forked from hatsu3/Sanger
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_cloth.py
451 lines (371 loc) · 15.5 KB
/
run_cloth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
import json
import os
import argparse
from pathlib import Path
from tqdm import tqdm
import torch
from torch import nn
import torch.optim as optim
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import Dataset, DataLoader
from torch.utils.tensorboard import SummaryWriter
from transformers import AutoConfig, AutoTokenizer, AutoModelForMaskedLM
""" CLOTH Dataset """
BLANK_ID = 1035 # bert_uncased for "_"
MASK_ID = 103 # for BERT
SEP_TOKEN = 102
DATASET_ROOT = 'data/cloth'
class ClozeDataset(Dataset):
"""
the simplest data format: {article, options, answers}
article and answers zero padded, options -1 padded
options that contains multiple tokens are truncated
94 articles longer than 512, articles that are much too long are not discarded here, but will be truncated by my BERT model. The ignored options are filled with A.
5677 answers contains more than 1 BERT tokens, but only 2 of them cannot be disinguished using the initial token
for BERT, BLANK_ID should be changed into [MASK]
"""
def __init__(self, data_list, max_len, tokenizer):
super().__init__()
self.data = []
self.meta = []
self.max_len = max_len
self.tokenizer = tokenizer
# how many answers contain multiple bert tokens?
cnt = 0
cnt1 = 0
# how many cannot be distinguished by the initial token?
cnt2 = 0
for item in tqdm(data_list):
# article
article = item["article"].lower()
article = self.tokenizer.encode(article)
length = len(article)
article = torch.tensor(article)
n_blanks_before = sum(article == BLANK_ID)
if length > self.max_len:
cnt1 += 1
article = article[:self.max_len]
article[-1] = SEP_TOKEN
n_blanks = sum(article == BLANK_ID)
article = (article * (article != BLANK_ID).long()) + (
MASK_ID * (article == BLANK_ID).long()
)
# answers
answers = [self.foo(i) - self.foo("A") for i in item["answers"]][:n_blanks]
answers = torch.tensor(answers)
# options
options = [
[self.tokenizer.encode(word)[1:-1] for word in line]
for line in item["options"]
][:n_blanks]
for i, option in enumerate(options):
if answers.shape[0] > 0:
if len(option[answers[i]]) > 1:
cnt += 1
if (
option[answers[i]]
in option[0 : answers[i]] + option[answers[i] + 1 :]
):
cnt2 += 1
options[i] = [item[0] for item in option]
# [0] is [CLS], [-1] is sep
options = torch.tensor(options)
self.data.append(
{"article": article, "options": options, "answers": answers}
)
self.meta.append(
{
"n_blanks_before": n_blanks_before,
"n_blanks_truncated": n_blanks,
"article_length": length,
}
)
print("%d answers contains multiple tokens" % (cnt))
print("%d articles exceeds max length" % (cnt1))
print("%d answers cannot be decided using the initial token" % (cnt2))
@staticmethod
def foo(x):
x = x.encode("ascii")
return int.from_bytes(x, byteorder="little")
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
def load_data_list(split=None, folder=DATASET_ROOT):
"""loads data as nested dicts/lists"""
lst = []
for root, dirs, files in os.walk(folder, topdown=False):
if "ipynb" in root:
continue # jupyter tmp file
for name in sorted(files):
if split is None or split in root:
name = os.path.join(root, name)
with open(name) as f:
tmp = json.load(f)
lst.append(tmp)
if not tmp["options"]:
raise
print(folder, split, len(lst))
return lst
def collate_fn(data_list):
batch = {}
max_len = {}
for key in data_list[0]:
max_len[key] = 0
for item in data_list:
max_len[key] = max(max_len[key], item[key].shape[0])
lst = [item[key] for item in data_list]
padding_value = 0
if key == "answers":
padding_value = -1
batch[key] = pad_sequence(lst, batch_first=True, padding_value=padding_value)
return batch
def load_cloth_dataset(args, tokenizer, mode="train"):
assert mode in ["train", "eval", "test"]
if mode in ["train", "eval"]:
val_set = ClozeDataset(load_data_list(split="valid"), args.max_seq_length, tokenizer)
val_loader = DataLoader(
val_set,
batch_size=1,
shuffle=False,
collate_fn=collate_fn
)
if mode == "train":
