-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsent_vol.scripts.r
400 lines (355 loc) · 17.1 KB
/
sent_vol.scripts.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
load.libraries <- function(){
# Baselina libraries
library(tidyverse)
library(L1pack)
library(latex2exp)
library(xtable)
## Libraries for Bykhovskaya.regression
#install.packages("nloptr")
library(nloptr)
library(matlib)
library(stats)
library(expm)
}
## Load and preprocess data
load.vol <- function(){
folder <- "C:/data/"
vol <- read.csv(paste0(folder,"rk_1m.txt"), header = FALSE)
colnames(vol) <- unlist(read.csv(paste0(folder,"ids.txt"), header = FALSE))
preserve <- colnames(read.csv("C:/conectedness_2net_rk.txt", header = TRUE))[-1]
vol <- vol[,preserve]
return(vol)
}
load.net <- function(){
net <- read.csv("C:/matlab/results/LF/conectedness_0network_rk.txt", header = FALSE)
net <- as.data.frame(t(net))
days <- read.csv("C:/matlab/data/daysplit.txt", header = FALSE)
rownames(net) <- as.Date(as.character(days[,1]), format = "%d-%m-%Y")
rm(days)
lbls <- as.character(read.csv("C:/results/LF/conectedness_0lbls.txt", header = FALSE))
cns <- rep("",length(lbls)*length(lbls))
for(i in 1:length(lbls))for(j in 1:length(lbls)) cns[(i-1)*10+j] <- paste0(lbls[j],",",lbls[i])
colnames(net) <- cns
return(net)
}
load.mkt <- function(net){
mkt <- read.csv("C:/data/MKT.csv", header = TRUE)
mkt <- mkt%>%mutate(MKT = Mkt.RF+RF,X=parse_date(as.character(X), format = "%Y%m%d"))%>%select(X,MKT)%>%mutate(nMKT=1*(MKT<0))
rownames(mkt) <- mkt$X
mkt <- mkt%>%select(MKT,nMKT)
mkt$MKT <- mkt$MKT / sd(mkt$MKT, na.rm = TRUE)
mkt <- mkt[rownames(mkt)%in%rownames(net),]
return(mkt)
}
load.sentiment <- function(net,market.wide = TRUE){
sentiment <- read.csv("C:/data/sentiment_ecsector_daily_ew.csv")
rownames(sentiment) <- as.Date(sentiment[,1], format = "%d.%m.%Y")
sentiment <- sentiment[,-1]
sentiment <- sentiment[rownames(sentiment)%in%rownames(net),]
#sentiment <- sentiment%>% mutate(across(where(is.numeric), scale))
#pSentiment <- nSentiment <- sentiment / sd(unlist(sentiment))
#pSentiment[pSentiment<0] <- 0
#nSentiment[pSentiment>0] <- 0
#nSentiment <- abs(nSentiment)
if(market.wide){
sentiment$TOT <- rowSums(sentiment)
sentiment$TOT <- sentiment$TOT / sd(sentiment$TOT)
return(sentiment%>%select(TOT))
}else{
sentiment <- sentiment / sd(unlist(sentiment))
return(sentiment)
}
}
construct.data <- function(net,mkt,sentiment){
# 2.1 Construct baseline data set: first two network lags
mdl.data <- data.frame(net[rownames(net)[-c(1,2)],colnames(net)[2]])
colnames(mdl.data)[1] <- paste0("X_",colnames(net)[2],"_1")
peers <- list()
for(lag in 1:2){
for(edge in colnames(net)){
cmpnents <- unlist(strsplit(edge, split=","))
peers <- c(peers,cmpnents[1],cmpnents[2])
if(length(cmpnents)==2&&cmpnents[2]!=cmpnents[1]){
if(lag==1){
mdl.data[,paste0("X_",edge,"_",lag)] <- data.frame(net[rownames(net)[-c(1,nrow(net))],edge])
}else if(lag==2){
mdl.data[,paste0("X_",edge,"_",lag)] <- data.frame(net[rownames(net)[-c(nrow(net)-1,nrow(net))],edge])
}
}
}
}
peers <- unique(unlist(peers))
n <- length(peers) # n <- (1+sqrt(1+4*ncol(mdl.data)/2))/2
