-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcpu.vhd
423 lines (377 loc) · 11.6 KB
/
cpu.vhd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
---------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
--use IEEE.NUMERIC_STD.ALL;
use work.control.ALL;
---------------------------------------------------------------------
entity cpu is
-- mem_valid : in STD_LOGIC;
Port(
clk : in STD_LOGIC;
nrst : in STD_LOGIC;
-- UI Bus
-- Panel to external interfaces
--ld : out STD_LOGIC_VECTOR(7 downto 0);
--anodes : out STD_LOGIC_VECTOR(3 downto 0);
--cathodes : out STD_LOGIC_VECTOR(7 downto 0);
-- Panel Bus
-- Panel to CPU
swreg : in STD_LOGIC_VECTOR(11 downto 0);
dispsel : in STD_LOGIC_VECTOR(1 downto 0);
run : in STD_LOGIC;
loadpc : in STD_LOGIC;
step : in STD_LOGIC;
deposit : in STD_LOGIC;
-- CPU to Panel
dispout : out STD_LOGIC_VECTOR(11 downto 0);
linkout : out STD_LOGIC;
halt : out STD_LOGIC;
-- IO Bus
-- CPU to IOT Distributor
bit1_cp2 : out STD_LOGIC;
bit2_cp3 : out STD_LOGIC;
io_address : out STD_LOGIC_VECTOR(2 downto 0);
dataout : out STD_LOGIC_VECTOR(7 downto 0);
-- IOT Distributor to CPU
skip_flag : in STD_LOGIC;
clearacc : in STD_LOGIC;
datain : in STD_LOGIC_VECTOR(7 downto 0);
-- UART Bus
-- IOT Distributor to UART
--clear_3 : STD_LOGIC;
--load_3 : STD_LOGIC;
--dataout_3 : STD_LOGIC_VECTOR(7 downto 0);
-- UART to IOT Distributor
--ready_3 : STD_LOGIC;
--clearacc_3 : STD_LOGIC;
--datain_3 : STD_LOGIC_VECTOR(7 downto 0);
-- Memory Bus
-- CPU to RAM
address : out STD_LOGIC_VECTOR(11 downto 0);
write_data : out STD_LOGIC_VECTOR(11 downto 0);
write_enable : out STD_LOGIC;
mem_load : out STD_LOGIC;
-- RAM to CPU
read_data : in STD_LOGIC_VECTOR(11 downto 0);
mem_ready : in STD_LOGIC
);
end cpu;
---------------------------------------------------------------------
architecture behavioral of cpu is
component state
Port( clk : in STD_LOGIC;
run : in STD_LOGIC;
opcode : in STD_LOGIC_VECTOR(2 downto 0);
indirect : in STD_LOGIC;
sel_ac : out sel_ac;
sel_pc : out sel_pc;
sel_skip : out sel_skip;
sel_addr : out sel_addr;
sel_data : out sel_data;
sel_iot : out sel_iot;
sel_ir : out sel_ir;
sel_ma : out sel_ma;
sel_md : out sel_md;
mem_read : out STD_LOGIC;
mem_write : out STD_LOGIC;
mem_valid : in STD_LOGIC;
halted : out STD_LOGIC
);
end component;
--type word is std_logic_vector(11 downto 0);
--signal ac : word := (others => '0');
--signal ir : word := (others => '0');
--signal ea : word := (others => '0');
--signal ac : STD_LOGIC_VECTOR(11 downto 0) := (others => '0');
--signal link : STD_LOGIC := '0';
signal link_ac : STD_LOGIC_VECTOR(12 downto 0) := (others => '0');
signal ac : STD_LOGIC_VECTOR(11 downto 0);
signal link : STD_LOGIC;
signal ir : STD_LOGIC_VECTOR(11 downto 0) := (others => '0');
signal ma : STD_LOGIC_VECTOR(11 downto 0) := (others => '0');
signal md : STD_LOGIC_VECTOR(11 downto 0) := (others => '0');
--signal ea : STD_LOGIC_VECTOR(11 downto 0) := (others => '0');
signal ea : STD_LOGIC_VECTOR(11 downto 0);
signal pc : STD_LOGIC_VECTOR(11 downto 0) := (others => '0');
signal skip : STD_LOGIC;
constant z_bit : INTEGER := 7;
constant i_bit : INTEGER := 8;
-- OPR (111) uC bits
constant uc_group1_bit : INTEGER := 8;
constant uc_group2_bit : INTEGER := 0;
type uc_group_t is (group1, group2, group3);
signal uc_group : uc_group_t;
-- uC Group 1 bits
constant cla_bit : INTEGER := 7;
constant cll_bit : INTEGER := 6;
constant cma_bit : INTEGER := 5;
constant cml_bit : INTEGER := 4;
constant rar_bit : INTEGER := 3;
