/4lcHlcnWgSfl1CaBeP46EQiHMzMyqLNOrVy+MHz9eTfbgwQMMGjQI48aNQ0xMDFxcXAAAbDYbbDZbQ2+BQKAWJCnl9WlLQz4TaoOVlZXas2L+/Plo2bIlduzYgc8//1zDT/qGQqGARCKBiYlJrY8xdepUrFixAocPH9YaKB05cgSEEEybNq0uquotRtP1VhnKr6TExERadujQIXTq1AkCgQC2traYPHkyUlNT1fZ744030LZtW8TExKBv374wNTWFm5sbNm7cqFZOIpFg1apV6NSpE6ysrGBmZoZevXohIiKiSr3WrFmDjz76CADg4+NDN+0mJSWhT58+CAgI0Lqfv78/QkJCKj3u8OHD4evrq3VbcHAwHUQCQFhYGHr27Alra2uYm5vD398fn3zySZV61wQWi0V/iStbcry9vTF8+HBcunQJnTt3hkAgwA8//AAASEhIwIQJE2BrawtTU1N069YN58+f1zhuVlYWZs+eDScnJ5iYmCAgIAAHDx6ktyu7GhITE3H+/Hk131ZGr169AJR/7atSUFCA999/Hx4eHuDz+WjWrBm+/vprjWb3goICzJgxA1ZWVrC2tsb06dNx//59UBSFAwcO0OXeeOMNra0T2vJjFAoFtm3bhjZt2sDExAROTk6YN28e8vPz1crdvn0bISEhsLe3h0AggI+PD2bNmkX73cHBAQCwdu1a2hev+6KueN8o74c7d+6gd+/eMDU1pa+V19VHRbZu3QovLy8IBAL06dMHjx8/Vtv+8OFDzJgxA76+vjAxMYGzszNmzZqF3NxcrcfLycnBxIkTYWlpCTs7OyxevBhlZWVqZSrmKGlDtQ6q8tv+/ftBURTu3buncYz169eDzWYjLS2t0nP06dMHADBhwgRQFKV2PYSHh6NXr14wMzODtbU1Ro0ahdjYWLVjKLtLY2JiMHXqVNjY2KBnz55V2lYZAQEB2LZtGwoKCvDdd9/R8op5KxRFYf/+/RAKhbQvlGUiIiIQHR1Ny5VdldW9fqt6JlTn/lPNf/vxxx/h5+cHPp+PLl264NatW2q+37lzJ22P8ldTTExM0KVLFxQXF9NBr5LXvVu2b98ONputlm6xefNmUBSFJUuW0DK5XA4LCwt8/PHHtOybb75B9+7dYWdnB4FAgE6dOuHEiRMa+lEUhYULF+LXX39FmzZtwOfzcfHiRQBAdHQ0+vXrB4FAAHd3d3z55ZfV6kL08PBA7969ceLECUilUo3thw8fhp+fH7p27Yrk5GT873//g7+/PwQCAezs7DBhwoRq5UBVdp9qe26KxWKsXr0azZo1A5/Ph4eHB5YtW6aR6lEf7zmja1GqiPLFZ2dnBwBYt24dVq5ciYkTJ2LOnDnIzs7Gjh070Lt3b9y7d0/tyyg/Px+DBw/G2LFjMXHiRJw4cQIff/wx2rVrhyFDhgAAioqK8NNPP2HKlCl45513UFxcjL179yIkJAQ3b96kEx4rMnbsWDx79gxHjhzB1q1b6a95BwcHvPXWW3jnnXfw+PFjtG3blt7n1q1bePbsGT777LNK7Z00aRLefvtt3Lp1C126dKHlycnJuH79OjZt2gSg/IYZPnw42rdvj88//xx8Ph/Pnz/H1atXa+7kKqjof6C8G2TKlCmYN28e3nnnHfj7+yMzMxPdu3dHaWkp3nvvPdjZ2eHgwYMYOXIkTpw4gTFjxgAARCIR3njjDTx//hwLFy6Ej48Pjh8/jhkzZqCgoACLFy9Gq1at8Msvv+CDDz6Au7s7li5dCqDct5XlYyhvYhsbG1pWWlqKPn36IC0tDfPmzYOnpyeioqKwYsUKpKenY9u2bQDKv4BHjRqFf//9F/Pnz0erVq1w+vRpTJ8+vU6+mzdvHg4cOICZM2fivffeQ2JiIr777jvcu3cPV69eBZfLRVZWFgYNGgQHBwcsX74c1tbWSEpKwqlTp2ibd+3ahXfffRdjxozB2LFjAZTnHFSFtnrLzc3FkCFDMHnyZLz55ptwcnKqVn2o8vPPP6O4uBgLFixAWVkZvv32W/Tr1w+PHj2Ck5MTgPIHW0JCAmbOnAlnZ2dER0fjxx9/RHR0NK5fv67xcps4cSK8vb2xYcMGXL9+Hdu3b0d+fj5+/vnnWvu+Kr/5+PhgwYIF+PXXX9GhQwe1/X799Ve88cYbcHNz03rcefPmwc3NDevXr6e7wpR2//XXXxgyZAh8fX2xZs0aiEQi7NixAz169MDdu3c1AukJEyagefPmWL9+fZW5I69j/PjxmD17Nt3lqo1ffvkFP/74I27evEl3r3fo0AG//PIL1q1bh5KSErp7qlWrVrStr7t+lWh7JlT3/lNy+PBhFBcXY968eaAoChs3bsTYsWORkJAALpeLefPm4eXLlwgLC8Mvv/xSa38B/wVnqu+L6rxbevXqBYVCgX///RfDhw8HAFy5cgUsFgtXrlyhj3Xv3j2UlJSotd58++23GDlyJKZNmwaJRILffvsNEyZMwLlz5zBs2DA1/cLDw3Hs2DEsXLgQ9vb28Pb2RkZGBvr27QuZTIbly5fDzMwMP/74Y7Vb7qZNm4a5c+fi0qVLtO4A8OjRIzx+/BirVq0CUP6eioqKwuTJk+Hu7o6kpCTs2rULb7zxBmJiYuqlFVqhUGDkyJH4999/MXfuXLRq1QqPHj3C1q1b8ezZM5w5cwZAPb7niJGwf/9+AoD89ddfJDs7m6SmppLffvuN2NnZEYFAQF68eEGSkpIIm80m69atU9v30aNHhMPhqMn79OlDAJCff/6ZlonFYuLs7EzGjRtHy2QyGRGLxWrHy8/PJ05OTmTWrFlqcgBk9erV9N+bNm0iAEhiYqJauYKCAmJiYkI+/vhjNfl7771HzMzMSElJSaV+KCwsJHw+nyxdulRNvnHjRkJRFElOTiaEELJ161YCgGRnZ1d6rJowffp0YmZmRrKzs0l2djZ5/vw5Wb9+PaEoirRv354u5+XlRQCQixcvqu3//vvvEwDkypUrtKy4uJj4+PgQb29vIpfLCSGEbNu2jQAghw4dostJJBISHBxMzM3NSVFRkdq5hg0bpnaexMREAoCsXbuWZGdnk4yMDHLlyhXSpUsXAoAcP36cLvvFF18QMzMz8uzZM7VjLF++nLDZbJKSkkIIIeTMmTMEANm4cSNdRiaTkV69ehEAZP/+/bS8T58+pE+fPlr95+XlRf995coVAoD8+uuvauUuXryoJj99+jQBQG7duqVxTCXZ2dka156S1atXEwDk6dOnJDs7myQmJpIffviB8Pl84uTkRIRCIa03ALJ79261/atbH0q/K+9FJTdu3CAAyAcffEDLSktLNfQ8cuQIAUAiIyM1dB85cqRa2f/9738EAHnw4AEt8/LyItOnT6f/joiIIABIREQELatYB1X5bcqUKcTV1ZW+Lgkh5O7duxr1rQ3luVWvNUIICQwMJI6OjiQ3N5eWPXjwgLBYLPL2229r2D1lypQqz/O686kSEBBAbGxs6L+Vz1PVZ5PyHq9Inz59SJs2bdRk1b1+Can8mVDd+095bdnZ2ZG8vDy63O+//04AkLNnz9KyBQsWkJq89vr06UNatmxJP9eePHlCPvroIwJA7dlS3XeLXC4nlpaWZNmyZYQQQhQKBbGzsyMTJkwgbDabFBcXE0II2bJlC2GxWCQ/P58+VsX7QiKRkLZt25J+/fqpyQEQFotFoqOj1eTKZ+yNGzdoWVZWFrGystL6HqpIXl4e4fP5Gtfd8uXL6WeINj0JIeTatWsa71Nt92DF+1RJxefmL7/8Qlgsltr7ghBCdu/eTQCQq1evEkLq7z1ndF1vAwYMgIODAzw8PDB58mSYm5vj9OnTcHNzw6lTp6BQKDBx4kTk5OTQP2dnZzRv3lyju8zc3Fytb5rH4yEoKAgJCQm0jM1m0332CoUCeXl5kMlk6Ny5M+7evVsrG6ysrDBq1Ci63xcob4o9evQoRo8eXWUugqWlJYYMGYJjx46pfWUePXoU3bp1g6enJ4D/8iN+//33ehu9IRQK4eDgAAcHBzRr1gyffPIJgoODcfr0abVyPj4+Gt2HFy5cQFBQkFoXgrm5OebOnYukpCTExMTQ5ZydndXyzbhcLt577z2UlJTgn3/+qZauq1evhoODA5ydndGrVy/ExsZi8+bNajkcx48fR69evWBjY6N2vQwYMAByuRyRkZG0ThwOB++++y69L5vNxqJFi6rpOU2OHz8OKysrDBw4UO3cnTp1grm5OX2tKuvx3LlzWpvEq4u/vz8cHBzg4+ODefPmoVmzZjh//rza1x+fz8fMmTPV9qtpfYwePVqttSUoKAhdu3bFhQsXaJnqF25ZWRlycnLQrVs3ANB6Ty1YsEDtb6XfVY9Z37z99tt4+fKl2jPj119/hUAgwLhx42p8vPT0dNy/fx8zZsyAra0tLW/fvj0GDhyo1Zb58+fXTnktmJubo7i4uN6OV93rV4m2Z0J17z8lkyZNUmsRVnanqz6va8OTJ0/o51rLli2xadMmjBw5Uq1LvbrvFhaLhe7du9O6x8bGIjc3F8uXLwchhB55e+XKFbRt21atxUr1vsjPz0dhYSF69eql9Z7o06ePRn7mhQsX0K1bNwQFBdEyBweHaucV2djYYOjQofjjjz8gFAoBlLem//bbb+jcuTNatGihoadUKkVubi6aNWsGa2vrWr8TK3L8+HG0atUKLVu2VPO3MmWg4vOxru85owuUdu7cibCwMERERCAmJgYJCQn0DRgXFwdCCJo3b05f+MpfbGysRn+zu7u7RjO/jY2NRh/7wYMH0b59e5iYmMDOzg4ODg44f/48CgsLa23H22+/jZSUFLo59q+//kJmZibeeuut1+47adIkpKam0jddfHw87ty5g0mTJqmV6dGjB+bMmQMnJydMnjwZx44dq9PFZGJigrCwMISFhSEyMhKpqam4evWqRs6Uj4+Pxr7Jycnw9/fXkCub8ZOTk+l/mzdvrjGCqWK51zF37lyEhYXh7Nmz+OCDDyASiSCXy9XKxMXF4eLFixrXyoABAwD8l5SbnJwMFxcXmJubq+2vzZ7qEhcXh8LCQjg6Omqcv6SkhD53nz59MG7cOKxduxb29vYYNWoU9u/fX+MpGU6ePImwsDD8/fffeP78OR4/foxOnTqplXFzc9NI5K1pfTRv3lzj3C1atFDLX8jLy8PixYvh5OQEgUBAB3AAtN5TFY/p5+cHFovVoPPCDBw4EC4uLvj1118BlH8kHTlyBKNGjYKFhUWNj6f0U2X3QE5ODv1yUqLtPqotJSUltdK7Mqp7/SrRZkt17z8lyo9AJcqgqeLzuqZ4e3sjLCwMly5dwvfffw83NzdkZ2erJUfX5N3Sq1cv3LlzByKRCFeuXIGLiws6duyIgIAA+nn/77//0oGeknPnzqFbt24wMTGBra0t3T2s7Z6o7Bmr7f6ryXNq2rRpEAqF+P333wGUj9xOSkpSC7ZEIhFWrVpF55XZ29vDwcEBBQUFdXonqhIXF4fo6GgNXyuDNaW/6+s9Z3Q5SkFBQWoJy6ooFApQFIU///xT60iFii+6ykYzqLbUHDp0CDNmzMDo0aPx0UcfwdHREWw2Gxs2bNBIDK4JISEhcHJywqFDh9C7d28cOnQIzs7O9EOiKkaMGAFTU1McO3YM3bt3x7Fjx8BisTBhwgS6jEAgQGRkJCIiInD+/HlcvHgRR48eRb9+/RAaGlqrkRxsNrta+unDaJbmzZvTug4fPhxsNhvLly9H37596etHoVBg4MCBWLZsmdZjKG/KmkBRlNZ8kopBmkKhgKOjI/0irogy0ZiiKJw4cQLXr1/H2bNncenSJcyaNQubN2/G9evXNa7pyujduzedJ1cZuqq3iRMnIioqCh999BECAwNhbm4OhUKBwYMHV+sBp4vpDNhsNqZOnYo9e/bg+++/x9WrV/Hy5Uu1FuiGpr7qQyqV4tmzZ2r5kHWlutevEm221PT+q87zujaYmZmpPdd69OiBjh074pNPPsH27dtpXav7bunZsyekUimuXbuGK1eu0AFRr169cOXKFTx58gTZ2dlqgdKVK1cwcuRI9O7dG99//z1cXFzA5XKxf/9+HD58WON8DXWvDh8+HFZWVjh8+DCmTp2Kw4cPg81mY/LkyXSZRYsWYf/+/Xj//fcRHBwMKysrUBSFyZMnv/b+rezelcvlan5VKBRo164dtmzZorW8h4cHgPp7zxldoFQVfn5+IITAx8enVi85bZw4cQK+vr44deqUWiWrzt1TGVU90JUP4gMHDuDrr7/GmTNn8M4771SrYs3MzDB8+HAcP34cW7ZswdGjR9GrVy+N4fksFgv9+/dH//79sWXLFqxfvx6ffvopIiIiqhXw1CdeXl54+vSphvzJkyf0duW/Dx8+hEKhUGvFqFiupnz66afYs2cPPvvsM3qEiJ+fH0pKSl7rCy8vL1y+fBklJSVqD0Rt9tjY2GjtCqjY8uLn54e//voLPXr0qNZDr1u3bujWrRvWrVuHw4cPY9q0afjtt98wZ86cBg0calofcXFxGsd49uwZnaicn5+Py5cvY+3atXRyaGX7qW5T/YJ+/vw5FApFnWfZfp3f3n77bWzevBlnz57Fn3/+CQcHhypHpFaF0k+V3QP29vavHf5fW06cOAGRSFRr3bVR0+u3smNU5/6rCfVxL7Rv3x5vvvkmfvjhB3z44Yfw9PSs0bslKCgIPB4PV65cwZUrV+jRz71798aePXtw+fJl+m8lJ0+ehImJCS5duqQ21cX+/furrbeXl5fW+0jbNVcZfD4f48ePx88//4zMzEwcP34c/fr1g7OzM13mxIkTmD59OjZv3kzLysrKqjWxso2NjdZyycnJaj0Tfn5+ePDgAfr37//aOq2P95zRdb1VxdixY8Fms7F27VqNrwxCSKXDj6tCGbioHu/GjRvVmuVZ+eCr7AJ66623kJ+fj3nz5qGkpKRGX6uTJk3Cy5cv8dNPP+HBgwdq3W5AefdGRZQj9FS7bZ48eYKUlJRqn7e2DB06FDdv3lTzm1AoxI8//ghvb2+6v33o0KHIyMjA0aNH6XIymQw7duyAubk5PfS6plhbW2PevHm4dOkSvZzExIkTce3aNVy6dEmjfEFBAT0D7dChQyGTybBr1y56u1wux44dOzT28/Pzo78YlTx48EBjFMbEiRMhl8vxxRdfaBxDJpPR10x+fr7GtVyxHpV5Rg0xA3xN6+PMmTNqQ+dv3ryJGzdu0KNItd1PADRGOKmiHPKtROl35TFry+v81r59e7Rv3x4//fQTTp48icmTJ9d6sj0XFxcEBgbi4MGDaud7/PgxQkNDMXTo0Fod93U8ePAA77//PmxsbDRyvepCda/f1x2jOvdfTXjdM7e6LFu2DFKplG7RqMm7RTm9wJEjR5CSkqLWoiQSibB9+3b4+fnRc1oB5fcFRVFqLc9JSUn06K7qMHToUFy/fh03b96kZdnZ2ZW2+lXGtGnTIJVKMW/ePGRnZ2vkOLHZbA0f7NixQ6PVXBt+fn64fv06JBIJLTt37pzG9D0TJ05EWloa9uzZo3EMkUhEd1NX9z33Oppci9KXX36JFStWICkpCaNHj4aFhQUSExNx+vRpzJ07Fx9++GGNjjl8+HCcOnUKY8aMwbBhw5CYmIjdu3ejdevWKCkpqXJfZQ7Ip59+ismTJ4PL5WLEiBH0zdyhQwe0bduWTlzr2LFjtfUaOnQoLCws8OGHH4LNZmskmH7++eeIjIzEsGHD4OXlhaysLHz//fdwd3dXS6hu1aoV+vTp0+Dr8SxfvhxHjhzBkCFD8N5778HW1hYHDx5EYmIiTp48SbdWzJ07Fz/88ANmzJiBO3fuwNvbGydOnMDVq1exbdu2OuVZLF68GNu2bcNXX32F3377DR999BH++OMPDB8+HDNmzECnTp0gFArx6NEjnDhxAklJSbC3t8eIESPQo0cPLF++HElJSWjdujVOnTqltT9+1qxZ2LJlC0JCQjB79mxkZWVh9+7daNOmjdqSIX369MG8efOwYcMG3L9/H4MGDQKXy0VcXByOHz+Ob7/9ll4y4vvvv8eYMWPg5+eH4uJi7NmzB5aWlvTLVSAQoHXr1jh69ChatGgBW1tbtG3btl66WmpaH82aNUPPnj3x7rvvQiwWY9u2bbCzs6O7VywtLdG7d29s3LgRUqkUbm5uCA0NVZsHrSKJiYkYOXIkBg8ejGvXruHQoUOYOnVqpXORVZfq+O3tt9+mnxl17XbbtGkThgwZguDgYMyePZueHsDKyqpe1oi8cuUKysrKIJfLkZubi6tXr+KPP/6AlZUVTp8+rdYqUFeqe/1WRXXvv5qgfOa+9957CAkJ0eg2qi6tW7fG0KFD8dNPP2HlypU1frf06tULX331FaysrOiVABwdHeHv74+nT59qzCU0bNgwbNmyBYMHD8bUqVORlZWFnTt3olmzZnj48GG1dF62bBl++eUXDB48GIsXL6anB1C2CleXPn36wN3dHb///jsEAgE9dYaS4cOH45dffoGVlRVat26Na9eu4a+//lKbaqQy5syZgxMnTmDw4MGYOHEi4uPjcejQIfj5+amVe+utt3Ds2DHMnz8fERER6NGjB+RyOZ48eYJjx47Rc3JV9z33Wuo0Zk6PUA5nrWqYtJKTJ0+Snj17EjMzM2JmZkZatmxJFixYQA9vJET7kFdCNIcQKxQKsn79euLl5UX4fD7p0KEDOXfunEY5QjSnByCkfAism5sbYbFYWodobty4kQAg69evf61dFZk2bRoBQAYMGKCx7fLly2TUqFHE1dWV8Hg84urqSqZMmaIxFBeA1uHsFals6HBFtA3ZVxIfH0/Gjx9PrK2tiYmJCQkKCiLnzp3TKJeZmUlmzpxJ7O3tCY/HI+3atdM6JLuq6QE2bdqkVYcZM2YQNptNnj9/Tggpn6JgxYoVpFmzZoTH4xF7e3vSvXt38s033xCJRELvl5ubS9566y1iaWlJrKysyFtvvUXu3bundbj4oUOHiK+vL+HxeCQwMJBcunRJ6/VCCCE//vgj6dSpExEIBMTCwoK0a9eOLFu2jLx8+ZIQUj4kfcqUKcTT05Pw+Xzi6OhIhg8fTm7fvq12nKioKNKpUyfC4/HUrkPlUPPXDZ+t7H4gpHr1oer3zZs3Ew8PD8Ln80mvXr3UhvETQsiLFy/ImDFjiLW1NbGysiITJkwgL1++1Lh/lLrHxMSQ8ePHEwsLC2JjY0MWLlxIRCKR2jFrMz1AVX5Tkp6eTthsNmnRokWV/lOlquH6f/31F+nRowcRCATE0tKSjBgxgsTExKiVqW6dVTyf8sflcomDgwPp3bs3WbduHcnKytLYp67TAyh53fVLSNXPhOrcf1Xd0xXrTCaTkUWLFhEHBwdCUdRrpwqoyra///5b4/jVebcQQsj58+cJADJkyBA1+Zw5cwgAsnfvXo3z7d27lzRv3pzw+XzSsmVLsn//fvpaqGjzggULtOr88OFD0qdPH2JiYkLc3NzIF198Qfbu3Vut6QFUUU6RMHHiRI1t+fn59PPA3NychISEkCdPnlTrHiSEkM2bNxM3NzfC5/NJjx49yO3bt7VOqyKRSMjXX39N2rRpQ/h8PrGxsSGdOnUia9euJYWFhYSQ6r/nXgdFSB0z3RgalG+//RYffPABkpKSNEZ1MOg3SUlJ8PHxwf79+187KzSDYZKTkwMXFxesWrUKK1eubGx1GBgYGoAmlaNkaBBCsHfvXvTp04cJkhgY9JADBw5ALpdXa9oOBgYGw6RJ5SgZCkKhEH/88QciIiLw6NEjes4KBgYG/SA8PBwxMTFYt24dRo8eXecRdgwMDPoLEyjpIdnZ2Zg6dSqsra3xySefYOTIkY2tEgMDgwqff/45oqKi0KNHD62jGxkYGIwHJkeJgYGBgYGBgaESmBwlBgYGBgYGBoZKYAIlBgYGBgYGBoZKaPI5SgqFAi9fvoSFhYVO1ohiYGBgYGBgqDuEEBQXF8PV1VVjYe76pMkHSi9fvqQX0GNgYGBgYGAwLFJTU+Hu7t5gx2/ygZJyiYXU1FRYWlpWax+ZTIY7d+6gU6dOtV7biaH6MP7WLYy/dQvjb93C+Fu3NKS/i4qK4OHhUaelq6pDk79KlN1tlpaW1Q6UpFIpSktLYWFhAS6X25DqMYDxt65h/K1bGH/rFsbfukUX/m7otBkmmZuBgYGBgYGBoRKYQImBgYGBgYGBoRKYQKkWsNlsBAYGgs1mN7YqTQLG37qF8bduYfytWxh/6xZj8HeTn5m7qKgIVlZWKCwsrHaOEgMDA0NTQC6XQyqVNrYaDE0ULpdbZYClq/d3k0/mrg0ymQyRkZHo3bs3M2pCBzD+1i2Mv3WLPvqbEIKMjAwUFBQ0tir1DiEEYrEYfD6fmTtPB9TV39bW1nB2dm7UutKPu9LAUE5y1cQb43QG42/dwvhbt+ijv5VBkqOjI0xNTY0qoFAoFCgpKYG5uXmDTlLIUE5t/U0IQWlpKbKysgAALi4uDaXia2ECJQYGBgYGGrlcTgdJdnZ2ja1OvaNQKCCRSGBiYsIESjqgLv4WCAQAgKysLDg6OjZanhNzlTAwMDAw0ChzkkxNTRtZEwaG/67DxsyVM4pAKTExEX379kXr1q3Rrl07CIXCBj0fm81GcHCwQWfxGxKMv3UL42/doq/+NqbuNlUoioKZmZnR2qdv1NXf+lBPRtH1NmPGDHz55Zfo1asX8vLywOfzG/R8LBYLjo6ODXoOhv9g/K1bGH/rFsbfuoWiKGZGbh1iDP42+Bal6OhocLlc9OrVCwBga2vb4CNHpFIpzp8/zwyb1RGMv3UL42/dwvhbtygUChQUFEChUDS2Kk0CY/B3owdKkZGRGDFiBFxdXUFRFM6cOaNRZufOnfD29oaJiQm6du2Kmzdv0tvi4uJgbm6OESNGoGPHjli/fr1O9JbJZDo5D0M5jL91C+Nv3cL4u+7MmDEDFEXRLRg+Pj5YtmwZysrKGvS81XmHEUKwatUquLi4QCAQYMCAAYiLi6vyuKr28Hg8NGvWDJ9//rnatSKXy7F161a0a9cOJiYmsLGxwZAhQ3D16lW1Yx04cADW1tZqstjYWHh4eMDBwYE+j7bfjBkzausao6HRAyWhUIiAgADs3LlT6/ajR49iyZIlWL16Ne7evYuAgACEhITQQwZlMhmuXLmC77//HteuXUNYWBjCwsJ0aYJWiEQC4Y2bry/IwMDAwFAvDB48GOnp6UhISMDWrVvxww8/YPXq1Q16zte9wwBg48aN2L59O3bv3o0bN27AzMwMISEhrw3ilPbExcVh6dKlWLNmDTZt2gSgPPiaPHkyPv/8cyxevBixsbH4+++/4eHhgTfeeENrwKbk1q1b6NWrFwYPHozHjx8jPT0d6enpOHnyJADg6dOntOzbb7+tuVOMjEbPURoyZAiGDBlS6fYtW7bgnXfewcyZMwEAu3fvxvnz57Fv3z4sX74cbm5u6Ny5Mzw8PAAAQ4cOxf379zFw4ECtxxOLxRCLxfTfRUVFAMqbv5VN3ywWC2w2G3K5XK25UClXRvTK8mw2GywWCzKZDIQQKEpLkTx0GOS5ufC7dBGUq6uaDsquwYpfkZXJuVwuFAoF5HI5LaMoChwOp1J5ZbpXZZPqPC4Vbaoor9hN0JA2KfdVlRm6TfpcT8p9pFKp0dikir7ZpETVrsa2iRAChUIBhUJBtywQQtR0f528YleLMim34nxRlclZLFaNzgkAfD6fzvdyc3PDgAEDEBYWhq+++oour7pffdg0ePBghISE0DKFQqF2LkIItm3bhk8//RSjRo0CIQQHDhyAi4sLTp06hSlTpmg9p9IeJycnEEIwb948nDp1Cn/88QdWrFiBo0eP4sSJEzhz5gxGjBhB6/jDDz8gJycHc+bMQf/+/WFubq6mW3h4OMaMGYN3330XGzduVLNJ2erk4OAAKysrtf3qWk/K/9f0WlLuK5VK6ftF9X7SBY0eKFWFRCLBnTt3sGLFClrGYrEwYMAAXLt2DQDQpUsXZGVlIT8/H1ZWVoiMjMS8efMqPeaGDRuwdu1aDXloaCg9DNHT0xMdOnTAw4cPkZKSQpfx9/dHy5Ytce/ePQCgW64CAwPh5eWFyMhIFBcXAwDc7OxglpuLgtOncat5c7UK7du3LwQCAS5cuKCmw9ChQyESiRAREUHLOBwOhg0bhpycHNpmALCwsEC/fv2QmpqK+/fv03IHBwd0794dcXFxePr0KS1/nU03b95EdnY2LddmEwAEBwfD0dERoaGhOrWpb9++SExMxLNnz4zGJn2vp4iICKOzSR/rycHBAWw2W60lvDFtevr0KQghKCkpgUQiAY/HAzg8lJQIIVfxu4lAAD6fh6KiYhCVl62pmSm4XC4KCwrVdDe3MAdFUSguKlaTW1halJ+vuERNbmVtBQ4UKC0tpWUsFguWlpaQSCQQiURqPgDKP6aUH78xMTG4evUqvL29IRKJIJFI6PI8Hg8URUEoFOLrr7/G1q1bURUPHjyAn58ffWxVH1MUpSYXiUT0C7+4uBhJSUnIyMhAt27dAJQHuRRFoVOnToiMjMTw4cO12qQMnMvKyuiPey6XS7dCHTp0CM2aNUOfPn1QVFQEPp8PgUAAoVCIefPm4fTp0/jjjz8wfvx4+piHDx/GO++8g48//hiffvopAKjprvQ1IUTDVktLS9omVaytrSGTydRGm2urp+LiYnA4HJibm6vZpKwPU1NTjXpSzuYtkUgQGRlJ3/fK+6liF2NDoVdrvVEUhdOnT2P06NEAgJcvX8LNzQ1RUVEIDg6myy1btgz//PMPbty4AQD4888/sWzZMhBCMGjQIGzZsqXSc2hrUfLw8EBOTg69VszrvhaVrU8cDgcURWn9Wiy5FIqMDz8Ex8kJXpcuglL5cmzsr0VD+6pX3a6qiyHbpM/1RAiBTCYDh8MBj8czCptU0bd6oigKIpGIfp40tk1CoRDJycl0XqhIKkeb1aFoDKLXDoKA+9+zs6qWh5kzZ+LQoUMwMTGBTCaDWCwGi8XCsWPHMHbs2EpbsnJzc5GXl1fl8X18fGgfazuGsiybzcbJkycxZswYWh4VFYVevXrhxYsXcHNzo489adIkUBSFo0ePaj3nrFmzUFBQgNOnT0OhUODy5csYOXIkFi5ciG+++QatWrVCixYtcPr0aQ3d8/LyYG9vj6+++grLli3DwYMHMWfOHADAihUrsHbtWq2tZH///Tf69++PvLw8tRYlbbYqqU6LkrIlqTatk2KxGAkJCfDw8ICJiQntZxaLhby8PNjZ2TFrvVWH13XfqcLn8+s8fYBMJkNYWBgGDhxY6bBHs75vgGVlBVlmJkqvXYNZz551OmdTRiaTITQ0FCEhIXo314wxonp983i8xlbH6KnO84ShevTt2xc7d+6EUCjEtm3bwOFwMG7cOI3utuLiYlhaWoKiKNja2sLW1hbA67uAdM25c+dgYWEBqVQKhUKBKVOmYM2aNfT2mrRzCAQC9OjRAz/99BMmT56M1q1bN4DGmij9rWx9M0T0OlCyt7cHm81GZmammjwzMxPOzs51OvbOnTuxc+dO+kurJl1vd+/eBVB11xsAtB8wAGUnTyJu9268VGnGNPSuAl13f9jb2wMA4uPj8fz5c6OwyRDqiel6041NNjY2AKDXXW8xn4c0WtebahfQ67reTExM6BylrVu3olevXti7dy+mTJmi1qWjRBddb8ocoYSEBLi5udHdVC9fvkS7du3ooE1b11vfvn2xdetWEELg4uICDodDLwPi5+eHmJgY+tyqXW+3b98GALi7u9N2s9lsHDx4EG+99Rb69euHsLAwtG/fnul6qwZ63fUGAF27dkVQUBB27NgBoDypzNPTEwsXLsTy5cvrfM6ioiJYWVnVqOtNJBIhNDSU/gKsrFldGheH5LHjAA4HPuGXwX71QDT0roLGSObW1qJkyDbpcz1JpVK6hcPU1NQobFJF3+pJLpfjwoULai1K+tT1ZijJ3DNnzkRBQQFOnTpFy3/77TcsXboU8fHxdLdNxRalhu56I4TA3d0dS5cuxYcffghCCAoLC+Hs7Ix9+/ZVmsyt2vWmzQeHDx/GtGnTNJK5CSEYN24cIiMjkZiYCHNzcxw8eBDvv/8+8vLyIBaLMWHCBNy+fRvh4eFo2bIlfeyG6HpTKBR0ixKLxTLIrrdGnx6gpKQE9+/fp794EhMTcf/+fforbcmSJdizZw8OHjyI2NhYvPvuuxAKhfQoOH3GpGVLmLRuDchkKK7wZcjAwMDA0LBMmDABbDa7yqH7tra2aNasWZW/qiYxrvgOS0pKUnuHURSFxYsXY926dfjjjz/w6NEjTJ8+Ha6urmqNAjVl8uTJGD16NGbOnIm9e/ciKSkJDx8+xLx583D27Fn8+OOPMDMz09iPz+fjxIkT6Nq1K/r27Yvo6Oha69BUaPSut9u3b6Nv377030uWLAEATJ8+HQcOHMCkSZOQnZ2NVatWISMjA4GBgbh48SKcnJzqdN66dL1VZ9QbUN6sbjVuLMpiYpB28CCirK0BijL4roLG6P4YOnQonj9/zox6Y7rejK6eHBwcwOFw9LbrTbVLR9XvAoEAfD4fxcXFai0tZmZm4HK51eqmAurepaP0AaA+6g0o79JZuHAhNm7ciKlTp9KBg7JLpz5sunXrFvr370/Lli5dCgB4++236TmI5s2bh7y8PMydOxcFBQXo1q0bjh07BolEAplMVu1Rb0qbTE1NUVZWhj179mDXrl3YsmULFi5cCBMTEwQFBeHs2bPo1q0bioqKIBAI6H1V9T9y5AimTZuGfv364ffff0fr1q2ZrrdK0Kuut8agNl1vUqmU7nuubNQbUN48SIqKENe7D4hEAvejv8GkdWuD7ypojFFvIpEIpqamzKg3HY16Kykpgbm5OTPqTUej3vLz8+nnSWPbZKhdbzWRKxQKuhvfWGzS53pSKBR0t5shdr01eouSvsDlcjVGnLDZ7EpHWV25cgVDhw5V20dr86y1NSwGDEDRhQsQ/v4HLAIC1M5ZmS4VYbFYdBJfdeSV6V6ZvLKm5crkNdG9Mnl1bZJKpYiIiNDwtxJDtEmJPtaTVCqlr++qdDckmyqiTzap+ruiro1lE0VRGvspX2YVqUyu7ZzK8tWV1/Sc1ZErFAqUlJTA0tKSfnlX9zj6alNd5A1tk/LDS5kTVlvdtb2jq+oSrU+YQOkV9TkztxKl3HzUKBRduIDCs2dhs+QD8F41/xrqF3BjJHMDzMzcukzmBpiZuXVlkxJmZm7dtL6objcWm+oi15VNyv/XVEflvszM3I2ALqYHUOZU/FtUCA9ra3ALCnB18xZ0/uB9g86pYKYHaBr1xOQoMdMDGFKOUk1yX5QYk036Xk9MjpIBU9vpAS5fvox+/fpVOT2A6hdw7s6dyN/9A0w6doDXoUOgKMpgv4Abo0UpPDwc/fv3Z6YH0FGLUnh4OPr168dMD6ADm+RyOS5dukQ/TxrbJmPPUVK+7JVdQcZgU13kDW2TMUwPwARKrwKlhna0NCMD8YNCQCQSePz4A8x7926wczEwMDDUlrKyMiQmJsLHx4d+MTEwNBZVXY+6en83+jxKhohCoUBWVpZGJF4VXGdn2EybBgDI2rJVbSZbhqqpjb8Zag/jb93C+Fu3KPNdmngbgc4wBn832RylitQkmVssFuPatWuvnZm7YleB1ayZKDh+HOInT1B47hzMKqxPZyhdBY3R9Xbt2jVmZm4ddr0pr2+m6003XW+qzxN9sMnYk7mFQiHdAmEMNtVFrouuN6FQWOuuN+U5mWTuRkCXydyqyae2PXrA/tIlZH+7Hf9IpYDK8EZDST5lkrmbRj0xydxMMjeTzG04Nul7PTHJ3AZMQ671pu0LWFFaiuRhwyHPyYH98uWwnjaV3mYoX8CN0aLErPXGrPVmrPXErPXGJHMbe4uSoSdzN9kWpYrUZMJJLpcLCwsL8Hg8tQmvqjVBnpUVHBYuQMaatcj/8UfYjh8PtrlZ5eVfUXHyt9fJjWnSP4qiYGFhAQ6Ho1UfQ7RJiT7Wk9LfPB6vSt0NyaaK6JNNCoVC6/OkMt0rk9enTRRlvBNOEkLoF7ax2FQXeUPbpLyOlD6vre6NOeEkk8xdCzgcDvr161frSrIeNw48Ly/I8/KQd+BA/SpnhNTV3ww1g/G3bmH8XT/MmDGDftFyuVz4+Phg2bJlKCsrUytHUZTaLNF1JTIyEiNGjICrqysoisKZM2c0yhBCsGrVKri4uEAgEGDAgAGIi4tTK5OXl4dp06bB0tIS1tbWmD17NkpKSqo8t7e3N22zmZkZOnbsiOPHj2sc9/3334eXlxd4PB5cXV0xa9YstS5joNx/FRfpPXHihFqrYmW/A1W8x+rb340Bc2e+oibJ3BKJBC9evICbmxstq2lXgf37i/HygyXI3bcP5uPGgWNvZzBdBbru/iCEID09Ha6urmrHMGSb9LmeFAoF0tLS4ObmBj6fbxQ2qaJv9QSUrzivfJ7og02GmMwNAIMHD8bevXshlUpx584dzJw5ExRF4auvvlIrL5VK6RbTutpUUlKC9u3bY8aMGRg/fjwUCoVaNx8AbNy4Edu3b8fBgwfh7e2NlStXIiQkBI8fP4ZAIABFUZg2bRrS09Nx6dIlSKVSzJ49G3PnzsWvv/5aqY4AsHbtWsyZMwfFxcXYsmULJk2aBBcXF3Tv3h15eXno3r07eDwedu3ahdatWyMpKQmrVq1Cly5dcO3aNXh7e9O6qtq9Z88eLFq0CN999x2GDRtG+/ibb77BpUuXEBoaSteTpaWlmm8q+lE5y39triWlbkwydyNQl2TuW7duIScnB48ePQJQy+TT/v1R5u4Okxcv8GjhQqS/9SaGDhtmEMmnjZHMnZOTg5KSEiaZW4c2xcbGGp1N+lhPNjY2ePToEf08aWybDDWZW/mv8jner18/9O3bF2FhYVi9erVGMjeXy0VpaWmdbRo8eDC6d+9Oy0QiEf3CLy4uBiEE27Ztw9KlSzFq1ChIpVLs2LED/v7+OHLkCCZMmIC0tDRcvHgR4eHhaNWqFYDy4GrcuHH44osvYGdnRx9fNfFZoVCAy+XC1NQUNjY22LlzJw4dOoSTJ0+ibdu2WLZsGV6+fInnz5/T+YaBgYE4evQounTpggULFuDIkSMAyoNH5YfSN998gzVr1mDv3r0YPny4Wj0pAx6ln62trSGVStV8o62eRCIRk8xtqOg6mRv476YWPn6M1ClTAZkMjuvXwXbMGAD6/wXMJHMbRksFk8xtGPWk98ncACiZqEatAPXWosQRgFQoW9k5Z86ciYKCApw6dQoA8PjxY4SEhMDLywvXrl2rNJl7/fr12LBhA6oiOjoaXl5er7WJzWbj5MmTGPPqWU4IQUJCApo3b447d+6gY8eOtO59+/ZFQEAAvv32W+zfvx9Lly5Fbm4ufWy5XA6BQIBjx46pdYmp+sDHxweLFy/G4sWLabm1tTVmzZqFjRs3wsHBARMmTMCPP/6o4bMNGzZg5cqVyMrKgq2tLe0/f39/7Nq1C6dOnUL//v01bF2zZg1+//13evQ3k8zdhKhJMrfyYVVxn5omn5q3aweHhQuRvW0bctZvgGVwMLguLnqffAo0XkKttuMYuk36Wk/K/xuTTUr0ySZlEKPtGaQXydwSIbDetTxg0qJLZfLKEmAry1TReuxPXoLimWnKK0n6PXfuHCwtLSGTySAWi8FisfDdd9+pla/YRfTuu+9i0qRJlWhVjpubG4DqJT5XTFrOysoCALi4uKjp7uTkhMzMTFAUhYyMDDg6Oqodn8ViwdbWFpmZmVrPq3oOFosFiUSCzZs3o7CwEP3790dubi4KCgrQunVrrT5r3bo1HcjZ29uDoihcvHgRf/zxB71EV1W21jTRv7L/V1a+orwxk7mZQKkWUBQFBweHeklOs5szGyURERA9eICXn3wCz717QVVyMzZV6tPfDK+H8bduYfxdf/Tt2xe7du2CUCjE1q1bweFwMG7cOLUyyhY1pb9tbW1ha2vbGOrWCx9//DE+++wzlJWVwdzcHF999RWGDRuGzMxMAJotdVXRvn175OTkYPXq1QgKCoK5uXmd9avob0OECZRqAYfDUeuTrgsUhwPXr79CwugxKL12Hfm/HobtW2/Wy7GNhfr0N8PrYfytW/Te31xT4JOXjXfuGmBmZoZmzZoBAPbt24eAgADs3bsXs2fPpstQFKUWAKxfvx7r16+v8rgxMTHw9PSskS5KnJ2dAQCZmZl0q5Ly78DAQLqMsuVJiUwmQ15eHr1/ZXz00UeYMWMGzM3N4eTkRAckDg4OsLa2RmxsrNb9YmNjQVEU7S+gvOXsxIkT6Nu3LwYPHow///wTFhYWNbZZlYr+NkSYQOkVNV3C5Pnz5/Dz86Obr+uSU0G5ucFuyRLkrF+PrM2bwe8aBJ6PD11e33IqdJ0nolAokJiYCF9fX40mbkO1SZ/rSS6XIz4+Hn5+fjAxMTEKm1TRt3oihODJkyf080QfbNIY9cYza7xRb1WMpqp4DEC9a23FihVYunQppkyZoragqlgspv+eO3cuxo8fX+XxlQFOdWyqOOrNy8sLzs7O+OuvvxAYGAhCCAoLC3Hjxg3MmzcPhBAEBwejoKAAt27dQqdOnQAAly9fhkKhQFBQUKUjygDAzs6OfjZW1H3ChAk4fPgwPv/8czg5OdFykUiE77//HiEhIbC2tqZ1JoTA09MTf//9N/r164fBgwfjwoULdCK+qq1KnaozOlEsFtOJ2cyoNwOiLqPebt++jZycHHoEVr2M0rEwR0BwMETXruHZu/9D6vx5IK8moNO3UTqNNepNLpczo950aFNSUpLR2aSP9WRjY4Pnz5+rXdvMqLfajXqTy+Vqxx8+fDiWLVuGbdu24X//+5/a8fl8PkpLS8HhcODo6KhmU1FRkUZQBECrTUKhEA8ePKBlT548wb1792BjY0MvTzNv3jx8+eWXaNGiBdzd3bFy5Uo4OzujX79+KC4uRqtWrTBo0CDMmTMHW7ZsgVQqxcKFCzF58mTY2tqqnbfiqLeysjIUFRVprafly5fj8uXLGDhwINasWQN/f38kJydj3bp1kEql2LlzJ31s1VFv7u7u+P333zFy5EgMHDgQJ06cgLu7Ox30qPq5uvUkFosNdtQbSBOnsLCQACA5OTlEIpEQiURCZDIZIYQQmUxGy1TlpaWl5MyZM0QoFBKJRELkcjkhhBCpVKpWXilXlUkkEqJQKIhCodCQi1++JE+7diMx/i1JyuL3iVgsJhKJhBBCiFwuVysrlUqrlFeme2XyynSvq02VyWtik9LfIpHIaGzS53oSCoX09W0sNulzPUkkErXnSWPbVFJSQqKjo4lQKCRyuZwoFApCCCEKhYLI5XL69zq5qkwpr1i2KnlNzzl9+nQyatQoDfmGDRuIg4MDKSoqInK5nMhkMpKfn09vr6tN4eHhBIDGb/r06XQ5mUxGPvvsM+Lk5ET4fD7p378/iY2NVTt2Tk4OmTx5MjE3NyeWlpZkxowZpLi4uEodvby8yJYtW6rUPSsriyxatIh4eHgQLpdLnJycyPTp00lSUpKaTW+//TYZOXKkWn2kpKSQ5s2bk27dupGCggKiUCjIqlWrSEBAQLXrSelvmUxWq2tJJBKR6OhoUlRUpHE/5ebmEgCksLCQNCTM9ACvpgeoyfBCqVSKCxcuYOjQoZWOSqktpbduIXnWbEAqhf2ihXBYsKBej2+INKS/GTRh/K1b9M3fZWVlSExMhI+Pj1p3lbGgUChQVFQES0vLSkexMdQfdfV3Vddjbd7ftYG5SmoBi8WCp6dng9xkpl26wGX1KgBAzo7vUPTnn/V+DkOjIf3NoAnjb93C+Fu3UBQFHo9n0KOwDAlj8DdzZ9YCNpuNDh06aJ2DpD6wHj8etjNnAgBeLl8B0aPHDXIeQ6Gh/c2gDuNv3cL4W7coZ5U25Be3IWEM/mYCpVogl8tx7949tZEk9Y3jh0th3qcPiFiMFwsWQJqe3mDn0nd04W+G/2D8rVsYf+sWQghKS0trNL8QQ+0xBn8zgVItUCgUSElJ0Toqor6g2Gy4bv4G/ObNIMvKQsqMmZBmZr1+RyNEF/5m+A/G37qF8bduIYRAIpEY9IvbkDAGfzOBkh7DNjeHxw8/gOvmBklyMlJmzIBMZcgxAwMDAwMDQ8PSZOdRqkhNJpxUzuWgLN+gE+Q5OMDz4EEkv/kmJImJSJ4xE657fwLX3r7JTPqn3Ldi14Qh26TP9aTcRyqVGo1NquibTUpU7Wpsm0jFCSdrOElgvU44WYNzVkeuut1YbKqLXFc2Kf/PTDhpQNRlwsl79+4BAMLCwgDoZoI8861bkD1vPhAfj6eTpyB/yQfoO3Jkk5n0z9/fHwkJCYiLizMam/S9niIiIozOJn2sJzs7O7BYLPp50tg2GeqEkzWZyFC58K8x2aTv9VRcXGywE04y8yi9mochJyeHnodBX7+ARfHxSJs1G/LsbPCaN4fnTz+B7WDPfNUzNjE2MTbVm01CoRDJycnw9vaGiYmJ3rdU6FLO2KR7m8RiMRISEuDh4UHPo6S8b/Ly8mBnZ9fg8ygxgVItJqySyWS4efMmgoKC6AeXrhAnJCD57emQ5+SA4+oCzz17wPfz06kOuqYx/d0UYfytW/TN38Y+4SQhBEKhEGZmZgY9ZN1QqKu/mQknDRRCCLKzsxsli5/v6wvvI4fB8/KC7GU6kqZOQ+mdOzrXQ5c0pr+bIoy/dQvjb91CCNFo2WNoOIzB30ygZIDwPDzg9dsRCAIDoSgsRMrMWSi6FNrYajEwMDA0GjNmzKC7cLhcLnx8fLBs2TKUlZU16HkjIyMxYsQIuLq6gqIonDlzRqMMIQSrVq2Ci4sLBAIBBgwYoJZvCQB5eXmYNm0aLC0tYW1tjdmzZ6OkpEStzMOHD9GrVy+YmJjAw8MDGzdurFK3pKQk2icURcHOzg6DBg2i82yVREdHY+LEiXBwcACfz0eLFi2watUqlJaWqpXz9vbGtm3b1Oz68MMPYWlpqXYe1R+bzYaNjQ2SkpJe70w9hQmUDBSOjQ089++D+YD+IBIJ0t5/Hzl79hh01M7AwMBQFwYPHoz09HQkJCRg69at+OGHH7B69eoGPadQKERAQAB27txZaZmNGzdi+/bt2L17N27cuAEzMzOEhISoBXHTpk1DdHQ0wsLCcO7cOURGRmLu3Ln09qKiIgwaNAheXl64c+cONm3ahDVr1uDHH398rY5//fUX0tPTcenSJZSUlGDIkCEoKCgAAFy/fh1du3aFRCLB+fPn8ezZM6xbtw4HDhzAwIED1ZKrVZHL5Zg9ezZ+/vln/Pnnn0hPT6d/wcHBeOedd5Ceno60tDQ8efIEHh4e1fSoHkKaOIWFhTVefVgul5OkpCR6BePGRCGTkfS1a0mMf0sS49+SpC56j8iKSxpbrXpFn/zdFGD8rVv0zd8ikYjExMQQkUjU2KrUiOnTp5NRo0apycaOHUs6dOigJlMoFKSsrIxesb4+AUBOnz6tcT5nZ2eyadMmWlZQUED4fD45cuQIIYSQmJgYAoDcunWLLvPnn38SiqJIWloaIYSQ77//ntjY2BCxWEyX+fjjj4m/v3+l+iQmJhIA5N69e7Ts6tWrBAC5ePEiUSgUpHXr1qRz584a19/9+/cJRVHkq6++omVeXl5k69atpKysjIwZM4Z4eHiQJ0+eaJy3T58+ZPHixbT9dfF3Vddjbd7ftYFpUaoFLBYLXl5eerGIJcVmw2nlSjivWQNwuSgODUXSxIkQJyQ0tmr1hj75uynA+Fu36Lu/CSEolZY2yo/UoYX88ePHiIqKAo/HU5NTFEUPOweA9evXw9zcvMqf6hQQNSUxMREZGRkYMGAALbOyskLXrl3p6RyuXbsGa2trdO7cmS4zYMAAsFgs3Lhxgy7Tu3dvNXtCQkLw9OlT5OfnV1sfgUAAAJBIJLh//z5iYmKwZMkSjesvICAAAwYMwJEjR9TkJSUlGDZsGGJiYnD16lX4+/tXeb6K/jZEGn+IhQEik8kQGRmJ3r1768UoFYqiYDN5Ekxa+uPF4vchSUhA0vgJcNmwAZYhgxpbvTqjb/42dhh/6xZ997dIJkLXw10b5dw3pt6AKde02uXPnTsHc3NzyGQyiMVisFgsfPfdd2plyKu5gJTzBc2fPx8TJ06s8riurq610h8AMjIyAABOTk5qcicnJ3pbRkYGHB0d1bZzOBzY2tqqlfHx8dE4hnKbjY3Na3UpKCjAF198AXNzcwQFBeHvv/8GALRq1Upr+VatWuHff/9Vk33xxRewsLBAbGwsHBwcXnvOiv42RPTvrjQAlBVfl6+dhkAQGAifkyeQtmQpSm/eRNrixRBOmgSnj5eBZVr9h42+oa/+NlYYf+sWxt/1R9++fbFr1y4IhUJs3boVHA4H48aNUytDSPms4+TVLNG2trawtbVtJI11Q/fu3cFisSAUCuHr64ujR4+qBW41ufYGDRqEv/76C+vXr8fWrVtfW76ivw0RJlAyMjj29vDctxfZ27Yh96e9KDh6FKU3bsD1m28gaNumsdVjYGAwMAQcAW5MvdFo564JZmZmaNasGQBg3759CAgIwN69ezF79uxK91m/fj3Wr19f5XFjYmLg6elZI12UODs7AwAyMzPh4uJCyzMzMxEYGEiXycpSX/RcJpMhLy+P3t/Z2RmZmZlqZZR/K8tUxtGjR9G6dWvY2dnB2tqalrdo0QIAEBsbiw4dOmjsFxsbS5dR0r9/fyxatAijRo2CQqHAt99+W+W5jQEmUHqF3q71htrNumv3wQfgd+uGzE8+hSQpCUmTJ8Nh0SJYz5wBohLVG8JMwsxab8xab3W1SRV9s0mJPq/1Zso1bbQZn1WP87o1wQColV+xYgWWLl2KKVOm0JMVqu5HCMHcuXMxfvz4Ko+vDHCqY5Oy9UQp9/LygrOzM/766y8EBgaCEILCwkLcuHED8+bNAyEEwcHBKCgowK1bt9CpUycAwOXLl6FQKBAUFASFQoGuXbti5cqVkEgk4PF4IIQgNDQU/v7+sLKyoltsVHVX6uvh4QFfX181f1IUhcDAQLRs2RJbt27FxIkTwWKxaJvu379PtxwprwOlTQMGDMDvv/+O0aNHgxCCb7/9VmurlKouyv8za70ZEIa21lut1nHKzQXr3flwOnUaFo8eIXvrVmSeO4uUESMgedXsaijrbQUHByMxMRHPnj2j5cwaYsxabzW1SR/ryd7eHmw2m1nrrY7rogHlH1Oqxx8+fDiWLVuGbdu24X//+x8t53K59FpvHA6Hzg9S2lRUVKQRFAHQapNQKMSDBw9o2ZMnT3Dv3j3Y2NjQeUPz5s3Dl19+iRYtWsDd3R0rV66Es7Mz+vXrh+LiYrRq1QqDBg3CnDlzsGXLFkilUixcuBCTJ0+Gra0tioqKMHz4cHz++eeYMWMGPv30U9y5cwfbt2/HunXrUFRUpLWeVOdhqqyetm3bhrFjx2L06NH44IMP4Ovri5s3b2Lp0qXo0qULZs6ciaKiInrm67KyMhQVFSEoKAi//fYbpkyZAplMptYqp3yvGstab8z0AK+GF+bk5BCJREIkEgmRyWSEEEJkMhktU5VLpVI1uXJYZWVyVZlEIiEKhYIoFIpqywkpH0KsKpNKpVXKVXUXi8Uk9/gJ8qRjp/JpBNq0JRnffkvEQqHB2mSM9cTYxNikDzaVlJSQ6OhoIhQKiVwup4d1KxQKIpfL6d/r5Koypbxi2arkNT2ncnqAivINGzYQBwcHUlRUVG3da2JTeHg4AaDxmz59Ol1OJpORzz77jDg5ORE+n0/69+9PYmNj1Y6dk5NDJk+eTMzNzYmlpSWZMWMGKS4uVtPl3r17pGfPnoTP5xM3NzeyYcOGKnWPj4+npweoyqb79++TsWPHEltbW8Llcomfnx/59NNPSXFxsVp5Ly8vsmXLFrXjREREEDMzM/