forked from slindley/effect-handlers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDesugarHandlers.hs
513 lines (421 loc) · 18.1 KB
/
DesugarHandlers.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
{- TODO:
* Check that there are no redundant clauses in handlers (those that
don't match up with any of the declared operations are just
ignored).
* Closure conversion? Perhaps not feasible using Template Haskell.
-}
{- Examples -}
{-
State operations:
[operation|Get s :: s|]
[operation|Put s :: s -> ()|]
These elaborate to:
data Get (e :: *) (u :: *) where
Get :: Get s ()
type instance Return (Get s ()) = s
get :: forall h s.(h `Handles` Get) () => Comp h s
get = doOp Get
data Put (e :: *) (u :: *) where
Put :: s -> Put s ()
type instance Return (Put s ()) = ()
put :: forall h s . (h `Handles` Put) => s -> Comp h ()
put s = doOp (Put s)
A non-forwarding state handler:
[handler|
StateHandler s a :: s -> a handles {Get s, Put s} where
Return x _ -> x
Get k s -> k s s
Put s k _ -> k () s
|]
This elaborates to:
newtype StateHandler (s :: *) (a :: *) = StateHandler s
type instance Result (StateHandler s a) = a
instance (StateHandler s a `Handles` Get s) where
clause Get k' (StateHandler s) = k s s
where
k v s = k' v (StateHandler s)
instance (StateHandler s a `Handles` Put s) where
clause (Put s) k' _ = k () s
where
k v s = k' v (StateHandler s)
stateHandler s comp = handle comp (\x _ -> x) (StateHandler s)
A forwarding state handler:
[handler|
forward h.FStateHandler s a :: s -> a handles {Get s, Put s} where
Return x _ -> return x
Get k s -> k s s
Put s k _ -> k () s
|]
This prepends h to the list of FStateHandler's type variables yielding:
newtype FStateHandler (h :: *) (s :: *) (a :: *) = FStateHandler s
type instance Result (FStateHandler h s a) = a
instance (FStateHandler h s a `Handles` Get s) where
clause Get k' (FStateHandler s) = k s s
where
k v s = k' v (FStateHandler s)
instance (FStateHandler h s a `Handles` Put s) where
clause (Put s) k' _ = k () s
where
k v s = k' v (FStateHandler s)
fStateHandler s comp = handle comp (\x _ -> return x) (FStateHandler s)
and additionally generates the following forwarding instance:
instance (h `Handles` op) t => (FStateHandler h s a `Handles` op) t where
clause op k h = doOp op >>= (\x -> k x h)
IMPORTANT: the kind annotations are critical if PolyKinds is
switched on. Without them type inference can't ope with the forwarding
clause.
A polymorphic operation:
[operation|Failure :: forall a.a|]
This elaborates to:
data Failure (e :: *) (u :: *) where
Failure :: Failure () a
type instance Return (Failure a) = a
failure :: forall h a.(h `Handles` Failure) => Comp h a
failure = doOp Failure
A handler for a polymorphic operation:
[handler|
MaybeHandler a :: Maybe a handles {Failure} where
Return x -> Just x
Failure k -> Nothing
|]
This elaborates to:
newtype MaybeHandler (a :: *) = MaybeHandler
type instance Result (MaybeHandler a) = a
instance (MaybeHandler a `Handles` Failure) where
clause Failure k = Nothing
maybeHandler comp = handle comp (\x _ -> Just) MaybeHandler
The collection of operations in the curly braces must appear in the
operation clauses.
Any clauses that reference operations not declared in curly braces
are currently ignored.
