forked from slindley/effect-handlers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCont.hs
140 lines (114 loc) · 4.97 KB
/
Cont.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
{- This code illustrates how the continuation monad can be used to
implement standard handlers over a free-monad via a Church
encoding. -}
{-# LANGUAGE TypeFamilies,
GADTs,
RankNTypes,
MultiParamTypeClasses,
FlexibleContexts,
TypeOperators
#-}
module Cont where
import Control.Monad.Cont
import DesugarHandlers
-- We start with a free monad for state
data DataState a =
RetDS a
| GetDS () (Int -> DataState a)
| PutDS Int (() -> DataState a)
instance Monad DataState where
return = RetDS
RetDS v >>= f = f v
GetDS () k >>= f = GetDS () (\x -> k x >>= f)
PutDS s k >>= f = PutDS s (\x -> k x >>= f)
getDS :: () -> DataState Int
getDS () = GetDS () return
putDS :: Int -> DataState ()
putDS s = PutDS s return
-- Now we turn it into a continuation monad:
-- forall r.ContState r a is the Church encoding of DataState
-- (Cont r a ~= (a -> r) -> r)
type ContState r a = Cont ((() -> (Int -> r) -> r) -> -- get :: () -> Int
(Int -> (() -> r) -> r) -> -- put :: Int -> ()
r) a
getCont :: () -> ContState r Int
getCont () = cont (\k get put -> get () (\s -> k s get put))
putCont :: Int -> ContState r ()
putCont s = cont (\k get put -> put s (\() -> k () get put))
-- A handler for DataState takes a return clause and a clause for each
-- operation (get and put).
handleDataState :: DataState a -> (a -> r) -> (() -> (Int -> r) -> r) -> (Int -> (() -> r) -> r) -> r
handleDataState (RetDS v) ret get put = ret v
handleDataState (GetDS () k) ret get put = get () (\x -> handleDataState (k x) ret get put)
handleDataState (PutDS s k) ret get put = put s (\x -> handleDataState (k x) ret get put)
-- A handler for a continuation computation is just a function that
-- instantiates the return type with a concrete type.
handleCont :: Cont r a -> (a -> r) -> r
handleCont = runCont
-- In particular, a handler for a state computation instantiates the
-- return type to accept get and put clauses.
--
-- Note that in order to be a continuation monad we must thread these
-- clauses through the return clause. This is essential for
-- composability - we need it in order to define bind.
--
-- Typically an actual top-level return clause will ignore the put and
-- get arguments.
handleContState :: ContState r a ->
(a -> (() -> (Int -> r) -> r) -> (Int -> (() -> r) -> r) -> r) -> -- return
(() -> (Int -> r) -> r) -> -- get
(Int -> (() -> r) -> r) -> -- put
r
handleContState = handleCont
-- The definitions of equivalent free and continuation-based handlers
-- are now very similar.
simpleStateFree :: Int -> DataState a -> a
simpleStateFree s comp = handleDataState
comp
(\x s -> x) -- return clause
(\() k s -> k s s) -- get clause
(\s k _ -> k () s) -- put clause
s -- handler parameter
simpleStateCont :: Int -> ContState (Int -> a) a -> a
simpleStateCont s comp = handleContState
comp
(\x get put s -> x) -- return clause
(\() k s -> k s s) -- get clause
(\s k _ -> k () s) -- put clause
s -- handler parameter
-- If we use type-classes to define operation clauses then the result
-- type of the continuation monad becomes much simpler. We need a
-- single handler argument to track the type == name of a handler and
-- any parameters to the handler. All of the concrete operation
-- clauses are inferred by the type class mechanism.
type family Return (op :: *) :: *
type family Result (h :: *) :: *
class (h `Handles` op) where
clause :: op -> (Return op -> h -> Result h) -> h -> Result h
type Comp h a = Cont (h -> Result h) a
handle :: Comp h a -> (a -> h -> Result h) -> h -> Result h
handle = handleCont
doOp :: (h `Handles` op) => op -> Comp h (Return op)
doOp op = cont (\k h -> clause op k h)
data Get where
Get :: Get
type instance Return Get = Int
get :: (h `Handles` Get) => Comp h Int
get = doOp Get
data Put where
Put :: !Int -> Put
type instance Return Put = ()
put :: (h `Handles` Put) => Int -> Comp h ()
put s = doOp (Put s)
type SComp a = (h `Handles` Get, h `Handles` Put) => Comp h a
newtype SimpleState a = SimpleState Int
type instance Result (SimpleState a) = a
instance (SimpleState a `Handles` Get) where
clause Get k (SimpleState s) = k s (SimpleState s) -- get clause
instance (SimpleState a `Handles` Put) where
clause (Put s) k _ = k () (SimpleState s) -- put clause
simpleState :: Int -> SComp a -> a
simpleState s comp = handle
comp
(\x (SimpleState s) -> x) -- return
(SimpleState s) -- handler parameter