-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
343 lines (302 loc) · 17.5 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
<!DOCTYPE html>
<html lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<title>Network analysis approach using morphological profiling of chemical perturbation</title>
<meta name="description" content="Exploring the intersection of graph representation learning and cell profiling" />
<meta name="generator" content="bookdown 0.33 and GitBook 2.6.7" />
<meta property="og:title" content="Network analysis approach using morphological profiling of chemical perturbation" />
<meta property="og:type" content="book" />
<meta property="og:description" content="Exploring the intersection of graph representation learning and cell profiling" />
<meta name="twitter:card" content="summary" />
<meta name="twitter:title" content="Network analysis approach using morphological profiling of chemical perturbation" />
<meta name="twitter:description" content="Exploring the intersection of graph representation learning and cell profiling" />
<meta name="author" content="Nima Chamyani" />
<meta name="date" content="2023-07-04" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta name="apple-mobile-web-app-status-bar-style" content="black" />
<link rel="next" href="intro.html"/>
<script src="libs/jquery-3.6.0/jquery-3.6.0.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/fuse.min.js"></script>
<link href="libs/gitbook-2.6.7/css/style.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-table.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-bookdown.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-highlight.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-search.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-fontsettings.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-clipboard.css" rel="stylesheet" />
<link href="libs/anchor-sections-1.1.0/anchor-sections.css" rel="stylesheet" />
<link href="libs/anchor-sections-1.1.0/anchor-sections-hash.css" rel="stylesheet" />
<script src="libs/anchor-sections-1.1.0/anchor-sections.js"></script>
<style type="text/css">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { color: #008000; } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { color: #008000; font-weight: bold; } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
<style type="text/css">
/* Used with Pandoc 2.11+ new --citeproc when CSL is used */
div.csl-bib-body { }
div.csl-entry {
clear: both;
}
.hanging div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
}
</style>
<link rel="stylesheet" href="style.css" type="text/css" />
</head>
<body>
<div class="book without-animation with-summary font-size-2 font-family-1" data-basepath=".">
<div class="book-summary">
<nav role="navigation">
<ul class="summary">
<li class="chapter" data-level="" data-path="index.html"><a href="index.html"><i class="fa fa-check"></i>Intersecting Graph Representation Learning and Cell Profiling: A Novel Approach to Analyzing Complex Biomedical Data</a>
<ul>
<li class="chapter" data-level="" data-path="index.html"><a href="index.html#aim"><i class="fa fa-check"></i>Aim</a></li>
<li class="chapter" data-level="" data-path="index.html"><a href="index.html#what-can-be-found-in-this-document"><i class="fa fa-check"></i>What can be found in this document?</a></li>
</ul></li>
<li class="chapter" data-level="1" data-path="intro.html"><a href="intro.html"><i class="fa fa-check"></i><b>1</b> Introduction</a>
<ul>
<li class="chapter" data-level="1.1" data-path="intro.html"><a href="intro.html#graphs"><i class="fa fa-check"></i><b>1.1</b> Graphs</a></li>
<li class="chapter" data-level="1.2" data-path="intro.html"><a href="intro.html#graph-representation-learning"><i class="fa fa-check"></i><b>1.2</b> Graph representation learning</a></li>
<li class="chapter" data-level="1.3" data-path="intro.html"><a href="intro.html#cell-profiling"><i class="fa fa-check"></i><b>1.3</b> Cell profiling</a></li>
</ul></li>
<li class="chapter" data-level="2" data-path="methods.html"><a href="methods.html"><i class="fa fa-check"></i><b>2</b> Methods and Materials</a>
<ul>
<li class="chapter" data-level="2.1" data-path="methods.html"><a href="methods.html#data-preprocessing"><i class="fa fa-check"></i><b>2.1</b> Data Preprocessing</a>
<ul>
<li class="chapter" data-level="2.1.1" data-path="methods.html"><a href="methods.html#covid-19-cell-profilling-data"><i class="fa fa-check"></i><b>2.1.1</b> COVID-19 Cell profilling Data</a>
<ul>
<li class="chapter" data-level="2.1.1.1" data-path="methods.html"><a href="methods.html#normalization"><i class="fa fa-check"></i><b>2.1.1.1</b> Normalization</a></li>
<li class="chapter" data-level="2.1.1.2" data-path="methods.html"><a href="methods.html#dimensionality-reduction"><i class="fa fa-check"></i><b>2.1.1.2</b> Dimensionality Reduction</a></li>
