-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcamera_classify.py
70 lines (61 loc) · 2.61 KB
/
camera_classify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import io
import time
import numpy as numpy
import edgetpu.classification.engine
import cv2
from config import Config
class VideoCamera(object):
def __init__(self):
with open(Config.LABEL_PATH, 'r', encoding="utf-8") as f:
pairs = (l.strip().split(maxsplit=1) for l in f.readlines())
self.labels = dict((int(k), v) for k, v in pairs)
self.engine = edgetpu.classification.engine.ClassificationEngine(Config.MODEL_PATH)
# Using OpenCV to capture from device 0. If you have trouble capturing
# from a webcam, comment the line below out and use a video file
# instead.
self.video = cv2.VideoCapture(0)
if self.video:
self.video.set(3, 640)
self.video.set(4, 480)
# If you decide to use video.mp4, you must have this file in the folder
# as the main.py.
# self.video = cv2.VideoCapture('video.mp4')
def __del__(self):
print('closing camera')
self.video.release()
def get_frame(self):
font = cv2.FONT_HERSHEY_SIMPLEX
bottomLeftCornerOfText = (10, 470)
fontScale = 0.6
fontColor = (255,255,255)
lineType = 2
annotate_text = ""
_, width, height, channels = self.engine.get_input_tensor_shape()
if not self.video.isOpened():
print('Camera is not opened')
ret, img = self.video.read()
if not ret:
print('Camera is not read')
input = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
input = cv2.resize(input, (width, height))
input = input.reshape((width * height * channels))
start_ms = time.time()
results = self.engine.ClassifyWithInputTensor(input, top_k=Config.TOP_K)
elapsed_ms = time.time() - start_ms
# if results:
# print( "%s %.2f\n%.2fms" % (self.labels[results[0][0]], results[0][1], elapsed_ms*1000.0))
if results and\
results[0][1] > Config.DETECT_THRESHOLD:
annotate_text = "%s %.2f %.2fms" % (
self.labels[results[0][0]], results[0][1], elapsed_ms*1000.0)
cv2.putText(img, annotate_text,
bottomLeftCornerOfText,
font,
fontScale,
fontColor,
lineType)
# We are using Motion JPEG, but OpenCV defaults to capture raw images,
# so we must encode it into JPEG in order to correctly display the
# video stream.
ret, jpeg = cv2.imencode('.jpg', img)
return jpeg.tobytes()