Luu+8SmUxG5HI5PT1ATf2rTS4SiUh0dDQpKirSuG9yc3N1Mj0As9ZbLdaKkUqlCA0NxaBBg8DlchtYw/pDmp6OjLWfo+TVSAd+82Zw+eILCF71k+srhupvQ4Xxt27RN38b+1pvCoWCbiHR1ykZjIm6+ptZ682A0VXfaH3CdXGB+67v4bZlM9i2thDHPUfSlKl4+dlnkOXlNbZ6VWKI/jZkGH/rFsbfDAz6CxMoNTEoioLl0KHwPX8OVqNHA4Sg8MRJxA8egrxfDoEwD2wGBgYGBgYaJlBqonBsbOD61QZ4Hf4V/FatoCgqQua6dUgcOw7C69cbWz0GBgYGBga9gMlRqkUfJzGCmUZVIXI5Co4fR/bWbZAXFgIAzPr0huOSpTDxb/GavRseY/O3vsP4W7fom7+NPUeJvBoirzoUnqHhqKu/mRwlA0a5Xo4xQLHZsJk8Gb4X/4TN1KkAhwPhP5FIHD0aLz/5FNJXU+g3Jsbkb0OA8bduYfytW5gASbcYur+ZQKkWyGQyXLhwwegSMDk2NnBetRJ+587CIiSkPH/p1CnEhwxG5ldfQ5ab2yh6Gau/9RXG37qF8bduIYSgqKiIWTJGRxiDv5lAiUEDnrc33L/dBu/fjkDQuROIWIy8AwfwfMBAZH3zDWQ1WKmagYGBgYHBkGECJYZKEQQGwuuXX+CxZw9M2rUDEYmQ+9NexPcfgKwtWxuthYmBgYGBgUFXMIESQ5VQFAXzXj3hfewo3Hd9D37rVlCUliL3xx/xvF9/ZHy5DtKXLxtbTQYGBgYGhgaBGfVWy1FvMpkMHA7H4JPUagohBCXh4cj54UeUPXxYLuRwYDViBOxmzQS/efMGOWdT9XdjwPhbt+ibv5vCqDfyanFWffC3sVNXfzOj3gwY1QUZmxIURcGif394H/0Nnvv3wbRbN0AmQ+Hp00gYMRIp78xFydWr9Z6411T93Vgw/tYtjL/rzowZM+iXMZfLhY+PD5YtW4aysjKNsvX5fIqMjMSIESPg6uoKiqJw5swZredbtWoVXFxcIBAIMGDAAMTFxamVycvLw7Rp02BpaQlra2vMnj1bbVFbAHj48CF69eoFExMTeHh4YOPGjRrnOn78OFq2bAkTExO0a9dOY2Hlihw4cID2G4vFgru7O2bOnImsrCy1cufOnUOfPn1gYWEBU1NTdOnSBQcOHFArk5SUBIqi1BZhLi4uRr9+/WBmZkafR9vP29u7Sj0bE6MIlLy9vdG+fXsEBgaib9++DX4+mUyGiIiIJj1KhaIomAUHw+vAfnj/dgQWAwcCFAXhlStInT0HiaNGo+DkKSi0PKRqCuNv3cL4W7cw/q4/Bg8ejPT0dCQkJGDr1q344YcfsHr1arUyynmr6itYEgqFCAgIwM6dOysts3HjRmzfvh27d+/GjRs3YGZmhpCQELUgbtq0aYiOjkZYWBjOnTuHyMhIzJ07l95eVFSEQYMGwcvLC3fu3MGmTZuwZs0a/Pjjj3SZqKgoTJkyBbNnz8a9e/cwevRojB49Go8fP67SBktLS6Snp+PFixfYs2cP/vzzT7z11lv09h07dmDUqFHo0aMHbty4gYcPH2Ly5MmYP38+Pvzww0qPm52djX79+qG4uBjR0dFIT0+nfwCwf/9++u9bt25VqWOj0qBL7uoILy8vUlxcXKt9CwsLa7z6sEQiIWfOnKFX7WYoR5ycTNK/XEdiO3QkMf4tSYx/S/K0azeS+c03RPLiRa2Py/hbtzD+1i365m+RSERiYmKISCRqbFVqxPTp08moUaPUZGPHjiUdOnRQk8nlcpKfn0+vQF+fACCnT59WkykUCuLs7Ew2bdpEywoKCgifzydHjhwhhBASExNDAJBbt27RZf78809CURRJS0sjhBDy/fffExsbGyIWi+kyH3/8MfH396f/njhxIhk2bJja+bt27UrmzZtXqc779+8nVlZWarJ169YRFotFSktLSUpKCuFyuWTJkiUa+27fvp0AINevXyeEEJKYmEgAkHv37pGUlBTi7+9P+vXrR1JTUzX8rc1X2qjqeqzN+7s2GEWLEoN+wPP0hPOnn6B5RDgcP1wKrqsr5AUFyN3zE54PHITUBQtRcuVfEIWisVVlYGCoJoQQKEpLG+VH6tDq8/jxY0RFRYHH41VZbv369TA3N6/yl5KSUms9EhMTkZGRgQEDBtAyKysrdO3aFdeuXQMAXLt2DdbW1ujcuTNdZsCAAWCxWLhx4wZdpnfv3mr2hISE4OnTp8h/NWXLtWvX1M6jLKM8T3URCARQKBSQyWQ4ceIEpFKp1pajefPmwdzcHEeOHFGTP336FD169EDr1q1x7tw5mJub1+j8+gansRWIjIzEpk2bcOfOHaSnp+P06dMYPXq0WpmdO3di06ZNyMjIQEBAAHbs2IGgoCB6O0VR6NOnD1gsFt5//31MmzatwfXmcBrddXoL28oKdnPmwHbmTJT8/TfyDh1C6bXrKLl8GSWXL4Pr7g7rCRNgPXYMOA4O1Tom42/dwvhbt+izv4lIhKcdOzXKuf3v3gFlalrt8sqXskwmg1gsBovFwnfffVflPvPnz8fEiROrLOPq6lptHSqS8WplAycnJzW5k5MTvS0jIwOOjo5q2zkcDmxtbdXK+Pj4aBxDuc3GxgYZGRlVnqc6xMXFYffu3ejcuTMsLCzw7NkzWFlZwcXFRaMsj8eDr68vnj17piZ/++230aNHDxw/fhwURUEsFlf7/PpIo9+dyv7dWbNmYezYsRrbjx49iiVLlmD37t3o2rUrtm3bRkfRygvr33//hZubG9LT0zFgwAC0a9cO7du3bzCduVwuhg0b9tpypdJSmHKrf5MbGxSbDYv+/WHRvz/Ez58j/8hvKPzjD0hfvED21q3I3rEDFn37wnr8OJj16AGqkpdFdf3NUD8w/tYtjL/rj759+2LXrl0QCoXYunUrOBwOxo0bp1aGxWLB2tqa/tvW1ha2trY61lS/KCwshLm5ORQKBcrKytCzZ0/89NNPtT7eyJEjcebMGZw6dQoTJkxQ87ch0uiB0pAhQzBkyJBKt2/ZsgXvvPMOZs6cCQDYvXs3zp8/j3379mH58uUAADc3NwCAi4sLhg4dirt371YaKInFYrXotqioCAAglUohlUoBlN9IbDYbcrkcCpVuIqVcIpEgJycHdnZ2tIzFYkEmk4EQApFMhJXXVuJGxg1cGncJpiz1YEn59VgxebMyOZfLhUKhgFwup2UURYHD4VQqr0z3yuRK3ZVUtKmiXOmr6trE8vKC3fKPYbP4PZRcCkXxyZMQ3b+P4rAwFIeFge3gAMuRI2Ezfhy4Xl5qNhFCUFBQABsbG7VjN7ZNxlhPMpkMCoUCubm5sLOzA5/PNwqbVNG3egLKWwSUzxN9sIm8WshUoVAAJibwv3uHHuatehyKoiqVKyp0sSuHhlfsTqtMzmKxABMTteNUdU4AMDMzg6+vLwDgp59+QocOHbB3717MmjVLrbxcLqd9uX79emzYsAFVER0dDS8vr2rZpFAo6L8JIfQHfXp6OlxcXGjdMzMzERAQAEIInJ2dkZWVpXZ8uVyOvLw8ODk5QaFQ0C1D5NVQe0IInRTt6OhIHycjI0PtOBkZGXB2dq6yniwsLHD79m2wWCy4urpCIBDQ10Dz5s1RWFiItLQ0uLq6qh1DIpEgPj4eb7zxxn/XC4BPPvkE7du3x9SpUyGXyzF27Fh6+gul7kpfKRSK19YrIQRSqZS+X1TvJ13Q6IFSVUgkEty5cwcrVqygZSwWCwMGDKD7XIVCIV3RJSUlCA8Pr7IZdcOGDVi7dq2GPDQ0FKavmng9PT3RoUMHPHz4UK1v2t/fHy1btsStW7eQk5NDywMDA+Hl5YXIyEh6NEVMcQyECiEuJF6AZbylWoX27dsXAoFAY9jm0KFDIRKJEBERQcs4HA6GDRuGnJwctX5mCwsL9OvXD6mpqWpDMR0cHNC9e3fExcXh6dOntPx1Nt28eRPZ2dmV2qQkODgYjo6OCA0Nrb1NpgIM++0IXl67hqS9e2F59x6QnY38vXuRv3cvWK1aIt3fH8Xt20NhZgZ7e3vk5OSgWbNmeP78uX7aZIz1xNikE5tsbGw0Rvw0pk1Pnz4tny+tpAQSiQR8Ph8CU1OUlJSo+V0gEIDP56OoqEjtxWxmZgYul4uiggI13S0sLEBRFIpffZwqsbS0LD+fil8AwNraGlKpFEKhkJaxWCxYWlpCIpGoTamgDHrkcjn98QsAS5cuxYoVKzB69Gj6Jat63tLSUkydOpX+WDcxMQGPx9MYFacMdooq6K60SVUuEonoF35xcTHs7Ozg5OSECxcuoGPHjpDJZEhPT8eNGzfw9ttvo7i4GMHBwSgoKEBkZCQCAwMBAP/88w8UCgUCAgJQVFSEwMBAfPnll/TcQSKRCOfPn0fz5s3BZrNRVlaG4OBghIaG0g0LABAWFobg4GAUFxdrraeysjJQFEXbyOfz6fXZAGDgwIHgcrnYvHkzNm3apHb9/vDDDxAKhZg4cSKKioro6QyEQiFWrlwJhUKBt956C6WlpXSwZG5uTo/2E4lEKCoqAo/Hg6mpKUQiESQSCX18Pp8PiqIgkUgQGRlJX3/K++nq1avQCfWfH157UCELPi0tjQAgUVFRauU++ugjEhQURAghJD4+nrRv3560b9+etGnThmzbtq3Kc5SVlZHCwkL6l5qaSgCQnJwcIpFIiEQiITKZjBBCiEwmo2Wq8tLSUnLmzBkiFAqJRCKhs/mlUild9uCjg6TtgbZkwh8T1I4hkUiIQqEgCoWi2nJCykdqqMqkUmmV8sp0r0yuqntlNqnK69MmsVBI8i5cIEnvzCUxrVrTI+Zi2rQlye/+j2SfPUt+P36ciEQig7HJkOtJKBTS17ex2KTP9SSRSNSeJ41tU0lJCYmOjiZCoZDI5XKiUCgIIeWjt+RyOf17nVxVppRXLFuVvKbnVI56U5VLJBLi5uZGNm7cSMtkMhk96q0+bCoqKiJ37twhd+7cIQDI5s2byd27d0lSUhJdbsOGDcTa2pr8/vvv5MGDB2TkyJHEx8eHCIVC+tiDBw8mHTp0INeuXSORkZGkefPmZMqUKbQueXl5xMnJibz11lvk8ePH5MiRI8TU1JTs2rWL1uXq1auEw+GQTZs2kejoaLJq1SrC5XLJo0ePKrVp7969xMrKqsr62LJlC2GxWGTFihUkOjqaPHv2jHzzzTeEz+eTpUuX0uXj4+MJAHL37l3aj+vWrSNsNpscOnRIzb8AyMmTJ1/rd5FIRKKjo0lRUZHG/ZSbm6uTUW963aJUHXx9ffHgwYNql+fz+eDz+Q2oUTlDvIdg271tiM2LxdP8p/C38W/wcxoqFJcL8wEDYDFwIEheHgrPnUPhH2chefIEwvBwCMPD4cvnI/vGTVgMGwrTrl0rzWdiYGBgUMLhcLBw4UJs2rQJ8+fPh5mZWb2f4/bt2+jXrx/999KlSwEA06dPx759+wAAH330EYRCIebOnYuCggL07NkTFy5cUJtp+tChQ1i4cCEGDhwIFouFsWPHYseOHfR2KysrXLx4EYsWLUKnTp1gb2+PlStXqs211L17d/z6669YuXIlPv30UzRv3hynT59G27Zt6zSCcPHixfD19cXmzZuxfft2yOVytGnTBjt37sTs2bOrPPbHH38MqVSK6dOnA4BOBlvVN3q1hAlFUWqj3iQSCUxNTXHixAm1kXDTp09HQUEBfv/991qfa+fOndi5cyfkcjmePXuGw4cPa3S93bt3T2uz+tWrV7V2vYWHh6s1S4aZhOGfjH/Q3aQ7hpoMpeW1aVbPysrS2qyenJystVn9yZMnWpvVK7MpKipKa1dBRZuU3R/nz5+vc/fH62ziZWTA8u49WD16BHZeHl1OZmaGknZtYTpgANpPmYL7lXR/6KNNxlhPjE11s8nW1hbnz59X070xbbp79y4IIfDw8ACPxyvvehMIatz1VlBJ11vF7itl11txDbrexGKxRtebubk5RCKRWg6qskuntLRUrUuHoihYWlpCKBQajU3GWE/KrrcnT54gLS1No+vt7NmzGDlyZIMvYaLXgRIAdO3aFUFBQXRkrVAo4OnpiYULF9LJ3HVB2d+bk5NDO7q+EjWvZ1zH/8L/ByueFS6NuQQeu3z+i8ZO1DS0hFoQAumjRyg4ew7Fly5B8WrOEABg29nBfMAAmA0aCEHHjqA4HIOwyRjribHJOGwSCoVITk6Gt7c3TExMXpu0XZm8PpK5a3rOhpYzNuneJrFYjISEBHh4eNAtcMr7Ji8vD3Z2dsa/1ltJSQnu379Pf/EkJibi/v379FfakiVLsGfPHhw8eBCxsbF49913IRQK1ZLVdI1CoUBqaqrGBVaRbi7d4GjqiEJJIf5J+0dH2hkfBEC2vT0cPv0EPpf/gsvuXbAcOwYsS0vIc3NRePQoXs6eg8R+/ZG1ejVKIiOhUPkqYagZ1b2+GeoHxt+6RyKR1Pt6lAyVU/FDwNBo9ESP27dvq63PtmTJEgDl3WsHDhzApEmTkJ2djVWrViEjIwOBgYG4ePGixqRaNUW16w2o3ai3R48eAah6RMsov1HY82gPfrr+E6SPyy8WQx+lo+uRR8pRbyUlJf+NeuvaFZ5jxqB5mRiJv/4K6uZNID8fRadOo+jUabDMzFDWpjVy/ZpB6O8PhcBEr2wyhHqKjY01Opv0sZ5sbGzw6NEj+nnS2DZpHfUmEFTaTVXZaKrqjBADqu7Skclk1R71phxNpa1Lp+JoKqC8Fa60tNRobNL3ehKJRLWySR9GvelV11tjUJuuN5FIhNDQUHrYZFXN6i9KXmDY6WGgQOH8qPNwNnNmugpqaJNMJkNoaChCQkLUhviq2iSXSCC6cwfCvy6jJDwcctWVrzkcCLp0gUX/frDs2xeUk1Oj26TP9SSVShEWFoaBAwfC1NTUKGxSRd/qSS6X48KFC/TzpLFtMvauN+XL3tLSUm1OH0O2qS7yhrZJoVCguLgYFhYWYLFYBtn11ugtSvoCl8ulH1JK2Gy2xtwbwH8Pq4r7aFuGwNPSE52dOuN25m38mfIn5rb/b4RCxfNVJWexWPRkdNWRV6b762yqrrwmulcmr41N2o7DZrPBFgjA69kTVj17gqxaCdGDBygJD0fx5XBIEhIgunYNomvXkPXlOvBbtID5G2/AvO8bELRvD+rVuRrLJn2tJ+X/jckmJfpkkzKI0fYMaiyblC8u1f2UsopUJtd2TmX56spres7qyFUDA2OxqS5yXdlU2f9fdxxCyifY1HZ/6GrpHyZQekVNZuaWy+Wws7Ojv+pe9wU80mckbmfexum405jecjp43PKkbkP9Atb1V71cLoeDgwMUCoXaeauyybRDB/DatYPNe+9BkpQEYUQESv/+B6L79yF+9gziZ8+Q++OPYFlbw6xnT1j06Q1+165gq8z+begtFbWtJ5lMRl/fxmKTKvpmE0VRas+TxrZJ2UJQUlJCd33oY0tFXeTKWaKNySZ9rSfgvxnolUFPTXQsVVkcWXnvMzNz64i65CjdvXsXubm5CA0NBfD6nArEAXzw8aLkBXad3YVZA2cZdE5FY+WJVDacuVo2OTkhcMN6NLe0xM0ffgD73n2YPX0KFBSg+Nw5FJ87B0JRKHN3R6l/CwhbtEC3N9+EqYVFk62n8PBwo7NJX+upsLCQfp40tk3R0dHIz8+HWCxGWVkZzM3N6dwX1YBLOYt1SUmJ2stWIBBozX0xMzMDRVH07M1KzM3NQQhRy3EBynNipFKpWt4Oi8WCubk5JBIJPbszUP7iNDMzQ1lZmVqOC5fLhUAggEgkUguweTwexGKx0dlkYmKitzaJRKIa2aTstisoKEBxcTEuXbpEl2dylHRMbXKUxGIxnj9/Dj8/P7r5+nVfwF/c+AKn409jiPcQfN37awCG+wWs6696hUKBxMRE+Pr6qjXL1tUmIpWi7MEDiK5GQXjlCsQqLw0AYFlawiy4G0yCg2EaHAzuqxXEjb2e5HI54uPj4efnB5NXa20Zuk2q6Fs9EULw5MkT+nmiDzbJ5XJkZWXRL1HV1gFVaiKvaUtFfZyzMrlMJqu028ZQbaoveUPYpOrvmupoY2MDe3t7NZmuc5RqHCiJxWLcuHEDycnJKC0thYODAzp06AAfH5+G0rFBUQZKNXG0VCrFhQsXMHTo0EpzCCoSnRONyecng0WxcHrkafha+9ZF7SZFbfxdq/NkZKDkyhUI/70K4bVrUFT40uJ5ecGsR3eYde8O065dwbawaDBdGhNd+ZuhHH32t1wuN/ih3RWRSqWIjIxE79699c7fxkhd/K0cLFUZtXl/14Zqd71dvXoV3377Lc6ePQupVAorKysIBALk5eVBLBbD19cXc+fOxfz582FhpC+QutDGvg36efRDeGo4tt/bjm19tzW2SgwV4Do7w2bCBNhMmAAik0H06BGEV/6FMCoKokePIElOhiQ5GfmHjwAsFkzatoVZt24wC+4GQceOYOlgaRwGBl1SWcK3IaNs8TMxMWECJR1gDP6uVqA0cuRI3L17F1OnTkVoaCg6d+4MgUBAb09ISMCVK1dw5MgRbNmyBT///DMGDhzYYEo3BDVJ5lY2e2tLLKuqq+B/7f+Hv1/8jcspl3E/6z7a2LRR08FQugoaY3oAAGoyXdgkCAyEIDAQ1u/Oh7y4GKKbtyC6dg2l169DmpyMsocPUfbwIXJ//BEUjwdBhw4QBHWBSZcuMGnbFhSXa5D1pNxHKpU2+WtPFzYpUbXL0G3S53pS1ctYbFKV65tNqs+ThrBJF1QrUBo2bBhOnjxZaTTo6+sLX19fTJ8+HTExMUhPT69XJRuCuiRz37t3DwAQFhYGoGbJp4HcQNyV3MXWO1sxRjxGLefGkJJPdZ1Q6+npiYSEBMTFxTWuTR07YOhnn6I4MREPfvkFps/jYfr8OTjFxSi9cQOlN24AABRcLkTe3lC0bIm2UyYjy9ISD6KjDaqeIiIimGtPBzbZ2dmBoij6eWIMNul7PVlaWoLFYuHGjRtGY5O+11NYWFi926R3ydyRkZHo3r27zuYt0BUNudabtog9Q5iB0WdHQ6KQYHuf7ejp1pPexnyFGKZNhBBIE5MgvnMbwus3UHrrltp6dABAmZjAJKA9BJ06waRTJwjatwfPwkJvbVJiTPXE2MTYxNhkXDbpXTI3m81Genp6+XB3I6I2yWByuRwPHz5E+/bta9V/v/n2ZhyIPoAWNi1wfMRxsKhGX3JPr6mrv3UNUSggjnuO0lu36J88L0+9EJcLQZs2MO3cCYKOnWDasQPY1taNom9FDM3fhg7jb93C+Fu3NKS/9S6Zu4nPIqCGQqFASkoK2rZtW6uKn9NuDk4+O4ln+c9wPuE8RviNaAAtjYe6+lvXUCwWTPxbwMS/BWzfnAZCCCTx8eVB0+07KL19G7LMTIju34fo/n0AewEA/ObNIOjYCYIOgTDt2BFcDw+1rlldYWj+NnQYf+sWxt+6xRj8XaN+tMZ4aOsKXSRzK7HkWWJm25nYfm87vrv3Hfq59QOPzdPLpk19aK5trGTu+rSJ6+sLcy8vmI8fD0II5C9fQnzvPoS3b0N05w6kSUkQxz2HOO45Co4eLdfLzg4mHQJhEhgI08BAmLZrB8WreXca0iYmmZtJ5jbmemKSuXVrkzEkc1e7643FYmHIkCHgv2YI9KlTp+pFsYZGNZn72bNnOHz4sEYy971797Qmll29ehU5OTm0XJlYFh4erjVZ7vz58xrJcuACg48PRjEpRl9+X/QX9K8yWS4rK0trslxycnKNZrGuzKaoqCityXI1sammCYDVtcne3h45OTlo1qwZnj9/bhQ2VawndkkJTJKT4ZSbB4sXL1D6+DGoCoEhxeVC6umBYhdXiLw8UebpibZvvKG3NhljPTWETTY2Nhq6G7pN+l5PyvPeunXLaGwyxnp6nU1nz57FyJEj9SdHicViYeLEiWrTAmhj//799aKYrtDVzNyqKCPz88/PY0XUCrApNg4MOoAApwAAzFdIRblC0TAzczemTa+rJ6lQCNHjxyi7dx9l9++j7OFDzTwnABwnJwgCAsBv2xb8dm3Bb90aLFPTOtkklzMzc+vSJn2cmduY60kulyMhIQH+/v4aa4sZqk2qcn2rJ4lEQj9POByOcSdzs1gsZGRkMMnc9cxH/3yEi0kX4WPlg2PDj8GEY6JzHRj0H0IIpKmpEN27h9L791H24CHKnj4FKrQ6gc0Gv3lzCNq1gyCgPUzatQe/mR8oA80NYGBgYKgMXb2/6zVQkskqXz9HX6mNo2UyGW7evImgoKA621tQVoCxf4xFtigbb7Z6Ex8HfVyn4xkj9elvY0JRWoqy6OjywOnhI4gePoQsM1OjHCUQwKRNawjatoNJu7YQtGtXZaI442/dwvhbtzD+1i0N6W+9G/X2ukRumUyGiRMnGkyOUl0ghCA7O7teRgJam1hjTfc1WHB5AQ7FHkJfj74IcgmqBy2Nh/r0tzHBMjWFaZcuMO3ShZZJMzMhevAAZQ8fQvToMcoeP4ZCKITo9h2Ibt/5b18rKwjatIFJ27YwadMGgrZtwHF1pRemZPytOxh/6xbG37rFGPxd7UCJy+Xi1q1bGDZsmMY2uVyOiRMnqiVzMVSf3u69Mb7FeJx4dgKfXf0MJ0eehAWPWS+PoeZwnZzAHTQIloMGASif00mSmAjRg4coe/wYosePIY6NhaKwEMKoKAijouh92TY2MGnTBrxWLWFeVgZpQAA4Xl5GPdqVgYGB4XVUO1D6+uuvMXnyZPz111/o2rUrLVcoFJg4cSKuXr2K8PDwBlFSF+hyegBtSXHvB7yP6y+v40XJC3x57Ut8EfwF/YJqigmAxjY9QGPVk0wuB8vTE2aenjAbMRwcDgdEIoHwyROIH0dDHBMNcUwMxHHPIc/Ph/DffyH891+4Akj+5RDY1tbgt24NXsuW4LdqBX7rVuB5eIDL4zWJa4+ZHsD46omZHkC3NhnD9ADVDpQWL16MvLw8DB06FJGRkWjTpg3kcjkmTZqEK1euIDw8HG3atHn9gfSExlrrDah8+OXabmvxzl/v4ELSBZAMgh4mPejhl011fSClTYGBgUhMTMSzZ8+MxqbGrKfwpCTA3AwICgKCgjC4f38UP36Mx2d+h0laGvhpaeBnZkJeUIDSqCiUqrQ8KUxMYNa2DaTu7njB4ULs5gqxoyMcXFyM8tpraJvs7e3BYrGYtd50aJOTkxPYbDauX79uNDbpez01ibXelCxatAinTp1CREQEPvvsM0RERODy5cto3759Q+nYoOh6rTeg6oj9l5hfsOn2JrAoFrb23opebr2a5FcIY1Pj20QkEsgTkyCKfgxRdDTET55A8vQZiFgMDTgc8Js1g0mrVuD5twCvhT94/i3AfrX4qL7YBBhfPTE2MTY1VZv0bnoAVd58802cPHkS5ubmBh0kAbUf9RYZGYnevXvXexY/IQRrr63FybiTMOOa4Zchv6C5TfN6PYeh0ZD+ZtCkKn8TmQzihASIY2NRFhOLstjyn0LlS1UVrqsr+C1bwqSlP/j+5f9yPTxAsZj1DZUw17duYfytWxrS33o36m3JkiX0/21sbEAIQWBgIA4cOKBWbsuWLfWmnL5CCEFxcXGDZPFTFIVPu36KlOIU3Mq4hUXhi3B42GHYmtjW+7kMhYb0N4MmVfmb4nBg0qIFTFq0gNWoUXR5adpLiJ/Eoiz2CcqePEFZbAxkL9MhffkS0pcvUaKSv0iZmsKkeXPwW7YE378FTPz9wW/RAmyLpjmAgbm+dQvjb91iDP6udqCkzMtREhwcDJlMpiZnRsfUD1w2F1v6bMHUC1ORWpyKDyI+wJ5Be8Bj8xpbNQYGDSiKAs/dDTx3N1gMGEDL5YWFKHv6FOInT1H25AnET59CHBcHUloK0YMHED14oHYcrqsr+C1agO/vD36L5jBp0QI8b29QXK6uTWJgYGCgqXagpJrAxdDwWJtY47v+3+