# 2.2 Add (lag-1) triangular peer effects
col_list <- list()
for(colmn in colnames(mdl.data)) if(unlist(strsplit(colmn,"_"))[3]=="1") col_list <- c(col_list,colmn)
col_list <- unlist(col_list)
for(edge in col_list){
edge_info <- unlist(strsplit(edge,"_"))
cmponents <- unlist(strsplit(edge_info[2],","))
cn <- paste(edge_info[1],edge_info[2],"tr", sep = "_")
mdl.data[,cn] <- 0
for(intermediate_peer in peers) if(intermediate_peer != cmponents[1] && intermediate_peer != cmponents[2]){
c1 <- paste0("X_",cmponents[1],",",intermediate_peer,"_1")
c2 <- paste0("X_",intermediate_peer,",",cmponents[2],"_1")
mdl.data[,cn] <- mdl.data[,cn] + sqrt(mdl.data[,c1]*mdl.data[,c2]) / (n - 2)
#print(paste0(cn," += ",c1," * ",c2))
}
}
cutoffs <- (1:3) * (n*(n-1))
# 2.3 Add sentiment data
#mdl.data[,paste0("S_plus_",colnames(pSentiment))] <- pSentiment[-c(1,nrow(net)),]
#mdl.data[,paste0("S_minus_",colnames(nSentiment))] <- nSentiment[-c(1,nrow(net)),]
#cutoffs <- c(cutoffs,ncol(mdl.data))
# 2.4 Add quadratic sentiment data
#mdl.data[,paste0("S2_plus_",colnames(pSentiment))] <- pSentiment[-c(1,nrow(net)),]^2
#mdl.data[,paste0("S2_minus_",colnames(nSentiment))] <- nSentiment[-c(1,nrow(net)),]^2
#cutoffs <- c(cutoffs,ncol(mdl.data))
# 2.5 Add interactions with information (sign of MTK return) variable
#mdl.data[,"I"] <- mkt$nMKT[-c(1,nrow(net))]
#mdl.data[,paste0("IS_plus_",colnames(pSentiment))] <- mkt$nMKT[-c(1,nrow(net))]*pSentiment[-c(1,nrow(net)),]
#mdl.data[,paste0("IS_minus_",colnames(nSentiment))] <- mkt$nMKT[-c(1,nrow(net))]*nSentiment[-c(1,nrow(net)),]
#mdl.data[,paste0("IS2_plus_",colnames(pSentiment))] <- mkt$nMKT[-c(1,nrow(net))]*pSentiment[-c(1,nrow(net)),]^2
#mdl.data[,paste0("IS2_minus_",colnames(nSentiment))] <- mkt$nMKT[-c(1,nrow(net))]*nSentiment[-c(1,nrow(net)),]^2
# 2.3-2.5 Add market data, sentiment data, and interactions
mdl.data[,"MKT"] <- mkt$MKT[-c(1,nrow(net))]
mdl.data <- mdl.data%>%mutate(aMKT = abs(MKT), MKT2 = MKT^2)
mdl.data[,"S"] <- sentiment$TOT[-c(1,nrow(net))]
mdl.data <- mdl.data%>%mutate(aS = abs(S), S2 = S^2)
mdl.data <- mdl.data%>%mutate(MMT_S = MKT*S, MMT_aS = MKT*aS, MMT_S2 = MKT*S2)
# 2.6 Retain only non-null data
cutoffs <- c(cutoffs,ncol(mdl.data))
keep <- rowSums(is.na(mdl.data))==0
# Return results
return(list(mdl.data=mdl.data,cutoffs=cutoffs,keep=keep,peers=peers,n=n))
}
## Implementation of Anna Bykhovskaya (2023) Time Series Approach to the Evolution of Networks: Prediction and Estimation, Journal of Business & Economic Statistics, 41:1, 170-183, DOI: 10.1080/07350015.2021.2006669
Bykhovskaya.regression <- function(dta, maxiter = 2.5*10^4, fit.lower.bound = 0, fit.upper.bound = Inf){
# Define data
y <- dta[,"y"]
X <- dta
X[,"y"] <- 1
X <- X%>%rename("(Intercept)"="y")
n <- ncol(X)
T_obs <- nrow(X)
# Define fit function
fit.f <- function(X,b) return(as.numeric(rowSums(sweep(X, MARGIN=2,b, `*`))))
# Define objective function
eval_f <- function(b){
return(sum(abs(y-pmax(rep(0,length(y)),as.numeric(rowSums(sweep(X, MARGIN=2,b, `*`)))))))
}
# Define constraint function
eval_g_ineq <- function(b){