-}
{-# LANGUAGE FlexibleContexts #-}
module DesugarHandlers where
import ParseHandlers(parseOpDef,
parseHandlerDef,
parseHandlesConstraint,
HandlesConstraint, HandlerDef, OpDef)
import Language.Haskell.TH
import Language.Haskell.TH.Quote
import qualified Language.Haskell.Exts.Parser as Exts
import Language.Haskell.Exts.Extension
--import Language.Haskell.SyntaxTrees.ExtsToTH
import qualified Language.Haskell.Meta.Parse as MetaParse
import Language.Haskell.Meta.Syntax.Translate (toType, toDecs)
import Data.List
import Data.Char(toUpper,toLower)
{- Handles constraints -}
handles = QuasiQuoter { quoteExp = undefined, quotePat = undefined,
quoteType = handlesParser, quoteDec = undefined}
handlesParser :: String -> Q Type
handlesParser s = makeHandlesConstraint (parseHandlesConstraint s)
makeHandlesConstraint :: HandlesConstraint -> Q Type
makeHandlesConstraint (h, sig) =
do
let handler = VarT (mkName h)
let handles = ConT (mkName "Handles")
let constraint (op, args) =
handles `appType` [handler, ConT (mkName op), t]
where
t = case args of
[] -> TupleT 0
[arg] -> parseType arg
_ -> PromotedTupleT (length args) `appType` map parseType args
--typeList args
-- typeList [] = PromotedNilT
-- typeList (arg:args) = PromotedConsT `appType` [parseType arg, typeList args]
-- typeList args =
-- t `appType` (ts ++ [PromotedNilT])
-- where (t:ts) = map (\arg -> AppT PromotedConsT (parseType arg)) args
return (TupleT (length sig) `appType` map constraint sig)
{- Handler definitions -}
handler = QuasiQuoter { quoteExp = undefined, quotePat = undefined,
quoteType = undefined, quoteDec = handlerParser}
shallowHandler = QuasiQuoter { quoteExp = undefined, quotePat = undefined,
quoteType = undefined, quoteDec = shallowHandlerParser}
handlerParser :: String -> Q [Dec]
handlerParser s = makeHandlerDef False (parseHandlerDef s)
shallowHandlerParser :: String -> Q [Dec]
shallowHandlerParser s = makeHandlerDef True (parseHandlerDef s)
makeHandlerDef :: Bool -> HandlerDef -> Q [Dec]
makeHandlerDef shallow (h, name, ts, sig, r, cs) =
do
let cname = mkName (let (c:cs) = name in toUpper(c) : cs)
fname = mkName (let (c:cs) = name in toLower(c) : cs)
(args, result') = splitFunType True (parseType (r ++ " -> ()"))
(tyvars, parentSig, constraint, result) =
case h of
Just (h, p, c) -> ([h'] ++ map mkName ts, p, c, result)
where
h' = mkName h
result = appType (ConT (mkName "Comp")) [VarT h', result']
Nothing -> (map mkName ts, [], Nothing, result')
plainHandles = mkName "Handles"
happ = ConT cname `appType` map VarT tyvars
handlerType =
DataD [] cname
(map (\tv -> KindedTV tv StarT) tyvars)
[NormalC cname (map (\arg -> (IsStrict, arg)) args)]
[]
{- NOTE: minor change in API for Template Haskell 2.9.0.
TySynInstD now takes two arguments, the second of which
is a TySynEqn.
-}
resultInstance =
TySynInstD (mkName "Result")
(TySynEqn [appType (ConT cname) (map VarT tyvars)] result)
innerInstance =
TySynInstD (mkName "Inner")
(TySynEqn [appType (ConT cname) (map VarT tyvars)] (VarT (last tyvars)))
CaseE _ cases = parseExp ("case undefined of\n" ++ cs)
unWrap :: Pat -> Pat
unWrap (ParensP p) = unWrap p
unWrap p = p
delve :: (String -> Bool) -> Pat -> Bool
delve pred p | ConP op _ <- unWrap p = pred (nameBase op)
matchOp :: (String -> Bool) -> Match -> Bool
matchOp pred (Match pat _ _) = delve pred pat
opCases = filter (matchOp (/= "Return")) cases
retCases =
case filter (matchOp (== "Return")) cases of
[] -> error "No return clause"
retCases -> retCases
makeArgType [] = TupleT 0
makeArgType [x] = parseType x
makeArgType xs = PromotedTupleT n `appType` map parseType xs
where
n = length xs