HN82/ibtZdLItchk19NoHLYl4aDIYB28oKZkFBMAv6b14wIpNBkpxcHjg9eQrxs2coe/YMsnSV1qe//6bLU1wueL6+4DdvXh5ENW8GkxYt6DmfGBgYGBqaWuUoAaAXhbW3t69XhXRNbfo4FQoFcnJy6NEqDcn19OtY8NcCSBQSDPIahK97fw0Oq2n1q+vS3wyN4295YSEdNImfPoP42TOI4+KgEAq1lmeZmYHfrBl4zZuVd+M1bw5es2bgODgYXADFXN+6hfG3bmlIf+vdEiYAUFBQgE8//RRHjx5Ffn4+gPJ8pcmTJ+PLL7+EtbV1Q+nZYOjbqDdt8muZ1/B+xPuQKqQI8QrBF8FfgMvmMiMlGJuM2iapVAppWhokcXEQP38O6fPnkMQ9hzghAahk/hSWlRV4fn7gNW8GQfMW4DXzA9vbGxw7O72wyRjribGJscnYR71Vu2kiLy8PwcHBSEtLw7Rp09CqVSsAQExMDA4cOIDLly8jKioKNjY2DaZsfVKXeZRu3LhBt6gBupmnYlXgKqy5uwaXki8h42UGZjjNwID+A4x+7g2gvNWyoKAA3t7eeP78uVHYZIz1VN82Xbly5T+bXF0RPG4c3B0dcf6PP8DKyAAvIxP8zAy4yeSQJyVBkpICRWEhyu7eRdnduyhSsU9mZgaJoyNkzs5o3r8/RHZ2uJebA7m5OUBRjVpPNjY2GvVhSPVkiNceRVEYMmQIbt26ZTQ2GWM9Gdw8Su+//z4uX76Mv/76C05OTmrbMjIyMGjQIPTv3x9bt25tEEUbitq0KIlEIoSGhmLgwIHgcrk6i9jDksLw8b8fQ07kGO4zHF/0/AIssIz+K0QmkyE0NBQhISFqMxkbsk36XE9SqRRhYWEYOHAgTE1NDcYmSUkJpImJkDyPhzg+HrKEBIjjn0Oa+gKo5DHHsrQsb4Hy84WgeXNwfXzKW6CcnUFRlE5sksvluHDhAv08qW49qWIs154ubFJe30OHDqXXNjR0m1Tl+lZPZWVl9POEx+MZd4vSmTNn8MMPP2gESQDg7OyMjRs3Yv78+QYXKCnhcrn0Q0oJm81WezErUV4wFfepbI6IisetjZzFYiHENwRgAR9HfoxziedQJC3Cpt6bYMo11Shfme6vs6m68vqySVufdWVyNput9TiGbpO+1pPy/4ZiE9/CAvz27YEK87opRCKIExIgiY+H+FUQJX4eB2lKKhRFRSi7dw9l9+6ptUBRpqbg+/iA5+cLvm95IMX38wPPw0NtFF592KR8wWh7BjXVa08JY5Ph26Qsz+VyaR0a2qb6ptpnSU9Pr3KJkrZt2yIjI6NelGKonBDvEHBZXCyLXIbIF5GYfWk2vuv/HewEdq/fmYGhCcISCCBo0waCCs8vRVkZJElJEMfH/xdEJcRDkpQMUlqKsuholEVHqx+MwwHPywt8Xx/wfHzB9/MFz9cXPB9fsM3NdGgVAwODrqh215ubmxuOHj2Knj17at1+5coVTJo0CS9fvqxXBRua2mTNKyfQsrCwaLQRNvez7mNR+CIUiAvgYeGB3QN2w9PSs1F0aWj0wd9NiabubyKVQpKa+l8AlZAASXwCxImJIKWlle7HcXQsn8rA1wc8b5/y//t4g+PiUuVM5E3d37qG8bduaUh/692ot1mzZiE+Ph5hYWHg8dQnPhSLxQgJCYGvry/27dvXIIo2FLUNlGQyGTgcTqPeaEmFSZj/13yklaTBhm+D7f22I9AxsNH0aSj0xd9NBcbf2iEKBWQZGRAnJEKS8CqASkiEOCEBcpXBHRWhTEzA8/YGz8e7vDvPxxc8Hx/wvL3BNjdj/K1jGH/rlob0t94FSi9evEDnzp3B5/OxYMECtGzZEoQQxMbG4vvvv4dYLMbt27fh4eHRYMo2BLVxtFQqxYULFzB06NBK+3F1RY4oBwsuL0BMbgw4LA6WdVmGyf6TjeoBoE/+bgow/q458qIiSBITXwVRCRAnJkCSWD4SDxWSZVXhODqC6+2FdIqFZr17Q9DMDzxvb3Dd3EAx65A1CMz1rVsa0t96t9abu7s7oqKisGDBAqxYsYLOQKcoCgMHDsR3331ncEGSMWAvsMf+kP1YFbUKl5IuYf2N9XiU/Qgrg1dCwBE0tnoMDE0CtqUlBAEBEAQEqMmJTAbpixflAVRiIiRJiRAnJkKSkAh5Xh5kWVmQZWXBGkDOjRv/7cjlgufhUd4S5e0NnrcX/X9DnFSTgcGQqdEni6+vL/7880/k5+cjLi4OANCsWTPY2jbdBVv1AVOuKTb13oR29u2w9c5WnE04i2f5z7C171Z4WDDBKwNDY0FxOHSAA/RV2yYvLIQkKQmlz58j9q/L8OSwIUtOgSQ5GUQshiQhAZKEBI1jskxNNQMor/J/2VZWujGMgaEJUaNAKSkpCWFhYZBKpejduzfatm3bUHox1BCKojC9zXS0sm2FjyI/wtP8p5h0bhJWdVuFwT6DG1s9BgaGCrCtrCAICACndWvkcjjo+qprgs6FSkws775LToYkKQmSpCRI09KgKC1FWUwMymJiNI9pbf0qaPovgOJ6eYHn5c2MymNgqCXVzlGKiIjA8OHDIRKJAJTPX7Bv3z68+eabDapgQ2PIydyVkSHMwNK/l+JhzkMAwAjfEfik6ycw55k3sma1Q9/9bWww/tYtNfG3QiKBNDW1PHhKTKIDKElyMmRZWVXuy7a3Lw+i1H6e4Hl6gmXWdIIo5vrWLU0qmbtnz56wt7fHrl27YGJigs8++wynT582uOkAKlKbmbmlUimKi4thbm4OiqIafeZTbfIyaRl+ePAD9sXsg4Io4Gbuhq96fYV2du0MYjZXVTkAiEQimJqaquliaDPUGsqsu4QQlJSUwNzcHDwezyhsUkXf6omiKOTn59PPk9raJCsuRllSEiRJyZCmJEOakgJZSnlQJc/LQ1Ww7e3B8/Qsz4HycAfH3QM8L09wPTzAsbQ0qnoihKC0tBRWVlaQy+VGYZOqXN/qSSaT0c8TFotlkDNzVztQsra2RlRUFFq3bg0AKC0thaWlJTIzM2FnZ3iTHaqu9fbs2TMcPnxYY623e/fuaV135urVq1rXegsPD9e6ls758+frvJZOVlaW1rV0kpOTta6l8+TJEzx9+hRJsiScKD2BAkUBWBQLQ+2HopOkE7gUV82mqKgorWvp6INN9vb2yMnJQbNmzbSu9VZZPemzTRXribGp6dpUX2u9VWXTw2vXwM3NBS8nB9aiMjgTBQqfPIHsRRo4QiGqxMoKAl9fFAgEKDYzg9TeDhI7O7Ts8wa827U1yHpSnreytd4M0aameD+dPXsWI0eO1J9AicViISMjA46OjrTMwsICDx48gK+vb4Mp2NAY0lpvtf0KKZYUY+OdjTifeB4A4GnhiZVBK9HJqZPefoUwa70xa701lXpq7LXe5IVFkL5IhSwlFbIXqZAkJUOSkgJpSjLkefmoCpaVFbgeHv/9PD3A9/KCibc3FFZWal0t+lJPzFpvurWpSa31BgCXLl2ClcqoCoVCgcuXL+Px48e0bOTIkfWnnQ4xhLXears+kC3XFl/1/goDvQdi3fV1SClOwTuX38GEFhPwQacPYMG20Lv1gZi13hrfJkNb681Q66mx13rj2tvBxN4OCAzU1K2kBNKUFEhSUiB5NSJP+bcsKwuKwkKICwshVnkHKKFMTcFzd3/VhecJnmd5MMXz9ATXxUVjnih9r6fKdKypvKnZ1KTWegOA6dOna8jmzZtH/5+iKI3cEmNFVxVUn/T37I8uzl2w9c5WnHh2AsefHcc/qf9gSeclGOozVK8TGw3R34YM42/doq/+Zpubg926NUxepVyooigthST1BSQpyZCmpJa3QqWWB1TS9HSQ0lKInz2D+NkzzQNzOOC6uoLn7g6upwd4Hp7l/3p6gufhAZap5kLf9Ym++ttYMXR/V7vrzVjRVda8vnEr4xbWXluL5KJkAEAnp05YEbQC/rb+jawZAwODoUMkEkjS0spH6KWk/hdMpaZCmpoKIpFUuT/b3r58wk1PD3DdPf5rjfLwANveXq8/6hh0h96NejNWauNohUKBnJwc2Nvba21uNBTEcjEORh/Enod7UCYvA4tiYWKLiVjYYSGs+PozcZ2x+NtQYPytW5qav4lCAVlW1qsWqPJASpqaUh5QpaZCUVhY5f6UQFDeEuXhAZ6Hu1ogxXVzA4vPr3L/pubvxqYh/c0ESjrC0Nd6qw/SS9Lxze1vEJocCgCw5Flibvu5mNxyMvjsqh86usDY/K3vMP7WLYy/1ZEXFkKS+oIOnqQvXtAtUdL0dEAl2VcbHCcn8OgEc/fy/7uX/8u2s4NMJmP8rUOa1FpvDMaLi7kLNr+xGTfSb+Crm1/hecFzfHP7G/wa+ysWdViEYb7DwKKYLy8GBoaGh21lBYGVFQRt22hsIxIJpOnprwKoV916qSmQvkiDNCUFitJSyDIzIcvMBG7f1tifEgjAdXODK4+L7EePYeLpWR5MubuD6+4OloBZH5NBEyZQYqDp6tIVJ0acwB/xf+C7+98hXZiOT/79BD/H/IxFHRahl1svJjeAgYGh0aB4PHpW8YoQQiDPzy8flfcirTyQSk2FNLW8RUqWkQEiEkHy/DnMARTGxKJiJx/bwR48t/JuPa67G3juHnQgxXFyAqVlRBaD8cMESrWAoihYWFgYZdDAZrExpvkYDPYZjF9jf8XeR3vxJO8JFlxegPb27bEgcAGCXYN1arsx+1sfYfytWxh/1w8URYFjawuOrS0EWqY6UEgkkL18CVFyMmIjIuAtMIUsLQ2SF+XBlKK4GPLsHIiycyBSmSSRhssF19WlPHhydy8PpDw8wHVzB8/DHawK80YxlGMM13edcpTKyspw9OhRCIVCDBw4EM2bN69P3XRCUx31Vl3yy/KxP3o/jsQeQZm8DADQwbED3g14F91cuhn0xc/AwMCgRF5QQLdEledFvSj/90UqpGkvgQoTLVaEZW7+KhfKHVw39/+CKXf38iRzpluv3tG7ZO4lS5ZAKpVix44dAACJRIKuXbsiOjoapqamkMlkCAsLQ3BwcIMp2xDUdtRbamoqPDw8msyoiRxRDvY93odjT49BLBcDANratcWc9nPQ16Nvg+YwNUV/NyaMv3UL42/dUht/E7kcssxM9eDpRRr9f3l2zmuPQXfrqQZQyp+zs8YEnMZCQ17fepfMHRoaivXr19N///rrr0hOTkZcXBw8PT0xa9YsfPnllzh//nyDKKpPyOVy3L9/H66urk3mwWYvsMeyLsswo80M7Hu8DyefncTj3Md4P+J9+Fn5YXa72RjsMxhcVv2PImmK/m5MGH/rFsbfuqU2/qbYbHBdXcF1dQW6BmlsV4hEkKalQfLiBaTKYCrtBR1MKUpKqu7WY7PBdXbWDKLcylujOA72oAz02jCG67vagVJKSgq9IC5QHjiNHz8eXq+S6hYvXoyhQ4fWv4YMeoWjqSOWBy3HO+3ewa+xv+LIkyOIL4zHJ/9+gm/vfotpraZhXItxsOQx3ZgMDAxNA5ZAAH6zZuA3a6axjRACRWHhq269F+VJ5i/+C6KkaWkgUimkaWmQpqUBNzSPT/H55YGaWndeeRDFdXcD29qaSYNoQKodKLFYLLVF6a5fv46VK1fSf1tbWyM/v+oFFBuS0tJStGrVChMmTMA333zTaHo0FewEdniv43uY2XYmjj49ikMxh5BZmoktd7Zg94PdGNt8LKa1mgZ3C/fGVpWBgYGh0aAoCmxrawisrbVPeaBQQJadTQdNakHUixeQZmSAiMWQJCZCkpio9RwsM7NXQZN6XpSyVYptbtbQZho11Q6UWrVqhbNnz2LJkiWIjo5GSkoK+vbtS29PTk6Gk5NTgyhZHdatW4du3brp5FwURcHBwYGJ4AFY8Cwwp90cvNX6LVxIuICfY37G84LnOBR7CL/G/oo+7n0wpdUUBLvUfqQc42/dwvhbtzD+1i365m+KxQLXyQlcJyegUyeN7UQqhTQj41U+1KsgKi2N7t6TZ+dAIRRWvq4eyuemovOh3N3AdVMJptzcwDIxaTj79MzftaHaydynT5/G5MmT0bNnT0RHR6NLly44e/Ysvf3jjz9GYmIijh071mDKVkZcXByWL1+OESNG4PHjxzVqUWJGvdUvhBBEvYzCzzE/I+plFC33tvTG5JaTMdJvJCx4Fo2oIQMDA4PxoCgrg/TlS62BlDQtDfKCgtceg21vD96roInr/l+XHs/NDVxXV1A8XsMbUgv0btQbAFy+fBnnzp2Ds7MzFi1aBFOVFZ7Xrl2LPn364I033qiRApGRkdi0aRPu3LmD9PR0nD59GqNHj1Yrs3PnTmzatAkZGRkICAjAjh07EBT0X0LdqFGjsGnTJkRFRekkUJLL5YiLi0Pz5s3BZiYgq5SEwgQcfXIUv8f/DqFUCAAQcAQY7D0Y41uMRzv7dtX6ymD8rVsYf+sWxt+6pan5W15SQuc/aQumFEJh1QegKHCcnP4LnNzc1QMqZ6cqR+w1pL/1btQbAPTv3x/9+/fXum316tW1UkAoFCIgIACzZs3C2LFjNbYfPXoUS5Yswe7du9G1a1ds27YNISEhePr0KRwdHfH777+jRYsWaNGiBaKiorScof5RKBR4+vQp/Pz8msSNVlt8rXyxousKvNfxPZyNP4vfnvyG+MJ4nH5+Gqefn4a/jT/GtRiHoT5Dq1yEl/G3bmH8rVsYf+uWpuZvtrk52P7+MPH319imkWj+qmVKmpZGj9ojZWWQZWRAlpEB0e07Wk6gMmJPtSXq1d/E2trg/V2tQCklJQWenp7VPmhaWhrc3NyqVXbIkCEYMmRIpdu3bNmCd955BzNnzgQA7N69G+fPn8e+ffuwfPlyXL9+Hb/99huOHz+OkpISSKVSWFpaYtWqVVqPJxaLIRaL6b+LiooAlC/cJ5VKAZQnrrPZbMjlcihUFmBUymWvJh5Tlmez2WCxWJDJZOUJ7zIxWPcPgfXsT1DTjkNK1FtNOK+ib1mFCcwqk3O5XCgUCsjlclpGURQ4HE6l8sp0r8om1cZFDZsqyJW2V8cmU44pxvmNw1jfsXiQ8wAn404iLCUMT/OfYv2N9fjm1jfo69EXo/1GI9gtGBQoNZuUx1SVNbZN2uSGXk9KuXIfqVRqNDapom82KVG1y9Bt0ud6UtXLWGxSldfUJoWZGTj+LcDxbwFBBd0JIZDn5UGWlgZFegakaS8gTi0PqGRpaZC+fAmojtjTBocDbysrlPo1g1lL/3q3SRdUK1Dq0qULRo8ejTlz5qBLly5ayxQWFuLYsWP49ttvMXfuXLz33nt1Vk4ikeDOnTtYsWIFLWOxWBgwYACuXbsGANiwYQM2bNgAADhw4AAeP35caZCkLL927VoNeWhoKN2V6OnpiQ4dOuDhw4dISUmhy/j7+6Nly5a4e/cuACAsLAwAEBgYCC8vL0RGRqK4uBgUkWPQ4/UwkRUCcZcQmqBeoX379oVAIMCFCxfUdBg6dChEIhEiIiJoGYfDwbBhw5CTk0PbDAAWFhbo168fUlNTcV9lXg4HBwd0794dcXFxePr0KS1/nU03b95EdnY2La9ok5Lg4GA4OjoiNDS01jb14vTCiokrcPjBYZx8ehKZikxcSr6ES8mX4GzmjN52veGS7wIHtgMAwN7eHgAQHx+P58+f66VNxlhPERERRmeTPtaTjY0NgP+eJ8Zgk77XkxJjsklX9XRV1SYWC4OCgpD1+DGeRl4BNz8P3Lx8mBQXwVxYWh5IyWTg5ebiyv17sC0qrFebrl69Cl1QrRyl3NxcrFu3Dvv27YOJiQk6deoEV1dXmJiYID8/HzExMYiOjkbHjh2xcuXKWs+nRFGUWo7Sy5cv4ebmhqioKLUZv5ctW4Z//vkHN26oTzihDJSqylHS1qLk4eGBnJwcuo/zddGtWCzG48eP0aZNG7DZbK0ROyv8c7CvbQdaDIZ0wiE1HYzhK6S+vqxkMhli82PxR/wf+DP5TxRL/ruR29i2wTCfYRjoMRDpCelo06aNWk6Tvtpk6PUkl8sRHR2NNm3awMTExChsUkXf6okQgvv379PPE2OwSZ/rSS6XIyYmBgEBASCEGIVNqnJ9qie5RILSFy/w/OpVtBw/Hlwut15tysvLg52dnX7kKNnZ2WHLli1Yt24dzp8/j3///RfJyckQiUSwt7fHtGnTEBISgrZt2zaYotVhxowZry3D5/PB5/PrdB42m4327dtXWUYRMKU8UIoLBYrTAQuXOp3TWKEoCq1tW6O1bWss6bQEV15ewR/xfyDqZRSi86IRnReNzXc3o5trNwxOHow+bn1gzjVvbLWNmupc3wz1B+Nv3cJmsxEQEKCWRsHQMFAcDkw8PNB28uTGVqVO1CiZWyAQYPz48Rg/fnxD6aOGvb092Gw2MjMz1eSZmZlwdnau07F37tyJnTt30lFwTbreqtu0OcS5E3gZd/D81Do8c/ivla0pNtdW16bB/QajFasV/i3+F4+kj3BPcg8v5S9xNe0qrqZdBQcc+HP90Y7bDv19+6Nbp256b5Mx1hNjU/3ZZGdnhz///FPti9nQbdL3erK0tETv3r2NyiZjrCeD6nrTFRW73gCga9euCAoKohfjVSgU8PT0xMKFC7F8+fI6n1M5vLAmXW8ikQihoaEYOHAguFxu5U2bD4+AdXYRiK0fZPOvA6+6jZjm2prZFJ8fj10RuxDPjUdycTItN2GboI9HHwz0HIhg52AIOAKDsUmf60kqlSIsLAwDBw6EqampUdikir7Vk1wux4ULF+jniTHYpM/1pLy+hw4dCoqijMImVbm+1VNZWRn9POHxeMbb9daQlJSUqCXoJiYm4v79+7C1tYWnpyeWLFmC6dOno3PnzggKCsK2bdsgFArpUXD1BZfLpR9SSpT5RxVRXjAV91HKadqOAS4uB5UXD27GXcBTfebwiuerSs5isbQuKFiZvDLdX2dTdeU10b0yeXVt8rPxQz+Tftg0ZBPii+PxZ+KfCE0ORVpJGi4lXcKlpEsQcATo6dYT/T37o7d7b1iwLfTaJiX6XE/K/xuTTUr0ySblC0bbM8hQbapMx5rKGZsM3yZleWV+UlW615dN9U2jB0q3b99WWwplyZIlAIDp06fjwIEDmDRpErKzs7Fq1SpkZGQgMDAQFy9erPflUup1eoBXsLlmYLUZA9w/BMWdnyF3KZ+envkKqZlNyn0VCgWaWTbDooBFWNh+IWLzY3E59TIuJl1EujAdYclhCEsOA4fFQTeXbujr3he9XHvBXmCvdzbpcz0x0wMw0wMYcz0x0wPo1ibV50lD2KQL9KrrTZeo5ig9e/YMhw8f1shRunfvntb+0qioKK39peHh4Zp9wKJ4YP9gyFh8XGy7A3K2Sa36gLOysrT2AScnJ2vtA37y5InWPuB6scnREefPn69zv3ZNbLK1tYVCoUBcXJyGTXfv3sX1xOuIkcYgRhqDbMV/dlCg4M52R0tuS4xtNxY9WvVARESEXthkjPXE2FRzm+zs7HDhwgW1F4Sh26Tv9WRnZ4fg4GDcuHHDaGwyxnp6nU1nz57FyJEj9WsJE6B8Jm0zM+NZibg2OUo1itgpCmRHR1B5CZAN3w4SMJX5Cmlgm5KKkxDxIgLhKeGIzo1WO6+HhQd6ufZCL7de6OjQEVw21yBsMsZ6YmxibGJsYmyqi026ylGqcaBkbm6OiRMnYtasWejZs2dD6aUzarNWjEwmw82bNxEUFFS9PtIrW4DLawHPYGDWxTpq3PSosb9VyBRm4p8X/yA8NRw3029CqvjvoWDGNUN31+7o5dYLPdx6wNHUsb5VN0jq4m+GmsP4W7cw/tYtDelvvVzrDQAOHTqEAwcOoF+/fvD29sasWbPw9ttvw9XVtSH00xk1yVGSSqXIzs6GRCIBIeT1EXubCeCEfwkq5RqkGbHgOLUEYBgRuz58hchkMmRnZ2voUh2bbHm2GOM7BmN8x6BMUYabGTcRkRqBf9P+RW5ZLp3XBAD+Nv7o4doD3V26o519Owh4ggazSZ/rSfX6rkp3Q7JJFX2rJ0KI2vPEGGzS53pSXt+EEKOxSVWubzZJJBL6+lYep8nkKGVnZ+OXX37BgQMHEBsbi5CQEMyaNQsjR440iCi9LjlKV69eRU5ODi2vTh9wp6cb4Vx0H3GOw+D05m6D6QPWh35te3t75OTkoFmzZlqXMKmNTYVFhXgpf4mn0qdIN0nH08KnIPjvVuCDj64uXdHTvSfKnpTBlm3L1BNjU4PYZGNjo6G7oduk7/WkPO+tW7eMxiZjrCeDzVHSxo4dO/DRRx9BIpHA3t4e8+fPx/Lly+nAQ59p0HmUVCJ26ukFcE68DcK3BBY/AAQ2zFdIDVqUQkNDERISojZKqD5tyhfnIzI1ElEvo3A94zoKxAVq+rqbu6Obczd0demKYLdgWPIsjbaemHmUmHmUjLmemHmUdGuTMcyjVOtAKTMzEwcPHsSBAweQnJyMMWPGYPbs2Xjx4gW+/vpruLq6IjQ0tL71rXdq08epUCiQmpoKDw8PsFiac0dUshPwQy8g8zHQfREw6Ms6aN20qJW/63I+okBsbiyuviyfDfxh9kPIyH8PBxbFQhu7Nujq0hXdXLoh0DEQfHbdlsXRJ3Tt76YO42/dwvhbtzSkv3WVo1TjQOnUqVPYv38/Ll26hNatW2POnDl48803YW1tTZeJj49Hq1at6D5JfabBR72pROzU8zBwjk4BYfOBRXcgM1NfhoX5CtFPmwpEBbiTeQc3Mm7gesZ1JBUlqZXjs/lob98e3Vy7obNjZ7S0aQkui6vXNhljPTE2MTYxNjUtm/R2Zu6ZM2di8uTJuHr1Krp06aK1jKurKz799NM6K9eQ1GWttxs3bmjNUXrtWjqEoIe5P+xLnkIRsQEXWCFqOunjWjr6sD6Qvb09xGIxnJ2dtc6j1NA2RYZFAgDaoi3astqi46iOuJp6FecfnUe8LB7F8mLcyryFW5m3AAA88ODF8YI3xxttLNvg7ZC38TL1pdHXE2NT7WyytbWtlxwlfbJJ3+uJx+Nh4MCBRmWTMdaTwa71VlpaahC5R9VFVzlKSqi02+AcGAxCsSB75wrg4E9v08eIXR++QnSRo1RbmwghSCxKxO3M27iTfQe3Mm5p5DcJOAIEOASgo0NHdHLshDZ2bcDn8PW2npgcJSZHyZjriclR0q1NxpCjVOMWJQsLC6Snp8PRUX3OmdzcXDg6Oqo5y5BokLXeVI5N4x0MtBwO6sk5cCM3AJN/rbr8K1isprU+UGU2aTtOY9vkb+8Pf3t/TMM0KIgCcflxuJVxqzx4yryDAnEBrqdfx/X06wAAHouHdg7t0MmpEzo5dkJ7h/Yw55nrlU2q/2euPWatt8p0r0pubPVUmY41lTc1m5rkWm+VNUCJxWLweLw6K9Qk6L8KeHoBeHIOSL0JeAQ1tkYM9QSLYsHf1h/+tv54s/WbUBAFnhc8x+2M27ideRt3M+8itywXdzLv4E7mnf/2sfFHB8cO6ODUAR0cOsDJrH7XMmRgYGBgqB3V7nrbvn07AOCDDz7AF198AXPz/76A5XI5IiMjkZSUhHv37jWMpg1EbbreJBIJcnJyYGdnR8tq3LT5xyJQ936BwqMb5G+dBV41VQJMc21FOSEEBQUFsLGxUTuGIdpECEFKcQruZt/F/ez7uJt1F2klaaiIi5kLAuwDEOAQgECHQDS3aQ4+l68TmxQKBXJzc2FnZwc+n///9s48Pqrq/MPPnZnsmez7HhII+yKbgIpsRqEq2qptrQJuXdRqqbVa259bW6lWxSoVqxWstWpttZsIQRZB9i3sCSRk3/d9meX+/pjMZIYkQELm5s7kPHzmM8m5y5zvew4375zznvcM676n1Ka45eXltueJO2hSczuZzWbq6uqIiIjAbDa7hSb7crW1k8FgsD1PtFqte0+9vfrqq4Dlj9batWsdhsc8PT1JSkpi7dq1g19DJ3E5wdwHDx68/GC5q36