return(c(fit.lower.bound-min(as.numeric(rowSums(sweep(X, MARGIN=2,b, `*`)))), max(as.numeric(rowSums(sweep(X, MARGIN=2,b, `*`))))-fit.upper.bound))
#return(fit.lower.bound-min(as.numeric(rowSums(sweep(X, MARGIN=2,b, `*`)))))
}
# Initialize parameters based on standard LTD regression estimates
mdl2 <- lad(y~., data = dta)
coef <- as.numeric(mdl2$coefficients)
se <- sqrt(diag(vcov(mdl2)))
tstat <- coef / se
pval <- 2 * pt(abs(tstat), df = nrow(dta) - nrow(mdl2$R) - 2, lower.tail = FALSE)
res.b <- data.frame(coef, se, tstat, pval)
rownames(res.b) <- names(mdl2$coefficients)
coef.b <- coef
rm(coef,se,tstat,pval)
# Perform optimization
# See https://nlopt.readthedocs.io/en/latest/NLopt_Algorithms/
start <- Sys.time()
optmodel <- nloptr::nloptr(x0=coef.b,
eval_f = eval_f,
eval_g_ineq = eval_g_ineq,
lb = rep(-Inf,length(coef.b)),
ub = rep(Inf,length(coef.b)),
opts = list("algorithm"="NLOPT_LN_COBYLA", # "NLOPT_LN_BOBYQA"
"xtol_rel" = 1.0e-10,"ftol_abs" = 1.0e-10,
"maxeval" = maxiter))
end <- Sys.time()
# Coefficients and fit
coef <- as.numeric(optmodel$solution)
fit <- fit.f(X, coef)
# Objective and constraint function values
f <- eval_f(coef)
g <- eval_g_ineq(coef)
# Coef Cov matrix
X.adj <- X
X.adj[fit<0,] <- 0
M0_hat <- matrix(nrow = n, ncol = n)
for(i in 1:n) for(j in 1:n) M0_hat[i,j] <- mean(X.adj[,i]*X.adj[,j])
M0_sq_inv <- chol2inv(chol(sqrtm(M0_hat)))
if(min(mdl2$fitted.values)<fit.lower.bound||max(mdl2$fitted.values)>fit.upper.bound){
fu <- density(y-fit, kernel = "rectangular")
i <- sum(fu$x<=0)
fu0 <- fu$y[i] -fu$x[i]/(fu$x[i+1] - fu$x[i])*(fu$y[i+1] - fu$y[i])
scale <- 1/2/fu0
}else scale <- mdl2$scale
#vcov(mdl2)
#M0_sq_inv%*%M0_sq_inv * 2 * mdl2$scale^2 / T_obs
#se <- sqrt(diag(M0_sq_inv%*%M0_sq_inv * 2 * mdl2$scale^2 / T_obs))
#sqrt(diag(vcov(mdl2)))
# se, tstat, pvals
R <- M0_sq_inv%*%M0_sq_inv * 2 * scale^2 / T_obs
se <- sqrt(diag(R))
tstat <- coef / se
pval <- 2 * pt(abs(tstat), df = nrow(dta) - ncol(dta) - 2, lower.tail = FALSE)
coef.summary <- data.frame(coef,se,tstat,pval)
rownames(coef.summary) <- names(mdl2$coefficients)
# Return results
return(list(
opt.time=end-start,
converged=optmodel$iterations<maxiter&&sum(g>0)==0,
coeficients=list(opmod=coef.summary,benchmod=res.b),
Cov=R,
scale=scale,
fit=fit,
resid=y-fit,
SumAbsResid=f,
IneqCons=g))
}
run.Bykhovskaya.regression <- function(net,mdl.data,keep,n,X.cols = NA){
if(is.na(X.cols[1])) X.cols <- list(full=(1:ncol(mdl.data)))
filename <- "C:/results/coefficients.bench"
if(file.exists(filename)){
load("C:/results/actual.bench")
load("C:/results/fit.bench")
load(filename)
}else{
row <- 0
actual <- data.frame(matrix(nrow = sum(keep), ncol = n * (n-1)))
fit <- list()
fit[["base"]] <- data.frame(matrix(nrow = sum(keep), ncol = n * (n-1)))
for(mdl.name in names(X.cols)) fit[[mdl.name]] <- data.frame(matrix(nrow = sum(keep), ncol = n * (n-1)))
results <- list()
for(edge in colnames(net)){
cmpnents <- unlist(strsplit(edge, split=","))
if(length(cmpnents)==2&&cmpnents[2]!=cmpnents[1]){
row <- row + 1
print(paste0("[",format(Sys.time(),"%a %b %d %X %Y"),"] Estimating baseline LAD model and saving results for [",row,"/",n*(n-1),"] ",edge,".."))