makeParentPredicate (opName, tys) =
let opArgTypes = makeArgType tys in
ClassP plainHandles [VarT (head tyvars),
ConT (mkName opName),
opArgTypes]
-- type class constraints representing operations handled
-- by the parent handler
parentCtx = map makeParentPredicate parentSig
-- raw type class constraints
rawCtx =
case constraint of
Nothing -> []
Just s | ForallT [] rawCtx _ <- parseType (s ++ " => ()") -> rawCtx
clauseInstance :: (String, [String]) -> Q Dec
clauseInstance (opName, tys) =
do
let opArgTypes = makeArgType tys
handles =
ConT plainHandles `appType` [happ, ConT (mkName opName), opArgTypes]
makeClauseDecs :: [Match] -> Q [Dec]
makeClauseDecs cases =
do
clauses <- mapM makeClause cases
return [FunD (mkName "clause") clauses]
makeClause :: Match -> Q Clause
makeClause (Match pat body wdecs) =
do
let ConP op pats = unWrap pat
(opArgs, VarP k, handlerArgs) = split pats
k' <- newName "k"
let ps = [ConP op opArgs, VarP k', ConP cname handlerArgs]
v <- newName "v"
hs <- mapM (\_ -> newName "h") handlerArgs
let wdecs' =
if shallow then wdecs
else
(FunD
k
[Clause ([VarP v] ++ (map VarP hs))
(NormalB (appExp (VarE k') [VarE v, appExp (ConE cname) (map VarE hs)]))
[]]) : wdecs
return (Clause ps body wdecs')
split :: [Pat] -> ([Pat], Pat, [Pat])
split ps = (opArgs, k, handlerArgs)
where
(k:handlerArgs) = reverse (take (length args + 1) (reverse ps))
opArgs = reverse (drop (length args + 1) (reverse ps))
decs <- makeClauseDecs (filter (matchOp (== opName)) opCases)
return (InstanceD (parentCtx ++ rawCtx) handles decs)
retDec = FunD (mkName "ret") (map makeClause retCases)
where
makeClause :: Match -> Clause
makeClause (Match pat body wdecs) =
Clause ps body wdecs
where
ConP op (v:hs) = unWrap pat
ps = [v,ConP cname hs]
forwardInstance handles extra decs =
InstanceD pre (ConT handles `appType` ([happ, op] ++ extra)) decs
where
op = VarT (mkName "op")
pre = [ClassP handles ([VarT (head tyvars), op] ++ extra)]
ds = parseDecs cs
opClauses <- mapM clauseInstance sig
-- It's tempting to try to give handler functions signatures that abstract away
-- from the handler type. But this doesn't appear to be feasible, as the
-- explicit handler type seems essential for working around the limitations of
-- the GHC type system.
--
-- In particular there seems to be no other way of encoding
-- subtraction of operations by a handler.
handlerFun <-
do
xs <- mapM (\_ -> newName "x") args
let ret = mkName "ret"
handle = mkName "handle"
handlerArgs = map VarP xs
comp = mkName "comp"
body = NormalB (appExp
(VarE handle)
[VarE comp,
VarE ret,
appExp (ConE cname) (map VarE xs)])
return (FunD fname [Clause (handlerArgs ++ [VarP comp]) body [retDec]])
-- If this is a forwarding handler then generate the appropriate
-- type class instances to forward operations to the parent
-- handler.
forwardClauses <-
case h of
Nothing -> return []
Just _ ->
do
forwardDecs <-
if shallow then
-- "clause op k (cname p q) = doOp op >>= (\x -> fname p q (k x))"
do
let op = mkName "op"
bind = VarE (mkName ">>=")
doOp = VarE (mkName "doOp")
k = mkName "k"
x = mkName "x"
ps <- mapM (\_ -> newName "p") args
return
[FunD (mkName "clause")
[Clause [VarP op, VarP k, ConP cname (map VarP ps)]
(NormalB (appExp bind
[AppE doOp (VarE op),
LamE [VarP x]
(appExp (VarE fname) (map VarE ps ++ [AppE (VarE k) (VarE x)]))])) []]]
else
return (parseDecs "clause op k h = doOp op >>= (\\x -> k x h)")
optype <- newName "optype"
return
[forwardInstance plainHandles [VarT optype] forwardDecs]
return (if shallow then
[handlerType, resultInstance, innerInstance] ++
opClauses ++ forwardClauses ++
[handlerFun]
else
[handlerType, resultInstance] ++