GJvMjtEV7OfS3ZykNnqHKYDk1BQD2laTMFTXFhcdx+9W3k5WVxYHTBygwFlBgLKBMU0ZRRxFlLWWUtZSxscCy5Y2XxotJEZMI7QglrDOMeG08vhpfVWly577nbE1HjhxxO01qb6eoqCj27t3rVprcsZ1cMph73rx5fPrppz2+3bsqAw3m3rJlC/Pnz+93MDd0e+bmLc+j/fplZJ8QjA/sRBcUC4hvIb0Fc2/dupUFCxaoLph7oJou1E7t5nYyKzLJrMwksyqTEzUnaDY0cz4J+gQmhk9kUvgkxgaPJTUo1ZaW4HKDubdu3cr8+fNFMLdCwdybNm2yPU/cQZOa28nav9PT00Uwt0LB3NbnybAJ5rb3Jt2J/gZzm0ymgQVz29//2ifgbAZSxXE8vngMvvMhSJIIAOyl3Gg0qjaY257BaCc/rR9z4uYwJ24OACaziXMN5zhadZTMykyOVh0lvzGfwqZCCpsK+d+5/wGWfE5jQsYwIXwCE8Isr1j/WCRJ6rcma/8eLE0XKnfVdrpQeX+DuXt7nvRV977K1aSprzr2t9xZmqx/1N1JkxW1afLw8LD1b7cO5l65cuUl3/CVV14ZcGWGHTpPuPUt+NO1cOYLOPJXuOKuoa6VQGVoNVpGBo9kZPBIvjXqWwA0dDRwvPo4x6qOcbTqKMerj9PU2URmlWUUykqwVzDjwsYxIWwC48PGMy50HKE+oUOkRCAQCFyPS3KULjVAu7dvroKLEDkO5j0FXz4NG5+A5GsgOHGoayVQOYFegVwVexVXxV4FWGIHCxoLbM7T8erjZNdlU9dRx9clX/N1yde2a6P9om1O07iwcYwJGUOgV+BQSREIBAJVMyib4royA9krRpZlmpqa0Ov1g+Mcmk2wbjEU7YXEq2DZf6GXYczhyqDbe5jQaeokuzabEzUnOF51nJM1J8lryEOm53/5eH0840LHMTZ0LGNCxhDnGUdsaO/TdoLBRfRvZRH2VhZn2lu1e725GwMJ5jYYDBgMBnQ6HZIkDU6wXF0eurevRTK0YFr4HOaZP7IdGo4BgL0lLj0/8NKVNQ1VO7Wb2zlde9rmOJ2uPU1xczG9Eesfa3Oc0oLSGB08mmDvYNVpcvV2kiSJtrY22/PEHTSpuZ1kWcZsNuPl5WVL2eHqmuzL1dZORqMRo9GITqdDo9EMj2BugIMHD/L3v/+dwsLCHhvffvrpp4NSMWdzOekB9u/fP7C93rroa/nlNxY+i/aLx5C+fJZ9+W3U6McM+fJLNSwpDQsLo7q6mtTUVHJyctxC01C205SwKZTtL2Muc5mrm0trQCvx0+I5Wn6UnWd3Umoqpc5cR0lzCSXNJWwu2Gy7PkAKIMErgavTribUFEp7YTuBUiCSJLll31NCU3BwMJs3d9vYHTSpvZ2sn3vgwAG30eSO7eSy6QE++ugj7r77btLT08nIyOC6667jzJkzVFRUcMstt7Bu3Tpn1dUpKL3XG1zAY9dq4dP7kU78A9knGOPyTRAyYlh+Czk/PYBa93obqCY1t5PBYODfm/5NzOQYcltyOVV9itO1pylscvxDYyXQM5BRwaNIC05jbNhYRgaOJEGfYEtVoAZN9qitnUwmsdebkprEXm/KahqWe7399re/5dVXX+XBBx9Er9fz2muvkZyczPe//32io6OdUUdFUGyvt4uV3/wG1OUhlRzC45PvwX1fgkfgsFtS2pem4ZAe4ELlSmny1fgyO242cz3m2o41dzaTXZfN6ZrTnK49TXZtNrn1uTR0NnCg4gAHKg5030fjQWpQKmkhaYwOGW1xpELSCPDs+TAb7u1k/QMj0gMITe6oaVju9Zabm8uSJUsAS0bulpYWJEniJz/5CfPnz+fZZ58d9EoOKzx84Nt/g7fnQ/UZ+GQFfPfvoFWmQwgEfeHv6W/ZyDdyqq2s09RJTn0O2bXZZNVmkVWbRXZdNi2GFk7XWhwqe6L9okkLTmNk8EjSQtIYFTyKBH0CWk3Ph6NAIBCogX5PvcXFxfHFF18wYcIEJk6cyJNPPsl3vvMd9uzZw/XXX09DQ4Oz6uoUBrrqzRqc5rRVE2VH4d3rwdAKM38AN/zOOZ/jAihib4GNy7W3WTZT0lRCdl022XUWB+pM7RlKW0p7Pd9L60VKUAqjgkcxMsiSL2pU8Khhk+9J9G9lEfZWFmfaW6lVb/0eprjmmmvYvHkzEyZM4LbbbuORRx5h69atbN68mQULFjijjqqkra0NvV7vvA+IngS3/gk+/h7sWwuBcTD7Yed9nspxur0FDlyOvTWShviAeOID4lmYuNBW3tjZyNm6s5ypO0N2bTZn6s6QU59Dm7GNUzWnOFVzyuE+Id4hlkSbQRbHKTUolZSgFHw9fC9LmxoR/VtZhL2VxdXt3e8RpdraWtrb24mJicFsNvPiiy+ye/duRo4cyS9/+UuX2wNuIB6pwWBgw4YNLF68uM953EHj61fhy2csP1//O7jyB879PBWiqL0FitrbLJspbirmTN0ZztSdsTlSRU1FveZ7kpCI08eRGpTa/QpOJTkgGQ+ta/YN0b+VRdhbWZxpb9WOKIWEhNh+1mg0PPHEE4NaoaHCmhsJLi0C33oNOHlVwcyH8OhsgR0vwcafY5IlzNPucfuVEuevegMcylxdk5rbyXqNwWBQRFOMbwzRPtHMjZlrq3u7qZ2ztWdto065Dbnk1OdQ015DUVMRRU1FbCuyW6Ys6YjXx5MSmEJKUAopgSmMChlFfEA8ktlxuF9t7WTFvq2Ga99TQpN9vdxFk3252jTZP0+coUkJBhQhbDabycnJobKy0kEUWKbmXIHLyaN0+PBhAFvuE6fnqVj8FC1NDfgd+RPaTY9z/NRpapNvGja5N8LCwgDLQgKRR0k5Tdu2bRtSTTUna/Bs8mRs179Z82ahC9Dx1y/+SpmhjApTBRWmCmo1tTQbmslrzCOvMY8vi77sbhdJR4gUQoQ2gghtBNEe0dw2/zZ82n04sK97ld5Q51ECHHIpDfe+p0QeJcCtNKm9nTZv3jx88ijt3buX7373uxQUFHD+pZIk9ZpRWc0MNI/Sli1bmD9//uDmUbqQx24yIWc8hXbfmwCYvvEHtNOWue23kPNHlLZu3cqCBQtEHiWFRpS2bt3K/Pnz8fX1Vb0mrVZLRWsFZ2rOkNuQS25DLucaznGu4RytxlZ6QyfpSAhIIDkgmRGBIxgROIKRIZb8Tzq7749K5VHatGmT7Xlyqe1kj7v0PSU0Wft3enq6yKOkUB4l6/PEVfMo9dtRmjx5MqNGjeLZZ58lOjq6RxR7YKBrba6p1BznoCDLlo1z9621/L7wWZjzCIiVGwJBD8yymfKWcsvUXb3FecqtzyW3PrdPB0ojaYj1jyUlMIXkoG4nKjkwGb2n6wajCgTuiGr3evPz8+Po0aOkpqY6q06KMhBDm81mqqurCQsL6zXJllORZcj4Jex5w/L7jAfg+lXgxnlohtTewxB3t7csy1S0VpBTn8O5+nO20afc+lwaOxv7vC7cJ9zmNCUHJjMiaATJAclE+EZc1rJnd7e32hD2VhZn2lu1wdwzZ84kJyfHbRylgWAymdizZw+LFy9W/j+aJEH6byAgBjb9Avb/CRpL4ZvvWJJVuiFDau9hiLvbW5IkovyiiPKL4qrYq2zlsixT017j4Dydqz9HXkMelW2VVLVVUdVWxb7yfQ738/PwIznA4jwlBSZZHKmAZBICEvDUel60Pu5ub7Uh7K0s7mDvfjtKDz/8MD/96U8pLy9nwoQJPZb7TZw4cdAqJ7gAsx4EfTR89n3I+h/8ZSl850PwDbnopQKBoCeSJBHmE0aYTxgzomc4HGvqbCKvIY9zDeds7/kN+RQ1FdFiaOFEzQlO1JxwuMY6jZcUkERSYBJJAUm20ahQ71CR7FAgcBH67Sh985vfBOCee+6xlVkD4lwxmNulGX8r+EfAh9+For3wp7lw+/sQM3moayYQuBV6Tz0TwycyMdzxi6DBZKCwqZC8hjzyG/PJa8izOVIthhZbKoOdJTsdrvP38Lc5UAn+CdR01pBal0pKSAreOm8lpQkEgovQb0cpLy/PGfVwKSRJQq/Xq+MbYdJVcO8m+PA7UJcH76bDkldgyp1DXbNBQ1X2HgYIe186HloPS96moBSHclmWqW6rdnCe8hrzyG/Ip7S5lGZDc49RqI+/+Biw7IeXGJBoc6QSAxJJDEgkxi9G7Ik3CIj+rSzuYO9+B3O7Gy616u1CtNXBp9+Hs5ssv0+71xLkrbt4jIRAIFCODlMHhY2F5DfmU9BYYBuNym/Iv2AwuYfGg3h9vM1xsn+F+4S79B8igWAgqHbVG8D777/P2rVrycvLY8+ePSQmJrJ69WqSk5O5+eabnVFPpzHQVW9FRUXEx8erKzjNbLZk8N7+AiBD7DRLkHdI8lDX7LJQrb3dFGFvZbG3d0NnAwWNBTbHyepMFTYW0mnu7PMePjofm9OUoE/o/jkggWCvYOFE2SH6t7I4096qXfX25ptv8n//9388+uij/OY3v7HFJAUFBbF69WqXc5QGgslkIjMzk5iYGHX9R9No4NqfQ8wU+PQ+KDkIa6+CxS/BpO+4bL4l1drbTRH2VhZ7ewd7BxPsHczkiMkO51hzQuU35FPQVOAwIlXSXEKbsY2s2iyyarN63F/voSchIIGEgIQejlSgl2vlvRsMRP9WFnewd78dpddff523336bpUuXsmrVKlv5tGnTeOyxxwa1ckqi2r3eGEA211HXYbr/K6R//QBN0V741w8xZ29Ec+NqTF6BLpHNVez1Nnz2ehvu7WTlYnu9hXuFEx0TzSxmOZQbTAYqOirIq8+joKHA4kg1FVLUVER5azlNhiZO1pzkZM1JzifAM4AEfQLx/vHEB8STFJhEnF8csX6xBHkFIUmS27WT2OtNWU3Dcq+3vLw8pkyZ0qPcy8uLlpaWQamUErjUXm8D2R+oqoPs0B8w0hjH6LLP0Jz+NxQfIG/8Sk62R/TQpNb9gUDs9TZUmoZ6r7fh0k6DtdebX4cfTZlNhBDCFKagD9Uz+5bZ7Mvex+5Tu6kx11BtrqZJ20S9VE9layWNnY29pjYA8Ja8CdWEkhSUxLjYcXRWdOLR4kGoJhQ/yY8pU6a4bDtZGe59T+z1dmn0O0Zp7NixvPDCC9x8883o9XqOHj3KiBEjeP3111m3bp3NiXAVBrLXW3t7OwcPHmTq1KnodLoh99gv9i1EKj2M9t8/RKrNBcA88duYFj4PPsGq/RZiX24ymTh8+DBTp051GLp1tW9WrvJt0Wg0cujQIaZOnYqPj49baLJHbe1kNpvZu3ev7XmilKbmjmYKGwtto09FzUUUNxdT0FhAZWslF8JX50u8Pp6EgARi/WKJ948nTh9HvH880fpodFqdatvJaDRy+PBhZs6cCTCs+54Smjo6OmzPEw8Pj+Gx19s777zDM888w8svv8y9997LO++8Q25uLi+88ALvvPMO3/72t51VV6fgNqveLkZnC3z5rCWTNzL4hcMNL8K4W1w2dkkgEDiHNmMbxU3FFDZanKjCJotDVdhYSHlLOTJ9/9nw1HhanCZ9fI9XrH8sHlqPPq8VCPqDqle9ffDBBzzzzDPk5lpGKGJiYnj22We59957B72CzmYghjaZTJw9e5aRI0c6xBi4BEX74d8PQXXXsOeoG+CGVRCcNKTVuhAubW8XRNhbWVzN3p2mToqbi22OlG1EqqmIkqYSjHLfcSMaSUOUbxTx+vhenSl/T3+n19/V7O3qONPeql311tHRwdKlS7nzzjtpbW2lubmZiIiIi1/oRpjNZrKzs0lJSXG9/2jxM+AHO2Hny7DzFTjzBZzbBnMehaseVeV+cS5tbxdE2FtZXM3enlpPRgSOYETgiB7HjGYj5S3lNsfJ+ipsKqS4qZg2YxulLaWUtpT22DMPINgr2OZEWR2pOH/Le7hvOBrp8ldNuZq9XR13sPclO0pVVVXcfffdfPnll5jNZqZPn84HH3xASkrKxS8WqAudF8z7hWXabcPPIH8nfLUKMv9m2XB3zI1iOk4gEPQbnUZnc3JmMcvhmHXT4fOdqKKmIoqbiqltr6Wuo466jjqOVR/rcW8vrRex/rE9HKg4fRyx/rFi6xeB07hkR+nnP/85mZmZPPfcc3h7e/PWW29x3333OUTAC1yMiDGw7L9w8jPI+CU0FMLf74Kkq+G65y35mAQCgWAQsN90eEpEz2dLc2ezbUrvfCeqrKWMDlMH5xrOca7hXK/3j/CJsDlpcf5xDj+H+YSJpJuCAXPJjtLmzZtZv3496enpAHzjG99gzJgxdHR04OXl5bQKqhGNRkNCQoLLJs9yQJIsm+uOSrdMxe3+g2WE6U/XwoTbYP4vhzx+ya3s7QIIeyuLsLcFf09/RoeMZnTI6B7HDGaDbUqvuKnY5lBZnapmQzOVbZVUtlVyuLLnymtvrbdtNCrGLwaNrwZ9qZ74AEuAua+HrxIShyXu0L8vOZhbq9VSUlJCVFSUrczPz4+TJ0+SlJTkrPo5nWGz6u1SqSuAbb+BY5YNOtF6wvT74Oqfgl/Y0NZNIBAIzkOWZRo7G21OVFFTESXNJTaHqqylDLNsvuA9QrxDHEei7N4jfCPEZsQqRXWr3rRaLeXl5YSHh9vKAgICOHr0KMnJrruX2EBXvR07doyJEye6bHDaRSk7Chm/gryvLL97+MHMB2D2j8E3RNGqDAt7qwhhb2UR9nYuBrOBsuay7mm9xiJOlpykRdtCcXPxBTciBkvcVYxfDLH+scTqY4nzj7O9x/nHEegVKKb1LoAz+7fqVr3JssyoUaMcOkRzczNTpkxxGFKrra0d3BqqELPZTGFhIePHj3ffB1v0JLj735C7Bbb+GkqPwNevwv534MofwqwfgU+wIlUZFvZWEcLeyiLs7Vw8NB62ve7AspXGhtINLL5+MR4eHjR0NNhGoBzemy3vRrPRlkeKsp739/PwszhPdo6UNcA8xj8GH536VhIriTv070t2lNatW+fMegjUiCRB6kJIWQDZX8C230LFcdjxIux9E6bfC7MeBP/hlR5CIBC4D4FegQR6BTI2dGyPYyaziaq2KofpPPv3qrYqWgwtZNdlk12X3cvdIdQ7tHskqitOKtY/llj/WKL8otBp+p2lR6Awl9xCy5Ytc2Y9BGpGkmD0Yhh1PWT9F7avgspTsGs17FsLU+6COT+GoIShrqlAIBAMGlqNlii/KKL8opjO9B7H243tlDaX2qb17J2okuYSmg3N1LTXUNNew7GqnikPtJLl/lbHyWF6zz9WrNZTCcKVHQAajYa0tDSXjuIfEBoNjL0ZRt8IZzZaklaWHIQDb8PBdy15mWY/NOhpBYatvYcIYW9lEfZWlsG0t7fOmxFBIxgR1DP5pjXIvLi5mJKmEpvzZO9IGcwG28+94aX1Itov2sF5snemAjwDVO9IuUP/HtAWJmqivr6ehQsX2jbzfOSRR7j//vsv+Xqx6u0ykGVLKoGdL8O57d3liVdZpuRGXW9xrgQCgUDggFk2U9Va1e1AdTlUpS2llDSVUN5aftHVen4efo6jUXaOVKx/LH4efgqpGRpUt+pNrZhMJjo6OvD19aWlpYXx48dz8OBBQkNDL+n6gRjaaDSyf/9+ZsyYYdtRedhTmgl71sDJT8HctddTyAiYfj9MuRO8Awd8a2FvZRH2VhZhb2VxFXtbc0eVNJfYRqSsAealzaVUt1Vf9B5BXkG2oHL7gPMYf8sqPi+t83MgOtPeqlv1pla0Wi2+vpZkYR0dHciyjLN9P1mWqaqqcvrnuBQxk+Gbb8PCZ2D/W3BwPdSeg01PWlbNTbrD4jRF9gyYvBjC3soi7K0swt7K4ir29tB42DYLJrrncWt8lHVEyn5qr7SllIaOBuo76qnvqOdkzclePyPcJ5wY/xgHR8r6c5R/FB4aj8vW4Sr2vhBD7ijt2LGDl156iUOHDlFWVsZnn33G0qVLHc5Zs2YNL730EuXl5UyaNInXX3+dGTNm2I7X19czd+5czp49y0svvURYmEiMOGQExsKi5+Caxy1JK/e/DVWnLTFMB9+FhNkwbQWMuQk8xN5MAoFAMBAuFB8Fli1h7B0oa9C5dYSq1dhKVVsVVW1VHK062uN6jaQhwjfCYUrPOhIV6x9LpG/ksEnEeUmO0sqVKy/5hq+88kq/KtDS0sKkSZO45557uPXWW3sc//jjj1m5ciVr165l5syZrF69mvT0dLKzs4mIsCxLDwoK4ujRo1RUVHDrrbfyrW99i8jIyH7VQzDIePlb0gdMuwfyv4b9f4Ksz6Fwt+Xl8zhM+i5MXQ7ho4a6tgKBQOBW+Hv6kxaSRlpIWo9jsizb8kf19iptLqXD1EF5SznlLeUcqjjU4x46SUekXyRx/nE2ByrGP8a2TUy4bzgayT1iVC8pRmnevHkOvx8+fBij0UhamqUBzpw5g1arZerUqWzdunXglZGkHiNKM2fOZPr06bzxxhuAJXlVfHw8Dz/8ME888USPe/zoRz9i/vz5fOtb3+r1Mzo6Oujo6LD93tjYSHx8PNXV1bY5To1Gg1arxWQyYTZ3B9NZyzs7OykuLiY2NtZWptFoMBqNtuHFnMpmtmRX8+C8VIxGo0MdrPO0l1ru4eGB2WzGZDI52Eqn0/VZ3lfd+yq3rzvQqyb7coPB0H9NjWVojn6AJvN9pMbuVR7m2OmYJ30Xxi1F5xfSQ5Msy5SVlRETE+Nwb1VossNd2slsNlNSUkJsbCxeXl5uocketbUTQH5+vu154g6a1NxOZrOZ0tJSEhMTMZvNbqHJvnww2kmWZSqaKyhtKaW0uZTSllLKWstso1FlrWUYzY7azsdT40m0fzTRvtEEEsjD0x8mNiB2UDXV1tYSGhqqjhilbdu22X5+5ZVX0Ov1vPfeewQHWzIz19XVsWLFCq6++upBrVxnZyeHDh3iySeftJVpNBoWLlzInj17AKioqMDX1xe9Xk9DQwM7duzghz/8YZ/3fOGFF3j22Wd7lGdkZNhinRISEpgyZQrHjh2jsLDQdk5aWhqjR4/m4MGDVFVVcfz4cQAmT55MYmIiO3bsoKmpiQ4T/PKglk6zxOzUMMqO73b4DzNv3jx8fHzYsGGDQx0WL15MW1ubg711Oh1LliyhurraphlAr9czf/58ioqKyMzMtJWHh4cze/Zszp49S3Z2dwK0i2nav38/VVVVtvLzNVmZNWsWERERZGRkDFDTWHSjfseSUV507F6LR/42NCUH0JQcwLTxCZhwK1VR89lb4QFd30asmrKyslSqyR3bCU6fPu12mtTaTqdPn7Y9T9xFk9rbSaPRsHfvXrfSNJjttH/bfltZFFHcs/gemyaz3kyT3ESj1EjihETOVJzhWMEx6sx11JnraDQ30mnupKCxgILGAgDGbx/PqKhRg6pp165dKEG/V73FxsaSkZHBuHHjHMpPnDjBddddR2lp6cArc96IUmlpKbGxsezevZtZs2bZznv88cf56quv2LdvH/v37+eBBx6wBXE/+OCDfP/73+/zMwZjRKm9vZ1du3Yxe/ZsdDpdrx774/88zmeZZXxnRjzP3TjGoQ7u+i1kQJoaStEc/zuao39DqjlrOy7rYzCP/xbmCbdjChnJ7t27mTNnjkMuDtVqcvF2MhqN7N69m9mzZ+Pj4+MWmuxRWzuZzWa++uor2/PEHTSpuZ2s/Xvu3LkAbqHJvlwN7WSSTdR01lDUWERhfSH7svbxTPoz+Hj5uO+Ikj2NjY0Onp2VqqoqB29VKWbMmOHghV8MLy8vvLwub0mkLMs0NzdfMIr/m1fE8llmGf89WsYT6SPx9RzyuHl14h+JedbDmK98CKn0ELrjHyGf/AypqRTtnj9YXpETiNSORR6fCMEi+7ezuZT+LRg8hL2Vxd7eak/W6KroNDpi/WOJ9o1mYtBEvM56oZVcN/C733+9b7nlFlasWMHLL79sW3m2b98+fvazn/UajH05hIWFodVqqaiocCivqKggKirqsu69Zs0a1qxZY/OC+zP1dvjwYQA2b94M9D60KcsQF+hHcUMHL3+8lamhw2O49rI13fgahWMfpOLrvxBf+zWRDcfQVBxnHMfhjx9T4zeK4uBZlAZNJyplvGtoctF22rZtm9tpUmM7WUMYrM8Td9Ck9nay4k6a1N5OmzdvHnRNqp16a21t5bHHHuPdd9+1DdnpdDruvfdeXnrpJfz8Bp4JtK9g7hkzZvD6668DlkC8hIQEHnrooV6DufuLNWFVf6be2trayMjIYNGiRXh4ePQ5tLl2Rx4vbz7LjKRgPri3e58gMVzbD02tNcgn/0Xj7ncJa+7+jyVLGki6GmncUkyjlmD2CXEdTai7nQwGA5s3b2bRokX4+vq6hSZ71NZOJpOJDRs22J4n7qBJze1k7d+LFy9GkiS30GRfrrZ2am9vtz1PPD09XXLqbcCZuVtaWsjNzQUgJSVlwA5Sc3MzOTk5AEyZMoVXXnmFefPmERISQkJCAh9//DHLli3jrbfeYsaMGaxevZq///3vZGVlDUoKgIFk9jSbzVRXVxMWFnbB/WvKGtqYvWorsgzbH7uWpDD3TifvLGz29uxAc+pfcPwfUJbZfUKX08TYm2D0N0B/eaONw51L7d+CwUHYW1mEvZXFmfZW/RYmOTk55Obmcs011+Dj4zPg+d7t27f3SD8AsGzZMtavXw/AG2+8YUs4OXnyZP7whz8wc+bMgVS7BwMZUeqPx75i/UG+OlPFD+cms3LhSEB8CxkUTXX5aLP+i+b0vx2cJhkJ4qYjjb0J48gbkIMSXUcTbthOQpPQJDQJTU7SpNoRpZqaGm6//Xa2bduGJEmcPXuWESNGcM899xAcHMzLL7/srLoOKvYxSmfOnOFvf/tbjxilI0eO9DpfumvXLqqru/fZsc6Xbt26tccc8IFyEw/+7TCBnjLPXGFCIw1sDriysrLXOeCCgoJe57X7Wkrfl6bdu3f3Ogfcm6aIiAg+//zzy57XvlRNYWFh1NfXk5SUZBt9tNd08uv/wan/EF1/kJDWXIfPb/SOoyzwCsoDryBp9lISk5JVockd20loGpim4ODgHnV3dU1qbydJkrjhhhs4cOCA22hyx3a6mKb//ve/3HTTTepzlO6++24qKyt55513GDNmDEePHmXEiBFs2rSJlStXcvJk73vKqBVnxihptVoMZpmZv9lCfZuBP999BdeMDHMpj10N30KMRiMZGRmkp6ej1XavnOhVU2MZ2pyNaLL+i5y/C0m2S1ypj0YalY4pZRHmpKvBw3fINKm5nUSMkohRcud2EjFKympyhxilfq96y8jIYNOmTcTFxTmUjxw5koKCgkGrmNJ4eHjYHlJWtFqtwx9mK9YOc/411nJ7vDSwdEos63fn8+mRMhaM7d7d8PzPu1C5RqPpdX63r/K+6n4xTZda3p+691U+EE293cdBU2gChD4AMx9AaquDs5stW6fkfInUVAaH1qM9tB6tzhuSr4GR11lewYlDpkmt7WT92Z00WVGTJusfmN6eQa6qqa869rdcaHJ9TdbzPTw8bHVwtqbBpt+f0tLSYpuisqe2tvay8xMNJQaDweZZX4p3a70GLu6x3zo5mvW788k4VU5FfQsRgRb7iW8hlz6iBDiUXZImDz3ymFtgzC1g7EBbtAdNTgZy9hdIDUVwNsPyAghLw5QyHzllEXL8TNB5Ddtvi9ZrDAaD22iyR22arNjrcnVNam4n+3q5iyb7crVpsn+eOEOTEvTbUbr66qv5y1/+wvPPPw9YDGI2m3nxxRd7DcpWK5eTR+nIkSPAhfMoQfcccNHxPcT5yRS3wO8+2sIz371W5N7op6Z58+aRl5fHmTNnLk/T4kVs87oeqrKIajhCROMxQltzkKqz0VZnw743MWo8qfYfQ+DUb6Ibnc6GPVlgt1BhuLSTyKOkjKbw8HC0Wq3Io6SgpqSkJHQ6HXv27HEbTWpvp2GVR+nEiRMsWLCAK664gq1bt3LTTTdx8uRJamtr2bVrFykpKc6qq1MYSIySdfRJp9MhSdIleex/3VfIs//LIjHEl80rr8FD29MbFt9Cetdkf9y+LoOmydCMJm875uxNSLlbkFoqHT5XDkxATp6LecS1yEnXoNOHX7YmNbeTLMsYjUZ0Oh2enp5uocketbWTJEm0tbXZnifuoEnN7STLMmazGS8vL0wmk1tosi9XWzsZjUbb80Sj0bhkjNKA0gM0NDTwxhtvcPToUZqbm7niiit48MEHiY6OvvjFKmMgeRgMBgMbNmxg8eLFfc7jnk9zh5G5L26jpqWT39wynjtnJl78IgEwMHsPGFmGihOQswVyt0DBHjDbP0gkiJkMI66F5LmQcCV4+Di3TgqjqL0Fwt4KI+ytLM60t1J5lPo19WYwGLj++utZu3YtTz31lLPqNCQ4M0bJYDDgpYEfXTuC5z/P4rUvz7J0cgye58W+iW8hgxyjNFBNoaMhdDS6OY9AZzOmczuR8rajyfsKqSoLSo9YXl+/iqz1Qo6fgZx4NdrUeZijJmGiu2FdsZ1EjJKIUXLndhIxSspqGnYxSh4eHhw7dsxZdVEUZ+/1Bj3ngIPMEOqlpbKpgz/vPEdiS5ZDncS8du+awsLCAMjNze01j5LTNZ0xAHMgbg7ekXUsSNZhzt2G6ewWfAx1SPk7IX8nfPVb0PlS65NKtX4M1f6jMUdOYN6CRS7ZTiJGSez1NlBNam8nK+6kSe3tNKxilH7yk5/g5eXFqlWrnFUnRXF2HqXzPfZ/Hy3jsX8cR++lY8vKqwj29bQdE99CBiGPkpKaDAaoyUGTvwOp4Gs0BV9DW53DubKnH1LCLMwJszHHz0KOngRaT1W3k8ijJPIouXM7iTxKympyhzxK/XaUHn74Yf7yl78wcuRIpk6d2mOPt1deeWVQK+hsBjLHaR/s2t9tW8xmmSWvf83pskbuvzqZp5aMHUi1hxWXY29FMZuh8iTkdY0wFeyG9nrHc3Q+ED8dEudA4myInQaePdNtDCUuY283QdhbWYS9lcWZ9lbtXm8XSgEgSRJbt2697EopyUAdpaamJvR6/YAaflt2JSvWHcBTp2HbY9cSG+RewcCDzeXae8iwOk75X1teBbuhrdbxHI0OoidbgsITZ0P8leAXOiTVteKy9nZRhL2VRdhbWZxpb9U6Su6GUqve7JFlmW//aS/78mq5bWocL902qd/3GE64zSoVsxmqz0DBLovTVLAbmkp7nheaanGYEmZC/EwIG+WQx8nZuI29XQRhb2UR9laWYbfqzZ1x9qo3e3Q6HT+/fjS3vrmbfx4u5q6Z8YyJ1ot5bbWsenOmpuAUCE5BmrIMnVaLqTYfuWA3UtE+NMX7LKvqanIsr8y/AiD7BEPsNKT4mZhipmKOmQKe/k7TJFa9iVVv7txOYtWbspqGzaq3W2+9lfXr1xMQEMCtt956wXM//fTTQamYsxmKVW9W5s2bx4QYfyaHmsms0fDD9btZOcHETd8QKyVUuerNmStaqjrILvIHFkDcApKnBTExuJ3yA/9GV3aQ4JZzaNvqIGcz5GxGC2iQaPSJp9Y3Bf2Y+YRNup4dxwppam4ZVE1i1ZtY9TZQTWpvJyvupEnt7eT2q95WrFjBH/7wB/R6PStWrLjguevWrRu0yinBQFe9bdmyhfnz5/d71Rt0e+ZldS0seWM3da0GfnhNMo/fMAYQ30J6G1HaunUrCxYsUNeqNyXaydSJVHECTekhNMUHkIv2IzUWcz6ydyBy9BTkmKnIsVegiZ+BRh8x4BGlrVu3Mn/+fLHqTaFVb5s2bbI9T9xBk5rbydq/09PTxao3hVa9WZ8nw2bVm7uh1BxnX3xxvIwffnAYjQSf/GA2UxODFa+DwMVoLIXig1B8wPJeegSMbT3PC0qA2KmWV8wVED0JvPyVr69AIBA4ARHMrRADMbTZbKa6upqwsDA0Gs3FL7gIP/k4k8+OlJAc5sfnP74KX08ROmbPYNvb7TAZoPKUxWkqOWR5r87ueZ6kgbA0iL0CYqZY3iPHg87L4TRhb2UR9lYWYW9lcaa9VRvMnZycfMElfufOnbusCrkCJpOJPXv2sHjx4kFp+GduGsee3BryqltY9UUWz908fhBq6T4Mtr3dDq2HZbQoehJMv9dS1t4ApZkWx6n0MBQfsqywqzpteWV+YDlP4wGRYy0pCmKmQMxkTMEjhb0VRPRvZRH2VhZ3sHe/HaVHH33U4XeDwcCRI0fYuHEjP/vZzwarXoqj9Ko36J7r9dXBC7eMY8V7h/jLngLmjQrjqtTuXDrDcV7bbVe9nVfutHby1KMZMRdD/OzuCjaVo6s8DqWHkUuOIJUdQWqtgbKjltfh9yz6NB7M9YpFMm2E+GmW/evC0kDnPbSa3LGdxKo3serNzdtp2Kx6s+eRRx7ptXzNmjUcPHjwsiukFEO96q23VQXfm5nMX/cV8cjfDrJygolgL7FSAtx81dtQtFPKIosm/V34GGoIas1jarQWueQQ5uLDeJpaCGrLh2P5cOxvXVv8amjyjqXBN5H24FGMuvpbFBuCOHKquz3cse+JVW/u2U5W3EmT2tvJ7Ve9XQrnzp1j8uTJNDY2DsbtFGMgq97a29vZtWsXs2fPRqfTDZrH3mmGW9/cQ3Z5E2Oj9Xx433R8PXXD8luIfbnJZGL37t3MmTPHYejWlTWptp0MBky1eZz56hPGBHXiUXkCuewoUms1vSEHJyNHTkCOmgBRE9DGTMbkG47Zri5Drknl7WQ2m/nqq69szxN30KTmdjIajezevZu5c+cCuIUm+3K1tVNHRwe7d+9m9uzZeHh4DO9Vby+++CJ//OMfyc/PH4zbKcZQr3o7n+K6Vpau2UV1cyfXj4vij3degUYj0uwLhhBZtqy0Kz/WPU1Xdgx6SVMAgG8YRE2AqPEQNdESMB420hJLJRAIBIOEale9TZkyxSGYW5ZlysvLqaqq4o9//CMPPPDAoFfSmQx01VtRURHx8fFOCU47VFDLd/60j06TmYfmpfJYetqgf4Yr4Wx7Cxy5ZHu31Ficp/JjUH7c8qo+A7K557laTwgfbXGgIsdZnKeoCeAb4jwhLoLo38oi7K0szrS3ale9LV261OF3jUZDeHg41157LaNHjx6seqkak8lEZmYmMTExTvmPNjUxhBduncBPPznKG9tySI3wZ+mU2EH/HFfB2fYWOHLJ9vYLhZR5lpcVQ5slVUH5cSg/ARUnLO+dTd1OlT366C7Hqct5ihhr2dtO5+kccSpE9G9lEfZWFnewd78dpaefftoZ9RCcxzenxpFT1cyb23N5/J/HiA70ZuaIod1VXiC4KB4+3UkurZjNUF9gcZoqTlqcqIoTUJcPTWWWV86X3edrdBA60pK2IGKsxYmKGAuB8eCiD1qBQOC69NtR6k+wthpiflyZn12XRm5lMxmnKrhn/QH+cu8MpiaKqQqBi6HRQEiy5TXmxu7yjiaoPN3tQFWchIpT0NHQne+Jf3af7+kPEWMsTlPE2O6f/cMVlyQQCIYP/XaUgoKCLphwEixxS5Ik9ch74y5IkkR4ePhF7XC5aDQSf/jOFO597wC7cmpY9u4B3r93BlMShtc2J0rZW2BBMXt76SF+huVlRZahscTiMFV2OU6Vp6AqGzqbu7ZtOeB4H99Qi8MUPhoiRnf/7CLxT6J/K4uwt7K4g737Hcz93nvv8cQTT7B8+XJmzZoFwJ49e3jvvfd44YUXSEpKsp1rXX6pZgaSHkDp5ZdGWcOKdfvZm1eL3lvHe8unMjEuyK2XlApNQpNDucmAtiEfTVUWprITSFWnkapOQ10+Er0/wmT/SAgfjTl0FISnIYePRg5LwyMgQh2acMN2EpqEJgU1KZUeoN8jSn/5y1945ZVX+M53vmMru+mmm5gwYQJ/+tOf2L59+2DWz2lcTsLJoUjotWpJEve8V8O5JiPfe3svP5vuzYqlC90+SZlVU0hICGazmbNnz7qNJndsJ6drGn8rGwu8MPpNAj/QJnRw7bhovJvyydu3AX17CQHtJfh2ViM1V0BzBdq8rxy04heBMSiF4g4/mrxjaPKORQ4bxdXptwyJptDQUDZu3OjwB8Ll20nlfS80NJRZs2a5lSZ3bCeXTTjp6+vL0aNHGTlypEP5mTNnmDx5Mq2trYNaQWczkBGltrY2MjIyWLRoER4eHop57A2tHdzz3iGOFDUQ4K3jnWXTmZYY5PbfQoxGIxkZGaSnpzts+eDKmtTcTgaDgc2bN7No0SJ8fX1dU1NHE7r6c1B5GnPFKaSqbKTqbKS+cj8B+IQgh41CDh2JHJ6G3DUSpQtJxGQ2O02TyWRiw4YNtudJn5ouUO4ufU8JTdb+vXjxYiRJcgtN9uVqa6f29nbb88TT03N4jCjFx8fz9ttv8+KLLzqUv/POO8THxw9axZTGw8PD9pCyotVqHf4wW7F2mPOvsZb3du/LLddoNAT7+/DevTNZ/u5+DhfW870/7+O1OyZzw4ToHuf3VfeLabrU8sHS1Nty0b7KtVptr/dxdU1qbSfrzy6pySME/EMgbhoOn9jRZMn1VJVtCSSvPgNVWVBXAG21SEV7kYr2nndjP7RhI9GGp1lSF1jfg5PR6jwvW5P1D0xvz6Dh2vesCE2ur8l6vjUr94XqPliaBpt+f8qrr77KN7/5Tb744gtmzpwJWPbLOXv2LP/85z8vcrXgcgnw9uCD+67kxx8dYfOpCn70t8P83zfGsmJO8lBXTSBQP176nukLADpboeYsVHU5TtXZlp9rc8HQAmWZlpc9ktayki9s1HmvVPAZXgsuBAJ3pt+O0uLFizlz5gxvvvkmWVlZANx444384Ac/cOkRpf6g0WhISEgYsuRZPp5a1n5vKk//5wR/3VvIs/89RVlDO09cP9ottzsZansPN4alvT19IXqS5WWPyQC1eRbHqfqMxXmqPgPVZy1JNGtyLK9sx3gO/MItTlNoapfzNNLyCkoEjeM35mFp7yFE2FtZ3MHeg7bXm6uitr3e+oMsy/xxey4vbbIExV03NpKXb5+E3lvsqSUQOBVZtiTKtHeeas5aHKjGkr6v03pCyIguB2qkJbGm9WcXSWcgEKgF1e71BrBz507eeustzp07xyeffEJsbCzvv/8+ycnJXHXVVc6op9MYiKFNJhPHjh1j4sSJvc6nKs2nh4t54p/H6TSZGRHmx1t3TWVkpH6oqzVoqM3e7o6w92XS0WRxmGpyLO/WEajaXDC293mZ7BOCZHOgUrqdqJAR4OGtoAD3RvRvZXGmvVW719s///lP7rrrLu68804OHz5MR0cHAA0NDfz2t7/tsaTQHTGbzRQWFjJ+/HhV/Ee79Yo4RoT788O/HuJcdQs3r9nF72+bxOJegrxdEbXZ290R9r5MvPQQe4XlZY/ZDA1FXSNPOZb3mhzk6rNIjSVIbbVQvN/yckCybN8SmmJxnGyvFAhK6DGVJ7gwon8rizvYu9+O0q9//WvWrl3L3XffzUcffWQrnzNnDr/+9a8HtXKCS2dyfBD/e/gqHv7wCLtza/jRB4d54JoRPHZdGp46150bFgjcBo0GghMtr9SFtmKjwcCm/35G+vRUPBryoSa3K/apy6HqaICGQsvr3Lbz7unRtT1MSpcjldL1c6plw2EXjgsRCNRCvx2l7Oxsrrnmmh7lgYGB1NfXD0adBAMk1N+Lv9wzg5c2ZfPWjnP8acc59uTWsPrbk0kJ9x/q6gkEgj4wab0gagLEnzcKJcvQWtM9jVdz1uJI1Z6zvJs6uqb2zvS8qc6nKx5qRLcjFZJiKdNHgQtvKSEQKEm/HaWoqChycnIctioB+PrrrxkxYsRg1UtxDAaDLfHWxZJfmc1mUlNTbflPhjqh1/nlTy4ew6S4QH7x2QmOlzSw5A87eeqG0XxvVhLmPhLnqS1JmX252WwmLS0NWZYdPtfVEq+5SjI5k8lk69/uoskeNWqyf570qLtnIERPheipjuWyGRpLkWpz0TXkI1fnINfkINXkQH0hkrHNsl9e5Ul64OGHHJKMHJyMHDICOXgEUmgK2vCRmHzCMNvV0d3ayWQyMXLkyAvW3dU02ZerUZO1fztDkxL021G6//77eeSRR3j33XeRJInS0lL27NnDY489xq9+9Stn1NEpXM4WJocOHaKqqoqcnBxAnSniR3g28pMxbXyQq+FMA/zqP6f46mw1d46SaKzsXpXjSmnvs7KyRCp/BTXl5+e7nSa1tlN+fr7teTIwTfdRVVlp0aQHSTYS7tHGrJER1OYcoP7cYfw7yvHrqLRs72JoQao4gVRxgh5ovWn1CKfFO4oWzwj8EycRPXY2mXm1lDSaQdK4RTtptVp279497PueUppycnKGzxYmsizz29/+lhdeeMG2XYmXlxePPfYYzz//vFMq6UwGsoVJe3s7Bw8eZOpUyzc8NXjs55db6242y7y3t5DfZ5yh0yQT5OPBL25IY+nkaCRJUvW3ECsmk4nDhw8zdepUh1wcrvjN6vxyNX5bNBqNHDp0iKlTp+Lj4+MWmuxRWzuZzWb27t1re544XZPZgK6pFJN1ZV5tHlLdOaTac0gNRZaRqj6Qdd4QnIQclIQUmoIUkowpMAlzcBIExoFGp/p2MhqNHD582JYweTj3PSU0dXR02J4n1uzcbr+FiSRJPPXUU/zsZz8jJyeH5uZmxo4di7+/P21tbfj4+Dijnk6nP1uYaLVaampq0Ol0im5hMtC09w/MTeXqURGs/PtRTpc18vinJ/jfiQp+s3Q88SG+F6y7WjRVVVU5pMO3x1VS+bvS9gTW/n2huruaJnvUpMlkMvX6POmr7n2VX7omD/BKRRuW2vPGxk6oL7TEQNWes6Q0qM2zvNcXIhnboSoLqSoLuvan1na90Ogsq/CCkyFkBB4hybafCU4EqXsri8HX1FWXS2yn6upqZFnusy7Dpe/1Vcf+ll9Ik06ns/XvYbOFiRVPT0/Gjh0LQEdHB6+88govvvgi5eXlg1Y5weAxJjqA/zw0hz/tOMdrW86y40wV6at38Nh1adw9KxGdVqyOEQiGPTpPyxYsvTlRJoMlvUFtXpcTldftUNXlWwLLrb/nbul5vT7GskIvOBlCkrreu34XyTYFKuaSHaWOjg6eeeYZNm/ejKenJ48//jhLly5l3bp1PPXUU2i1Wn7yk584s66Cy8RDq+HBealcPz6KJ/95nP35tTz3v1P8/WARz940jpkjQoe6igKBQK1oPSyjQyEjgAWOx8xmaCrtdp7q8ux+zoeORsvxplIo6CWuxDvQ0XEKSYbgJMvPATEiV5RgSLnkGKWf//znvPXWWyxcuNAWALdixQr27t3LL37xC2677TaXTCY1kMyeZrOZoqIi4uPjXXb/GrNZ5sMDhby4MZuGNssc9U2TYvjF4jFEBaorC7A72NuVEPZWFre3tyxDa22383T+e/NFZiG0nl1TekkWxyk4yc6RSgJPv35Vx+3trTKcaW/VbWEyYsQIVq9ezU033cSJEyeYOHEiy5cv589//jOSC+fjcOW93gaD2pZOfp+RzYf7C5Fl8PXU8qNrU7j3qhH4eLqe4ysQCFyMzlbLqFNvjlR9IZgvsgTcL8LRcbJ3qPwjRdJNN0Z1jpKnpyd5eXnExsYC4OPjw/79+5kwYYLTKqcEAzG00Whkx44dXHPNNYoFkzmbEyUNPP2fkxwqqAMgMsCLlYtG8a2p8Wg1Q+sIu6O91Yywt7IIe18AswkairscqXyL82T9uTYP2usvfL3OG4IS7RyoREwB8Rw8V8PUBbeg8w1ybv0FTu3fqtvrzWQy4enp2X2hToe///DM9izLMk1NTfQzs4KqGR8byD9+MIv/HC3lpU3ZFNe18fN/HufPX+fx8+tHM390xJCNHLqjvdWMsLeyCHtfAI22e9sX5vY83lbX5TgVdDtRtXlQXwD1RZZNiKuzLa8utMBMgEOPgl/4eY5UUtfnJUFArIiNGgTcoX9fsqMkyzLLly/Hy8sLgPb2dn7wgx/g5+c4P/zpp58Obg0FiiFJEjdPjuX68VG8v6eA17fmcKaimXvfO8gVCUGsXJTGnNRQl55qFQgEboRPsOUVM6XnMZMRGosdnae6fMy1eRgrz+JpaoGWKsur5GDP6zU6y2bE9s6TvVPlEyy2gRkmXLKjtGzZMoffv/e97w16ZQTqwEun5b6rR3DbtHj+uD2H93bnc7iwnu/9eR8zkkL4yaJRzEoRK+QEAoGK0eq6nZoR19qKTQYDX2zYwOL5c/BoLukajcq3vLqcKeoLwdTZNUqV1/v9PfXdTlRQot17kiX43NPXyQIFStHvzNzuxkBXvVVXVxMWFjYsVk1UNrXz5vZcPthXSKfRkjV1ZnIID85L5eqRYU4fYRpu9h5qhL2VRdhbWS7J3mYTNJV1O1FWB6quwPJzU9nFP8gvwtGJso1IJUJAnMWRGwY4s3+rLpjbXRnuq976Q3lDO2u25fDRgUIMJku3mRAbyIPzUrhubBSaIQ76FggEAkUwtFlioOrtRqNsDlWBJW/UhZC0EBhrNxKV5OhU+UeKab1LQDhKCjEQQxsMBjIyMrjuuuv6TPPuzpTWt/H2znN8uL+QdoNlhCkl3I/7rx7B0imxeHsMbgDkcLe30gh7K4uwt7I43d6ybAkytzpNDu/53dN6F0LnbZm+C0rsyiF13vSeC8VHOdPeqlv1JnDk/I0BhxMxQT48feM4HpqXyrpd+by3J5/cqhae+PQ4v8/I5q4rk/jelQmE+nsN2mcOZ3sPBcLeyiLsrSxOtbckWbZk8Q3pPcjcbLYk2ezhRHW9N5Z0rdY7Y3n1hldATyfK/mcvda1Id/X+7fKOUlFREXfddReVlZXodDp+9atfcdtttw11tYYFof5ePJaexgNzR/Dx/iLW7cqjtKGdV788wx+353DrFbHcPSuJMdFiSlMgEAgASwLMgBjLK3FWz+MmgyV3VK8jUgXQUmmZ2qs4bnn1hm9o94hUcJcTZZ3eC4wHD3XtvqB2XN5R0ul0rF69msmTJ1NeXs7UqVNZvHhxj7QFAucR4O3B/deMYPmcJL44Uc47O89xrLiBD/cX8eH+ImYkh7BsVhLXjYvEQ2y+KxAIBH2j9bBkGg9J7v14Z6tlc2KH6TyrM1VoScLZWmN5lR7p/R7+UXYO1HmjUYFxljoIbLhdjNKkSZP43//+R3x8/CWdP5A5TmsCLb1eL3IK9YIsyxzIr+O93flsPFmOyWzpYlEB3twxPZ5vz4gnOtCnX/cT9lYOYW9lEfZWFre3d1u9xWGqL+xKvFnoOCJlaLnw9ZLGkmzTwYGyc6j6uUmxM+09bIK5d+zYwUsvvcShQ4coKyvjs88+Y+nSpQ7nrFmzhpdeeony8nImTZrE66+/zowZM3rc69ChQyxbtowTJ05c8ucP1FEyGo3odDr3/I82iJQ3tPO3fQX8bX8h1c2WAEaNBPNHR/DdmQnMHRVx0S1ShL2VRdhbWYS9lWVY29u6QXF9vqMDZfu5EEwdF76HRmcZdeoRI9X1+3n76znT3sMmmLulpYVJkyZxzz33cOutt/Y4/vHHH7Ny5UrWrl3LzJkzWb16Nenp6WRnZxMREWE7r7a2lrvvvpu3337b6XU2Go1s2LCBxYsXi1UqFyEq0JuV16Xx4PxUNp4o52/7CtmXV8uXpyv58nQl0YHefPOKOG6bFkdiaO/TpcLeyiLsrSzC3soyrO0tSeAXannFTu153Gy2xEA5OFF2jlRDkWWTYms6hN7QekFQvM1xMgfEk5lXw+RvrsRDH+ZMdU5jyB2lG264gRtuuKHP46+88gr3338/K1asAGDt2rV8/vnnvPvuuzzxxBMAdHR0sHTpUp544glmz559wc/r6Oigo6PbY25stOS7MBgMGAwGADQaDVqtFpPJhNlstp1rLbdG8FvP12q1aDQajEajw3421nLreVasGwOevxKgr3IPDw/MZjMmk8lWJkkSOp2uz/K+6n4hTb3VfbA0aWQzi8dFsHhcBOeqWvjkcCn/OFRMWUM7b2zL4Y1tOcxICub26Qmkj43AW9f9zcN6T3udatDkju1kNBpt1xgMBrfRZI/aNFmx1+XqmtTcTvb1chdN9uWXrck/EvwjMUY5rtjT6XRgNmGsL0bqmtqT6gvQNpUg263Yk0wdUJNjeWHZW2860FZ/O5JP0KBrUoIhd5QuRGdnJ4cOHeLJJ5+0lWk0GhYuXMiePXuA7j3o5s+fz1133XXRe77wwgs8++yzPcozMjLw9bWknE9ISGDKlCkcO3aMwsJC2zlpaWmMHj2aw4cPA7B582YAJk+eTGJiIjt27KCpqcl2/qxZs4iIiCAjI8OhQefNm4ePjw8bNmxwqMPixYtpa2tj27ZttjKdTseSJUuorq62aQbQ6/XMnz+foqIiMjMzbeXh4eHMnj2bs2fPkp3dvRHkxTTt37+fqqoqW7mzNf3yG0tYdkUIf/5iP3srJbIbJPbn17E/v45f6TSMDzIyLVxmVKBMRLjlW0hubi45OTmq1eRu7bRt2za306TGdgoODga6nyfuoEnt7WTFnTQp1k5fH7XWHJ1uMkuWPkVVZSV79uxBko34dNYRqmvhiqQQ6guO0VR4At/OKvYcPENIZOugatq1axdKMOQxSvZIkuQQo1RaWkpsbCy7d+9m1qzuZZSPP/44X331Ffv27ePrr7/mmmuuYeLEibbj77//PhMmTOj1M3obUYqPj6e6uto2x3kx77atrY2MjAwWLVqEh4eH+BYyCJrKGtr5V2Ypnx4pJb+m1XZepN6LJeMjCWk+x723Xme7nytoAtdsJ4PBwObNm1m0aBG+vr5uocketbWTyWRiw4YNtueJO2hScztZ+/fixYuRJMktNNmXq62d2tvbbc8TT0/PQdVUW1tLaGio+8coXS5XXXWVg2EvhpeXF15el5cIUafTsWjRIoc/2oLLIzrQmx9dm8LDC0ZxqKCWTw8Xs+F4BRVNHby7pxDQ8c+yvXxjQhTfmBDNiHCR/sFZiP6tLMLeyqLT6UhPT7f9wRY4F3fo36queVhYGFqtloqKCofyiooKoqKiLuvea9asYc2aNbb/KP2Zejtw4IAYrnWipnCpmZnafKZOhFP1EieavMmsNJFX3crr287x+rZzxPrKXJsSwH3pU6kvOqN6Te7YTkLT4GgKDw9n69atDn+0XV2T2tspKSmJiRMnupUmd2wnMfXWC+dPvQHMnDmTGTNm8PrrrwOWnYgTEhJ46KGHbMHcl4N1eaGYelPXcK19udFo5D9fZCDFTuTzk5XsyqnBaO6u09hoPdePiyR9bCQjwv1cQpOa20lMvYmpN3duJzH1pqwmMfU2CDQ3NzsE6Obl5ZGZmUlISAgJCQmsXLmSZcuWMW3aNGbMmMHq1atpaWmxrYITDA+8tZA+KZpbroijrrWTL09X8sWJCnafq+VUWROnypp45cscUsP9SB8XxQ0TokmL8B3qagsEAoHAxRlyR+ngwYPMmzfP9vvKlSsBWLZsGevXr+eOO+6gqqqK//u//6O8vJzJkyezceNGIiMjL+tzL2fqTax6U1ZTWFjPVW9+wMqpCbz2nYW888V+tuXUcaZBIqeqhZztuazZnkuYj4axgUYmhMik6GWmXqEeTa7QTmLVm1j1NlBNam8nK+6kSe3ttHnzZjH15qoMdOpty5YtzJ8/X0y9KaDJaDSydetWFixY4JB35nxNjW0Gtp2pZvPpSr46U0W7oVtngLeOeaMjWDgmkjkjgtF7d39HEO3Uc+pt69atzJ8/X0y9KTT1tmnTJtvzxB00qbmdrP07PT1dTL0pNPVmfZ646tSbcJQUSoEuUJa2ThM7z1bx5ekKtpyupKal03ZMq5GYnhTMgtGRzBsdQUq43/DbykAgEAhcnGGz19tQM5ARpc7OTqqrqwkNDbWViW8hztMkyzL19fW2KYr+ajKZZTKL6tl6ppptWVWcrWx2uE98sA/zRkdwVUoIVyaH4OOpdbomNbeT2WympqaG0NBQvLy83EKTPWprJ4Dy8nLb88QdNKm5ncxmM3V1dURERGA2m91Ck3252trJYDDYnidardYlR5SGPEZpqLjc9ADV1dW2crXMAYP7zWuDJUapurqa1NTUy8rMfefkyfxi8Vg++t+XHChu5USdRE6jRFFdG3/ZU8Bf9hSgk2RSA2RGB8ncfd10xseH8sUXX4h2EpqcGqN04MABh7q7uia1t5P1c0WqF9fWJGKUFEKkB1Dnt5DzY5QyMjJIT0+/YIzSQDS1dBg5UFDP9jPVbMuqpLSh3aGe0YHezEkJZU5KCLNTQgnx83T7dhLpAUR6AHduJ5EeQFlNIj2AG+Hh4dFjJ2mtVuvwh9mKtcOcf421vLd7X265RqOxDctfSnlfdb+YpkstHypNvd3ncjQFeXiwaJwPi8ZFI8syOZXNfHWmih1nq9l3roayhnb+cbiEfxwuAWBcTABXjQzjqtQwpieF4O3h+Lnu1E7Wn91JkxU1abL+gentGeSqmvqqY3/LhSbX12Q938PDw1YHZ2sabISjNAAkSUKv14sAYIVQyt6SJDEyUs/ISD33XT2CdoOJfXm1fH22ip1nq8kqb+JkaSMnSxt566tzeGo1XJEYxJyUMGanhjExLhAPbc+Hhash+reyCHsri7C3sriDvcXU2wCm3tQ2tOmOw7Vq1FTV1MHu3Bp2n6tjd24N5Y2O03R+nlqmJYUwMzmIK5NDGBsdgE6rUbWmi5W7YjsJTUKT0DQ8NImpNydzOcHcwylYTi2aYmNjaW1t5cyZM0OqyQP43a2LaW1t5eMvtnOmQeJMg0Ruo4aWThNfnaniqzOWz/TWyowK1rJk+igSfTppLT2DVnLvdhKa+q8pLCyMjRs3OvyBcHVNam+nyMhIZsyY4Vaa3LGdRDC3ShDB3Or/FuLMYO7B0mQ2y+TUtLE7p5o9uTXsz6+jucPxOj9PLVMSgpieGMyM5BCmJIbgoUF17SSCuUUwtzu3kwjmVlaTCOZ2I0Qwt7oCAJUK5r5YHftTPi7Gk3Exgdx/TQoms8yp0kb25dWw91wN+/NqaWw38nVODV/n1ADgqdMwOS6IaUnBTE8K4YrEYAJ9tKrRJIK5uxHB3KKd+qpjf8uHmyYRzC0QCHpFq5GYEBfIhLhA7rt6BCazTFZ5IwfyatmfX8v+vDqqmzssP+fXArlIEqRF6pmaGMy0pGCmJYYQF+zj0kGQAoFA4OoIR6kLg8FgG4K82DCgyWQiNDTUNgQ51EOb7jhca19uMpkIDw+3ZXl1RU0SMqPCfRkV7sudM+IAKKrvYP+5Gg4U1HKooJ78mlayypvIKm/ig32WefoIvRdT4gO5IjGYaUkhjI7ww1PX/c3NGZqMRqOtfw/3vqeEJkmSHJ4n7qBJze1kNBoJCwtDkiS30WRfrjZN9s8TZ2hSgmHrKF1OMPfhw4epqakhIyMDcO9gOTVpysrKcjtNnTXF+HgVcs0oaOyEJu9waqUgdpwqJreuk8qmDjadqmTTqUrL52ggzlcmSS+T5C+zeOYYpo9LdYqmrVu3ir6nkKaGhgbb88RdNKm9nXQ6Hbt373YrTWpup4yMDBHM7aoMJJi7o6ODnJwcUlJSbHOq4luI8zSZzWby8vIYMWKEwzSUK2u6lHZq7TBwvKSRw4X1ZBY3cKSw3mFzXysRei8mxQXaXuNjAwj09RqwJpPJRG5uLikpKXh7ew/rvqeEJlmWycrKsj1P3EGTmtvJZDJx7tw50tLSkGXZLTTZl6utnTo7O23PE51OJ4K5XZn+BHNrNBpycnIYNWqUCOa+jPJL1WQwGMjOziYlJUXVwdy91f1i5RdqJ72vltkjvZk9MgKwbA5cWNvKoYI6MovqOVJYz+myRiqbOth8upLNpy2jThoJRkbomRQfyKT4ICbFBZEWpXdIhnkxTdb+Pdia3LGdLleTwWDo9XnSV937KleTpr7q2N9yZ2k6e/YsI0eO7LMurqjJitraSavV2vq3COYWCARORZIkEkP9SAz149YrLHFObZ0mjpc0kFlkcZ4yC+spbWgnu6KJ7Iom/n6wGAAvnYaxMQFMigtiYlwgE+OCGBHmh0YjAsUFAoHgQghHSSBwYXw8tcxIDmFGcoitrLKxnSNF9RwrrudoUQNHi+tpajdypNAyCmXF30vH+NgAJsQGMiEuiImxgSSG+g6BCoFAIFAvwlHqoj+r3sxmM3FxcbY52aGeA3bHee3zY5QSEhKQZdllV70p2U7BPloWjYkgfVwUBoMBs1kmv6aV46WNnCxt4lhJAydLG2juMLL3XC17z9Xa7qf31jE2Sk+kZwCGzBKuSAojIdgHWe6uy3Dqe0ppsn+euIsmtbaTyWQiPj7+gnV3NU325WrUZO3fYtWbi3E5q94OHTpEVVUVxcWWaQ21rCoA91spYa/JHVe9KdlOHsBP5s3Dx2cU//18A+WtUNQiUdQs0egRRFZZE03tRvbl1wHwnzMnAfDz1BDlZSLOTybOXyYt3JfvfmM+JcVDr8ld2qm8vNz2PHEXTWpvJ61WK1a9KaipuLhYrHpzVQa66u3EiROMGzdOrHpTQJPZbObUqVOMGzduWK16U1qTwWTmdGk9J4ob2HmygLIOHVnlzXQYzZyPp05DWqSesdH+jIkOYGy0ntFRegJ8vVWlqbdytbWTLMtkZmbanifuoEnN7WQymTh16hSTJk0Sq94UWvV28uRJxo0bJ1a9uTr9XfVWXFzMxIkTxaq3yyjvz6q3wsJCxo8fP6xWvSmtyVOnZVJCKGOjA/CvOm7ZC0ujJbeqhRMlDZwsbeREaQOnShtp7jByvKSB4yUNQAkAkgTJYX6MjQ5gbEwAY6IDGBcdQLj+witdhns7GQyGXp8nfdW9r3I1aeqrjv0td5amoqIiJkyYIFa99VHH/pZfbNWbtX+LVW8CgcDt0Gk1pEXpSYvS882pljKz2ZKm4GRpIydLLQ7UqbJGqpo6OFfVwrmqFv53rMx2j1A/T8ZEBzAmWt/1HkBKuL9DhnGBQCBQK8JREggE/UKjkUgK8yMpzI8lE6Nt5ZVN7Zwua+JUl+N0uqyRc1XN1LR08nVONV/nVNvO9dBKpIRbpu1GR+kZHR3AmCg94XovsbedQCBQFcJRGgAajYa0tLRehxoFg4+wt7IM1N4Rem8i9N7MHRVuK2vrNHGmoolTZY1klTVyuqyJ0+WNNLUbbfva2RPs60FalJ7RUQG2kay0SD1+Xu77qBL9W1mEvZXFHewtgrm7grmdHQwmEAgsyLJMSX0bp8uayC5v5HR5E1lljeRVt2Du42kUH+JDWmSX4xQVQFqknuQwPzF9JxAMY5T6+y0cpQEY2mg0sn//fmbMmKFYMNlwRthbWYbK3u0GEzmVzZwuayS73JJZPKu8iaqmjl7P12kkksP8GNU16jQq0p+RkXoSQ3zRaV3HgRL9W1mEvZXFmfZWylESvaSL/iScNBgMVFVV0dnZiSzLQ7780h2XlNqXG41GqqqqetTFlTWpuZ3s+/eF6j7YmrRAWoQvY6P1DppqWzo5W9nM2coWzlS2kFXWwNnKFpo7jF3lzXxOd/C4p07DiDA/0iL1pEb6kxLqy8hIP+KDfdFqJNW1kyzLDs+TS20ne9SmSc3/n6z9W5Zlt9FkX642TZ2dnbb+bb2PSDjpIlxOwsnDhw8DsHnzZkA9Cb3A/ZKUAYSFhQGQm5tLTk6OW2hyhXbatm2bqjQtmTWLFVeN4PPPP8cQa6S+E8paJXyiUyio6+Dg2VLK26DTaO41/kknyUT6SkxNjSHGX6KzqpAoX5kwbwgKGLp2Cg4OBrqfJ/1tJ3fse87WZMWdNKm9nTZv3iwSTroqA0k42dbWRkZGBosWLcLDw2PIPXZ3/BZy/ohSRkYG6enpDjk2XFmTmtvJYDCwefNmFi1ahK+vr0tpMptliuvbOFvZzLnqNs5UNHGmooncqpZeE2eCZQVeUqgfoyL1jAj3Y0SoD6kR/iSH+uLtObgJ8norN5lMbNiwwfY8udR2ctDgJn1PCU3W/r148WIkSXILTfblamun9vZ22/PE09PTJRNOCkdpAHOcZrOZoqIi235BAuci7K0s7mhvk1mmuK6VsxWWqbqzFU2cqWwit7KFNoOp12s0EsSH+JIa7k9qhD8pEV3v4f4E+vSejG8guKO91Yywt7I4094imFshxKo3gWD4YjbLlDZYRqByKprJqWzmbGUTOZXNNLb3Hf8QrvciJdyPlHCL42R1pKIDvNFoRB4ogUAJhKOkEANd9bZjxw6uueYasWpCAYS9lUXY25LCoKq5g5yKZnKrLA5UTtd7RWPvq/AAvD00jAizOE0p4X6MCO96D/PHx7Pn1gwg7K00wt7K4kx7i1VvKkaWZZqamhjmPqZiCHsri7C3JcbCmkBzdmqYw7GmdgPnqlrIrep2onKrWiioaaHdYOZUmSUz+fnEBHp3O07h/pZ4qHB/wny0w97eSiL6t7K4g72FoyQQCAT9QO/twaT4ICbFBzmUG01miurayO0afTpX1WxzqOpaDZQ2tFPa0O6wlQtYRqFCPLRsbDxKSoQloDw5zOJEDWYslEAgGBjCURIIBIJBQKfVkBxmcXIWEulwrLals9txqm7u2jy4mcLaVtoNZkoNEqUnK+BkhcN1oX6etnsmh/sxIsyP5DB/EkN98fbofSpPIBAMLiJGaYCr3qqrqwkLCxOrJhRA2FtZhL2Vw2gyU1DTwtFzZVR3asmvaeVcVTN51S0XjIWSJIgJ9LE5UUlhFicqKcyPuGAfPFwoM7nSiP6tLM60twjmVgix6k0gEKiRlg4jedUttte5qmbOdf3cdIEVeTqNRFywj82BSg7zIynU8h4T5INWrMoTuAnCUVKIgRjaYDCQkZHBddddZ0sQJ3Aewt7KIuytLP21t3Vbl7zqFpvjlG997woo7wsPrUR8iC/JoRYnKinUt+t9+DhRon8rizPtLVa9KUx/9nozGo22DMYw9JlP3TGb6/mZuY1Go0OZq2tSczsZDAbbu7toskdtmuztfqmaArw0TIrVMylW76DJYDBS0dRBfk0LBTVtFNa12UakCmtbMZjkrvioFs7Hs8uJSgzxJSHEh6RQXxJCfUkO8yc+xA9ks1u0k7V/Wz/THTTZl6tNk/3zxBmalGDYOkpirzdHTWrdHwjEXm9DpUlte725azs5a6+3WL2eu5bMp6CggMzMTMwy1HdCp1cQfpFJHD5bxJnSOqraJarbodMEuVUt5PbiROk0EmE+EsEeRsK9IcxbZsbYEUwfk0Tu0X20tTS7VDtZGe59T+z1dmmIqTex15sqv4WIvd7EXm/DpZ3UsNebySxT0dRBUV0HeVVNXSNSreTXtFJY10ZnH/vkgWWrl+hAbxJDfIkP8bXFRcUEeJEQ4oOfl25INIHY600NmsReb27AQOY4rQm09Ho9kuT+c/pDjbC3sgh7K4va7W02y5Q3ttucJ8urhfyu99bO3vfKsxLm70ViaNeUXqgviaG+JIT4kRjqS6ifp+Ka1W5vd8OZ9hbB3AoxUEfJaDSi0+nEfzQFEPZWFmFvZXFle1u3eim0jj5ZHahaixNV32q44PX+XjpbXFRiV0xUYpcTFR3ojc4JaQ5c2d6uiDPtLRwlhRjoqrcNGzawePFisWpCAYS9lUXYW1nc2d4NbYYuJ8oSTF7QNSpVWNtKWUP7Ba/VaSRig31ICPElIaR7JCqha2TK32tgIbbubG814kx7i1VvAoFAIHBpAn08mBAXyIS4wB7H2g0miutabdN5VkeqsLaVoq64KOux3gj18yTezomy/pwQ4ktUgDeaYZDqQKAMwlESCAQCgeJ4e2hJjdCTGqHvccwaF1VQ00pRXSuFVkeqtpWi2lZqWzqp6XplFtX3uN5TqyEupHs0KqEr0Dw+2JfoADGKJOgfwlESCAQCgarQaCRignyICfJhFqE9jje2GyiqtThQVuepsOu9uK6NTpO5z3xRAH46LX8u2ktiqD/xdtN78SHOi40SuC4iRkkEc6seYW9lEfZWFmHvwcVoMlPe2G4bhbKORBV3/Vx3kQBzXZeTFt81ImUdibL+HOzrIdqpH7hDMLcYURogbW1t6PU9h4wFzkHYW1mEvZVF2Hvw0Gk1xAX7Ehfsy+xejje2dZJVXE1th0RRbZvNmbIfjbKW7aKmx/X+Xjrign1sMVHxXT9bHSofT20vnzq8cfX+LRylAWA0Gtm2bZtYNaEQwt7KIuytLMLeyuKjkyg7daBXe5vNMhVN7TYHqsh+Wq+ulYrGDpo7jGSVN5FV3tTr/cP8vYgP8bEbhbL8PFyn9dyhfwtHSSAQCAQCLLFR0YE+RAf6MCM5pMdxy0q9NosDVWcfG9VGUV0rTe1Gqps7qG7u4EhhfY/rtRqJ6EDvLsepy5kKtYx+xYf4EO7vJab1VIhwlAQCgUAguAQsK/X8SY3w7/V4Q6vBNvrU7UxZnKjirpQHxXVtFNe1sedcb/e3TBvapvOCfW3TfPHBvgT6uuaIjKsjHKUBYt33RqAMwt7KIuytLMLeyuIsewf6ejDBt/e8UWZzVxZz25Rem82hKq5ro7ShjXaDmZzKZnIqm3u5O+i9dec5Ut3xUXHBPvh6qrMfuXr/dotVb7fccgvbt29nwYIF/OMf/+jXtUpFzQsEAoFA0BedRjNlDW0ODlRR1zRfcV0b1c0dF71HqJ8ncV0OVJzd9F5csA+xwT546dwr0FxsYdIPtm/fTlNTE++9954ijpLZbKa6upqwsDA0muEVmDcUCHsri7C3sgh7K4ur2rut05LJ3Dad1zW1Z42Zamw3XvB6SYJIvTdxwT4O03nWn50VaO5Me4v0AP3g2muvZfv27Yp9nslkYs+ePSxevNil/qO5KsLeyiLsrSzC3sriqvb28dQyMlLPyMjel9k3tBm6Rp+6nafiujabY9VmMFHe2E55YzsHC+p6XK/VSEQFeBMf0jUaZedExQX7EBngjXYA28K4qr3tGXJHaceOHbz00kscOnSIsrIyPvvsM5YuXepwzpo1a3jppZcoLy9n0qRJvP7668yYMWNoKiwQCAQCgcoI9PEgMDaQ8bE946NkWaa2pZOiujbLqFRt13tdG8V2+aNK6tsoqW8Danvcw0PblYjzPAfKGjMVrnffFXtD7ii1tLQwadIk7rnnHm699dYexz/++GNWrlzJ2rVrmTlzJqtXryY9PZ3s7GwiIiKGoMYCgUAgELgOkiQR6u9FqL8Xk+ODehw3m2UqmzooqbdzomrbKO76vbS+DYNJvuAmxV46DbHBPj1W6kXpPWg2WJw1V2XIHaUbbriBG264oc/jr7zyCvfffz8rVqwAYO3atXz++ee8++67PPHEE/3+vI6ODjo6uoPiGhsbATAYDBgMltT2Go0GrVaLyWTCbDbbzrUv9/f3x2i0zAlrtVo0Gg1Go9GhM1jLrfe1Yl0BYL3+YuUeHh6YzWZMJpOtTJIkdDpdn+UXqntv5X3VXQ2aTCYTer0es9ns8LmurEnN7WQ0Gm3921002aM2TZIkOTxP3EGTmtvJ2r8lSXIbTfblA9UU6qsl1FfPFQnBPepuMstUtxq79tdrtqU4KKpro7S+nbLGdjqMF9pfT8foK+qZlBAy6JqUYMgdpQvR2dnJoUOHePLJJ21lGo2GhQsXsmfPngHd84UXXuDZZ5/tUZ6RkYGvry8ACQkJTJkyhWPHjlFYWGg7Jy0tjdGjR3P48GGam5vJyMgAYPLkySQmJrJjxw6amrqztc6aNYuIiAgyMjIcGnTevHn4+PiwYcMGhzosXryYtrY2tm3bZivT6XQsWbKE6upqB816vZ758+dTVFREZmamrTw8PJzZs2dz9uxZsrOzbeUX07R//36qqqps5WrTNH/+fLKystxKk9rbaevWrW6nSa3t1N7ebnueuIsmtbeTTqdj9+7dbqXJ2e0UoPWk8sRRUoFUH9DpdSz54RJKysrZuGMfNR0Ste3QLHuhDYwgt7yeopoWGgwSZ47soaN8cDXt2rULJVDVqjdJkhxilEpLS4mNjWX37t3MmjXLdt7jjz/OV199xb59+wBYuHAhR48epaWlhZCQED755BOH8+3pbUQpPj6e6upqW9T8xbzbzs5OiouLiY2NtZUN128hSmiSZZmysjJiYmIc7uHKmtTcTmazmZKSEmJjY/Hy8nILTfaorZ0A8vPzbc8Td9Ck5nYym82UlpaSmJiI2Wx2C0325WprJ4PBQF5BEcmJ8Wi12kHVVFtbS2hoqFj1dil8+eWXl3yul5cXXl5el/V5JpOJ48ePExUV5bJR/K6EyWQiMzOTyMhI2x8WgfOw798C5yOeJ8piMpk4duwYcXFxbht8rCZMJhPZp0+SEBfjss9vVTtKYWFhaLVaKioqHMorKiou+yG+Zs0a1qxZY/OC+zv1BrB582ZADNc6W1NYWBgAubm55OTkuIUmV2inbdu2uZ0mNbZTcLAlJsT6PHEHTWpvJyvupEnt7bR58+ZB1ySm3rqYOXMmM2bM4PXXXwcsw6YJCQk89NBDAwrmPh9rwqr+TL21tbWRkZHBokWL8PDwGPKhTXccrrUvNxqNZGRkkJ6e7vCNxJU1qbmdDAYDmzdvZtGiRfj6+rqFJnvU1k4mk4kNGzbYnifuoEnN7WTt34sXL0aSJLfQZF+utnZqb2+3PU88PT3F1NtAaG5udhglyMvLIzMzk5CQEBISEli5ciXLli1j2rRpzJgxg9WrV9PS0mJbBTcUSJJEaGioGLZVCEmSCA8PF/ZWCNG/lUXYW1kkSSIsLEzYWyHcoX8PuaN08OBB5s2bZ/t95cqVACxbtoz169dzxx13UFVVxf/93/9RXl7O5MmT2bhxI5GRkZf1uZc79VZTUyNWvSmsSax6E6ve3LWdGhoaxKo3serNrdspIyNDTL25KgOZeuvo6CAnJ4eUlBS0Wu2QD22643CtfbnZbCYvL48RI0Y4fCtxZU1qbieTyURubi4pKSl4e3u7hSZ71NZOsiyTlZVle564gyY1t5PJZOLcuXOkpaUhy7JbaLIvV1s7dXZ22p4nOp1OTL25Mh4eHrb4ACtWJ+h8NBoNOTk5jBo1yuEaa0fq7d6XW67RaHpdEdNXeV9176u8r7qrQZPBYCA7O5uUlJRe7+OKmqyotZ2s/ftCdXc1TfaoSZPBYOj1edJX3fsqV5OmvurY33JnaTp79iwjR47ssy6uqMmK2tpJq9Xa+re1Ds7WNNgIR6mL/mTmtnrU1vOH2mN3x28h5wdzAw5lrq5Jze1kvcZgMLiNJnvUpsmKvS5X16TmdrKvl7tosi9Xmyb754kzNCnBsHWURHoAR01qndcGkR5gqDSJ9AAiPcBANam9nay4kya1t5NID+DCDDRG6cSJE4wbN07EKCmgyWw2c+rUKcaNGydilBSKUTp58iTjxo0TMUoKxShlZmbanifuoEnN7WQymTh16hSTJk0SMUoKxShZnyeuGqMkHKUuR8nZhhYIBAKBQDB4KPX3W+TLHwAmk4kjR470iJkROAdhb2UR9lYWYW9lEfZWFnew97CNUTqf/gRzd3Z2UlhYSFpamsjMrYAmo9FIYWEhY8aMcRtNam4ng8Fg698iM7fzNZnNZofniTtoUnM7Wfv3+PHjxdSbApo6Ojps/XuwM3OLYG4nI4K5HTWpNQAQRDD3UGkSwdwimHugmtTeTlbcSZPa20kEc7swDQ0NBAUFkZeXh16vBy5tr7etW7cyb948MaKkgCaj0cjWrVtZsGCBw3JqV9ak5nYyGAxs27aNefPmiRElhfZ6y8jIsD1P3EGTmtvJ2r+vu+46sdebApra29ttzxNn7PWWnJxMfX09gYGBOIthO6JkxephJycnD3FNBAKBQCAQ9JempianOkrDfkTJbDZTWlqKXq+/5E37GhsbiY+Pp6ioSKyUUwBhb2UR9lYWYW9lEfZWFmfaW5ZlmpqaiImJQaNx3tq0YT+ipNFoiIuLG9C1AQEB4j+aggh7K4uwt7IIeyuLsLeyOMvezhxJsiLSAwgEAoFAIBD0gXCUBAKBQCAQCPpAOEoDwMvLi6effhovL6+hrsqwQNhbWYS9lUXYW1mEvZXFHew97IO5BQKBQCAQCPpCjCgJBAKBQCAQ9IFwlAQCgUAgEAj6QDhKAoFAIBAIBH0gHCWBQCAQCASCPhCOUh+sWbOGpKQkvL29mTlzJvv377/g+Z988gmjR4/G29ubCRMm9NhQUHBh+mPvkydP8s1vfpOkpCQkSWL16tXKVdRN6I+93377ba6++mqCg4MJDg5m4cKFF/3/IHCkP/b+9NNPmTZtGkFBQfj5+TF58mTef/99BWvr+vT3+W3lo48+QpIkli5d6twKuhn9sff69euRJMnh5e3trWBtB4As6MFHH30ke3p6yu+++6588uRJ+f7775eDgoLkioqKXs/ftWuXrNVq5RdffFE+deqU/Mtf/lL28PCQjx8/rnDNXZP+2nv//v3yY489Jn/44YdyVFSU/OqrrypbYRenv/b+7ne/K69Zs0Y+cuSIfPr0aXn58uVyYGCgXFxcrHDNXZP+2nvbtm3yp59+Kp86dUrOycmRV69eLWu1Wnnjxo0K19w16a+9reTl5cmxsbHy1VdfLd98883KVNYN6K+9161bJwcEBMhlZWW2V3l5ucK17h/CUeqFGTNmyA8++KDtd5PJJMfExMgvvPBCr+fffvvt8pIlSxzKZs6cKX//+993aj3dhf7a257ExEThKPWTy7G3LMuy0WiU9Xq9/N577zmrim7F5dpblmV5ypQp8i9/+UtnVM/tGIi9jUajPHv2bPmdd96Rly1bJhylftBfe69bt04ODAxUqHaDg5h6O4/Ozk4OHTrEwoULbWUajYaFCxeyZ8+eXq/Zs2ePw/kA6enpfZ4v6GYg9hYMnMGwd2trKwaDgZCQEGdV0224XHvLssyWLVvIzs7mmmuucWZV3YKB2vu5554jIiKCe++9V4lqug0DtXdzczOJiYnEx8dz8803c/LkSSWqO2CEo3Qe1dXVmEwmIiMjHcojIyMpLy/v9Zry8vJ+nS/oZiD2FgycwbD3z3/+c2JiYnp8ORD0ZKD2bmhowN/fH09PT5YsWcLrr7/OokWLnF1dl2cg9v7666/585//zNtvv61EFd2Kgdg7LS2Nd999l3//+9/89a9/xWw2M3v2bIqLi5Wo8oDQDXUFBAKB67Bq1So++ugjtm/frv4ATBdGr9eTmZlJc3MzW7ZsYeXKlYwYMYJrr712qKvmVjQ1NXHXXXfx9ttvExYWNtTVGRbMmjWLWbNm2X6fPXs2Y8aM4a233uL5558fwpr1jXCUziMsLAytVktFRYVDeUVFBVFRUb1eExUV1a/zBd0MxN6CgXM59v7973/PqlWr+PLLL5k4caIzq+k2DNTeGo2G1NRUACZPnszp06d54YUXhKN0Efpr79zcXPLz87nxxhttZWazGQCdTkd2djYpKSnOrbQLMxjPbw8PD6ZMmUJOTo4zqjgoiKm38/D09GTq1Kls2bLFVmY2m9myZYuDF2zPrFmzHM4H2Lx5c5/nC7oZiL0FA2eg9n7xxRd5/vnn2bhxI9OmTVOiqm7BYPVvs9lMR0eHM6roVvTX3qNHj+b48eNkZmbaXjfddBPz5s0jMzOT+Ph4JavvcgxG/zaZTBw/fpzo6GhnVfPyGepocjXy0UcfyV5eXvL69evlU6dOyQ888IAcFBRkW8J41113yU888YTt/F27dsk6nU7+/e9/L58+fVp++umnRXqAftBfe3d0dMhHjhyRjxw5IkdHR8uPPfaYfOTIEfns2bNDJcGl6K+9V61aJXt6esr/+Mc/HJb0NjU1DZUEl6K/9v7tb38rZ2RkyLm5ufKpU6fk3//+97JOp5PffvvtoZLgUvTX3ucjVr31j/7a+9lnn5U3bdok5+bmyocOHZK//e1vy97e3vLJkyeHSsJFEY5SH7z++utyQkKC7OnpKc+YMUPeu3ev7djcuXPlZcuWOZz/97//XR41apTs6ekpjxs3Tv78888VrrFr0x975+XlyUCP19y5c5WvuIvSH3snJib2au+nn35a+Yq7KP2x91NPPSWnpqbK3t7ecnBwsDxr1iz5o48+GoJauy79fX7bIxyl/tMfez/66KO2cyMjI+XFixfLhw8fHoJaXzqSLMvyUI1mCQQCgUAgEKgZEaMkEAgEAoFA0AfCURIIBAKBQCDoA+EoCQQCgUAgEPSBcJQEAoFAIBAI+kA4SgKBQCAQCAR9IBwlgUAgEAgEgj4QjpJAIBAIBAJBHwhHSSAYBmRlZXHllVfi7e3N5MmTh7o6Ls21117Lo48+eln32L59O5IkUV9f3+c569evJygoyPb7M88849B2y5cvZ+nSpZdVj77o7OwkNTWV3bt3X/I1p06dIi4ujpaWFqfUSSAYKoSjJBAoxPLly5EkCUmS8PT0JDU1leeeew6j0ej0z3766afx8/MjOzvbti+TtS6SJBEQEMD06dP597//7fS6DDbnOxRWrr32Wps+b29vxo4dyx//+EflKzhA7rjjDs6cOdPn8ddee43169fbfh8MB87K2rVrSU5OZvbs2Zd8zdixY7nyyit55ZVXBqUOAoFaEI6SQKAg119/PWVlZZw9e5af/vSnPPPMM7z00ku9ntvZ2Tlon5ubm8tVV11FYmIioaGhtvJ169ZRVlbGwYMHmTNnDt/61rc4fvz4oH3uUHP//fdTVlbGqVOnuP3223nwwQf58MMPez13MO09GPj4+BAREdHn8cDAwF4dxMtFlmXeeOMN7r333n5fu2LFCt58801FnH+BQCmEoyQQKIiXlxdRUVEkJibywx/+kIULF/Kf//wH6J5K+c1vfkNMTAxpaWkAHD9+nPnz5+Pj40NoaCgPPPAAzc3NtnuazWaee+454uLi8PLyYvLkyWzcuNF2XJIkDh06xHPPPYckSTzzzDO2Y0FBQURFRTFq1Cief/55jEYj27Ztsx0vKiri9ttvJygoiJCQEG6++Wby8/Ntx00mEytXriQoKIjQ0FAef/xxli1b5jAllJSUxOrVqx3sMHnyZId61NfXc9999xEeHk5AQADz58/n6NGjtuNHjx5l3rx56PV6AgICmDp1KgcPHmT79u2sWLGChoYG2+iR/X19fX2JiopixIgRPPPMM4wcOdJm72uvvZaHHnqIRx99lLCwMNLT0wH46quvmDFjBl5eXkRHR/PEE0/0+MNvNBp56KGHCAwMJCwsjF/96lfY7wb1/vvvM23aNPR6PVFRUXz3u9+lsrKyR3/YtWsXEydOxNvbmyuvvJITJ07YjvU1UmbFfupt+fLlfPXVV7z22ms2O+Tl5ZGamsrvf/97h+syMzORJImcnJxe73vo0CFyc3NZsmSJrSw/Px9Jkvjoo4+YPXs23t7ejB8/nq+++srh2kWLFlFbW9ujXCBwZYSjJBAMIT4+Pg4jGVu2bCE7O5vNmzfzv//9j5aWFtLT0wkODubAgQN88sknfPnllzz00EO2a1577TVefvllfv/733Ps2DHS09O56aabOHv2LABlZWWMGzeOn/70p5SVlfHYY4/1qIfRaOTPf/4zAJ6engAYDAbS09PR6/Xs3LmTXbt24e/vz/XXX2+r88svv8z69et59913+frrr6mtreWzzz7rtx1uu+02Kisr+eKLLzh06BBXXHEFCxYsoLa2FoA777yTuLg4Dhw4wKFDh3jiiSfw8PBg9uzZrF69moCAAMrKyvrU15e933vvPTw9Pdm1axdr166lpKSExYsXM336dI4ePcqbb77Jn//8Z37961873Oe9995Dp9Oxf/9+XnvtNV555RXeeecd23GDwcDzzz/P0aNH+de//kV+fj7Lly/vUZ+f/exnvPzyyxw4918+3gAACcBJREFUcIDw8HBuvPFGDAZDv+332muvMWvWLNsIWllZGQkJCdxzzz2sW7fO4dx169ZxzTXXkJqa2uu9du7cyahRo9Dr9b3W96c//SlHjhxh1qxZ3HjjjdTU1NiOe3p6MnnyZHbu3NlvDQKBahnaPXkFguGD/a7kZrNZ3rx5s+zl5SU/9thjtuORkZFyR0eH7Zo//elPcnBwsNzc3Gwr+/zzz2WNRiOXl5fLsizLMTEx8m9+8xuHz5o+fbr8ox/9yPb7pEmT5KefftrhHED29vaW/fz8ZI1GIwNyUlKSXFNTI8uyLL///vtyWlqabDabbdd0dHTIPj4+8qZNm2RZluXo6Gj5xRdftB03GAxyXFycw+7riYmJ8quvvurw2fb12blzpxwQECC3t7c7nJOSkiK/9dZbsizLsl6vl9evX9/TqLIsr1u3Tg4MDOxRPnfuXPmRRx6RZVmWjUaj/P7778uA/MYbb9iOT5kyxeGaX/ziFz00r1mzRvb395dNJpPtujFjxjic8/Of/1weM2ZMr/WTZVk+cOCADMhNTU2yLMvytm3bZED+6KOPbOfU1NTIPj4+8scff9yrrqefflqeNGmS7ffzd7m312ulpKRE1mq18r59+2RZluXOzk45LCysT1vKsiw/8sgj8vz58x3K8vLyZEBetWqVrcza1r/73e8czr3lllvk5cuX93l/gcDVECNKAoGC/O9//8Pf3x9vb29uuOEG7rjjDoepogkTJthGdABOnz7NpEmT8PPzs5XNmTMHs9lMdnY2jY2NlJaWMmfOHIfPmTNnDqdPn75ofV599VUyMzP54osvGDt2LO+88w4hISGAZborJycHvV6Pv78//v7+hISE0N7eTm5uLg0NDZSVlTFz5kzb/XQ6HdOmTeuXTY4ePUpzczOhoaG2z/H39ycvL4/c3FwAVq5cyX333cfChQtZtWqVrfxi/PGPf8Tf3x8fHx/uv/9+fvKTn/DDH/7Qdnzq1KkO558+fZpZs2YhSZKtbM6cOTQ3N1NcXGwru/LKKx3OmTVrFmfPnsVkMgGW6asbb7yRhIQE9Ho9c+fOBaCwsNDh82bNmmX7OSQkhLS0tEtqt0slJiaGJUuW8O677wLw3//+l46ODm677bY+r2lra8Pb27vXY/b1tbb1+fX18fGhtbV1EGovEKgD3VBXQCAYTsybN48333wTT09PYmJi0Okc/wvaO0RKEBUVRWpqKqmpqaxbt47Fixdz6tQpIiIiaG5uZurUqXzwwQc9rgsPD7/kz9BoNA7xO4DD9FJzczPR0dFs3769x7XWGJ1nnnmG7373u3z++ed88cUXPP3003z00UfccsstF/zsO++8k6eeegofHx+io6PRaBy/GzrD3tbp0vT0dD744APCw8MpLCwkPT19SALG77vvPu666y5effVV1q1bxx133IGvr2+f54eFhV1WQH9tbS0pKSkDvl4gUBtiREkgUBA/Pz9SU1NJSEjo4ST1xpgxYzh69KhDbppdu3ah0WhIS0sjICCAmJgYdu3a5XDdrl27GDt2bL/qNmPGDKZOncpvfvMbAK644grOnj1LRESEzZmyvgIDAwkMDCQ6Opp9+/bZ7mE0Gjl06JDDfcPDwykrK7P93tjYSF5enu33K664gvLycnQ6XY/PCQsLs503atQofvKTn5CRkcGtt95qi73x9PS0jeScT2BgIKmpqcTGxvZwknpjzJgx7Nmzx8Gx27VrF3q9nri4OFuZvWaAvXv3MnLkSLRaLVlZWdTU1LBq1SquvvpqRo8e3Wsgt/U6K3V1dZw5c4YxY8ZctJ690ZcdFi9ejJ+fH2+++SYbN27knnvuueB9pkyZQlZWVg/n9vz6Wtv6/PqeOHGCKVOmDEiDQKBGhKMkEKiYO++8E29vb5YtW8aJEyfYtm0bDz/8MHfddReRkZGAJcD2d7/7HR9//DHZ2dk88cQTZGZm8sgjj/T78x599FHeeustSkpKuPPOOwkLC+Pmm29m586d5OXlsX37dn784x/bpqEeeeQRVq1axb/+9S+ysrL40Y9+1COJ4vz583n//ffZuXMnx48fZ9myZWi1WtvxhQsXMmvWLJYuXUpGRgb5+fns3r2bp556ioMHD9LW1sZDDz3E9u3bKSgoYNeuXRw4cMD2BzopKYnm5ma2bNlCdXX1ZU37/OhHP6KoqIiHH36YrKws/v3vf/P000+zcuVKB0ersLCQlStXkp2dzYcffsjrr79us3dCQgKenp68/vrrnDt3jv/85z88//zzvX7ec889x5YtWzhx4gTLly8nLCxswEkkk5KS2LdvH/n5+VRXV2M2mwHQarUsX76cJ598kpEjRzpMn/XGvHnzaG5u5uTJkz2OrVmzhs8++4ysrCwefPBB6urqHByv/Px8SkpKWLhw4YA0CARqRDhKAoGK8fX1ZdOmTdTW1jJ9+nS+9a1vsWDBAt544w3bOT/+8Y9ZuXIlP/3pT5kwYQIbN27kP//5DyNHjuz3511//fUkJyfzm9/8Bl9fX3bs2EFCQgK33norY8aM4d5776W9vZ2AgAAAfvrTn3LXXXexbNkyZs2ahV6v7zEd9uSTTzJ37ly+8Y1vsGTJEpYuXeowNSNJEhs2bOCaa65hxYoVjBo1im9/+9sUFBQQGRmJVqulpqaGu+++m1GjRnH77bdzww038OyzzwIwe/ZsfvCDH3DHHXcQHh7Oiy++OBBTAxAbG8uGDRvYv38/kyZN4gc/+AH33nsvv/zlLx3Ou/vuu2lra2PGjBk8+OCDPPLIIzzwwAOAZQRt/fr1fPLJJ4wdO5ZVq1b1WKJvZdWqVTzyyCNMnTqV8vJy/vvf/zrEqPWHxx57DK1Wy9ixY23TfVbuvfdeOjs7WbFixUXvExoayi233NLrlOuqVatYtWoVkyZN4uuvv+Y///mPw6jfhx9+yHXXXUdiYuKANAgEakSSextfFQgEggGyfPly6uvr+de//jXUVRF0sXPnThYsWEBRUZFtJPJCHDt2jEWLFpGbm4u/vz/5+fkkJydz5MiRPrfA6ezsZOTIkfztb3/rsbhAIHBlxIiSQCAQuCkdHR0UFxfzzDPPcNttt12SkwQwceJEfve73znEkl2MwsJCfvGLXwgnSeB2iFVvAoFA4KZ8+OGH3HvvvUyePJm//OUv/bq2twSZF8IagC8QuBti6k0gEAgEAoGgD8TUm0AgEAgEAkEfCEdJIBAIBAKBoA+EoyQQCAQCgUDQB8JREggEAoFAIOgD4SgJBAKBQCAQ9IFwlAQCgUAgEAj6QDhKAoFAIBAIBH0gHCWBQCAQCASCPhCOkkAgEAgEAkEf/D8zhkUe6g5yxAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p_values = np.linspace(0.01, 0.5, 100)\n", + "R_values = [10, 100, 1000, 10000]\n", + "\n", + "for R in R_values:\n", + " # S_values = R * ((1 - p_values) / p_values)\n", + " S_values = R * stats.geom.mean(p_values,loc=-1)\n", + " plt.plot(p_values, S_values, label=f\"R = {R} POKT\")\n", + "\n", + "plt.xlabel(\"ProofRequestProbability (p)\")\n", + "plt.ylabel(\"Required Penalty (S POKT)\")\n", + "plt.title(\"Penalty vs. ProofRequestProbability for Different Reward Values\")\n", + "plt.legend()\n", + "plt.yscale(\"log\") # Use logarithmic scale for y-axis (optional)\n", + "plt.grid(True, which=\"both\", ls=\"--\")\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.15" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docusaurus/docs/protocol/primitives/geometric_pdf_vs_cdf.png b/docusaurus/docs/protocol/primitives/probabilistic_proofs/geometric_pdf_vs_cdf.png similarity index 100% rename from docusaurus/docs/protocol/primitives/geometric_pdf_vs_cdf.png rename to docusaurus/docs/protocol/primitives/probabilistic_proofs/geometric_pdf_vs_cdf.png diff --git a/docusaurus/docs/protocol/primitives/geometric_pdf_vs_cdf.py b/docusaurus/docs/protocol/primitives/probabilistic_proofs/geometric_pdf_vs_cdf.py similarity index 100% rename from docusaurus/docs/protocol/primitives/geometric_pdf_vs_cdf.py rename to docusaurus/docs/protocol/primitives/probabilistic_proofs/geometric_pdf_vs_cdf.py diff --git a/docusaurus/docs/protocol/primitives/penalty_vs_proof_request_prob.py b/docusaurus/docs/protocol/primitives/probabilistic_proofs/penalty_vs_proof_request_prob.py similarity index 100% rename from docusaurus/docs/protocol/primitives/penalty_vs_proof_request_prob.py rename to docusaurus/docs/protocol/primitives/probabilistic_proofs/penalty_vs_proof_request_prob.py diff --git a/geometric_probability_distribution.py b/geometric_probability_distribution.py deleted file mode 100644 index 86022847e..000000000 --- a/geometric_probability_distribution.py +++ /dev/null @@ -1,29 +0,0 @@ -import matplotlib.pyplot as plt -import numpy as np - - -# Function to calculate Pr(X = k) -def geometric_pmf(k, p): - return (1 - p) ** (k - 1) * p - - -# Updated p values to include 1.0 -p_values = [0.2, 0.5, 0.8, 1.0] # Different values for p, including 1.0 - -# Extend the k_values to start from 0 -k_values = np.arange(0, 21) # k from 0 to 20 - -plt.figure(figsize=(10, 6)) - -# Plot the geometric distribution for different p values -for p in p_values: - probabilities = geometric_pmf(k_values[1:], p) # Skip k=0 as PMF is undefined for k=0 - plt.plot(k_values[1:], probabilities, marker="o", label=f"p = {p}") - -plt.xticks(np.arange(0, 21, 1)) # Set x-axis ticks from 0 to 20 -plt.xlabel("k") -plt.ylabel("Pr(X = k)") -plt.title("Geometric Distribution PMF") -plt.legend() -plt.grid(True) -plt.show() From f26f982d8bd2c6acb3a806ec2eee552751f3c014 Mon Sep 17 00:00:00 2001 From: Daniel Olshansky Date: Thu, 9 Jan 2025 12:46:35 -0500 Subject: [PATCH 25/25] WIP --- .../Probabilistic_proofs_coverage.ipynb | 35 +++++++++---------- 1 file changed, 17 insertions(+), 18 deletions(-) diff --git a/docusaurus/docs/protocol/primitives/probabilistic_proofs/Probabilistic_proofs_coverage.ipynb b/docusaurus/docs/protocol/primitives/probabilistic_proofs/Probabilistic_proofs_coverage.ipynb index 7e8b9e252..0d9051589 100644 --- a/docusaurus/docs/protocol/primitives/probabilistic_proofs/Probabilistic_proofs_coverage.ipynb +++ b/docusaurus/docs/protocol/primitives/probabilistic_proofs/Probabilistic_proofs_coverage.ipynb @@ -2,32 +2,31 @@ "cells": [ { "cell_type": "code", - "execution_count": 46, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ - "import os\n", - "import pandas as pd\n", "import numpy as np\n", "from matplotlib import pyplot as plt\n", - "import seaborn as sns\n", - "import datetime\n", "from copy import deepcopy\n", - "\n", - "from scipy import stats\n" + "from scipy import stats" ] }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ - "# Minimum stake = Penalty\n", + "# Governance params\n", + "\n", + "## Minimum stake = Penalty\n", "SupplierMinStake = 2e3 # POKT\n", - "# Total POKT that can be claimed without requiering mandatory proof\n", + "\n", + "## Total POKT that can be claimed without requiring mandatory proof\n", "ProofRequirementThreshold = 20 # POKT\n", - "# Probability that a claim below the threshold will requiere proof\n", + "\n", + "## Probability that a claim below the threshold will require proof\n", "ProofRequestProbability = 0.001" ] }, @@ -45,15 +44,15 @@ } ], "source": [ - "# This is the expected number of claims before being requested for a proof\n", + "# Expected number of claims before being requested a proof\n", "# According to https://en.wikipedia.org/wiki/Geometric_distribution (mode 0)\n", "E_false_claims_before_proof = (1-ProofRequestProbability) / ProofRequestProbability\n", "\n", - "# For ease calculations we will use the scipy implementation \n", + "# For ease calculations we will use the scipy implementation\n", "# https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.geom.html\n", "\n", "# Here we show that both achieve the same mean, more testing in the appendix\n", - "print(f\"Expected claims passed before begin requiederd a proof: {E_false_claims_before_proof} (same with scypi: {stats.geom.mean(ProofRequestProbability, loc=-1)})\")" + "print(f\"Expected claims passed before begin required a proof: {E_false_claims_before_proof} (same with scypi: {stats.geom.mean(ProofRequestProbability, loc=-1)})\")" ] }, { @@ -227,7 +226,7 @@ "source": [ "# Now we calculate the proffit of the attacker, that will be equal to the number\n", "# of samples passed before the requested proof, multiplied by the maximum reward\n", - "# that can be claimed without mandatory proof and minus the slashing of the \n", + "# that can be claimed without mandatory proof and minus the slashing of the\n", "# missing proof\n", "attacker_proffit_E = np.sum(ProofRequirementThreshold*attackers_sample)-samples*Slash_E\n", "attacker_proffit_COVERAGE = np.sum(ProofRequirementThreshold*attackers_sample)-samples*Slash_COVERAGE\n", @@ -252,7 +251,7 @@ } ], "source": [ - "# While I cheatead a little by setting the seed to a case where this happens, it \n", + "# While I cheatead a little by setting the seed to a case where this happens, it\n", "# is only to highlight that using the expected number of trials is bad coverage.\n", "# Why? because the expected proffit is zero, but the variance is high\n", "\n", @@ -425,7 +424,7 @@ ], "metadata": { "kernelspec": { - "display_name": ".venv", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -439,7 +438,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.15" + "version": "3.11.10" }, "orig_nbformat": 4 },