train_set = ClozeDataset(load_data_list(split="train"), args.max_seq_length, tokenizer)
train_loader = DataLoader(
train_set,
batch_size=args.train_batch_size,
shuffle=True,
collate_fn=collate_fn
)
return train_loader, val_loader
else:
return val_loader
else:
test_set = ClozeDataset(load_data_list(split="test"), args.max_seq_length, tokenizer)
test_loader = DataLoader(
test_set,
batch_size=1,
shuffle=False,
collate_fn=collate_fn
)
return test_loader
""" Model Definition """
def postprocess_predictions(result, article, options, answers=None):
# we compute our custom loss, so there is no need to set the labels
_, logit = result[0], result[1]
b, l, dim = logit.shape
blank_mask = article == MASK_ID
blank_mask = blank_mask.unsqueeze(-1).expand(*logit.shape)
logit = torch.masked_select(logit, blank_mask).view(-1, dim)
options = options.view(-1)
mask = options > 0
options = torch.masked_select(options.view(-1), mask).view(-1, 4)
# removes the padding options
if not answers is None:
answers = answers.view(-1)
answers = torch.masked_select(answers, answers >= 0)
# removes the padding answers
index = answers.long().unsqueeze(1)
answer_token = torch.gather(options, 1, index).view(-1)
# shape: (n_blanks)
CE = nn.CrossEntropyLoss(reduction="none")
loss = CE(input=logit, target=answer_token)
return loss
else:
option_score = torch.gather(logit, 1, options)
prediction = torch.argmax(option_score, dim=1).view(-1)
return prediction
def load_model_and_tokenizer(args):
is_sparse_model = args.model_name_or_path.startswith("sparse-")
config = AutoConfig.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
)
if is_sparse_model:
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path[len("sparse-") :],
)
else:
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
)
if is_sparse_model:
model_name = args.model_name_or_path[len("sparse-") :]
if model_name.startswith("bert"):
from modeling_bert import BertForMaskedLM
SparseModelClass = BertForMaskedLM
else:
raise ValueError(
f"Unrecognized model name: {args.model_name_or_path}"
)
model = SparseModelClass.from_pretrained(
model_name, from_tf=False, config=config,
)
else:
model = AutoModelForMaskedLM.from_pretrained(
args.model_name_or_path, from_tf=False, config=config,
)
return model, tokenizer
def build_optimizer(args, model):
NO_DECAY = ["bias", "Norm", "norm"]
param_groups = [
{
"params": [
p
for n, p in model.named_parameters()
if any(nd in n for nd in NO_DECAY)
],
"weight_decay": args.weight_decay,
},
{
"params": [
p
for n, p in model.named_parameters()
if not any(nd in n for nd in NO_DECAY)
],
"weight_decay": 0,
},
]
if args.weight_decay > 0:
optimizer = optim.AdamW(param_groups, lr=args.learning_rate)
else:
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
return optimizer
def test(args):
model, tokenizer = load_model_and_tokenizer(args)
test_loader = load_cloth_dataset(args, tokenizer, mode="test")
model = model.cuda().eval()
results = {}
for i, data in enumerate(tqdm(test_loader)):
result = []
article, options = data["article"], data["options"]
article, options = article.cuda(), options.cuda()
attention_mask = article > 99
prediction = model(article, attention_mask=attention_mask, labels=article)
prediction = postprocess_predictions(prediction, article, options)
for j in range(test_loader.dataset.meta[i]["n_blanks_before"]):
if j < prediction.shape[0]:
result.append(chr(ord("A") + prediction[j]))
else:
result.append("A")
results["test%04d" % (i + 1)] = result
with open("results.json", "w") as f:
json.dump(results, f)
def train(args):
"""training"""
model, tokenizer = load_model_and_tokenizer(args)
optimizer = build_optimizer(args, model)
train_loader, val_loader = load_cloth_dataset(args, tokenizer, mode="train")
if args.start_epoch > 0:
state_dict = torch.load(
Path(args.output_dir) / f"checkpoint_{args.start_epoch}", map_location="cpu"
)
model.load_state_dict(state_dict["model_dict"])
model = nn.DataParallel(model)
writer = SummaryWriter()
for epoch in range(args.start_epoch, args.num_train_epochs):
model.train()
