forked from jxlin98/TableIE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
147 lines (119 loc) · 6.03 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import random
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from transformers import RobertaModel, RobertaTokenizer
from transformers import AdamW, get_linear_schedule_with_warmup
from data import read_data
from model import Table
from test import test
from utils import arg_parse, collate_fn, get_pred, f1_eval
def train():
args = arg_parse()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
tokenizer = RobertaTokenizer.from_pretrained("roberta-large")
model = RobertaModel.from_pretrained("roberta-large")
train_features = read_data('./dataset/train.json', tokenizer)
dev_features = read_data('./dataset/dev.json', tokenizer)
train_dataloader = DataLoader(train_features, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn,
drop_last=True)
dev_dataloader = DataLoader(dev_features, batch_size=args.dev_batch_size, shuffle=False, collate_fn=collate_fn,
drop_last=False)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = Table(model, args)
model.to(device)
no_decay = ['bias', 'LayerNorm.weight', 'norm1', 'norm2', 'norm3', 'norm4']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if n.startswith('bert') and not any(nd in n for nd in no_decay)],
'lr': args.bert_learning_rate, 'weight_decay': args.bert_weight_decay},
{'params': [p for n, p in model.named_parameters() if not n.startswith('bert') and not any(nd in n for nd in no_decay)],
'lr': args.learning_rate, 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if n.startswith('bert') and any(nd in n for nd in no_decay)],
'lr': args.bert_learning_rate, 'weight_decay': 0.0},
{'params': [p for n, p in model.named_parameters() if not n.startswith('bert') and any(nd in n for nd in no_decay)],
'lr': args.learning_rate, 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters)
total_steps = len(train_dataloader) * args.num_epoch
warmup_steps = int(total_steps * args.warmup_ratio)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_steps)
ner_best, re_best, edi_best, edc_best, eaei_best, eaec_best = -1, -1, -1, -1, -1, -1
start_epoch = 0
if os.path.exists(args.path_checkpoint):
checkpoint = torch.load(args.path_checkpoint)
model.load_state_dict(checkpoint["model_state_dict"])
optimizer.load_state_dict(checkpoint["optimizer_state_dic"])
start_epoch = checkpoint["epoch"] + 1
for epoch in range(start_epoch, args.num_epoch):
for step, data in enumerate(train_dataloader):
model.train()
input_ids, input_mask, table1, table2, ner_list, re_list, ed_list, eae_list = data
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
loss, _ = model(input_ids, input_mask, table1, table2)
loss = loss / args.accumulation_steps
loss.backward()
if (step + 1) % args.accumulation_steps == 0:
nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
checkpoint = {"model_state_dict": model.state_dict(),
"optimizer_state_dic": optimizer.state_dict(),
"epoch": epoch}
torch.save(checkpoint, args.path_checkpoint)
results_all, labels_all = [], []
for data in dev_dataloader:
model.eval()
input_ids, input_mask, table1, table2, ner_list, re_list, ed_list, eae_list = data
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
with torch.no_grad():
_, results = model(input_ids, input_mask, table1, table2)
for i in range(len(results)):
results_all.append(get_pred(results[i]))
labels_all.append((ner_list[i], re_list[i], ed_list[i], eae_list[i]))
f = f1_eval(results_all, labels_all)
if f[0] > ner_best:
ner_best = f[0]
checkpoint = {"model_state_dict": model.state_dict(),
"optimizer_state_dic": optimizer.state_dict(),
"epoch": epoch}
torch.save(checkpoint, args.ner_checkpoint)
if f[1] > re_best:
re_best = f[1]
checkpoint = {"model_state_dict": model.state_dict(),
"optimizer_state_dic": optimizer.state_dict(),
"epoch": epoch}
torch.save(checkpoint, args.re_checkpoint)
if f[2] > edi_best:
edi_best = f[2]
checkpoint = {"model_state_dict": model.state_dict(),
"optimizer_state_dic": optimizer.state_dict(),
"epoch": epoch}
torch.save(checkpoint, args.edi_checkpoint)
if f[3] > edc_best:
edc_best = f[3]
checkpoint = {"model_state_dict": model.state_dict(),
"optimizer_state_dic": optimizer.state_dict(),
"epoch": epoch}
torch.save(checkpoint, args.edc_checkpoint)
if f[4] > eaei_best:
eaei_best = f[4]
checkpoint = {"model_state_dict": model.state_dict(),
"optimizer_state_dic": optimizer.state_dict(),
"epoch": epoch}
torch.save(checkpoint, args.eaei_checkpoint)
if f[5] > eaec_best:
eaec_best = f[5]
checkpoint = {"model_state_dict": model.state_dict(),
"optimizer_state_dic": optimizer.state_dict(),
"epoch": epoch}
torch.save(checkpoint, args.eaec_checkpoint)
if __name__ == '__main__':
train()
test()