constant ral_bit : INTEGER := 2;
constant bsw_bit : INTEGER := 1;
constant iac_bit : INTEGER := 0;
-- uC Group 2 bits
--constant cla_bit : INTEGER := 7;
constant sma_bit : INTEGER := 6;
constant sza_bit : INTEGER := 5;
constant snl_bit : INTEGER := 4;
constant and_bit : INTEGER := 3;
constant osr_bit : INTEGER := 2;
constant hlt_bit : INTEGER := 1;
-- uC Group 3 bits
--constant cla_bit : INTEGER := 7;
constant mqa_bit : INTEGER := 6;
constant sca_bit : INTEGER := 5;
constant mql_bit : INTEGER := 4;
-- 3:1 Code bits
-- uC decoded signals
signal en_cla : STD_LOGIC;
signal en_cll : STD_LOGIC;
signal en_cma : STD_LOGIC;
signal en_cml : STD_LOGIC;
signal en_rar : STD_LOGIC;
signal en_ral : STD_LOGIC;
signal en_rtr : STD_LOGIC;
signal en_rtl : STD_LOGIC;
signal en_bsw : STD_LOGIC;
signal en_iac : STD_LOGIC;
signal en_sma : STD_LOGIC;
signal en_sza : STD_LOGIC;
signal en_snl : STD_LOGIC;
signal en_and : STD_LOGIC;
signal uc1_stage1 : STD_LOGIC_VECTOR(12 downto 0);
signal uc1_stage2 : STD_LOGIC_VECTOR(12 downto 0);
signal uc1_stage3 : STD_LOGIC_VECTOR(12 downto 0);
signal uc1_stage4 : STD_LOGIC_VECTOR(12 downto 0);
signal uc2_stage1 : STD_LOGIC_VECTOR(12 downto 0);
signal uc2_skip : STD_LOGIC;
signal uc_link_ac : STD_LOGIC_VECTOR(12 downto 0);
signal uc_skip : STD_LOGIC;
signal sel_ac : sel_ac;
signal sel_pc : sel_pc;
signal sel_skip: sel_skip;
signal sel_addr : sel_addr;
signal sel_data : sel_data;
signal sel_iot : sel_iot;
signal sel_ir : sel_ir;
signal sel_ma : sel_ma;
signal sel_md : sel_md;
signal md_clear : STD_LOGIC;
signal iot_skip2 : STD_LOGIC;
signal iot_bits : STD_LOGIC_VECTOR(2 downto 0);
signal mem_read, mem_write : STD_LOGIC;
begin
inst_state: state Port Map(
clk => clk,
run => '1',
opcode => ir(11 downto 9),
indirect => ir(i_bit),
sel_ac => sel_ac,
sel_pc => sel_pc,
sel_skip => sel_skip,
sel_addr => sel_addr,
sel_data => sel_data,
sel_iot => sel_iot,
sel_ir => sel_ir,
sel_ma => sel_ma,
sel_md => sel_md,
--mem_read => open, -- TODO Should this be implemented?
mem_read => mem_read,
mem_write => mem_write,
mem_valid => mem_ready,
halted => open
);
with sel_addr select address <=
ea when addr_ea,
ma when addr_ma,
pc when addr_pc,
ea when others;
with sel_data select write_data <=
ac when data_ac,
md when data_md,
--pc when data_pc,
pc+1 when data_pc1,
ea when others;
-- Address calculation
--process(clk)
--variable page : std_logic_vector(11 downto 7);
--begin
-- if rising_edge(clk) then
-- if ir(z_bit) = '1' then
-- page := pc(11 downto 7);
-- else
-- page := (others => '0');
-- end if;
-- ea <= page & ir(6 downto 0);
-- end if;
--end process;
process(pc(11 downto 7), ir(z_bit), ir(6 downto 0))
variable page : std_logic_vector(11 downto 7);
begin
if ir(z_bit) = '1' then
page := pc(11 downto 7);
else
page := (others => '0');
end if;
ea <= page & ir(6 downto 0);
end process;
-- Program Counter
process(clk)
begin
if rising_edge(clk) then
if sel_pc = pc_data then
pc <= read_data;
elsif sel_pc = pc_ma then
pc <= ma;
elsif sel_pc = pc_ma1 then
pc <= ma + 1;
elsif sel_pc = pc_incr then
if skip = '1' then
pc <= pc + 2;
else
pc <= pc + 1;
end if;
end if;
end if;
end process;
-- Accumulator and Link
process(clk)
begin
if rising_edge(clk) then
if sel_ac = ac_and_md then
link_ac <= link_ac and ("1" & md);
elsif sel_ac = ac_add_md then
link_ac <= link_ac + ("0" & md);
elsif sel_ac = ac_zero then
link_ac <= link & "000000000000";
elsif sel_ac = ac_uc then
link_ac <= uc_link_ac;
elsif sel_ac = ac_iot then
if clearacc = '1' then
