-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathml.py
192 lines (156 loc) · 5.04 KB
/
ml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
"""ML component."""
from content_extraction import get_url
from datastores import training_db, model_db
from feature_extraction import entry2mat, url2mat
from flask import g
from functools import wraps
import gc
from git import Repo
import json
import logging as log
import mlflow
import mlflow.sklearn
import numpy as np
from sklearn.model_selection import cross_val_score, StratifiedKFold
from sklearn.neural_network import MLPClassifier
_model_attr_name = "_model"
def _set_model(model):
setattr(g, _model_attr_name, model)
model_db()["user"] = model
model_db().sync()
def get_model():
"""Return latest trained model.
Returns
-------
Sklearn model (estimator)
The most recent model.
"""
return getattr(g, _model_attr_name, None) or model_db().get("user")
def _new_model(*args, **kwargs):
return MLPClassifier(*args, **kwargs)
def _score_entry(entry):
url = get_url(entry)
try:
X = entry2mat(entry, url)
model = get_model()
probs = model.predict_proba(X=X)
return probs[:, 1]
except Exception as e:
log.error(
("Failed Scoring for {url}" + " because of exception {e}").format(
url=url, e=e
)
)
return None
def score_feed(parsed_feed):
"""Score each entry in a feed.
Parameters
----------
parsed_feed : Feedparser feed
The feed whose entries are to be scored.
Returns
-------
type
A list of scores, one per entry. Higher score means more likely to
receive positive feedback.
"""
return [_score_entry(e) for e in parsed_feed.entries]
def store_feedback(url, like):
"""Store user feedback.
Parameters
----------
url : string
URL of content feedback is about.
like : bool
True for like, False for dislike.
Returns
-------
None
"""
training_db()[url] = like
training_db().sync()
def _url2mat_or_None(url):
try:
return url2mat(url)
except Exception:
# del training_db()[url] this is too hasty, erasing valuable human
# feedback
# training_db().sync()
return None
class DirtyRepoException(Exception):
"""Exception to be raised when learning is triggered in a dirty repo."""
pass
def _mlflow_run(f, record_model=False):
@wraps(f)
def wrapper(**kwargs):
repo = Repo(".")
if repo.is_dirty():
log.error("repo is dirty, please check in all changes")
raise DirtyRepoException
with mlflow.start_run():
comm = repo.head.commit
mlflow.log_params(
{
"commit": str(comm),
"message": comm.message,
"Function module": f.__module__,
"Function name": f.__qualname__,
}
)
# bound_args = signature(f).bind(*args, **kwargs)
# bound_args.apply_defaults()
mlflow.log_params(kwargs)
model = f(**kwargs)
if record_model:
mlflow.log_model(model)
return model
return wrapper
def learn():
"""Trigger the learning process.
Returns
-------
string
A message about the learning process containing a score.
"""
with open("mlconf.json") as conf:
kwargs = json.load(conf)
return _learn(**kwargs)
@_mlflow_run
def _learn(**kwargs):
log.info("Loading data")
training_db_items = training_db().items()
mlflow.log_metric("Number of articles", len(training_db_items))
Xy = [
dict(X=X, y=[int(like)] * X.shape[0])
for X, like in [
(_url2mat_or_None(url), like) for url, like in training_db_items
]
if (X is not None)
]
log.info("Forming matrices")
X = np.concatenate([z["X"] for z in Xy], axis=0)
y = np.concatenate([z["y"] for z in Xy], axis=0)
mlflow.log_metric("Positive proportion", sum(y) / len(y))
# w = np.concatenate([[1.0 / z["X"].shape[0]] * z["X"].shape[0] for z in Xy], axis=0)
del Xy
gc.collect() # Trying to get as much RAM as possible before model fit
log.info("Creating model")
model = _new_model(**kwargs)
log.info("Fitting model")
log.info("Matrix size:" + str(X.shape))
mlflow.log_metric("Number of sentences", X.shape[0])
model.fit(X=X, y=y) # , sample_weight=w)
_set_model(model)
mlflow.sklearn.log_model(model, "mlflow-model")
score = model.score(X=X, y=y)
log.info(f"Classifier Score: {score}")
mlflow.log_metric("score", score)
[mlflow.log_metric("loss curve", l, i) for i, l in enumerate(model.loss_curve_)]
scores = cross_val_score(
model, X, y, n_jobs=-1, cv=StratifiedKFold(n_splits=10, shuffle=False)
)
mlflow.log_metric("Median CV score", np.median(scores))
mlflow.log_metric("IQR CV score", np.subtract(*np.percentile(scores, [75, 25])))
[mlflow.log_metric("CV scores", s, step=i) for i, s in enumerate(scores)]
log.info("Cross Validation Scores: {scores}".format(scores=scores))
return model