for i, data in enumerate(tqdm(train_loader)):
article, options, answers = (
data["article"].cuda(),
data["options"].cuda(),
data["answers"].cuda(),
)
attention_mask = article > 99
prediction = model(article, attention_mask=attention_mask, labels=article)
loss = postprocess_predictions(prediction, article, options, answers=answers)
loss = loss.mean()
loss.backward()
if i % args.grad_acc_steps == 0:
optimizer.step()
optimizer.zero_grad()
writer.add_scalar(
"loss", loss.item(), i * args.train_batch_size + epoch * len(train_loader.dataset)
)
model.eval()
correct = 0.0
total = 0.0
with torch.no_grad():
for data in tqdm(val_loader):
article, options, answers = (
data["article"].cuda(),
data["options"].cuda(),
data["answers"].cuda(),
)
attention_mask = article > 99
prediction = model.module(article, attention_mask=attention_mask, labels=article)
prediction = postprocess_predictions(prediction, article, options)
answers = answers.view(-1)
answers = torch.masked_select(answers, answers >= 0)
correct += (prediction == answers).sum().item()
total += prediction.shape[0]
writer.add_scalar("eval_acc", correct / total, epoch + 1)
print("epoch %d acc: %f" % (epoch + 1, correct / total))
torch.save(
{
"model_dict": model.module.state_dict(),
"optimizer_dict": optimizer.state_dict(),
"eval_acc": correct / total,
},
Path(args.output_dir) / f"checkpoint_{epoch + 1}",
)
def valid(args):
model, tokenizer = load_model_and_tokenizer(args)
val_loader = load_cloth_dataset(args, tokenizer, mode="eval")
if args.eval_checkpoint is None:
ckpt_path = Path(args.output_dir) / f"checkpoint_{args.num_train_epochs}"
else:
ckpt_path = Path(args.eval_checkpoint)
assert ckpt_path.exists(), f"Checkpoint {ckpt_path} does not exist."
print(f"Loading checkpoint from {ckpt_path}")
state_dict = torch.load(ckpt_path, map_location="cpu")
model.load_state_dict(state_dict["model_dict"])
model.cuda().eval()
correct = 0.0
total = 0.0
with torch.no_grad():
for data in tqdm(val_loader):
article, options, answers = (
data["article"].cuda(),
data["options"].cuda(),
data["answers"].cuda(),
)
attention_mask = article > 99
prediction = model(article, attention_mask=attention_mask, labels=article)
prediction = postprocess_predictions(prediction, article, options)
answers = answers.view(-1)
answers = torch.masked_select(answers, answers >= 0)
correct += (prediction == answers).sum().item()
total += prediction.shape[0]
print(f"eval acc: {correct / total:.3f}")
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pretrained model or model identifier from huggingface.co/models")
parser.add_argument("--config_name", default=None, type=str, required=False,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default=None, type=str, required=False,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--do_train", default=False, action='store_true', required=False)
parser.add_argument("--do_eval", default=False, action='store_true', required=False)
parser.add_argument("--do_predict", default=False, action='store_true', required=False)
parser.add_argument("--train_batch_size", default=3, type=int)
parser.add_argument("--start_epoch", default=0, type=int)
parser.add_argument("--num_train_epochs", default=20, type=int)
parser.add_argument("--learning_rate", default=5e-5, type=float)
parser.add_argument("--weight_decay", default=0.0, type=float)
parser.add_argument("--grad_acc_steps", default=10, type=int)
parser.add_argument("--max_seq_length", default=512, type=int)
parser.add_argument("--eval_checkpoint", default=None, type=str, required=False,
help="Explicitly specify the checkpoint to be evaluated")
parser.add_argument("--output_dir", default="./CKPT/", type=str, required=False)
args = parser.parse_args()
if args.eval_checkpoint is not None:
assert not args.do_train, "args.eval_checkpoint requires args.do_train=False"
assert args.do_eval, "args.eval_checkpoint requires args.do_eval=True"
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
if args.do_train: train(args)
if args.do_eval: valid(args)
if args.do_predict: test(args)
if __name__ == "__main__":
main()