forked from S1s-Z/SCL-RAI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
88 lines (68 loc) · 4.21 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import argparse
import os
import json
import torch
from pytorch_pretrained_bert import BertAdam
from utils import UnitAlphabet, LabelAlphabet
from model import PhraseClassifier
from misc import fix_random_seed
from utils import corpus_to_iterator, Procedure
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", "-dd", type=str, required=True)
parser.add_argument("--check_dir", "-cd", type=str, required=True)
parser.add_argument("--resource_dir", "-rd", type=str, required=True)
parser.add_argument("--random_state", "-rs", type=int, default=0)
parser.add_argument("--epoch_num", "-en", type=int, default=40)
parser.add_argument("--batch_size", "-bs", type=int, default=16)
parser.add_argument("--negative_rate", "-nr", type=float, default=0.35)
parser.add_argument("--warmup_proportion", "-wp", type=float, default=0.1)
parser.add_argument("--hidden_dim", "-hd", type=int, default=256)
parser.add_argument("--dropout_rate", "-dr", type=float, default=0.4)
parser.add_argument("--CLloss_percent", "-lp", type=float, default=0.1)
parser.add_argument("--score_percent", "-sp", type=float, default=0.5)
parser.add_argument("--cl_scale", "-cs", type=int, default=100)
parser.add_argument("--cl_temp", "-temp", type=float, default=0.1)
parser.add_argument("--use_detach", "-ud", type=bool, default=False)
args = parser.parse_args()
print(json.dumps(args.__dict__, indent=True), end="\n\n")
fix_random_seed(args.random_state)
lexical_vocab = UnitAlphabet(os.path.join(args.resource_dir, "bert-base-chinese", "vocab.txt"))
label_vocab = LabelAlphabet()
train_loader = corpus_to_iterator(os.path.join(args.data_dir, "train.json"), args.batch_size, True, label_vocab)
dev_loader = corpus_to_iterator(os.path.join(args.data_dir, "dev.json"), args.batch_size, False)
test_loader = corpus_to_iterator(os.path.join(args.data_dir, "test.json"), args.batch_size, False)
bert_path = os.path.join(args.resource_dir, "bert-base-chinese", "model.pt")
model = PhraseClassifier(lexical_vocab, label_vocab, args.hidden_dim,
args.dropout_rate, args.negative_rate,
args.CLloss_percent, args.score_percent,
args.cl_scale, args.cl_temp, args.use_detach,
bert_path)
model = model.cuda() if torch.cuda.is_available() else model.cpu()
all_parameters = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
grouped_param = [{'params': [p for n, p in all_parameters if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in all_parameters if any(nd in n for nd in no_decay)], 'weight_decay': 0.00}]
total_steps = int(len(train_loader) * (args.epoch_num + 1))
optimizer = BertAdam(grouped_param, lr=1e-5, warmup=args.warmup_proportion, t_total=total_steps)
if not os.path.exists(args.check_dir):
os.makedirs(args.check_dir)
best_dev = 0.0
best_test = 0.0
script_path = os.path.join(args.resource_dir, "conlleval.pl")
checkpoint_path = os.path.join(args.check_dir, "model.pt")
for epoch_i in range(0, args.epoch_num + 1):
loss, train_time, dict_center = Procedure.train(model, train_loader, optimizer)
print("[Epoch {:3d}] loss on train set is {:.5f} using {:.3f} secs".format(epoch_i, loss, train_time))
dev_f1, dev_time = Procedure.test(model, dev_loader, script_path, dict_center)
print("(Epoch {:3d}) f1 score on dev set is {:.5f} using {:.3f} secs".format(epoch_i, dev_f1, dev_time))
test_f1, test_time = Procedure.test(model, test_loader, script_path, dict_center)
print("{{Epoch {:3d}}} f1 score on test set is {:.5f} using {:.3f} secs".format(epoch_i, test_f1, test_time))
if test_f1 > best_test:
best_test = test_f1
if dev_f1 > best_dev:
best_dev = dev_f1
print("\n<Epoch {:3d}> save best dev model with score: {:.5f} in terms of test set".format(epoch_i, test_f1))
torch.save(model, checkpoint_path)
print("\nbest test f1 score: {:.5f}".format(best_test))
print(end="\n\n")