actual[,row] <- as.numeric(data.frame(net[rownames(net)[-c(1,2)],edge])[keep,])
colnames(actual)[row] <- edge
# Baseline model
filename2 <- paste0("results/models/benchmark_",edge)
if(file.exists(filename2)) load(filename2) else{
dta <- cbind(actual[,row],mdl.data[keep,grep(edge, colnames(mdl.data))])
colnames(dta)[1] <- "y"
mdl <- Bykhovskaya.regression(dta, 10^5, fit.lower.bound = 0, fit.upper.bound = 100)
save(mdl, file = filename2)
}
fit[["base"]][,row] <- mdl$fit
colnames(fit[["base"]])[row] <- edge
results[["base"]][[edge]] <- mdl$coeficients$opmod
#plot(as.numeric(data.frame(net[rownames(net)[-c(1,2)],edge])[keep,]), type='l')
#lines(mdl$fit, col="blue")
# Other models
for(mdl.name in names(X.cols)){
print(paste0("[",format(Sys.time(),"%a %b %d %X %Y"),"] Estimating ",mdl.name," LAD model and saving results for [",row,"/",n*(n-1),"] ",edge,".."))
filename2 <- paste0("results/models/bench_",mdl.name,"_",edge)
if(file.exists(filename2)) load(filename2) else {
dta <- cbind(actual[,row],mdl.data[keep,c(grep(edge, colnames(mdl.data)),X.cols[[mdl.name]])])
colnames(dta)[1] <- "y"
mdl <- Bykhovskaya.regression(dta, 10^5, fit.lower.bound = 0, fit.upper.bound = 100)
save(mdl, file = filename2)
}
fit[[mdl.name]][,row] <- mdl$fit
colnames(fit[[mdl.name]])[row] <- edge
results[[mdl.name]][[edge]] <- mdl$coeficients$opmod
#lines(mdl$fit, col="red")
}
}
}
save(actual, file = "C:/results/actual.bench")
save(fit, file = "C:/results/fit.bench")
save(results, file = filename)
}
return(list(actual=actual,fit=fit,coef.summary=results))
}
results.out <- function(actual,fit,results,n){
TRBC.map <- list("X50"="EN",
"X51"="MT",
"X52"="ID",
"X53"="CS_C",
"X54"="CS_N",
"X55"="FN",
"X56"="HC",
"X57"="IT",
"X59"="UT",
"X60"="RE")
# 3.1 General model R^2 and F-stat for S_plus and S_minus coefficients
R2 <- 0
T_obs <- length(unlist(c(actual)))
cutoffs <- list()
nms <- names(fit)
for(ctf in nms){
nR2 <- cor(unlist(c(actual)),unlist(c(fit[[ctf]])))^2
cutoffs <- c(cutoffs,nrow(results[[ctf]][[1]]))
print(paste0("R2 for model ",ctf," is: ", sprintf("%.3f", nR2)))
print(paste0("Difference for model ",ctf," is: ", sprintf("%.3f", nR2-R2), " (",sprintf("%.4f", 1 - pnorm((atanh(sqrt(nR2))-atanh(sqrt(R2)))/sqrt(2/(T_obs - 3)))),")"))
print(paste0("Adjusted R2 for model ",ctf," is: ",sprintf("%.3f", 1-(1-nR2)*(T_obs - 1)/(T_obs - nrow(results[[ctf]][[1]]) - 1))))
R2 <- nR2
}
cutoffs <- as.numeric(unlist(cutoffs))
# 3.2 F-statistics for each individual equation
for(i in 2:length(nms)){
for(j in 1:(i-1)){
Fstat <- sd(unlist(c(actual - fit[[nms[i-j]]]))) / sd(unlist(c(actual - fit[[nms[i]]])))
print(paste0("F-stat for model ",i," vs. model ",i-j," is: ", sprintf("%.4f",Fstat), " (", sprintf("%.4f", 1-pf(Fstat, T_obs-1, T_obs-1)), ")"))
}
}
# 3.3 Number of significant coefficients at the 5% level in each model
for (mdl.name in nms) {
significant.coefs <- 0
total.coefs <- 0
for(edge in names(results[[mdl.name]])){
total.coefs <- total.coefs + nrow(results[[mdl.name]][[edge]])
significant.coefs <- significant.coefs + sum(results[[mdl.name]][[edge]]$pval<=0.05)
}
print(paste0("Total number of significant coefficients (p <= 0.05) in model ",mdl.name," is ",significant.coefs,", i.e. ",sprintf("%.3f",100*significant.coefs/total.coefs),"%."))