opClauses ++ forwardClauses ++
[handlerFun])
{- Operation definitions -}
operation = QuasiQuoter { quoteExp = undefined, quotePat = undefined,
quoteType = undefined, quoteDec = opParser}
opParser :: String -> Q [Dec]
opParser s = makeOpDefs (parseOpDef s)
makeOpDefs :: OpDef -> Q [Dec]
makeOpDefs (us, name, ts, sig) =
do
let (args, result) = splitFunType True (parseType (sig ++ " -> ()"))
f = parseType sig
cname = mkName (let (c:cs) = name in toUpper(c) : cs)
fname = mkName (let (c:cs) = name in toLower(c) : cs)
lift = mkName "doOp"
forallVars = map mkName us
existsVars = map mkName ts
tyvars = forallVars ++ existsVars
evar <- newName "s"
uvar <- newName "t"
let kindAndType [] = (StarT, TupleT 0)
kindAndType [x] = (StarT, VarT x)
kindAndType xs = (TupleT n `appType` map (const StarT) xs,
PromotedTupleT n `appType` map VarT xs)
where
n = length xs
(ekind, eimp) = kindAndType existsVars
(ukind, uimp) = kindAndType forallVars
opType =
DataD [] cname
[KindedTV evar ekind, KindedTV uvar ukind]
[ForallC (map PlainTV tyvars) [EqualP (VarT evar) eimp, EqualP (VarT uvar) uimp]
(NormalC cname (map (\arg -> (IsStrict, arg)) args))]
[]
returnInstance =
TySynInstD (mkName "Return")
(TySynEqn [appType (ConT cname) [eimp, uimp]] result)
xs <- mapM (\_ -> newName "x") args
opFunSig <-
do
h <- newName "handler"
let makeFunType h [] = appType (ConT (mkName "Comp")) [VarT h, result]
makeFunType h (t:ts) = AppT (AppT ArrowT t) (makeFunType h ts)
return (SigD fname
(ForallT
(PlainTV h:map PlainTV tyvars)
[ClassP (mkName "Handles") [VarT h, ConT cname, eimp]]
(makeFunType h args)))
let opFun = FunD fname
[Clause (map VarP xs)
(NormalB (AppE
(VarE lift)
(appExp (ConE cname) (map VarE xs)))) []]
return [opType, returnInstance, opFunSig, opFun]
{- Utilities -}
-- This doesn't quite work because it doesn't seem to have access to
-- the appropriate context. It might be a better bet eventually,
-- though, as it does parse unit types properly.
--
-- Perhaps it will work properly if we correctly lift everything into
-- the Q monad.
--
-- parseType :: String -> Type
-- parseType s =
-- case parseToTH ("undefined :: (" ++ s ++ ")") of
-- Right (SigE (VarE _) t) -> t
-- parseType :: String -> Type
-- parseType s | Right t <- MetaParse.parseType s = t
parseType :: String -> Type
parseType s =
toType (Exts.fromParseResult
(Exts.parseTypeWithMode
(Exts.ParseMode "" Haskell2010
(map EnableExtension
[GADTs,
TypeFamilies, RankNTypes, FunctionalDependencies,
ScopedTypeVariables,
MultiParamTypeClasses, FlexibleInstances, FlexibleContexts,
TypeOperators]) True True Nothing)
s))
parseDecs :: String -> [Dec]
parseDecs s =
toDecs (Exts.fromParseResult
(Exts.parseDeclWithMode
(Exts.ParseMode "" Haskell2010
(map EnableExtension
[GADTs,
MultiParamTypeClasses, FlexibleInstances, FlexibleContexts,
TypeOperators]) True True Nothing)
s))
parseExp :: String -> Exp
parseExp s | Right e <- MetaParse.parseExp s = e
appExp f [] = f
appExp f (e:es) = appExp (AppE f e) es
appType f [] = f
appType f (t:ts) = appType (AppT f t) ts
splitFunType :: Bool -> Type -> ([Type], Type)
splitFunType dummy f = (reverse ts, massageUnit t)
where
(t : ts) =
if dummy then
-- ignore the dummy return type
tail (split [] f)
else
split [] f
-- HACK: GHC.Type.() is what gets parsed for "()", and that
-- leads to kinding problems. We should really look for units
-- elsewhere in types. This might be a bug in the parseType
-- function.
massageUnit (ConT name) | nameBase name == "()" = TupleT 0
massageUnit t = t
split :: [Type] -> Type -> [Type]
split ts (AppT (AppT ArrowT t) body) = split (t:ts) body
split ts t = (t:ts)