link_ac <= link & "0000" & datain;
else
link_ac <= link & (ac OR "0000" & datain);
end if;
end if;
end if;
end process;
-- Instruction Register
process(clk)
begin
if rising_edge(clk) then
if sel_ir = ir_data then
ir <= read_data;
end if;
end if;
end process;
-- Memory Address
process(clk)
begin
if rising_edge(clk) then
if sel_ma = ma_data then
ma <= read_data;
elsif sel_ma = ma_ea then
ma <= ea;
end if;
end if;
end process;
-- Memory Data
process(clk)
begin
if rising_edge(clk) then
if sel_md = md_data then
md <= read_data;
elsif sel_md = md_data1 then
md <= read_data + 1;
end if;
end if;
end process;
md_clear <= '1' when md = "000000000000" else '0';
iot_skip2 <= '1' when skip_flag = '1' and ir(0) = '1' else '0';
with sel_skip select
skip <= md_clear when skip_md_clear,
uc_skip when skip_uc,
iot_skip2 when skip_iot,
'0' when others;
-- Decoding OPR instructions
uc_group <= group1 when ir(uc_group1_bit) = '0' else
group2 when ir(uc_group2_bit) = '0' else
group3;
en_cla <= ir(cla_bit);
en_cll <= ir(cll_bit);
en_cma <= ir(cma_bit);
en_cml <= ir(cml_bit);
en_iac <= ir(iac_bit);
en_sma <= ir(sma_bit);
en_sza <= ir(sza_bit);
en_snl <= ir(snl_bit);
en_and <= ir(and_bit);
process(ir(rar_bit downto bsw_bit))
begin
en_rar <= '0';
en_rtr <= '0';
en_ral <= '0';
en_rtl <= '0';
en_bsw <= '0';
case ir(rar_bit downto bsw_bit) is
when "100" => en_rar <= '1';
when "101" => en_rtr <= '1';
when "010" => en_ral <= '1';
when "011" => en_rtl <= '1';
when "001" => en_bsw <= '1';
when others =>
end case;
end process;
-- uC Group 1 processing
uc1_stage1(11 downto 0) <= (others => '0') when en_cla = '1' else ac;
uc1_stage1(12) <= '0' when en_cll = '1' else link;
uc1_stage2(11 downto 0) <= not uc1_stage1(11 downto 0) when en_cma = '1' else uc1_stage1(11 downto 0);
uc1_stage2(12) <= not uc1_stage1(12) when en_cml = '1' else uc1_stage1(12);
uc1_stage3 <= uc1_stage2 + 1 when en_iac = '1' else uc1_stage2;
uc1_stage4 <= uc1_stage3(11 downto 00) & uc1_stage3(12 downto 12) when en_ral = '1' else
uc1_stage3(10 downto 00) & uc1_stage3(12 downto 11) when en_rtl = '1' else
uc1_stage3(00 downto 00) & uc1_stage3(12 downto 01) when en_rar = '1' else
uc1_stage3(01 downto 00) & uc1_stage3(12 downto 02) when en_rtr = '1' else
uc1_stage3(12) & uc1_stage3(5 downto 0) & uc1_stage3(11 downto 6) when en_bsw = '1' else
uc1_stage3;
-- uC Group 2 processing
uc2_stage1(11 downto 0) <= (others => '0') when en_cla = '1' else ac;
uc2_stage1(12) <= link;
uc2_skip <= '1' when ((en_sma = '1' and ac(11) = '1') or
(en_sza = '1' and ac = "000000000000") or
(en_snl = '1' and link = '1')) xor
en_and = '1' else '0';
process(uc_group, uc1_stage4, uc2_stage1, uc2_skip, link_ac)
begin
case uc_group is
when group1 =>
uc_link_ac <= uc1_stage4;
uc_skip <= '0';
when group2 =>
uc_link_ac <= uc2_stage1;
uc_skip <= uc2_skip;
when group3 =>
uc_link_ac <= link_ac;
uc_skip <= '0';
end case;
end process;
ac <= link_ac(11 downto 0);
link <= link_ac(12);
-- TODO Should all ac bits be supported?
--dataout <= ac;
dataout <= ac(7 downto 0);
-- TODO Support all address bits
--io_address <= ir(8 downto 3) when sel_iot = iot_en else "000000";
io_address <= ir(8 downto 6) when sel_iot = iot_en else "000000";
iot_bits <= ir(2 downto 0);
bit1_cp2 <= iot_bits(1);
bit2_cp3 <= iot_bits(2);
mem_load <= mem_write OR mem_read;
write_enable <= mem_write;
end behavioral;
--10 ... 02 01 00 12 11 RTL
--11 10 ... 02 01 00 12 RAL
--12 11 10 ... 02 01 00
--00 12 11 10 ... 02 01 RAR
--01 00 12 11 10 ... 02 RTR