}
# 3.4 Histograms of t-statistics for each coefficient in each model
for (mdl.name in nms) {
coef.names <- rownames(results[[mdl.name]][[names(results[[mdl.name]])[1]]])
edge.names <- names(results[[mdl.name]])
tstats <- matrix(nrow = length(edge.names), ncol = length(coef.names))
rownames(tstats) <- edge.names
colnames(tstats) <- coef.names
for(edge in edge.names){
tstats[edge,] <- results[[mdl.name]][[edge]]$tstat
}
chart.nrow <- (ncol(tstats)-1)/3
png(file=paste0("results/hist_tstats_",mdl.name,".png"), width=6, height=2*chart.nrow, units="in", res=600)
par(mfrow=c(chart.nrow,3), mar = c(4, 2, 4, 2))
for(i in 2:ncol(tstats)){
coef.name <- colnames(tstats)[i]
my_hist <- hist(tstats[,i], breaks = 20, plot = F)
cls <- ifelse(my_hist$breaks < -1.96, "red", ifelse(my_hist$breaks > 1.96, "forestgreen", "gray"))
title <- "" #title <- Tex(paste0("t-stats for ",coef.name,""))
plot(my_hist, border=F, xlab=TeX(paste0("$\\beta_{",i-1,"}$")), ylab="", main = title, cex = 0.5, col = cls)
}
dev.off()
}
# 3.5 Coefficient matrices for each variables vs. each edge in the network
for (mdl.name in nms) {
edge.names <- names(results[[mdl.name]])
coef.names <- rownames(results[[mdl.name]][[names(results[[mdl.name]])[1]]])
for(cn in coef.names){
tbl <- data.frame(matrix(nrow = data$n, ncol = data$n))
colnames(tbl) <- rownames(tbl) <- data$peers
for(edge in edge.names){
c1 <- unlist(strsplit(edge,","))[1]
c2 <- unlist(strsplit(edge,","))[2]
#stars <- ifelse(results[[mdl.name]][[edge]][cn,"pval"]<0.01,"^{***}",ifelse(results[[mdl.name]][[edge]][cn,"pval"]<0.05,"^{**}",ifelse(results[[mdl.name]][[edge]][cn,"pval"]<0.1,"^{*}","")))
stars <- ifelse(results[[mdl.name]][[edge]][cn,"pval"]<0.01,"***",ifelse(results[[mdl.name]][[edge]][cn,"pval"]<0.05,"**",ifelse(results[[mdl.name]][[edge]][cn,"pval"]<0.1,"*","")))
#tbl[c1,c2] <- capture.output(cat("\\begin{tabular}{@{}c@{}}",sprintf("%.4f", results[[mdl.name]][[edge]][cn,"coef"]),stars,"\\\\(",sprintf("%.3f", results[[mdl.name]][[edge]][cn,"se"]),")\\end{tabular}", sep = ""))
tbl[c1,c2] <- paste0(sprintf("%.4f", results[[mdl.name]][[edge]][cn,"coef"]),stars," (",sprintf("%.3f", results[[mdl.name]][[edge]][cn,"tstat"]),")")
#tbl[c1,c2] <- results[[mdl.name]][[edge]][coef.name,"t-stat"]
tbl[c1,c2] <- paste0(sprintf("%.4f", results[[mdl.name]][[edge]][cn,"coef"]),stars)
}
#print(xtable(tbl, type = "latex", digits = 3, caption = paste0("t-statistics for ",cn), label = paste0("tbl:",cn,"_",unlist(strsplit(coef.name,"_"))[2])),
# file=paste0("C:/results/tstats.",cn,"_",unlist(strsplit(coef.name,"_"))[2],".txt"),
# include.rownames=TRUE)
print(xtable(tbl, type = "latex", caption = paste0("Coefficients for ",cn), label = paste0("tbl:",mdl.name,"_",cn)),
file=paste0("results/result_tbl_",mdl.name,"_",cn,".txt"),
include.rownames=TRUE)
}
}
}