<li class="chapter" data-level="2.1.1.3" data-path="methods.html"><a href="methods.html#development-of-a-binary-classification-of-data"><i class="fa fa-check"></i><b>2.1.1.3</b> Development of a binary classification of data</a></li>
</ul></li>
<li class="chapter" data-level="2.1.2" data-path="methods.html"><a href="methods.html#compound-protein-and-pathway-data-aggregation"><i class="fa fa-check"></i><b>2.1.2</b> Compound, Protein and Pathway Data Aggregation</a></li>
<li class="chapter" data-level="2.1.3" data-path="methods.html"><a href="methods.html#featurizing-the-biomedical-entities"><i class="fa fa-check"></i><b>2.1.3</b> Featurizing the Biomedical Entities</a>
<ul>
<li class="chapter" data-level="2.1.3.1" data-path="methods.html"><a href="methods.html#featurizing-compounds"><i class="fa fa-check"></i><b>2.1.3.1</b> Featurizing Compounds</a></li>
<li class="chapter" data-level="2.1.3.2" data-path="methods.html"><a href="methods.html#featurizing-proteins"><i class="fa fa-check"></i><b>2.1.3.2</b> Featurizing Proteins</a></li>
<li class="chapter" data-level="2.1.3.3" data-path="methods.html"><a href="methods.html#featurizing-pathways"><i class="fa fa-check"></i><b>2.1.3.3</b> Featurizing Pathways</a></li>
</ul></li>
<li class="chapter" data-level="2.1.4" data-path="methods.html"><a href="methods.html#covid-19-bio-graph"><i class="fa fa-check"></i><b>2.1.4</b> COVID-19 Bio-Graph</a></li>
<li class="chapter" data-level="2.1.5" data-path="methods.html"><a href="methods.html#representing-chemical-molecules-as-graph"><i class="fa fa-check"></i><b>2.1.5</b> Representing Chemical Molecules as Graph</a></li>
</ul></li>
<li class="chapter" data-level="2.2" data-path="methods.html"><a href="methods.html#models"><i class="fa fa-check"></i><b>2.2</b> Models</a>
<ul>
<li class="chapter" data-level="2.2.1" data-path="methods.html"><a href="methods.html#graph-level-molecular-predictor-glmp"><i class="fa fa-check"></i><b>2.2.1</b> Graph-Level Molecular Predictor (GLMP)</a></li>
<li class="chapter" data-level="2.2.2" data-path="methods.html"><a href="methods.html#bio-graph-integrative-classifierregressor-biogicbiogir"><i class="fa fa-check"></i><b>2.2.2</b> Bio-Graph Integrative Classifier/Regressor (BioGIC/BioGIR)</a>
<ul>
<li class="chapter" data-level="2.2.2.1" data-path="methods.html"><a href="methods.html#classificationregression"><i class="fa fa-check"></i><b>2.2.2.1</b> Classification/Regression</a></li>
<li class="chapter" data-level="2.2.2.2" data-path="methods.html"><a href="methods.html#predicting-joint-effect-of-nodes-chemical-combination"><i class="fa fa-check"></i><b>2.2.2.2</b> Predicting joint effect of nodes (Chemical Combination)</a></li>
</ul></li>
<li class="chapter" data-level="2.2.3" data-path="methods.html"><a href="methods.html#optimized-molecular-graph-generator-omg"><i class="fa fa-check"></i><b>2.2.3</b> Optimized Molecular Graph Generator (OMG)</a></li>
</ul></li>
<li class="chapter" data-level="2.3" data-path="methods.html"><a href="methods.html#model-validation-and-optimization"><i class="fa fa-check"></i><b>2.3</b> Model Validation and Optimization</a></li>
<li class="chapter" data-level="2.4" data-path="methods.html"><a href="methods.html#model-enhancement"><i class="fa fa-check"></i><b>2.4</b> Model Enhancement</a></li>
<li class="chapter" data-level="2.5" data-path="methods.html"><a href="methods.html#data-acquisition-software-and-libraries"><i class="fa fa-check"></i><b>2.5</b> Data acquisition, software and libraries</a></li>
</ul></li>
<li class="chapter" data-level="3" data-path="results.html"><a href="results.html"><i class="fa fa-check"></i><b>3</b> Result and Discussion</a>
<ul>
<li class="chapter" data-level="3.1" data-path="results.html"><a href="results.html#regressionclassification-performance"><i class="fa fa-check"></i><b>3.1</b> Regression/Classification Performance</a></li>
<li class="chapter" data-level="3.2" data-path="results.html"><a href="results.html#covid-19-biograph-topology"><i class="fa fa-check"></i><b>3.2</b> COVID-19 BioGraph Topology</a></li>
<li class="chapter" data-level="3.3" data-path="results.html"><a href="results.html#combination-prediction"><i class="fa fa-check"></i><b>3.3</b> Combination Prediction</a></li>
<li class="chapter" data-level="3.4" data-path="results.html"><a href="results.html#molecule-generation"><i class="fa fa-check"></i><b>3.4</b> Molecule Generation</a></li>
</ul></li>
<li class="chapter" data-level="" data-path="references.html"><a href="references.html"><i class="fa fa-check"></i>References</a></li>
</ul>
</nav>
</div>
<div class="book-body">
<div class="body-inner">
<div class="book-header" role="navigation">
<h1>
<i class="fa fa-circle-o-notch fa-spin"></i><a href="./">Network analysis approach using morphological profiling of chemical perturbation</a>
</h1>
</div>
<div class="page-wrapper" tabindex="-1" role="main">
<div class="page-inner">
<section class="normal" id="section-">
<div id="header">
<h1 class="title">Network analysis approach using morphological profiling of chemical perturbation</h1>
<p class="author"><em>Nima Chamyani</em></p>
<p class="date"><em>2023-07-04</em></p>
</div>
<div id="intersecting-graph-representation-learning-and-cell-profiling-a-novel-approach-to-analyzing-complex-biomedical-data" class="section level1 unnumbered hasAnchor">
<h1>Intersecting Graph Representation Learning and Cell Profiling: A Novel Approach to Analyzing Complex Biomedical Data<a href="index.html#intersecting-graph-representation-learning-and-cell-profiling-a-novel-approach-to-analyzing-complex-biomedical-data" class="anchor-section" aria-label="Anchor link to header"></a></h1>
<div style="display: flex; flex-direction: column; justify-content: center; align-items: center; text-align: center;">
<p><br />
<img src="./assets/logo.png" style="width:10.0%" alt="image" /><br />
<span class="smallcaps">Uppsala Universitet</span><br />
Department of Pharmaceutical Biosciences<br />
</p>
<hr />
<p><em>This is a master’s project documentation for pharmaceutical modeling program at Uppsala University.</em><br />
</p>
</div>
<div style="display: flex; justify-content: center; align-items: center;">
<p><strong>Pharmaceutical Bioinformatics Research Group</strong><br />
</p>
</div>
<div style="display: flex; justify-content: center; align-items: center;">
<p><span class="smallcaps">Nima Chamyani <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.1/css/all.min.css">
<a href="mailto:[email protected]" style="color: #1DA1F2; font-size:0.8em;">
<i class="fas fa-envelope"></i>
</a></span></p>
</div>
<p><br />
</p>
<div id="aim" class="section level2 unnumbered hasAnchor">
<h2>Aim<a href="index.html#aim" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<p>An innovative and powerful method of analyzing complex biomedical data can be found in the intersection of graph representation learning and cell profiling. Our research aims to unlock new insights into how complex relations between chemical compounds, cellular phenotypes, and biological entities like proteins and biological pathways can be modelled for different purposes, ultimately facilitating the discovery and development of new drugs.</p>
</div>
<div id="what-can-be-found-in-this-document" class="section level2 unnumbered hasAnchor">
<h2>What can be found in this document?<a href="index.html#what-can-be-found-in-this-document" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<p>This documentation provides an in-depth account of the procedures and methodologies used within the scope of this research project, including a thorough and detailed explanation of the implemented codes and their deployment. The result and discussion are also included at the end of the documentation.</p>
</div>
</div>
</section>
</div>
</div>
</div>
<a href="intro.html" class="navigation navigation-next navigation-unique" aria-label="Next page"><i class="fa fa-angle-right"></i></a>
</div>
</div>
<script src="libs/gitbook-2.6.7/js/app.min.js"></script>
<script src="libs/gitbook-2.6.7/js/clipboard.min.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-search.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-sharing.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-fontsettings.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-bookdown.js"></script>
<script src="libs/gitbook-2.6.7/js/jquery.highlight.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-clipboard.js"></script>
<script>
gitbook.require(["gitbook"], function(gitbook) {
gitbook.start({
"sharing": {
"github": false,
"facebook": true,
"twitter": true,
"linkedin": false,
"weibo": false,
"instapaper": false,
"vk": false,
"whatsapp": false,
"all": ["facebook", "twitter", "linkedin", "weibo", "instapaper"]
},
"fontsettings": {
"theme": "white",
"family": "sans",
"size": 2
},
"edit": null,
"history": {
"link": null,
"text": null
},
"view": {
"link": null,
"text": null
},
"download": ["_main.pdf", "_main.epub", "_main.mobi"],
"search": {
"engine": "fuse",
"options": null
},
"toc": {
"collapse": "subsection"
},
"toolbar": {
"position": "fixed"
}
});
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
var src = "true";
if (src === "" || src === "true") src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.9/latest.js?config=TeX-MML-AM_CHTML";
if (location.protocol !== "file:")
if (/^https?:/.test(src))
src = src.replace(/^https?:/, '');
script.src = src;
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>